Gas	Time (min)	Flow rate (sccm)	Pressure (mtorr)	Power (W)	Temperature (°C)
H_2	3				
	6	400	500	100	250
	9				
NH ₃	3				
	6	700	300	200	300
	9				
O_2	3				
	6	900	650	110	250
	9				

Table 2-1 The conditions of H₂, NH₃, and O₂ plasma treatments for Methylsilsesquiazane (MSZ)

Polisher:	1 st Step (only)					
IPEC372M	Phase 1		Phase 2			
Platen/ Carrier	50/60 rpm		30/40 rpm			
Speed						
Down Force	3.0 psi		1.5 psi			
Back Pressure	2.0 psi		0			
Slurry Flow Rate	150 ml/cm		Rinse			
Time	2 min		30 sec			
Polishing Pad	Rodel Politex Regular E. [™]					
Carrier Film	Rodel R200-T3 TM					
	SS-25 Slurry	Cu-Slurry		TaN-Slurry		
Slurry Formation	SS-25 slurry : DI	2 vol% HNO ₃ ,		10 wt% Colloidal silica,		
	water: TMAH	5×10^{-2} M Citric acid,		10 vol% H ₂ O ₂ ,		
	=14:14:5 (vol%)	3 wt% Al ₂ C	D ₃ (0.1μm)	pH=8.5		

Table 2-2 The parameters of CMP process

Figure 2-1 Formation mechanism of MSZ film.

Figure 2-2 FTIR spectra of MSZ film during formation.

Figure 2-4 FTIR spectra of MSZ films after various anneal temperature.

(b)

Figure 2-5 Dielectric properties of the MSZ film after thermal annealed at various temperature. (a) Leakage current density of the MSZ film versus electric field. (b) Dielectric constant of the MSZ film versus annealing temperature.

Figure 2-6 The leakage current density of (a) temperature and (b) time dependence of thermal stress for Cu electrode MIS structure.

Figure 2-7 FTIR spectra of MSZ film after O₂ plasma treatment for 3 to 9 minutes

Figure 2-8 The TDS moisture desorption spectra of O₂ plasma-treated MSZ films.

(b)

Figure 2-9 Dielectric properties of MSZ after O₂ plasma treatment. (a) Leakage current density of the MSZ versus electric field. (b) Dielectric constant of the MSZ versus O₂ plasma treatment time.

Figure 2-10 FTIR spectra of as-cured and H₂ plasma-treated 3 min films after undergoing O₂ plasma treatment..

Figure 2-11 Dielectric properties of as-cured and H₂ plasma-treated 3 min MSZ film after undergoing O₂ plasma exposure. (a) Leakage current density of the MSZ versus electric field. (b) Dielectric constant of the MSZ .

Figure 2-12 FTIR spectra of as-cured and NH₃ plasma-treated 3 min films after undergoing O₂ plasma treatment.

(b)

Figure 2-13 Dielectric properties of as-cured and NH₃ plasma-treated 3 min MSZ film after subjected to O₂ plasma exposure. (a) Leakage current density of the MSZ versus electric field. (b) Dielectric constant of the MSZ.

Figure 2-15 Thickness variation of MSZ films with O₂ plasma and subsequent TMCS/HMDS treatment.

O₂ plasma 3 min (392 nm) ●

395

390

(a)

Figure 2-16 Dielectric properties of MSZ films with O₂ plasma and subsequent TMCS/HMDS treatment (a) leakage current density of the MSZ versus electric field (b) dielectric constant of the MSZ.

(b)

Figure 2-17 AFM image surface of polished MSZ (a) with TaN slurry (b) with Cu slurry.

Figure 2-18 AFM micrograph surface of polished MSZ with commercial SS-25 slurry.

Figure 2-19 FTIR Spectra of post-CMP MSZ with various slurries.

(b)

Figure 2-20 Dielectric properties of polished MSZ with various slurries. (a) leakage current density of post-CMP MSZ versus electric field (b) dielectric constant of post-CMP MSZ films.

Figure 2-21 Removal rate of CMP for MSZ polished by SS-25 slurry with and without O₂ plasma pre-treatment

(a)

Figure 2-22 AFM micrographs of 1 min O₂ plasma-treated MSZ films (a) without CMP process (b) with CMP process.

Figure 2-23 FTIR spectra of O₂ plasma-treated MSZ films before and after CMP process.

Figure 2-24 Moisture-desorption spectra of O₂ plasma-treated MSZ films before and after CMP process.

(a)

Figure 2-25 The auger depth profile of (a) as-cured and (b) 1 min O₂ plasma treated MSZ films.

(a)

Figure 2-26 Dielectric properties of O₂ plasma-treated MSZ before and after CMP process (a) leakage current density of MSZ films as a function of electric field (b) variation in dielectric constant of O₂ plasma-treated MSZ films.

Figure 2-27 Leakage-current density of sample O before and after the 150 °C bake [curve I, sample STD measured at 25 °C; curve II, sample O measured at 25 °C (before 150 oC bake); curve III, sample O measured at 150 °C; curve IV, sample O measured at 25 °C (after 150 °C bake)].

Figure 2-28Leakage-current density of sample C before and after 150 °C bake[curve I, sample STD measured at 25 °C; curve II, sample C measured
at 25 °C (before 150 °C bake); curve III, sample C measure at 150 °C;
curve IV, sample C measured at 25 °C (after 150 °C bake)].

