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摘 要       

現今在系統晶片積體電路中的半導體元件尺寸已經縮小到奈米刻度的尺

寸，隨著尺寸的縮小，因應各種特殊設計，半導體元件中氧化層的厚度也

隨之變薄。因為氧化層厚度變薄的因素，在氧化層及通道的界面便產生了

能量井，量子效應也就產生。在模擬上我們該如何考慮所謂的量子效應，

是一個重要的議題。 

傳統上，為了模擬量子效應會加入水丁格(Schrödinger equation)方程式在半

導體方程式中。然而，水丁格方程式在數值計算上相當耗時及會有數值收

斂上的麻煩，在二維度或三維度空間中邊界條件的設定也不容易。為了避

免此方程式在模擬上的困難，許多替代的量子修正模型也陸續被提出，在

這許多的模型中，大都還是存在著偏微分方程式。近年來被提出的有效位

勢(effective potential)理論，是一個簡單的積分方程式。除此之外，在演算

法中也大大的改善了耗時的缺點。不過在有效位勢模型中，存在著一個具

有不確定性的變數(波包的標準差，standard deviation of wave packet)。隨著

標準差的變化，所模擬得到的結果也會有所差異。為了得到正確的值，吾

人利用波松-水丁格方程式的結果為基準，調整波包的標準差以達到兩者的

結果最為接近。而另外一個問題隨之出現，隨著元件外加不同的條件(偏
壓、氧化層厚度…等等)，標準差的值也會隨之變化。 



在此論文中，所探討的元件結構為雙閘極以及絕緣層上矽金屬氧化物半導

體場效電晶體為主，探討不同的條件對波包的標準差的影響為何。吾人在

各種不同的外加條件下，以波松-水丁格方程式的結果為基準，求出各個不

同的波包標準差值。接著利用統計的方法，建立出波包標準差以及各外加

條件的模型。首先，我們以散佈圖觀察各外加條件對波包的標準差的關係

圖，發現之間並沒有複雜的關係，所以我們建立一個二階的線性模型。經

過變數轉換得到不錯的結果。 

在此提出的模型在結構，外加條件上有所限制，可以將此模型的適用性擴

展到更多結構、或是特性相似的半導體元件上。文章中所提出的統計方法

可以廣為應用在其他的半導體元件特性分析上。 
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ABSTRACT 

Within the next decade or so, it is expected that gate lengths will shrink to 45 nm or less 
in devices found in integrated circuits. Quantum effects are known to occur in the channel 
region of MOSFET devices, in which the carriers are confined in a triangular potential well 
at the semiconductor-oxide interface. How might we expect quantum mechanics to arise in 
the transport through these small devices? 

Typically, these effects are quantified by a simultaneous solution of the Schrödinger and 
Poisson equations, which can be a very time consuming procedure if it needs to be 
incorporated in realistic device simulations. Besides, different methods are proposed to 
include quantization effects in simulation of carrier transport in nanoscale devices. For 
instance, Hansch, MlDA, Van Dort, Density Gradient model … etc. Among these approaches, 
Density Gradient method are used generally. However, the quantum potential is defined in 
terms of the second derivative of the square root of local density. Such and approach is 
highly sensitive to noise in the determination of the local carrier density. Recently, Ferry 
propose an efficient method, effective potential, to include quantum effects. This approach 
avoids complex computation. Later, an more complicated effective potential is develop, but it 
is not included in our discussion. 
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Effective potential method is quite convenient to calculate. However, one variable, 
standard deviation of wave packet, in the model influence the results quite significantly. 
Unfortunately, value of this parameter is not known exactly. How to determine the value is 
an interesting problem. 

In this thesis, we do some simulations with various conditions to calibrate value of the 
variable by Schrödinger equation. And try to establish a model of standard deviation of wave 
packet by using statistical methods. First, we draw the scattering plots and find that 
correlations between outer conditions and value of standard deviation of wave packet are 
simple. So we just establish a second order multiple linear model. We get results which are 
satisfied through power transformation. The model is established corresponding to 
double-gate and silicon-on-insulator (SOI) MOSFET structures. Though the model is not 
suitable for any structure, conditions of devices. This method can be expanded to establish 
other models more generally. 
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Chapter 1

Introduction

1.1 Background

Study of advanced nanoscience and nanotechnology has recently been of great interest, in

particular nanoscale semiconductor structures and devices [1][2]. In order to obtain high

chip density, low power dissipation, and high speed for devices [3], the reduction of the

gate oxide thickness (to around 1 nm) is necessary [4]. The ultra-thin oxide leads to a very

large electric field at the SiO2/Si interface. This results in a narrow and deep potential well

at the semiconductor-insulator interface. According to quantum-mechanics (QM), elec-

trons are now confined in such a potential well and then quantized to many discrete energy

levels consequently force the motion of the electron in the direction perpendicular to the

1



2 Chapter 1 : Introduction

silicon-insulator interface [5][6]. Since the quantum effect becomes noticeable in the deep-

submicron devices and a mere classical description of the physics is not sufficient for an

accurate calculation of the inversion-layer charge, in order to understand the characteristics

of a nanoscale device, it is important to take quantum mechanical effects into account.

In principle, the Schrödinger-Poisson (SP) equations are the most accurate way to handle

the problem of the inversion-layer charge density, but it is not suitable for engineering ap-

plications especially for the two- and three-dimensional cases. This is not only because

it is computationally expensive but also because it is difficult to generalize to the multi-

dimensional case (e.g. how to deal with the boundary condition in the 3-D case). Thus it is

important to find a method which can produce a result similar to the quantum mechanically

calculated one but requires only about the same computation cost as that of the classical

calculation. Over the last two decades, various quantum mechanical correction methods

are proposed. Among these approaches, the effective potential has the easiest numerical

computation, but is too sensitive to the fitted parameter. The value usually used is 5 Å. Is

the value exact? It is suspect. So determination of this parameter is an important issue.
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1.2 Motivation

There are several approaches have been proposed to replace solving Schrödinger equation

to include the quantum effects. And accuracy is highly believable. However, computa-

tion of algorism is also time-consuming. The effective potential Ferry proposed has been

advanced which has the advantages of easy numerical implementation and almost guar-

anteed convergence. And this approach are widely used and compared with other models

[7][8][9][10]. We calibrate effective potential method by the results from SP equations

to determine the suitable standard deviation of the wave packet, a parameter in the ef-

fective potential formula. Value of the variable people usually use is 0.5 nm. However,

result from effective potential approach is quite sensitive to the parameter. Different ap-

plied voltage, thickness of oxide, doping and other conditions will cause different values

of the parameter. In order to choose better value of this parameter in simulation with

various conditions. The objective of this thesis is to model the correlation between the

parameter and other conditions of devices. In this thesis, we try to use statistical method

to analysis the model of double-gate and SOI (Silicon-on-Insulator) MOSFETs (Metal-

Oxide-Semiconductor Field-Effect Transistor). And these statistical approaches may be

extended to more general structures or devices with other conditions.
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1.3 Outline

There are six chapters in this thesis. In Chapter 2, classical drift-diffusion model and classi-

cal quantum mechanical transport model-SP will be introduced. Chapter 3 presents Ferry’s

effective potential, including its merit, shortcomings, and comparison between SP equa-

tions and Ferry’s effective potential. Chapter 4 will present some statistical methods used

in our analyzing. In the chapter 5, we will show the results and some discussion according

to statistical analyzing results. Finally, we draw some conclusions and suggest the future

works in Chapter 6.



Chapter 2

Classical and Quantum Mechanical

Transport Models

I n the last years, different techniques have been proposed to include quantization effects

in simulation in nanoscale devices. In this chapter, we will present the classical trans-

port (drift-diffusion model) and quantum mechanical model - Schrödinger-Poisson equa-

tions. We simulate these models by software [ISE]. We will show the simulation procedure

for these models. Besides, the command used in ISE is shown in appendix B.

5
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2.1 Double-Gate and Silicon-On-Insulator Metal-Oxide-

Semiconductor Field-Effect Transistors

Figure 2.1 and 2.2 show 3D and 2D schematic diagrams of double-gate MOSFET. Our sim-

ulation focuses on this structure. Figure 2.3 shows the energy band profile for a double-gate

MOSFET. From Fig. 2.3, we can find there are potential wells in the direction perpendicu-

lar to the SiO2/Si interface (Region1). Therefore, quantum effects are often considered in

the direction which is confined [16]. In our simulation, we solve 2D Poisson equation and

2D electron current continuity equation [17]. All quantum mechanisms are considered in

one-dimension (1D) along x direction. So, 1D Schrödinger equation is considered (in the

direction x) [42][18]. Also, effective potential method presented in Chapter 3 is corrected

in one-dimension.

For double-gate MOSFETs, if one of gate is increased thick enough and gates voltage equal

to 0, then we can treat it as SOI (Fig. 2.4). Because of the thick oxide, there will be only

one potential well.
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Figure 2.1: 3D double-gate schematic diagram. Scales in our
simulation are following: thickness of oxide: 1 nm ∼ 2 nm;
channel length: 20 nm ∼ 50 nm; thickness of film: about
0.5*channel length; doping of source and drain: 1e20 / cm3;
doping of film: 1e16 ∼ 5e17 / cm3.
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channel

x

y

source

drain gateoxide

Figure 2.2: 2D double-gate schematic diagram. In our research, we
consider 2D model except quantum correction. And
quantum correction will be consider in x direction for each
y.
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Figure 2.3: A energy band profile for the double-gate MOSFET in x
direction. When voltage is applied on gate, there will be
potential well (Region 1) if the oxide is thin enough. And
then there will be quantum mechanism. Elim is the energy
level corresponding to the classical regime.
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drain channel source

gate

gate

oxide

oxide x

y

Figure 2.4: 3D SOI schematic diagram. If we let one oxide in
double-gate MOSFET is thick enough, then it will become
SOI structure. In this thesis, we set one of thickness of
oxide is equal to 200 nm. And whose gate voltage is equal
to 0 V. Other conditions are the same as Fig. 2.1.
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2.2 Classical Drift-Diffusion Model

Essentially, the continuity equations and the Poisson equation have to be satisfied when we

consider a device with nonequilibrium applied voltage

�V =
−ρ
εs

=
q

εs

(n− p+D), (2.1)

∂n

∂t
= −1

q
∇ · Jn + (Gn −Rn), (2.2)

∂p

∂t
= −1

q
∇ · Jp + (Gp −Rp).

Eq. 2.1 is the Poisson equation, where V is potential, ρ is space charge density, εs is

permittivity of silicon, n is electron density, p is hole density, and D is doping. Eq. 2.2

are continuity equations for electron and hole. Where J is current density, G and R are the

generation term and recombination term, respectively [13].

In Poisson equation, Consider the Boltzmann relation. At thermal equilibrium the relation

is given by

n = ni · exp(EF − Ei

kT
) ≡ ni · exp[q(V − φ)

kT
], (2.3)

p = ni · exp(Ei − EF

kT
) ≡ ni · exp[q(φ− V )

kT
],

where φ is the potential corresponding to the Fermi level. When the voltage is applied, the

relation becomes

n ≡ ni · exp[q(V − φn)

kT
], (2.4)

p ≡ ni · exp[q(φp − V )

kT
],
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where φn and φp are the quasi-Fermi levels for electrons and holes, respectively[12]. There-

fore, Poisson equation becomes a function of potential and quasi Fermi-levels.

In continuity equations, assume (Gn −Rn) = (Gp −Rp) = 0 to simplify the equations. At

the stable state, Eq. 2.2 becomes,

∇ · Jn = 0, (2.5)

∇ · Jp = 0,

where

Jn = −qµnn∇V + qDn∇n, (2.6)

Jp = −qµpp∇V − qDp∇p.

µ is mobility, Dn and Dp are diffusion coefficient for electron and hole.

Thus, we can get the potential, φn, and φp self-consistent by solving Eq. 2.1 and Eq.

2.5 repeatedly [12] [13] until the results are convergent [14][15]. The flow is shown as

Fig. 2.5. Potential solved from these equations is classical, without considering any other

mechanism.
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Initial guesses of 
potential and imref

Poisson equation

(imref fixed, get new potential)

Continuity equation

(potential fixed, get new imref)

Convergent

Result 

yes

no

Figure 2.5: Flow chart of Poisson and Continuity equations in ISE
(imref : quasi Fermi-levels). Here, potential and imref are
unknown. First, we have initial guesses of both. Then we
solve Poisson equation by given imref, and solve continuity
equation by given potential. The algorithm will be
terminated until potential and imref are convergent.
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2.3 Quantum Mechanical Model

As the size of devices decreasing, quantum effects are included in simulation. In principle,

the Schrödinger Equation have to be considered to describe the quantum effects. However,

it is not efficient to solve Schrödinger Equation.

Conventionally, we consider the Schrödinger Equation to include the quantum effects.

Following is 1-D Schrödinger Equation,

∆ψ(x) +
2m∗

�2
(E − V (x))ψ(x) = 0, (2.7)

where ψ is the wave function, m∗ is the effective mass, � is the Planck’s constant, E is total

energy, and V is potential. We can rewrite Eq. 2.7 as

[− �
2

2m∗ · ∂
2

∂x2
+ V (x)]ψ(x) = Eψ(x). (2.8)

From Eq. 2.8, we can know that the Schrödinger equation is an eigenvalue problem

[29]. For given potential, we can get the subbands and wave function. Therefore, we

can get charge density from subbands and wave function. Charge density calculated from

Schrödinger equation includes quantum effects.

Based on the model described above, the charge density in the silicon layer is given by

ρ = −q(n− p+D).
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For the p-type substrate, the hole density p is calculated by the Boltzmann approximation

as before,

p = ni · exp[q(φp − V )

kT
],

whereas the electron density nq contained in the subbands which are lower then Elim and

is given by [19][20][21][22][23][24]:

nq =
qVT

π�2

2∑
k=1

gkmjk

∑
j

ln[
1 + exp(

EF−Ejk

kBT
)

1 + exp(EF−Elim

kBT
)
]|ψjk|2, (2.9)

whereEF is the electron quasi-Fermi level, gk is the degeneracy factor of the kth valley, ψjk

is the wave function of the jth level in the kth valley andmjk is the parallel effective mass in

the kth valley. For (100) silicon, there is a two-fold degenerate pair of valleys with a larger

effective mass (along the transverse direction), m∗ = 0.916m0,which comprises the lowest

subband. The four-fold degenerate valleys have a lighter effective mass m∗ = 0.190m0,

and lie higher in the subband ladder. Elim is the energy level corresponding to the classical

regime. Treating the density of states classically above the energy level Elim limits the

j and k values in the summation such Ejk � Elim in the polycryatalline layer, classical

treatment is usually assumed.

Under quantum effects, We get new charge density from Schrödinger equation. However,

potential will change simultaneously. In order to get potential under quantum effects, we

have to solve Poisson equation by using new charge density. Because potential and charge
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density influence each other. So, we have to solve Poisson and Schrödinger equations

repeatedly until convergent. Flow chart is shown as Fig. 2.6. Fig. 2.7, and Fig. 2.8 show

the comparison of potential and carrier density between classical results and Schrödinger

equation.
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Initial guesses of 

potential and imref

Poisson equation

Continuity equation

no

Schrödinger equation

(get new charge density)

Convergent

yes

Result 

Figure 2.6: Flow chart of SP Equation in ISE. Steps of Poisson
equation and continuity are the same as statement in Fig.
2.5. Here, we solve Schrödinger equation to correct carrier
density to include quantum effect.
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Figure 2.7: Solid line is potential solved from classical transport, dash
line is potential solved by SP equations. Potential after
quantum corrected is mush higher than classical. We only
show half curves because of symmetry of double-gate
MOSFET. tox = 1 nm, Vd = Vg = 0.6 V, tsi = 10 nm, Lg =
20 nm, N = 1e22 / m3.
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Figure 2.8: Solid line is electron density derived from classical
transport; dash line is electron density derived from SP
equations. The serious change nearby the SiO2/Si interface
arises from quantum effect. We only show half curves
because of symmetry of double-gate MOSFET. tox = 1 nm,
Vd = Vg = 0.6 V, tsi = 10 nm, Lg = 20 nm, N = 1e22 / m3.



Chapter 3

Effective Potential

In an effective potential approach, one replaces the quantum distribution function by a

classical distribution function with a modified potential. Thus, all the quantum effects in the

system are modelled solely through the forces acting on the electron. Effective potentials

are derived from a quantum mechanical description, either directly from the Schrödinger

Equation or from a quantum kinetic transport equation for the Wigner function.

20
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3.1 Fundamental of the Effective Potential

The idea of quantum potential is quite old and originates from the hydrodynamic formula-

tion of quantum mechanics, first introduced by de Broglie and Madelung, and later devel-

oped by Bohm. one begins with the one particle Schrödinger Equation, of the form

i�
∂ψ

∂t
= −(

�
2

2m
)∇2ψ + V (x)ψ, (3.1)

The wave function is written in complex form in terms of its amplitude R(r, t) and phase

S(r, t) as

ψ(r, t) = R(r, t)exp[iS(r, t)/�]. (3.2)

When substituted back into the Schrödinger Equation, one arrives at the following coupled

equations of motion for the density and phase

∂R(r, t)

∂t
= − 1

2m
[R(r, t)∇2S(r, t) + 2∇R(r, t) · ∇S(r, t)], (3.3)

∂S(r, t)

∂t
= −[

[∇(r, t)]2

2m
+ V (r, t) − �

2

2m

∇2R(r, t)

R(r, t)
]. (3.4)

It is convenient to write ρ(r, t) = R(r, t)2, where ρ(r, t) is the probability density. One

then obtains

∂ρ(r, t)

∂t
+ ∇ · (ρ(r, t) 1

m
∇S(r, t)) = 0, (3.5)

−∂S(r, t)

∂t
=

1

2m
[∇S(r, t)]2 + V (r, t) +Q(ρ, r, t). (3.6)
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In the classical limit the above equations are subject to a very simple interpretation. The

function S(r, t) is a solution of the Hamiltonian-Jacobi equation. If we consider an en-

semble of particle trajectories which are solutions of the equations of motion, then from a

well-known theorem of mechanics which states that if all of these trajectories are normal

to any given surface of constant S, then they are normal to all surfaces of constant S, and

∇S(r, t)/m equals the velocity vector, v. Therefore, Eq. 3.5 can be rewritten as

∂ρ(r, t)

∂t
+ ∇ · [ρ(r, t)v] = 0. (3.7)

Since ρ(r, t) is the probability density, ρv is the mean current of particles in the ensemble,

and Eq. 3.7 simply expresses conservation of probability or of particles in the ensem-

ble (continuity equation). Also note that Eq. 3.5, 3.6 arising from this so -called Madelung

transformation to the Schrödinger Equation, have the form of classical hydrodynamic equa-

tions with the addition of an extra potential, often referred to as the quantum or Bohm

potential, written as

Q = − �
2

2mR
∇2R ≈ − �

2

2m
√
n

∂2
√
n

∂x2
, (3.8)

where the density n is related to the probability density as n(r, t) = Nρ(r, t) = NR(r, t)2,

N being the total number number of particles in the ensemble. The Bohm potential essen-

tially represents a field through which the particle interacts with itself. Once we know the

field functions, one can calculate the force, os that, if one knows the initial position and

momentum of the particle, one can calculate its entire trajectory. This effective potential
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approach has been used, for example, in the study of wave packet tunnelling through [35],

where the effect of the quantum potential is shown to lower or smoothen barriers and hence

allows for the particles to leak through.

An alternative form of the quantum potential was proposed by Iafrate, Grubin and Ferry

[30], who derived a form of the quantum potential based on moments of the Wigner-

Boltamann equation.the kinetic equation describing the time evolution of the Wigner dis-

tribution function [31]. Their form for the quantum potential, based on moments of the

Wigner distribution function in a pure state, and involving an expansion of order O(�2), is

given by

VQ = − �
2

8m
∆(lnn), (3.9)

and is referred to as the Wigner potential, or as the density gradient correction. This form of

the Wigner potential is better thought of as a quantum pressure term, which works to modify

the actual potential to allow charge penetration into the classically forbidden regions.

Ferry and Zhou derived a form for a smooth quantum potential [36], based on the effective

classical partition function of Feynman and Kleinert [28], by linearizing an equation for

the equilibrium density matrix. The Feynman-Kleinert effective partition function involves

a smoothed potential of the form

Va2(x) =

∫
dy√
2πa2

exp{−(x− y)2

2a2
}V (y), (3.10)
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where V is the classical potential energy, a2 ∝ β�
2/m, β = 1/T is the inverse tempera-

ture, and m is the particle mass. The Ferry-Zhou effective stress represents the difference

between the smoothed and the local quantum potential �
2∇2n/8mn + V , where n is the

particle density. Their smoothing function is of the form exp(−(x−y)2/2a2)/|x−y|. Note

that the off-diagonal entries in the stress tensor are neglected in [36].

3.2 Ferry’s Effective Potential Approach

In analogy to the smoothed potential representations discussed above for the quantum hy-

drodynamic models, it is desirable to define a smooth quantum potential for use in quantum

particle-based simulations. Ferry [33] has suggested an effective potential that emerges

from the wave packet description of particle motion, where the extent of the wave packet

spread is obtained from the range of wavevectors in the thermal-distribution function. This

form for the effective potential allows one to build in certain quantum effects that primarily

arise from the non-zero size of the electron wave packet. One arrives at the final result by

noting that the potential, in an inhomogeneous system enters the Hamiltonian as [33]

Hν =

∫
V (r)n(r)dr (3.11)
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Using the non-local form(wave packet description) for the charge leads to

V =

∫
drV (r)

∑
i

ni(r) (3.12)

=

∫
drV (r)

∑
i

∫
dr′ exp(−|r − r′|2

α2
)δ(r′ − ri)

=
∑

i

∫
drδ(r − ri)

∫
dr′V (r′) exp(−|r − r′|2

α2
)

where the summation over i is a summation over the carriers themselves. The term in the

primed integration is now the effective potential, Veff , and the finite size of the electron has

been replaced by smoothing of the real potential. In essence, the effective potential, Veff , is

related to the potential obtained from the Poisson equation, through an integral smoothing

relation

Veff (x) =

∫
V (x+ y)G(y, a0)dy (3.13)

where G is a Gaussian with the standard deviation a0. In two dimensions, the formula

becomes,

Veff (x, y) =
1

2πaxay

∫ ∫
V (x′, y′)exp[−(x− x′)2

2a2
x

− (y − y′)2

2a2
y

]dx′dy′ (3.14)

where V is the actual potential, and ax,y are the standard deviations of the Gaussian wave

packet [34][35][36]. The flow of computing the effective potential is shown as below.

However, Veff is quite sensitive to the standard deviation of the wave packet. Fig. 3.2

shows potential derived from Ferry’s effective potential with various standard deviation
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of wave packet. Fig. 3.3 shows carrier density derived from Ferry’s effective potential.

From these two figures, we can find that the influence of a is quite significant. So, the

determination of its value is an important issue. We calibrate Ferry’s effective potential by

Schrödinger equation to determine the value of a. Fig. 3.4 shows the comparison between

SP equations and Ferry’s effective potential with five various values of a. Results from

these two methods are closest when a = 5 under following condition: thickness of oxide

= 20 nm, channel length = 40 nm, thickness of bulk = 24 nm, gate voltage = 0.9 V, and

doping concentration = 5e+23 / m3. Unfortunately, the results are not close anymore when

we change the gate voltage from 0.9 V to 1.0 V and keep a = 5. See Fig. 3.5.

In terms of computation, Ferry’s effective potential is a good approach, but not in terms of

sensitivity.
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Figure 3.1: Flow chart of Ferry’s effective potential. Ferry’s effective
potential formula don’t need to solved in the loop. It just
correct the potential which is convergent at last. Algorithm
in the loop we simulate by ISE, and calculate Ferry’s
effective by using our own code.
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Figure 3.2: Ferry’s effective potential of double-gate MOSFET in the
direction normal to the semiconductor/oxide interface with
various standard deviation of wave packet, a(Å). We only
show half curves because of symmetry. Potential shift down
as a is increasing. tox = 1 nm, Vd = Vg = 0.6 V, tsi = 10
nm, Lg = 20 nm, N = 1e22 / m3.
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Figure 3.3: Electron density from Ferry’s effective potential of
double-gate MOSFET in the direction normal to the
semiconductor/oxide interface with various standard
deviation of wave packet, a(Å). We only show half curves
because of symmetry. Carrier density shift down as a is
increasing. tox = 1 nm, Vd = Vg = 0.6 V, tsi = 10 nm, Lg =
20 nm, N = 1e22 / m3.
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Figure 3.4: Calibration of electron density of Ferry’s effective potential
by SP equations - I. We only show half curves because of
symmetry. (with tox = 1 nm, Lg = 40 nm, tsi = 24 nm,
V g = 0.9 V, N = 5e+23 / m3). We set a = 3, 4, 5, 6, 7 Åto
solve carrier density by effective potential. Result is the
most close to the result form SP equations when a = 5 Å.
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Figure 3.5: Calibration of electron density of Ferry’s effective potential
by SP equations - II. We only show half curves because of
symmetry. (with tox = 1 nm, Lg = 40 nm, tsi = 24 nm,
V g = 0.9 V, N = 5e+ 23 / m3). Result from effective is
not close to result from SP equations if we set V g = 1 V
and keep a = 5 Å.
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The Linear Regression

M ost studies and experiments, scientific or industrial, large scale or small, produce

data whose analysis is the ultimate object of the endeavor. Statistics is a pow-

erful tool. Regression analysis is a statistical technique for investigating and modelling

the relationship between variables. Applications of regression are numerous and occur in

almost every field. It is the most important step in our analyzing. Besides regression analy-

sis, there are several statistical methods to assist us in model establishing and checking. In

this chapter, we will present statistical approaches will be used in our discussion. Follow-

ing, we will present scattering plot, multiple linear regression, residual analysis and power

transformation.

32
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4.1 Scattering Plot

Scattering Plot is an important tool in statistical analysis. We can approximately know how

the correlation between variables before doing further statistical analysis. For example,

Fig. 4.1 shows population of U.S.A. from 1790 to 1990. The graph suggest the possibility

of fitting a quadratic or exponential trend [37]. Of course, scattering plot is a important

basis in statistical analysis.

Figure 4.1: Population of the U.S.A at ten-year intervals, 1790-1990.
From figure, we find that population increasing as years
increasing. And it appears quadratic or exponential trend.
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4.2 Multiple Linear Regression

4.2.1 Model Expression

A regression model that involves more than on regressor variables is called a multiple

regression model. Simple linear regression model is a special case of multiple linear re-

gression with only one regressor variables.

In general, the response y may be related to k regressor or predictor variables. The model

y = β0 + β1x1 + β2x2 + · · · + βkxk + ε, (4.1)

is so-called a multiple linear regression model with k regressors. The parameters βj, j =

0, 1, . . . , k are called the regression coefficients. This model describes a hyperplane in the k

dimensional space of the regressor variables xj . The parameter βj represents the expected

change in the response y per unit change in xj when all of the remaining regressor variables

xi(i �= j) are held constant. For the reason the parameters βj, j = 0, 1, . . . , k, are often

called partial regression coefficients.

Multiple linear regression models are often used as empirical models or approximating

functions. That is, the true functional relationship between y and x1, x2, . . . , xk is unknown,

but over certain ranges of the regressor variables the linear regression model is an adequate

approximation to the true unknown function [38].
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4.2.2 Estimation of The Model Parameters

The method of least squares can be used to estimate the regression coefficients in Eq. 4.1.

Suppose that n > k observations are available, and let yi denote the ith observed response

and xij denote the ith observation or level of regressor xj . We assume that the error term ε

in the model hasE(ε) = 0, V ar(ε) = σ2, and that the errors are uncorrelated. Furthermore,

we assume that the regressor variables x1, x2, . . . , xk are fixed variables, measured without

error.

We may write the sample regression model corresponding to Eq. 4.1 as

yi = β0 + β1xi1 + β2xi2 + · · · + βkxik + εi (4.2)

= β0 +
k∑

j=1

βjxij + εi ,

i = 1, 2, . . . , k.

The least-squares function is

S(β0, β1, . . . , βk) =
n∑
i

ε2
i (4.3)

=
n∑
i

(yi − β0 −
k∑

j=1

βjxij)
2.

The function S must be minimized with respect to β0, β1, . . . βk. The least-squares estima-

tors of β0, β1, . . . βk must satisfy

∂S

∂β0

|β̂0,β̂1,...,β̂k
= −2

n∑
i=1

(yi − β̂0 −
ˆk∑

j=1

βjxij) = 0 , (4.4)
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and

∂S

∂βj

|β̂0,β̂1,...,β̂k
= −2

n∑
i=1

(yi − β̂0 −
ˆk∑

j=1

βjxij)xij = 0 , (4.5)

j = 1, 2, . . . , k.

Simplifying Eq. 4.4 and Eq. 4.5, we obtain the least-squares normal equations

nβ̂0 + β̂1

n∑
i=1

xi1 + β̂2

n∑
i=1

xi2 + · · · + β̂k

n∑
i=1

xik =
n∑

i=1

yi, (4.6)

β̂0

n∑
i=1

xi1 + β̂1

n∑
i=1

x2
i1 + β̂2

n∑
i=1

xi1xi2 + · · · + β̂k

n∑
i=1

xi1xik =
n∑

i=1

xi1yi,

...

β̂0

n∑
i=1

xik + β̂1

n∑
i=1

xikxi1 + β̂2

n∑
i=1

xikxi2 + · · · + β̂k

n∑
i=1

x2
ik =

n∑
i=1

xikyi.

Note that there are p = k + 1 normal equations, one for each of the unknown regres-

sion coefficients. The solution to the normal equations will be the least-squares estimators

β̂0, β̂1, . . . β̂k.

It is more convenient to deal with multiple regression models if they are expressed in ma-

trix notation. This allows a very compact display of the model, data. and results. In matrix

notation, the model given by Eq. 4.2 is

y = Xβ + ε, (4.7)
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where

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

...

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
...

...

1 xn1 xn2 · · · xnk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0

β1

...

βk,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1

ε2

...

εn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.8)

In general, y is an n×1 vector of the observations, X is an n×p matrix of the levels of the

regressor variables, β is a p×1 vector of the regression coefficients, and ε is an n×1 vector

of random errors. We wish to find the vector of least-squares estimators, β̂, that minimizes

S(β) =
n∑
i

ε2
i = ε′ε = (y −Xβ)′(y −Xβ). (4.9)

Note that S(β) may be expressed as

S(β) = y′y − β′X ′y − y′Xβ + β′X ′Xβ (4.10)

= y′y − 2β′X ′y + β′X ′Xβ.
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since β′X ′y is a 1 × 1 matrix, or a scalar, and its transpose (β′X ′y)′ = y′Xβ is the same

scalar. The least-squares estimators must satisfy

∂S

∂β
|β̂ = −2X ′y + 2X ′Xβ̂ = 0, (4.11)

which simplifies to

X ′Xβ̂ = X ′y. (4.12)

Eq. 4.12 are the least-squares normal equations. They are the matrix analogue of the scalar

presentation in Eq. 4.6.

To solve the normal equations, multiply both sides of Eq. 4.12 by the inverse of X’X. Thus,

the least-squares estimator of β is

β̂ = (X ′X)−1X ′y, (4.13)

provided that the inverse matrix (X ′X)−1 exists. The (X ′X)−1 matrix will always exist

if the regressors are linearly independent, that is, if no column of the X matrix is a linear

combination of the other columns.

The fitted regression model corresponding to the levels of the regressor variables x′ =

[1, x1, x1, . . . , xk] is

ŷ = x′β̂ = β̂0 +
k∑

j=1

β̂jxj. (4.14)
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The difference between the observed value yi and the corresponding fitted value ŷi is the

residual

ei = yi − ŷi. (4.15)

We may develop and estimator of σ2 from the residual sum of squares

SSEes

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

e2i = y′y − β̂′X ′y. (4.16)

The residual sum of squares has n − p degrees of freedom associated with it since p para-

meters are estimated in the regression model. The residual mean square is

MSRes =
SSRes

n− p
, (4.17)

the expected value of MSRes is σ2, so an unbiased estimator of σ2 is given by

σ2 = MSRes. (4.18)

4.2.3 Hypothesis Testing in Multiple Linear Regression

The test for significance of regression is a test to determine if there is a linear relationship

between the response y and any of the regressor variables x1, x2, . . . , xk. This procedure is

often thought of as an overall or global test of model adequacy. The appropriate hypotheses

are

H0 : β0 = β1 = · · · = βk = 0,
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H1 : βj �= 0, for at least one j.

Rejection of this mull hypothesis implies that at least one of the regressors x1, x2, . . . , xk

contributes significantly to the model.

The procedure is a generalization of the analysis of variance (ANOVA). The total sum of

squares SST is partitioned into a sum of squares due to regression, SSR, and a residual

sum of squares, SSRes. Thus

SST = SSR + SSRes.

If the null hypothesis is true, then SSR/σ
2 follows a χ2

k distribution, which has the same

number of degrees of freedom as number of regressor variables in the model. Besides,

SSRes/σ
2 ∼ χ2

n−k−1 and that SSRes and SSR are independent. By the definition of an F

statistic,

F0 =
SSR/k

SSRes/(n− k − 1)
=

MSR

MSRes

, (4.19)

follows the Fk,n−k−1 distribution. Therefore, to test the hypothesis H0 : β0 = β1 = · · · =

βk = 0, compute the test statistic F0 and reject H0 if

F0 > Fα,k,n−k−1, (4.20)

where α is significant level. The test procedure is usually summarized in an ANOVA table

as follow:

Once we have determined that at least one of the regressors is important, a logical question
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Source of Variation Sum of Squares Degrees of Freedom Mean Square F0

Regression SSR k MSR
MSR

MSRes

Residual SSRes n− k − 1 MSRes

Total SST n− 1

Table 4.1: ANOVA table for significance of regression in multiple
regression. SSR, SSRES, and SST are square error. From
Degrees of Freedom, we can know there are n cases and k
parameters have to be estimated. Value of F0 is the criterion
to judge whether the model significant is.

becomes which one(s). Adding a variable to a regression model always causes the sum of

squares for regression to increase and the residual sum of squares to decrease. We must

decide whether the increase in the regression sum of squares is sufficient to warrant using

the additional regressor in the model. The addition of a regressor also increases the variance

of the fitted value ŷ, so we must be careful to include only regressors that are of real value

in explaining the response. Furthermore, adding an unimportant regressor may increase the

residual mean square, which may decrease the usefulness of the model.

The hypotheses for testing the significance of any individual regression coefficient, such as

βj , are

H0 : βj = 0,

H1 : βj �= 0.
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If H0 : βj = 0 is not rejected, then this indicates that the regressor xj can be deleted from

the model. The test statistic for this hypothesis is

t0 =
β̂j√
σ̂2Cjj

=
β̂j

se(β̂j)
, (4.21)

where Cjj is the diagonal element of (X ′X)−1 corresponding to βj . The null hypothesis

H0 : βj = 0 is rejected if |t0| > tα/2,n−k−1. Note that this is really a partial or marginal

test because the regression coefficient βj depends on all of the other regressor variables

xi(i �= j) that are in the model. Thus, this is a test of the contribution of xj given the other

regressors in the model.

4.2.4 Variable Selection in Regression Analysis

Because evaluating all possible regressions can be burdensome computationally, various

methods have been developed for evaluating only a small number of subset regression

models by either add or deleting regressors one at a time. These methods are generally

referred to as stepwise-type procedures. They can be classified into three broad categories:

(1) forward selection, (2) backward elimination, and (3) stepwise regression, which is a

popular combination of procedures 1 and 2.
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(a) Forward Selection

This procedure begins with the assumption that there are no regressors in the model other

than the intercept. An effort is made to find an optimal subset by inserting regressors

into the model one at a time. The first regressor selected for entry into the equation is

the one that has the largest simple correlation with the response variable y. Suppose that

this regressor is x1. This is also the regressor that will produce the largest value of the F

statistic for testing significance of regression. This regressor is entered if the F statistic

exceeds a preselected F value, say FIN . The second regressor chosen for entry is the one

that now has the largest correlation with y after adjusting for the effect of the first regressor

entered (x1) on y. We refer to these correlations as partial correlations. They are the simple

correlations between the residuals from the regression ŷ = β̂0 + β̂1x1 and the residuals

from the regressions of the other candidate regressors on x1, say x̂j = α̂0j + α̂ajx1, j =

2, 3, . . . , k. Suppose that at step 2 the regressor with the highest partial correlation with y

is x2. This implies that the largest partial F -statistic is

F =
SSR(x2|x1)

MSRes(x1, x2)
. (4.22)

If this F value exceeds FIN , then x2 is added to the model. In general, at each step the

regressor having the highest partial correlation with y is added to the model if its partial

F -statistic exceeds the preselected entry level FIN . The procedure terminates either when

the partial F -statistic at a particular step does not exceed FIN or when the last candidate
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regressor is added to the model.

(b) Backward Elimination

Backward elimination begins with a model that includes all k a candidate regressors. Then

the partial F -statistic is computed for each regressor as if it were the last variable to enter

the model. The smallest of these partial F -statistics is compared with a preselected value,

FOUT . If the smallest partial F value is less than FOUT , that regressor is removed from the

model. Now a regression model with k − 1 regressors is fit, the partial F -statistics for this

new model calculated, and the procedure repeated. The backward elimination algorithm

terminates when the smallest partial F value is not less than the preselected cutoff value

FOUT .

(c) Stepwise Regression

The two procedure described above suggest a number of possible combinations. One of the

most popular is the stepwise regression algorithm. Stepwise regression is a modification of

forward selection in which at each step all regressors entered into the model previously are

reassessed via their partial F -statistics. A regressor added at and earlier step nay now be

redundant because of the relationships between it and regressors now in the equation. If the

partial F -statistic for a variable is less than FOUT , that variable is dropped from the model.

Stepwise regression require two cut off values, FIN and FOUT . Some analysis prefer to
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choose FIN = FOUT , although this is not necessary. Frequently we choose FIN > FOUT ,

making it relatively more difficult to add a regressor than to delete one.

Among the three selection procedures, stepwise selection is known to be the most effective

and is therefore recommended for general use [38][39].

4.3 Residual Analysis

Graphical analysis of residuals is a very effective way to investigate the adequacy of the

fit of a regression model and to check the underlying assumptions. In this section, we

introduce and illustrate the basic residual plots [41].

4.3.1 Normal Probability Plot

A very simple method of checking the normality assumption is to construct a normal prob-

ability plot of the residuals. This is a graph designed so that the cumulative normal distribu-

tion will plot as a straight line. Let e[1] < e[2] < · · · < e[n] be the residuals ranked in increas-

ing order. If we plot e[i] against the cumulative probability Pi = (i− 1
2
)/n, i = 1, 2, . . . , n,

on the normal probability plot, the resulting points should lie approximately on a straight

line. Substantial departures from a straight line indicate that the distribution is not normal.

Usually normal probability plots are constructed by plotting the ranked residual e[i] against

the expected normal value Φ−1[(i− 1
2
)/n], where Φ denotes the standard normal cumulative
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distribution. This follows from the fact that E(e[i]) 	 Φ−1[(i− 1
2
)/n].

4.3.2 Plot of Residuals against the Fitted Values

A plot of the residuals ei versus the corresponding fitted values ŷi is useful for detecting

several common types of model inadequacies. If the scattering plot indicates that the resid-

uals can be contained in a horizontal band, then there are no obvious model defects. Else if

the plot has strange pattern , then we may try to transform the response variable to improve

the model. The outward-opening funnel pattern implies that the variance is and increasing

function of response value. A curved plot which is nonlinearity may mean that other re-

gressor variables are need in the model. Transformations on the regressor or the response

variable may also be helpful.
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4.4 Power Transformation

Generally, transformation are used for three purposes: (1) stabilizing the response variance,

(2) making the distribution of the response variable closer to the normal distribution, (3)

improving the fit of the model to the data.

We often find that the power family (Eq. 4.23) of transformation is very useful. Box

and Cox(1964) have shown how the transformation parameter λ may be estimated simul-

taneously with the other model parameters. The theory underlying their method uses the

method of maximum likelihood.

f(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yλ−1
λ
, λ �= 0;

ln y, λ = 0.

(4.23)

Notice that we cannot select a value of λ by directly comparing the error sums of squares

from analysis of y after transformation, because for each value of λ the error sum of squares

is measured on a different scale.

In applying the Box-Cox method, we recommend using simple choices for λ, because the

practical difference between λ = 0.5 and λ = 0.58 is likely to be small, but the square

root transformation is much easier to interpret. Fig. 4.2 shows that Likelihood achieves

maximum when λ = −0.148 and 95% confidence interval. By the reason above, we prefer

choosing λ = 0 [40].
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Figure 4.2: The Box-Cox likelihood plot. x axis is value of λ, and y
axis is likelihood function. Likelihood achieves maximum
when λ = −0.148. The three vertical dot line indicate 95%
confidence interval. Plot by S-PLUS.



Chapter 5

Results and Discussion

In the chapter, the simulation results are shown and the statistical results are also discussed.

First of all, the calibration of Ferry’s effective potential is introduced. We use least square

error to determine value of standard deviation of wave packet. Second, range of variables

we simulation and some constraint of variables will be stated. There is collinearity phe-

nomenon because of these constraint. At last, results will be shown and we will discuss

according to the results, including double-gate and SOI MOSFET. And models will be

presented. We will also compare the statistical results with simulation results.

49
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5.1 Calibration of Ferry’s Effective Potential

Figure 5.1 shows the classical carrier density and carrier density corrected by SP equa-

tions. Fig. 5.2 shows carrier density from Ferry’s effective potential with various standard

deviation of wave packet. However, different values of a cause quite different results. We

calibrate the value by comparing with result from Schrödinger equation. We determine the

value of standard deviation of wave packet by achieving the criterion

min
a

n∑
i=1

(nSP,i − nEP,a,i)
2 (5.1)

where nSP,i is carrier density of mesh i from SP equations, nEP,a,i is carrier density of mesh

i from Ferry’s effective potential.

For every condition of device, we determine a value of a by above criterion. In simulation

procedure, we scan a from 0 to 20 with step 0.001, unit is Å. Range of a we get is about in

the range from four to twelve. The value generally used is 5 Å, and it is during the interval.
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Figure 5.1: Classical electron density and electron density corrected by
SP equations of double-gate MOSFET. And we treat result
from SP equations as reference includes quantum effect.
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Figure 5.2: Electron density corrected by Ferry’s effective potential
with various standard deviation of wave packet of
double-gate MOSFET. We will choose value of a such that
result is close to the result from SP equations.
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5.2 Data Collection by Using Device Simulation Tool

Here, we set several different conditions to find the suit values of standard deviation of

wave packet. Values of standard deviation of wave packet is the dependent variable. And

we consider following independent variables: 1. channel length (Lg), 2. gate voltage (Vg),

3. drain voltage (Vd) , 4. thickness of bulk (tsi), 5. thickness of oxide (tox) , 6. doping

concentration (N). Beside, every variable has limiting of range.

1. Channel length : 20, 30, 40, 50 (nm) [43]

2. Gate voltage : 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 (V)

3. Drain voltage : 0.6, 0.7, 0.8, 0.9 (V), if Vg=0.6

0.7, 0.8, 0.9, 1.0 (V), if Vg = 0.7 V

...

1.1, 1.2, 1.3, 1.4 (V), if Vg = 1.1 V

(ensure device is in the saturation region)

4. Thickness of bulk : 8, 10, 12 (nm), if Lg = 20 nm

12, 15, 18 (nm), if Lg = 30 nm

...

20, 25, 30 (nm), if Lg = 50 nm

(only discuss devices whose ratio of Thickness of bulk over Channel length ≈ 1/2

[44][45][46][47] proposes that device whose ratio of Thickness of bulk over Channel length
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≈ 1/2 has better characters.)

5. Thickness of oxide : 1, 1.5, 2 (nm)

6. Doping concentration : 1e16, 5e16, 1e17, 5e17 (/cm3)

Here, we only discuss symmetric double-gate MOSFET. Besides, we will set thickness of

one oxide is equal to 200 nm with gate voltage 0 V. And we will treat the latter be SOI

structure.

5.3 Modelling and Simulation Results

5.3.1 Modelling Double-Gate MOSFET

In this part, we only consider double-gate MOSFET. First, Table 5.1 shows the correla-

tion between every independent variables. Because of our design of experiments, we can

find that there is collinearity phenomenon among some variables. Figs. 5.3, 5.4, 5.5, 5.6,

5.7, 5.8 show the scattering plots : each independent variable against standard deviation

of wave packet. Obviously, we can find that there are not only linear correlations but also

quadratic correlations between dependent variable and some independent variables. So, we

will add square terms into the model. Because there is collinearity phenomenon, effect of

some variables may be weakened so that variables are not significant. Besides, we also add

interaction terms to check whether there are interaction effects or not.
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All models we establish will be analyzed by stepwise method:

Independent variables : 1. Variables 1∼ 6

2. Square terms of Variables 1∼ 6

3. Second order interaction terms of Variables 1∼ 6

Model I Dependent variable : Standard deviation of wave packet

Residual analyses of model I are shown as Fig. 5.9 and Fig. 5.10. Clearly, we can know

model I is bad from Fig. 5.10.

We try to transform the dependent variable by power transformation. Fig. 5.11 is Likeli-

hood plot of power transformation. Likelihood achieves maximum when λ = −0.148. By

the reason stated before, we prefer to set λ = 0. So, we try to take log of standard deviation

of wave packet.

Model II Dependent variable : ln(Standard deviation of wave packet)

Figure 5.12 and Fig. 5.13 show the residual analyses of model II. Obviously, model II is

not good, either.

1D quantum correction may be not enough for devices with ultra-short channel [48][49][50].Now,

we reduce data and retain data whose channel length longer than 20nm only. Then we get

model III and model IV.

Model III Dependent variable : Standard deviation of wave packet

Model IV Dependent variable : ln(Standard deviation of wave packet)
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Residual analyses are shown from Fig. 5.14 to Fig. 5.17.

We find that results of model IV is good from plots of residual analysis.

Lg Vg Vd tsi tox N
Lg 1 0.808 0.67 0.881 0 0
Vg 1 0.827 0.712 0 0
Vd 1 0.607 0.016 0.022
tsi 1 0 0
tox 1 0
N 1

Table 5.1: Correlation Table: pairwise correlation between every
variables. There may be collinearity phenomenon if there is
high correlation between two variables.

Following are ANOVA table, residual statistics, coefficient table, and formula.

Source SS DF MS F0 R2

Regression 9.729 9 1.081 21929.330 0.999
Residual 0.015 314 4.93e− 5
Total 9.744 324

Table 5.2: ANOVA table for significance of regression in multiple
regression in double-gate MOSFET. R2 is almost equal to 1,
so the model is good in terms of explanatory ability.
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Minimum Maximum Mean Std. deviation
Predicted value 1.4146 2.1109 1.6934 0.17332
Residual -0.009687 0.009424 0 0.00436

Table 5.3: Residual statistics in double-gate MOSFET: It shows points
have maximum and minimum. Absolute value of residual
are all less than 0.001.

Model Coefficients Std. Error t
constant 4.297 0.016 261.890
Vg -3.372 0.033 -100.897
tox2 0.196 0.002 93.732
Vg2 1.372 0.018 78.249
tox -0.339 0.008 -42.779
Lg -0.02 0.0008 -41.989
Lg2 0.00018 0.001 32.470
N -0.003 0.0006 -20.360
Vg*tox -0.143 0.007 -19.367
Lg*tox 0.0001 0.0002 4.727
Vd -0.005 0.003 -1.942
tsi 0.000018 0.0002 -2.41

Table 5.4: Coefficients table in double-gate MOSFET: the first frame is
name of variable; second is the coefficient of variable; third
is standard deviation of coefficient; the last frame is value of
t distribution.

ln(a) = 4.297 + (1.372V g2 − 3.372V g) + (0.196tox2 − 0.339tox) (5.2)

+ (0.00018Lg2 − 0.02Lg) − 0.005V d− 0.003N − 0.000018tsi

+ 0.0001Lg × tox− 0.143V g × tox,
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where unit of N is 1e17/cm3.

After generating formula, we have to check whether the model is reasonable. From scat-

tering plots, we can find that response variable appears monotone decreasing or increasing.

On the other hand, our model is a second order formula. If maximum or minimum occur

during the interval we simulate, then the results are suspect. In our model, there are three

second order terms, Vg, tox, and Lg. Maximum or minimum occur about at Vg=1.23,

tox=0.86, Lg=55.55. All of them are out of range of simulation. So, the formula is rea-

sonable.

Because we used stepwise method to select variables. Variable selected into the model

earlier has larger effect. In table 5.4, effect of variable is decreasing according to the order

of variables. We know that gate voltage, thickness of oxide, and channel length dominate

the variation of standard deviation of wave packet. In fact, effects of drain voltage and

thickness of bulk are insignificant. It may resulted from collinearity of variables. It doesn’t

mean that drain voltage and thickness of bulk will not influence the results.

Form table 5.3, maximum of residual occurs when ln(a) = 2.1112. In the other word,

maximum of residual is 0.08146 when a = 8.258. If we want to simplify the model, we

may delete some variables whose effects are too small and estimate model again.
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Figure 5.3: Scattering Plot : Channel length vs. Standard deviation of
wave packet. It appears quadratic trend. Therefore, we will
add the quadratic terms into the model.
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Figure 5.4: Scattering plot : Gate voltage vs. Standard deviation of
wave packet. It appears quadratic trend. Therefore, we will
add the quadratic terms into the model.
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Figure 5.5: Scattering plot : Drain voltage vs. Standard deviation of
wave packet. It appears quadratic trend. Therefore, we will
add the quadratic terms into the model.
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Figure 5.6: Scattering plot : Thickness of bulk vs. Standard deviation
of wave packet. It appears quadratic trend. Therefore, we
will add the quadratic terms into the model.
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Figure 5.7: Scattering plot : Thickness of oxide vs. Standard deviation
of wave packet. It appears quadratic trend. Therefore, we
will add the quadratic terms into the model.
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Figure 5.8: Scattering plot : Doping concentration vs. Standard
deviation of wave packet. From this figure, the effect of
doping concentration may be not so evident.
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Figure 5.9: Normal plot of Model I. Y axis is cumulate probability of
normal distribution, and X axis is cumulate probability of
observed residual. The result is satisfied.
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Figure 5.10: Scattering plot : Fitted value against residual of model I. It
appears nonlinear pattern. Therefore, we may conclude
that the model I is not good.
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Figure 5.11: Likelihood plot of power transformation. Likelihood
achieve maximum when λ = −0.148. We prefer to set
λ = 0.
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Figure 5.12: Normal plot of Model II. Y axis is cumulate probability of
normal distribution, and X axis is cumulate probability of
observed residual. The result is satisfied.
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Figure 5.13: Scattering plot : Fitted value against residual of model II.
It appears nonlinear pattern. Therefore, we may conclude
that the model II is not good.
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Figure 5.14: Normal plot of Model III. Y axis is cumulate probability
of normal distribution, and X axis is cumulate probability
of observed residual. The result is satisfied.
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Figure 5.15: Scattering plot : Fitted value against residual of model III.
It appears nonlinear pattern. So the model III is not good.
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Figure 5.16: Normal plot of Model IV. Y axis is cumulate probability of
normal distribution, and X axis is cumulate probability of
observed residual. The result is satisfied.
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Figure 5.17: Scattering plot : Fitted value against residual of model IV.
It appears flat band pattern, so the model IV is good.
Combining result of normal plot. The model IV is good.
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5.3.2 Accuracy of Model of Double-Gate MOSFET

In this part, some comparison of characters will be presented. And the conditions of devices

are: tox = 1 nm, Lg = 40 nm, tsi = 24 nm, Vg = 0.9 V, Vd = 1V, and N = 5e23 / m3.

First, we show the comparison of electron density among SP model, optimized effective

potential, and effective potential from regression model, Fig. 5.18. From magnified figure,

we can find results from effective potential both shift to right side. How the degree of

displacement will be produced? Now, we define

X̄ =

∫
xndx∫
ndx

as the expectation value of electron density. In case shown in Fig. 5.18, X̄sp = 1.817, X̄optimize =

2.031, X̄model = 2.046. Displacement of X̄ is about 2Å.

Following, we show the comparison of Id − V g curves, Fig. 5.31. Drain current solved

form effective potential is always lower than solved from SP equations. Besides, curves

solved from effective potential with optimized a and a from model are almost equal. Max-

imum of different between SP equations and effective potential about 0.3 mA.
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Figure 5.18: Comparison of electron density: peaks of electron density
solved from Ferry’s effective potential both shift to right
side.
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Figure 5.19: Id-Vg curve:solid line is solved from SP equations while
dash line is solved from effective potential. curves solved
from effective potential with optimized a and a from model
are almost equal. Curve of effective potential is some
lower than SP equations. Maximum of different between
SP equations and effective potential is about 0.3 mA.
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5.3.3 Modelling Double-Gate and SOI MOSFETs

In this part, we will analyze data of double-gate and SOI structure together. In other words,

we want to construct a model more general, suitable for double-gate and SOI MOSFET

simultaneous.

By previous experience, we proceed power transformation (Fig. 5.20). Similarly, we take

log of standard deviation of wave packet and establish model by stepwise method. Scat-

tering plots of response variable against independent variables are shown form Fig. 5.21

to Fig. 5.27. Following are ANOVA table, residual statistics, coefficients table and model

after analyzing.

Source SS DF MS F0 R2

Regression 25.136 14 1.795 43774.815 0.999
Residual 0.026 633 4.107e− 4
Total 25.162 647

Table 5.5: ANOVA table for significance of regression in multiple
regression. R2 is equal to 0.99. Explanatory ability of the
model is good.
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Minimum Maximum Mean Std. deviation
Predicted value 1.2254 2.1107 1.5999 0.19711
Residual -0.011223 0.01284 0 0.00633

Table 5.6: Residual statistics : It shows points have maximum and
minimum. We can find that residual of new model is some
larger than previous.

Model Coefficients Std. Error t
constant 4.281 0.02 214.278
Vg1 -3.295 0.04 -81.523
tox12 0.196 0.003 77.711
Vg12 1.341 0.021 63.424
Lg -0.0205 0.006 -36.042
S -0.185 0.005 -35.941
tox1 -0.338 0.01 -35.2
Lg2 0.00018 0.001 27.161
Vg1*tox1 -0.159 0.009 -17.862
N -0.003 0.0007 -17.416
Lg*tox 0.0008 0.001 6.65
Vd -0.008 0.003 -2.364
tsi -0.0000874 0.0003 0.974

Table 5.7: Coefficients table: the first frame is name of variable; second
is the coefficient of variable; third is standard deviation of
coefficient; the last frame is value of t distribution.

ln(a) = 4.277 + (1.341V g12 − 3.295V g1) + (0.196tox12 − 0.338tox1) (5.3)

+ (0.00018Lg2 − 0.0205Lg) − 0.008V d− 0.003N − 0.0000874tsi

+ 0.0008Lg × tox1 − 0.159V g1 × tox1 − 0.185S
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In Eq. 5.3, there is a new variable, S. This variable has only two values, 0 and 1. When

S = 0, it indicates double-gate MOSFET. While S = 1, it indicates SOI structure. Other

variables are the same as before. This formula is extended to suit for two structure. From

Eq. 5.2 and Eq. 5.3, we can find that change of coefficient of variables in both equations is

not evident. It indicates that trends in these two structures are similarly. However, residual

of Eq. 5.3 is some larger than formula only for double-gate MOSFET.
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Figure 5.20: Likelihood plot of power transformation. Likelihood
achieve maximum when λ = −0.082. It is more close to
0. So we still prefer to set λ = 0.
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Figure 5.21: Scattering plot : Thickness of oxide vs. Standard deviation
of wave packet. It appears quadratic trend. So we will add
the quadratic terms into the model.



82 Chapter 5 : Results and Discussion

Figure 5.22: Scattering Plot : Channel length vs. Standard deviation of
wave packet. It appears quadratic trend. So we will add
the quadratic terms into the model.
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Figure 5.23: Scattering plot : Thickness of bulk vs. Standard deviation
of wave packet. It appears quadratic trend. So we will add
the quadratic terms into the model.
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Figure 5.24: Scattering plot : Gate voltage vs. Standard deviation of
wave packet. It appears quadratic trend. So we will add
the quadratic terms into the model.
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Figure 5.25: Scattering plot : Drain voltage vs. Standard deviation of
wave packet. It appears quadratic trend. So we will add
the quadratic terms into the model.
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Figure 5.26: Scattering plot : Doping concentration vs. Standard
deviation of wave packet. From this figure, the effect of
doping concentration may be not so evident.
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Figure 5.27: Scattering plot : Structure vs. Standard deviation of wave
packet. 0 indicates double-gate, 1 indicates SOI structure.
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Figure 5.28: Normal plot. Y axis is cumulate probability of normal
distribution, and X axis is cumulate probability of
observed residual. The result is satisfied.
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Figure 5.29: Scattering plot : Fitted value against residual of formula
5.3. It appears flat band pattern, so the model is good.
Combining result of normal plot. The model is good.
Circles indicate cases of double-gate, and stars indicate
cases of SOI.
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5.3.4 Accuracy of Model of Double-Gate and SOI MOSFET

We establish another model which is suit for double-gate and SOI MOSFETs at the same

time. We will discuss how accurate the model is. Similarly, we calculate X̄ for the new

model of device with the same conditions used before, Fig. 5.30 . Then we get X̄model =

2.067. The change seems not so evident. Result of the new model is some worse than

model in section 5.3.1 in this case. Maybe result of new model is better in other case. What

we can say is that variation of residual of new model is larger. Besides, Id-Vg curves are

almost the same, Fig. 5.31.

Of course, we will check accuracy in SOI. X̄sp = 2.07, X̄optimize = 2.157, X̄model = 2.136.

Though X̄model is closer to X̄sp, but the error of curve of electron density is larger, Fig.

5.32.

From results of double-gate and SOI structure, we can find that residual of the latter is larger

than the former. Model suit for two kinds of devices is more general, but the accuracy will

be worse. Nevertheless, the accuracy seems acceptable.
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Figure 5.30: Comparison of electron density: peaks of electron density
solved from Ferry’s effective potential both shift to right
side.



92 Chapter 5 : Results and Discussion

Figure 5.31: Id-Vg curve:solid line is solved from SP equations while
dash line is solved from effective potential. curves solved
from effective potential with optimized a and a from model
are almost equal. Curve of effective potential is some
lower than SP equations. Maximum of different between
SP equations and effective potential is about 0.3 mA.
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Figure 5.32: Comparison of electron density: From this case, we can
find that residual of this model is larger.
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Figure 5.33: Id-Vg curve:solid line is solved from SP equations while
dash line is solved from effective potential. curves solved
from effective potential with optimized a and a from
model are still almost equal. But different is more clear.
Curve of effective potential is some lower than SP
equations. Maximum of different between SP equations
and effective potential is about 0.35 mA.
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5.4 Discussion

We simulate devices with channel length which is equal to 20 nm, 30 nm, 40 nm and 50

nm, respectively in double-gate MOSFET. We can’t get a better model if we analyze all

data. However, if we delete data whose channel length equal to 20 nm, then we establish a

model not bad. On the other hand, people have proposed that quantum effective will appear

in channel direction when channel length is shorter than 20 nm. So, 1D Ferry’s effective is

not suit for those devices.

From our simulation, we get formula for double-gate MOSFET and SOI structure. And

from formula, we know how the outer factors effect value of standard deviation of wave

packet. Effects of drain voltage and thickness of bulk are not significant in our results.

Collinearity of data may be one of the reason. Their influence may be increasing while

collinearity is decreasing.

In terms of structure, double-gate and SOI MOSFET are similarly. However, characters of

these structure may be some different. So, formula for both structures is not as good as

formula only for one structure.

From scattering plots, we can know there are simple correlations between regressors vari-

ables and response variable. So we using the simplest model to fit it first. And results are

satisfied. Therefore, we don’t establish model which is more complicated.



Chapter 6

Conclusions

In this thesis, models of standard deviation of wave packet have been established success-

fully. Accuracy was also presented with comparing to the results solved from SP equations,

including electron density and I-V curve. From previous models, we can know what outer

conditions effect the standard deviation of wave packet evidently. Both models have their

own merit and shortcoming. Models seems acceptable in terms of error. In this chapter, the

contributions of the thesis will be addressed firstly, and followed by the future works.
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6.1 Summary

In this thesis, we focus on the Ferry’s effective potential and try to find the behavior of

standard deviation of wave packet with various outer conditions. We use statistical meth-

ods to build multiple linear regression model. We don’t use advanced model because we

have gotten good results.

Models of standard deviation of wave packet are established under some constraint of con-

ditions. Under these constraint, we know that channel length, gate voltage,and thickness

of oxide dominate the variation of standard deviation of wave packet form models. From

these results, we can’t say drain voltage and thickness of bulk are marginal with certainty

because of collinearity of our data. In addition to model for double-gate MOSFETs, we

also establish a model suit for double-gate and SOI MOSFETs simultaneously. Perhaps

residual of the latter is larger than the former. But the different seems not so evident. The

model may be not suitable for devices whose conditions exceed these constraint or with

other structures. However, statistical methods presented in this thesis can be extend to

analysis similar problem.
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6.2 Future Work

Besides double-gate MOSFET and SOI, there are still many structures of devices. In thesis,

we discuss these two structures because of similarity in structure. Recently, ultra thin

barrier device is proposed. Its structure is between double-gate and SOI MOSFET. On the

other hand, double-gate structure will become single gate if we set thickness of bulk thicker

and only one gate in our condition. In terms of structure, we can discuss several kinds of

structures or characteristics of devices at the same time to make formula more general. By

experience in this thesis, model more general may lose accuracy. Here, we only consider

those direct outer conditions as regressor variables. Transformation of regressor variables

may be important and efficient factors. Besides, we only use the most popular model -

linear regression model. Advanced model may arise better results for more complicated

data.
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Appendix A

Effective Potential Source Code of

Matlab

We simulate classical transport model and SP model by software-ISE. There is no command

of effective potential. So we simulate classical transport model to get potential without

quantum mechanism first. And then use following code to get Ferry’s effective potential.

EP

According to the equation,

Veff (x) =

∫
V (x+ y)G(y, a0)dy.
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We evaluate 1D effective potential by using potential solved from classical transport model.

Following is code of previous equation:

for i=1:Nr

for j = 1:Nr

potentialeff(1,i)=potentialeff(1,i)

+potential2D(temp,j)* exp(-(i-j)*(i-j)*dr*dr/(2*a*a))*dr;

end

for j = 1:Nr-1

potentialeff(1,i)=potentialeff(1,i)+

potential2D(temp,j)* exp(-(2*Nr-i-j)*(2*Nr-i-j)*dr*dr/(2*a*a))*dr;

end

end

potentialeff=potentialeff/(sqrt(2*pi)*a);

for i=1:Nr

edensity(1,i) = ni*exp((potentialeff(1,i)-phin(Nr*(temp-1)+i))/Vt)/1e+6;

end



Appendix B

ISE Commands for Classical Transport

and Schrödinger Equation

We use ISE in most of our simulation. Here, we will present commands in ISE. First part,

we define mesh and doping concentration. Second part, we present the model we used and

some outer conditions. Last, we show keywords of Drift-Diffusion model and Schrödinger

equation. If we want to coupled these models, we have to add these commands into second

part.
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B.1 MDraw Commands

Title ”Untitled”

% Definition of mesh. We can set several commands to build irregular mesh.

Definitions{

#Refinement regions

Refinement”name”

{

MaxElementSize=(0.0005 0.0005)

MinElementSize=(0.0001 0.0001) }

#Profiles

% Definition of Doping. Here, we can set not only doping concentration, but also me-

terial.

Constant”S” {

Species=”ArsenicActiveConcentration”
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Value=1e+20

}

Constant”D” {

Species=”ArsenicActiveConcentration”

Value=1e+20

}

Constant”B” {

Species=”BoronActiveConcentration”

Value=1e+17

}

}

B.2 Dessis Commands

% Here, we can set outer conditions and models.

% Initial setting.

Electrode{
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{Name=”source” Voltage=0.0}

{Name=”drain” Voltage=0.0}

{Name=”gate” Voltage=0.0 Barrier=-0.4}

}

% File need to include.

File{

Grid = ”@grid@”

Doping =”@doping@”

Plot = ”@dat@”

current =”@plot@”

Output = ”@log@”

Param = ”@parameter@”

}

%model will be included

Physics{

Mobility(

PhuMob

HighFieldsaturation(GradQuasiFermi)

Enormal
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)

}

%numerical setting

Math{

Extraploate

Derivatives

RelErrControl

Figits=5

ErRef(electron)=1e10

ErRef(hole)=1e10

Notdamped=50

Iterations=30

Newdiscretization

ConstRefPot

DirectCurrent

}

%model will be included

Solve{

#initial solution



114 Appendix B : ISE Commands for Classical Transport and Schrödinger Equation

NewCurrentFile=”INIT”

CoupledPoisson Electron Hole Quasistationary(

InitialStep=1e-2 Increment=1.2

Minstep=1e-5 MaxStep=0.5

Goal{Name=”drain” Voltage=0.8}

)

NewCurrentFile=””

Quasistationary(

InitialStep=1e-2 Increment=1.2

Minstep=1e-5 MaxStep=0.5

Goal{Name=”gate” Voltage=0.8}

)

}

B.2.1 key words

If we want to include Drift-Diffusion model or Schrödinger equation, we can adding follow

code into dessis commands.
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(a) Drift-Diffusion

Solve{ Coupled{Poisson Electron Hole}}

(b) Schrödinger

Physics(RegionInterface=”name of interface”)

{Schroedinger (

Electron

MaxSolutions=8)}



Appendix C

Energy Band of Double-Gate MOSFET

Here, we only consider double gate devices and set device with thickness of oxide1= thick-

ness of oxide2 = 1.5 nm, channel length = 30 nm, gate1 voltage = gate2 voltage = 0.9 V,

drain voltage = 1.0 V, doping concentration = 1e16 / cm3, thickness of bulk = 15 nm be the

reference. And we change thickness of bulk, doping concentration, gate voltage, thickness

of oxide, drain voltage and channel length in turn. We draw plots of energy band corre-

sponding to each condition as follows. When we focus on the neighborhood of SiO2/Si

interface (potential well), we can find that gate voltage, thickness of oxide, channel length

and doping concentration influence the shape of well significantly. Thickness of bulk and

drain voltage just shift the position of well and variation is not significant. Degree of effects

from these figures and results from statistical analysis are unanimous.
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Figure C.1: Energy band plot of various thickness of bulk. The main
effect of change of thickness of bulk is the range of flat
band. Change of band nearby the SiO2/Si interface is not
evident.
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Figure C.2: Energy band plot of various doping concentration. As
increasing of doping concentration, energy band shift up.
There is some change of shape of band nearby the SiO2/Si
interface.
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Figure C.3: Energy band plot of various gate voltage. Increase of gate
voltage not only shifts down the energy band, but also
deepens the depth of energy band nearby the interface.
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Figure C.4: Energy band plot of various thickness of oxide. Decrease
of thickness of oxide influences the shape of energy band
nearby the interface.
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Figure C.5: Energy band plot of various drain voltage. Change of drain
voltage shift the energy band. Change of shape energy
band is not evident.
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Figure C.6: Energy band plot of various channel length. Increase of
channel length will deepen the depth of energy band
obviously.



Appendix D

A Brief Instruction to SPSS

SPSS is a Data Analysis with Comprehensive Statistics Software. It is a modular, tightly in-

tegrated for the analytical process: planning, data collecting, data access, data management

and preparation, data analysis, reporting, and deployment. In this research, scattering plot,

multiple linear regression and residual analysis. In this Appendix, the adopted features are

introduced.
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Figure D.1: Table of data: every column indicates a variable; and every
row indicates a case.
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Figure D.2: Before processing model analysis, usually we will observe
scattering plots to assist our variables setting.
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Figure D.3: In our analysis, we use linear regression. So, we have to
choose bottom : Analyze / Regression / Linear.
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Figure D.4: We have to set response variable into the ”Dependent”
frame, and choose regressor variables into the
”Independent” frame. Besides, we can choose methods to
select regressor variables.
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Figure D.5: After setting model, we can mark Normal probability plot
and choose residual terms to check residual analysis.




