
Chapter 1.  Introduction 

 
The new technique of microarray is a high throughput technique to explore the 

expression profiles of a large amount of genes in genomics.  This is an important tool to 

study the functionality of genes in the genomic scale in the era of post-genomics (Yang, 

Speed,2002). In order to measure the expression profiles of genes from microarrays, it is 

crucial to analyze the microarray images with high accuracy.  Based on the these 

accurate measures, advanced analysis for selecting significant genes, clustering, 

classification, pathway and network reconstruction can be proceeded with solid 

foundations (Yang, Buckley, Dudoit and Speed,2002,Liu 2004, Li and Lu, 2005).    

Microarray images record the fluorescence of hybridized probes and targets with 

dyes.  The fluorescence is related to the expression level of RNAs in the samples.   

The most original information of microarray data is stored in microarray images. 

Therefore, it is important to evaluate the quality of microarray by inspecting the 

microarray image.  Image processing measures the expression levels of mRNA on each 

spot of a microarray with four steps: image acquisition, spot location, computation of 

spot intensities and data reporting.  Image analysis will involve the calibration of 

scanning efficiencies of dyes, the alignment and detection of spotting errors, the denoise 

of background errors, and the marking of dust, moving, hybridization, and other artifacts 

(Chen, Dougherty, and Bittner, 1997, Yang, Buckley, Dudoit, and Speed, 2002). 

Therefore, the processing of gridding, segmentation of foreground/background images, 

flags, normalization, smoothing, and statistics will affect the estimated ratios.  We have 

investigated the process of gridding in our previous studies (Ho, Hwang, Lu, and Lee, 

2005).  This study is aimed to improve the segmentation of foreground/background 

images that will reduce the estimated ratios as a result.  We will investigate two-channel 

microarray images in this study. 

The segmentation of an image is the process of partitioning the image into different 

regions that have similar intensity levels and features within regions.  The intensity 

levels and features will have distinction.  In a microarray experiment, segmentation 

perform the classification of pixels as foreground or background.  We will use the 

mixture models to fit two distributions of background and foreground intensities because 
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of the flexibility of mixture models with different parameters, including the location and 

scale parameters.   

In order to evaluate the performance of segmentation results, we will investigate the 

estimated ratios for spike genes in microarrays with target ratios by mixture models and 

the software of GenePix 6.0.  Spike genes are often used as the tools of quality control 

for microarrays.  Spike genes are designed to have the artificial sequences that are 

different from the genes under studies.  The sequence complements to spike genes are 

spotted on a microarray as probes in the process of printing.  During the process of 

microarray hybridization, we will put in the other complement sequences as targets.  

The match pairs of probes and targets will be hybridized.  For two-channel cDNA 

microarrays in this study, the ratios of Cy3 to Cy5 labeled targets are predefined for spike 

genes.  These target ratios of spike genes will be the target values for estimated ratios by 

image processing of microarray images.  Therefore, these target ratios of spike genes 

will be used to evaluate the performance of segmentation methods and image processing 

in our studies. 
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Chapter 2. Steps of Image Processing 

 

  We will review the main steps of image processing for microarray images and 

discuss the key factors that affect the performances. 

 

2.1 Overview 
The images of two-channel cDNA microarrays have two colors, like the red and 

green colors for Cy5 and Cy3 dyes respectively.  These two dyes will be used to label 

control and experiment samples.  The ratios of intensities in two colors for genes will be 

used to select differently expressed genes that have different expression levels among 

control and experiment samples.  For instance, the ratio for one gene can be defined as 

the intensity of Cy5 divided by that of Cy3.  If this ratio is much greater (or smaller) 

than 1, then this gene expresses more in the sample labeled with the Cy5 (or Cy3) dye 

and the color for the spot of this gene in the microarray image will be toward red (or 

green).  These genes have differentially expressed levels and they are important for the 

distinction of control and experiment samples.  On the other hand, if this ratio is close 1, 

then this gene expresses similar in both samples labeled with the Cy3 and Cy5 dye.  

Consequently, the color for the spot of this gene in the microarray image will be toward 

yellow.  This kind of genes has non-differentially expressed levels.  So, they are not 

useful for the distinction of control and experiment samples.  Hence, it is very crucial to 

estimate the ratio accuarately in order to select the differentially expressed genes between 

control and experiment samples. 

The commercial software of GenePix is widely used for microarray image 

processing.  The latest version of GenePix Pro 6.0 will be used to evaluate the 

performance of current commercial software (see 

http://www.axon.com/GN_GenePixSoftware.html).  GenePix 6.0 can read single or 

multiple TIFF images as inputs.  By the built-in methods of image segmentation,  

GenePix can segment the foreground and background of every spot for one gene.  Then, 

it report the features of every spot by calculating the ratio of mean, the ratio of median, 

the mean of ratio, the median of ratio, and other features.  The built-in segmentation 
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methods in GenePix 6.0 include the methods of square, circular, and irregular boundaries. 

 

2.2 Operation Steps in GenePix 6.0 
In GenePix 6.0, the main standard operation procedure (SOP) contains 6 steps. Step 

1 is loading image files.  Step 2 is setting the numbers of block and gridding 

parameters for this image.  Step 3 is to segment features for all blocks.  Step 4 is to 

compute statistics of every spot.  Step 5 is to normalize the results of features.  Step 6 

is reporting results.  Some input arguments are needed before running the SOP of 

GenePix.  Input arguments include the size of blocks, the number of blocks, the 

number of spots in a block, the size of a spot, and the methods of normalization as 

illustrated in Fig. 2.1, 2.2, and 2.3.  The user needs to input and adjust these arguments 

manually in order to generat good results from GenePix.  The effects and adjustments 

of these input arguments are discussed in Appendix I. 

 

Fig. 2.1: Input arguments 
for image information. 

Fig. 2.2: Input arguments 
for selecting the method of 
segmentation. 

Fig. 2.3: Input arguments 
for selecting the method of 
normalization. 

 

2.3 Performance of Segmentation in GenePix 6.0 
 Among the key steps in GenePix 6.0 shown in Figure 2.1, 2.2, and 2.3, the main 

challenge is the selection of a good method of segmentation.  Typical segmentation 

results of one microarray image by GenePix 6.0 are displayed in Fig. 2.4.  There are 

several spots that do not have accurate segmentation boundaries.  Therefore, we are 

motivated to develop new methods to improve the performance of segmentation for 

microarray images.  
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Fig. 2.4: Typical segmentation results of one microarray image by GenePix 6.0 are 

displayed. 
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Chapter 3.    Image Segmentation by Mixture Models 

 
The histogram of pixel intensities in one microarray image is illustrated in Figure 

3.1, which reveals that there are two major distributions for foregrounds and backgrounds.  

Hence, we can model the distribution of pixel intensities by mixture models that have 

different location and scale parameters for foregrounds and backgrounds.  Then, we can 

estimate the cut point of these two distributions to segment image pixels to foregrounds 

and backgrounds.  For model simplicity, we will consider the normal mixture model 

(NMM) in this study.  Mixture models of other distributions are possible in future 

studies.  

 
Fig. 3.1: The histogram of pixel intensities in one microarray image is shown. 

 

3.1 Flowchart  
In the new method of segmentation by NMM proposed in this study, the main 

operation procedure contains seven steps.  Step1 is loading two image files with Cy3 

and Cy5 separately.  Step 2 is combining two intensities of Cy3 and Cy5 images at one 

pixel into the average intensity.  Step 3 is to segment features using the image values of 
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the combined image by NMM. Step 4 is finding out the boundary for each spot.  Step 5 

is performing smoothing for each spot.  Step 6 is finding out the normalization factor.  

Step 7 is reporting results. In order to make comparisons with GenePix 6.0, we will use 

the same input arguments and coordination in the operation process as GenePix 6.0 

whenever feasible.  Figure 3.2 displays the flowchart of the new method by NMM.  In 

the following sections, we will explain the detail elements of flowchart. 

 
 

 
3.2
 
Fig. 3.2:  Flowchart of the proposed method segmentation of microarray images by 

NMM is illustrated. 
 Combined Images 
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Most of microarray images with TIFF format use 2 bytes to store the intensity of a 

pixel.  Therefore, the intensity of each pixel is between 0 and 65535.  It can be 

transformed to 0 and 255 for the purpose of display in a computer monitor.  In order to 

combine two images of Cy3 and Cy5, the average of two image values in Cy3 and Cy5 

images will be used as the image value of the combined image for each pixel. Using the 

intensities of combined image, we can segment the foreground and background pixels in 

every spot by NMM.  

The advantage of using the combined image value for segmentation is that we can 

have the same segmentation of foreground and background pixels for both Cy3 and Cy5 

images.  Then, we can calculate the estimated ratios by different approaches accordingly 

without any problem, including the ratio of mean, the ratio of median, the mean of ratio, 

the median of ratio, and other features.  If the segmentation of Cy3 and Cy5 images are 

performed separately, then it is very likely the segmentation boundaries of every spot are 

different in Cy3 and Cy5 images.  This may cause problems in calculating statistics in 

the level of pixels. 

 
3.3 EM Algorithm for a Normal Mixture Model (NMM) 

  We suppose the distribution of foreground intensities follows a normal 

distribution of  with mean),( 2
111 σµf 1µ  and variance  and the distribution of 
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and ,2,1, =iiπ  is the mixing proportion (or prior probability) for the foreground and 

background subject to the constraints of   

10 ≤≤ iπ  and 121 =+ππ . 

As the foreground intensities conatin the signals and noises, the mean of foreground 

intensities is typically greater than that of background intensities.  Hence, we can 

consider the identifiable condition that 21 µµ ≥  (McLachlan and Peel, 2000). 

The log-likelihood of observed data in the model of two mixtures becomes  

∑ ∑
= =

=
n

j i
iijii xfxL

1

2

1

2 )),;(log())|(log( σµπφ .                 (3.3.2) 

The maximum likelihood estimate can be estimated by solving the partial differential 

equations of 0/)|(log( =∂∂ φφ xL .  However, this approach will encounter numerical 

difficulties.  The iterative method of EM algorithm can be applied to estimate 

parameters by a simpler approach numerically.  The algorithm has two steps, E 
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In the M-step, one will maximize in (3.3.5) subject to the constraint that 
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where λ is a Lagrange multiplier.  By maximizing the above Lagrange functional, the 
estimates of the mixture proportions and other parameters turn out to be  

∑
=

+ =
n

j

(k)
ij

k
i τ

n 1

)1( ,1π                                (3.3.7) 

 ,

1

1)1(

∑

∑

=

=+ = n

j

(k)
ij

n

j
j

(k)
ij

k
i

τ

xτ
µ                                (3.3.8) 

.
)(

1

1

2)1(

)1(2

∑

∑

=

=

+

+
−

= n

j

(k)
ij

n

j

k
ij

(k)
ij

k
i

τ

xτ µ
σ                     (3.3.9)      

It is well known that the EM algorithm is a simple and iterative algorithm with row 

operation and linear complexity.  Furthermore, the log-likelihood is non-decreasing after 

every iteration of the EM-algorithm, which leads to montoical convergence under regular 

conditions (Dempster, Laird, and Rubin, 1977, Wu, 1983, McLachlan and Peel, 2000). 

The EM algorithm of two normal mixtures in this study is listed as follows. 
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  Step 1: Input initial parameters: k = 0,  
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Step 4: If  and stop, otherwise k <- k+1 and go 

to Step 2. 
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    When we obtain the maximum likelihood estimates of parameters by  above EM 

algorithm, we can use the NMM to segment image pixels by finding the cut point 

between the distributions of foreground and background intensities.  If a pixel has 

intensity greater than the cut point, then it will be allocated to the foreground.  

Otherwise, that pixel is allocated to the background.   
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when  and the square root in the numerator exists.  When  and 2
2

2
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2
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define the cut point equal the median of intensities in every spot. 

 

 

3.4 Gaussian Smoothing 
The purpose of Gaussian smoothing is to denoise image intensities using spatial 

information and improve the accuracy for estimated features after segmentation.  The 

Gaussian smoothing operator is a convolution operator that is used to smooth images and 

reduce noises.  This is a process that data points are averaged with their neighbors 

according to the weights in the Gaussian kernel. 

There are two kinds of parameters in Gaussian smoothing.  They are the size of 

mask window of neighboring pixels and the scales of the standard deviances in the 

Gaussian kernel.  The Gaussian kernel is a Gaussian distribution in the mask window.  

For two-dimensional images in this study, we will consider the Gaussian distribution with 

the same scales of the standard deviances in both horizontal and vertical directions 

because there are no distinguishable variations in these two scales for the generation 

process of microarray images.  The details are discussed in Appendix II.  

 

3.5 Normalization Factors 
The purpose of normalization is to remove the systematic effects, like the effects of 

dyes, arrays, blocks, print-tips, and so forth.  We will consider the normalization of dye 

effects in this study for simplicity.  We will use the geometric means of block medians 

in Cy3 and Cy5 images (Cy3-BlockMedian i and Cy5-BlockMedian i) to avoid the effects 

of extreme values.  Hence, we will use the following normalization factor for case 

studies: 
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where B is the number of blocks in an image.  
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Chapter 4. Empirical Studies 

 
Microarray images in this study are provided by Dr. Yun-Shien Lee in C. G. M. H. 

Each image has 32 blocks with 22 columns and 22 rows.  An example of microarray 

image is shown in Figure 4.1.  Eight spike genes are spotted in each block.  One block 

is shown by enlarging and the spike genes are segmented by the rectangle in Figure 4.2.  

 

 

 

Figure 4.1: An example of microarray Image is 
shown. 
 

Figure 4.2: One block in Figure 4.1 
enlarged and the spike genes are 
highlighted in the rectangle. 
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4.1 Data and Statistics  

The target ratios of eight spike genes are reported in Table 4.1.  These provide the 

golden standard for evaluating the performance of the segmentation method by NMM 

proposed in this study.  This also serves as the common platform for the comparisons of 

the proposed method with those in GenePix 6.0. 

Table4.1: The target ratios of eight spike genes are listed. 

Spike Gene 1 2 3 4 5 6 7 8 

Target Content 
(635:532) 

50:500 10:100 50:250 20:100 200:500 40:100 200:200 20:20

Target Ratio 
(635:532) 

1:10 1:10 1:5 1:5 1:2.5 1:2.5 1:1 1:1 

 

We will calculate two estimated ratios by NMM.  Then, we will evaluate the sum 

of square of relative errors (SSREs) for GenePix6.0 and NMM.  The formulas for two 

estimated ratios are defined in (4.1.1) and (4.1.2). The sum of square of relative errors 

(SSREs) between target ratios (TR) and the averages of estimated ratios (AER) of seven 

spike genes with 32 replications in a image is used to evaluate and compare the 

performance of segmentation methods.  The SSRE is used to evaluate and compare the 

accuracy of segmentation as defined in (4.1.3).  If SSREs are smaller, the estimated 

ratios are closer to target ratio.  The detail formulas are given below:  

Let : The pixel intensity of single spot for laser λ,  λ,PI

       : The background intensity of single spot for laser λ,  λ,BI

         λ: Cy5 or Cy3,  

    
medkS : the median of k observed data in S,  

         n: the number of spots in foreground,  

         m: the number of spots in background. 

Then, we will have the followings: 

The ratio of median: 

( ) ( )
( ) ( )

medmCyBmednCyP

medmCyBmednCyP

II

II

3,3,

5,5,

−

−
         (4.1.1) 
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II. The ratio of mean: 
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SSRE = 
8

2

1
(
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th
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i AER
i TR=

−∑ 1) ,                                 (4.1.3) 

where AER = Average Estimated Ratio and TR = Target Ratio. 

  

4.2 Segmentation Results by GenePix 6.0 and NMM 
In the segmentation results by GenePix 6.0, this study will use the feature diameter 

of 160 µm, normalization factor by the global ratio of median, background subtraction by 

global mean of all feature background medians, and irregular segmentation method 

without filled spots. Table 4.2 reports the results of SSRE in dye swap or one single 

microarrays under test by GenePix 6.0.  The chip name of 62N62T means that the 

normal (and tumor) sample is labeled by the Cy5 (and Cy3) dye.  We can change the 

configurations, factors, and statistics in image analysis software to minimize the SSRE.  

The software of GenePix 6.0 is used to perform this evaluation in this study.  The results 

illustrate the feasibility of this proposed procedure. 

Table 4.2: The results of SSREs for test images by GenePix 6.0 are listed. 

Image 62N62T 62T62N 

Spike# T. 
Ratio 

Ratio of Median

(635/532) 

Ratio of Means 

(635/532) 

Ratio of Median

(635/532) 

Ratio of Means 

(635/532) 

Spike1 0.1 0.11  0.11  0.41  0.43  
Spike2 0.1 0.05  0.06  0.17  0.22  
Spike3 0.2 0.08  0.09  0.31  0.34  
Spike4 0.2 0.10  0.12  0.39  0.44  
Spike5 0.25 0.18  0.19  0.65  0.66  
Spike6 0.25 0.20  0.22  0.78  0.83  
Spike7 1 0.68  0.65  2.43  2.36  
Spike8 1 0.48  0.44  3.40  2.04  

SSRE 1.3287 1.1613 26.0087 25.2790 
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Image 63T63N 63N63T 
Spike# T. 

Ratio 
Ratio of Median

(635/532) 
Ratio of Means 

(635/532) 
Ratio of Median

(635/532) 
Ratio of Means 

(635/532) 
Spike1 0.1 0.14 0.15 0.32 0.35 
Spike2 0.1 0.05 0.08 0.14 0.18 
Spike3 0.2 0.11 0.13 0.25 0.28 
Spike4 0.2 0.13 0.16 0.32 0.36 
Spike5 0.25 0.23 0.24 0.54 0.55 
Spike6 0.25 0.28 0.30 0.66 0.71 
Spike7 1 0.94 0.87 2.10 2.01 
Spike8 1 1.12 0.72 3.03 1.67 

SSRE 0.7738 0.5894 14.86456 14.09379 
 

Image 54T54N 
Spike# T. 

Ratio 
Ratio of Median

(635/532) 
Ratio of Means 

(635/532) 
Spike1 0.1 0.31  0.32  
Spike2 0.1 0.12  0.16  
Spike3 0.2 0.22  0.25  
Spike4 0.2 0.27  0.32  
Spike5 0.25 0.49  0.51  
Spike6 0.25 0.57  0.62  
Spike7 1 1.94  1.87  
Spike8 1 2.45  1.67  

SSRE 10.1228 10.0081 
 

In the segmentation results by NMM, we define coordinates and diameters of every 

spot the same as GenePix 6.0.  Both in the segmentation results of GenePix 6.0 and 

NMM, the backgrounds are selected by the same method.  Namely, the backgrounds of 

every spot are selected from the backgrounds in the region between the inner circle of 

one time of feature diameter that cover the foregrounds and the outer circle of three times 

of feature diameter.  Table 4.3 reports the results of SSRE in dye swap or one single 

microarrays under test by NMM. 

16 



Table 4.3: The results of SSREs for test images by NMM are listed. 

Image 62N62T 62T62N 
Spike# T. 

Ratio 
Ratio of Median

(635/532) 
Ratio of Means 

(635/532) 
Ratio of 

Median(635/532) 
Ratio of Means 

(635/532) 
Spike1 0.1 0.12 0.13 0.4 0.41 
Spike2 0.1 0.06 0.07 0.18 0.2 
Spike3 0.2 0.09 0.1 0.3 0.32 
Spike4 0.2 0.12 0.13 0.38 0.41 
Spike5 0.25 0.2 0.21 0.63 0.63 
Spike6 0.25 0.23 0.24 0.74 0.77 
Spike7 1 0.75 0.73 2.3 2.23 
Spike8 1 0.54 0.49 2.6 1.97 

SSRE 0.9954 0.9149 21.1963 21.5488 
 

Image 63T63N 63N63T 

Spike# T. 
Ratio 

Ratio of Median

(635/532) 

Ratio of Means 

(635/532) 

Ratio of Median 

(635/532) 

Ratio of Means 

(635/532) 

Spike1 0.1 0.14 0.15 0.29 0.31 
Spike2 0.1 0.06 0.08 0.13 0.16 
Spike3 0.2 0.11 0.13 0.22 0.25 
Spike4 0.2 0.13 0.16 0.28 0.31 
Spike5 0.25 0.23 0.25 0.46 0.48 
Spike6 0.25 0.28 0.31 0.56 0.59 
Spike7 1 0.94 0.89 1.81 1.74 
Spike8 1 1.02 0.77 1.89 1.61 

SSRE 0.6698 0.5751 7.5712 8.8053 

 

Image 54T54N 
Spike# T. 

Ratio 
Ratio of Median

(635/532) 
Ratio of Means 

(635/532) 
Spike1 0.1 0.28  0.29  
Spike2 0.1 0.11  0.14  
Spike3 0.2 0.20  0.22  
Spike4 0.2 0.24  0.28  
Spike5 0.25 0.45  0.45  
Spike6 0.25 0.50  0.53  

17 



Spike7 1 1.72  1.66  
Spike8 1 1.72  1.48  

SSRE 5.9668 6.5004 

 

4.3 Comparisons of Results by GenePix 6.0 and NMM 
     We compare the SSREs of GenePix 6.0 and NMM for the same test image.  The 

comparison results of SSREs of GenePix 6.0 and NMM for test images are reported in 

tables of Appendix III.  Then, we will select the minimum of SSRE by GenePix 6.0 to 

decide which statistics shall be used for one test image.  Once we decide the selected 

statistics for one test image, the AERs by GenePix 6.0 and NMM for spike genes are 

plotted in Figure 4.3-4.7 for 8 spike genes.  From these figures, the results of AERs for 

spike genes by NMM are typically more close to target ratios than those by GenePix 6.0 

are.  

 

AERs

Ratio of mean 

62N62T 

Figure4.3: The AERs by GenePix 6.0 and NMM for spike genes are plotted. 
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AERs

Ratio of mean 

62T62N 

Figure4.4: The AERs by GenePix 6.0 and NMM for spike genes are plotted.  

 

AERs

Ratio of mean 

63N63T 

Figure4.5: The AERs by GenePix 6.0 and NMM for spike genes are plotted.  

 

AER

Ratio of mean 

Figure4.6: The AERs by GenePix 6.0 and NMM for spike genes are plotted. 
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AERs

Ratio of mean 

In Figure 4.6, we found the AER. of spike gene 8 in NMM is more close to target 

ratios than that of GenePix 6.0 is.  Four typical spots of spike gene 8 in this microarray 

are enlarged in Figure 4.8.  The middle row displays the original image.  The upper 

row displays the segmentation results by GenePix 6.0 and these segmentations contain 

dark pixels that shall belong to backgrounds.  Hence, the AERs by GenePix 6.0 are 

not close to the target ratios.  The bottom row displays the segmentation results by 

NMM, which exclude dark pixels that shall belong to backgrounds.  Hence, the AERs 

of NMM are close to target ratios.   

Figure4.7: The AERs by GenePix 6.0 and NMM for spike genes are plotted. 

The numerical comparisons of SSREs by GenePix 6.0 and NMM are reported in 

Table 4.4.  The NMM method can reduce the SSEs between 2-37%. 
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Figure4.8: Four typical spots of spike gene 8 in this microarray are enlarged.  

 

Table 4.4: The comparisons of SSREs in test images by GenePix6.0 and NMM are listed. 

SSRE GenePix 6.0 NMM Reduction 

63T63N 0.5894 0.5751 2.43% 
63N63T 14.0938 8.8053 37.50% 
62T62N 25.2790 21.5488 14.76% 
62N62T 1.1613 0.9149 21.22% 
54T54N 10.0081 6.5004 35.05% 
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Chapter 5. Conclusion and Discussion 
 

We have proposed a new segmentation method by the NMM to further improve the 

segmentation of microarray images.  The mixture models are flexible for modeling the 

distributions of foreground and background intensities with different location and scale 

parameters.  Empiric studies have confirmed the reduction of SSREs in comparison to 

the commercial software of GenePix 6.0. 

The statistics of the mean of ratio and the median of ratio may have negative values 

when foreground intensities are smaller than background intensities.  Further 

investigation of this kind of statistics is necessary to explore better statistics. 

We use the cut point of foreground and background distributions to segment 

microarray images.  We can also try to use the posterior probability in (3.3.4) to 

segment microarray images in future studies.  Other mixtures besides normal mixtures 

are also possible (McLachlan and Peel 2000).  Mixture number can be selected by the 

criteria of model selection, like the Bayesian information criterion and others 

(Schwrtz.1978).  However, the decision of foreground for more than two mixtures will 

need other criterion.   

Spatial information can be integrated to improve segmentation.  For instance, we 

can select connected regions for foreground to remove isolated pixels.  Other methods 

for segmentation of images can be further investigated (Chen, Lu, and Lin 2001, Chen, 

Lu, and Huang 2002, Wu, and Lu, 2004).  We also plan to study the possibility to apply 

the segmentation of NMM in one-channel microarray images and other types of images..  
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Appendix I 

    The effects of input arguments in GenePix 6.0 are discussed in this appendix.  

We will discuss the selections of input arguments for feature diameter and shape of 

every spot.  Three feature diameters of circular boundaries are demonstrated in 

Figure A.1.1.  The feature diameter of 100μm is too small to include all foreground 

pixels in the circular boundary.  The circular boundary of feature diameter of 150μ

m will miss some foreground pixels near the boundaries.  The circular boundary of 

feature diameter of 160μm will miss few foreground pixels near the boundaries and 

only few background pixels are included in the segmented region.  Hence, the 

feature diameter of 160μm shall be used in this case.  The segmentation of circular 

boundary can be improved by using the segmentation method of irregular boundary.. 

Feature diameter=100µm Feature diameter=150µm Feature diameter=160µm 

Figure A.1.1: The segmentation results of three different values of feature diameters 

for circular boundaries are shown. 

Next, we will discuss the effects of segmentation using different boundary 

shapes.  Three segmentation results by the built-in methods of GenePix 6.0 are 

displayed in Figure A.1.2.  Because the shape of spots in one microarray image may 

not be circular or rectangular, the boundaries of irregular shape can separate the 

foreground and background more accurately.  
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 Circular Feature Square Feature Irregular Feature 

Figure A.1.2: The segmentation results of three different boundary shapes are 

illustrated. 

 

Appendix II 

   The Gaussian smoothing uses a convolution operator with a Gaussian kernel to 

remove the noises in signals and images.  We consider the following Gaussian 

distribution function in the two dimensional mask for this study:  

   )
2

exp(
2

1),( 2

22

2 σπσ
yxyxG +

−=                       (A.II.1) 

For example, we can consider the size of mask window = 3 and the standard deviance 

σ  = 1.0.  This Gaussian mask of size 3 by 3 is displayed in Table A.II.1.  The sum 

of these 9 mask values could be smaller than 1 and we can divide the original mask 

value by the sum to obtain the new mask values that are summed to 1.  Then, the 

original 9 intensities will multiple the corresponding mask value and their sum will be 

used as the new intensity value at the central pixel.  This process is applied to all 

pixels in the image to reduce the effects of noises.  
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Table A.II.1: A 3 by 3 Gaussian mask is displayed. 
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Appendix III 

The Results of SSRE with GenePix6.0 and NMM in five images are as Table 

A.III.1 and Table A.III.2. 

Table A. III.1: The results of SSRE with GenePix6.0 and NMM for two dye-swap 

microarrays are listed. 

Image 63T63N 63N63T 

Spike# 
T. 

Ratio 
GenePix6.0 

Ratio of Median
NMM  

Ratio of Median
GenePix6.0 

Ratio of Mean
NMM  

Ratio of Mean
Spike1 0.1 0.14 0.14 0.35 0.31 
Spike2 0.1 0.05 0.06 0.18 0.16 
Spike3 0.2 0.11 0.11 0.28 0.25 
Spike4 0.2 0.13 0.13 0.36 0.31 
Spike5 0.25 0.23 0.23 0.55 0.48 
Spike6 0.25 0.28 0.28 0.71 0.59 
Spike7 1 0.94 0.94 2.01 1.74 
Spike8 1 1.12 1.02 1.67 1.61 

SSRE 0.5894 0.5751 14.0938 8.8053 
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Table A. III.2: The results of SSRE with GenePix6.0 and NMM for two dye-swap 

microarrays are listed. 

Image 62N62T 62T62N 

Spike# 
T. 

Ratio 
GenePix6.0 

Ratio of Median
NMM 

Ratio of Median
GenePix6.0 

Ratio of Mean 
NMM 

Ratio of Mean
Spike1 0.1 0.11  0.12 0.43  0.41 
Spike2 0.1 0.05  0.06 0.22  0.2 
Spike3 0.2 0.08  0.09 0.34  0.32 
Spike4 0.2 0.10  0.12 0.44  0.41 
Spike5 0.25 0.18  0.2 0.66  0.63 
Spike6 0.25 0.20  0.23 0.83  0.77 
Spike7 1 0.68  0.75 2.36  2.23 
Spike8 1 0.48  0.54 2.04  1.97 

SSRE 1.1613 0.9149 25.2790 21.5488 

Table A. III.3: The results of SSRE with GenePix6.0 and NMM for two dye-swap 

microarrays are listed. 

Image 54T54N 

Spike# 
T. 

Ratio 
GenePix6.0 

Ratio of Median
NMM 

Ratio of Median
Spike1 0.1 0.32  0.29  
Spike2 0.1 0.16  0.14  
Spike3 0.2 0.25  0.22  
Spike4 0.2 0.32  0.28  
Spike5 0.25 0.51  0.45  
Spike6 0.25 0.62  0.53  
Spike7 1 1.87  1.66  
Spike8 1 1.67  1.48  

SSRE 10.0081 6.5004 
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