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Abstract

This thesis considers a Bayesian approach to the regression model with au-

toregressive multivariate t errors, whose conditional variance satisfies a kind

of generalized autoregressive conditional heteroscedastic model. We present

the approximate Bayesian posterior and predictive inferences under a non-

informative prior. Markov chain Monte Carlo computational schemes are

developed for precisely accounting for the posterior uncertainties. To enhance

the computational efficiency, we provide a fast method to compute the inverse

autocorrelation matrix of an AR(p) process. A real example of the U.S. in-

terest rates is conducted to demonstrate our methodologies.
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1. Introduction

There exist plenty of theses in the literature concerning Bayesian techniques

on the regression model with autoregressive time series errors. Chib (1993) and

McCulloch and Tsay (1994) employ Gibbs sampler methods for regression models

with autoregressive Gaussian error process by conditioning on initial observations.

Chen et al. (2004) provide an efficient Bayesian estimation procedure with the exact

likelihood.

Regression models with the multivariate t distributed error terms have received

considerable attentions since Zellner (1976) who investigated the theoretical frame-

work from maximum likelihood and Bayesian viewpoints. The generalization of the

Bayesian treatment for regression models with uncorrelated elliptical errors has been

discussed by various authors, e.g., Chib et al. (1988), Osiewalski (1991), Arellano-

Valle et al. (2000) and Kim and Mallick (2003). Recently, Tarami and Pourahmadi

(2003) consider a time series model whose error terms arise from a multivariate t

process with AR(p) autocorrelations. They provide exact likelihood equations for

computing the maximum likelihood estimates and show that the multivariate t AR

model is a generalized autoregressive conditional heteroscedastic model similar to

those in Engle (1982) and Bollerslev (1986).

In this thesis, we extend Tarami and Pourahmadi (2003) to consider a regres-

sion model with multivariate t autoregressions on errors. Under improper prior

distributions, we show a general Bayesian analysis of the model and computational

techniques of Markov chain Monte Carlo (MCMC) methods. In order to reduce com-
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puting burden for the inverse of the AR(p) autocorrelation matrix, a fast computing

program is also given.

In the next section, we present the approximate Bayesian (AB) posterior and

predictive inferences for the model. In Section 3, we show how to implement MCMC

methods to generate posterior samples and use them to predict future values and

volatilities. In Section 4, a real example of the U.S. interest rates is conducted

to demonstrate our methodologies. In Section 5 we briefly summarize and discuss

future issues and in the Appendix we give the technical derivations of the proposed

approach.

2. Approximate Bayesian inference

2.1. The model

An n × 1 random vector Y = (Y1, . . . , Yn)T is said to follow a multivariate t

distribution with the location vector µ, scaling covariance matrix Σ and degrees-of-

freedom ν if Y has the following density function

g(Y ) =
Γ
(
(ν + n)/2

)

Γ(ν/2)(πν)n/2
|Σ|−1/2

(
1 +

(Y − µ)TΣ−1(Y − µ)

ν

)−(n+ν)/2

. (1)

We shall say Y has a Mtn(µ,Σ, ν) with E(Y ) = µ for ν > 1, and Cov(Y ) =

ν/(ν − 2)Σ for ν > 2. It is easy to establish the following two propositions:

Proposition 1. Let u = (Y − µ)TΣ−1(Y − µ). If Y ∼ Mtn(µ,Σ, ν), then

∫ ∞

0

un/2−1g(u)du = Γ(n/2)π−n/2,

where g(·) is the density (1).

4



Proof: The sketch of the proof is given in Appendix A.

Proposition 2. If Y ∼ Mtn(µ,Σ, ν) and suppose that Y , µ and Σ are partitioned

as

Y =

[
Y (1)

Y (2)

]
, µ =

[
µ(1)

µ(2)

]
, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where Y (1) and µ(1) are m × 1 vectors, Σ11 is an m ×m matrix, Σ12 = ΣT
21 is an

m× (n−m) matrix, and Σ22 is an (n−m)× (n−m) matrix. Then

(a) Y (1) ∼ Mtm(µ(1),Σ11, ν).

(b) Y (2)
∣∣Y (1) = y(1) ∼ Mtn−m(µ2·1, wΣ22·1, ν + m).

where µ2·1 = µ(2)+Σ21Σ
−1
11 (y(1)−µ(1)), w =

(
ν+(y(1)−µ(1))TΣ−1

11 (y(1)−µ(1))
)
/(ν+

m) and Σ22·1 = Σ22 −Σ21Σ
−1
11 Σ12.

Proof: The proof is referred to Anderson (2003).

The AR regression model with multivariate t innovations can be written in matrix

form as

Y = Xβ + ε, ε ∼ Mtn(0, σ2Cn(φ), ν), (2)

where Y = (Y1, . . . , Yn)T, X = [1,X1, . . . , Xk] is an n × (k + 1) matrix, β =

(β0, . . . , βk)
T is a (k + 1)-dimensional vector. Cn(φ) is an n× n matrix which is an

autocorrelation matrix. In the model, ε = (ε1, . . . , εn)T is the vector of error terms

such that

εt = φ1εt−1 + · · ·+ φpεt−p + at, (3)

where {at} is a sequence of white noise process with mean zero and a constant

variance. In this thesis, we assume that the innovations of (3) have an uncorre-

lated multivariate t distribution. The autocovariance matrix for ε is Cov(ε) =
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σ2
ν

[
ρ|g−h|

]
(g, h = 1, 2, . . . , n), where σ2

ν = νσ2/(ν − 2) is a scaling variance of

εt. Notice that ρj’s are implicit functions of φ = (φ1, . . . , φp) which satisfy the

Yule-Walker equations (Box et al., 1994)

ρi = φ1ρi−1 + . . . + φpρi−p (i = 1, . . . , n− 1), ρ0 = 1,

and the roots of 1−φ1B−. . .−φpB
p = 0 need to lie outside the unit circle for assuring

the stationarity condition. For model (2), the likelihood function of θ = (β, σ2,φ, ν)

is

L(β, σ2,φ, ν | Y ) ∝ (σ2)−n/2|Cn(φ)|−1/2

(
ν +

S(Y ,β,φ)

σ2

)−(n+ν)/2

, (4)

where S(Y ,β, φ) = (Y −Xβ)TC−1
n (φ)(Y −Xβ).

Typically, any existing software takes enormous time to directly execute matrix

inversion for extremely large n. In Appendix B, we give a theorem with explicit

formula for computing C−1
n (φ) to remedy this potential problem. In order to facil-

itate the estimating procedure and achieve the admissibility of φ, we perform the

reparameterization scheme of Barndorff-Nielsen and Schou (1973) as follows:

φ
(i)
i = γi, φ

(i)
j = φ

(i−1)
j − γiφ

(i−1)
i−j , j = 1, 2, . . . , i− 1, (5)

where φ
(p)
j = φj = φ

(j)
j −φ

(j+1)
j+1 φ

(j)
1 −φ

(j+2)
j+2 φ

(j+1)
2 −· · ·−φ

(p)
p φ

(p−1)
p−j , for j = 1, . . . , p−1.

Note that (5) is a one-to-one and onto transformation which reparameterizes

φ = (φ1, . . . , φp) ∈ Cp in terms of the partial autocorrelations γ = (γ1, . . . , γp) ∈

[−1, 1]p. In the following, we provide on R-langauge program to compute (5).
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pacf.to.phi=function(pacf)

{

p=length(pacf)

if(p==1) phi=pacf

if(p>1)

{

Phi=matrix(diag(pacf), p, p)

for (i in 2:p)

for (j in 1:(i-1))

Phi[i, j]=Phi[i-1, j]-Phi[i,i]*Phi[i-1, i-j]

phi=Phi[p,]

}

return(phi)

}

2.2. Posterior inference

Treating γ as a model parameter, we reparameterize (4) as a function of θ =

(β, σ2,γ, ν). With no prior knowledge about the parameters, we assume the prior

distribution is a priori independent such that

π(β, σ2, γ, ν) = σ−2π(β)

p∏
i=1

π(γi)π(ν) ∝ σ−2π(ν). (6)

A flat prior for β is adopted, thus π(β) ∝ constant. Since −1 < γi < 1 for

i = 1, . . . , p, it is straightforward to employ the uniform [−1, 1] distribution for γi’s.
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Under the above assumption, the joint posterior density is

p(β, σ2, γ, ν|Y )

∝ π(ν)
(
S(Y ,β, γ)

)−(n+2)/2∣∣∣Cn(γ)
∣∣∣
−1/2( nσ2

S(Y ,β,γ)

)ν/2−1

×
(
1 +

νσ2

S(Y ,β, γ)

)−(n+ν)/2

. (7)

Reparameterize σ2 by η = nσ2/S(Y ,β,γ), 0 < η < ∞, (7) can be rewritten as

p(β, η, γ, ν|Y ) ∝ π(ν)
∣∣∣Cn(γ)

∣∣∣
−1/2(

S(β,γ)
)−n/2

ην/2−1

(
1 +

ν

n
η

)−(n+ν)/2

. (8)

Obviously, η | β,γ ∼ Fν, n. Integrating (8) w.r.t. η, we obtain the following

posterior distribution of β and γ:

p(β,γ|Y )

∝ |Cn(γ)|−1/2
(
ξ̂(γ) + (β − β̂)TXTC−1

n (γ)X(β − β̂)
)−(m+k+1)/2

, (9)

where m = n−k−1, ξ̂(γ) = S(Y , β̂,γ) and β̂(γ) = (XTC−1
n (γ)X)−1XTC−1

n (γ)Y .

It is noted that the posterior distributions of (β,γ) and ν are independent. Under

the improper prior (6), the result is identical to Chib et al. (1991). Integrating (9)

w.r.t. β, we obtain

p(γ|Y ) ∝ |Cn(γ)|−1/2|XTC−1
n (γ)X|−1/2ξ̂−m/2(γ). (10)

Following Ljung and Box (1980), the approximate posterior distribution of β is

β | Y ·∼ Mtk+1

(
β̂

?
, ξ̂?

(
mXTC−1

n (γ̂)X
)−1

, m
)
, (11)

where β̂
?

= β̂(γ̂) and ξ̂? = ξ̂(γ̂) with γ̂ optimizing (10). This is easily done by

“optim” routine of the statistical package R with the bounded constraint of (−1, 1)
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on γi’s. Let F1−α(ν1, ν2) be the upper (1 − α) quantile of the F distribution with

degrees-of-freedoms (ν1, ν2). We apply the result that if Y ∼ Mtn(µ, Σ, ν), then

(Y − µ)T(νΣ)−1(Y − µ) ∼ n
ν F(n, ν). Hence, an approximate (1 − α) posterior

region for β can be constructed from

ξ̂?−1

(β − β̂
?
)T

(
XTC−1

n (γ̂)X
)
(β − β̂

?
) ≤ k + 1

m
F1−α(k + 1, m). (12)

2.3. Predictive inference

Let yf be a q × 1 vector of future responses of Y and xf be the regressors

corresponding to yf . We thus have

[
Y

yf

]
∼ Mtn+q

(
X∗β, σ2Ω∗(γ), ν

)
, where

X∗ = (XT, xT
f )T and Ω∗(γ) is an (n + q) × (n + q) scaling correlation matrix

partitioned conformably with Y ∗ = (Y T, yT
f )T, i.e., Ω∗(γ) =

[
Ω11(γ) Ω12(γ)

Ω21(γ) Ω22(γ)

]
.

Notice that Ω11(γ) = Cn(γ), Ω12(γ) = ΩT
21(γ) is an n × q scaling autocorrelation

matrix between Y and yf and Ω22(γ) is a q × q scaling autocorrelation matrix

corresponding to yf .

The joint posterior distribution of yf and θ = (β, σ−2, γ, ν) is

p(yf ,β, σ−2,γ, ν|Y )

∝ π(ν)(σ−2)(n+q)/2+1|Ω∗(γ)|−1/2

(
1 +

σ−2S(Y ∗, β,γ)

ν

)−(ν+n+q)/2

,

where

S(Y ∗,β, γ) = (Y ∗ −X∗β)TΩ∗−1

(γ)(Y ∗ −X∗β). (13)

Following Osiewalski and Stell (1993), we transform (yf ,β, σ−2,γ, ν) to (yf ,β, u, γ, ν),
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where u = σ−2S(Y ∗,β, γ). By Proposition 1, it will yield

p(yf ,β,γ|Y ) ∝ |Ω∗(γ)|−1/2S(Y ∗, β̂
∗
(γ), γ)−(n+q)/2

×
(

1 +

(
β − β̂

∗
(γ)

)T
X∗TΩ∗−1(γ)X∗(β − β̂

∗
(γ)

)

S(Y ∗, β̂
∗
(γ),γ)

)−(n+q)/2

, (14)

where S(Y ∗, β̂
∗
(γ), γ) is S(Y ∗, β,φ) in (13) with β replaced by

β̂
∗
(γ) =

(
X∗TΩ∗−1

(γ)X∗)−1
X∗TΩ∗−1

(γ)Y ∗.

Integrating (14) w.r.t. β, we obtain

p(yf ,γ|Y ) ∝ |Ω∗(γ)|−1/2S(Y ∗, β̂
∗
(γ),γ)−(m+q)/2|X∗TΩ∗−1

(γ)X∗|−1/2. (15)

Since S(Y ∗, β̂
∗
(γ),γ) = S(Y , β̂(γ),γ)

(
1+

(yf − µf )
TΩ−1

f (γ)(yf − µf )

S(Y , β̂(γ),γ)

)
, where

µf = xf β̂(γ) + Ω21(γ)Ω−1
11 (γ)

(
Y −Xβ̂(γ)

)
,

Ωf = Ω22(γ)−Ω21(γ)Ω−1
11 (γ)Ω12(γ) +

(
xf −Ω21(γ)Ω−1

11 (γ)X
)T

×(
XTΩ−1

11 (γ)X
)−1(

xf −Ω21(γ)Ω−1
11 (γ)X

)
, (16)

upon integrating (15) w.r.t. yf , we have

p∗(γ|Y ) ∝ |Ω∗(γ)|−1/2|X∗TΩ∗−1

(γ)X∗|−1/2S(Y , β̂(γ), γ)−m/2|Ωf |1/2. (17)

It is noted that the functional form (17) is different from (10).

With arguments similar to (11), we have the following approximate predictive

distribution of yf :

yf | Y ·∼ Mtq

(
µ̂f ,

Ω̂fS(Y , β̂(γ), γ̂)

m
, m

)
, (18)

where µ̂f and Ω̂f are µf and Ωf in (16) with γ̂ optimizing (17). An approximate

(1− α) posterior region for yf can be obtained from

(yf − µ̂f )
T

Ω̂
−1

f

S(Y , β̂(γ), γ̂)
(yf − µ̂f ) ≤

q

m
F1−α(q, m).
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3. Markov chain Monte Carlo inference

3.1. Implementation

Given the state θ(t) = (β(t), σ2(t)
,γ(t)) and an appropriate degrees-of-freedom

ν, which can be obtained by the method of moments proposed by Singh (1988, Eq.

2.5) from OLS residuals. The proof is given in Appendix D. The following algorithm

is one sweep of MCMC sampler for simulating θ(t+1) from the posterior distributions

(7).

Step 1: Sample β(t+1) from Mtk+1

(
β̂

(t)
,

νσ2(t)

+ ξ̂(t)

ν + m

(
X>C−1

n (γ(t))X
)−1

, ν+m

)
,

where β̂
(t)

=
(
X>C−1

n (γ(t))X
)−1

X>C−1
n (γ(t))Y and ξ̂(t) = S(Y , β̂

(t)
,γ(t)).

Step 2: Sample η(t+1) from Fν,n, then transform it back to

σ2(t+1)

=
1

n
η(t+1)S(Y ,β(t+1),γ(t)).

Step 3: Sample γ(t+1) via the MH algorithm from

f(γ) ∝ |Cn(γ)|−1/2

(
ν +

S(Y ,β(t+1),γ)

σ2(t+1)

)−(n+ν)/2

.

To implement the MH algorithm for generating γ at the (t + 1)st iteration, we

can transform γ to γ∗ = (γ∗1 , . . . , γ
∗
p) ∈ Rp, R = (−∞,∞), where, γ∗i = log

(
(1 +

γi)/(1− γi)
)

(i = 1, . . . , p). We then apply the M-H algorithm to g(γ∗) = f(γ)Jγ∗ ,

where Jγ∗ =
∏p

i=1

(
2eγ∗i /(1 + eγ∗i )2

)
is the Jacobain of transforming γ to γ∗.

A p-dimensional multivariate normal distribution with mean γ∗
(t)

and covariance

matrix c2Σ
(t)
γ∗ is chosen as the proposal distribution, where the scale c ≈ 2.4/

√
p, as

suggested in Gelman et al. (2004). The covariance matrix Σ
(t)
γ∗ can be estimated by

11



inverting the sample information matrix given γ∗
(t)

. Having obtained γ∗ from the

M-H algorithm, we transform it back to γ by γi = (eγ∗i − 1)/(eγ∗i + 1) (i = 1, . . . , p),

then transform γ back to φ by inverting (5).

3.2. Forecasting future values and volatilities

The predictive distribution of yf is p(yf |Y ) =
∫

f(yf | Y , θ)p(θ|Y )dθ. By

Proposition 2, we have

f(yf |Y , θ)
d
= Mtq

(
yf | µ2·1, wΩ22·1, ν + n

)
, (19)

where µ2·1 = xfβ+Ω21(γ)Ω−1
11 (γ)(Y −Xβ), ω =

ν + (Y −Xβ)TΩ−1
11 (γ)(Y −Xβ)

ν + n ,

and Ω22·1 = Ω22(γ)−Ω21(γ)Ω−1
11 (γ)Ω12(γ).

Let θ(g) be the generated sample at the gth iteration of the MCMC sampler after

the convergence is achieved. The predictive distribution of yf can be approximated

by Monte Carlo integration from the MCMC samples

p(yf |Y ) ≈ 1

G

G∑
g=1

Mtq

(
yf | µ(g)

2·1, w(g)Σ
(g)
22·1, ν + n

)
.

For the prediction of future values, it is straight forward to generate y
(g)
f from

(19) given θ = θ(g). The forecast of yf can be computed by

ŷf = Ê(yf |Y ) =
1

G

G∑
g=1

y
(g)
f .

Let h2
n+1 be the volatility of Yn+1 based on Y = (Y1, . . . , Yn) for n ≥ p. Tarami and

Pourahmadi (2003) have shown that h2
n+1 is more general than the GARCH(n,1)

model. In Appendix E, we provide a different proof based on our considered model.

12



In case of q = 1, we can predict h2
n+1 using the sample variance of the MCMC

samples y
(g)
f (g = 1, . . . , G), i.e.,

ĥ2
n+1 = V̂ar(yf |Y ) =

1

G− 1

G∑
g=1

(y
(g)
f − ŷf )

2. (20)

4. An application: the U.S. interest rates

We consider the 1-year, 3-year and 10-year Treasury constant maturity rates

over the period January 1975 to December 2004 for 360 observations. The series are

obtained from the Federal Reserve Bank of St Louis on its website

http://www.stls.frb.org/fred.

Figure 1 shows the time plots of the three series with solid line denoting the 10-year

rate, dashed line the 3-year rate and dotted line the 1-year rate. The three series

moved in tandem in the sampling period, indicating that they are highly correlated.

To avoid the unit-root behavior of the series, we take the first difference of them to

obtain the changed series of interest rates. Let x1t, x2t and yt denote the changes in

the 1-year, 3-year and 10-year interest rates, respectively. We consider an ordinary

linear regression model yt = β0 + β1x1t + β2x2t + εt. The fitted model is given by

yt = −.0.3723x1t + 1.1413x2t + εt, σ̂ε = 0.0989,

with R2 = 91.77%. The standard errors of the above regression coefficients are

0.0292, 0.0343, respectively. Both coefficients are highly significant.

Figure 2 displays the time series plot of the residuals and its sample PACF.

Obviously, the residual series has some serial correlations at lags 2, 3, and 4. We

modify (4.) with an AR(4) model for the error process.
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Figure 1: The time series plots of the U.S. interest rates from Jan. 1975 to Dec.

2004.
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Figure 2: The sample PACF and time series plot of OLS residuals.
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Using the traditional approach, we obtain the modified model

yt = −.0.3838x1t + 1.1640x2t + εt, εt = at − 0.1269at−2 + 0.1536at−3 − 0.2189at−4,

with σ̂a = 0.0921 and R2 = 92.8%. The standard errors of fitted coefficients are

0.0278, 0.0330, 0.0505, 0.0499, 0.050, respectively. All estimates are significant at

the 5% level .

Figure 3 shows the sample ACF, sample PACF and the Q-Q plot of fitted normal

residuals. The model no longer has serial correlation within the shocks, however, its

tail is heavier than the normal distribution. In addition, we show the time plot of

the standardized shocks {ã2}, and the associated sample ACF and PACF of their

squared series in Figure 4. The sample ACF and sample PACF clearly exhibit the

existence of conditional heteroscedasticity.

To demonstrate our proposed methodology, we fit an AR(4) model with multi-

variate t errors, the estimated degrees-of-freedom is 7.82 using the MME of Singh

(1988) from the OLS residuals. The MVT-AR(4) model for U.S. interest rates is

given as follows:

Y = Xβ + ε, ε ∼ Mtn(0, σ2Cn(φ), ν), (21)

where Y = (y1, . . . , yn)>, β = (β1, β2)
>, X = [X1,X2] with Xj = (xj1, . . . , , xjn),

j = 1, 2, φ = (φ1, φ2, φ3, φ4), ν = 7.82 and n = 359.

To implement our proposed approximate Bayesian and MCMC procedures, we

15



0 5 10 15 20

Lag

0.
0

0.
4

0.
8

AC
F

0 5 10 15 20

Lag

-0
.1

0
0.

00
0.

10
Pa

rti
al

 A
C

F

-3 -2 -1 0 1 2 3

Quantiles of Standard Normal

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

w
hi

te
 n

oi
se

 s
er

ie
s

Figure 3: Sample ACF, PACF and the Q-Q plot of fitted normal residuals.
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make use of (5) to reparameterize φ. It leads to

γ1 =
−φ2

4φ3 − φ1φ4 + φ2φ1φ4 + φ4φ3 + φ1 + φ2φ3

1 + φ3
4 + φ2φ2

4 − φ2
4 − φ3φ1φ4 − φ2

1φ4 − φ4 − φ1φ3 − φ2 − φ2
3

,

γ2 =
φ1φ3 + φ2

1φ4 + φ4φ
2
3 + φ2

4φ3φ1 + φ2φ4 − φ2φ
3
4 + φ2 − φ2φ

2
4

1− φ2
3 − 2 φ3φ1φ4 − φ2

4φ
2
1 − 2 φ2

4 + φ4
4

,

γ3 =
φ3 + φ1φ4

1− φ2
4

,

γ4 = φ4.

We carry out MCMC by running seven independent parallel chains with different

initial values for each chain “over-dispersed” around ±3 standard deviations of the

maximum a posteriori (MAP) estimates. For each chain, we implemented 26,000

iterations. We monitored the convergence by examining the multivariate potential

scale reduction factor (MPSRF) proposed by Brooks and Gelman (1998) of the 7

chains. The convergence occurred after 1,000 iterations. Discarding the first 1,000

iterations as a “burn-in” for each chain, we then stored one imputed parameter

value for every 5 iterations to reduce the autocorrelation. Hence, we have 35,000

realizations from the target posterior distribution. Figure 5 displays the convergence

diagrams and histograms of the posterior samples of each parameter for one of the

seven chains.

The estimates of parameters and their standard errors based on ML and AB

approaches, together with the summary statistics of converged MCMC samples,

including the mean, standard deviation, median and 95% HPD interval, are listed

in Table 1. It can be seen that both ML and AB estimates are similar, but the

estimates using MCMC are somewhat different and have a bit larger standard errors.

To compare the confidence and posteior inferences for β = (β1, β2) among ML,
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Table 1: Summary statistics based on ML estimation, approximate Bayesian, and

MCMC sampling methods.

Parameter
ML App. Bayesian MCMC

Est Sd Est Sd Mean Sd Median 2.5% 97.5%

β1 –0.3804 0.0283 –0.3803 0.0283 –0.3813 0.0321 –0.3807 –0.4452 –0.3196

β2 1.1560 0.0336 1.1558 0.0335 1.1584 0.0550 1.1568 1.0547 1.2709

σ2 0.0088 0.0045 0.0088 0.0045 0.0092 0.0047 0.0084 0.0024 0.0205

φ1 0.0267 0.0515 0.0282 0.0515 0.0326 0.0549 0.0316 –0.0729 0.1401

φ2 –0.1412 0.0509 –0.1414 0.0509 –0.1400 0.0543 –0.1400 –0.2473 –0.0327

φ3 0.1708 0.0442 0.1704 0.0442 0.1721 0.0532 0.1735 0.0668 0.2766

φ4 –0.2319 0.0478 –0.2317 0.0478 –0.2320 0.0550 –0.2328 –0.3415 –0.1197

AB and MCMC approaches, the 95% confidence region constructed by (25), the

95% posterior confidence region by (12), and the scatter plot of randomly selected

5000 MCMC samples for β = (β1, β2) are superimposed in Figure 6. In the figure,

we found that the two regions constructed by ML and AB are nearly the same, how-

ever, it only contains about 75% of the MCMC sample. This reveals that posterior

inferences based on MCMC samples can be quite different from the ML and AB

approaches for our considered model. With this phenomenon, we have conducted a

simulation study to compare the converge probabilities among the three approaches.

We found the MCMC approach has better performance than AB and ML approaches

as ν is small, while they have similar performances as ν is large. We skip the details

to save space.

As pointed out by Tarami and Pourahmadi (2003), the multivariate t process has

the advantage of describing the evolution of volatility and has a general GARCH-

type, which is fully robust as opposed to Gaussian or i.i.d. univariate t distribution.

Using the Bayesian prediction procedure described in Section 3.2, we reuse the

converged MCMC samples to generate volatility estimates according to (20). The
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estimated volatility process for model (21) is shown in Figure 7. This plot appears to

be reasonable since the estimated volatilities exhibit conditional heteroscedasticity.
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5. Discussion

With the chosen non-informative prior, we present the practical approximate

Bayesian approach and a straightforward MCMC sampling scheme for regression

models when the error vector is distributed as a multivariate t process with AR(p)

serial correlations. Based on this work, these results can be readily extended to

ARMA models with the same reparameterization on moving average parameters

(Monahan, 1984). This model is suitable for the fitting of financial time series data

since it explains autocorrelation and conditional heteroscedasticity simultaneously.

Also, we have shown how to estimate volatilities from the generated MCMC samples.

For the multivariate t process with non-informative prior information, the pos-

terior distribution of degrees-of-freedom ν is the same as its prior distribution and

hence is estimated by MME. Future work will seek other Bayesian treatments to

update posterior samples of ν based on other types of prior and compare relative

merits among them.
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Appendix A: Proof of Proposition 1

If u∗ ∼ F n,ν , then

∫ ∞

0

Γ
(

n+ν
2

)

Γ
(

n
2

)
Γ
(

ν
2

)
(n

ν

)n/2

u∗
n/2−1

(
1 +

n

ν
u∗

)−(n+ν)/2

du∗ = 1.

It leads to

∫ ∞

0

u∗
n/2−1

(
1 +

n

ν
u∗

)−(n+ν)/2

du∗ =
Γ
(

n
2

)
Γ
(

ν
2

)

Γ
(

n+ν
2

)
(ν

n

)n/2

. (22)

Let Y ∼ Mtn(µ,Σ, ν) and u = (Y − µ)>Σ−1(Y − µ). The density of u is

gn,ν(u) =
Γ((n + ν)/2)

Γ(ν/2)
(νπ)−n/2

(
1 +

u

ν

)−(n+u)/2

.

Therefore,

∫ ∞

0

un/2−1gn,ν(u)du

=

∫ ∞

0

Γ
(

n+ν
2

)

Γ
(

ν
2

) (νπ)−n/2un/2−1
(
1 +

u

ν

)−n+ν
2

du.

Define u∗ = u/n and from the result of (22), it can be seen that

∫ ∞

0

un/2−1gn,ν(u)du

=
Γ
(

n+ν
2

)

Γ
(

ν
2

) (νπ)−n/2nn/2

∫ ∞

0

u∗
n/2−1

(
1 +

n

ν
u∗

)−n+ν
2

du∗

= Γ(n/2)π−n/2.

This completes the proof.
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Appendix B: An inverse of the AR(p) correlation matrix

Theorem 1. Let Z = (Z1, . . . , Zn)T be the observations from a stationary autore-

gressive process of order p, i.e., Zt − φ1Zt−1 − · · · − φpZt−p = at, where {at} is

a independent zero mean white noise process with a constant variance. Denoting

Cn(φ) as the autocorrelation matrix of Z and

M =

[
Ip 0p×(n−p)

M 21 M 22

]
,

where [M 21 M 22] = [mij] is an (n− p)× n submatrix of M with

mij =





−φk, j = i + p− k, k = 1, 2, . . . , p,

1, j = i + p,

0, otherwise.

Let

M
(p)
21 =




−φp −φp−1 · · · −φ1

−φp −φ2

. . .
...

0 −φp




and M
(p)T

22 =




1 −φ1 · · · −φp−1

1 −φp−2

. . .
...

0 1




be the p×p leading principle minor of M 21 and M 22, respectively. Then the inverse

autocorrelation matrix of Cn is given by

C−1
n =

[
MT

21M 21 + Ψp MT
21M 22

MT
22M 21 MT

22M 22

]
, n ≥ p, (23)

where Ψp = M
(p)
22 M

(p)T

22 −M
(p)T

21 M
(p)
21 .

For the proof of above theorem, see Lee et al. (2004). In general, the inversion of

an n× n matrix needs O(n2) operations, while using Theorem 1 it takes only O(n)

operations. An R program for computing (23) is given below.
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arp.cov.inv = function(phi, n)

{

p = length(phi)

M21 = M22 = matrix(0, p, p)

temp.phi = c(1, -phi)

for( i in 1:p)

{

M21[i, i:p] = - rev(phi)[1: (p-i+1)]

M22[i:p, i] = temp.phi[1: (p-i+1)]

}

Omega.inv = M22 %*% t(M22) - t(M21) %*% (M21)

if(N != p){

M2 = matrix(0, n-p, n)

for(i in 1:(n-p))

{

M2[i, i:(i+p)] = rev(temp.phi)

}

Lambda = t(M2) %*% M2

Lambda[1:p,1:p] = Lambda[1:p,1:p] + Omega.inv

Cov=Lambda

}

else Cov=Omega.inv

}
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Appendix C: Maximum likelihood inferences

Using the profile likelihood approach, the ML estimates of the parameters β, σ2

and φ denoted as β̂ML, σ̂2
ML and φ̂ML for model (2) are given as:

β̂ML =
(
XTC−1

n (φ̂ML)X
)−1

XTC−1
n (φ̂ML)Y ,

σ̂2
ML =

1

n

(
Y −Xβ̂ML

)T

C−1
n (φ̂ML)

(
Y −Xβ̂ML

)
,

φ̂ML(γ̂) = argmax
γφ1

,...,γφp

− n

2
log

(
σ̂2

ML

(
φ(γ)

))
+

1

2
log

∣∣∣C−1
n

(
φ(γ)

)∣∣∣.

The Fisher information for θ = (β, σ2,φ) is

Iθθ =




Iββ Iβσ2 Iβφ

Iβσ2 Iσ2σ2 I
σ2φ

Iβφ I
σ2φ Iφφ


 . (24)

The elements of (24) are

Iββ =
ν + n

σ2 (ν + n + 2)
XTC−1

n (φ)X, Iβσ2 = 0, Iβφ = 0,

Iσ2σ2 =
nν

2σ4(ν + n + 2)
,

Iσ2φi
=

ν

2σ2(ν + n + 2)
tr

(
C−1

n (φ)
∂Cn(φ)

∂φi

)
, i = 1, . . . , p,

Iφiφj
=

1

2(ν + n + 2)

(
(ν + n)tr

(
C−1

n (φ)
∂Cn(φ)

∂φi

C−1
n (φ)

∂Cn(φ)

∂φj

)

−tr

(
C−1

n (φ)
∂Cn(φ)

∂φi

)
tr

(
C−1

n (φ)
∂Cn(φ)

∂φj

))
, i, j = 1, . . . , p.

Under some regularity conditions, the standard errors for θ̂ML = (β̂ML, σ̂2
ML, φ̂ML)

can be estimated by taking the square root of the corresponding diagonal elements

of Jθθ(θ̂ML). Approximately, a (1− α) confidence region for β can be constructed

from

(β − β̂ML)T

(
ν + n

σ̂2
ML(ν + n + 2)

XTC−1
n (φ̂ML)X

)
(β − β̂ML) ≤ χ2

m1
(α), (25)
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where χ2
m1

(α) denotes the 100(1–α) quantile of a chi-square distribution with m1

degrees-of-freedom.

Proof of (24):

The log-likelihood function for (β, σ2,φ) is

`(β, σ2, φ) ∝ −n

2
log(σ2)− 1

2
log|Cn(φ)| − n + ν

2
log(1 +

S(Y , β,φ)

νσ2
).

For notational simplicity, let e = Y −Xβ and ∆ = e>C−1
n (φ)e. The score vectors

of (β, σ2, φi) are

sβ = (n + ν)
X>C−1

n (φ)e

νσ2 + ∆
,

sσ2 = − n

2σ2
+

n + ν

2σ2
(

∆

νσ2 + ∆
),

sφi
= −1

2

[
tr

(
C−1

n (φ)
∂Cn(φ)

∂φi

)
− (n + ν)

e>C−1
n (φ)

∂Cn(φ)

∂φi
C−1

n (φ)e

νσ2 + ∆

]
.

Let ψi = C−1
n (φ)

∂Cn(φ)

∂φi
C−1

n (φ) and ψj = C−1
n (φ)

∂Cn(φ)

∂φj
C−1

n (φ). The elements of

the Hessian matrix are as follows:

Hββ = (n + ν)
X>C−1

n (φ)(−X)(νσ2 + ∆)−X>C−1
n (φ)e(−2X>C−1

n (φ)e)>

(νσ2 + ∆)2

= (n + ν)

(
−X>C−1

n (φ)X

νσ2 + ∆
+

2X>C−1
n (φ)ee>C−1

n (φ)X

(νσ2 + ∆)2

)
,

Hβσ2 = (n + ν)
−ν(X>C−1

n (φ)e)

(νσ2 + ∆)2
= −ν(n + ν)

X>C−1
n (φ)e

(νσ2 + ∆)2
,

Hβφi
= −(n + ν)

(
X>ψie

νσ2 + ∆
− 1

(νσ2 + ∆)2

(
X>C−1

n (φ)ee>ψie

))
,

Hσ2φi
= −1

2

(
−(n + ν)

(−ν)e>ψie

(νσ2 + ∆)2

)
= −ν(n + ν)

2

e>ψie

(νσ2 + ∆)2
,

Hσ2σ2 =
n

2σ4
−

(
(n + ν)

2σ4

(
∆

νσ2 + ∆

)
−

(
n + ν

2σ2

) −ν∆

(νσ2 + ∆)2

)

=
n

2σ4
− (n + ν)

2σ4

(
∆

νσ2 + ∆
+

σ2ν∆

(νσ2 + ∆)2

)
,
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Hφiφj
=

1

2

(
tr

(
ψ

∂Cn(φ)

∂φj

)
− tr

(
C−1

n (φ)
∂2Cn(φ)

∂φi∂φj

)

−(n + ν)

e>
(

2ψi
∂Cn(φ)

∂φj
C−1

n (φ)−C−1
n (φ)

∂2Cn(φ)

∂φi∂φj
C−1

n (φ)

)
e

νσ2 + ∆

+(n + ν)
e>ψiee>ψje

(νσ2 + ∆)2

)
.

The Fisher information matrix is obtained by the negative expectation of the

Hessian matrix. We list several important formulae which are useful to obtain the

Fisher information matrix.

(a)

E

(
1

νσ2 + ∆

)
= E

[
1

νσ2 + (Y −Xβ)>C−1
n (φ)(Y −Xβ)

]

=
1

νσ2
E

[(
1 +

e>C−1
n (φ)e

νσ2

)−1
]

=
1

νσ2

∫
Γ(n+ν

2
)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

(
1 +

e>C−1
n (φ)e

νσ2

)−n+ν+2
2

dY

=
1

νσ2

Γ(n+ν
2

)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

∫ (
1 +

e>
(

ν
ν+2

Cn(φ)
)−1

e

(ν + 2)σ2

)−n+ν+2
2

dY

=
1

νσ2

Γ(n+ν
2

)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

(
Γ(ν+2

2
)
(
π(ν + 2)σ2

)n/2

Γ(n+ν+2
2

)| ν
ν+2

Cn(φ)|−1/2

)

=
1

νσ2

ν
2
(ν + 2)n/2

n+ν
2

νn/2

(
ν

ν + 2

)n/2

=
1

σ2(n + ν)
.
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(b)

E

(
∆

νσ2 + ∆

)
= E

(
∆ + νσ2 − νσ2

νσ2 + ∆

)

= E

(
1− νσ2

νσ2 + ∆

)

= 1− νσ2E

(
1

νσ2 + ∆

)

= 1− νσ2 1

σ2(n + ν)

=
n

n + ν
.

(c)

E

(
ee>

νσ2 + ∆

)

= E

(
ee>

νσ2 + e>C−1
n (φ)e

)

=
1

νσ2
E

(
ee>

1 +
e>C−1

n (φ)e
νσ2

)

=
1

νσ2

∫
ee>

Γ(n+ν
2

)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

(
1 +

e>C−1
n (φ)e

νσ2

)−n+ν+2
2

dY

=
1

νσ2

Γ(n+ν
2

)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

∫
ee>

(
1 +

e>
(

ν
ν+2

Cn(φ)

)−1

e

(ν + 2)σ2

)−n+ν+2
2

dY

=
1

νσ2

Γ(n+ν
2

)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

( Γ(ν+2
2

)

(
π(ν + 2)σ2

)n/2

Γ(n+ν+2
2

)| ν
ν+2

Cn(φ)|−1/2

)
E(ee>)

=
1

νσ2

ν
2
(ν + 2)n/2

n+ν
2

νn/2

(
ν

ν + 2

)n/2

σ2Cn(φ)

=
Cn(φ)

n + ν
.
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(d)

E

(
1

(νσ2 + ∆)2

)

=
1

ν2σ4
E

(
1

[1 +
e>C−1

n (φ)e
νσ2 ]2

)

=
1

ν2σ4

∫
Γ(n+ν

2
)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

(
1 +

e>C−1
n (φ)e

νσ2

)−n+ν+4
2

dY

=
1

ν2σ4

Γ(n+ν
2

)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

( Γ(ν+4
2

)

(
π(ν + 4)σ2

)n/2

Γ(n+ν+4
2

)| ν
ν+4

Cn(φ)|−1/2

)

=
1

ν2σ4

(ν
2
)(ν+2

2
)

(n+ν
2

)(n+ν+2
2

)

=
ν + 2

σ4ν(n + ν)(n + ν + 2)
.

(e)

E

(
∆

(νσ2 + ∆)2

)

= E

(
∆ + νσ2 − νσ2

(νσ2 + ∆)2

)

= E

(
1

νσ2 + ∆
− νσ2

(νσ2 + ∆)2

)

= E

(
1

νσ2 + ∆

)
− νσ2E

(
1

(νσ2 + ∆)2

)

=
1

σ2(n + ν)
− νσ2 ν + 2

σ4ν(n + ν)(n + ν + 2)

=
n

σ2(n + ν)(n + ν + 2)
.
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(f)

E

(
ee>

(νσ2 + ∆)2

)

=
1

ν2σ4
E

(
ee>(

1 +
e>C−1

n (φ)e
νσ2

)2

)

=
1

ν2σ4

∫
ee>

Γ(n+ν
2

)|Cn(φ)|−1/2
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)(πνσ2)n/2
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e>C−1
n (φ)e
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)−n+ν+4
2
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ν2σ4
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2

)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

∫
ee>

(
1 +

e>
(

ν
ν+4

Cn(φ)

)−1

e

(ν + 4)σ2

)−n+ν+4
2

dY

=
1

ν2σ4

Γ(n+ν
2

)|Cn(φ)|−1/2

Γ(ν
2
)(πνσ2)n/2

( Γ(ν+4
2

)

(
π(ν + 4)σ2

)n/2

Γ(n+ν+4
2

)| ν
ν+4

Cn(φ)|−1/2

)
E(ee>)

=
1

ν2σ4

(ν
2
)(ν+2

2
)

(n+ν
2

)(n+ν+2
2

)

ν

ν + 2
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Proof of (h):
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Also, we need to calculate
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Thus,
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Therefore, the elements of Fisher information matrix can be obtained by
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Appendix D: Derivation of the method of moment estimator of ν

For regression model with the error term ε ∼ Mtn(0, σ2In, ν), the p.d.f. of ε is

f(ε) =
Γ
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(ν + n)/2
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.

The second and the fourth moments of εi are
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,

and
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Hence with a = m2/m
2
1, we get a = 3(ν − 2)/(ν − 4). Since the usual least square

estimator of β, given by

β̂ = (XTX)−1XTy,

is the best linear unbiased estimator (BLUE) of β, it is reasonable to estimate a by

â =
E(n−1

∑n
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)2 .

Having given estimator â of a, the degree of freedom parameter ν can be estimated

by

ν̂ =
2(2â− 3)

â− 3
.

Appendix E: The conditional variance of the MVT-AR(p) process

Let Y n+1 =

[
Y n

yn+1

]
∼ Mtn+1

(
µn+1, σ

2Γn+1, ν
)

and let µn+1 and Γn+1 be parti-

tioned as
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, and Γn+1 =
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.
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Then,
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Consider the inverse of a partition of Γn:

Γ−1
n =

[
Γn−1 γn−1

γT
n−1 γn

]−1

=

[
Γ−1

n−1 + κaa> −κa

−κa> κ

]
,

36



where a = Γ−1
n−1γn−1 and κ = (γn−γT

n−1Γ
−1
n−1γn−1)

−1. Letting Y n−1 = (Yn−1, . . . , Y1),

we have

Y T
nΓ−1

n Y n = Y T
n−1Γ

−1
n−1Y n−1 + κ(aTY n−1 − Yn)2.

After some algebra, we obtain the recursion
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=
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κ
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Thus, this form is explicitly more general than the GARCH(n,1) model.
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