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Abstract

The purpose of this paper is to propose and study a new OAAT procedure for Phase |
analysis in statistical process control that only discards the most extreme sample at a time. Our
simulation study demonstrates that the OAAT procedure reduces dramatically the occurrences
of false alarms. It can overcome the drawback that the practice of discarding all beyond-limits
samples at each iteration of chart construction throws away too many in-control samples. We
also suggest a new strategy on when to inspect the process to look for assignable causes for

samples signaling out-of-control alarms. The new strategy may save tremendous amount of

time and money in bringing the“process to-in-control state. The most popular Shewhart X
Chart is used for illustrating the new precedure: Three methods of detecting out-of-control
samples are studied: (i) the traditional method that controls the individual false alarm rate; (ii)
the Bonferroni method that controls the overall false alarm rate; (iii) a sequential p-value
method that controls the false discovery rate. We apply the OAAT procedure to the three
methods. The performance of the proposed schemes is evaluated and compared in terms of the

expected number of false alarms and the expected number of true alarms via simulation studies.
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1. Introduction

Process monitoring based on control charting usually consists of two phases—Phase |
and Phase II. The purpose of this paper is to propose and study a new strategy for Phase I
process monitoring. In Phase I, process data are collected and analyzed with the goals to
evaluate the process stability and to model the in-control process. Thus, control charts are
often used in Phase I to signal out-of-control conditions of the process so that corrective
actions can be taken to bring the process to the in-control state.

To construct a suitable control chart for the on-line process monitoring in Phase II, good
estimates of the in-control process parameters, e.g., the mean and standard deviation of the
monitoring statistic, are needed for setting up reliable control limits. For this, we need a set of
in-control process data.

In Phase I, samples are colleeted fromuthe process to determine if they come from the
in-control process. The current: practice is_ to use thé dataset to set up preliminary control
limits for the monitoring statisti¢; such.as X »R, or'S, to identity potential “out-of-control”
points. For simplicity, we only consider the“points that exceed the control limits as the
“out-of-control” points in this study. Other rules such as run rules can be added in real
applications. If there are samples exceeding the control limits, then the operators or process
engineers should investigate the process to see if there are any assignable causes for these
beyond-limits points. If indeed some assignable causes are found, then appropriate corrective
actions should be taken to eliminate the causes. If any of corrective actions changes the
process itself, we need to re-collect data from the new process and re-start the whole
screening process again. If the assignable causes do not affect the current process, then we can
simply discard the out-of-control points and re-do the control charting using the remaining
data. If no assignable causes can be found, then people can choose either keep or discard these

points. No one knows which action is correct without further information since the points may



exceed the limits simply by chance or there may be some uncovered assignable causes. For
being conservative, many practitioners may choose to discard these beyond-limits points to
avoid potential contamination in the dataset. Having excluding these beyond-limits points,
another set of preliminary control limits is calculated from the remaining dataset for further
screening of the out-of-control data points. The above screening steps are repeated until no
more beyond-limits points are found.

In this paper, we study this practice and find that it tends to mistakenly screen out too
many in-control data points. Thus we propose a more effective procedure for collecting
in-control data for Phase II usage.

Statistically, in any control charting, there are possibilities that some in-control samples
may get wrongly discarded and some out-of-control samples may remain undetected, which
are similar to committing Type I and Type II errors.in hypothesis testing respectively. A good
control chart should be able to centrol these two types-of error rates. However, it is surprising
to observe that the practice of discarding all the beyond-limits points (when no assignable
causes are found) can be quite inefficient, in-the sense that more than expected in-control
samples are discarded.

On the other hand, it is also well known that usually there will be more than expected
out-of-control samples not detected with the preliminary control limits when data are
contaminated by some out-of-control samples. The reason is that these out-of-control samples
usually introduce more variation to the data, which makes the preliminary control limits too
wide.

To detect these out-of-control samples and to prevent losing too many in-control samples
as well, we propose an add-on iterative procedure called One-At-A-Time (OAAT) procedure
that discards only the most extreme beyond-limits point and then updates the control limits at
each iteration. It is found from the simulation study that, with control limits constructed under

the same overall false-alarm rate (defined later), the OAAT procedure will screen out much



less in-control samples than the traditional discard-all practice and in general still have about
the same power in detecting out-of-control samples.

We remark here that the traditional practice inspects the process for assignable causes
when an out-of-control signal occurs, while the new procedure only performs the
investigation at the end of the whole iterating process. The final number of beyond-limits
points is most likely less than or equal to that of the discarding-all practice. Thus the new
practice can reduce the number of times of investigation and possible adjustments of the
process, which may reduce a great deal of costs. Of course, the new procedure will need more
computing power, which is no longer an issue with the enhancing computer power nowadays.

Another important issue to address is the criteria of performance evaluation of control
charts used in Phase I analysis. Currently in the literature the evaluation is mostly based on a
so-called “signal probability” (Sullivan and Woodall, 1996), which is defined as the
family-wise signal rate, the probability that at least one sample point in the dataset signals out
of control. The overall false-alarm rate‘mentioned above is the signal probability when the
process is in control. Therefore the.signal probability criterion can only evaluate the
effectiveness of the control schemes on judging if the whole dataset comes from the in-control
process or not.

Since signal probability can not distinguish cases with different numbers of
out-of-control points, it is not really a good measure for comparing the performance of
different screening methods. To fit the purpose of Phase I analysis better, we suggest using the
expected number of correctly rejected samples and the expected number of wrongly rejected
samples as the comparison criteria. The former measures the detecting power and the latter
measures the frequency of the false alarms.

In genetic research, people often select significant genes through the control of the
family-wise error rate (FWER) in multiple hypotheses testing. Classical methods such as the

Bonferroni approach for testing the significance of each gene suffer tremendous loss of power



since the number of genes under investigation is huge, say, in thousands. To overcome this
difficulty, Benjamini and Hochberg (1995) suggested a sequential p-value method to control
the false discovery rate (FDR) (to be defined later) for finding the significant genes. They
claimed that this FDR procedure has better power than the Bonferroni approach. Since
screening out-of-control data points is similar to finding significant genes, we are interested in
the effectiveness of this sequential p-value method in our application.

The traditional approach in Phase I control charting is to control the individual
false-alarm rate for each sample no matter how many samples are tested. A more recent
approach is to control the overall false-alarm rate (a ), usually a Bonferroni-type error rate
(ou/m) is used for controlling the individual false-alarm rate for each of the m samples. We
compare the Bonferroni method and FDR method in this paper. We also apply the OAAT
procedure to the FDR method (denoted by OAAT/FDR) to improve the screening process.

We shall describe the new strategy with the Shewhart X control chart. The rest of this
paper is organized as follows. Section.2-teviews the related fundamentals of Phase I analysis.
Section 3 compares the traditional method controlling the individual false-alarm rate with its
OAAT version (denoted by OAAT/traditional) as well as comparing the Bonferroni method
controlling the overall false-alarm rate with its OAAT version (denoted by OAAT/Bonferroni).
Section 4 compares three methods: Bonferroni, FDR, and OAAT/FDR method. Section 5

summarizes the results of the study and gives some possible future research directions.



2. Literature Review

The first control chart was invented by Walter Shewhart, who made significant
contributions to the quality of manufactured products (Juran, 1997). Afterwards, control
charts have been one of the main tools of statistical process control (SPC). They are used to
identify special causes of variability in a process by a graphical representation of a quality
characteristic for the process under investigation (Hoyer and Ellis, 1996a, b, ¢, Nelson, 1999).

There are two distinct phases in control charting practice (see, e.g. Woodall, 2000). In
Phase I, control charts are used for retrospectively testing whether the process is in control. In
Phase II, control charts are used for monitoring the process for detecting any change from the
in-control state. Woodall (2000) remarked that significant effort for process understanding and
process improvement is often required in the transition from Phase I to Phase II.

In practice, the process parameters (e.g., mean and standard deviation) needed for
constructing control limits in Phase dl-arc usually ‘unknown. Therefore, for estimating the
process parameters, we often face to'collect a set of process data and to decide whether they
come from an in-control process. If not, one needs to inspect the out-of-control data points for
assignable causes. We may eliminate assignable causes, if found, to stabilize process (Woodall,
2000) or discard some of these out-of-control samples and estimate the process parameters
with the remaining presumably in-control data (Jones and Champ, 2002). Some estimation
problems in constructing control charts are explicitly mentioned in Woodall and Montgomery
(1999); also see Reynolds and Stoumbos (2001), Nedumaran and Pignatiello (2001), and
Albers and Kallenberg (2004 a, b). For instance, in Jones and Champ (2002), it was pointed
out that if one thinks of checking the m samples in a Phase I X control chart for stability as a
sequence of m hypothesis tests for the mean, then these tests are dependent when the mean
and standard deviation are estimated with all of the m samples. In order to achieve a fixed

overall false-alarm rate, the control limits must be based on the joint distribution of the m



control charting statistics.

In early days, control charts are designed based on controlling the individual false-alarm
rate for each sample no matter how many samples are tested (e.g., Hunter, 1998, Vermaat et
al., 2003). Recently many research works on Phase I analysis are designed based on
controlling the overall false-alarm rate. With a fixed individual false-alarm rate, the overall
false-alarm rate gets larger when the number of samples m gets larger. This is why many
authors choose to adjust the individual false-alarm rate with Bonferroni-type procedures in
order to provide a reasonable overall false-alarm rate (see, e.g., Borror and Champ, 2001;
Champ and Chou, 2003; Mahmoud and Woodall, 2004; Nedumaran and Pignatiello, 2000).
Nedumaran and Pignatiello (2005) discussed many issues in constructing retrospective X
control chart limits so as to control the overall probability of a false alarm at a desired level.

However, as mentioned before, Bonferroni-type methods tend to have little power in
detecting out-of-control samples, especially when the- number of samples is large. The FDR
method proposed by Benjamini-and :Hochberg (1995) has the advantage of having higher
power compared to the Bonferroni method for testing multiple hypotheses.

Consider the problem of testing m (null) hypotheses, of which m, hypotheses are true.
Let R, and R denote the number of the rejected true hypotheses and the total number of the

rejected hypotheses, respectively. Table 1 summarizes the four possible outcomes of the m

tests.
Table 1: Possible outcomes from m hypothesis tests
Declared Declared Total
non-significant significant
True null hypotheses m, - R, R, M,
Non-true null hypotheses m, —R, R, m,
Total m—-R R m




The false discovery rate, FDR, is defined as the expected proportion of erroneously

rejected null hypotheses. With R, and R representing, respectively, the number of true null

hypotheses rejected and the total number of null hypotheses rejected in a multiple testing

procedure, let Q =R,/R if R>0and Q =0 if R = 0. Then E(Q) is the FDR. The family-wise
error rate (FWER) is defined as P(R, >1), which is different from the “signal probability”
defined as P(R>1). Note that when the process is in control, the FWER and the signal
probability are the overall false-alarm rate.

Benjamini and Hochberg (1995) also proved that:

(a) When all the null hypotheses are true, the FDR is the same as the FWER. This is
obvious since in this case R, =R and thus E(Q)=P(R2>1)=P(R, >21) =FWER.

(b) When only part of the null hypotheses are true and the others are false, the FDR is

smaller than or equal to the FWER: The proofis also simple: when R, =0, then Q =0;
when R, 21, then Q=R;/R <l Thus I #=Q- Taking expectations on both sides leads

to P(R, 21) 2E(Q).

Thus, any procedure that controls‘the FWER also controls the FDR. Therefore, the FDR
offers a less stringent multiple-testing criterion than the FWER. The FDR may be more
appropriate for some applications, particularly where a large number of null hypotheses tests
are involved, for example, the microarray data analysis in bioinformatics.

Benjamini and Hochberg (1995) proved by induction that the following FDR method
controls the FDR at level « when the p-values of the observed test statistics (under the null
hypothesis) are independent and identically distributed as uniform [0, 1].

Step 1: Compute the p-values of the observed test statistics under the null hypothesis.

Step 2: Order the p-values as p, <...<p,.

Step 3: Calculate k*=max {1<k<m:p,, <ak/m}.



Step 4: If k* exists, then reject the null hypotheses corresponding to { Py, Pyes) }5

otherwise, reject nothing.
Benjamini and Yekutieli (2001) proved that this same procedure also controls the FDR
when the test statistics have positive regression dependency on each of the test statistics
corresponding to the true null hypotheses. Some other related research works on FDR include

Finner and Roters (2001, 2002) and Sarkar (2002).



3. The New Strategy and the OAAT Method

3.1 Traditional Method
3.1.1 Estimating Process Parameters
Assume the set of process data in Phase I is in the form of m independent random

samples {X;,..., X;,}", (each of size n) taken in the order of the process output. When the m

samples are all from an in-control process, we assume X; ’s are independent and identically

distributed as  N(,,0,7),fori=1,2,...,mandj=1,2,...,n

The most commonly used estimator of 4, is
m —_—
> X, (1)

where X, is the sample mean of the i sample. There are many estimators of o, given in

the literature (e.g., Champ and Chou, 2003; Nedumarah and Pignatiello, 2005). The following

three variability-related statistics are considered-in Champ and Chou (2003):

ﬁzzm: §:Zm:si /m, and V' /23 /m, Q)

where R, and S; are respectively the sample range and sample standard deviation of the i

sample with

:Jﬁim— XY ©
j=1

Unbiased estimators of o, can be obtained by rescaling these statistics as:

—1/2

, and &, = , 4)

4,m

where d, =E(R)/o, can be easily found in many quality control textbooks,



_ (/) nd C _ N20(m(n-D+1)/2)
Jn=1r((n-1/2)" M m(n=nr(mn-1/2)°

4

Champ and Chou (2003) chose V'?/C,  astheir preferred estimator of o, because

4,m

—1/2 - —_

) < Var((s:—) < Var(g—). %)

4,m 4 2

Var(

Following their arguments, we let 6, = v'?/C,. in this paper.

4,m

3.1.2 The Control Limits of the Traditional Method

A Shewhart control chart is defined by a lower control limit (LCL), a center line (CL),

and an upper control limit (UCL). These values are defined for the Phase I Shewhart X

chart by
LCLX:[’O_kX%’ Cl= A UCLx:f‘oJka%,
where
[102%2:)?3 and &0:\7”2/C4’m,

The statistic X, (the i™ sample mean) is plotted against the sample number i. If any
point falls below LCLy or above UCLg, it is taken as an evidence that the associated

sample is from an out-of-control process. For the traditional Shewhart chart, the constant K

is usually taken as 3.

3.1.3 The Individual and the Overall False-Alarm Rate of the Traditional Method

When the m samples are all from an in-control process, X, — X is distributed as

m(n—1)V

2

2 E
N(O,m—lﬁ) fori=1,2, ..., m. Note that )?i — X is independent of
m n o,

, which is

distributed as ;(,f](nfl) ,the y° distribution with degrees of freedom m(n—1). Therefore,

10



Jmn(%-%) _ m%-%) [V ©
Jm-pW  Jm-noz ey

is distributed as t the t distribution with degrees of freedom m(n-1).

m(n-1) »

Since

JmncL, -X) _ Jmn(kgg,/vn) _ kgvm
Jm-DW Jm-DW  Cym-1’

the individual false-alarm rate is

(7

: ke /M
=2(1-F  (—*— 8
(24 ( tmm,l)(cé"m\/m))a ( )

where F_

is the cumulative distribution function of the t, ,, distribution.

It is easy to show that the traditional method controls the overall false-alarm rate at level
1-(1-a")™ when the m hypothesis tests are independent. For example, o is 0.0793 when
m =30, n=5, and ky =3. Unfortunately,this.is not the case for Phase I applications of
control charts since all the tests involve some-¢ommon parameter estimators. However, our
simulation study indicates that the overall false-alarm rate for the case of m =30, n=5, and

ki =3 is about 0.078, fairly close to 0.0793 for the independent tests.

Table 2 lists the o (individual false-alarm rate) corresponding to {ky =3} when the m

tests are independent. Note that the overall false-alarm rate « increases as m increases or as

n decreases.

3.2 Criteria for Performance Evaluation
As mentioned before, screening out-of-control data points is similar to finding significant
hypotheses. Similar to Table 1, assume that there are m, in-control samples and m,

out-of-control samples among m samples. R samples are rejected, and among them, R,

11



in-control samples are falsely rejected and R, out-of-control samples are correctly rejected.
We shall evaluate the performance by E(R;) and E(R,), the expected values of R, and
R, respectively.

In Phase I, practically, we care less on the question of “whether there are any data points
come from an out-of-control process” but more on “which data points come from an
out-of-control process”. However, many authors evaluated the performance of a control chart
by the signal probability, which can only provide a measure for the first question. Note that
when the process data consist of a mixture of in-control and out-of-control data (i.e., when m
> m,> 0), then the signal probability (denoted by P) is not the overall false-alarm rate (it is
only when m, =0) or the detecting power (only when m, =m), and alarms can be signaled
by either true or false alarms or both. For this reason, it is somewhat questionable to evaluate
the performance by the signal probability.

It seems more realistic to evaluate a control chart in Phase I analysis in terms of making
more correct decisions on the state of each data point— in-control or out-of-control. Thus we
propose to evaluate the performance-of-a monitoring scheme by the expected number of true
rejections and the expected number of false rejections. The former has the same flavor as the
Type I error in the hypothesis testing and the latter is more or less measuring the detecting
power of the scheme.

3.2.1 A Simulation Study
Many SPC books have recommended that 20-30 subgroups of size 4 or 5 be used for

estimating the process parameters (see, e.g., Montgomery, 2005). Thus, we choose the setting

of m =30, n=5, and ki =3 for illustrating the behaviors of the above criteria in our

simulation study. Without loss of generality, we can let x,=0and o,=1.
Consider m; =0,3,6,9,12and 6 =0 (0.4) 4 (thatis, m, subgroups shift from g,

to u,+00,). For each combination of m, and &, we simulate 1,000,000 datasets. Each

12



dataset produces its own R, and R,. When R;+R, >0, the alarm signals. We estimate the
signal probability P by P, the sample proportion of such signals among the 1,000,000
datasets. Let ﬁo , the average of the 1,000,000 R,’s, be the estimate of E(R;), and Iil , the

average of the 1,000,000 R,’s, be the estimate of E(R)).

For the 41 combinations of m, and & considered, the standard errors of the P are
about 0-0.00049, and the standard errors of the R, and R, are about 0-0.00227. Table 3

shows the values of P, R,, and R,. The following observations can be made from the
results displayed.

(a) For m, =0 (i.e. the process is in control), P, the estimate of the overall false-alarm
rate, is about 0.078, which is quite close’to the-hominal value 0.079.

(b) For m =0, R, is 0.0828, which is greater than P =0.078. The reason is that when

an alarm signals, R, =1, while!in iestimating traditional overall false-alarm rate P, the

signaling alarm only counts one no matter how.many points are beyond the control limits.

(c) As expected, Iil increases as the size of the shift & increases, but §0 increases as
well —this is the cost of instability.

(d) |§1 moves in the same direction as P, and yet it contains more information than p.
It indicates, in the average, how many true out-of-control samples the method can detect. On

the other hand, R, can measure how often false alarms can occur. As to P, recall that when

O<m <m, P is just the alarm signaling rate, and the alarm for each dataset can be

triggered by samples from either state.

3.3 The Performance of the OAAT/Traditional Procedure

3.3.1 When to Inspect the Process for Assignable Causes

13



As mentioned before, there may be some out-of-control samples undetected at each
iteration of the control chart construction, especially when the preliminary control limits are
constructed using a set of data contaminated by some out-of-control samples. These
out-of-control samples often inflate the estimate of o, which makes the control limits too
wide. If we inspect the process looking for assignable causes for each of the alarms whenever
it signals, as the current practice suggests, the number of times of stop-and-inspect may be
unnecessarily high. Here we suggest a new strategy: run through the whole iterative procedure
by removing all beyond-limits points at each iteration, and then perform the inspection for
assignable causes at the end.

By examining the results of the above practice, it is found that the number of false alarms
is higher than we would expect. To reduce the wasteful false alarms, we propose and study a
new practice —discard only one samiple at a timerinstead of discarding all in the traditional
method. Our simulation study shows that! this OAAT/traditional procedure can reduce the
number of false alarms dramatically,which_in turn will reduce the amount of time in
conducting unnecessary investigations-for non=existing assignable causes and reserve more
in-control data for more efficient process modeling. The main reason why this procedure
works is that the most extreme point is more likely to be an out-of-control sample compared
to others. In contrast, the traditional method discards all the samples beyond the control limits
at each iteration, thus there is more chance that some may be in-control samples.

3.3.2 The OAAT Procedure
We describe the OA AT/traditional procedure below:
Step 1. Construct the preliminary control limits with all collected data.
Step 2. If no out-of-control samples are identified, stop iterating and go to Step 4;
otherwise, discard the most extreme sample.
Step 3.  Construct the preliminary control limits with the remaining samples; go to

Step 2.
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Step 4.  Collect all the samples discarded in the above iterations and inspect the
process for assignable causes.

3.3.3 The Simulation Study

Set m=30, 50, 100 and n=5, 10, 15. For each combination, consider the situations m,=

0.1m, 0.2m, 0.3m, 0.4m and 6 = 0.4 (0.4) 4. For each case considered, simulate 1,000,000

datasets and calculate R, and R, as described before. The estimated standard errors of R,
and R, are about 0-0.0069.
Table 4 gives the R, of the two procedures (traditional vs. OAAT/traditional) when all

the m samples are from the in-control process. Note that the R, of the OAAT/traditional

procedure is less than the traditional method in every case considered. This means that the

OAAT/traditional procedure will signals fewer false alarms.

For n =5, 10, 15, Figures -3 respectively plot the simulated R /m,and R,/m, versus
o for various values of m and my;. The following observations can be made from the results
displayed.

(a) The performance of the OAAT/traditional procedure in terms of R/m, is slightly

better than that of the traditional method in general. And, for fixed m, the advantage increases

as m, increases.

(b) The R,/m, of the OAAT/traditional procedure is uniformly smaller than that of the
traditional method. And, for fixed m, the advantage increases as m, increases. Note that all
the R,/m, curves of the OAAT/traditional procedure lie almost flat on x-axis, which means

the new procedure seldom signals false alarms.
(c) From figures we can see that the improvement of the OAAT procedure in some

situations is extremely large.
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In summary, the OAAT/traditional method offers a good alternative to the traditional
method for practical use. It is as powerful as the traditional method, but can diminish the
false-alarm rate dramatically.

The number of samples m also plays an important role on the extent of the improvement

of the OAAT procedure. We study the effect of m in the next subsection.

3.4 The Effect of m
Since the overall false-alarm rate increases when the number of samples m increases, we
use the Bonferroni method to control the family-wise error rate o in this Subsection.

3.4.1 The Simulation Study

Let ke =/(m=1)/mC, t . .on- The value t  _ is the 100y™ percentile of a t

/4

distribution with v degrees of freedom. Letar=0:05. We list the value of k; in Table 5.

Note that ki increases as m increases or as-n decreases.

In this study, we simulate “1,000,000 datasets using the same setting as given in

Subsection 3.3.3 and calculate R, and R, for each situation considered. The standard errors

of R, and R, are about 0-0.00998.

Table 6 gives ﬁo when all the m samples are from the in-control process. The R, of

the OAAT/Bonferroni procedure is smaller than that of the Bonferroni method in each

situation.
For n =5, 10, 15, Figures 4-6 respectively plot the simulated ﬁ]/ m, and ﬁo/ m, values

versus O for various values of mand m, . The following observations can be made from the

results displayed.

(a) The ﬁ]/ m, of both the procedures decreases in general as m increases — this is the
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effect of multiplicity control, which means that for controlling a fixed overall false-alarm
rate (o) for m samples, the individual false-alarm rate (& =a/m) gets smaller as m

increases, hence the number of beyond-limits points also gets smaller as m increases.

(b) The R,/m, of each of the both procedures decreases when m increases — the reason
is similar to (a).

(c) The performance of the OAAT/Bonferroni procedure in terms of Iil /m, 1is about the
same as the Bonferroni method.

(d) The OAAT/Bonferroni procedure performs much better in terms of R,/m, than the
Bonferroni method. However, the advantage decreases as m increases. This is because when
m increases, fewer false alarms can occur for the Bonferroni method but the OAAT procedure
already has very few false alarms,ithus the difference between the two methods becomes
smaller. In other words, the effect of multiplicity control is more for the Bonferroni method
than for the OAAT/ Bonferroni procedure.

In summary, applying the OAAT procedure to the Bonferroni method has the advantage

of reducing the number of false alarms dramatically, while retaining a similar power of

detecting out-of-control samples.
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4. The FDR Method and the OAAT/FDR Procedure

4.1 Bonferroni Method
To control the overall false alarm at a desired level o, the most common practice for
testing m hypotheses simultaneously is the Bonferroni method, which simply controls the

individual false-alarm rate at level o =a/m.
Recall that ~/mn(X, - X)/(m—D\W is distributed as t,, . the t distribution with
degrees of freedom m(n—1). It is easy to show that the control limits for the Bonferroni

method are

vm-— 1\/\7 9
m(n-1),a" /2 /mn ’ ( )

X +t

where « is the individual false-alarm rate:

4.2 Comparing Bonferroni-and. FDR-Methods
This subsection compares the performance: of the Bonferroni method and the FDR

method in terms of the signal probability P, E(R;),and E(R)).

4.2.1 The Simulation Study
In this study, we set « =0.05 and a =0.05/m. Consider m = 30, n = 5, m=0,3,6,9,
12, and 6 =0 (0.4) 4. Simulate 1,000,000 datasets and calculate p , §0 , and Iil for each

combination considered. The standard errors of the P are about 0-0.000496, and the

standard errors of R, and R, are about 0-0.00267.

Table 7 and Figure 7 show the simulated p , Iio and |§1 for m =0,3,6,9,12 and

0 =01(0.4) 4. The following observations can be made from the results displayed.

(a) When m, =0, which means the process is in control, the overall false-alarm rate of
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the Bonferroni method is smaller than that of the FDR method. Although they both control the

overall false-alarm rate at level 0.05, the former is more conservative.
(b) R, of the FDR method is uniformly larger than that of the Bonferroni method and

the advantage increases as m, or ¢ increases. So, the former is more powerful.
(c) But R, of the FDR method is also uniformly larger than that of the Bonferroni

method. And, the disadvantage increases as m, or o increases.

Benjamini and Hochberg (1995) indicated that the FDR method is much more powerful
than comparable procedures controlling the traditional family-wise error (the overall
false-alarm rate when all the samples are in control). However, here we find in (c) that the
performance of the FDR method in terms of E(R;) is worse than that of the Bonferroni
method. This is similar to the relationship between the Type I and Type II errors in testing
hypothesis.

The number of samples m-is also an-important' factor, especially in genetic research.
Benjamini and Hochberg (1995) showed by simulation that the power of the FDR method in
terms of the signal probability is uniformly larger than the Bonferroni method and the
advantage increases in m as well as m, /m.

We investigate the effect of the OAAT procedure when applied on the FDR method in

the next section.

4.3 The Performance of the OAAT/FDR Procedure

Here, we apply the OAAT procedure to the FDR method by discarding only the sample
with the minimum p-value in each iteration.
4.3.1 The Simulation Study

In this study, we simulate 1,000,000 datasets using the same setting as given in

Subsection 3.3.3 and calculate R, and R, for each situation considered. The standard errors
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of R, and R, are about 0-0.0093.
Table 8 gives the ﬁo of the three procedures (Bonferroni, FDR, and OAAT/FDR) when

all the m samples are from the in-control process. Note that the ﬁo of the OAAT/FDR

procedure is uniformly smaller than that of the FDR method, but larger than that of the
Bonferroni method in each situation. This means that the OAAT/FDR procedure signals fewer
false alarms than the FDR method, but signals more than the Bonferroni method, which is

because the Bonferroni method is very conservative.

Forn=35, 10, 15, Figures 8-10 respectively plot the simulated Iil /m, and ﬁo /m, versus
o for various values of mand m,. The following observations can be made from the results
displayed.

(a) The ﬁl/ m, of each of the three procedures:decreases in general as m increases, but
increase as n increases.

(b) The R,/m, of each of the three procedures decreases as m increases.
(c) The R,/m, of the Bonferroni method increases as n increases and the same for the

FDR method, but the R,/m, of the OAAT/FDR procedure decreases in most cases.

(d) The OAAT/FDR procedure performs about the same as the FDR method in terms of
R,/m, . The advantage increases as M, increases and increases in most cases as M increases
or n decreases.

(e) The R,/m, of the OAAT/FDR procedure is uniformly smaller than that of the FDR

method. Also, the advantage increases as m, or n increases, but decreases in most cases as m
increases. Note that the performance of the OAAT/FDR procedure is much better than that of

the FDR method.

20



(f) Except for a small number of cases, the Iil/ml of the OAAT/FDR procedure is

larger than that of the Bonferroni method. The advantage increases as m, increases and

increases in most cases as m increases or N decreases.
(g) The ﬁo /m, of the OAAT/FDR procedure is much smaller than the Bonferroni
method in most cases. And, the advantage increases as m, or n increases, but decreases as m

increases.

In summary, applying the OAAT procedure to any control schemes has the advantage of
reducing the number of false alarms dramatically, while retaining the similar power of

detecting out-of-control samples.
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5. Conclusions

In this paper, we study some strategies of Phase I analysis in control charting. It is found
that the practice of discarding all beyond-limits samples at each iteration in constructing
appropriate control charts has a major drawback of throwing away too many in-control
samples. To overcome this drawback, we propose and study in this paper a new OAAT
procedure that only discards the most extreme sample at a time. Our simulation study
demonstrates that the OAAT procedure reduces dramatically the occurrences of such false
alarms. And this advantage is more profound when the process is more unstable (i.e., more
out-of-control samples or larger o ).

We also suggest a new strategy on when to inspect the process to look for assignable
causes for samples signaling out-of-control alarms—instead of performing stop-and-inspect
whenever alarms signal. The new strategy'is;.run. through the whole iterative procedure by
removing beyond-limits points-onerat-a_time at-each iteration and then perform the
investigation for all alarms after all-the remaining samples are all in control. This practice
may save tremendous amount of time and money in bringing process to in-control state.

We study three approaches of error control —the traditional method, Bonferroni method,
and FDR method. They control, respectively, the individual false-alarm rate, the overall
false-alarm rate, and the false discovery rate. The individual false-alarm rate of the traditional
method is kept fixed for each sample at each iteration, but this rate of the other two methods
becomes larger when more beyond-limits samples are removed as the screening process
progresses.

Under the same overall false-alarm rate, the FDR method is more powerful than the
Bonferroni method, but mistaken more in-control samples for being out of control. The
OAAT procedure can overcome this problem.

There are many criteria for evaluating performance of different control schemes
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considered in the literature, including signal probability (P(R>1)), FWER (P(R, >1)), FDR
(E(R,/R)), and the E(R,) and E(R)) (or E(R,/m,) and E(R,/m,)) suggested in this paper.
The signal probability considers “the process” as a whole. It only assesses the ability of
judging if a process is in control or not. It does not assess the scheme on its performance of
screening out out-of-control samples and/or keeping in-control points. The FWER and FDR
emphasize more on the false-alarm rate of the scheme. With a mixture of in-control and
out-of-control samples in the dataset, perhaps it is more appropriate to use two indicators —
one to assess the false-alarm rate and the other to assess the detection power, such as E(R;)
and E(R)) (or E(R,/m,) and E(R,/m,)). E(R,) and E(R,) assess false alarms and true alarms
separately, and they can distinguish between cases with different numbers of alarms.

The X chart used in this paper is just for demonstration of the above ideas. The new
strategy of Phase I analysis, evaluation criteria for control schemes, and the new OAAT

procedure can be applied to any ether control charts.
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Tables

Table 2: The individual false alarm rate (o) and the overall false-alarm rate (& ) for

various m and n when k? =3,

m n Cim a a
30 5 0.9979 0.0028 0.0793
30 10 0.9991 0.0025 0.0719
30 15 0.9994 0.0024 0.0698
50 5 0.9988 0.0027 0.1278
50 10 0.9994 0.0026 0.1207
50 15 0.9996 0.0025 0.1187
100 5 0.9994 0.0027 0.2381
100 10 0.9997 0.0026 0.2318
100 15 0:9998 0.0026 0.23
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Table 3: P , §1 , and ﬁo of the traditional method based on 1,000,000 replications for

various M, and O when m =30, n =5, and ks =3.

m, o P R R,
0 0 0.0780 0 0.0828
0.4 0.1104 0.0426 0.0769
0.8 0.2853 0.2478 0.0867
1.2 0.653 0.8394 0.1011
1.6 0.9336 1.7609 0.1241
3 2 0.9965 2.5399 0.1539
2.4 1 2.8986 0.194
2.8 1 2.9872 0.2445
3.2 1 2.9991 0.3085
3.6 1 3 0.3864
4 | 3 0.482
0.4 0.1322 0.0684 0.0767
0.8 0.3651 0.3512 0.1101
1.2 0.759 1.1836 0.1726
1.6 0.9729 2.6721 0.2742
6 2 0.9995 4.3063 0.4276
2.4 1 5.409 0.6549
2.8 1 5.8643 0.9736
3.2 1 5.9802 1.4109
3.6 1 + 5.9981 1.9864
4 1 ' 5.9999 2.7252
0.4 01442 T 0.0815 0.0784
0.8 03926 0.3652 0.1514
1.2 0.7664 1.1841 0.3005
1.6 0.9715 2.7942 0.5729
2 0.9994 4.9658 1.0277
? 2.4 1 6.9747 1.7382
2.8 1 8.245 2.7604
3.2 1 8.7973 4.1422
3.6 1 8.9612 5.8693
4 1 8.9948 7.896
0.4 0.1521 0.087 0.0829
0.8 0.3979 0.3276 0.2054
1.2 0.7475 0.9919 0.4906
1.6 0.9582 2.3681 1.0576
12 2 0.9983 4.5105 2.0402
2.4 1 7.0427 3.5516
2.8 1 9.2968 5.5863
3.2 1 10.8186 8.0168
3.6 1 11.5927 10.5676
4 1 11.8906 12.9224
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Table 4: R, of the traditional method and the OAAT/traditional procedure when all the

samples are in control for various combinations of m and n.

m | n traditional OAAT/ traditional
30| 5 0.0834 0.0818
30 | 10 0.075 0.0738
30 | 15 0.0726 0.0716
50| 5 0.1384 0.1362
50 | 10 0.1291 0.1273
50 | 15 0.1271 0.1254
100| 5 0.2749 0.2711
100| 10 0.2651 0.2617
100] 15 0.2639 0.2606

Table 5: ki for various m-and-n when the overall false-alarm rate « 1is at 0.05.

m n a o (am)| K

30 5 0.05 0.0017 3.1561
30 10 0.05 0.0017 3.1197
30 15 0.05 0.0017 3.1094
50 5 0.05 0.001 3.3021
50 10 0.05 0.001 3.2772
50 15 0.05 0.001 3.2701
100 5 0.05 0.0005 3.4897
100 10 0.05 0.0005 3.4750
100 15 0.05 0.0005 3.4708
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Table 6: R, of the Bonferroni method and the OAAT/Bonferroni procedure when all

the samples are in-control for various combinations of m and n.

m | n Bonferroni OAAT/Bonferroni
30| 5 0.0508 0.0502

30 |10 0.05 0.0495

30 |15 0.0505 0.05

50| 5 0.0507 0.0503

50 |10 0.0496 0.0493

50 |15 0.0514 0.0511

100| 5 0:05 0.0498
100]10 0.0494 0.0493
100|15 0.0508 0.0506
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Table 7: P, R, and R, between the Bonferroni method and the FDR method when m

=30 and n =5.
m, ) P Rs Ros P- R Ror
0 0 0.0478 0 0.0497 0.0493 0 0.0571
0.4 0.0726 0.0291 0.0474 0.0751 0.0326 0.0572
0.8 0.2126 0.1853 0.0533 0.2206 0.2155 0.0817
1.2 0.5642 0.691 0.0631 0.5818 0.8458 0.1462
1.6 0.8955 1.5766 0.0776 0.9079 1.8897 0.2479
2 0.9925 2.4201 0.0994 0.9943 2.6607 0.3542
3 2.4 0.9999 2.8564 0.1261 0.9999 2.9386 0.4584
2.8 1 2.9794 0.1611 1 2.9934 0.5759
3.2 1 2.9984 0.2048 1 2.9996 0.7224
3.6 1 2.9999 0.2606 1 3 0.9046
4 1 3 0.3281 1 3 1.1337
04 0.0867 0.0456 0.0468 0.0902 0.0531 0.0588
0.8 0.2744 0.2566 0.0687 0.2893 0.3336 0.1189
1.2 0.6642 0.9445 0.1119 0.6971 1.4047 0.3162
1.6 0.9472 2.3084 0.1817 0.9629 34119 0.7329
2 0.9984 +3.9743 0:2915 0.9993 5.0692 1.3343
6 2.4 1 5.2293 0.4575 1 5.7832 2.0908
2.8 1 5.8044 0.6943 1 5.9674 3.0549
32 1 5.9684 1.0264 1 5.9972 4.3056
3.6 1 5.9966 1.4831 1 5.9998 5.8821
4 1 5:9998 2.0786 1 6 7.7491
04 0.096 0.0538 0.0494 0.1001 0.0643 0.0625
0.8 0.2928 0.2602 0.0978 0.3128 0.3689 0.1724
1.2 0.6629 0.9143 0.2023 0.7085 1.5934 0.5752
1.6 0.9397 2.3218 0.3986 0.9637 4.2532 1.6098
2 0.9978 44118 0.743 0.9994 6.9366 3.3318
9 2.4 1 6.5242 1.2968 1 8.3728 5.5397
2.8 1 8.0005 2.1325 1 8.8678 8.0954
3.2 1 8.7066 3.3009 1 8.9814 10.8182
3.6 1 8.9381 4.8334 1 8.9983 13.4291
4 1 8.991 6.6943 1 8.9999 15.7008
0.4 0.1003 0.0561 0.0522 0.1049 0.0689 0.066
0.8 0.2943 0.2279 0.137 0.317 0.3471 0.2332
1.2 0.6345 0.7404 0.343 0.6899 1.49 0.8954
1.6 09133 1.8866 0.7717 09514 4.3488 2.7385
2 0.9938 3.8253 1.5594 0.9986 7.9071 5.8046
12 2.4 0.9999 6.3038 2.831 1 10.3445 9.2255
2.8 1 8.7015 4.6453 1 11.479 12.2556
3.2 1 10.4545 6.9271 1 11.8716 14.5664
3.6 1 11.4261 9.4534 1 11.9756 16.1374
4 1 11.833 11.9298 1 11.9964 17.0865
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Table 8: R, of the Bonferroni method, the FDR method, and the OAAT/FDR procedure

when all the samples are from the in-control process for various combinations of m and n.

mln Bonferroni FDR OAAT/FDR
30| 5 0.0508 0.0578 0.0521
30 (10 0.05 0.0559 0.051
30 |15 0.0505 0.0558 0.0515
5015 0.0507 0.0573 0.052
50110 0.0496 0.0552 0.0508
50|15 0.0508 0.056 0.0518
100| 5 0.05 0.0559 0.0513
100] 10 0.0494 0.0546 0.0505
10015 0.0508 0.0563 0.052
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Figure 1: R,/ m, (denoted by ¢ 1) and §0 /' m, (denoted by 7 0) for various

combinations of m and m, (n=5). The x-axis is the shift size &. The solid line with

diamonds corresponds to the traditional method and the dashed line with triangles corresponds

to the OA AT /traditional procedure.
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Figure 2: R /m, (denoted by ¢ 1)

and R,/ m, (denoted by 7 0) for various

combinations of m and m, (n=10). The x-axis is the shift size o . The solid line with

diamonds corresponds to the traditional method and the dashed line with triangles corresponds

to the OA AT /traditional procedure.
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Figure 3: R /m, (denoted by 7 1) and R,/ m, (denoted by 7 0) for various

combinations of m and m, (n=15). The x-axis is the shift size o. The solid line with

diamonds corresponds to the traditional method and the dashed line with triangles corresponds

to the OA AT/traditional procedure.
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Figure 4: R /m, (denoted by 7 1) and R,/ m, (denoted by 7 0) for various

combinations of m and m, (n=5). The x-axis is the shift size 6. The solid line with

diamonds corresponds to the Bonferroni method and the dashed line with triangles

corresponds to the OAAT/Bonferroni procedure.
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Figure 5: R /m, (denoted by 7 1) and R,/ m, (denoted by 17 0) for various

combinations of m and m, (n=10). The x-axis is the shift size o . The solid line with
diamonds corresponds to the Bonferroni method and the dashed line with triangles

corresponds to the OAAT/Bonferroni procedure.
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Figure 6: R /m, (denoted by 7 1) and R,/ m, (denoted by 17 0) for various

combinations of m and m, (n=15). The x-axis is the shift size o . The solid line with

diamonds corresponds to the Bonferroni method and the dashed line with triangles

corresponds to the OAAT/Bonferroni procedure.
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Figure 7: P, R,/m, (denoted by #1)and R,/m, (denoted by 7 0) when m=30, n=5,
and m, subgroups shift from { g} to {1, +00}. The x-axis is the shift size & . The solid

line with diamonds corresponds to Bonferroni method and the dashed line with triangles

corresponds to FDR method.
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Figure 8: R /m, (denoted by 7 1) and R,/ m, (denoted by y 0) for various

combinations of m and m, (n=5). The x-axis is the shift size 6. The solid line with

diamonds corresponds to Bonferroni method, the dashed line with triangles corresponds to

FDR method and the dotted line with pluses corresponds to the OAAT/FDR procedure.
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Figure 9: R /m, (denoted by 7 1) and R,/ m, (denoted by y 0) for various
combinations of m and m, (n=10). The x-axis is the shift size o. The solid line with

diamonds corresponds to Bonferroni method, the dashed line with triangles corresponds to

FDR method and the dotted line with pluses corresponds to the OAAT/FDR procedure.
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Figure 10: R /m, (denoted by 7 1) and R,/ m, (denoted by 7 0) for various

combinations of m and m, (n=15). The x-axis is the shift size o. The solid line with
diamonds corresponds to Bonferroni method, the dashed line with triangles corresponds to

FDR method and the dotted line with pluses corresponds to the OAAT/FDR procedure.
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