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Abstract

This thesis considers a Bayesian approach to the regression model with au-
toregressive multivariate ¢ errors, whose conditional variance satisfies a kind
of generalized autoregressive conditional heteroscedastic model. We present
the approximate Bayesian posterior and predictive inferences under a non-
informative prior. Markov chain Monte Carlo computational schemes are
developed for precisely accounting for the posterior uncertainties. To enhance
the computational efficiency, we provide a fast method to compute the inverse
autocorrelation matrix of an AR(p) process. A real example of the U.S. in-

terest rates is conducted to demonstrate our methodologies.
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1. Introduction

There exist plenty of theses in the literature concerning Bayesian techniques
on the regression model with autoregressive time series errors. Chib (1993) and
McCulloch and Tsay (1994) employ Gibbs sampler methods for regression models
with autoregressive Gaussian error process by conditioning on initial observations.
Chen et al. (2004) provide an efficient Bayesian estimation procedure with the exact
likelihood.

Regression models with the multivariate ¢ distributed error terms have received
considerable attentions since Zellner (1976) who investigated the theoretical frame-
work from maximum likelihood and Bayesiair viewpoints. The generalization of the
Bayesian treatment for regression models with, uncorrelated elliptical errors has been
discussed by various authors; e.g., IChib et al. (1988), Osiewalski (1991), Arellano-
Valle et al. (2000) and Kim and Mallick (2003). Recently, Tarami and Pourahmadi
(2003) consider a time series model whose error terms arise from a multivariate ¢
process with AR(p) autocorrelations. They provide exact likelihood equations for
computing the maximum likelihood estimates and show that the multivariate t AR
model is a generalized autoregressive conditional heteroscedastic model similar to
those in Engle (1982) and Bollerslev (1986).

In this thesis, we extend Tarami and Pourahmadi (2003) to consider a regres-
sion model with multivariate ¢ autoregressions on errors. Under improper prior
distributions, we show a general Bayesian analysis of the model and computational

techniques of Markov chain Monte Carlo (MCMC) methods. In order to reduce com-



puting burden for the inverse of the AR(p) autocorrelation matrix, a fast computing
program is also given.

In the next section, we present the approximate Bayesian (AB) posterior and
predictive inferences for the model. In Section 3, we show how to implement MCMC
methods to generate posterior samples and use them to predict future values and
volatilities. In Section 4, a real example of the U.S. interest rates is conducted
to demonstrate our methodologies. In Section 5 we briefly summarize and discuss
future issues and in the Appendix we give the technical derivations of the proposed

approach.

2. Approximate Bayesian inference

2.1. The model

An n x 1 random vector ¥ii= (Y7,...,.¥,)7T is said to follow a multivariate ¢
distribution with the location vector u, scaling covariance matrix ¥ and degrees-of-

freedom v if Y has the following density function

I'((v+n)/2)

) o

(1)
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We shall say Y has a Mt,(u, 2, v) with E(Y) = p for v > 1, and Cov(Y) =

v/(v —2)% for v > 2. It is easy to establish the following two propositions:

Proposition 1. Let u = (Y — pu)"S" (Y —u). If Y ~ Mt,(u, Z,v), then

/ u"*g(u)du = T(n/2)m /2,
0

where g(+) is the density (1).



Proof: The sketch of the proof is given in Appendix A.

Proposition 2. IfY ~ Mt,(u, X, v) and suppose that' Y, p and X are partitioned

vy
y M=

where YV and u(l) are m X 1 vectors, 211 1S an m X m matrix, Yo = E2Tl 8 an

as
211 E12

, and X =
31 Mo

I

m X (n —m) matriz, and Xsy is an (n —m) x (n —m) matriz. Then

(a) Y ~ Mt (), 211, v).

(0) YOIYW =y ~ Mty (o, w04, v+m).
where fiy., = H(2)+221Eﬁl(y(l)—ﬂ(l))7 . (V+(y(1)_“(1))T21—11(y(1)_u(l)))/(y+
m) and Xppq = Bgg — Loy T1 1B 1o.

Proof: The proof is referred to-Anderson (2003):
The AR regression model with multivariate ¢ innovations can be written in matrix

form as

Y = XB+e, en~Mt,(0, 02C(9), v), 2)

where Y = (Y1,...,Y,)T, X = [1,X,,...,X}] is an n x (k + 1) matrix, 8 =

(Bo, .-, Bk) " is a (k + 1)-dimensional vector. C,(¢) is an n x n matrix which is an
autocorrelation matrix. In the model, € = (&1, ...,,)T is the vector of error terms
such that

€= Q161 + -+ OpEr—p + ay, (3)

where {a;} is a sequence of white noise process with mean zero and a constant
variance. In this thesis, we assume that the innovations of (3) have an uncorre-

lated multivariate ¢ distribution. The autocovariance matrix for € is Cov(e) =
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o2 [p‘g_h@ (9, h = 1,2,...,n), where 02 = vo?/(v — 2) is a scaling variance of

. Notice that p;’s are implicit functions of ¢ = (¢1,...,¢,) which satisfy the

Yule-Walker equations (Box et al., 1994)

pi=G1pic1+ .. Foppip (i=1,...,m—1), po=1,

and the roots of 1—¢; B—...—¢,B” = 0 need to lie outside the unit circle for assuring
the stationarity condition. For model (2), the likelihood function of @ = (3, 02, ¢, v)
is

—(n0)/2
LB, .01 ) (@) i) (v S22 T

whete S(Y, 8, ¢) = (Y — XB)T Cii (@)Y, — X3)

Typically, any existing software takes enormous time to directly execute matrix
inversion for extremely large n. In Appendix B; we give a theorem with explicit
formula for computing C,*(¢) 0 remedy this potential problem. In order to facil-
itate the estimating procedure and achieve the admissibility of ¢, we perform the

reparameterization scheme of Barndorff-Nielsen and Schou (1973) as follows:

o) =, ¢V =gl — etV =12, i1, (5)
o ) |
where ¢\ = ¢; = ¢ — U Vo — UED I P for =1, p-1.

Note that (5) is a one-to-one and onto transformation which reparameterizes
¢ = (¢1,...,¢,) € CP in terms of the partial autocorrelations v = (y1,...,7,) €

[—1,1]7. In the following, we provide on R-langauge program to compute (5).



pacf.to.phi=function(pactf)
{
p=length(pacf)
if (p==1) phi=pacf
if (p>1)
{
Phi=matrix(diag(pacf), p, p)
for (i in 2:p)
for (j in 1:(i-1))
Phi[i, jl=Phili-1, jl-Phil[i,i]*Phil[i-1, i-j]
phi=Phi [p,]
}

return(phi)

2.2. Posterior inference

Treating v as a model parameter, we reparameterize (4) as a function of 8 =
(8,0%,~,v). With no prior knowledge about the parameters, we assume the prior
distribution is a priori independent such that

p
w(B,0° 7. v) = o *m(B) | [ r(r)m(v) oc o Pm(v). (6)
i=1

A flat prior for 3 is adopted, thus 7(8) o constant. Since —1 < 7; < 1 for

i=1,...,p, it is straightforward to employ the uniform [—1, 1] distribution for ~;’s.



Under the above assumption, the joint posterior density is

p(B,0%,~v,v|Y)
2

)-(n+2)/2 —1/2<S(}7:7gﬁ77))u/2—1

x () (S(Y.B.7)

C.(v)

vo? ) —(n+v)/2

(" swam ™)

Reparameterize o2 by n = no?/S(Y,3,7), 0 <n < oo, (7) can be rewritten as

-1/ —n/ —(n+v)/2
p(B,n,7,v|Y) 7T(V)‘Cn(‘r) 1 Q(S(ﬁﬁ)) 277”/2’1 (1 + %n) . (8

Obviously, n | B,y ~ F, ,. Integrating (8) w.r.t. 7, we obtain the following

posterior distribution of 8 and ~:

p(B,7]Y)

. N\ —(m+k+1)/2
) ()

< Ca(m)[ 72 (€3 + (B=BIEX"CF (7)X (B - B)

where m = n—k—1,£(v) = S(YBipand B(v) = (X" C,' (1) X)' X" C,' ()Y
It is noted that the posterior distributions of (3,4) and v are independent. Under
the improper prior (6), the result is identical to Chib et al. (1991). Integrating (9)

w.r.t. 3, we obtain
p(YY) o< |Ca(m)| 21X CL () X7V (). (10)
Following Ljung and Box (1980), the approximate posterior distribution of 3 is
BIY ~ Mt (B, & (mXTC (9)X) ™, m), (11)

where B* = ,@(’3/) and & = ¢ () with 4 optimizing (10). This is easily done by
“optim” routine of the statistical package R with the bounded constraint of (—1, 1)

8



on v;’s. Let F1_,(v1,15) be the upper (1 — «) quantile of the F' distribution with
degrees-of-freedoms (v, 15). We apply the result that if Y ~ Mt, (s, X2, v), then
(Y =)' (vE)" (Y — pu) ~ %F(n, v). Hence, an approximate (1 — a) posterior

region for 3 can be constructed from

eB- A (X @X) B -B) < TR LG m). ()

2.3. Predictive inference

Let y; be a ¢ x 1 vector of future responses of Y and x; be the regressors

Y * 20)*
~ Mt,4q (X B, o*Q* (), V), where
Yy

X" = (X", ])" and Q*(v) issah(n ) x (n + q) scaling correlation matrix
Q11() 912(')’)]

corresponding to y,. We thus have [

partitioned conformably with=¥"* = (¥, y5) T ie., Q*(y) =
f Qo1 (v) Qaa(7)

Notice that 11(7) = Cn(v), Qu2(y)= Q3,(v) is an n x ¢ scaling autocorrelation

matrix between Y and y, and £5,(v) is a‘g'x ¢ scaling autocorrelation matrix
corresponding to Y.

The joint posterior distribution of y; and 6 = (3,072, ,v) is

p(yf7/370-_2777 V|Y>

?

—2\(n * — O-_QS Y*7ﬁ77 “nta)/2
o 7T<I/)(U 2)( +Q)/2+1’Q (,7)‘ 1/2 (1+ ( y ))

where

S(Y*,B,7) = (Y= X"B8)'Q" (v)(Y" - X"B). (13)

Following Osiewalski and Stell (1993), we transform (y, 3, I AR (ys, B, u,7,v),



where u = 0725(Y™, 3,7). By Proposition 1, it will yield

Py, B.AY) o |9 ()5 B (), )
y (1 LB B*(v))TX*TQ‘::('Y)X*(ﬂ — B () ) S
S(Y* .8 (v),7)
where S(Y*,8'(v),7) is S(Y™, 8, ¢) in (13) with 3 replaced by

, (14)

A

* x—1 #\—1 v *~ *
By = (X" (X)X ()Y
Integrating (14) w.r.t. 3, we obtain

Py, YY) o | ()| TV2S (Y, B (), 7) R X () XV (15)

Ak

. ) 2 (yr — 1) (MY, — 1y)
Since S(Y™*, 8 (v),7v) = S(Y,,B(’y),'y)(l—i— 5]:( ( ) ) ), where

pe = xB(Y) + (N () (Vi XB(7)),

Q= Qu(y) - QP B2H) F (27 — W2 (1)X)"
X (X" ()X E @ (D2 (1) X)), (16)
upon integrating (15) w.r.t. y,, wehave
P(Y) o [ ()X QT ()X TS(Y L B(), ) TR (1)
It is noted that the functional form (17) is different from (10).

With arguments similar to (11), we have the following approximate predictive

distribution of y:

QfS(YvB(’Y)»’?)’ m>7 (18)

yr | Y ~ M, (ﬂf»
where f1, and Qf are gty and €2y in (16) with 4 optimizing (17). An approximate

(1 — ) posterior region for y, can be obtained from

Q
S(Y,B(v).9)

N N q
(y;— Nf)T (yr—fy) < EFI_Q((L m).

10



3. Markov chain Monte Carlo inference

3.1. Implementation

Given the state 8% = (,B(t),(jZ(t),')/(t)) and an appropriate degrees-of-freedom
v, which can be obtained by the method of moments proposed by Singh (1988, Eq.
2.5) from OLS residuals. The proof is given in Appendix D. The following algorithm

o+

is one sweep of MCMC sampler for simulating from the posterior distributions

(7).

(t4+1) A (1) 2(t) +£ - ® -1
Step 1: Sample 84D from Mty | 3 ,—(X C:l(y )X) L vtm ),

V+m

. -1 . .
where 3¥ = (X7C, (v ) X)X, O (7)Y and €0 = S(Y, 3Y 4.
Step 2: Sample n**Y from B, then transform it back to

1
0_2(t+1) e En(t+1)S(Y’ﬂ(t+l)a')’(t))~

Step 3: Sample v+ via the MH algorithm from

~(n+v)/2
. S(Y, 8" v
f('7> (S8 |Cn(7)| 2 (V + ( U2(t+1) ) ’

To implement the MH algorithm for generating « at the (¢ + 1)st iteration, we
can transform v to v* = (77,...,7;) € R?, R = (—00,00), where, 7; = log ((1 +
vi)/(1 =) (i =1,...,p). We then apply the M-H algorithm to g(v*) = f () Jy-,
where Jy- = [T0_, (2677 /(1 + €77)?) is the Jacobain of transforming ~ to v*.

A p-dimensional multivariate normal distribution with mean 'y*(t) and covariance

matrix 022(,;)* is chosen as the proposal distribution, where the scale ¢ ~ 2.4/,/p, as

suggested in Gelman et al. (2004). The covariance matrix Eg,)* can be estimated by

11



inverting the sample information matrix given 7*<t). Having obtained ~* from the
M-H algorithm, we transform it back to v by 7; = (% —1)/(e¥ +1) (i=1,...,p),

then transform + back to ¢ by inverting (5).

3.2. Forecasting future values and volatilities
The predictive distribution of y; is p(y,|Y) = [ f(y; | Y,0)p(0|Y)d6. By
Proposition 2, we have
d
f(yf‘Ya 9) = Mty (yf ’ Mo, w a1, v+ n) ) (19)

where py, = wfﬁ—l—ﬂgl(fy)ﬂl_ll (Y -XB),w= + (Y - Xﬁ)Tﬂl_ll (NY — Xﬁ)7

V+n

and Q221 = Qas(7) — Qa1 (7) Q55 () Qua(7)-
Let 89 be the generated sample at the’gth-iteration of the MCMC sampler after
the convergence is achieved. The predigtivedistribution of y; can be approximated

by Monte Carlo integration from the MEMC samples
1 &
PlyY) ~ = Mt (yy | u) w@S, van).
g=1

For the prediction of future values, it is straight forward to generate ygcg) from

19) given @ = 09, The forecast of y, can be computed by
!

@f: yf|Y Zy

Let h2 ., be the volatility of Y,,41 based on Y = (Y3,...,Y},) for n > p. Tarami and
Pourahmadi (2003) have shown that h2_, is more general than the GARCH(n,1)

model. In Appendix E, we provide a different proof based on our considered model.

12



In case of ¢ = 1, we can predict h2,; using the sample variance of the MCMC

samples yj(cg) (g=1,...,G), ie,

A —_— 1 N
W2 = Var(y|Y) = ——> (Y — i) (20)

4. An application: the U.S. interest rates

We consider the 1-year, 3-year and 10-year Treasury constant maturity rates
over the period January 1975 to December 2004 for 360 observations. The series are

obtained from the Federal Reserve Bank of St Louis on its website
http://www.stls.frb.org/fred.

Figure 1 shows the time plots of the three series with solid line denoting the 10-year
rate, dashed line the 3-year rate and dotted line"the 1-year rate. The three series
moved in tandem in the sampling period, indicating that they are highly correlated.
To avoid the unit-root behavior of ‘the series, we take the first difference of them to
obtain the changed series of interest rates. Let x1;, xo; and g, denote the changes in
the 1-year, 3-year and 10-year interest rates, respectively. We consider an ordinary

linear regression model y; = (g + G121 + Boxor + €. The fitted model is given by
yr = —.0.3723x14 + 1.141329; + ¢, 7. = 0.0989,

with R? = 91.77%. The standard errors of the above regression coefficients are
0.0292, 0.0343, respectively. Both coefficients are highly significant.

Figure 2 displays the time series plot of the residuals and its sample PACF.
Obviously, the residual series has some serial correlations at lags 2, 3, and 4. We

modify (4.) with an AR(4) model for the error process.

13
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Figure 1: The time series plots of the U.5: intetest rates from Jan. 1975 to Dec.
2004.
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Figure 2: The sample PACF and time series plot of OLS residuals.
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Using the traditional approach, we obtain the modified model
Yy = —.0.3838x1; + 1.1640x9; + €;, € = a; — 0.1269a;_o + 0.1536a;_3 — 0.2189a;_4,

with 6, = 0.0921 and R? = 92.8%. The standard errors of fitted coefficients are
0.0278, 0.0330, 0.0505, 0.0499, 0.050, respectively. All estimates are significant at
the 5% level .

Figure 3 shows the sample ACF, sample PACF and the Q-Q plot of fitted normal
residuals. The model no longer has serial correlation within the shocks, however, its
tail is heavier than the normal distribution. In addition, we show the time plot of
the standardized shocks {a®}, and the associated sample ACF and PACF of their
squared series in Figure 4. Thé sample ACF and sample PACF clearly exhibit the
existence of conditional heteroscedasticity.

To demonstrate our propesed methodology; we fit an AR(4) model with multi-
variate t errors, the estimated degrees-of-freedom is 7.82 using the MME of Singh
(1988) from the OLS residuals. The MVT-AR(4) model for U.S. interest rates is

given as follows:
Y =XB+e, e~Mt,(0, 0’Cu(9), v), (21)

where Y = (yl,...,yn)T, ,3 = (61,ﬁ2>—r, X = [X17X2] with Xj = (Ij17~~7axjn>a
j = ]-727 d) = (¢17¢27¢37¢4)7 v="7.82 and n = 359.

To implement our proposed approximate Bayesian and MCMC procedures, we

15
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Figure 3: Sample ACF, PACF and the Q-Q plot of fitted normal residuals.
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make use of (5) to reparameterize ¢. It leads to

—Pids — P14 + G214 + Paps + 1 + Pagds

o L4 ¢34+ o207 — &3 — P3104 — P4 — Ps — P13 — P2 —
Ny = D103 + PTPs + Pu + PidsP1 + Paps — P2} + Do — ¢2<Z54
1 — @3 — 2030104 — P07 — 207 + ¥4
N ¢3 + P14
1—¢f
Y4 = ¢4

We carry out MCMC by running seven independent parallel chains with different
initial values for each chain “over-dispersed” around 43 standard deviations of the
maximum a posteriori (MAP) estimates. For each chain, we implemented 26,000
iterations. We monitored the convergence by examining the multivariate potential
scale reduction factor (MPSRF) proposed by Brooks and Gelman (1998) of the 7
chains. The convergence occurred after 1,000 iterations. Discarding the first 1,000
iterations as a “burn-in” for @aeh chain, we then stored one imputed parameter
value for every 5 iterations to reduce the autocorrelation. Hence, we have 35,000
realizations from the target posterior distribution. Figure 5 displays the convergence
diagrams and histograms of the posterior samples of each parameter for one of the
seven chains.

The estimates of parameters and their standard errors based on ML and AB
approaches, together with the summary statistics of converged MCMC samples,
including the mean, standard deviation, median and 95% HPD interval, are listed
in Table 1. It can be seen that both ML and AB estimates are similar, but the
estimates using MCMC are somewhat different and have a bit larger standard errors.

To compare the confidence and posteior inferences for 3 = (1, f2) among ML,

17



Table 1: Summary statistics based on ML estimation, approximate Bayesian, and
MCMC sampling methods.

ML App. Bayesian MCMC
Parameter ——p Sd Est Sd Mean Sd  Median  2.5%  97.5%
B ~0.3804  0.0283 ~0.3803  0.0283 ~0.3813  0.0321 -0.3807 -0.4452 -0.3196
Bo 1.1560  0.0336 1.1558  0.0335 11584 0.0550 11568  1.0547  1.2709
e 0.0088  0.0045 0.0088  0.0045 0.0092  0.0047  0.0084  0.0024  0.0205
o 0.0267  0.0515 0.0282  0.0515 0.0326  0.0549 0.0316 0.0729  0.1401
b0 ~0.1412  0.0509 ~0.1414  0.0509 ~0.1400  0.0543 -0.1400 -0.2473 -0.0327
b3 0.1708  0.0442 0.1704  0.0442 01721 0.0532 0.1735  0.0668  0.2766
b4 ~0.2319  0.0478 ~0.2317  0.0478 -0.2320  0.0550 0.2328 0.3415 -0.1197

AB and MCMC approaches, the 95% confidence region constructed by (25), the
95% posterior confidence region by (12), and the scatter plot of randomly selected
5000 MCMC samples for 8 = (01, 52) are superimposed in Figure 6. In the figure,
we found that the two regions cofistructed by'ML and AB are nearly the same, how-
ever, it only contains about 75% of the MCOMC sample. This reveals that posterior
inferences based on MCMC samples-can be quit‘e different from the ML and AB
approaches for our considered model. With-this phenomenon, we have conducted a
simulation study to compare the converge probabilities among the three approaches.
We found the MCMC approach has better performance than AB and ML approaches
as v is small, while they have similar performances as v is large. We skip the details
to save space.

As pointed out by Tarami and Pourahmadi (2003), the multivariate ¢ process has
the advantage of describing the evolution of volatility and has a general GARCH-
type, which is fully robust as opposed to Gaussian or i.i.d. univariate ¢ distribution.
Using the Bayesian prediction procedure described in Section 3.2, we reuse the

converged MCMC samples to generate volatility estimates according to (20). The

18



estimated volatility process for model (21) is shown in Figure 7. This plot appears to

be reasonable since the estimated volatilities exhibit conditional heteroscedasticity.

nnnnn

aaaaa

eeeee

Figure 5: Convergence diagrams and histograms of the distribution of each parame-

ter.
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Figure 7: Estimated volatilities of the 10-year U.S. interest rate.
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5. Discussion

With the chosen non-informative prior, we present the practical approximate
Bayesian approach and a straightforward MCMC sampling scheme for regression
models when the error vector is distributed as a multivariate ¢ process with AR(p)
serial correlations. Based on this work, these results can be readily extended to
ARMA models with the same reparameterization on moving average parameters
(Monahan, 1984). This model is suitable for the fitting of financial time series data
since it explains autocorrelation and conditional heteroscedasticity simultaneously.
Also, we have shown how to estimate volatilities from the generated MCMC samples.

For the multivariate ¢t processwith non-informative prior information, the pos-
terior distribution of degrees-of-freedom:-v"is‘the-same as its prior distribution and
hence is estimated by MME: Future‘work.will seek other Bayesian treatments to
update posterior samples of v based on other types of prior and compare relative

merits among them.
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Appendix A: Proof of Proposition 1

If u* ~ F, ,, then

It leads to

Let Y ~ Mt,(p,3,v) and u = (Y — p) 'S (Y — p). The density of u is

G (u) = W(Vﬂ)n/z <1 N g)—<n+u>/2 |

14

Therefore,

/ u"2 ! g )
0

o] F(n_—l—u) _ntv
/ ? (vm) 2! (1 + E) ° du.
0 v

r(s)

Define u* = u/n and from the result of (22), it can be seen that

/ u"* g, (u)du
0

F<n_J2rV> o n
— (V’YT)_n/an/2/ u*"/Qfl (1 + —’l,l,*) 2 du*
r(s) :

= D(n/2)r "2

This completes the proof.

22

(22)



Appendix B: An inverse of the AR(p) correlation matrix

Theorem 1. Let Z = (Zy,...,Z,)" be the observations from a stationary autore-
gressive process of order p, i.e., Zy — ¢1 241 — -+ — ¢pplp_p = ar, where {a} is
a independent zero mean white noise process with a constant variance. Denoting

C..(¢) as the autocorrelation matriz of Z and

M :[ I, OpX(n—p)]
My | My |

where [Moy  Mas] = [myj] is an (n — p) x n submatriz of M with

_Qbk;, ]:Z+p_ka k:1727"'ap7
mg; = 17 j:Z+p7

0, Jotherwise.

Let

by —p_1 - i 1 —¢1 - —dpy |
e
O _¢p O 1

be the p X p leading principle minor of Mo, and M oy, respectively. Then the inverse

autocorrelation matriz of C,, is given by

B M3y My +¥, My Moy

Cc!
T T )
M, M, M, M,

n

n>p, (23)

)T

where W, = Mg;)Mg; - M%?TMgi).

For the proof of above theorem, see Lee et al. (2004). In general, the inversion of
an n x n matrix needs O(n?) operations, while using Theorem 1 it takes only O(n)

operations. An R program for computing (23) is given below.

23



arp.cov.inv = function(phi, n)
{
p = length(phi)
M21 = M22 = matrix(0, p, p)
temp.phi = c(1, -phi)
for( i in 1:p)
{

M21[i, i:p]

- rev(phi) [1: (p-i+1)]

M22[i:p, i] = temp.phil[l: (p-i+1)]
}
Omega.inv = M22 %} t(M22)n= t(M21) %x% (M21)
if (N '= p){
M2 = matrix(0, "n-ps n)
for(i in 1:(n-p))
{
M2[i, i:(i+p)] = rev(temp.phi)
+
Lambda = t(M2) %x*) M2
Lambda[l:p,1:p] = Lambda[l:p,1:p] + Omega.inv
Cov=Lambda

3

else Cov=0Omega.inv
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Appendix C: Maximum likelihood inferences

Using the profile likelihood approach, the ML estimates of the parameters 3, o2

and ¢ denoted as By, 62, and ¢y for model (2) are given as:
. T—1(5 T 1))
BuL = <X C, (¢ML)X> X C, (dm)Y
1 ~ONT R
o, = " (Y - X/BML) C, (o) (Y - XﬂML);
g N _n A2 1 ~1 ’
bra3) = argmax — S1og(o% (600) ) + 5 10s]C7" (o)

’Y‘Zﬁl """ 'Y¢p
The Fisher information for 8 = (3,02, ¢) is
Top 1 1pg
Igg= | Ig: Iy T |- (24)

Toe dug 1o¢
The elements of (24) are

v+n -
I,B,B - mXTCnl(QS)X, I/60'2:07 I/6¢:0,
I . nv
T 2t v+ n+2)
- v 00U
I, = 202(1/+n+2t(c 1(¢) 30, )7 i1=1,...,p,
oc, _ oc,
Iyy = 1/+n+2 <V+n tr o) a¢i¢)0”1(¢) 8¢§¢)>
aC,(¢) dC,(9) o
<Cn (d)) 8¢z ) (Cn (¢) 8¢J ))7 L )= 17"‘7p'

Under some regularity conditions, the standard errors for Oy, = (Bym, 021 G

can be estimated by taking the square root of the corresponding diagonal elements

of J ge(éML)- Approximately, a (1 — a) confidence region for 3 can be constructed

from

6B (G X )X ) (B By < @), (29
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where 2, () denotes the 100(1-«) quantile of a chi-square distribution with m
degrees-of-freedom.
Proof of (24):

The log-likelihood function for (3,02, @) is

S(Y
n;”log(l-l- ( V7UB27¢>>'

(8,0, ¢) o ~5 los(o®) ~ 310g|C.(9)] -

For notational simplicity, let e =Y — X3 and A = e C,*(¢)e. The score vectors

of (8,02, ¢;) are

X'c!
sg = (n+v) —V02n+(z)€’
B n n+v A
St T o + 202 (I/JQ—I—A)7
- C.(P) ~1
1 00 () eTC ()52 (d)e
S¢, = _§|:tr(cn (¢) agbz ) W (n+V) VO'Q—FA .

_ C.(D) ~—1 1 oC (D) ~—1
Let 1; = C-' ()2 C dip;=-C C . The elements of
€ ¢ n (d)) &251 n (¢> an % n (¢) 5¢] n (d)) € elements o
the Hessian matrix are as follows:

X0, (@)~ X)(wo + A) - X7 C, (¢)e(—2XC, (d)e)T

Hgg = (n+v) - (vo? + A)?
B ~X'CH(¢)X  2X'C,'(¢ee’C,'(#)X
= (ntv) ( vo?+ A * (vo? 4+ A)? 7
_ —v(X'C,'(d)e) X'C.'(p)e
Hﬁaz = (n+v) TN v(in+v) o 1 A

X e 1 _
HB@ = —(n+v) (1/02 +A (vo? + A)? <XTCn1(¢>eeT¢ie>) )

1 (—v)e"ie\  vin+v) elie
Moo = (- ag ) = G s
I ~on ((ntv) A _(n+tv —vA
ot T 9t 204 \vo?+ A 202 ) (vo?+ A)?
~n (n+v) A N o?vA
204 204 \vo?+ A (vo?2+A)?)
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How, = %(tr(wac"<¢))—tr(c;%@w)

Op; 00i0¢;
e’ (2025420 0) - 00 T 0 e
—(n+ y> vo?+ A
e ee e

The Fisher information matrix is obtained by the negative expectation of the
Hessian matrix. We list several important formulae which are useful to obtain the

Fisher information matrix.

(a)

E(a;w) - E[uoz T e Xﬁ)]

-

1 Rzt o) 1/2 netyt?
- 1 ) Y

vo? / % 7TI/O'2 m/2 += w72 d

—1 _ ntv42
1L IER)IC@) 1/2 5C0n(9) e\ TE o
B 1/02 L(5)(m 1/02 n/2 1/+2)02
v n/2

1 T(5Y)|Cu(e) F%>< (v +2)0%)"

V02 L(5)(mvo?)n/2 \ D(*522)] 55 Cu(@)| 2

1 %(V+2)n/2( U >n/2 1

vo? Epn/2 0\ w42 h o(n+v)

27



(b)

(c)

E 2 — R A—’_V0'2—V0'2
vot + A vo?+ A
vo?
( 1/02+A)
1
= 1_ 2E
Vo <V0'2 —i—A)

= 1l—vo

o*(n+v)

n+uv

o]
vo? + A

ee'
E(WQ + eTC;1(¢>)e) =

1 cBl
V02E< eTC ¢)e)
1+

1 (n-i—u)‘cn( )|—1/2 eTC;1<¢)e ety
e e e (R 1) B

-1
LICRICOI [ (550 ey

n/2
1 F(n;u)‘cn(d))rlﬂ F(VTH)(W(V_Fz)Oj) -
Vo T(Z)(rvo?) 7P (r<"+g+2> G 7 ) e
1 %(v+2)"2 "2
VO—QQNT"FVyn/Q (1/12) UQCn(Gb)
C.(9)

n+v’
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(d)

(e)

(v ap)

1 1
E
V2ot <[1 n eTan(d))e]Q)

_ nt+v+4
2

ay

1 /F(”T*”)I(Jn(qb)l1/2 (1 N eTCn1(¢)e)

(%) (mvo?)n/2 vo?

oy 15 (s )
()| L Cn(¢)|‘1/2>

2 v+4

1 F(”*“)ICn(cb)l‘”Q(

2
vigt  T'(%)(mvo?)n/?

)(45%)
)

2

A PP VO'2>

(

= E< (vo? + A)?
( _
(

a2(n+v) e ctv(n+v)(n+v+2)

o?(n+v)(n+v+2)
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()

(2)

ee'
1/204E< T )
(1+ e C, (¢)e)

-1/2 n+ v+4

Yy
1/02 )

( 1
1 I'(*)|Cn(e 1/2 < <u+4 ) e)”*é“dY

2
V2ot T(3)(mvo?) ”/2 (v +4)0?

1
2 44 eeT 1/ 2 2
vio F (5)(mvo ”/

r<“+”+4>|y—i40n<¢>|—1/2)EW)

V2ot F?g ’
1 (552 v
254 (nT—H%)(n—Qi-g—i—z) = ZUQCn(¢)

S G

- ()

tr
n—+v
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(h)

eTwie . eTwie
E((l/(ﬂ + A)2) B Etr((ygz + A)Q)
_ ee'1);
= Ftr <—(1/a2 n A)Z)

= 1 u(cu@m)

o2(n+v)(n+v+2)

_ 1 oC,.(p) ,_,
N 02(”+V)(n+1/+2)tr( D C. (¢))
1 3Cn(¢))‘

B 02(n+y)(n+1/+2)tr(cn () i

Proof of (h):

Using the fact that

E(f“g_f(Y)) _ _E(alogfm 310gf(Y)>
0¢:09; 5 9; 0¢; ’

eTy,ee’ye

0Tt A)? ), we first calculate that

and apply the following equation E<

0?log f(Y)
0909
_ ! 0C () 1 - *Cn(¢) n+v(eyee e
e (wi 99, ) ek (C”l(@ 96:06, ) I ( (o7 T Ay )
T ( (vo? + A) >;
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and

>C.(P)

(eeT <2¢Z aCé?:;ESb) C;I((ﬁ) o C’;l(gb) 3¢z’g¢j C”I(¢)) )

e’ (2025420, 9) - 0, (0) 5550 0 @) )
E

0*Cy(9)
99:i0¢;

u(GeaBeyie)

0000,
L 0C(9)
ir (cn ) o )

. ()= Cu(9)C, " (9)

o ‘ Cgl(eb))
R cﬁ<¢>wc—1<¢>) +
(

dils

1
2
(@) 5

02 log f(Y))
b ( 96:0%,

_ L AN L [, PCuP))  ntv (et e

h (w’ d¢; > B 5“(0" (¢) D09, ) Tk ( (u02+A)J? >
(Wc (D0 () —c;1<¢>82§ig;?>051<¢>)e
vo?+ A )

1, ([, 9Cu(@) IC.(9)\ n+v (eThieeT e
- 5o 9, )~ 99, )% E((vaumj?)'
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Also, we need to calculate

- (8102 q];(Y)) (alog (;;(Y))

St CRCE - I ATy

n+v eTl/}ie _ acn(d))
+ 4 <V02+A)tr(Cn1(q’)) 00, )
n+ V( eije )tr (Cl(¢)) aCn(¢)> . (n + V)Q (eTwieeT¢je)

T\ ia 26, 5 w1y

and

n—+ I/E e ;e
4 vo?+ A

n+v 1 o 0C () 1 1, 0 0C (@)
: Hytr(cn @25 )—Ztr(cn )21 )

Hence, we can get

_E(alogi(Y)) (alo§q{j(y))

- (oo oG ) ()

4
L Z V) (5?1)“ (Cn1(¢)a(;;i¢))
A p( et ), (02508
R
P a5 (@ ")
P (e 5 (e ")
- o () (e
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Thus,

P(ear)
(n+ 1/)(7;+ v+ 2) " (Cgl(ww)tr (C’;l(qj) 9Cn(¢>)

(o)

Therefore, the elements of Fisher information matrix can be obtained by

Igs = —(n+ V)E(_X;Si(f)X N QXTC;(IV(;@TLC)/F(@X)
— [ ZXLC@X | 2X O (9)C.(9)C, ($)X
o?(n+v) a’(n+v)(n+v+2)
 (XTC M) XM+ v +2)—2XC (9 X
B o¥(n + v 2)
v+n Tl ‘
= mx C, (@)X, -

_ XTG@eN L
Iﬁoz = V(n—'—V)E(m)—O,

Xe ' 'XTC, (p)ee Pie
Lo = (n+ V)E(I/O'Z + Z - (1/02<+)Z()32 ) =0,
 v(n+v) e'ye
N )
_v(n+v) )
B 2 2n+v)(n+v+2) ( 8@
(@)

T 202(n+v+2) (”(¢) D, )
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n n—i—l/E< A v A )

I 252 = -
77 201 2ot VP T A (vo? + A)?

B n +n—|—y n n no’v
200 200 \n+v 2n+v)(n+tv+2)

. nv
204 (v+n+2)
9C,.($) ., . OC,
Lo, = V+n+2<1/—|—ntr @ e 9 )

et 054

Appendix D: Derivation of the method of moment estimator of v

For regression model with the erroriférinies~ Mt,(0,0%I,,v), the p.d.f. of € is

B F((I/+n)/2)(a2)_n/2 e’e (v4n)/2
1) = —Top)an? (H 1/02)

vPR((n ) /2) 1 L Ee ~ltn)/2

C(if2) <o2>n/2( " 02) |

The second and the fourth moments of ¢; are

vo
BE) =2,
and
320"
E(af)—(y_z)(y 0 i=1,...,n
Define
N o R T 32 vo?
my = E(n ;51)—E<n ;(yl—xz )):y—2’
and




Hence with a = my/m?, we get a = 3(v — 2)/(v — 4). Since the usual least square
estimator of 3, given by

B=(X"X)"X"y,
is the best linear unbiased estimator (BLUE) of 3, it is reasonable to estimate a by

E(n™' Y (i — 2/ B)") n' S (v — 2 B)*

d: =

(B S = a78) (v Sl — 7B

R

Having given estimator a of a, the degree of freedom parameter v can be estimated

by
2(24 — 3)
a—3

U=

Appendix E: The conditional variance of.the MVT-AR(p) process

Y., .
Let Y, 1 = ] ~ Mtpt1 (Br1:0°L, 1, ) and let p,,,; and T'\yq be parti-
Yn+1
tioned as
1% Fn Tn
Myt = ) and Fn-‘rl = T
Hny1 Yn In+l

Define pio1 = o1 + 3Ly (Yo — p,) and 0a91 = 0 (i1 — ¥4 Ty 'v,) = 0 By

Proposition 2,

v+ YT 'Y, >
, n+v|.

1| Y~ t 15
y+1! (M21 v

Then,

v+ Y T'Y,

0721+1 = Var(y,4+1|Y ) = ntuv_2

Consider the inverse of a partition of T',;:

~1
— [ | A ] _ [ ' 4+ kaa" —ka ]

T T
Yn-1 In —Ka K
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where a = Ty and & = (=7 Tl im1) 7! Letting Yy = (Ya1,- .., Y1),
we have

YIT)'Y, =Y T Y, 1 +k@Y,—Y,)%

After some algebra, we obtain the recursion

, o+ Y.I'Y,
Ont1 = n+v—2
otv+Y, TNY, 1+ kY, —Y,)?
B n+v-—2
v+ Y TN Y, k@'Y, —Y,)?
= +
n+v—2 n+v—2
. ontv-— 3(72 k(a"Y 1 —Y,)?
n+v—2" n+v—2
n+v—3 4 K

T 2
Y,1-Y,)".
n—l—y—2a" n+1/—2<a ! )

Thus, this form is explicitly more general-than the GARCH(n,1) model.
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