Table 1-1	The	requirements	for	low-k	dielectrics

Requirements for Low-K Dielectrics							
<u>Film Properties</u>	Integration Compatibility						
 Dielectric Constant: Bulk: k = 2.7 or below Effective: k=3.1~3.6 Extendible to k < 2.4 Thermal/Dimensional Stability: Tg > 400°C Decomposition temperature > 450 °C Useable temperature > 400 °C CTE: 20~70 ppm Electrical Properties: Leakage current density: 10°~10⁸ A/cm² at 1 MV/cm Breakdown field: 2~5 MV/cm Dissipation factor: < 0.01 Low fix charge 	 5. Adhesion: Good adhesion to various metallization and dielectric materials before and after integration, i.e. etch & CMP 6. Structure Rigidity: Ability to build > 10 level structures No impact on electromigration 7. Moisture Absorption/Permeation: No moisture uptake 8. O₂ Ash/Solvent Resistance: Compatible with conventional post etch and resist removal processes 						
 Compatible with Cu metallization materials Oxide like film composition Low film stress >2 µm thick cracking threshold 	 9 . Safety/Green technology 10. cost of ownership (COO) stand alone/integrated 11. Non Proprietary Chemical 12. Particles/Contamination 						

(Ref: Semiconductor International Association)

Dielectric	Dielectric	Deposition	Glass	Refractive	Stress	Gap	Cure
	constant	technology	transition	index	(Mpa)	filling	temperature
			temperature		Pa=N/m ²	(um)	(°C)
			(°C)				
FSG (silicon oxyfluoride)	3.4~4.1	CVD	>800	1.42	130	< 0.35	No issue
Parylene-AF4 (aliphatic	2.5	CVD	Tmelt >510	1.548∆RI	100	0.18	420~450
tetrafluorinated				> 0.09			
poly-p-xylyene)				(ai)			
Fluorinated amorphous	2.0~2.6	CVD	-	1.49~1.39	5~45	< 0.35	-
Carbon (a-F:C)							
Diamondlike Carbon	2.4~2.8	CVD	-	1.6~1.75	2-10	< 0.18	-
Polyimides	3.2~3.6	SOD	>350	$\Delta RI >$	-	-	-
				0.22 (ai)			
Hybrid-Silsesquioxanes	<3	SOD	Tmelt >	1.58	30~40	< 0.1	450
			250				
HSQ (hydrogen	2.9	SOD	>500	1.37	70~80	< 0.1	350~450
silsesquioxane)		_ //					
MSQ(Methyl-silsesquioxane)	2.5~2.7	SOD	>500	1.36	60~70	<0.1	400~450
Fluorinated Polyimides	2.6~2.9	SOD	>400	$\Delta RI >$	2	<0.5	350
		44000	19 ·	0.15 (ai)			
Poly(arylene)ethers	2.4~3.0	SOD	290	-	-	-	425
Aromatic hydrocarbon	2.65	SOD	>490	1.628	55~60	< 0.05	400~450
Bisbenzo(cyclobutene) BCB	2.6~2.8	SOD	Tdec > 350	-	85	<1	250
Fluorinated	2.4~2.7	SOD	175~265	-	30~50	0.1~0.8	450
Poly(arylene)ethers							
PTFE	1.9	SOD	Tdec >	1.34	25~27	< 0.3	360~390
(polytetrafluoro-ethylene)			250~300				
Nanoporous Silica	1.3~2.5	SOD	>500	1.15	0	< 0.25	400
Xerogels/Aerogels	1.1~2.5	SOD	N/A	-	-	0.1	300~400

Table 1-2 Basic intrinsic properties of several low-k materials.

Year of production	2003	2004	2005	2006	2007	2008	2009
DRAM 1/2 Pitch (nm)	100	90	80	70	65	57	50
MPU/ASIC 1/2 Pitch (nm)	120	107	95	85	76	67	60
MPU Printed Gate Length (nm)	65	53	45	40	35	32	28
MPU Physical Gate Length (nm		37	32	28	25	22	20
Number of metal levels	9	10	11	11	11	12	12
(minimum)							
Total interconnect length (m/cm ²)	579	688	907	1002	1117	1401	1559
-active wiring only, excluding							
global levels							
Metal 1 wiring pitch (nm)	240	214	190	170	152	134	120
Minimum global wiring pitch	475	410	360	320	290	260	234
(nm)							
Interconnect RC delay (ps) for 1	42	55	69	87	92	112	139
mm global	1 IIII	in the					
Line at minimum pitch			and l				
Conductor effective resistivity	2.2	2.2	2.2	2.2	2.2	2.2	2.2
$(\mu \Omega - cm)$							
Cu intermediate wiring	15-1	896	173				
Barrier/cladding thickness (for Cu	12	10	9	8	7	6	6
global wiring) (nm)		-					
Interlevel metal insulator	3.3-	3.1-	3.1-	3.1-	2.7-	2.7-	2.7-
(minimum expected)-effective	3.6	3.6	3.6	3.6	3.0	3.0	3.0
dielectric constant (k)							
Interlevel metal	<3.0	<2.7	<2.7	<2.7	<2.4	<2.4	<2.4
insulator(minimum							
expected)-bulk dielectric constant							
(k)							

Table 1-3 MPU interconnect technology requirements –Near-term

(Ref.: ITRS 2004)

Year of production		2012	2013	2015	2016	2018
DRAM 1/2 Pitch (nm)	45	35	32	25	22	18
MPU/ASIC 1/2 Pitch (nm)	54	42	38	30	27	21
MPU Printed Gate Length (nm)		20	18	14	13	10
MPU Physical Gate Length (nm	18	14	13	10	9	7
Number of metal levels (minimum)	12	12	12	13	14	14
Total interconnect length (m/cm ²)	1784	2214	2544	3544	4208	5035
-active wiring only, excluding global						
levels						
Metal 1 wiring pitch (nm)	108	84	76	60	54	42
Minimum global wiring pitch (nm)		165	140	117	100	83
Interconnect RC delay (ps) for 1 mm		220	248	354	452	618
global						
Line at minimum pitch	in the					
Conductor effective resistivity ($\mu \Omega$ -cm)	2.2	2.2	2.2	2.2	2.2	2.2
Cu intermediate wiring						
Barrier/cladding thickness (for Cu global	4.9	4	3.6	2.9	2.5	2
wiring) (nm)	896	3				
Interlevel metal insulator (minimum	2.3-	2.3-	2.0-	2.0-	<2.0	<2.0
expected)-effective dielectric constant (k)	2.6	2.6	2.4	2.4		
Interlevel metal insulator(minimum	<2.1	<2.1	<1.9	<1.9	<1.7	<1.7
expected)-bulk dielectric constant (k)						

Table 1-4 MPU interconnect technology requirements –Long-term

(Ref.: ITRS 2004)

Figure 1-1 The RC delay trend of nano-scaled ULSI circuits. (Source: ITRS 2003)

(Ref: Introduction to Semiconductor Manufacturing Technology by Hong Xiao, 2001)

Figure 1-2 The architecture of multilevel interconnect metallization

Figure 1-3 The cross-section of interconnect system with parasitic capacitance.

Figure 1-4 Foam Formation Process (Source: K. R. Carter, IBM Research Division, 1997)

III. Trench patterning and etching and, then Ta/TaN and Cu deposition

IV. Cu and Ta/TaN CMP hard-mask deposition

Figure 1-6 The planarization flow of PMD with CMP process

(Ref.: ITRS 2003)

Figure 1-7 Lithography Exposure Tool Potential Solutions

Figure 1-8 Photoresist stripping processes during the fabrication of damascene structure

Figure 1-9 Scheme of e-beam direct patterning of low-k dielectrics for the manufacture of dual damascene structure.Regions I are uncured low-k materials in a gel-like state and regions II are crossed-linked state after e-beam exposure.