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Abstract

Although the dimension of.deviee has shrunk into nano technology node, the RC
delay of inter-metal interconnection has_still ‘been the urgent issue needed to be
resolved so far. In order to overcome this problem, the introduction of
low-dielectric-constant  (low-k) material for inter-metal interconnection can
effectively reduce the RC delay. However, it is necessary to estimate the compatibility
of low-k materials on semiconductor process during the integration of Cu and low-k
materials. In this dissertation, four types of low-k materials are investigated:
Methylsilsesquiazane (MSZ), Porous Polysilazane (PPSZ), Hydrogen Silsesquioxane
(HSQ), and Porous Organosilicate Glass (POSG).

In the traditional lithography process for integrated circuit manufacture,
photoresist removal step is an inevitable process. O, plasma ashing is the main
method to remove the photoresist during photoresist (PR) stripping process. It was
found that the oxygen plasma will degrade the dielectric properties of low-k material.
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We have found that the porous low-k materials are more easily damaged by O, plasma
than that of dense low-k materials. This reason is that the porous low-k materials have
larger exposed surface area than that of dense low-k materials. As a result, the oxygen
radical can easily diffuse into material and react with the functional group, such as
methyl bonding, which is converted to Si-OH bonds. These polar chemical bonding
can lead to moisture uptake under atmosphere, resulting in dielectric degradation. In
order to prevent the low-k materials from O, plasma damage during photoresist
stripping process, H, and NH3; plasma treatments were applied to low-k materials
before PR stripping process. These plasma treatments can effectively form a
passivation layer on the surface of low-k materials and protect the low-k materials
from O, plasma damage. Besides, the Si-OH formed from O, plasma ashing process
can also be eliminated by trimethylchlorosilane(TMCS) and hexamethyldisilazane
(HMDS) post-treatment. These-chemical treatment can change the hydrophilic Si-OH
into hydrophobic Si-O-Si(CHs)s bonds so-that-the dielectric characteristics of low-k
materials can be recovered.

In order to integrate the Cu and low-k materials into multilevel interconnection,
the Cu damascene structure has been accepted to be a promising architecture up to
now. In this process, the chemical mechanical polishing (CMP) technology will
impersonate a critical role. However, with the functionality of chip is more powerful,
the complexity and density of circuit layout are increased more significantly. This will
cause the end point detection of CMP process more difficultly. Therefore, there are
two slurries (TaN and Cu slurries), which is provided by national nano device
laboratory (NDL), used to investigate the impact of CMP process on dielectric
properties of low-k materials. It was found that these two slurries can not influence
the dielectric properties of MSZ and PPSZ during CMP processes. Moreover, the

selectivity of Cu or TaN with respect to MSZ and PPSZ films is high as polished by
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Cu or TaN slurries. Therefore, manufacturing Cu interconnect using the two low-k
materials can make the end point detection easily and do not influence the dielectric
properties during CMP processes. In addition, it was found that the electrical
reliability of Cu and these two materials can be remained under reliability test.
Therefore, the application of MSZ and PPSZ for Cu damascene structure has a lot of
potential.

In virtue of the requirement of low thermal budget and high planarization for
pre-metal dielectric (PMD) is gradually significant in future, it is necessary to
investigate the CMP of low-k materials in this study. The experimental results
represent that the high polishing rate of MSZ or PPSZ can not be obtained by using
commercial silica-based SS-25 slurry. Therefore, O, plasma pretreatment on low-k
materials is proposed to improve the polishing rate. of low-k materials. The O, plasma
can react with MSZ or PPSZ-to.form a hydrophilic layer, which will raise the
polishing rate of methyl contained MSZ-0r-PPSZ films with SS-25 slurry. Moreover,
the dielectric properties of these low-k-materials can be maintained as the hydrophilic
layer was polished away.

In addition, a novel electron beam (e-beam) direct patterning technology is
proposed so as to avoid the damage during photoresist removal process. The e-beam
energy can provide energy to cure the low-k materials from mono-polymer structure
into network structure. Then, the uncured region of low-k materials can be dissolved
by suitable developer. After development process, the desirable pattern can be
obtained by this technology. But an additional thermal annealing is needed to achieve
the required low-k dielectric properties.

During the experiment of e-beam direct patterning on porous POSG film, it was
found that the dielectric constant of e-beam exposed POSG after development and

thermal annealing processes is lower than that of traditional furnace cured one. The
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possible reason is that the e-beam exposure can only partially crosslink the POSG
films. Once the e-beam exposed POSG is subjected to developer, the uncrosslinked
polymer of POSG will be taken away, resulting in the pore in POSG films. After the
thermal annealing process, the porosity of film will be higher than that of traditional
furnace cured one. In addition, the leakage current behavior of e-beam exposed POSG
film is investigated. After e-beam exposure, there are many charge trapping sites
remained in POSG films, which will cause local potential barrier height and affect the
carriers transport in POSG film. Electrical analyses reveal that the behavior of leakage
conduction mechanism of POSG will be from Schottky emission transferred into

Space-Charge-Limited Current (SCLC).
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