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On the mixture of skew normal distributions

and its applications
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Hsinchu, Taiwan

Abstract

The normal mixture model provides a natural framework for modelling
the heterogeneity of a population arising from several groups. In the last
two decades, the skew normal distribution has been shown to be useful for
modelling asymmetric data in many applied problems. In this thesis, we
propose likelihood-based and Bayesian sampling-based approaches to address
the problem of modelling data by a mixture of skew normal distributions.
EM-type algorithms are implemented for computing the maximum likelihood
estimates. The prior as well as the resulting posterior distributions are de-
veloped for Bayesian computation via Markov chain Monte Carlo methods.

Applications are illustrated through two real examples.

Key words: EM-type algorithms; Fisher information; Markov chain Monte

Carlo; maximum likelihood estimation; skew normal mixtures



1. Introduction

Finite mixture models have been broadly developed with applications to classifi-
cation, density estimation and pattern recognition problems, as discussed by Titter-
ington, Smith and Markov (1985), McLachlan and Basford (1988), McLachlan and
Peel (2000), and the references therein. Due to the advances of computational meth-
ods, in particular for Markov chain Monte Carlo (MCMC), many authors are also
devoted to Bayesian mixture modelling issues, including Diebolt and Robert (1994),
Ecobar and West (1995), Richardson and Green (1997) and Stephens (2000), among
others.

In many applied problems, the shape of normal mixtures may be distorted and
inferences may be misleading when the data involves highly asymmetric observa-
tions. In particular, the normal mixture model tends to “overfit” in that additional
components are included to capture the skewness. Sometimes, increasing the num-
ber of pseudo-components may lead'to difficulties and inefficiency in computations.
Instead, we consider using the skew normal.distributions proposed by Azzalini (1985)
for mixture modelling to ovetcome the potential weakness in normal mixtures. The
skew normal distribution is a new class-of density functions dependent on an addi-
tional shape parameter and includes the normal density as a special case. It provides
a more flexible approach to the fitting of aSymmetric observations and uses fewer
components for mixture modelling. A comprehensive coverage of the fundamental
theory and new developments for skew-elliptical distributions is given by Genton
(2004).

It is not easy to deal with computational aspects of parameter estimation for
the skew normal mixture model. For simplicity, we treat the number of components
as known and carry out the maximum likelihood (ML) inferences via EM-type al-
gorithms. In addition, Bayesian methods for skew normal mixtures are considered
as an alternative technique. The specification of the priors and hyperparameters
are chosen as weakly informative to avoid nonidentifiability problems in the mixture
context.

The rest of the thesis unfolds as follows. Section 2 briefly outlines some pre-
liminaries of the skew normal distribution. Azzalini and Capitanio (1999) point
out that the ML estimates can be optionally improved by a few EM iterations, but

detailed expressions of the EM algorithm are not available in the literature. We



thus present how to compute the ML estimates for the skew normal distribution by
using the ECM and ECME algorithms. In Section 3 we show the hierarchical for-
mulation for skew normal mixture models by comprising two latent variables. Based
on the model, we derive EM-type algorithms for ML estimation. Meanwhile, the
information-based standard errors are also presented. In Section 4 we develop the
MCMC sampling algorithm used in simulating posterior distributions to conduct
Bayesian inferences. In Section 5 two real examples are illustrated, and in Section

6 we provide some concluding remarks.

2. The Skew Normal Distribution

2.1. Preliminaries

As developed by Azzalini (1985, 1986), a random variable Y follows a univariate
skew normal distribution with location, parameter &, scale parameter o2 and skewness

parameter A € R if Y has the following density function:

ol e Sgld=t o (A1), 0

where ¢(-) and ®(-) denote thestandard normal density function and cumulative dis-

tribution function, respectively; thengforbrevity, we shall say that Y ~ SN (&, 0%, \).
Note that if A = 0, then the density of Y will be reduced to N (&, 0?) density. Figure

1 shows the plots of standard skew normal densities ({ = 0, o = 1) for various A.

2
Lemma 1 IfY ~ SN(,0%)) and X ~ N(ﬁ, ﬁ), we have

() B(X™) = €B(X") + 105 e E(X).

(i) E(Y™) = €B(Y") + 0> L FE(YT) + f& NoE(X™).
(i) E{y —E(Y)}"" = E{Y EY)Y' +no’E{y — E(Y)}"™
—{E(Y)-¢E{Y —EY)}"+ \/;5(>\)0E{X — E(Y)}".

Lemma 1 provides a simple way of obtaining the higher moments without using

the moment generating function. With some basic algebraic manipulations, we can



Densities of standard Skew-Normal with various skewnesses
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Figure 1: Standard skéw normal derisities for \ = -3,-2,—-1,0,1,2,3.

easily obtain
B(Y) =€+ \/gm)a, var(y) = {1~ %52@)}02,
V2(4 — )N 8(m — 3)\!

vy = KY:3+{7T+(7T_2))\2}2’

3/2°
{71' + (m — 2))\2}
where 0(A) = A/v/1+ A2, and 7y and ky are the measures of skewness and kur-
tosis, respectively. It is easily shown that ~y lies in (—0.9953, 0.9953) and ky in
(3, 3.8692). Figure 2 displays vy and ky for different A. Henze (1986) shows that
the odd moments of the standard skew normal variable Z = (Y — £)/o have the

following expressions:

(2)

k

B \/g’\(l ARk o 4 1)1 Y = JJF'S'/\()kJ_ ik

=0
while the even moments coincide with those of standard normal, as Z% ~ x3.
From (2), Arnold, Beaver, Groeneveld and Meeker (1993) show the following

4
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Figure 2: The skewness and kurtosis.of the standard skew normal distribution.

method of moment estimators:

where a; = \/2/m, by = (4/m—1)a;, m; =n"t >0 Yi,me = (n—=1)"' 30" (V;-Y;)?
and mg = (n — 1) 300 (V; = Y;)®.

2.2. Parameter estimation using EM-type algorithms

We show two faster extensions of the EM algorithm (Dempster, Laird and Rubin,
1977), the ECM algorithm (Meng and Rubin, 1993) and the ECME algorithm (Liu
and Rubin, 1994), for the ML estimation of the skew normal distribution. In order



to represent the skew normal model in an incomplete data framework, we extend
the result of Azzalini (1986, p. 201) and Henze (1986, Theorem 1) to show that if
Y; ~ SN(§, 0% \), then

Vi =&+ 6N)7 + /1= 32N, (4)

with
7; ~ TN(0,0°)I{r; > 0}, U; ~ N(0,0%),
where 7; and U; are independent, and T'N(-,-) denotes the truncated normal dis-

tribution, and I{-} represents an indicator function. Letting Y = (Y;,...,Y,) and
T =(71,...,Tn), the complete-data log-likelihood of 8 = (£, 0% \) given (Y, 7) is

0.(0) = —nlog(oz)—glog<1—52(/\)>

Z?:l Tj2 —26(N) Z?:l Ti(y; — &) + Z?:l(yj - &)
— ) (5)
202 (1 - 52()\)>

Obviously, the posterior distribution of 7;1s
7-]'|Yj = Y ™ TN(Uij Uz)I{Tj > 0}> (6)

where g, = 6(A\)(y; — §) and 0% =04/1 —52(N).

Lemma 2 Let X ~ TN(u,0*)I[{a; < x < az} be a truncated normal distribution
with the following density function:

f(z|p, 0% = {@(ag) — @(al)}l ! exp{ ! (x — ,u)Q} . ap <z < ag,

2ro 202

where a; = (a; — p)/o, i =1, 2. Then

(i) MX(t) — exp (Mt + 0'22t2>{(1)(@2 - O't) — (I)(O-/l - O't) }

(i) B(X)=p— 0£Ea2) - jé(o‘l)).




By Lemma 2, we have

¢(MTj /UT)
(ir, /o)

Then we have the following ECM algorithm:

(b(:uTj/O-T)

B ) = o + Haofr) "

o, and E(7}|y;) = pi3, + 07 +

E-step: Calculating the conditional expectation of (5) at the kth iteration yields

)

~(k ~ ~
8 = E9<k)(7j|yj):/i(flf)+ g — £ 23
\NR) (2T S
‘I’{A (%55 )}
é X(k)(%"é“”)
2 i (k)
i (k)

& = Egu(rly) = %" + 60" +

( )
f(k /"[/ Y
o))
A (R) -~ (k)

where fir,’, 67 are ., and o, iny(6) with'§e and X replaced by R 5H) and \®)
respectively.

CM-steps

CM-step 1: Update £® b

Q>

Y

k—i—l

SI'—‘

Hiwet50)

1
CM-step 2: Update 62 by
n Ak N n L
e _ 2 8y = 20000) 30 (g — €4FD)S) + Sy — €Y
2n(1 — §2(A®)) '

CM-step 3: Fix £ = £+ and 02 = 62“*" obtaining A*+Y as the solution of the

following equation:

n

n62(k+1)(5()\)(1 _ (52(/\)> + 52<)\) Z(% . g(kJrl))Sgljf)

j=1
n n

=50 Y88 =0 D (g — )2 = 0.

J=1 J=1
For the ECME algorithm, the E-step and the first two CM steps are the same
as ECM, while the CM-Step 3 of ECM is modified as the following CML-step.

7



CML-step: Update A®) by optimizing the constrained log-likelihood function, i.e.,
n C_ f(k+1)
S(kt1) _ y; — &
A = argf\naXZIOg{qDO\—&(Hl) )}
j=1

The maximization in the CML-step needs a one-dimensional search, which can
be easily solved by the function “optim” embedded in the statistical package “R”.
As noted by Liu and Rubin (1994), the ECME has a faster convergence rate than
the ECM algorithm.

Lemma 3 If Z ~ SN(0,1, ), then
- oAZ) | _ 21
004} - Ve

(i) E{Z%“%} =0, k=0, 1,2,....

(iif) E{Z?%} - \/%m

The method of moments-estimators in (3) can provide good initial values. Ap-
plying Lemma 3, the Fisher“information I(£,0,\) can be easily obtained. The
results are shown in the following‘lemma: The standard errors of ML estimates can

be computed by taking the square root of the corresponding diagonal elements of
I7(6,6,)).

Lemma 4 The Fisher information for 8 = (£,0% \) is
Le I I
9*((0]y) c 0
I0)=E(———| = Loz Ip2p2 g2y | (7)

0000 "
Ien 1,2 Iy



where

Le = E( 8a§2|y): (1+ Nap),

oo = () (2 ),
o = E( 8(%2&1}): ( H;)gﬂ_ml),
Lon — E( 6852!:"): <1+ A2a2),
()

In = E< il 9|y) nas.

Note that the quantities a; = E(Zk(qﬁ(AZ)/(P(AZ))Q), (k =0, 1, 2) need to
be evaluated numerically. Basedton the largé.sample theorem, the standard errors
estimates for the ML estimatés éML f e (fML, 6§4L, S\ML) can be computed by taking

the square root of the corresponding diagonal elements of J _1(9ML).

3. The Skew Normal Mixtures

3.1. The model

We consider a finite mixture model in which a set of independent data Yy, ... Y,

are from a g-component mixture of skew normal densities

9
Flyilw,©) = wiv(y; | & 07, M), (8)

i=1
where w = (wy,...,w,) are the mixing probabilities which are constrained to be

non-negative and sum to unity and © = (604,...,80,) with 8, = (w;,&;, 07, \;) being
the specific parameters for component 7.
We introduce a set of latent component-indicators Z; = (Zy,,...,2Z,), j =

1,...,n, whose values are a set of binary variables with

1 if Y'; belongs to group k,
0 otherwise,



and Y 7, Z; = 1. Given the mixing probabilities w, the component-indicators

Zy,...,Z, are independent, with multinomial densities
flz) = wiwy o (L —wy — e — wy) ™. (9)

We shall write Z; ~ MN(1; wy,...,w,) to denote Z; with density (9).

From (4), a hierarchical model for skew normal mixtures can thus be written as

Yi |7, Zy=1 ~ N(@M( i, (1= 8200)0?),
Z; ~ MN(1; wy,...,wy) (j=1,...,n). (10)

3.2. Maximum likelihood estimation
As in (6), we have
Tj ’ Y; = yj,Zij =1~ TN(MTUJ%)I{TJ > 0}7
where
Mz = 5<>‘2)(y] A 51)7 Or, =39 11— 52(/\2) (11)
From (10), the complete-data log-likelihood function is

NhY Zij log(wz) — 10g<0'12) - llog - 52<)\2)
>3 st~ °0)

j=1 i=1

_7—.72 B 25( )7_.7 (y] 62) ( ] - 61)2 . (12)
20?2 (1 - 52(@)
Letting 2;; = E@(k)(Zij | Y), S1ij = E@(k)(ZZ‘jTj | Y) and S9i; = E@(k)(Z |
Y') be the necessary conditional expectations of (12), we obtain
® %(% &7, 02" A0)
S T g k) OO (13)
Xom 1wm (yy|§ O s Am’)
i)
8 = 2 Al el . (14)

~ _f(k)
@{AEN%)}

10



and

. 0
ey (b{w Fo )}
sk) _ s(k) (k) +5g€) + ' 1 (F) (k) (15)

3223 - Zzg lun-j R (k) /"LTZ] Ti )
o058}
(k) ~ (k)

where fi5,/, 6, are pir,, and o, in (11) with £, o and X replaced by £ 5H) and

5\(’“), respectively.
The ECM algorithm is as follows:

~ (k
E-step: Given © = G)( ), compute zfjk), sglfj) and ngj) fori =1,...,9 and j =
1,...,n, using (13), (14) and (15).
CM-step 1: Calculate
NUTSOIEE I N ()
j=1

CM-step 2: Calculate

n sk (k) n (k)
éf(k+1) o Z] 1 ’L(_])y.? " 5()‘ )23:1 S1ij
Zj:l Zij

CM-step 3: Calculate

n NG n ok k+1 (k41
G2 — ZJ 1 QzJ B 2‘5()‘5 )) Zj:l Sgij)'(yj fl( i )) + Z] | 2 u (yj - fi( i ))2
‘ N 3 (k) n Ak :
2(1 - 52()‘5‘ )) 23:1 Zz'(j)

CM-step 4: Fix & = £#™) and 02 = 62" obtaining A\*™ (i=1,... g) as the

(2 3 3

solution of the following equation:

GZE O (1= 02 00)) YA + 8200 D (s — E5)st)
j=1 j=1
S(A) Y85 — 0 Y A (g — €2 =0
j=1 J=1

ECME is identical to ECM except for the CM-Step 4 of ECM, which can be
modified by the following CML-Step:

11



CML-step: Let A = (\1,...,),) and update )A\(k) as

n g
S 8568t £, 8 ).

Mode 5T p

We remark here that if the skewness parameters A, ..., A\, are assumed to be
identical, we shall use ECME since it is more efficient than ECM. Otherwise, the
CML-step becomes a non-trivial high dimensional optimization problem while using

the CM-step 4 can avoid the complication.

3.3. Standard errors

We let I,(®© |y) = —0%(© | Y)/0©0O" be the observed information matrix
for the mixture model (8). Under some regularity conditions, the covariance matrix
of ML estimates © can be approximated by the inverse of I o((:) | y). We follow
Basford, Greenway, McLachlan and'Peel (1997) to evaluate

L(©|y)= Zs] (16)

where §; = 8log{ i wib (P 6i, 07 i)}/a@’@:@-

Corresponding to the vector of all unknown 4g—1 parameters in ®, we partition
§; (j=1,...,n) as

A

_/a ~ ~ ~ ~ ~ ~ ~ T
Sj = (Sj,um s Sjwg1s Sy 3 S5€gs Shors 3 Sh,090 Si Ay - - Sj)\g) :

The elements of §; are given by

/\

§' _ T/J(CUJ | é?“v Azaj‘ ) (yj |§970A_ )
e 9 oy | &, 62, 0)

G0 — 2@74){ (v — &)/} (yj —ér)q)(;\ yj —51)_
. 022 1wz¢(y] |€za0'l,)\) o " o,

(r=1,...,9—1),

12



L oy €820 { 1y —&)
" SO @itd(y; | &, 62, 0) oy 3
_ 2oy = )0y = &)/5) 60y — 6)/57) } =10
a3 iy | & 67 A)
S U, 3 5 (v i&) Al
h Do Wit (y; | & 07, i) ar q){j\r(yj _ ET)/&T}

(r=1,...,9).

The information-based approximation (16) is asymptotically applicable. How-
ever, it may not be reliable unless the sample size is large. It is common in practice
to use the bootstrap approach (Efron and Tibshirani, 1986) as an alternative Monte
Carlo approximation of cov(@) via generating a sufficient number of bootstrap sam-
ples. The bootstrap method may provide more accurate stand error estimates than

(16). However, it requires enormous computational burden.

4. Bayesian Modelling For ,Skew Normal Mixtures

We consider a Bayesian :aapproach where © is regarded as random with a prior
distribution that reflects our-degree’of belief in different values of these quantities.
Since fully non-informative prior. distributions:‘are not permissible in the mixture
context, the prior distributions chosen are weakly informative subject to vague prior
knowledge and avoid causing nonintegrable posterior distributions. The prior dis-

tributions for model (8) are of the forms

& ~ N (i=1,....9),
o 2|8 ~ Ga(e,p) (i=1,....9),
B ~ Ga(v,vs),
d(N) ~ U(-1,1) (i=1,...,9),
w ~ D(h,...,h), (17)
with the restriction & < --- < . In (17),  is an unknown hyperparame-
ter, (n, Kk, vy, 9, h) are known (data-dependent) constants, Ga(c, 3) denotes the

gamma distribution with mean /3 and variance o/3% U(—1,1) denotes the con-

tinuous uniform distribution on the interval [—1,1] and D(h,...,h) stands for the

13



Dirichlet distribution with the density function
g—1

T (1= )

i=1

For the values of (1, k, «, 11,19, h), we follow Richardson and Green (1997) by
letting n be equal to the midpoint of the observed interval and ! = R?, where R
is the range and setting o = 2, v, = 0.2, v = 100v; /(aR?) and h = 1.

Given ® = ®%) the MCMC sampling scheme at the (k+ 1)th iteration consists
of the following steps:

Step 1: Sample Z;kﬂ) (j=1,...,n) from MN(1; wi,...,w;), where

oy 167,02 )

~ (i=1,...,9).
9 1Wm)¢(ya |§ma 72r£m7 gn))

Step 2: Given Z;; = 1, sample Tj(kH) (j=.1,...,n) from

TN (50 £ 8B (- 020) ) {7 > o).

Step 3: Sample 5*) fromGa(y £ga. v + B, 0,°").

Step 4: Sample w**Y from D(h—f—ngkﬂ), = h—i—nE,kJr )) where n (k1) =i Z(ICJrl :

Step 5: Given Z;; = 1, sample fi(kﬂ) from

o) B+ -1
N (:u&' ) {02(k)(1 B 52()\(k))) +/€} ) 5

where
k1 k) k1) (k+1 (k) k
(1) _ Z] 12("’) ()\( )Z] 12("’) (+)+/{770-2 ( _52()\5 )))
. nl(»kﬂ) + k2™ ( — (52()\1» ))

Step 6: Given Z;; = 1, sample U[Q(kﬂ) from Ga(a + nEkH), Bl 4 b), where

n

{ZZWQW)%W%Z?“%Wu—#%

7j=1

n ZZ (k1) lk+1))2}/{2((1 _ 52()\1@)))}‘

14



Step 7: Sample ¢V = (5(/\gk+1)), . ,5(/\§k+1))) via the Metropolis Hastings (M-
H) algorithm (Hastings, 1970) from

(k+1)
g n

btz (2607 (g — T ]
f(5) o HH [(1 —) ()\Z)) eXP{ 203(k> (1 — 52()\1‘)) }

i=1 j=1

To elaborate on Step 7 of the above algorithm, we transform d(\;) to §*(\;) =
log { (1 +0(N\))/(1 —6(X;))} and then apply the M-H algorithm to the following

function:

g9(8%) = f(6(6%)) H T5- (s

where 6 = (6*(A\1),...,6%(Ny)), and Js(r,) = 26> A /(1 + e‘s*(’\i))Q is the Jacobin
of transformation from Jd(\;) to d*(\;). A g-dimensional multivariate normal dis-
tribution with mean 8*" and covariance matrix CQZ? is chosen as the proposal
distribution, where the scale ¢ ~ 2.4//g, as suggested in Gelman, Roberts and
Gilks (1995). The value of Egi) can be estimated by the inverted sample informa-
tion matrix given y and © =©™")_Haying obtained §* from the M-H algorithm, we
transform it back to & by §(A;)'= (P =1) /(e ™) +1) (i =1,...,¢), and then
transform d(\;) back to A; by-0(\)/4/t—062(\;).- To avoid the label-switching prob-
lem and slow stabilization of the Markov chaifi; our initial values ©® are chosen to

be dispersed around the ML estimates with the restriction éo) << 5;0) .

5. Examples

5.1. The enzyme data

We first carry out our methodology for the enzyme data set with n = 245
observations. The data was first analyzed by Bechtel, Bonaita-Pellieé, Poisson,
Magnette and Bechtel (1993), who identified a mixture of skew distributions by
the maximum likelihood techniques of Maclean, Morton, Elston and Yee (1976).
Richardson and Green (1997) provide the reversible jump MCMC approach for the
univariate normal mixture models with an unknown number of components and
identify the most possible values of g to be between 3 and 5.

We fit the data to the two-component skew normal mixture model

fy) = wi(ylés, U%, A1)+ (1= w)(ylée, 03, A2). (18)
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The ECM algorithm was run with various starting values and was checked for con-
vergence. The resulting ML estimates and the corresponding standard errors are
listed in Table 1. We found that the standard error for A, is relatively large. This
is due to the fact that the log-likelihood function can be fairly flat near the ML
estimates of the shape parameter of the skew normal components. We have shown
this by plotting the profile log-likelihood function of (A1, Ag) in Figure 3.

For comparison purposes, we also fit the data to the normal mixture models
(A1 = A2 = 0) with ¢ = 2 — 5 components. The log-likelihood maximum and
two information-based criteria, AIC (Akaike, 1973) and BIC (Schwarz, 1978), are
displayed in Table 2. As expected, the fitting of a skew normal mixture model is
superior to normal mixtures since it has the largest log-likelihood with parsimonious
parameters as well as the smallest AIC and BIC. A histogram of the data overlaid

with various fitted mixture densities is displayed in Figure 4.

Table 1: Estimated parameter values‘andthe corresponding standard errors (SE)

for model (18) with the enzyme data:

w &1 Eg T P A1 Ao

Estimate 0.6240 0:0949 I .B:7802. 0.1331 0.7150 3.2780 6.6684
SE 0.0310 0.0107 +0.0516 0.0109 0.0607 0.9467  3.9640

Table 2: A comparison of log-likelihood maximum, AIC and BIC for the fitted skew
normal mixture (SNMIX) model and normal mixture (NORMIX) model for the

enzyme data. The number of parameters is denoted by m.

Model g m  log-likelihood — AICT BIC!
SNMIX 2 7 —41.92 97.84 122.35
NORMIX 2 5 —54.64 119.28 136.79
NORMIX 3 8 —47.83 111.66 139.67
NORMIX 4 11 —46.75 115.50 154.01
NORMIX 5) 14 —46.26 120.52 169.54
NORMIX > 6 > 123 > 185

TAIC=—2(log-likelihood—m); *BIC=—2{log-likelihood—0.5m log(n) }.
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Figure 3: Plot of the profilé:log-likeliliood for A\, and A, for the enzyme data.

2.0
I

density
1.5
L

1.0
I

0.5
I

0.0
i

Figure 4: Histogram of the enzyme data overlaid with a ML-fitted two-component
skew normal mixture (SNMIX) distribution and various ML-fitted g-component nor-
mal mixture (NORMIX) distributions (g = 2 — 5).
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5.2. The faithful data

As another example, we consider the Old Faithful Geyser data taken from Sil-
verman (1986). It consists of 272 eruption lengths (in minutes) of the Old Faithful
Geyser in the Yellowstone National Park, Wyoming, USA. The data appear to be
bimodal with asymmetrical components. We fit a two-component skew mixture
normal model (18) by analogy with the previous example. The ML estimates and
the corresponding standard errors are reported in the second and third columns of
Table 3, respectively.

To illustrate our Bayesian MCMC methodology described in Section 4, we ran
7 parallel chains of 10,000 iterations each with the starting values chosen dispersed
around the ML estimates. After 5,000 iterations of “burn-in” for each chain, we mon-
itor the convergence by examining the multivariate potential scale reduction factor
(MPSRF) proposed by Brooks and Gelman (1998). The posterior mean, standard
deviation, median and 95% HPD interval (2.5% and 97.5% posterior quantiles) of
the converged MCMC simulation samples are.listed in the 4-8th columns of Table
3.

Table 3: ML estimation results and-MCME summary statistics for the parameters
of model (18) with the faithful data:

ML MCMC
Parameter Estimate  SE Mean SE Median 2.5% 97.5%
w 0.3487  0.0294 0.3510 0.0294 0.3506 0.2948 0.4114
& 1.7267 0.0291 1.7225 0.0238 1.7232 1.6752 1.7690
& 5.8026  0.0511 4.7847 0.0660 4.7919 4.6427 4.8940
o1 0.3801 0.0415 0.3959 0.0418 0.3928 0.3211 0.4854
09 0.6857 0.0621 0.6712 0.0675 0.6725 0.5381 0.8025
A1 5.8026  2.1436 6.2316 2.1176 5.8768 3.1025  11.2305
Ao —3.4951 1.1492 —3.4073 1.1704 —3.2700 —5.9843 —1.5502

Figure 5 displays the convergence diagrams and histograms of the posterior sam-
ples of the parameters. It is evident that the shape of the posterior distribution of A\;
is skewed to the right, while the shape of the posterior distribution of A\ is skewed
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to the left. It is interesting to note that the posterior distributions of the parameters
(A1, A2) which regulate the skewness are skewed as well.

Finally, we compare the ML-fitted normal mixture density with the fitted skew
normal mixture densities via ML and Byesian methods based on graphical visual-
ization. The ML density estimation for normal and skew normal mixtures densities
together with Bayesian predictive density are shown in Figure 6(a). We have also
plotted the comparison of fitted and empirical cumulative density functions (CDFs)
in Figure 6(b). Obviously, the ML and Bayesian methods are quite comparable for
the data. However, the appropriateness of density fitting for skew normal mixtures
is clearly better than for normal mixtures. Furthermore, the CDFs of the skew

normal mixtures track closer to the real data.
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Figure 5: Convergence diagrams and histograms of the posterior sample of the

parameters for model (18) with the faithful data.
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Figure 6: (a)Histogram of the faithful data overlaid with densities based on
two fitted two-component skew normal mixture (SNMIX) distributions (ML and
Bayesian), and a ML-fitted two-component normal mixture (NORMIX) distrib-
ution; (b)Empirical CDF of the faithful data overlaid with CDFs based on two
fitted two-component SNMIX distributions (ML and Bayesian) and a ML-fitted
two-component NORMIX distribution.
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6. Conclusion

We have proposed and illustrated ML and Bayesian density estimations for
finite mixture modelling using the skew normal distribution. The key contributions
lie in the development of computational techniques for the hierarchical skew normal
mixtures. We provide EM-type algorithms for calculating the ML estimates and a
workable MCMC algorithm for sampling the posterior distributions in the Bayesian
paradigm.

In our illustrated examples, it is quite appealing that the skew normal mixtures
can provide more appropriate density estimation than normal mixtures based on
information-based criteria and graphical visualization. Future work on extensions
includes generalizations to mixture of multivariate skew normal distributions (e.g.,
Azzalini and Dalla Valle, 1996 and Gupta, Gonzélez-Farias and Dominguez-Monila,
2004) and offering techniques to model the number of components and the mixture

components parameters jointly.

Appendix

A. Proof of Lemma 1

E(Xn) _ /xn\/lj__/\2¢(\/1:/\2($—§))dx,

d 14 A2 VITNE JITN
TP = [ S - g)dn
- 1—;2)\2E(X"+1) _fleQE(Xn%

BE(X™Y) = ¢B(X") + o 1 pixm.
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g

B = [ 2o 5)e 0 Eay,
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B. Proof of Lemma 2

(i)
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C. Proof of Lemma 3

(i)
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D. Proof of Lemma 4

The log-likelihood function is

((Bly) x —nlog(o) Zz —i—Zlog (Az))
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where 6 = (£,0%,0), y = (y1,¥2,- - -, Yn) and
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The elements of Hessian matrix H(0|Y") are

Hee = 8%86(;21;) - ;_ZL - 2 ,: _H(Azi)_?)\ o2 —Zﬂ (),
= —% Z 2 + F Zw()\zi) Z zin(Az),
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— % — % nl + —3 ZZﬂ/} &) — 02 2(:; :1 A (—n()\zi)_;\zi)
= 5 042 3 Zzzw @ 4 izw
- -4 () + ;2 ;zinuzi),
Hy, = (98/\ 8680>\]y Z (Azi)zi Zz n(Az;).

In order to simplify symbols, let

ar = By (ZW(AZ)), by = Ey (Z%(AZ)), ¢ = By (ZWAZ)),

where
7=r"¢
o
Let X ~ N (0, ﬁ), then we have the relationship between Ex(X*) and by:
be = —2 B (XY, a=4/2. (19)
NEST .
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Since n(AZ) = Y(AZ)(AZ + (A\Z)), we then have

A
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The elements of the Fisher information are given as follows:
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Therefore, the Fisher information can be reexpressed by
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The proof of (19):
b = Ey (Z%(AZ))
/00 2F 9()2) gqﬁ(z) d(A\z)dy
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