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摘要 

生物醫學以及社會心理方面的研究近來越來越常使用潛在類別迴

歸(latent class regression)模型來分析多重類別資料與有興趣

的共變數之間的關係。在潛在類別迴歸模型中多重類別資料會被整

合摘要，而與風險因子之間的關係也會藉由模型中的線性迴歸方法

整理出來。這些模型較於精簡並且能夠將多重類別資料的一些分析

方法的理論基礎整合起來，然而這些優點卻是伴隨著一些很強的模

型假設而來，這些假設有可能會對分析結果造成嚴重的影響，因此

評估這些模型是否很適當的被使用是必須的。這篇論文中我們將簡

介應用在logistic regression中Hosmer與Lemeshow提出的統計量

並且將之延伸到潛在類別迴歸模型之中來做適合度檢定。 

 

關鍵字： 

多重類別資料；適合度檢定；潛在類別;迴歸；卡方分配 
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GOODNESS-OF-FIT TEST FOR LATENT CLASS 

REGRESSION MODEL 

 

Student: Hui-Yi Kao  Advisor: Dr. Guan-Hua Huang 

Institute of statistics 

National Chiao Tung Unerversity 

 

Abstract 
Biomedical and psychosocial researchers increasingly utilize latent class 

regression (LCR) models to analyze relationships between measured 

multiple categorical outcomes and covariates of interest. In LCR, the 

multiple outcomes are summarized and their associations with risk factors 

are determined in a single modeling step. These models are parsimonious 

and can incorporate theory underlying the multiple response choices. 

However, these advantages come at the price of strong modeling 

assumptions which may critically influence analytic findings. Careful 

evaluation of model appropriateness is necessary. In this thesis, we first 

introduced Hosmer-Lemeshow statistic for multiple logistic regression 

model and then extended the method to LCR model to assess overall fit 

of the LCR model. An analysis of how measured health impairments 

affect  older  persons '  funct ioning is  used for  i l lust ra t ion. 

 

KEY WORDS:  categorical data; goodness-of-fit test; latent class 

regression; chi-square distribution. 
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1 INTRODUCTION

Many concepts in medical research are unobservable, hence valid surrogates must be

measured in place of these concepts. Models that permit exploration of relationships

between unobservable variables and their surrogates are referred to as latent variable

models. When measured surrogates are discrete, the latent class analysis (LCA)

model (Green [1], Lazarsfeld and Henry [2], Goodman [3], Haberman [4,5] )is the most

commonly applied latent variable approach. LCA is distinguished by its treatment of

the unobservable variable as categorical (i.e., as defining latent ”classes”). The model

assumes that the unobservable (latent) variable fully explains the associations between

observed indicators, thus measured indicators are independent of one another within

any class of the latent variable. Recently, several authors extended the LCA model

to incorporate covariate effects on estimating the underlying mechanism (Dayton and

Macready [6], Formann [7], Bandeen-Roche et al. [8], Muthén and Shedden [9]), or

on estimating measured indicator distributions within latent classes (Formann [7],

Melton et al. [10], Muthén and Shedden [9]). This thesis studies a LCA model that

uses covariates on describing distributions of both the underlying latent class and the

measured indicators themselves henceforth, latent class regression-LCR (Huang and

Bandeen-Roche [11]).

The LCR model is parsimonious, explicitly recognize and hence may mitigate

errors in measurement, and can give well-summarized inferences on the theory un-

derlying the choice of multiple indicators and their relationships with covariates of

interest. However, these come at the price of assuming conditional independence be-

tween measured items within each latent class and parametric models of incorporated

covariates with the latent class and measured indicators. Therefore, careful evalua-
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tion of these model assumptions is necessary and important to prevent that scientific

findings are to be driven by the statistical assumptions rather than by the data.

In application of LCA, overall population can be grouped by possible response

patterns, and therefore Pearson χ2 and likelihood ratio goodness-of-fit can be ap-

plied for evaluating overall model fit (Gooman [3], Bartholomew [12], Formann [7]).

However, when the model includes continuous covariates, every cell contains only one

observation, and the saturated model would contain as many parameters as there are

observed. Therefore, the χ2 statistic of the model does not work directly, because the

degree of freedom increases with the sample size. This is not acceptable as the χ2

sampling distribution hold only when the sample size is large relative to the degree

of freedom.

The most widely used goodness-of-fit for situations with a continuous covariate is

the Hosmer-Lemeshow statistic (Hosmer and Lemeshow [19,20]) for multiple logistic

regression models. In this thesis, we applied the idea of doing the Hosmer-Lemeshow

statistic to LCR model where the outcome variable is not only binary but category,

and each individual has not only one outcome variable but multiple outcome variables.

Therefore, a χ2 test can be applied to assess the goodness of fit of the LCR model.

To summarize organization of this thesis, section 2 provides brief description of

the LCR model that this thesis studies and its associated model assumptions. In

section 3, we first describe the motivated method in logistic regression. Then the

idea of doing goodness-of-fit test of LCR model is developed. After the test statistic

is proposed, we begin to simulate it’s distribution in section 4, and the power of the

proposed statistic is also examined for the alternative models. Visual functioning data

are used to illustrate the proposed goodness-of-fit method in section 5. Discussion is

provided in section 6.
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2 LATENT CLASS REGRESSION

To specifically describe the model, let (Yi1, . . . , YiM)T represent the M × 1 response

vector and Si be the unobservable latent class, for the ith individual in a study sample

of N persons. Yim can take values {1, . . . , Km}, where Km ≥ 2, m = 1, . . . , M and Si

can take values {1, . . . , J}. The basic structure of latent class analysis model for the

ith individual can be represented as

Pr(Yi1 = y1, . . . , YiM = ym) =
J∑

j=1

{ηj

M∏
m=1

Km∏

k=1

pymk

mkj}. (1)

Here, ymk = I(ym = k) = 1 if ym = k; 0 otherwise, ηj = Pr(Si = j) are the

”latent class probabilities” of each underlying variable category, and pmkj = Pr(Yim =

k|Si = j) are the ”conditional probabilities” of the measured responses given the

underlying variable category. The model of LCA is based on the concept of conditional

independence- i.e., the observed variables are assumed to be statistically independent

within latent classes.

To incorporate covariate effects into LCA, let (xi , zi) be the associated covariate

vector for the ith person, where xi = [1, xi1, . . . , xiP ]T are predictors for estimating

Pr(Si = j ), and zi = [zi1, . . . , ziM ]T with zim = [zim1, . . . , zimL]T, m = 1, . . . ,M are

covariates used for Pr(Yim = k |Si = j ). The two sets of covariates may include any

combination of continuous and discrete measures, and they may be mutually exclusive

or overlapped. The latent class regression (LCR) model is then stated as

Pr(Yi1 = y1, . . . , YiM = ym |xi , zi) =
J∑

j=1

{ηj (xi)
M∏

m=1

Km∏

k=1

[pmkj (zim)]ymk}, (2)

with ηj(xi) and pmkj(zim) as in the generalized linear framework (McCullagh and

Nelder [14]). Often, (2) is implemented assuming generalized logit (Agresti [15]) link
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functions:

log[
ηj(xi)

ηJ(xi)
] = β0j + β1j xi1 + . . . + βPj xiP = xT

i βj , (3)

and

log[
pmkj′(zim)

pmKmj′(zim)
] = γmkj′ + α1mkzim1 + . . . + αLmkzimL = γmkj′ + zT

imαmk , (4)

i = 1, . . . , N ; m = 1, . . . , M ; k = 1, . . . , Km − 1; j = 1, . . . , J − 1; j′ = 1, . . . , J.

Through (3), we can summarize the effects of risk factors on the underlying mech-

anism. (4) aims to isolate the classification of subject’s measured indicators to the

underlying outcome apart from variables that confound measurements, hence hope-

fully improve the accuracy of classifying of individuals. For example, in evaluating

functional disability, some data have suggested that women rate tasks as ”difficult”

more readily than men (Bandeen-Roche et al [16]). Without adjusting for a gender

effect, the model might well classify some men and women with identical underlying

functioning differently (men as ”able”, women as ”disabled”). Parameters in (3) and

(4) can be estimated through the EM algorithm (Dempster, Laird and Rubin [17]),

which is a broadly applicable approach to the interactive computation of maximum

likelihood estimates while the model can be viewed as an ”incomplete-data” problem.

Following three assumptions are necessary for obtaining the LCR model (2), (3) and

(4):

(C1) Latent class membership is associated with xi only, and their relationship can

be stated as (3):

Pr(Si = j|xi , zi) = Pr(Si = j |xi) =
exp(xT

i βj )

1 +
∑J−1

l=1 exp(xT
i βl)

, j = 1 , . . . , J − 1 .
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(C2) Conditioning on class membership, measured responses are only associated with

zi and their marginal mean associations with zi can be stated as (4):

Pr(Yi1 = y1, . . . , YiM = ym|Si,xi , zi) = Pr(Yi1 = y1, . . . ,YiM = ym |Si , zi) with

Pr(Yim = k |Si = j ′, zi) =
exp(γmkj ′ + zT

imαmk)

1 +
∑Km−1

s=1 exp(γmsj ′ + zT
imαms)

,

m = 1, . . . ,M ; k = 1, . . . , Km − 1; j′ = 1, . . . , J.

(C3) Multiple measurements are conditionally independent given class membership

and zi :

Pr(Yi1 = y1, . . . ,YiM = ym |Si , zi) =
M∏

m=1

Pr(Yim = ym |Si , zim).

More detailed model characteristics, parameter estimations and theoretical properties

of the proposed LCR can be found in Hung and Bandeen-Roche [11].

3 THE TEST STATISTIC

3.1 Hosmer-Lemeshow goodness-of-fit test (1980)

In multiple logistic regression, Hosmer and Lemeshow ([19,20]) proposed the following

test statistic for evaluation goodness-of-fit:

Let Yi= 0 or 1 be the outcome variable, and xT
i =(xi1, . . . , xip) be the independent

variables. Let π(xi) = Pr(Yi = 1|xi)=exp(β0 + βTxi)/(1+exp(β0 + βTxi)) where

βT = (β1, . . . , βp). The likelihood function is L(y;x, β0,β) =
∏n

i=1 πyi

i (1− πi)
1−yi ,

where πi = π(xi), i=1, . . . , n. So β̂0 and β̂ can be obtained as the maximum

likelihood estimators, and hence π̂i can be estimated. The basis of
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Hosmer-Lemeshow statistic is a 2× g contingency table which was obtained by

defining a random variable W, where wi = j if cj−1 ≤ π̂i < cj, j=1, . . . , g; i=1, . . . ,

n. The cj’s are known constants such that 0 = c0 < c1 < . . . < cg−1 < cg = 1.

Denote the counts in the table as nkj where nkj is the frequency of occurrence of the

pair (yi = k, wi = j) in the sample, k=0,1 and j=1, . . . , g. Notationally the

”observed” frequencies may tabulated as Table 1.

One way of selecting the cut points c0, . . . , cg is by defining π̂(1) ≤ π̂(2) ≤ . . . ≤ π̂(n)

as the ordered values of π̂ and let ĉj = π̂([jn/g]), where [ jn
g

] represents the largest

integer less than or equal to jn
g

, j=0, 1, . . . , g. Let ŵi = j if ĉj−1 ≤ π̂ < ĉj. Define

n̂kj as the observed frequency of the pair (yi = k, ŵi = j) in the sample. If

Ĵj = {i : ĉj−1 ≤ π̂i < ĉj} then the test statistic is

Cg =

g∑
j=1

{
(n1j −

∑
r∈Ĵj

π̂r)
2

∑
r∈Ĵj

π̂r

+
[n0j −

∑
r∈Ĵj

(1− π̂r)]
2

∑
r∈Ĵj

(1− π̂r)

}
(1)

and the simulation result indicated that a good approximation to the distribution of

Cg is χ2(g − 2) distributed.

3.2 Proposed goodness-of-fit test for LCR

Similar to the Hosmer-Lemeshow goodness-of-fit, we can extend the method to our

LCR model and get a test statistic by grouping our outcome variables as follows. Let

the joint probability

Pr(Yi = yh ; φ) = Pr{(Yi1 , . . . ,YiM ) = (yh1 , . . . , yhM ); φ} = πih(φ), (2)

where i = 1, . . . , N ; h = 1, . . . , K∗; K∗ =
∏M

m=1 Km; and φ is the vector of para-

meters. Here, the observation Yi for each i may take values {y1 , . . . ,yK∗} where

yh could be one of all possible multiple outcome for Yi, h=1, . . . , K∗. The basis
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of the proposed goodness-of-fit statistic is a K∗ × g contingency table in our LCR

model. This table is obtained by defining a random variable W , where Wi = j if

cj−1 ≤ πi1(φ̂) < cj; j = 1, . . . , g; i = 1, . . . , N ; The cj’s are known constants such that

0 = c0 < c1 < . . . < cg−1 < cg = 1, and πi1(φ̂) is the estimate of πi1(φ) evaluated at

the MLE of φ. Denote the counts in jth group as nj, that is, nj is the number of per-

sons whose Wi = j. And denote Ohj is the observed frequency of occurrence of the pair

(Yi = yh ,Wi = j ) in the sample, where h = 1, . . . , K∗; K∗ =
∏M

m=1 Km; j = 1, . . . , g.

So the total observed frequencies may be tabulated as Table2.

The goodness-of-fit statistic is obtained by comparing the ”observed” frequen-

cies to ones which are ”expected” if the hypothesis of a LCR model holds. The

expected frequency for the hth combination and the jth group is obtained as Ehj =

∑
r∈Ij

πrh(φ̂), where Ij = {i : cj−1 ≤ πi1(φ̂) < cj}, j=1,2, . . . , g. Hence, the test

statistic is

T =
K∗∑

h=1

g∑
j=1

(Ohj − Ehj)
2

Ehj

. (3)

There are many methods to group the observations (that is, to define the cut

points, c0, c1, . . . , cg). In this thesis, we adopt the following strategy:

Define π(1)1(φ̂) ≤ π(2)1(φ̂) ≤ . . . ≤ π(N)1(φ̂)as ordered values of πi1(φ̂) for all i. In

other words, the cut points depend on the data and are determined so that n/g per-

sons fall in each interval. Let cj = π([ jn
g

])1(φ̂) where [ jn
g

] represents the largest integer

less than or equal to jn
g

.

3.3 Large sample of T

The distribution of T cannot be obtained from a straightforward application of usual

theory used for χ2 goodness-of-fit test because:
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(a). Parameter estimates are determined using likelihood functions for ”ungrouped”

data.

(b). The frequency, Ohj in the K∗ × g table depend on the estimated parameters,

namely the cells are random not fixed.

A χ2 test under (a) were first addressed by Chernoff and Lehmann (1954) and

then Watson (1959). Moore (1971) and Moore and Spruill [22] considered the distrib-

ution of the χ2 goodness of fit statistics under both (a) and (b). Their work extended

the results of Watson to the case of random rectangular cells. Drust (1979) general-

ized these results to include random cells other than rectangles. The application of

the results of Moore and Spruill [22] and Drust [21] to the problem is contained in

the following theorem.

Theorem 1 Let λ1, . . . , λK∗∗ are the non-zero or 1 eigenvalues of the matrix Σ(T ) =

I − qqT − BJ−1BT . Here, I is a K∗g × K∗g identity matrix and q is a K∗ × g

vector with elements
√

Phj, h = 1, . . . , K∗, where Phj=Pr(Y = yh , Wi = j). B is a

(K∗×g)K∗∗ matrix and has a general element given by 1√
Phj

∂Phj

∂φl

, φ = (β, γ,α). J−1

is the asymptotic variance covariance matrix of the discriminant function estimates

φ. Then under LCR assumptions (2), (3), and(4), the distribution of T will be

asymptotically (N →∞)

χ2(K∗g − g −K∗∗) +
∑K∗∗

i=1 λiχ
2
i (1),

where 0 < λi < 1; i = 1, . . . , K∗∗; K∗∗ = (P + 1)(J − 1) + (J + L)
∑M

m=1(Km − 1)

is the total number of the parameters in the LCR model.

Proof :

8



The proof of the theorem follows from verifying that the regularity conditions

necessary for the proof of theorem 5.1 in Moore and Spruill [22] are satisfied, see

appendix.

In practice, the expected frequencies of some possible response patterns of Yi

usually less than 5 even to 0. However, the χ2 approximation for the test distribution

loses validity when a large number of response patterns have low expected frequen-

cies. So we should add those response patterns which their expected frequency less

than 5 to the next ones until no one take value less than 5. Therefore, we can apply

our proposed goodness-of-fit method on the new response patterns and theorem1 still

holds when K∗ become the new number of response patterns after the combination.

4 SIMULATION STUDY

4.1 Data generation under the LCR model

Here, we simulated three-class LCR with five two-level measured indicators, two co-

variates associated with conditional probabilities, two covariates associated with la-

tent prevalences, two, five, and ten groups (i.e., J = 3, M = 5, K1 = . . . = K5 =

2, P = L = 2, g = 2, 5, 10). The model parameters βpj can be determined through

the method. For each p ∈ {0, 1, . . . , P}

• randomly selected: βpj = k1Uj, Uj ∼ U(0, 1), j = 1, . . . , (J − 1);

where k1 was constants such that
∑J−1

j=1 βpj equaled the preselected total. The method

was also applied to create {γjmk, j = 1, . . . , (J − 1)} for all m, k, and {αqmk, m =

1, . . . , M ; k = 1, . . . , (Km − 1)} for all q. All (βpj, γjmk, αqmk) pairs were generated

9



by the same method.

The covariates associated with conditional probabilities (zim1, zim2),m = 1, . . . , 5

and latent prevalences (xi1, xi2) were generated as:

zim1 ∼ Bernoulli(0.4), zim2 ∼ Normal(0, 1), i = 1, . . . , N for each m,

xi1 ∼ Bernoulli(0.6), xi2 ∼ Normal(0, 1), i = 1, . . . , N,

all zimq and xip are mutually independent.

The selected sample size was 2400, 2400, and 4800 which gave roughly 15 individuals

per cell of the contingency tables for the goodness-of-fit tests with two , five and ten

group. The observable Yi were then generated with 100 replications. Actually, by the

common collected data the calculated expected frequencies table usually not equally

distributed. For example, in evaluation functional disability, most people would task

as ”not difficult” more than ” difficult”, so the number of person who tasks ”difficult”

item would be very sparse. Therefore, in this thesis we simulate two situations to

discuss their large sample behavior: one is equally distributed data and another is

not equally distributed data.

The simulation results were represented in Table3. Here, ”balance” represented

the equally distributed data and χ2(142) indicated the real χ2 distribution; ”unbal-

ance” represented the not equally distributed data. From the results shown in Table

3, the equally distributed data was well approximated to a χ2 distribution with degree

of freedom 142 and the unequally distributed data was bad approximated.

4.2 Data generation under alternative models

This simulations considered thus far have demonstrated that the test statistic have

well defined distributions under the null hypotheses that the LCR (2) model holds.

10



To examine the power of the proposed test statistic, data were generate from the

alternative models which their covariates were generated from the distributions pre-

sented in Table 4 and we considered the situations when we use a simpler model to

fit the data generated from a complicated model.

For situations 1-17 we use three different link functions for η to simulate. The

selected sample size was 2400 and Y′
is were generated with 100 replication for each

situation. All (βpj, γjmk, αqmk) pairs were generated by the same method as we men-

tioned in section 4.1. The generated data were then fitted by the LCR model stated

in section 4.1. The fitted model was three-class LCR with five-two level measured

indicators, two covariates associated with conditional probability, two covariates as-

sociated with latent prevalence and five groups(i.e., J=3, M=5, K1= . . .= K5= 2,

P=L=2, g=5).

Situations 1-5 used the original link function (3) we represented in section 2 and

6-10 used probit link as follows:

η1 = Φ(β01 + β11x1 + β21x2);

η2 = Φ(β02 + β12x1 + β22x2)× (1− η1);

η3 = 1− η1 − η2.

Situation 11-15 used proportional odds model:

η1 =
exp(β01 + β11x1 + β21x2)

1 + exp(β01 + β11x1 + β21x2)
;

η2 =
exp(β02 + β11x1 + β21x2)

1 + exp(β02 + β11x1 + β21x2)
− η1, β02 > β01;

η3 = 1− η1 − η2.

Situation 16, 17 used probit and proportional odds link with the original covariates.

11



For situation 18, we generated three-class LCR model with five-two level stated in

section 4.1 and then fitted by the two-class LCR model with five-two levels. The test

results of the above alternative models were illustrated in Table 5.

The simulation results indicated that the LCR (2) did not fit the probit data

particularly well, that is, the test statistic had higher power as with the probit alter-

native model than the other two alternative models. The test statistic did not appear

to be particularly powerful in detecting the difference between the proportional odds

alternative and LCR (2) models and was not powerful to detect the LCR (2) models

with different covariates. For the differences between three-class and two-class LCR

models, the statistic was also not sensitive. These not powerful simulation results

may be due to the limiting of the replicated times, there were some difficulties to

increase the replication times of our proposed models, and the way the grouping was

defined or the selected alternative models were not far from the LCR model.

5 THE SALISBURY EYE EVALUATION PROJECT

5.1 Background

To illustrate the proposed diagnostic methods, we use data from Salisbuty Eye Evalu-

ation(SEE) project. The SEE project is describe in detail in West et al. [24]. Briefly,

SEE is a population-based, prospective study of risk factors for ocular pathology and

of how vision affects functioning in older persons. An age- and race-stratified random

sample of Salisbury, Maryland residents between the ages of 65 and 84 years was

drawn from the Health Care Financing Administration (HCFA) Medicare Database.

To be eligible for the study, participants had to be able to communicate in English,

travel to the clinic for vision tests, and score greater than 17 on the Mini-Mental
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State Examination (MMSE: Folstein et al. [29]). The response rate to both the home

interview and clinic examination was 65%, excluding the ineligible. Twenty-five hun-

dred and twenty persons agreed to participate in both activities. Table 6 shows the

demographic characteristics of SEE participants.

The analysis we report in this thesis aims to describe the association between

functioning in activities that require seeing at a distance (far vision functioning) and

psychophysical measures of visual impairment, adjusting for potential confounding

variables. In the SEE project, visual functioning was determined using the Activities

of Daily Vision Scale (ADVS) questionnaire (Mangione et al. [25], Valbuena et al.

[26]). The analysis we report used selfreported difficulty doing five ADVS activities as

responses: reading street signs in daylight; reading street signs at night; walking down

steps during daylight; walking down steps in dim light; and watching TV. Here, we

measure difficulty as a binary indicator (1=having difficulty; 2=no difficulty) for each

activity, except for reading street signs at night which is measured as a three-level

categorical indicator(1=extreme or moderate difficulty; 2=a little difficulty; 3=no

difficulty). The hope was that, together, these five questions characterized the under-

lying far visual functioning. The frequency distributions of far vision subscale items

are shown in Table 6. The distributions are severely skewed with most participants

reporting no difficulty at all in all items.

In the SEE project, visual impairment was determined using multiple psychophys-

ical vision tests (Rubin et al. [27]). Our analysis include five test: visual acuity of

both eyes at regular luminance, contrast sensitivity of the better eye, glare sensitivity

of the worse eye, stereoacuity of both eyes and central visual field of both eyes. For

all the measures except contrast sensitivity, a higher score indicates worse vision.
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5.2 Assess the goodness of fit and analysis result

A latent class regression model (2) for self-reported visual disability was fitted as

a function of visual impairment variables, the number of reported comorbid dis-

eases, and the following personal demographic characteristics: age at clinic exam,

MMSE score, years of education, indicator of being female, indicator of being African-

American, and General Health Questionnaire depression subscale score (GHQ score:

Goldberg [28]). The vision and disease variables were treated as primary predictors of

latent class membership (xi), and the personal characteristics were modeled as having

direct effects on measured indicators themselves within classes (zi). The analysis was

applied to the subsample of participants who rated each far vision item and also had

no missing covariates(N=1641). Table 6 presented the characteristics and frequency

distribution of far vision difficulty items in the SEE project, and from Table 6 we can

find that the proportion of choosing no difficulty is much larger than difficulty.

We started with a three-, four-, and five-class LCR model, and the hypothesis is:

H0: The fitted model explains the data well. vs. H1: Not H0.

The goodness of fit for the models began by the grouping method we proposed before.

Table 7 and Table 8 displays the original contingency table for the expected and

observed values when we fix a five-class model where y1 represented the response

persons who self-reported as: signs-day:have difficult; signs-night: extreme difficult;

steps-day: extreme difficult; steps-dim: have difficult; watch TV: have difficult; y2

represented the response persons who self-reported as: signs-day:no difficult; signs-

night: extreme difficult; steps-day: extreme difficult; steps-dim: have difficult; watch

TV: have difficult, and so on. We can find that some cells of the expected frequencies

table are very sparse, and there are many cells take values less than 5. However,
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the χ2 approximation for the test distribution loses validity when a large number of

response patterns have low expected frequencies. So we added one row of the expected

frequencies table to the next ones until no element of the row take value less than 5,

and then we got a new contingency table as Table 12. Here, the first row combined

the first 21 rows of the original observed frequencies table; the 2nd row combined

22th − 25th rows ,the 3rd row combined 26th − 30th rows, the 4th row combined

31th − 34th rows, the 5th row combined 35th − 38th rows ; the 6th row combined

39th−44th rows, the 7th row combined 45th−46th rows, the 8th row combined 47th−
48th rows. Table 9 and 10 are the expected and observed contingency tables after the

combination. We can apply the χ2 test after the combination and the test statistic

is 38.53494. According to Hosmer and Lemeshow, the contribution of
∑K∗∗

i=1 λiχ
2
i (1)

in theorem we proposed in Section 3 is approximately that of χ2(K∗∗ − 2). So the

distribution of our statistic is approximately to χ2(K∗g− g− 2) where K∗ is number

of the response patterns after the combination, and hence in five-class LCR model of

SEE project is χ2(33). Because 38.53494 < χ2
0.95(33) = 47.39988, so we can conclude

that the five-class LCR model explains the data well.

Similarly, Table 11 and Table 12 represents the original contingency tables of

expected and observed frequencies for the four-class LCR model, and Table 15 and

Table 16 represents those for three-class LCR model. For the three- and four-class

LCR model, the tables also need to merge some patterns to others to let all the

elements of expected table equal or larger than 5. Table 13, 14 and Table 17, 18

represents the new tables after combination for four- and three-class LCR model.

The statistic for the new table of four-class LCR model was 35.92977 < χ2
0.95(38) =

53.38354, so the four-class LCR model also explains the data well. The statistic for

the new table of three-class LCR model was 83.83406 > χ2
0.95(33) = 47.39988. Hence,
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the data is not well explained by the three-class LCR model. From the above tests,

we can conclude that the four-class LCR model is the simplest model which can well

explain the data .

6 DISCUSSION

In this thesis, we implement a latent class regression model that allows two types of

covariates effects: relationships between primary predictors and responses that are

mediated through the underlying variable, and direct effects of secondary covariates on

the measured indicators themselves. This model is very useful in addressing scientific

questions, however, the model is so complex that scientific findings are likely to be

driven by the statistical assumptions rather than by the data. We develop goodness-

of-fit test for assessing overall model fit. As long as operating with careful evaluation

of model appropriateness, a great deal can be learned from the LCR model.

The number of groups was determined by cases when we forming the contingency

table. In this thesis, we selected the one such that the contingency table would not be

too large or too small, and then the replicated times could be reduced in reasonable

ranges.

There is a lack of simulation-based investigation into the success in detecting the

targeted model violations. Additional works on how various model violations appear

on the proposed method is needed to identify strengths and weakness.
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APPENDIX

Let θ be the unknown parameter in forming χ2 statistics and is estimated by θN =

θN(Y1, . . . ,YN). The parameter θ ranges over an open set Ω1 in Rg. The cells are

chosen by ϕN=ϕN(Y1, . . . ,YN). Let F (y|θ, φ) be the cdf of {Y1, . . . ,YN}. The null

hypothesis is that Yi have a cdf F (y|θ). We will explore the large-sample behavior

of tests for the null hypothesis under the sequences of parameter values (θ0,φN)

where θ0 ∈ Ω1 and φN = φ0 + N−1/2γ for fixed γ in RK∗∗
. H0 is the special case

γ = 0. We will assume that under (θ0,φN), ϕN − ϕ0 = oK∗∗(1) for some ϕ0 and

θN = θ0 = ok∗∗(1). We will suppress arguments θ, ϕ, φ whenever they take the values

θ0, ϕ0, φ0 respectively. The resulting cells are denoted by Iσ(ϕ) , the number of

Y1, . . . ,YN falling in the cell Iσ(ϕ) will be denoted by nNσ(ϕ). The cell probabilities

are denoted by Pσ(θ, φ, ϕ) where σ=1, 2, . . . , K∗∗g. Then regular conditions of

theorem 5.1 in Moore and Spruill [22] are satisfied as follows:

(A1). Under (θ0,φN), θN−θ0 = OK∗∗(N−1/2) and ϕN−ϕ0=oK∗∗(1). Every vertex y(ϕ)

of every cell Iσ(ϕ) is a continuous RM -valued function of ϕ in a neighborhood

of ϕ0.

(A2). For each σ, Pσ(θ, φ, ϕ) is continuous in (θ, φ, ϕ) and continuously differentiable

in a neiborhood of (θ0, φ0, ϕ0). Moreover,
∑K∗∗g

σ=1 Pσ = 1 and Pσ > 0 for each

σ.

(A3). F (y)=F (y|θ0,φ0) is continuous at every vertex y(ϕ0) of every cell Iσ(ϕ0). As

N →∞, supy|F (y|φN)− F (y)| → 0.

(A4). Under (θ0,φN)

N1/2(θN − θ0) = N−1/2
∑N

i=1 h(Yi,φN) + Aγ + oK∗∗(1)
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for some g ×K∗∗ matrix A and measurable function h(y, φ) from RM × RK∗∗

to Rg satisfying

E[h(Y, φN)|(θ0,φN)] = 0

E[h(Y, φN)h(Y,φN)′|(θ0,φN)] = L(φN)

where L(φN) is a g×g matrix converging to the finite nnd matrix L=E[h(Y)h(Y)′]

as N →∞.

(A5). The df’s F (y|φ) possess pdf’s f(y|φ) with respect to a σ-finite dominating

measure ν. As N →∞, f(y|φN) → f(y|φ0) and h(y,φN) → h(y) a.e. (ν).

(A6).

N1/2(θ̂N − θ0) = N−1/2

N∑
i=1

J−1∂ log f(Yi|φN)

∂θ
+ J−1J12γ + oK∗∗(1).

Here θ̂N maximizes
∑N

i=1 log f(Yi|θ), J is the information matrix for F (y|θ) at

θ0,

J = E

[(
∂ log f

∂θ

)(
∂ log f

∂θ

)′]
,

J12 is the m× p matrix

J12 = E

[(
∂ log f

∂θ

)(
∂ log f

∂φ

)′]
.

(A7). Let VN(θ, φ, ϕ) be an M-vector and it’s σth component is

nNσ(ϕ)−NPσ(θ, φ, ϕ)

[NPσ(θ, , φ, ϕ)]1/2
.
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Then

N1/2(θ̄ − θ0) = (B′B)−1B′VN(φN) + (B′B)−1B′B12γ + oK∗∗(1),

where θ̄ maximizes
∑K∗∗

σ=1 nNσ(ϕ) log Pσ(θ, ϕN) and the K∗ × g matrix B12 has

(i, j)th entry

P
−1/2
i

∂Pi

∂φj

.

(A8). g ≤ K∗g and the matrix with entries ∂Pi/∂θj has rank g.

(A9). A7 holds, so that θ̄N satisfies A4 with A = (B′B)−1B′B12 and h(y) = (B′B)−1B′W (y),

where χσ(y) indicator function of Iσ(ϕ0) and W (y) the K∗g vector with σth

component [χσ(y)− Pσ]/P
1/2
σ .

(A10). log f(y|θ, φ) is differentiable with respect to (θ, φ) at (θ0,φ0). The matrix J is

pd and J12 is finite. (∂/∂θ)F (y|θ) may be evaluated by differentiating f(y|θ)
under the integral sign for all y and θ = θ0.

(A11). A7 holds, so that θ̂N satisfies A4 with A = J−1J12 and

h(y) = J−1(∂ log f(y|θ, φ)/∂θ)|
θ0,φ0

.

(A12). J −B′B is pd.
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Table 1: Notational set-up of the frequencies in logistic regression model

1 2 . . . g Total
y = 0 n01 n02 . . . n0g n0

y = 1 n11 n12 . . . n1g n1

Total n•1 n•2 . . . n•g n

Table 2: Notational set-up of the frequencies in LCR model

1 2 . . . g
y1 O11 O12 . . . O1g

y2 O21 O22 . . . O2g
...

...
...

...
yK∗ OK∗1 OK∗2 . . . OK∗g

n1 n2 . . . ng

Table 3: Simulation results for latent class data were generated equally and unequally

Mean Variance % above 90th % above 95th % above 99th
%-ile %-ile %-ile

Balance
g = 2 46.81888 72.56164 58.06453 63.56119 67.00705
g = 5 141.8764 250.6917 160.9970 169.2281 184.6254
g = 10 295.7811 508.613 326.8426 338.3959 347.1322

Unbalance
g = 2 51.3062 113.7762 62.91475 66.27286 94.70239
g = 5 137.9329 339.7012 158.4159 161.6915 192.0311
g = 10 282.3167 1057.653 316.5099 336.3160 364.9463

Nominal distribution
g = 2 χ2(47) 47 94 59.77429 64.00111 72.44331
g = 5 χ2(142) 142 284 163.9799 170.8092 184.1176
g = 10 χ2(296) 296 592 327.5783 337.1254 355.5251

24



Table 4: Generated covariates for alternative models

Situation zim1 xi1 zim2 xi2

1, 6,11 Ber(0.9) Ber(0.1) N(0,15) N(0,15)
2, 7,12 Ber(0.9) Ber(0.1) N(2,15) N(2,15)
3, 8,13 Ber(0.9) Ber(0.1) exp(30) exp(30)
4, 9,14 Poisson(0.9) Poisson(0.1) exp(30) exp(30)
5,10,15 Poisson(15) Poisson(15) exp(30) exp(30)

Table 5: Simulation results for situations 1-18

α=0.05
Situation mean variance power

1 140.1411 329.5329 0.07
2 140.9580 311.0997 0.04
3 141.0234 304.7142 0.09
4 139.8990 290.2688 0.07
5 139.4221 258.986 0.06

6 140.6912 304.635 0.06
7 141.3010 254.3497 0.03
8 142.0696 288.4761 0.07
9 140.6636 291.4900 0.08
10 141.1024 294.3013 0.1

11 140.8594 265.5376 0.02
12 140.3471 270.9357 0.04
13 144.2373 274.0058 0.09
14 140.1092 267.8568 0.06
15 140.0726 250.0764 0.03

16 140.7425 241.9495 0.07

17 141.3161 247.0320 0.06

18 144.4393 269.5813 0.09
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Table 6: Demographic characteristics and frequency distribution of far vision difficulty
items: SEE project (N=2520)

Characteristics %
Age(year)

65-69 31.0
70-74 33.1
75-79 22.0
≥ 80 13.9

Gender
Male 42.1
Female 57.9

Race
White 73.6
African American 26.4

Education (year)
< 7 8.2
7-11 43.3
12 20.4
> 12 28.1

MMSEscore
< 24 16.2
24-29 65.4
30 18.4

GHQ depression score
0 90.5
1-2 6.8
≥ 3 2.7

Number of comorbid diseases
≤ 1 31.4
2-3 47.0
4-5 17.5
≥ 6 4.1

Frequency distribution Degree of difficulty (%)
Activities extreme diff. a little diff. having diff. no diff.
signs-day − − 18.3 81.7
signs-night 16.2 26.4 − 57.4
step-day − − 11.5 88.5
steps-dim − − 18.6 81.4
watch TV − − 10.4 89.6
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Table 7: Contingency table of the expected frequencies for the five-class LCR model
of SEE project

Response Group
pattern 1 2 3 4 5

y1 0.42049628 0.99968124 1.81263384 3.69370896 29.72270173
y2 0.18643264 0.27539497 0.39021325 0.57620746 0.99525688
y3 0.11119960 0.33222896 0.51137721 0.76755720 1.48092621
y4 0.29903223 0.41844374 0.56736963 0.81923390 1.45762043
y5 0.06300168 0.10078633 0.14188887 0.21270749 0.50788740
y6 0.21401378 0.21398787 0.25865891 0.36033524 0.53801246
y7 0.26104599 0.67933664 1.06554182 1.68858513 6.17137860
y8 0.17457210 0.23507525 0.31356743 0.44322213 0.76267136
y9 0.16607883 0.44464038 0.67558871 1.01762602 1.88077908
y10 0.38645248 0.54911854 0.70523430 0.94257781 1.37228041
y11 0.04200933 0.05644380 0.07398084 0.10387555 0.26671268
y12 0.27667556 0.29077849 0.32698076 0.41438756 0.58527210
y13 0.09097031 0.15926094 0.24235955 0.41409407 2.46833773
y14 0.05874608 0.06395631 0.07767421 0.10047405 0.13134480
y15 0.02980672 0.05806012 0.07983519 0.10911793 0.15647378
y16 0.11552310 0.14904297 0.18270672 0.22112555 0.26985210
y17 0.01862574 0.01941415 0.02351588 0.03066136 0.07072115
y18 0.08751291 0.08388996 0.09421222 0.11162741 0.13523778
y19 0.63768755 1.14340365 1.58956562 2.15151985 3.84862639
y20 0.80648470 0.80947657 0.91017970 1.12810305 1.68052656
y21 0.75838308 1.10924521 1.43204584 1.90607478 2.82379096
y22 1.85887290 1.85283452 1.98053637 2.29910468 2.97559958
y23 0.16384062 0.16270179 0.18390915 0.22323372 0.37089297
y24 2.44569602 2.10736084 1.98915184 1.98861364 1.83753862
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Response Group
pattern 1 2 3 4 5

y25 0.54042227 1.73156563 2.81586975 4.15098379 10.27999890
y26 1.09828562 1.56198456 2.15043059 3.01754843 4.44128717
y27 0.60144036 1.60463972 2.40415869 3.31413678 4.71608401
y28 1.79694626 2.93859969 4.04802492 5.24541618 7.40559661
y29 0.32890596 0.47399871 0.63245982 0.85320599 1.13644414
y30 1.26454454 1.44735271 1.82453947 2.38028614 3.02789299
y31 0.85062691 2.65441513 4.26555237 6.09161241 10.728768035
y32 1.15130224 1.69965419 2.26762283 2.99815672 4.51704113
y33 0.91258949 2.22682930 3.28979151 4.52216227 7.06590127
y34 3.94518861 6.69430173 8.72773722 10.55980526 12.50051423
y35 0.22046238 0.27909237 0.35011903 0.45957534 0.94005296
y36 4.37773774 5.29408268 5.97981629 6.82891761 7.61818812
y37 0.13023080 0.30000679 0.43644729 0.59433628 1.12270149
y38 0.34588037 0.42898907 0.53640686 0.66122105 0.77008515
y39 0.16235453 0.28784858 0.38270096 0.49530050 0.62961065
y40 0.74436805 1.48056945 1.95359229 2.17974196 2.25137670
y41 0.09688252 0.09316940 0.10517277 0.12963315 0.15425575
y42 0.53769469 0.72674833 0.89919330 1.02940472 1.09668809
y43 3.45079913 5.78162334 7.70581607 9.90671502 13.73782580
y44 7.54361584 10.63312563 11.80221091 12.53484838 13.67550209
y45 4.26883963 5.88123132 7.22737492 9.06883811 12.62221788
y46 40.06027971 54.67193447 56.43316835 54.42342720 43.95310627
y47 1.12298026 1.40463204 1.51398265 1.64979597 2.36773250
y48 242.77446186 205.38904195 184.61908324 163.18115618 99.73068633
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Table 8: Contingency table of the observed frequencies for the five-class LCR model
of SEE project

Response Group Response Group
pattern 1 2 3 4 5 pattern 1 2 3 4 5

y1 1 2 1 2 30 y25 1 4 3 3 14
y2 0 1 0 2 2 y26 0 0 2 2 4
y3 0 1 0 1 1 y27 0 2 4 1 4
y4 1 0 0 1 3 y28 2 3 4 7 8
y5 1 0 0 0 0 y29 0 0 0 0 0
y6 0 1 0 0 0 y30 2 0 3 5 7
y7 0 1 1 1 8 y31 1 5 1 5 15
y8 0 0 0 1 1 y32 2 1 3 0 6
y9 0 0 1 2 0 y33 0 4 5 6 5
y10 0 0 0 2 2 y34 6 3 7 18 6
y11 0 0 0 0 0 y35 0 0 1 0 1
y12 0 0 0 0 1 y36 5 8 3 3 7
y13 0 0 1 0 1 y37 0 1 1 0 2
y14 0 0 0 0 0 y38 0 0 0 0 0
y15 0 0 0 1 0 y39 0 0 1 0 1
y16 0 0 0 1 0 y40 1 1 0 0 4
y17 0 0 0 1 0 y41 0 0 0 1 0
y18 0 0 0 0 0 y42 0 2 0 0 1
y19 0 0 0 4 9 y43 5 9 2 11 12
y20 0 0 1 0 1 y44 7 13 9 13 15
y21 0 0 1 4 2 y45 4 7 6 6 13
y22 3 3 4 1 3 y46 38 55 62 47 47
y23 1 0 0 0 0 y47 1 2 1 1 3
y24 4 2 0 2 1 y48 242 197 200 173 89
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Table 9: Contingency table of the expected frequencies for the five-class LCR model
of SEE project after combining the rows which were less than 5

Response Group
pattern 1 2 3 4 5
y′1 5.20475070 8.19166609 11.47513052 17.21282251 57.32641060
y′2 5.00883181 5.85446277 6.96946711 8.66193583 15.46403006
y′3 5.09012273 8.02657539 11.05961349 14.81059352 20.72730491
y′4 6.85970724 13.27520034 18.55070393 24.17173667 34.81222466
y′5 5.07431128 6.30217091 7.30278947 8.54405028 10.45102772
y′6 12.53571477 19.00308472 22.84868631 26.27564373 31.54525907
y′7 44.32911934 60.55316579 63.66054327 63.49226532 56.57532415
y′8 243.89744211 206.79367399 186.13306590 164.83095215 102.09841883

Table 10: Contingency table of the observed frequencies for the five-class LCR model
of SEE project after combining the rows of expected frequencies table which were less
than 5

Response Group
pattern 1 2 3 4 5
y′1 2 7 6 22 62
y′2 9 8 8 5 19
y′3 3 6 15 15 21
y′4 9 13 13 31 33
y′5 5 8 6 4 9
y′6 13 26 10 26 33
y′7 42 64 66 54 59
y′8 245 196 204 171 93
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Table 11: Contingency table of the expected frequencies for the four-class LCR model
of SEE project

Response Group
pattern 1 2 3 4 5

y1 0.33253387 0.88876030 1.72617907 3.70358088 29.82976505
y2 0.12301973 0.29909110 0.45631283 0.63958536 0.93435164
y3 0.09338816 0.33887229 0.50027383 0.74302915 1.34521607
y4 0.29088420 0.58132585 0.79495813 1.17422478 1.49356677
y5 0.04996797 0.10351446 0.14507650 0.20892670 0.31921990
y6 0.21421744 0.27089226 0.34000770 0.47852932 0.63182957
y7 0.32521086 0.64098222 1.00166670 1.63079331 7.57719802
y8 0.23988203 0.33552952 0.45431556 0.65294843 1.12506714
y9 0.18425023 0.40953031 0.58268994 0.92654563 1.83566779
y10 0.54745725 0.60195163 0.69168003 0.95225818 1.44328960
y11 0.07806263 0.08085038 0.09054321 0.12065982 0.18556317
y12 0.40141747 0.32906583 0.31712040 0.37208971 0.51899129
y13 0.11497551 0.19533397 0.31431747 0.54472756 3.38344896
y14 0.04865135 0.06449317 0.07778130 0.09975095 0.12446216
y15 0.03083251 0.05871804 0.07084292 0.09545449 0.11064886
y16 0.13405810 0.15558773 0.16793868 0.22338508 0.26777677
y17 0.02121085 0.02436612 0.02713968 0.03467698 0.04114157
y18 0.11628616 0.10593940 0.10703523 0.13178468 0.17296853
y19 0.51431176 0.87882308 1.20544306 1.64677892 3.44862179
y20 0.81644864 0.87137810 1.06146977 1.32381667 2.00307882
y21 0.66508082 0.95165435 1.18439411 1.62976061 2.34866568
y22 1.78011284 1.77966199 1.98442276 2.28541383 3.19828556
y23 0.16019129 0.14357463 0.15698200 0.18779582 0.27001319
y24 2.13143014 1.82902966 1.76025016 1.76125173 1.57661959
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Response Group
pattern 1 2 3 4 5

y25 0.35008546 1.35659933 2.20562021 3.20297809 9.50318998
y26 0.74971719 1.70878508 2.52018322 3.28079288 4.22723731
y27 0.54646183 1.89329414 2.68646415 3.50791726 4.35527884
y28 1.73592421 3.20052301 4.26688494 5.78982934 6.94303779
y29 0.30625298 0.58797149 0.78197613 1.00356313 1.20707350
y30 1.31455773 1.52752317 1.89741854 2.48843086 3.22194006
y31 0.82709725 2.42881286 3.78911593 5.58826854 11.03174882
y32 1.63680029 2.31386936 3.11301295 4.16099641 6.48235890
y33 1.23046411 2.67246263 3.68526124 5.21172681 7.75399850
y34 3.89644176 5.06612099 5.97139292 7.33903102 9.86007980
y35 0.50905302 0.51441872 0.56835118 0.69374280 0.97892556
y36 4.89962474 6.35564147 6.95464367 7.35305454 7.59107044
y37 0.10765676 0.22050313 0.29985853 0.39987288 1.09156276
y38 0.30021062 0.38517418 0.46821588 0.57362767 0.75073846
y39 0.18316997 0.32686049 0.38314876 0.47461805 0.51148020
y40 0.82563371 1.01004948 1.15725911 1.44404737 1.77213408
y41 0.13074221 0.14082310 0.15350743 0.18209205 0.21774938
y42 0.85496731 1.04591266 1.22574937 1.45074646 1.76654086
y43 3.09297696 5.32888010 6.96298252 8.91537464 11.97127840
y44 7.69814344 9.91887907 11.55472314 12.48776853 15.04856313
y45 4.80917652 6.59156023 7.89861846 9.89917022 12.64121238
y46 40.52719260 57.36985264 58.14678568 56.11497384 44.71831148
y47 1.44144168 1.50706755 1.56976274 1.64623074 1.95424084
y48 240.6123 202.5895 184.5202 163.2234 99.21479
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Table 12: Contingency table of the observed frequencies for the four-class LCR model
of SEE project

Response Group Response Group
pattern 1 2 3 4 5 pattern 1 2 3 4 5

y1 3 0 1 3 29 y25 1 4 2 5 13
y2 0 1 0 1 3 y26 0 0 3 1 4
y3 0 0 1 1 1 y27 0 2 3 2 4
y4 0 1 0 2 2 y28 2 3 4 8 7
y5 0 1 0 0 0 y29 0 0 0 0 0
y6 0 1 0 0 0 y30 1 1 5 5 5
y7 0 1 0 2 8 y31 0 4 3 6 14
y8 0 0 1 0 1 y32 1 2 3 0 6
y9 0 0 1 2 0 y33 0 4 4 6 6
y10 0 0 0 2 2 y34 5 5 8 15 7
y11 0 0 0 0 0 y35 0 0 1 0 1
y12 0 0 0 0 1 y36 7 6 3 4 6
y13 0 1 0 0 1 y37 0 1 1 0 2
y14 0 0 0 0 0 y38 0 0 0 0 0
y15 0 0 0 1 0 y39 0 1 0 1 0
y16 0 0 0 1 0 y40 1 1 0 0 4
y17 0 0 0 1 0 y41 0 0 0 1 0
y18 0 0 0 0 0 y42 0 1 1 0 1
y19 0 0 0 4 9 y43 4 9 3 10 13
y20 0 0 1 0 1 y44 8 10 12 14 13
y21 0 1 0 3 3 y45 6 5 6 7 12
y22 3 3 2 3 3 y46 41 52 59 49 48
y23 1 0 0 0 0 y47 1 2 1 1 3
y24 5 1 0 1 2 y48 238 204 199 166 94
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Table 13: Contingency table of the expected frequencies for the four-class LCR model
of SEE project after combining the rows which were less than 5

Response Group
pattern 1 2 3 4 5
y′1 5.342148 8.186660 11.317186 17.333307 59.140539
y′2 5.171537 6.817651 8.627458 10.718232 18.775346
y′3 6.367094 11.951994 16.534873 22.539006 33.241438
y′4 5.126906 7.738584 9.656654 12.550758 17.614078
y′5 5.408678 6.870060 7.522995 8.046797 8.569996
y′6 5.495358 8.458203 10.650722 13.440379 18.081484
y′7 7.698143 9.918879 11.554723 12.487769 15.048563
y′8 45.33637 63.96141 66.04540 66.01414 57.35952
y′9 242.0538 204.0966 186.0900 164.8696 101.1690

Table 14: Contingency table of the observed frequencies for the four-class LCR model
of SEE project after combining the rows of expected frequencies table which were less
than 5

Response Group
pattern 1 2 3 4 5
y′1 3 7 5 23 61
y′2 10 8 7 10 22
y′3 4 12 18 21 36
y′4 5 9 12 21 13
y′5 7 6 4 4 7
y′6 5 13 5 12 20
y′7 8 10 12 14 13
y′8 47 57 65 56 60
y′9 239 206 200 167 97
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Table 15: Contingency table of the expected frequencies for the three-class LCR
model of SEE project

Response Group
pattern 1 2 3 4 5

y1 0.32405784 0.81798275 1.59660503 3.51864062 26.9483264
y2 0.06631802 0.16394991 0.25634506 0.46729546 1.6617218
y3 0.05371077 0.21023411 0.28972742 0.51072580 1.2754389
y4 0.08941671 0.20460213 0.29480615 0.50884533 0.9026324
y5 0.01755697 0.03783496 0.05666595 0.09876624 0.3019590
y6 0.03609294 0.04793101 0.06941731 0.10896863 0.1924848
y7 0.36756824 0.80212273 1.28023853 2.30544252 11.1359594
y8 0.26580013 0.43994338 0.60041050 0.90439845 1.8380178
y9 0.22004397 0.55432952 0.72276488 1.11827653 1.8701467
y10 0.48808858 0.68373037 0.91038068 1.30985962 1.9921334
y11 0.08047676 0.11233530 0.14895868 0.21518359 0.3922728
y12 0.23956990 0.24238449 0.31496340 0.40068843 0.6275601
y13 0.17243752 0.33990160 0.56193203 0.99269358 4.7531580
y14 0.10984894 0.16941069 0.23219291 0.34475372 0.7114983
y15 0.08858420 0.20995924 0.27181291 0.41062835 0.5975988
y16 0.21202841 0.27437334 0.36632562 0.52232204 0.7443654
y17 0.03408459 0.04419635 0.05886210 0.08294078 0.1481046
y18 0.10183665 0.09173190 0.12377457 0.15243051 0.2091379
y19 0.35816064 0.57949384 0.78205364 1.13307404 3.2120391
y20 0.64755337 0.69458258 0.83686299 1.01293982 1.4152484
y21 0.47504240 0.66757800 0.80626637 1.04835012 1.3248982
y22 1.51972616 1.57289672 1.85368123 2.12663334 2.5479860
y23 0.20877046 0.19071292 0.22859238 0.26357337 0.3393000
y24 2.16976587 1.91850717 2.02445231 2.02797815 1.8753881
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Response Group
pattern 1 2 3 4 5

y25 0.34618763 1.24966160 1.87897444 3.09709248 8.8822582
y26 0.41998864 0.99242695 1.45233677 2.22456248 3.5973526
y27 0.41622423 1.44323607 2.03034090 3.06023537 4.9028305
y28 0.72897336 1.43692742 2.04567192 3.10515507 4.6623652
y29 0.12262888 0.24403947 0.33893170 0.49490892 0.7610699
y30 0.30753832 0.37095790 0.50106892 0.71078433 1.0286178
y31 1.18058453 3.07399241 4.12491926 5.88679677 9.7491025
y32 2.29924369 3.47367270 4.49002260 6.02125844 8.2445501
y33 1.82860813 4.00924885 5.20820143 7.10716757 9.4369980
y34 4.58041870 6.34962584 7.82626714 10.06252554 13.2375753
y35 0.69721477 0.88501791 1.09892286 1.39996599 1.8116868
y36 4.41785669 5.52047584 6.00410260 6.72210412 7.5024807
y37 0.44533935 1.08344795 1.43421384 1.98575668 3.2063911
y38 0.88417430 1.22496464 1.57919151 2.07845882 2.7209311
y39 0.71366107 1.46137652 1.88348772 2.52648921 3.2242573
y40 1.74918913 2.07598775 2.64761156 3.41781722 4.3899174
y41 0.27952619 0.32699495 0.40740409 0.50711334 0.6259024
y42 0.97502204 0.91612645 1.10491131 1.27840021 1.4815578
y43 2.26397726 3.44103394 4.06401867 4.96421676 5.9669476
y44 8.32469842 10.80300523 11.37814988 12.17386995 11.9393512
y45 4.12665914 5.31976653 6.16510334 7.26372174 8.1203980
y46 41.14785545 56.72699335 55.20611448 54.27339198 42.0665447
y47 2.29350821 2.33661203 2.47253783 2.57161914 2.5536178
y48 239.1044 202.1637 187.9694 163.4812 101.8699
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Table 16: Contingency table of the observed frequencies for the three-class LCR model
of SEE project

Response Group Response Group
pattern 1 2 3 4 5 pattern 1 2 3 4 5

y1 2 1 0 4 29 y25 1 5 3 3 13
y2 0 1 0 1 3 y26 0 0 3 1 4
y3 0 0 1 1 1 y27 0 3 2 2 4
y4 0 1 0 1 3 y28 3 2 5 6 8
y5 0 1 0 0 0 y29 0 0 0 0 0
y6 0 1 0 0 0 y30 1 1 4 6 5
y7 0 1 1 2 7 y31 2 3 2 6 14
y8 0 0 0 1 1 y32 1 3 2 0 6
y9 0 0 1 2 0 y33 0 4 3 6 7
y10 0 0 0 2 2 y34 4 4 8 18 6
y11 0 0 0 0 0 y35 0 0 1 0 1
y12 0 0 0 0 1 y36 8 5 4 2 7
y13 0 0 1 0 1 y37 0 1 1 0 2
y14 0 0 0 0 0 y38 0 0 0 0 0
y15 0 0 0 1 0 y39 0 0 1 0 1
y16 0 0 0 0 1 y40 1 1 0 1 3
y17 0 0 0 1 0 y41 0 0 0 1 0
y18 0 0 0 0 0 y42 0 1 1 0 1
y19 0 0 0 4 9 y43 4 10 4 11 10
y20 0 0 1 0 1 y44 7 14 8 14 14
y21 0 1 0 3 3 y45 4 6 8 5 13
y22 1 5 2 2 4 y46 39 54 62 47 47
y23 1 0 0 0 0 y47 1 2 1 2 2
y24 6 0 0 1 2 y48 242 197 198 171 93
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Table 17: Contingency table of the expected frequencies for the three-class LCR
model of SEE project after combining the rows which were less than 5

Response Group
pattern 1 2 3 4 5
y′1 5.968004 8.961505 12.435048 19.293858 64.802688
y′2 5.900662 10.920462 14.625289 20.871087 35.798285
y′3 8.708271 13.832547 17.524491 23.190952 30.919123
y′4 5.115071 6.405494 7.103025 8.122070 9.314167
y′5 5.046912 7.088898 9.056820 11.794035 15.648957
y′6 10.58868 14.24404 15.44217 17.13809 17.90630
y′7 43.12666 59.31977 68.16510 54.26372 55.12040
y′8 241.3979 204.5003 190.4419 166.0528 104.4235

Table 18: Contingency table of the observed frequencies for the three-class LCR model
of SEE project after combining the rows of expected frequencies table which were less
than 5

Response Group
pattern 1 2 3 4 5
y′1 3 12 7 25 66
y′2 14 14 19 25 50
y′3 5 11 13 24 19
y′4 8 5 5 2 8
y′5 1 3 3 2 7
y′6 11 24 12 25 24
y′7 43 60 70 52 60
y′8 47 57 65 56 60
y′9 243 199 199 173 95
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