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Linear Trimmed Means for the Linear Regression with AR(1) Errors Model

Student: Feng-Yang Peng  Advisor: Dr. Lin-An Chen
Institute of Statistics, National Chiao Tung University,

Hsinchu, Taiwan.

Abstract

For the linear regression with AR(1) errors model, a robust type generalized
and feasible generalized estimators of Lai et al. (2003) of regression parameters are
shown to have the desired propetty of robust. type Gauss Markov theorem. It is
done by shown that these two€stimators -are..respectively, the best among classes of
linear trimmed means. Monté Carlo and data analysis for this technique have been

performed.

Keywords: Gauss Markov theorem; Generalized least squares estimator; linear trimmed

mean; robust estimator.
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1. Introduction

Consider the linear regression model
y=X0+e¢ (1.1)

where gy is a vector of observations for the dependent variable, X is a known n X
p design matrix with 1’s in the first column, and € is a vector of independent and
identically distributed disturbance variables. We consider the problem of estimating
the parameter vector 3 and the parametric function /3 of 3. From the Gauss-Markov
theorem, it is known that the least squares estimator has the smallest covariance matrix
in the class of unbiased linear estimators My where M satisfies M X = I,,. Also, the
inner product of ¢ and the least squares estimator has smallest variance among all
linear unbiased estimators of ¢’3. However, the least squares estimator is sensitive
to departures from normality and to the presence of outliers so we need to consider
robust estimators. An interesting question in robust regression is if there is robust type
Gauss-Markov theorem, i.e., if thereis a robust estimator that is (asymptotically) more
efficinet than a class of linear robust estimators? This has been done by Chen et al.
(2001) that they considered a class of estimators based on Winsorized observations
and show that the trimmed mean of Welsh~(1987) is asymptotically the best among
it.

Suppose that the error vector € = (€1, ..., €,)’ has the covariance matrix structure
Cov(e) = 02Q (1.2)

where () is a positive definite matrix. From the regression theory of the estimation
of (3, it is known that any estimator having an (asymptotic) covariance matrix of the
form

S(X'Qtx)! (1.3)
is more efficient than the estimator having (asymptotic) covariance matrix of the form
S(X'X) T H(X'QX) (X' X))t (1.4)

where 9 is some positive constant. In the least squares estimation when the matrix €2

is known, Aitken (1935) introduced the generalized least squares estimator (LSE) and
1



showed that it has a covariance matrix of the form (1.3) and the LSE has a covariance
matrix of the form (1.4) with § = o2. It is also well known that, when Q is unknown,
the feasible generalized LSE has the asymptotic covariance matrix of the form (1.3).
Then these two generalized type estimators are more efficient than the LSE.
Although the generalized and feasible generalized LSE’s are asymptotically more
efficient than the LSE in many regression problems, they are highly sensitive to even
a very small departure from normality and to the presence of outliers. Therefore
developing robust type generalized and feasible generalized estimators in each specific
regression problem is interesting. Let’s consider the linear regression with AR(1) errors

model, a structure of (1.2), as follows

Y; = 33;6 + Gi,i = 1, e
€ = p€i—1 t+ € (15)

where ey, ...,e, are independent and identically distributed (iid) random variables,
is one of the most popular models. ,Supposethat |p| < 1 and e; has a distribution
function F.

Denote the transformed vector w= Q 1/ 2Iy. One-approach to robust estimation is
to construct a weighted observation vector'w® and then construct a consistent estimator
which is linear in uv*, in case that.p is inknown,.all vectors are replaced by the ones
with estimating p by estimator p; see for-example, Lai et al. (2003). There are two
types of weighted observation vectors in this literature. First, u* can represent a
trimmed observation vector Au with A a trimming matrix constructed from regression
quantiles (see Koenker and Bassett (1978)), or residuals based on an initial estimator
(see Ruppert and Carroll (1980) and Chen (1997)). Second, u* can be a Winsorized
observation vector defined as in Welsh (1987). In this paper, we consider the trimmed
observation vector of Koenker and Bassett (1978), study classes of linear functions
based on u* for estimation of 3, and develop a robust version of the Gauss-Markov
theorem. Based on regression quantiles, Lai et al. (2003) proposed generalized and
feasible generalized trimmed means for estimating regression parameters (3. Then
a robust type generalized and feasible generalized estimation technique have been
developed.

With the result that we have robust version of Gauss Markov theorem for linear

regression with iid errors model, it is then interesting to see if there is any robust type



generalized and feasible generalized estimators for the linear regression with AR(1)
errors model that also play the same version of Gauss Markov theorem. Our aim in
this paper is to show that the Lai et al. (2003) does have this desired property.

We introduce a class of linear trimmed means when p is known in Section 2 and
establish their large sample theory in Section 3. We also establish the theory for a
class of linear trimmed means when p is unknown in Section 4. In both cases, we show
that the generalized and feasible generalized trimmed means are the best, respectively,
in these two classes of linear trimmed means in terms of asymptotic covariance matrix.

Finally, the proofs of the theorems are displayed in Appendix.

2. Linear Trimmed Mean When p is known

For the linear regression with AR(1) errors model (1.5), to obtain a linear trimmed
mean we need to specify the quantile for determining the observation trimming and to
make a transformation of the linear model to obtain generalized estimators. For given
i-th dependent variable for model (1.5), assuming that ¢ > 2 , one way to derive a
generalized estimator is to consider the transformation by Cochrane and Orcutt (C-O,
1949) as y; = pyi—1 + (x; — pri—1)Y P + e;.- For error variable e, we assume that it has
distribution function F' with probability density function f. With the transformation
for generalized estimation, a quantile,cotld be-defined through variable e or a linear
conditional quantile of y; 1 and y;. By 'the fact that z; is vector with first element 1,

the following two events determined by‘two quantiles are equivalent:

e; < F 7' (a) (2.1)

and /
o) (Y ) < ) () Bt (2.2
with B(a) = S+ ( %pOF—l(Oé) ) The event in inequality (2.1) specifies the quantile of
the error variable e andp;clthrough inequality (2.2) specifies the conditional quantile of

linear function (—p, 1) y;_ll . Here () is called the population regression quantile
by Koenker and Bassett (19178). With the specification of quantiles and transformation,
we may define the linear trimmed means.

For defining the linear trimmed means, we consider the C-O transformation on the

matrix form of the linear regression with AR(1) error model of (1.5) which is

y=XpG+e
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where it is seen that Cov(e) = 02 with

1 p P p”‘;

1 p 1 p P

Q= =2 : (2.3)
pn—l pn—2 pn—S 1
Define the half matrix of Q! as

1-p»)Y2 0 0 0 0
—p 1 0 0 O
012 = 0 —p 1 0 0
0 0O 0 ... —p 1

With the above half matrix of €2, we consider the model for the transformation u =
QO Y?2y as
u=2Z3+ ((1—p) 2%, e0,e5,....e,) (2.4)

where Z = Q~1/2'X. Note that thé vectormeand the matrix Z are both functions of
parameter p. The usual descriptive.statistics; robust or nonrobust, based on model
(1.1) can be carried over straightforwardlyto transforthed model (2.4) when p is known.
However, when p is unknown, u and 7 needto be replaced by the ones that place its
p by the estimator. Knowing the fact‘that-generalized LSE is simply the LSE of g for
model (2.4), we may consider the linear trimmed mean defining on this transformed
model. To validate the terminology calling the linear trimmed means with p known
and unknown, we will show that they are asymptotically equivalent in the sense of
having the same asymptotic covariance matrix. This is what the generalized and
feasible generalized LSE’s performed.

At this moment that we want to study generalized robust estimator, we assume
that p is known. For 0 < a < 1, the a-th (sample) regression quantile of Koenker and
Bassett (1978) for the linear regression with AR(1) errors model is defined as

mn
B(a) = argpe prmin Z(Uz — 2ib)(a — I(u; < 2ib))

i=1
where u; and z] are the i-th rows of u and Z respectively. Define the trimming matrix

as A = diag{a; = I(2}6(c1) < u; < z/3(as)) : i =1,...,n}. After outliers are trimmed



by regression quantiles 3(a) and 3(1 — &), we have the following submodel

(1= p?)1%
€2
Au=AZB+ A , . (2.5)

€n

Since A is random, the error vector in the above transformed model is now not a set
of independent variables. The Koenker and Bassett’s type generalized trimmed mean
(proposed by Lai et al. (2003)) is defined as

Bem = (Z'AZ)~1 7' Au. (2.6)

We now move to define the linear trimmed means. Any linear unbiased estimator
defined in model of (2.4) has the form Mwu with M being a p x n nonstochastic matrix
satisfying MZ = I,. Since M is a full-rank matrix, there exist matrices H and Hy
such that M = HH|,. Thus, an estimatori§'ddinear unbiased estimator if there exists
a p X p nonsingular matrix H and an n x pfull-rank:matrix Hy such that the estimator
can be written as

HHju.

We generalize linear unbiased estimators defined on the observation vector u to esti-

mators defined on Au by requiring them to be of the form M Au with M = HH|).

Definition 2.1. A statistic Bltm is called a (a1, @s) linear trimmed mean if there
exists a stochastic p X p matrix H and a nonstochastic n x p matrix Hy such that it

has the following representation:
Brem = HH)Au, (2.7)

where H and Hj satisfy the following two conditions:
(al) nH — H in probability, where H is a full rank p x p matrix.
(a2) HH\Z = (ag — a1) "1, + 0,(n~1/2) where I, is the p x p identity matrix.

This is similar to the usual requirements for unbiased estimation except that we have
introduced a trimmed observation vector to allow for robustness and considered as-

ymptotic property instead of unbiasedness.



Two questions arise for the class of linear trimmed means. First, does this class of
means contain estimators that have already appeared in the literature? The answer is
affirmative because the class of linear trimmed means defined in this paper contains
the generalized trimmed mean of Lai et al. (2003) (H = (Z2’AZ)~! and Hy = Z), and
the set of Mallows-type bounded influence trimmed means (H = (Z'WAZ)™! and
H{ = Z'W with W, a diagonal matrix of weights; see Section 3). Second, is there a
best estimator in this class of linear trimmed means and can we find it if it exists?

This question will be answered in the next section.

With the C-O transformation, the half matrix Q~/2" has rows with only a finite
number (not depending on n) of elements that depend on the unknown parameter
p. This trick, traditionally used in econometrics literature for regression with AR(1)
errors (see, for example, Fomby, Hill and Johnson (1984, p210-211)), makes the study
of asymptotic theory for Bltm(a) similar to what we have for the classical trimmed
mean for linear regression. Large sample representations of the linear trimmed mean

and its role as generalized robust estimator will'be introduced in the next section.

3. Asymptotic Properties of Linear Trimmed Mean
Denoting by A/ the ith row of Hyy0p =T Seen ™ > iy hiy Qpe = limp—oon™' >0 hy2)
and Q, = lim,_..n"'Z'Z, the following theorem gives a “Bahadur” representation of

the (a1, @) linear trimmed mean.

Theorem 3.1. With assumptions (al)-(a6), we have

nl/z(ﬁltm — (B+7m)) = n~ V2 Z{hi(eiI(Ffl(OQ) <e < F lag)) =N

+ [F o) I(e; < F~ o)) + F Y ao)I(e; > F ) — (1 — ) F~ ! (a)

+ o1 F 1 (a1))]Qn-Q7 'z} + 0p(1),

F

where Yim = NHOp, A = = L (e2) edF(e) and 6}, is defined in assumption (a5).

(1)

The limiting distribution of the (a7, as) linear trimmed mean follows from the

central limit theorem (see, e.g. Serfling (1980, p. 30)).
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Corollary 3.2. n'/ Q(Bltm — (8 4 Yitm)) has an asymptotic normal distribution with

zero mean vector and the following asymptotic covariance matrix:

F_l(ozg) R R
[/ eZdF(e) — )\Q]HQhH’ + (ag — 041)_2[041(F_1(041))2 +(1- 042)(F_1(042))2
F= o) (3.1)

— (arF7 ) + (1 = a2) F7(a2))? = 2Mar F™Han) + (1 — a2) F~ 1 (a2))]QZ
The (a1, a2) generalized trimmed mean proposed by Lai et al. (2003) is defined by
Bim = (Z'AZ)"1 7' Au. (3.2)
From the result of this estimator studied by Ruppert and Carroll (1980), we have
n"'Z'AZ — (g — 1)@

By letting H = (Z’AZ)~* and Hy = Z, can see that condition (a2) also holds for Bim.
So, the (a1, az) generalized trimmed miean is'in, the class of (aq, az) linear trimmed
mean’s. Moreover, Lai et al. (2003) provided the tesult that n'/2(Bum — (8 + Yim)),
where vy, = (a2 — a1) 71 AQ; 10, has an asymptotic normal distribution with zero
means and covariance matrix o{a, a2)@5 ", where

F~ o)

(1, 0) = (0 — 1)~ / (CEMPAF) + (o (F () + (1 - an)
o) (3.3)

(F~H2))? = (a1 F~ M (an) + (1 — a2) F~H(2))? — 2A(an F M (an) + (1 — ) F~ ' (2)))]-

The following lemma orders the matrices HQpH' and Q,.

Lemma 3.3. For any matrices H and Qj, induced from conditions (al) and (a4), the

difference
IjIQhI’:P — ((){2 — ()_/1)_2Qz_1 (34)

is positive semidefinite.
The relation in (3.4) then implies the following main theorem.

Theorem 3.4. Under the conditions (a.3)-(a.6), the (aq,as) generalized trimmed

mean By, of (3.2) is the best (aq, ap) linear trimmed mean.
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Since the (a1, a9) generalized trimmed mean always exists, then the best (aq,as9)
linear trimmed mean always exists. A further question is that how big is the class of
(a1, a2) linear trimmed mean’s? We are not going to study the scope of the linear

trimmed means.

In the literature, consideration has been given to the development of estimators of
regression parameters 3 that limit the effects of the error variable and the independent
variables. Among them, approaches which simultaneously bound the influence of the
design points and the residuals for the linear regression model include Krasker and
Welsch (1982) and Krasker (1985). On the other hand, the approach of the Mallow’s
type bounded-influence trimmed mean is to bound the influence of the design points
and the residuals separately as applied in the AR(1) regression model by De Jongh
and De Wet (1985) and in the linear regression model by De Jongh et al.(1988). In a
study by Giltinan et al.(1986), they found these two approaches are competitive in a
way that neither is preferable to the other one. They also note that the Mallow’s type
estimators should theoretically give more stable inference than the Krasker-Welsch

approach.

Let w;,i = 1,...,n, be real numbers. For 0 < & < 1, the Mallow’s type bounded-
inference regression quantile, denoted’ by Bw(a), is' defined as the solution for the

minimization problem
n
minge gr Z w;(u; — 2ib) (o — I(u; < 20b)).
i=1

With W the diagnal matrix of {w;,i = 1,...,n}, the bounded influence trimmed mean

is defined as

Brr = (ZWALZ) "1 Z'W Ayu

where A, = diag{a; : I(2fw(1) < u; < 2/Bu(a2)),i=1,...,n}.
Let H = (Z/WA,Z)™! and Hy = WZ. This shows that the bounded influence
trimmed means also form a subclass of linear trimmed means’s (see De Jongh et al

(1988) for their large sample properties).

Theorem 3.5 If assumptions (al)-(a5) hold, then



(@) n'2(Bar = (B+7w)) = (a2 — 1) 7' Qp'n 2 “wizif(e:[(F~ (1) < e; < F~'(a2))

=1

— N+ (F Ha)I(e; < FHay) + F Hao)(e; > FHaz)) — (1 — az)F o)
+ a1 F™H )] + op(1),

where v, = (a2—a1) "'AQp 0wy Qu = limy,oon™' D1 | w22} and 0, = lim,, ,oon™ ' >0,

w;z; and

(b) n'2(Bpr—(B+7w)) — N(0,0%(a1, 2) Q' QuuwQiy") Where Quulimy, oen ™t 20 w?z;2!.
In particular, Btm is the one of BB ;7 with W the identity matrix and then belongs

to this subclass. We may also show that Q,'Qu.Q,' — Q7

~ ! is positive semidefinite

which shows that 3, is the best bounded influence trimmed mean.

Theorem 3.6. The (a, az) generalized trimmed mean is the best bounded influence
trimmed mean.

This result is based solely on considerations of the asymptotic variance and ignores
the fact that generalized trimmed:-mean dees not have bounded influence in the space
of independent variables. It confitms that beunded influence is achieved at the cost of

efficiency.

4. Linear Trimmed Means Whenp is Unknown

After the development of the theory of the linear trimmed means for that p is
known, the next interesting problem is whether when the parameter p is unknown, the
linear trimmed mean of (2.7) with p replaced by a consistent estimator p, will have
the same asymptotic behavior as displayed by Bltm. If yes, the theory of generalized
least squares estimation is then carried over to the theory of robust estimation in this
specific linear regression model. Let O be the matrix of  with p replaced by its
consistent estimator p. Define matrices & = Q~1/2y, Z = QY2 X and é = O~ V/?e.

Let the regression quantile when the parameter p is unknown be defined as

B* () = argpe gemin y (@ — £b)(a — I(d; < £}b))

i=1
where @; and z] are i-th rows of @& and Z respectively. Define the trimming matrix as

A = diag{a; = I(2/3*(a1) < @; < 26*(a2)) s i =1,...,n}.
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Definition 4.1. A statistic Bftm is called a (a1, a9) linear trimmed mean if there
exists a stochastic p X p and nonstochastic n x p matrices, respectively, H and Hy such

that it has the following representation:
B = HH} At

where H and Hj satisfy conditions (al) and (a2) for these H and Hy.

The Koenker and Bassett’s feasible generalized trimmed mean is defined as

Bi = (Z'AZ)" 7' A
From Lai et al. (2003), we may see that n *Z’AZ % (ay — a1)Q.. By letting
H = (Z'AZ)~' and Hy = Z, we see that 3}, is in the class of (a1, as) linear trimmed
means. Lai et al. (2003) also showed that Bfm and f;,, have the same Bahadur
representation and then they have the same asymptotic distribution. The following
theorem states that the linear trimmed ineans for that p is known and unknown have

the same large sample properties.
Theorem 4.2. /n(3}, — Bitm )= 0p(1).

We then have the result that*the:feasible'.generalized trimmed mean is the best

linear trimmed mean when p is uknown.

Theorem 4.3. The feasible generalized trimmed mean is the best linear trimmed

mean.

5. Monte Carlo Study and Example
In this section, we first consider a simulation study to compare the feasible general-

ized LSE B rc and the feasible generalized trimmed mean Bt*m By letting é; = y;— Bls

where Bls is the LSE of (3, we note that the C-O method defines p by % With
sample size n = 30, the simple linear regression model, y; = By + B1x;1 + €; where ¢;
follows the AR(1) error is considered. For this simulation, we let the true parameter
values of By and B; 1’s and p be 0.3. This simulation is conducted with the same
data generation system except that the error variable e; is generated from the mixed
normal distribution (1 —§)N(0,1) + §N(0,0?) with § = 0,0.1,0.2,0.3 and ¢ = 3,5, 10

and z; are independent normal random variables with mean i/2 and variance 1. A
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total of 10000 replications were performed and we compute the mean squares errors
for the feasible generalized LSE BFG and feasible generalized trimmed mean B;“m for
a1 =1 —ay = a =0.1,0.2,0.3 where the total mean squared error is the square of
the Euclidean distance between the estimator and true regression parameter 3. For
covenience, we here after in this section re-denote the feasible generalized trimmed

mean by By (). The mean squares errors are listed in Tables 1 and 2.

Table 1. MSE’s for fp¢ and Bz‘m under contaminated normal distribution (n = 30)

o Bra B (0.1) Bim(0.2) B (0.3)

(6=0)
0.2096 0.2241 0.2179 0.2556

(6 =0.1)

3 0.3746 0.2874 0.2697 0.2698

5 0.7326 0.3644 0.3075 0.2964

10 2.3055 0.5463 0.4184 0.3714
(6 =0.2)

3 0.5543 0.3963 0.3600 0.3300

5 1.2306 10.5819 . 0.4530 0.4229

10 4.4579 1.4236 . 0.7820 0.6012
(6 =0.3) | =ip |

3 0.7075 - 0.5380 0.4448 0.4101

5 1.7109 0.9723 0.6503 0.5749

10 6.5214 2:8921 © 1.5105 1.0893

Table 2. MSE’s for Spg and 3}, under contaminated normal distribution (n = 100)

(0 =0)
0.0751 0.0791 0.0804 0.0805

(5=0.1)
3 0.1308 0.0964 0.0960 0.0904
5) 0.2539 0.1067 0.1059 0.0988
10 0.8494 0.1253 0.1154 0.1111

(6 =0.2)
3 0.1962 0.1257 0.1182 0.1125
5) 0.4249 0.1679 0.1343 0.1270
10 1.5763 0.2736 0.1574 0.1543

(6 =0.3)
3 0.2522 0.1670 0.1466 0.1362
5) 0.6266 0.2744 0.1844 0.1643
10 2.1937 0.7071 0.2683 0.2147
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We have several conclusions drawn from Tables 1 and 2:
(a) The MSE’s of these two estimators both increase when the contaminated percentage

2 increases. This verifies the performance of the

0 increases or contaminated variance o
usual estimators, robust or non-robust.

(b) The feasible generalized trimmed mean is relatively more efficient than the feasible
generalized LSE in all cases of contaminated errors. This result shows that the feasible
generalized trimmed mean is indeed, among the class of linear trimmed means, a robust
one.

In the next, we consider real data regression analysis. Many firms use past sales to
forecast future sales. Suppose a wholesale distributor of sporting goods is interested in
forecasting its sales revenue for each of the next 5 years. Since an inaccurate forecast
may have dire consequences to the distributor, efficiency of the estimation of regression
parameters is an important indicator in accuracy of forecasting. A data of a firm’s
yearly sales revenue (thousands of dallars) with sample size n = 35 has been analyzed

by Mendenhall and Sincich (1993). Sineethe Scatter plot of the data revealed a linearly

increasing trend, so a simple linear regression.model
yi = Bo + Pz + €,71 = 1....,35

seems to be reasonable to describe the trend. They first analyzed it with the least
squares method that yields R? = 0.98 which indicates that it is appropriate to be
formulated as a linear regression model. They further displayed a plot of the residuals
that revealed the existence of AR(1) errors and then the Durbin and Watson test has
been performed that reject the hypothesis of null hypothesis p = 0. He also computed
the prediction 95% confidence intervals for yearly revenues for years, 36-40, however,
the interval estimates are wide that makes us less certain for the prediction of future
observations (see this point in Mendenhall and Sincich (1993, p481)). We expect to
have better analysis, based on the feasible generalized trimmed mean, in some sense.

We follow their idea in evaluating the predition of the yearly revenues for years
36-40. Since the observations of these are available, we may compute the following

mean square errors (MSE),

135

MSE =2 > (yi — (o + Fri))”

1=33
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where <go> is the estimate of <go) corresponding the estimator. For this example,
1 1

estimators considered include LSE Bls, feasible generalized LSE B ra, {1-norm estima-
tor Bgl and feasible generalized trimmed mean Btm(a) and their evaluated MSE’s are
listed in Table 3.

Table 3. MSE’s for predictors based on some estimators

Estimator

estimate

observation

predition

MSE

Bis

Bre

Be,
B (0.1)
57,(0.2)

57 (0.3)

1.053
4.239
0.142
4.319
0.531
4.268
—0.859
4.386
0.072
4.364
0.051
4.336

146.10
151.40
150.90

140.94
145.17
149.41
142.67
146.99
151.31
141.38
145.64
149.91
143.88
148.27
152.65
144.106
- 148.47

152.83

143.15

147.49

151.83

67.503

31.336

56.304

17.786

16.302

24.775

Surprisingly the feasible generalized trimmed means for several symmetric trimming
proportions are with MSE’s all smaller than those of the other three estimators. The
feasible generalized trimmed mean not only has asymptotic optimal properties in the
class of linear trimmed means but also shows an interesting fact in prediction of future

observations.

6. Appendix

Let € have distribution function F' with probability density function f. Let z;;
represents the jth element of vector z;. The following conditions are similar to the
standard ones for linear regression models as given in Ruppert and Carroll (1980) and
Koenker and Portnoy (1987):

(a3) n=t 30 zfj =0(1),
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(ad) n™'Z'Z = Q. +0(1), n ' H{Z = Qpn-+o(1) and n~ ' HyHy = Qp, + o(1) where
Q. and @)y, are positive definite matrices and @), is a full rank matrix.

(a5) n=t 3" hi = 6y + o(1), where 6}, is a finite vector.

(a6) The probability density function and its derivative are both bounded and
bounded away from 0 in a neighborhood of F~!(a) for a € (0,1).
Proof of Theorem 3.1. From condition (a2) and (A.10) of Ruppert and Carroll
(1980), HH, A, ZB = 3 + 0,(n~1/?). Inserting (2.4) in equation (2.7), we have

n2(By — B) = n'/? HH} Ae (6.1)

where we replace (1— p2)1/ 2¢1 by e that have the same asymptotic representation. Now
we develop a representation of n~Y/2H}Ae. Let U;(a,Ty,) = n~ V23" hijeil(e; <
F~Y(a) + n~Y22T,) and U(o, Ty,) = (Ui, Ty), ..., Up(a, T)). Also, let T3 (a) =
n2[3(a) — B(a)]. Then n~Y/2H} Ape = U(ag, T (o)) —U(aq, T# (). From Jureck-
ova and Sen’s (1987) extension of Billingsley’s Theorem (see also Koul (1992)), we

have

Uj(, T) = Uj(e, 0) = ' e f(FTH @) Y hijziTa| = 0p(1) (6.2)
=1

for j =1,...,p and T,, = O,(1). We know that, from Lai et al. (2004),

n'2(B(e) = B(a)) = Q1 fTHE Ha)n Y aifa—I(e; < F7H (@) +0,(1). (6.3)

i=1
From (6.2) and (6.3)

n?HjAye =n"1/? Z hie, I(F~ (a1) < e; < F~ ' (ag))

=1
+ F N 02)QnQ7 ' 2D " zi(an — I(e; < F~ ' (a))
=1
+ F Y Q. Q7 'n~1/2 Z zi(ay — I(e; < F~Hay)). (6.4)
=1

Then the theorem is follwoed from (6.1) and (6.4).

The proof of Theorem 3.5 is analogous as it for the above and then is skipped.

Proof of Lemma 3.3. Denote by plim(B,,) = B if B,, converges to B in probability.
Let
C=HH),—(Z'A,2)"Z'.
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With this, plim(CZ) = plim(HH}Z) — plim(Z'A,Z)"*Z'Z = 0.
Then
HQuH' = plim(HHy(HH})')
= plim((C + (2" A, 2) ' Z)(C + (Z' A, Z2)" 1 Z"))
= plim(CC") + plim((Z' A, 2) ' Z' Z(Z' A, Z) ™)
= plim(CC") + (ag — o) ?plim(Z’'Z)~!

> (g — 1) 2Q5

Proof of Theorem 4.2. We here sketch only briefly a proof of the theorem. For
detail references, see Chen et al. (2001) and Lai et al. (2003). With the fact that
n'/2(p — p) = O,(1) and condition (al), we may see that

02 (B} — B) = n'PHH) Ae + 0,(1). (6.5)

By letting M(tl, ta, Oé) = n_1/2 Z:’Lzl hzezl(ez £a n_1/2t16i_1 < F_l(Oé) —+ n_1/2 (Zz —+
n*1/2t1:ci_1)’t2 + nil/gtlFfl(a)), we seérthat

n"Y27' Ape = M{(T (o), Ty o) — M (T (1), T3 oy (6.5)

with T3 (a) = n/2(8*(a) — B(a)) add? Ty ="n'/2(p — p). However, using the same

methods in the proof of Lemma 3.5, we can see that

M(Ty, Ty, o) — M(0,0,0) = F~ (o) f(F~ ' ())n /2 Z hi(2iTy — TV F 1 () 4 0,(1)

(7.6)
for any sequences 77 = O,(1) and 75 = O,(1). Then, from (6.5) and (6.6), we see that
n~'/2H} A,e has the same representation of (6.4). Then (al) and (6.5) further implies
the theorem. [
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