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中文摘要 

延續 Lai (2003)其具有 AR(1)誤差的線性迴歸模型的穩健性

估計基本架構，我們證明了在大樣本的情形下廣義修正平均值估

計量能夠有類似 Gauss Markov Theorem 的性質。我們稱其為穩

健型態的 Gauss Markov Theorem。  

我們進而利用模擬的方法以及實例的分析，說明該估計量的

特性與效率。   

 

 



Linear Trimmed Means for the Linear Regression with AR(1) Errors Model
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Abstract

For the linear regression with AR(1) errors model, a robust type generalized

and feasible generalized estimators of Lai et al. (2003) of regression parameters are

shown to have the desired property of robust type Gauss Markov theorem. It is

done by shown that these two estimators are, respectively, the best among classes of

linear trimmed means. Monte Carlo and data analysis for this technique have been

performed.

Keywords: Gauss Markov theorem; Generalized least squares estimator; linear trimmed
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1. Introduction

Consider the linear regression model

y = Xβ + ε (1.1)

where y is a vector of observations for the dependent variable, X is a known n ×
p design matrix with 1′s in the first column, and ε is a vector of independent and

identically distributed disturbance variables. We consider the problem of estimating

the parameter vector β and the parametric function c′β of β. From the Gauss-Markov

theorem, it is known that the least squares estimator has the smallest covariance matrix

in the class of unbiased linear estimators My where M satisfies MX = Ip. Also, the

inner product of c and the least squares estimator has smallest variance among all

linear unbiased estimators of c′β. However, the least squares estimator is sensitive

to departures from normality and to the presence of outliers so we need to consider

robust estimators. An interesting question in robust regression is if there is robust type

Gauss-Markov theorem, i.e., if there is a robust estimator that is (asymptotically) more

efficinet than a class of linear robust estimators? This has been done by Chen et al.

(2001) that they considered a class of estimators based on Winsorized observations

and show that the trimmed mean of Welsh (1987) is asymptotically the best among

it.

Suppose that the error vector ε = (ε1, ..., εn)′ has the covariance matrix structure

Cov(ε) = σ2Ω (1.2)

where Ω is a positive definite matrix. From the regression theory of the estimation

of β, it is known that any estimator having an (asymptotic) covariance matrix of the

form

δ(X ′Ω−1X)−1 (1.3)

is more efficient than the estimator having (asymptotic) covariance matrix of the form

δ(X ′X)−1(X ′ΩX)(X ′X)−1 (1.4)

where δ is some positive constant. In the least squares estimation when the matrix Ω

is known, Aitken (1935) introduced the generalized least squares estimator (LSE) and
1
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showed that it has a covariance matrix of the form (1.3) and the LSE has a covariance

matrix of the form (1.4) with δ = σ2. It is also well known that, when Ω is unknown,

the feasible generalized LSE has the asymptotic covariance matrix of the form (1.3).

Then these two generalized type estimators are more efficient than the LSE.

Although the generalized and feasible generalized LSE’s are asymptotically more

efficient than the LSE in many regression problems, they are highly sensitive to even

a very small departure from normality and to the presence of outliers. Therefore

developing robust type generalized and feasible generalized estimators in each specific

regression problem is interesting. Let’s consider the linear regression with AR(1) errors

model, a structure of (1.2), as follows

yi = x′iβ + εi, i = 1, ..., n

εi = ρεi−1 + ei (1.5)

where e1, ..., en are independent and identically distributed (iid) random variables,

is one of the most popular models. Suppose that |ρ| < 1 and ei has a distribution

function F .

Denote the transformed vector u = Ω−1/2′y. One approach to robust estimation is

to construct a weighted observation vector u∗ and then construct a consistent estimator

which is linear in u∗, in case that ρ is unknown, all vectors are replaced by the ones

with estimating ρ by estimator ρ̂; see for example, Lai et al. (2003). There are two

types of weighted observation vectors in this literature. First, u∗ can represent a

trimmed observation vector Au with A a trimming matrix constructed from regression

quantiles (see Koenker and Bassett (1978)), or residuals based on an initial estimator

(see Ruppert and Carroll (1980) and Chen (1997)). Second, u∗ can be a Winsorized

observation vector defined as in Welsh (1987). In this paper, we consider the trimmed

observation vector of Koenker and Bassett (1978), study classes of linear functions

based on u∗ for estimation of β, and develop a robust version of the Gauss-Markov

theorem. Based on regression quantiles, Lai et al. (2003) proposed generalized and

feasible generalized trimmed means for estimating regression parameters β. Then

a robust type generalized and feasible generalized estimation technique have been

developed.

With the result that we have robust version of Gauss Markov theorem for linear

regression with iid errors model, it is then interesting to see if there is any robust type
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generalized and feasible generalized estimators for the linear regression with AR(1)

errors model that also play the same version of Gauss Markov theorem. Our aim in

this paper is to show that the Lai et al. (2003) does have this desired property.

We introduce a class of linear trimmed means when ρ is known in Section 2 and

establish their large sample theory in Section 3. We also establish the theory for a

class of linear trimmed means when ρ is unknown in Section 4. In both cases, we show

that the generalized and feasible generalized trimmed means are the best, respectively,

in these two classes of linear trimmed means in terms of asymptotic covariance matrix.

Finally, the proofs of the theorems are displayed in Appendix.

2. Linear Trimmed Mean When ρ is known

For the linear regression with AR(1) errors model (1.5), to obtain a linear trimmed

mean we need to specify the quantile for determining the observation trimming and to

make a transformation of the linear model to obtain generalized estimators. For given

i-th dependent variable for model (1.5), assuming that i ≥ 2 , one way to derive a

generalized estimator is to consider the transformation by Cochrane and Orcutt (C-O,

1949) as yi = ρyi−1 + (xi − ρxi−1)′β + ei. For error variable e, we assume that it has

distribution function F with probability density function f . With the transformation

for generalized estimation, a quantile could be defined through variable e or a linear

conditional quantile of yi−1 and yi. By the fact that xi is vector with first element 1,

the following two events determined by two quantiles are equivalent:

ei ≤ F−1(α) (2.1)

and

(−ρ, 1)
(

yi−1

yi

)
≤ (−ρ, 1)

(
x′i−1

x′i

)
β(α) (2.2)

with β(α) = β+
(

1
1−ρF−1(α)

0p−1

)
. The event in inequality (2.1) specifies the quantile of

the error variable e and it through inequality (2.2) specifies the conditional quantile of

linear function (−ρ, 1)
(

yi−1

yi

)
. Here β(α) is called the population regression quantile

by Koenker and Bassett (1978). With the specification of quantiles and transformation,

we may define the linear trimmed means.

For defining the linear trimmed means, we consider the C-O transformation on the

matrix form of the linear regression with AR(1) error model of (1.5) which is

y = Xβ + ε
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where it is seen that Cov(ε) = σ2Ω with

Ω =
1

1− ρ2




1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

...
...

...
...

ρn−1 ρn−2 ρn−3 . . . 1


 . (2.3)

Define the half matrix of Ω−1 as

Ω−1/2′ =




(1− ρ2)1/2 0 0 . . . 0 0
−ρ 1 0 . . . 0 0
0 −ρ 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −ρ 1




.

With the above half matrix of Ω, we consider the model for the transformation u =

Ω−1/2′y as

u = Zβ + ((1− ρ2)1/2ε1, e2, e3, ..., en)′ (2.4)

where Z = Ω−1/2′X. Note that the vector u and the matrix Z are both functions of

parameter ρ. The usual descriptive statistics, robust or nonrobust, based on model

(1.1) can be carried over straightforwardly to transformed model (2.4) when ρ is known.

However, when ρ is unknown, u and Z need to be replaced by the ones that place its

ρ by the estimator. Knowing the fact that generalized LSE is simply the LSE of β for

model (2.4), we may consider the linear trimmed mean defining on this transformed

model. To validate the terminology calling the linear trimmed means with ρ known

and unknown, we will show that they are asymptotically equivalent in the sense of

having the same asymptotic covariance matrix. This is what the generalized and

feasible generalized LSE’s performed.

At this moment that we want to study generalized robust estimator, we assume

that ρ is known. For 0 < α < 1, the α-th (sample) regression quantile of Koenker and

Bassett (1978) for the linear regression with AR(1) errors model is defined as

β̂(α) = argb∈Rpmin
n∑

i=1

(ui − z′ib)(α− I(ui ≤ z′ib))

where ui and z′i are the i-th rows of u and Z respectively. Define the trimming matrix

as A = diag{ai = I(z′iβ̂(α1) ≤ ui ≤ z′iβ̂(α2)) : i = 1, ..., n}. After outliers are trimmed
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by regression quantiles β̂(α) and β̂(1− α), we have the following submodel

Au = AZβ + A




(1− ρ2)1/2ε1
e2
...

en


 . (2.5)

Since A is random, the error vector in the above transformed model is now not a set

of independent variables. The Koenker and Bassett’s type generalized trimmed mean

(proposed by Lai et al. (2003)) is defined as

β̂tm = (Z ′AZ)−1Z ′Au. (2.6)

We now move to define the linear trimmed means. Any linear unbiased estimator

defined in model of (2.4) has the form Mu with M being a p×n nonstochastic matrix

satisfying MZ = Ip. Since M is a full-rank matrix, there exist matrices H and H0

such that M = HH ′
0. Thus, an estimator is a linear unbiased estimator if there exists

a p×p nonsingular matrix H and an n×p full-rank matrix H0 such that the estimator

can be written as

HH ′
0u.

We generalize linear unbiased estimators defined on the observation vector u to esti-

mators defined on Au by requiring them to be of the form MAu with M = HH ′
0.

Definition 2.1. A statistic β̂ltm is called a (α1, α2) linear trimmed mean if there

exists a stochastic p × p matrix H and a nonstochastic n × p matrix H0 such that it

has the following representation:

β̂ltm = HH ′
0Au, (2.7)

where H and H0 satisfy the following two conditions:

(a1) nH → H̃ in probability, where H̃ is a full rank p× p matrix.

(a2) HH ′
0Z = (α2 − α1)−1Ip + op(n−1/2) where Ip is the p× p identity matrix.

This is similar to the usual requirements for unbiased estimation except that we have

introduced a trimmed observation vector to allow for robustness and considered as-

ymptotic property instead of unbiasedness.
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Two questions arise for the class of linear trimmed means. First, does this class of

means contain estimators that have already appeared in the literature? The answer is

affirmative because the class of linear trimmed means defined in this paper contains

the generalized trimmed mean of Lai et al. (2003) (H = (Z ′AZ)−1 and H0 = Z), and

the set of Mallows-type bounded influence trimmed means (H = (Z ′WAZ)−1 and

H ′
0 = Z ′W with W , a diagonal matrix of weights; see Section 3). Second, is there a

best estimator in this class of linear trimmed means and can we find it if it exists?

This question will be answered in the next section.

With the C-O transformation, the half matrix Ω−1/2′ has rows with only a finite

number (not depending on n) of elements that depend on the unknown parameter

ρ. This trick, traditionally used in econometrics literature for regression with AR(1)

errors (see, for example, Fomby, Hill and Johnson (1984, p210-211)), makes the study

of asymptotic theory for β̂ltm(α) similar to what we have for the classical trimmed

mean for linear regression. Large sample representations of the linear trimmed mean

and its role as generalized robust estimator will be introduced in the next section.

3. Asymptotic Properties of Linear Trimmed Mean

Denoting by h′i the ith row of H0, θh = limn→∞n−1
∑n

i=1 hi, Qhz = limn→∞n−1
∑n

i=1 hiz
′
i

and Qz = limn→∞n−1Z ′Z, the following theorem gives a “Bahadur” representation of

the (α1, α2) linear trimmed mean.

Theorem 3.1. With assumptions (a1)-(a6), we have

n1/2(β̂ltm − (β + γltm)) = n−1/2H̃
n∑

i=1

{hi(eiI(F−1(α1) ≤ ei ≤ F−1(α2))− λ)

+ [F−1(α1)I(ei < F−1(α1)) + F−1(α2)I(ei > F−1(α2))− ((1− α2)F−1(α2)

+ α1F
−1(α1))]QhzQ

−1
z zi}+ op(1),

where γltm = λH̃θh, λ =
∫ F−1(α2)

F−1(α1)
edF (e) and θh is defined in assumption (a5).

The limiting distribution of the (α1, α2) linear trimmed mean follows from the

central limit theorem (see, e.g. Serfling (1980, p. 30)).
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Corollary 3.2. n1/2(β̂ltm − (β + γltm)) has an asymptotic normal distribution with

zero mean vector and the following asymptotic covariance matrix:

[
∫ F−1(α2)

F−1(α1)

e2dF (e)− λ2]H̃QhH̃ ′ + (α2 − α1)−2[α1(F−1(α1))2 + (1− α2)(F−1(α2))2

(3.1)

− (α1F
−1(α1) + (1− α2)F−1(α2))2 − 2λ(α1F

−1(α1) + (1− α2)F−1(α2))]Q−1
z .

The (α1, α2) generalized trimmed mean proposed by Lai et al. (2003) is defined by

β̂tm = (Z ′AZ)−1Z ′Au. (3.2)

From the result of this estimator studied by Ruppert and Carroll (1980), we have

n−1Z ′AZ → (α2 − α1)Qz.

By letting H = (Z ′AZ)−1 and H0 = Z, can see that condition (a2) also holds for β̂tm.

So, the (α1, α2) generalized trimmed mean is in the class of (α1, α2) linear trimmed

mean’s. Moreover, Lai et al. (2003) provided the result that n1/2(β̂tm − (β + γtm)),

where γtm = (α2 − α1)−1λQ−1
z θz, has an asymptotic normal distribution with zero

means and covariance matrix σ2(α1, α2)Q−1
z , where

σ2(α1, α2) = (α2 − α1)−2[
∫ F−1(α2)

F−1(α1)

(e− λ)2dF (e) + (α1(F−1(α1))2 + (1− α2)
(3.3)

(F−1(α2))2 − (α1F
−1(α1) + (1− α2)F−1(α2))2 − 2λ(α1F

−1(α1) + (1− α2)F−1(α2)))].

The following lemma orders the matrices H̃QhH̃ ′ and Qz.

Lemma 3.3. For any matrices H̃ and Qh induced from conditions (a1) and (a4), the

difference

H̃QhH̃ ′ − (α2 − α1)−2Q−1
z (3.4)

is positive semidefinite.

The relation in (3.4) then implies the following main theorem.

Theorem 3.4. Under the conditions (a.3)-(a.6), the (α1, α2) generalized trimmed

mean β̂tm of (3.2) is the best (α1, α2) linear trimmed mean.
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Since the (α1, α2) generalized trimmed mean always exists, then the best (α1, α2)

linear trimmed mean always exists. A further question is that how big is the class of

(α1, α2) linear trimmed mean’s? We are not going to study the scope of the linear

trimmed means.

In the literature, consideration has been given to the development of estimators of

regression parameters β that limit the effects of the error variable and the independent

variables. Among them, approaches which simultaneously bound the influence of the

design points and the residuals for the linear regression model include Krasker and

Welsch (1982) and Krasker (1985). On the other hand, the approach of the Mallow′s

type bounded-influence trimmed mean is to bound the influence of the design points

and the residuals separately as applied in the AR(1) regression model by De Jongh

and De Wet (1985) and in the linear regression model by De Jongh et al.(1988). In a

study by Giltinan et al.(1986), they found these two approaches are competitive in a

way that neither is preferable to the other one. They also note that the Mallow′s type

estimators should theoretically give more stable inference than the Krasker-Welsch

approach.

Let wi, i = 1, ..., n, be real numbers. For 0 < α < 1, the Mallow′s type bounded-

inference regression quantile, denoted by β̂w(α), is defined as the solution for the

minimization problem

minb∈Rp

n∑

i=1

wi(ui − z′ib)(α− I(ui ≤ z′ib)).

With W the diagnal matrix of {wi, i = 1, ..., n}, the bounded influence trimmed mean

is defined as

β̂BI = (Z ′WAwZ)−1Z ′WAwu

where Aw = diag{ai : I(z′iβ̂w(α1) ≤ ui ≤ z′iβ̂w(α2)), i = 1, ..., n}.
Let H = (Z ′WAwZ)−1 and H0 = WZ. This shows that the bounded influence

trimmed means also form a subclass of linear trimmed means′s (see De Jongh et al

(1988) for their large sample properties).

Theorem 3.5 If assumptions (a1)-(a5) hold, then
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(a) n1/2(β̂BI − (β + γw)) = (α2 − α1)−1Q−1
w n−1/2

n∑

i=1

wizi[(eiI(F−1(α1) ≤ ei ≤ F−1(α2))

− λ) + (F−1(α1)I(ei < F−1(α1)) + F−1(α2)I(ei > F−1(α2))− ((1− α2)F−1(α2)

+ α1F
−1(α1)))] + op(1),

where γw = (α2−α1)−1λQ−1
w θw, Qw = limn→∞n−1

∑n
i=1 wiziz

′
i and θw = limn→∞n−1

∑n
i=1

wizi and

(b) n1/2(β̂BI−(β+γw)) → N(0, σ2(α1, α2)Q−1
w QwwQ−1

w ) where Qwwlimn→∞n−1
∑n

i=1 w2
i ziz

′
i.

In particular, β̂tm is the one of β̂BI with W the identity matrix and then belongs

to this subclass. We may also show that Q−1
w QwwQ−1

w −Q−1
z is positive semidefinite

which shows that β̂tm is the best bounded influence trimmed mean.

Theorem 3.6. The (α1, α2) generalized trimmed mean is the best bounded influence

trimmed mean.

This result is based solely on considerations of the asymptotic variance and ignores

the fact that generalized trimmed mean does not have bounded influence in the space

of independent variables. It confirms that bounded influence is achieved at the cost of

efficiency.

4. Linear Trimmed Means When ρ is Unknown

After the development of the theory of the linear trimmed means for that ρ is

known, the next interesting problem is whether when the parameter ρ is unknown, the

linear trimmed mean of (2.7) with ρ replaced by a consistent estimator ρ̂, will have

the same asymptotic behavior as displayed by β̂ltm. If yes, the theory of generalized

least squares estimation is then carried over to the theory of robust estimation in this

specific linear regression model. Let Ω̂ be the matrix of Ω with ρ replaced by its

consistent estimator ρ̂. Define matrices û = Ω̂−1/2′y, Ẑ = Ω̂−1/2′X and ê = Ω̂−1/2′ε.

Let the regression quantile when the parameter ρ is unknown be defined as

β̂∗(α) = argb∈Rpmin
n∑

i=1

(ûi − ẑ′ib)(α− I(ûi ≤ ẑ′ib))

where ûi and ẑ′i are i-th rows of û and Ẑ respectively. Define the trimming matrix as

Â = diag{ai = I(ẑ′iβ̂
∗(α1) ≤ ûi ≤ ẑ′iβ̂

∗(α2)) : i = 1, ..., n}.
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Definition 4.1. A statistic β̂∗ltm is called a (α1, α2) linear trimmed mean if there

exists a stochastic p×p and nonstochastic n×p matrices, respectively, H and H0 such

that it has the following representation:

β̂∗ltm = HH ′
0Âû,

where H and H0 satisfy conditions (a1) and (a2) for these H and H0.

The Koenker and Bassett’s feasible generalized trimmed mean is defined as

β̂∗tm = (Ẑ ′ÂẐ)−1Ẑ ′Âû.

From Lai et al. (2003), we may see that n−1Ẑ ′ÂẐ
p→ (α2 − α1)Qz. By letting

H = (Ẑ ′ÂẐ)−1 and H0 = Ẑ, we see that β̂∗tm is in the class of (α1, α2) linear trimmed

means. Lai et al. (2003) also showed that β̂∗tm and β̂tm have the same Bahadur

representation and then they have the same asymptotic distribution. The following

theorem states that the linear trimmed means for that ρ is known and unknown have

the same large sample properties.

Theorem 4.2.
√

n(β̂∗ltm − β̂ltm) = op(1).

We then have the result that the feasible generalized trimmed mean is the best

linear trimmed mean when ρ is uknown.

Theorem 4.3. The feasible generalized trimmed mean is the best linear trimmed

mean.

5. Monte Carlo Study and Example

In this section, we first consider a simulation study to compare the feasible general-

ized LSE β̂FG and the feasible generalized trimmed mean β̂∗tm. By letting ε̂i = yi−x′iβ̂ls

where β̂ls is the LSE of β, we note that the C-O method defines ρ̂ by
∑n

i=2
ε̂iε̂i−1∑n

i=2
ε̂2

i

. With

sample size n = 30, the simple linear regression model, yi = β0 + β1xi1 + εi where εi

follows the AR(1) error is considered. For this simulation, we let the true parameter

values of β0 and β1 1′s and ρ be 0.3. This simulation is conducted with the same

data generation system except that the error variable ei is generated from the mixed

normal distribution (1− δ)N(0, 1) + δN(0, σ2) with δ = 0, 0.1, 0.2, 0.3 and σ = 3, 5, 10

and xi are independent normal random variables with mean i/2 and variance 1. A
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total of 10000 replications were performed and we compute the mean squares errors

for the feasible generalized LSE β̂FG and feasible generalized trimmed mean β̂∗tm for

α1 = 1 − α2 = α = 0.1, 0.2, 0.3 where the total mean squared error is the square of

the Euclidean distance between the estimator and true regression parameter β. For

covenience, we here after in this section re-denote the feasible generalized trimmed

mean by β̂tm(α). The mean squares errors are listed in Tables 1 and 2.

Table 1. MSE’s for β̂FG and β̂∗tm under contaminated normal distribution (n = 30)

σ β̂FG β̂∗tm(0.1) β̂∗tm(0.2) β̂∗tm(0.3)
(δ = 0)

0.2096 0.2241 0.2179 0.2556
(δ = 0.1)

3 0.3746 0.2874 0.2697 0.2698
5 0.7326 0.3644 0.3075 0.2964
10 2.3055 0.5463 0.4184 0.3714

(δ = 0.2)
3 0.5543 0.3963 0.3600 0.3300
5 1.2306 0.5819 0.4530 0.4229
10 4.4579 1.4236 0.7820 0.6012

(δ = 0.3)
3 0.7075 0.5380 0.4448 0.4101
5 1.7109 0.9723 0.6503 0.5749
10 6.5214 2.8921 1.5105 1.0893

Table 2. MSE’s for β̂FG and β̂∗tm under contaminated normal distribution (n = 100)

σ β̂FG β̂∗tm(0.1) β̂∗tm(0.2) β̂∗tm(0.3)
(δ = 0)

0.0751 0.0791 0.0804 0.0805
(δ = 0.1)

3 0.1308 0.0964 0.0960 0.0904
5 0.2539 0.1067 0.1059 0.0988
10 0.8494 0.1253 0.1154 0.1111

(δ = 0.2)
3 0.1962 0.1257 0.1182 0.1125
5 0.4249 0.1679 0.1343 0.1270
10 1.5763 0.2736 0.1574 0.1543

(δ = 0.3)
3 0.2522 0.1670 0.1466 0.1362
5 0.6266 0.2744 0.1844 0.1643
10 2.1937 0.7071 0.2683 0.2147
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We have several conclusions drawn from Tables 1 and 2:

(a) The MSE’s of these two estimators both increase when the contaminated percentage

δ increases or contaminated variance σ2 increases. This verifies the performance of the

usual estimators, robust or non-robust.

(b) The feasible generalized trimmed mean is relatively more efficient than the feasible

generalized LSE in all cases of contaminated errors. This result shows that the feasible

generalized trimmed mean is indeed, among the class of linear trimmed means, a robust

one.

In the next, we consider real data regression analysis. Many firms use past sales to

forecast future sales. Suppose a wholesale distributor of sporting goods is interested in

forecasting its sales revenue for each of the next 5 years. Since an inaccurate forecast

may have dire consequences to the distributor, efficiency of the estimation of regression

parameters is an important indicator in accuracy of forecasting. A data of a firm’s

yearly sales revenue (thousands of dallars) with sample size n = 35 has been analyzed

by Mendenhall and Sincich (1993). Since the scatter plot of the data revealed a linearly

increasing trend, so a simple linear regression model

yi = β0 + β1xi + εi, i = 1, ..., 35

seems to be reasonable to describe the trend. They first analyzed it with the least

squares method that yields R2 = 0.98 which indicates that it is appropriate to be

formulated as a linear regression model. They further displayed a plot of the residuals

that revealed the existence of AR(1) errors and then the Durbin and Watson test has

been performed that reject the hypothesis of null hypothesis ρ = 0. He also computed

the prediction 95% confidence intervals for yearly revenues for years, 36-40, however,

the interval estimates are wide that makes us less certain for the prediction of future

observations (see this point in Mendenhall and Sincich (1993, p481)). We expect to

have better analysis, based on the feasible generalized trimmed mean, in some sense.

We follow their idea in evaluating the predition of the yearly revenues for years

36-40. Since the observations of these are available, we may compute the following

mean square errors (MSE),

MSE =
1
3

35∑

i=33

(yi − (β̂0 + β̂1xi))2
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where
(

β̂0

β̂1

)
is the estimate of

(
β0

β1

)
corresponding the estimator. For this example,

estimators considered include LSE β̂ls, feasible generalized LSE β̂FG, `1-norm estima-

tor β̂`1 and feasible generalized trimmed mean β̂tm(α) and their evaluated MSE’s are

listed in Table 3.

Table 3. MSE’s for predictors based on some estimators

Estimator estimate observation predition MSE

β̂ls

(
1.053
4.239

) 


146.10
151.40
150.90







140.94
145.17
149.41


 67.503

β̂FG

(
0.142
4.319

) 


142.67
146.99
151.31


 31.336

β̂`1

(
0.531
4.268

) 


141.38
145.64
149.91


 56.304

β̂∗tm(0.1)
(−0.859

4.386

) 


143.88
148.27
152.65


 17.786

β̂∗tm(0.2)
(

0.072
4.364

) 


144.106
148.47
152.83


 16.302

β̂∗tm(0.3)
(

0.051
4.336

) 


143.15
147.49
151.83


 24.775

Surprisingly the feasible generalized trimmed means for several symmetric trimming

proportions are with MSE’s all smaller than those of the other three estimators. The

feasible generalized trimmed mean not only has asymptotic optimal properties in the

class of linear trimmed means but also shows an interesting fact in prediction of future

observations.

6. Appendix

Let ε have distribution function F with probability density function f . Let zij

represents the jth element of vector zi. The following conditions are similar to the

standard ones for linear regression models as given in Ruppert and Carroll (1980) and

Koenker and Portnoy (1987):

(a3) n−1
∑n

i=1 z4
ij = O(1),



14

(a4) n−1Z ′Z = Qz + o(1), n−1H ′
0Z = Qhz + o(1) and n−1H ′

0H0 = Qh + o(1) where

Qz and Qh are positive definite matrices and Qhz is a full rank matrix.

(a5) n−1
∑n

i=1 hi = θh + o(1), where θh is a finite vector.

(a6) The probability density function and its derivative are both bounded and

bounded away from 0 in a neighborhood of F−1(α) for α ∈ (0, 1).

Proof of Theorem 3.1. From condition (a2) and (A.10) of Ruppert and Carroll

(1980), HH ′
0AnZβ = β + op(n−1/2). Inserting (2.4) in equation (2.7), we have

n1/2(β̂lt − β) = n1/2HH ′
0Ae (6.1)

where we replace (1−ρ2)1/2ε1 by e1 that have the same asymptotic representation. Now

we develop a representation of n−1/2H ′
0Ae. Let Uj(α, Tn) = n−1/2

∑n
i=1 hijeiI(ei <

F−1(α) + n−1/2z′iTn) and U(α, Tn) = (U1(α, Tn), ..., Up(α, Tn)). Also, let T ∗n(α) =

n1/2[β̂(α)−β(α)]. Then n−1/2H ′
0Ane = U(α2, T

∗
n(α2))−U(α1, T

∗
n(α1)). From Jureck-

ova and Sen’s (1987) extension of Billingsley’s Theorem (see also Koul (1992)), we

have

|Uj(α, Tn)− Uj(α, 0)− n−1F−1(α)f(F−1(α))
n∑

i=1

hijz
′
iTn| = op(1) (6.2)

for j = 1, ..., p and Tn = Op(1). We know that, from Lai et al. (2004),

n1/2(β̂(α)−β(α)) = Q−1
z f−1(F−1(α))n−1/2

n∑

i=1

zi(α−I(ei ≤ F−1(α)))+op(1). (6.3)

From (6.2) and (6.3)

n−1/2H ′
0Ane = n−1/2

n∑

i=1

hieiI(F−1(α1) ≤ ei ≤ F−1(α2))

+ F−1(α2)QhzQ
−1
z n−1/2

n∑

i=1

zi(α2 − I(ei ≤ F−1(α2))

+ F−1(α1)QhzQ
−1
z n−1/2

n∑

i=1

zi(α1 − I(ei ≤ F−1(α1)). (6.4)

Then the theorem is follwoed from (6.1) and (6.4).

The proof of Theorem 3.5 is analogous as it for the above and then is skipped.

Proof of Lemma 3.3. Denote by plim(Bn) = B if Bn converges to B in probability.

Let

C = HH ′
0 − (Z ′AnZ)−1Z ′.
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With this, plim(CZ) = plim(HH ′
0Z)− plim(Z ′AnZ)−1Z ′Z = 0.

Then

H̃QhH̃ ′ = plim(HH ′
0(HH ′

0)
′)

= plim((C + (Z ′AnZ)−1Z ′)(C + (Z ′AnZ)−1Z ′)′)

= plim(CC ′) + plim((Z ′AnZ)−1Z ′Z(Z ′AnZ)−1)

= plim(CC ′) + (α2 − α1)−2plim(Z ′Z)−1

≥ (α2 − α1)−2Q−1
z .

Proof of Theorem 4.2. We here sketch only briefly a proof of the theorem. For

detail references, see Chen et al. (2001) and Lai et al. (2003). With the fact that

n1/2(ρ̂− ρ) = Op(1) and condition (a1), we may see that

n1/2(β̂∗ltm − β) = n1/2HH ′
0Âe + op(1). (6.5)

By letting M(t1, t2, α) = n−1/2
∑n

i=1 hieiI(ei − n−1/2t1εi−1 ≤ F−1(α) + n−1/2(zi +

n−1/2t1xi−1)′t2 + n−1/2t1F
−1(α)), we see that

n−1/2Ẑ ′Ane = M(T ∗1 (α2), T ∗2 , α2)−M(T ∗1 (α1), T ∗2 , α1) (6.5)

with T ∗1 (α) = n1/2(β̂∗(α) − β(α)) and T ∗2 = n1/2(ρ̂ − ρ). However, using the same

methods in the proof of Lemma 3.5, we can see that

M(T1, T2, α)−M(0, 0, α) = F−1(α)f(F−1(α))n−1/2
n∑

i=1

hi(z′iT2 − T1F
−1(α)) + op(1)

(7.6)

for any sequences T1 = Op(1) and T2 = Op(1). Then, from (6.5) and (6.6), we see that

n−1/2H ′
0Âne has the same representation of (6.4). Then (a1) and (6.5) further implies

the theorem. ¤
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