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統計製程管制第一階段分析之新策略 

 

研究生：孫鑑皇          指導教授：洪志真  博士 

國立交通大學統計學研究所 

摘     要 

針對統計製程管制第一階段分析，本論文提出並研究一次只剔除一個最

極端的管制外樣本點的作法，稱之為“OAAT＂法。模擬研究顯示，「OAAT」

法可大幅降低假警報之發生，克服了現行每次剔除所有管制外樣本之作法

會造成丟棄大量穩定樣本的重大缺點。文中亦建議一個何時檢查製程之新

策略，亦即檢查管制外之樣本以尋找其發生原因之適合時機。在製程由不

穩定到穩定過程中，此策略可節省大量時間與金錢。為陳述此新法，本文

使用最常用的Shewhart平均值管制圖。文中對以下三種方法加以研究：（一）

使用傳統方法控制個別假警報率，（二）使用 Bonferroni 法控制整體假警報

率，（三）以逐次 P 值法控制假發現率。文中應用「OAAT」作法於上述三

種方法並藉模擬研究以真、假警報數之期望值來評估比較其表現。 
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Abstract 

The purpose of this paper is to propose and study a new OAAT procedure for Phase I 

analysis in statistical process control that only discards the most extreme sample at a time. Our 

simulation study demonstrates that the OAAT procedure reduces dramatically the occurrences 

of false alarms. It can overcome the drawback that the practice of discarding all beyond-limits 

samples at each iteration of chart construction throws away too many in-control samples. We 

also suggest a new strategy on when to inspect the process to look for assignable causes for 

samples signaling out-of-control alarms. The new strategy may save tremendous amount of 

time and money in bringing the process to in-control state. The most popular Shewhart X  

Chart is used for illustrating the new procedure. Three methods of detecting out-of-control 

samples are studied: (i) the traditional method that controls the individual false alarm rate; (ii) 

the Bonferroni method that controls the overall false alarm rate; (iii) a sequential p-value 

method that controls the false discovery rate. We apply the OAAT procedure to the three 

methods. The performance of the proposed schemes is evaluated and compared in terms of the 

expected number of false alarms and the expected number of true alarms via simulation studies. 
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1. Introduction  
 

Process monitoring based on control charting usually consists of two phases—Phase I 

and Phase II. The purpose of this paper is to propose and study a new strategy for Phase I 

process monitoring. In Phase I, process data are collected and analyzed with the goals to 

evaluate the process stability and to model the in-control process. Thus, control charts are 

often used in Phase I to signal out-of-control conditions of the process so that corrective 

actions can be taken to bring the process to the in-control state. 

To construct a suitable control chart for the on-line process monitoring in Phase II, good 

estimates of the in-control process parameters, e.g., the mean and standard deviation of the 

monitoring statistic, are needed for setting up reliable control limits. For this, we need a set of 

in-control process data.  

In Phase I, samples are collected from the process to determine if they come from the 

in-control process. The current practice is to use the dataset to set up preliminary control 

limits for the monitoring statistic, such as X , R, or S, to identity potential “out-of-control” 

points. For simplicity, we only consider the points that exceed the control limits as the 

“out-of-control” points in this study. Other rules such as run rules can be added in real 

applications. If there are samples exceeding the control limits, then the operators or process 

engineers should investigate the process to see if there are any assignable causes for these 

beyond-limits points. If indeed some assignable causes are found, then appropriate corrective 

actions should be taken to eliminate the causes. If any of corrective actions changes the 

process itself, we need to re-collect data from the new process and re-start the whole 

screening process again. If the assignable causes do not affect the current process, then we can 

simply discard the out-of-control points and re-do the control charting using the remaining 

data. If no assignable causes can be found, then people can choose either keep or discard these 

points. No one knows which action is correct without further information since the points may 
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exceed the limits simply by chance or there may be some uncovered assignable causes. For 

being conservative, many practitioners may choose to discard these beyond-limits points to 

avoid potential contamination in the dataset. Having excluding these beyond-limits points, 

another set of preliminary control limits is calculated from the remaining dataset for further 

screening of the out-of-control data points. The above screening steps are repeated until no 

more beyond-limits points are found. 

In this paper, we study this practice and find that it tends to mistakenly screen out too 

many in-control data points. Thus we propose a more effective procedure for collecting 

in-control data for Phase II usage. 

Statistically, in any control charting, there are possibilities that some in-control samples 

may get wrongly discarded and some out-of-control samples may remain undetected, which 

are similar to committing Type I and Type II errors in hypothesis testing respectively. A good 

control chart should be able to control these two types of error rates. However, it is surprising 

to observe that the practice of discarding all the beyond-limits points (when no assignable 

causes are found) can be quite inefficient, in the sense that more than expected in-control 

samples are discarded.  

On the other hand, it is also well known that usually there will be more than expected 

out-of-control samples not detected with the preliminary control limits when data are 

contaminated by some out-of-control samples. The reason is that these out-of-control samples 

usually introduce more variation to the data, which makes the preliminary control limits too 

wide. 

To detect these out-of-control samples and to prevent losing too many in-control samples 

as well, we propose an add-on iterative procedure called One-At-A-Time (OAAT) procedure 

that discards only the most extreme beyond-limits point and then updates the control limits at 

each iteration. It is found from the simulation study that, with control limits constructed under 

the same overall false-alarm rate (defined later), the OAAT procedure will screen out much 
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less in-control samples than the traditional discard-all practice and in general still have about 

the same power in detecting out-of-control samples.    

We remark here that the traditional practice inspects the process for assignable causes 

when an out-of-control signal occurs, while the new procedure only performs the 

investigation at the end of the whole iterating process. The final number of beyond-limits 

points is most likely less than or equal to that of the discarding-all practice. Thus the new 

practice can reduce the number of times of investigation and possible adjustments of the 

process, which may reduce a great deal of costs. Of course, the new procedure will need more 

computing power, which is no longer an issue with the enhancing computer power nowadays.  

Another important issue to address is the criteria of performance evaluation of control 

charts used in Phase I analysis. Currently in the literature the evaluation is mostly based on a 

so-called “signal probability” (Sullivan and Woodall, 1996), which is defined as the 

family-wise signal rate, the probability that at least one sample point in the dataset signals out 

of control. The overall false-alarm rate mentioned above is the signal probability when the 

process is in control. Therefore the signal probability criterion can only evaluate the 

effectiveness of the control schemes on judging if the whole dataset comes from the in-control 

process or not. 

Since signal probability can not distinguish cases with different numbers of 

out-of-control points, it is not really a good measure for comparing the performance of 

different screening methods. To fit the purpose of Phase I analysis better, we suggest using the 

expected number of correctly rejected samples and the expected number of wrongly rejected 

samples as the comparison criteria. The former measures the detecting power and the latter 

measures the frequency of the false alarms. 

In genetic research, people often select significant genes through the control of the 

family-wise error rate (FWER) in multiple hypotheses testing. Classical methods such as the 

Bonferroni approach for testing the significance of each gene suffer tremendous loss of power 
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since the number of genes under investigation is huge, say, in thousands. To overcome this 

difficulty, Benjamini and Hochberg (1995) suggested a sequential p-value method to control 

the false discovery rate (FDR) (to be defined later) for finding the significant genes. They 

claimed that this FDR procedure has better power than the Bonferroni approach. Since 

screening out-of-control data points is similar to finding significant genes, we are interested in 

the effectiveness of this sequential p-value method in our application.  

The traditional approach in Phase I control charting is to control the individual 

false-alarm rate for each sample no matter how many samples are tested. A more recent 

approach is to control the overall false-alarm rate (α ), usually a Bonferroni-type error rate 

( ) is used for controlling the individual false-alarm rate for each of the m samples. We 

compare the Bonferroni method and FDR method in this paper. We also apply the OAAT 

procedure to the FDR method (denoted by OAAT/FDR) to improve the screening process. 

/ mα

We shall describe the new strategy with the Shewhart X  control chart. The rest of this 

paper is organized as follows. Section 2 reviews the related fundamentals of Phase I analysis. 

Section 3 compares the traditional method controlling the individual false-alarm rate with its 

OAAT version (denoted by OAAT/traditional) as well as comparing the Bonferroni method 

controlling the overall false-alarm rate with its OAAT version (denoted by OAAT/Bonferroni). 

Section 4 compares three methods: Bonferroni, FDR, and OAAT/FDR method. Section 5 

summarizes the results of the study and gives some possible future research directions.  
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2. Literature Review 

 
The first control chart was invented by Walter Shewhart, who made significant 

contributions to the quality of manufactured products (Juran, 1997). Afterwards, control 

charts have been one of the main tools of statistical process control (SPC). They are used to 

identify special causes of variability in a process by a graphical representation of a quality 

characteristic for the process under investigation (Hoyer and Ellis, 1996a, b, c, Nelson, 1999). 

There are two distinct phases in control charting practice (see, e.g. Woodall, 2000). In 

Phase I, control charts are used for retrospectively testing whether the process is in control. In 

Phase II, control charts are used for monitoring the process for detecting any change from the 

in-control state. Woodall (2000) remarked that significant effort for process understanding and 

process improvement is often required in the transition from Phase I to Phase II. 

In practice, the process parameters (e.g., mean and standard deviation) needed for 

constructing control limits in Phase II are usually unknown. Therefore, for estimating the 

process parameters, we often face to collect a set of process data and to decide whether they 

come from an in-control process. If not, one needs to inspect the out-of-control data points for 

assignable causes. We may eliminate assignable causes, if found, to stabilize process (Woodall, 

2000) or discard some of these out-of-control samples and estimate the process parameters 

with the remaining presumably in-control data (Jones and Champ, 2002). Some estimation 

problems in constructing control charts are explicitly mentioned in Woodall and Montgomery 

(1999); also see Reynolds and Stoumbos (2001), Nedumaran and Pignatiello (2001), and 

Albers and Kallenberg (2004 a, b). For instance, in Jones and Champ (2002), it was pointed 

out that if one thinks of checking the m samples in a Phase I X control chart for stability as a 

sequence of m hypothesis tests for the mean, then these tests are dependent when the mean 

and standard deviation are estimated with all of the m samples. In order to achieve a fixed 

overall false-alarm rate, the control limits must be based on the joint distribution of the m 
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control charting statistics.

In early days, control charts are designed based on controlling the individual false-alarm 

rate for each sample no matter how many samples are tested (e.g., Hunter, 1998, Vermaat et 

al., 2003). Recently many research works on Phase I analysis are designed based on 

controlling the overall false-alarm rate. With a fixed individual false-alarm rate, the overall 

false-alarm rate gets larger when the number of samples m gets larger. This is why many 

authors choose to adjust the individual false-alarm rate with Bonferroni-type procedures in 

order to provide a reasonable overall false-alarm rate (see, e.g., Borror and Champ, 2001; 

Champ and Chou, 2003; Mahmoud and Woodall, 2004; Nedumaran and Pignatiello, 2000). 

Nedumaran and Pignatiello (2005) discussed many issues in constructing retrospective X  

control chart limits so as to control the overall probability of a false alarm at a desired level. 

However, as mentioned before, Bonferroni-type methods tend to have little power in 

detecting out-of-control samples, especially when the number of samples is large. The FDR 

method proposed by Benjamini and Hochberg (1995) has the advantage of having higher 

power compared to the Bonferroni method for testing multiple hypotheses.  

Consider the problem of testing m (null) hypotheses, of which  hypotheses are true. 

Let 

0m

0R  and R denote the number of the rejected true hypotheses and the total number of the 

rejected hypotheses, respectively. Table 1 summarizes the four possible outcomes of the m 

tests. 

Table 1: Possible outcomes from m hypothesis tests 

 
 Declared 

non-significant 
Declared 

significant 
Total 

True null hypotheses 0 0m R−  0R  0m  

Non-true null hypotheses 1 1m R−  1R  1m  

Total m R−   R  m 
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The false discovery rate, FDR, is defined as the expected proportion of erroneously 

rejected null hypotheses. With 0R  and R representing, respectively, the number of true null 

hypotheses rejected and the total number of null hypotheses rejected in a multiple testing 

procedure, let Q = 0 /R R  if R > 0 and Q = 0 if R = 0. Then E(Q) is the FDR. The family-wise 

error rate (FWER) is defined as P( ), which is different from the “signal probability” 

defined as P( ). Note that when the process is in control, the FWER and the signal 

probability are the overall false-alarm rate. 

0 1R ≥

1R ≥

Benjamini and Hochberg (1995) also proved that:  

(a) When all the null hypotheses are true, the FDR is the same as the FWER. This is 

obvious since in this case 0R R=  and thus 0( ) ( 1) ( 1)E Q P R P R= ≥ = ≥ = FWER.  

(b) When only part of the null hypotheses are true and the others are false, the FDR is 

smaller than or equal to the FWER. The proof is also simple: when  then 0 0,R = 0;Q =  

when  then Thus 0 1,R ≥ 0 /Q R R= ≤1,
0{ 1}RI Q≥ ≥ . Taking expectations on both sides leads 

to P E(Q).  0( 1)R ≥ ≥

Thus, any procedure that controls the FWER also controls the FDR. Therefore, the FDR 

offers a less stringent multiple-testing criterion than the FWER. The FDR may be more 

appropriate for some applications, particularly where a large number of null hypotheses tests 

are involved, for example, the microarray data analysis in bioinformatics. 

Benjamini and Hochberg (1995) proved by induction that the following FDR method 

controls the FDR at level α  when the p-values of the observed test statistics (under the null 

hypothesis) are independent and identically distributed as uniform [0, 1]. 

Step 1: Compute the p-values of the observed test statistics under the null hypothesis.  

Step 2: Order the p-values as (1) ( )... mp p≤ ≤ . 

Step 3: Calculate = max {*k ( )1 : kk m p k m/≤ ≤ ≤α }. 
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Step 4: If  exists, then reject the null hypotheses corresponding to {*k (1) ( *),..., kp p };  

otherwise, reject nothing.  

Benjamini and Yekutieli (2001) proved that this same procedure also controls the FDR 

when the test statistics have positive regression dependency on each of the test statistics 

corresponding to the true null hypotheses. Some other related research works on FDR include 

Finner and Roters (2001, 2002) and Sarkar (2002). 
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3. The New Strategy and the OAAT Method 

3.1 Traditional Method 

3.1.1 Estimating Process Parameters 

Assume the set of process data in Phase I is in the form of m independent random 

samples  (each of size n) taken in the order of the process output. When the m 

samples are all from an in-control process, we assume ’s are independent and identically 

distributed as 

1{ ,..., }m
i inX X =1i

ijX

2
0 0( , )N µ σ , for i = 1, 2, … , m and j = 1, 2, …, n. 

The most commonly used estimator of 0µ  is  

             0µ̂ = X  = 
1 1 1

1 1m n m

ij i
i j i

X X
mn m= = =

=∑∑ ∑ ,                    (1) 

where iX  is the sample mean of the ith sample. There are many estimators of 0σ  given in 

the literature (e.g., Champ and Chou, 2003; Nedumaran and Pignatiello, 2005). The following 

three variability-related statistics are considered in Champ and Chou (2003): 

1
/

m

i
i

R R m
=

=∑ , 
1

/
m

i
i

S S
=

=∑ m , and 
1/ 2 2

1
/

m

i
i

V S
=

= ∑ m ,             (2) 

where iR  and  are respectively the sample range and sample standard deviation of the iiS th 

sample with 

2

1

1 (
1

n

i ij
j

S X
n =

=
− ∑ )iX− .                        (3) 

Unbiased estimators of 0σ  can be obtained by rescaling these statistics as:  

0
2

ˆ R
d

=σ ,  0
4

ˆ S
C

=σ ,  and  
1/ 2

0
4,

ˆ
m

V
C

=σ ,                    (4) 

where 2 ( ) /d E R 0σ=  can be easily found in many quality control textbooks, 
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4
2 ( / 2)
1 (( 1) / 2)

nC
n n

Γ
=

− Γ −
,  and 4,

2 (( ( 1) 1) / 2)
( 1) ( ( 1) / 2m

m nC
m n m n
Γ − +

=
− Γ − )

. 

Champ and Chou (2003) chose 
1/ 2

4,/ mV C  as their preferred estimator of 0σ  because  

Var(
1/ 2

4,m

V
C

) ≤  Var(
4

S
C

) ≤  Var(
2

R
d

).                    (5) 

Following their arguments, we let 0σ̂ = 
1/ 2

4,/ mV C  in this paper. 

3.1.2 The Control Limits of the Traditional Method 

A Shewhart control chart is defined by a lower control limit (LCL), a center line (CL), 

and an upper control limit (UCL). These values are defined for the Phase I Shewhart X  

chart by 

0
0

ˆˆ ,X XLCL k
n

= −
σµ    0ˆ

XCL = µ ,   0
0

ˆˆ
X XUCL k

n
= +

σµ , 

where  

0µ̂ =
1

1 m

i
i

X
m =
∑    and   0σ̂ =

1/ 2

4,/ mV C . 

The statistic iX  (the ith sample mean) is plotted against the sample number i. If any 

point falls below XLCL  or above XUCL , it is taken as an evidence that the associated 

sample is from an out-of-control process. For the traditional Shewhart chart, the constant Xk  

is usually taken as 3. 

3.1.3 The Individual and the Overall False-Alarm Rate of the Traditional Method 

When the m samples are all from an in-control process, iX X−  is distributed as 

2
01(0, )mN

m n
− σ  for i = 1, 2, … , m. Note that iX X−  is independent of 2

0

( 1)m n V−
σ

, which is 

distributed as 2
( 1)m n−χ , the 2χ  distribution with degrees of freedom . Therefore, ( 1m n− )
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( )

( 1)
imn X X

m V

−

−
 = 22

00

( ) /
( 1)

imn X X V
m

−

− σσ
                    (6) 

is distributed as ( 1)m nt − , the  distribution with degrees of freedom . t ( 1m n− )

Since 

( )

( 1)
Xmn UCL X

m V

−

−
 = 0ˆ( /

( 1)
Xmn k n

m V

σ

−

)
 = 

4, 1
X

m

k m
C m −

,             (7) 

the individual false-alarm rate is 

( 1)

*

4,

2(1 ( ))
1m n

X
t

m

k m
C m

Fα
−

−
−

= ,                      (8) 

where is the cumulative distribution function of the 
( 1)−m ntF ( 1)−m nt  distribution. 

It is easy to show that the traditional method controls the overall false-alarm rate at level 

 when the *1 (1 )α− − m m hypothesis tests are independent. For example, α  is 0.0793 when 

m =30, n=5, and 3.Xk =  Unfortunately, this is not the case for Phase I applications of 

control charts since all the tests involve some common parameter estimators. However, our 

simulation study indicates that the overall false-alarm rate for the case of m =30, n=5, and 

3Xk =  is about 0.078, fairly close to 0.0793 for the independent tests. 

Table 2 lists the *α (individual false-alarm rate) corresponding to { Xk =3} when the m 

tests are independent. Note that the overall false-alarm rate α  increases as m increases or as 

n decreases.        

3.2 Criteria for Performance Evaluation 

As mentioned before, screening out-of-control data points is similar to finding significant 

hypotheses. Similar to Table 1, assume that there are  in-control samples and  

out-of-control samples among m samples. R samples are rejected, and among them, 

0m 1m

0R  
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in-control samples are falsely rejected and 1R  out-of-control samples are correctly rejected. 

We shall evaluate the performance by  and , the expected values of 0( )E R 1( )E R 0R  and 

1R , respectively. 

In Phase I, practically, we care less on the question of “whether there are any data points 

come from an out-of-control process” but more on “which data points come from an 

out-of-control process”. However, many authors evaluated the performance of a control chart 

by the signal probability, which can only provide a measure for the first question. Note that 

when the process data consist of a mixture of in-control and out-of-control data (i.e., when m 

> > 0), then the signal probability (denoted by P) is not the overall false-alarm rate (it is 

only when ) or the detecting power (only when 

1m

1 0m = 1m m= ), and alarms can be signaled 

by either true or false alarms or both. For this reason, it is somewhat questionable to evaluate 

the performance by the signal probability. 

It seems more realistic to evaluate a control chart in Phase I analysis in terms of making 

more correct decisions on the state of each data point－in-control or out-of-control. Thus we 

propose to evaluate the performance of a monitoring scheme by the expected number of true 

rejections and the expected number of false rejections. The former has the same flavor as the 

Type I error in the hypothesis testing and the latter is more or less measuring the detecting 

power of the scheme. 

3.2.1 A Simulation Study 

Many SPC books have recommended that 20-30 subgroups of size 4 or 5 be used for 

estimating the process parameters (see, e.g., Montgomery, 2005). Thus, we choose the setting 

of m =30, n=5, and 3Xk =  for illustrating the behaviors of the above criteria in our 

simulation study. Without loss of generality, we can let 0µ =0 and 0σ =1. 

Consider  = 0, 3, 6, 9, 12 and 1m δ  = 0 (0.4) 4 (that is,  subgroups shift from 1m 0µ  

to 0 0µ δσ+ ). For each combination of  and 1m δ , we simulate 1,000,000 datasets. Each 
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dataset produces its own 0R  and 1R . When 0 1 0,R R+ >  the alarm signals. We estimate the 

signal probability P by , the sample proportion of such signals among the 1,000,000 

datasets. Let 

P̂

0R , the average of the 1,000,000 0R ’s, be the estimate of , and 0( )E R 1R , the 

average of the 1,000,000 1R ’s, be the estimate of . 1( )E R

For the 41 combinations of  and 1m δ  considered, the standard errors of the  are 

about 0-0.00049, and the standard errors of the 

P̂

0R  and 1R  are about 0-0.00227. Table 3 

shows the values of , P̂ 0R , and 1R . The following observations can be made from the 

results displayed. 

(a) For  (i.e. the process is in control), , the estimate of the overall false-alarm 

rate, is about 0.078, which is quite close to the nominal value 0.079.  

1 0m = P̂

(b) For , 1 0m = 0R  is 0.0828, which is greater than =0.078. The reason is that when 

an alarm signals, 

P̂

0R ≥ 1, while in estimating traditional overall false-alarm rate P, the 

signaling alarm only counts one no matter how many points are beyond the control limits. 

(c) As expected, 1R  increases as the size of the shift δ  increases, but 0R  increases as 

well－this is the cost of instability. 

(d) 1R  moves in the same direction as , and yet it contains more information than . 

It indicates, in the average, how many true out-of-control samples the method can detect. On 

the other hand, 

P̂ P̂

0R  can measure how often false alarms can occur. As to , recall that when 

,  is just the alarm signaling rate, and the alarm for each dataset can be 

triggered by samples from either state. 

P̂

10 m m< < P̂

3.3 The Performance of the OAAT/Traditional Procedure 

3.3.1 When to Inspect the Process for Assignable Causes 
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As mentioned before, there may be some out-of-control samples undetected at each 

iteration of the control chart construction, especially when the preliminary control limits are 

constructed using a set of data contaminated by some out-of-control samples. These 

out-of-control samples often inflate the estimate of 0σ , which makes the control limits too 

wide. If we inspect the process looking for assignable causes for each of the alarms whenever 

it signals, as the current practice suggests, the number of times of stop-and-inspect may be 

unnecessarily high. Here we suggest a new strategy: run through the whole iterative procedure 

by removing all beyond-limits points at each iteration, and then perform the inspection for 

assignable causes at the end.  

By examining the results of the above practice, it is found that the number of false alarms 

is higher than we would expect. To reduce the wasteful false alarms, we propose and study a 

new practice－discard only one sample at a time instead of discarding all in the traditional 

method. Our simulation study shows that this OAAT/traditional procedure can reduce the 

number of false alarms dramatically, which in turn will reduce the amount of time in 

conducting unnecessary investigations for non-existing assignable causes and reserve more 

in-control data for more efficient process modeling. The main reason why this procedure 

works is that the most extreme point is more likely to be an out-of-control sample compared 

to others. In contrast, the traditional method discards all the samples beyond the control limits 

at each iteration, thus there is more chance that some may be in-control samples.  

3.3.2 The OAAT Procedure 

We describe the OAAT/traditional procedure below: 

Step 1. Construct the preliminary control limits with all collected data. 

Step 2. If no out-of-control samples are identified, stop iterating and go to Step 4;        

otherwise, discard the most extreme sample. 

Step 3. Construct the preliminary control limits with the remaining samples; go to 

Step 2. 
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Step 4. Collect all the samples discarded in the above iterations and inspect the 

process for assignable causes.  

3.3.3 The Simulation Study 

Set m=30, 50, 100 and n=5, 10, 15. For each combination, consider the situations = 

0.1m, 0.2m, 0.3m, 0.4m and 

1m

δ  = 0.4 (0.4) 4. For each case considered, simulate 1,000,000 

datasets and calculate 0R  and 1R  as described before. The estimated standard errors of 0R  

and 1R  are about 0-0.0069. 

Table 4 gives the 0R  of the two procedures (traditional vs. OAAT/traditional) when all 

the m samples are from the in-control process. Note that the 0R  of the OAAT/traditional 

procedure is less than the traditional method in every case considered. This means that the 

OAAT/traditional procedure will signals fewer false alarms.  

For n = 5, 10, 15, Figures 1-3 respectively plot the simulated 1R / and 1m 0R /  versus 0m

δ  for various values of m and . The following observations can be made from the results 

displayed. 

1m

(a) The performance of the OAAT/traditional procedure in terms of 1R /  is slightly 

better than that of the traditional method in general. And, for fixed m, the advantage increases 

as  increases.   

1m

1m

(b) The 0R /  of the OAAT/traditional procedure is uniformly smaller than that of the 

traditional method. And, for fixed m, the advantage increases as  increases. Note that all 

the 

0m

1m

0R /  curves of the OAAT/traditional procedure lie almost flat on x-axis, which means 

the new procedure seldom signals false alarms. 

0m

(c) From figures we can see that the improvement of the OAAT procedure in some 

situations is extremely large.  
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In summary, the OAAT/traditional method offers a good alternative to the traditional 

method for practical use. It is as powerful as the traditional method, but can diminish the 

false-alarm rate dramatically. 

The number of samples m also plays an important role on the extent of the improvement 

of the OAAT procedure. We study the effect of m in the next subsection.     

3.4 The Effect of m  

Since the overall false-alarm rate increases when the number of samples m increases, we 

use the Bonferroni method to control the family-wise error rate α  in this Subsection.  

3.4.1 The Simulation Study 

Let Xk = 4, ( 1), / 2( 1) / m m n mm mC t α−− . The value ,1tν γ−  is the 100γth percentile of a t 

distribution with ν degrees of freedom. Let 0.05α = . We list the value of Xk  in Table 5. 

Note that Xk  increases as m increases or as n decreases.    

In this study, we simulate 1,000,000 datasets using the same setting as given in 

Subsection 3.3.3 and calculate 0R  and 1R  for each situation considered. The standard errors 

of 0R  and 1R  are about 0-0.00998. 

Table 6 gives 0R  when all the m samples are from the in-control process. The 0R  of 

the OAAT/Bonferroni procedure is smaller than that of the Bonferroni method in each 

situation.  

For n = 5, 10, 15, Figures 4-6 respectively plot the simulated 1R / and 1m 0R /  values 

versus 

0m

δ  for various values of m and . The following observations can be made from the 

results displayed. 

1m

(a) The 1R /  of both the procedures decreases in general as m increases－this is the 1m
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effect of multiplicity control, which means that for controlling a fixed overall false-alarm 

rate (α ) for m samples, the individual false-alarm rate ( ) gets smaller as m 

increases, hence the number of beyond-limits points also gets smaller as m increases.    

* / mα α=

(b) The 0R /  of each of the both procedures decreases when m increases－the reason 

is similar to (a). 

0m

(c) The performance of the OAAT/Bonferroni procedure in terms of 1R /  is about the 

same as the Bonferroni method.   

1m

(d) The OAAT/Bonferroni procedure performs much better in terms of 0R /  than the 

Bonferroni method. However, the advantage decreases as m increases. This is because when 

m increases, fewer false alarms can occur for the Bonferroni method but the OAAT procedure 

already has very few false alarms, thus the difference between the two methods becomes 

smaller. In other words, the effect of multiplicity control is more for the Bonferroni method 

than for the OAAT/ Bonferroni procedure. 

0m

In summary, applying the OAAT procedure to the Bonferroni method has the advantage 

of reducing the number of false alarms dramatically, while retaining a similar power of 

detecting out-of-control samples.  
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4. The FDR Method and the OAAT/FDR Procedure 

4.1 Bonferroni Method 

To control the overall false alarm at a desired level α , the most common practice for 

testing m hypotheses simultaneously is the Bonferroni method, which simply controls the 

individual false-alarm rate at level .  * / mα α=

Recall that ( ) / ( 1)imn X X m V− −  is distributed as ( 1)m nt − , the  distribution with 

degrees of freedom . It is easy to show that the control limits for the Bonferroni 

method are 

t

( 1m n− )

*( 1), / 2

1
m n

m VX t
mnα−

−
± ,                      (9) 

where *α  is the individual false-alarm rate.  

4.2 Comparing Bonferroni and FDR Methods 

This subsection compares the performance of the Bonferroni method and the FDR 

method in terms of the signal probability P, , and . 0( )E R 1( )E R

4.2.1 The Simulation Study 

In this study, we set α =0.05 and *α = . Consider m = 30, n = 5, = 0, 3, 6, 9, 

12, and 

0.05 / m 1m

δ  = 0 (0.4) 4. Simulate 1,000,000 datasets and calculate , P̂ 0R , and 1R  for each 

combination considered. The standard errors of the  are about 0-0.000496, and the 

standard errors of 

P̂

0R  and 1R  are about 0-0.00267. 

Table 7 and Figure 7 show the simulated , P̂ 0R  and 1R  for  = 0, 3, 6, 9, 12 and 1m

δ  = 0 (0.4) 4. The following observations can be made from the results displayed. 

(a) When =0, which means the process is in control, the overall false-alarm rate of 1m
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the Bonferroni method is smaller than that of the FDR method. Although they both control the 

overall false-alarm rate at level 0.05, the former is more conservative. 

(b) 1R  of the FDR method is uniformly larger than that of the Bonferroni method and 

the advantage increases as  or 1m δ  increases. So, the former is more powerful. 

(c) But 0R  of the FDR method is also uniformly larger than that of the Bonferroni 

method. And, the disadvantage increases as  or 1m δ  increases. 

Benjamini and Hochberg (1995) indicated that the FDR method is much more powerful 

than comparable procedures controlling the traditional family-wise error (the overall 

false-alarm rate when all the samples are in control). However, here we find in (c) that the 

performance of the FDR method in terms of  is worse than that of the Bonferroni 

method. This is similar to the relationship between the Type I and Type II errors in testing 

hypothesis. 

0( )E R

The number of samples m is also an important factor, especially in genetic research. 

Benjamini and Hochberg (1995) showed by simulation that the power of the FDR method in 

terms of the signal probability is uniformly larger than the Bonferroni method and the 

advantage increases in m as well as /m.  1m

We investigate the effect of the OAAT procedure when applied on the FDR method in 

the next section.    

4.3 The Performance of the OAAT/FDR Procedure 

Here, we apply the OAAT procedure to the FDR method by discarding only the sample 

with the minimum p-value in each iteration. 

4.3.1 The Simulation Study 

In this study, we simulate 1,000,000 datasets using the same setting as given in 

Subsection 3.3.3 and calculate 0R  and 1R  for each situation considered. The standard errors 

 19



of 0R  and 1R  are about 0-0.0093. 

Table 8 gives the 0R  of the three procedures (Bonferroni, FDR, and OAAT/FDR) when 

all the m samples are from the in-control process. Note that the 0R  of the OAAT/FDR 

procedure is uniformly smaller than that of the FDR method, but larger than that of the 

Bonferroni method in each situation. This means that the OAAT/FDR procedure signals fewer 

false alarms than the FDR method, but signals more than the Bonferroni method, which is 

because the Bonferroni method is very conservative.  

For n = 5, 10, 15, Figures 8-10 respectively plot the simulated 1R / and 1m 0R /  versus 0m

δ  for various values of m and . The following observations can be made from the results 

displayed. 

1m

(a) The 1R /  of each of the three procedures decreases in general as m increases, but 

increase as n increases.    

1m

(b) The 0R /  of each of the three procedures decreases as m increases. 0m

(c) The 0R /  of the Bonferroni method increases as n increases and the same for the 

FDR method, but the 

0m

0R /  of the OAAT/FDR procedure decreases in most cases.   0m

(d) The OAAT/FDR procedure performs about the same as the FDR method in terms of 

1R / . The advantage increases as  increases and increases in most cases as m increases 

or n decreases.  

1m 1m

(e) The 0R /  of the OAAT/FDR procedure is uniformly smaller than that of the FDR 

method. Also, the advantage increases as  or n increases, but decreases in most cases as m 

increases. Note that the performance of the OAAT/FDR procedure is much better than that of 

the FDR method.   

0m

1m
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(f) Except for a small number of cases, the 1R /  of the OAAT/FDR procedure is 

larger than that of the Bonferroni method. The advantage increases as  increases and 

increases in most cases as m increases or n decreases.  

1m

1m

(g) The 0R /  of the OAAT/FDR procedure is much smaller than the Bonferroni 

method in most cases. And, the advantage increases as  or n increases, but decreases as m 

increases.   

0m

1m

In summary, applying the OAAT procedure to any control schemes has the advantage of 

reducing the number of false alarms dramatically, while retaining the similar power of 

detecting out-of-control samples. 

 

 21



5. Conclusions 

 
In this paper, we study some strategies of Phase I analysis in control charting. It is found 

that the practice of discarding all beyond-limits samples at each iteration in constructing 

appropriate control charts has a major drawback of throwing away too many in-control 

samples. To overcome this drawback, we propose and study in this paper a new OAAT 

procedure that only discards the most extreme sample at a time. Our simulation study 

demonstrates that the OAAT procedure reduces dramatically the occurrences of such false 

alarms. And this advantage is more profound when the process is more unstable (i.e., more 

out-of-control samples or largerδ ). 

We also suggest a new strategy on when to inspect the process to look for assignable 

causes for samples signaling out-of-control alarms－instead of performing stop-and-inspect 

whenever alarms signal. The new strategy is: run through the whole iterative procedure by 

removing beyond-limits points one at a time at each iteration and then perform the 

investigation for all alarms after all the remaining samples are all in control. This practice 

may save tremendous amount of time and money in bringing process to in-control state. 

We study three approaches of error control－the traditional method, Bonferroni method, 

and FDR method. They control, respectively, the individual false-alarm rate, the overall 

false-alarm rate, and the false discovery rate. The individual false-alarm rate of the traditional 

method is kept fixed for each sample at each iteration, but this rate of the other two methods 

becomes larger when more beyond-limits samples are removed as the screening process 

progresses.  

Under the same overall false-alarm rate, the FDR method is more powerful than the 

Bonferroni method, but mistaken more in-control samples for being out of control. The 

OAAT procedure can overcome this problem.  

 There are many criteria for evaluating performance of different control schemes 

 22



considered in the literature, including signal probability (P( )), FWER (P( )), FDR 

(E

1R ≥ 0 1R ≥

0( / )R R ), and the E( 0R ) and E( 1R ) (or E( 0 / 0R m ) and E( 1 / 1R m )) suggested in this paper. 

The signal probability considers “the process” as a whole. It only assesses the ability of 

judging if a process is in control or not. It does not assess the scheme on its performance of 

screening out out-of-control samples and/or keeping in-control points. The FWER and FDR 

emphasize more on the false-alarm rate of the scheme. With a mixture of in-control and 

out-of-control samples in the dataset, perhaps it is more appropriate to use two indicators－

one to assess the false-alarm rate and the other to assess the detection power, such as E( 0R ) 

and E( 1R ) (or E( 0 / 0R m ) and E( 1 / 1R m )). E( 0R ) and E( 1R ) assess false alarms and true alarms 

separately, and they can distinguish between cases with different numbers of alarms.  

The X  chart used in this paper is just for demonstration of the above ideas. The new 

strategy of Phase I analysis, evaluation criteria for control schemes, and the new OAAT 

procedure can be applied to any other control charts. 
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Tables 

 

Table 2: The individual false alarm rate ( *α ) and the overall false-alarm rate (α ) for 

various m and n when Xk =3. 

m  n 4,mC  *α  α  

30 5 0.9979 0.0028 0.0793 

30 10 0.9991 0.0025 0.0719 

30 15 0.9994 0.0024 0.0698 

50 5 0.9988 0.0027 0.1278 

50 10 0.9994 0.0026 0.1207 

50 15 0.9996 0.0025 0.1187 

100 5 0.9994 0.0027 0.2381 

100 10 0.9997 0.0026 0.2318 

100 15 0.9998 0.0026 0.23 
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Table 3: , P̂ 1R , and 0R  of the traditional method based on 1,000,000 replications for 

various  and 1m δ  when m =30, n =5, and Xk =3. 

1m  δ  P̂  1R  0R  

0 0 0.0780 0 0.0828 
0.4 0.1104 0.0426 0.0769 
0.8 0.2853 0.2478 0.0867 
1.2 0.653 0.8394 0.1011 
1.6 0.9336 1.7609 0.1241 
2 0.9965 2.5399 0.1539 

2.4 1 2.8986 0.194 
2.8 1 2.9872 0.2445 
3.2 1 2.9991 0.3085 
3.6 1 3 0.3864 

3 

 

 

 

 4 1 3 0.482 

0.4 0.1322 0.0684 0.0767 
0.8 0.3651 0.3512 0.1101 
1.2 0.759 1.1836 0.1726 
1.6 0.9729 2.6721 0.2742 
2 0.9995 4.3063 0.4276 

2.4 1 5.409 0.6549 
2.8 1 5.8643 0.9736 
3.2 1 5.9802 1.4109 
3.6 1 5.9981 1.9864 

 

6 

 

 

 

 4 1 5.9999 2.7252 

0.4 0.1442 0.0815 0.0784 
0.8 0.3926 0.3652 0.1514 
1.2 0.7664 1.1841 0.3005 
1.6 0.9715 2.7942 0.5729 
2 0.9994 4.9658 1.0277 

2.4 1 6.9747 1.7382 
2.8 1 8.245 2.7604 
3.2 1 8.7973 4.1422 
3.6 1 8.9612 5.8693 

 

 

 

 

9 
 

 

 

 4 1 8.9948 7.896 

0.4 0.1521 0.087 0.0829 
0.8 0.3979 0.3276 0.2054 
1.2 0.7475 0.9919 0.4906 
1.6 0.9582 2.3681 1.0576 
2 0.9983 4.5105 2.0402 

2.4 1 7.0427 3.5516 
2.8 1 9.2968 5.5863 
3.2 1 10.8186 8.0168 
3.6 1 11.5927 10.5676 

 

12 
 

 

 

 4 1 11.8906 12.9224 
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Table 4: 0R of the traditional method and the OAAT/traditional procedure when all the 

samples are in control for various combinations of m and n. 

m n traditional   OAAT/ traditional 

30 5 0.0834 0.0818 

30 10 0.075 0.0738 

30 15 0.0726 0.0716 

50 5 0.1384 0.1362 

50 10 0.1291 0.1273 

50 15 0.1271 0.1254 

100 5 0.2749 0.2711 

100 10 0.2651 0.2617 

100 15 0.2639 0.2606 

 

 

 

Table 5: Xk  for various m and n when the overall false-alarm rate α  is at 0.05. 

m  n α  *α (α /m) Xk  

30 5 0.05 0.0017 3.1561 
30 10 0.05 0.0017 3.1197 
30 15 0.05 0.0017 3.1094 
50 5 0.05 0.001 3.3021 
50 10 0.05 0.001 3.2772 
50 15 0.05 0.001 3.2701 
100 5 0.05 0.0005 3.4897 
100 10 0.05 0.0005 3.4750 
100 15 0.05 0.0005 3.4708 
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Table 6: 0R  of the Bonferroni method and the OAAT/Bonferroni procedure when all 

the samples are in-control for various combinations of m and n. 

m  n Bonferroni OAAT/Bonferroni 

30 5 0.0508 0.0502 

30 10 0.05 0.0495 

30 15 0.0505 0.05 

50 5 0.0507 0.0503 

50 10 0.0496 0.0493 

50 15 0.0514 0.0511 

100 5 0.05 0.0498 

100 10 0.0494 0.0493 

100 15 0.0508 0.0506 
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Table 7: , P̂ 1R  and 0R  between the Bonferroni method and the FDR method when m 

=30 and n =5. 

1m  δ  B̂P  1,BR  0,BR  F̂P  1,FR  0,FR  

0 0 0.0478 0 0.0497 0.0493 0 0.0571
0.4 0.0726 0.0291 0.0474 0.0751 0.0326 0.0572
0.8 0.2126 0.1853 0.0533 0.2206 0.2155 0.0817 
1.2 0.5642 0.691 0.0631 0.5818 0.8458 0.1462 
1.6 0.8955 1.5766 0.0776 0.9079 1.8897 0.2479 
2 0.9925 2.4201 0.0994 0.9943 2.6607 0.3542 

2.4 0.9999 2.8564 0.1261 0.9999 2.9386 0.4584 
2.8 1 2.9794 0.1611 1 2.9934 0.5759 
3.2 1 2.9984 0.2048 1 2.9996 0.7224 
3.6 1 2.9999 0.2606 1 3 0.9046 

3 
 

 

 

 4 1 3 0.3281 1 3 1.1337 
0.4 0.0867 0.0456 0.0468 0.0902 0.0531 0.0588
0.8 0.2744 0.2566 0.0687 0.2893 0.3336 0.1189 
1.2 0.6642 0.9445 0.1119 0.6971 1.4047 0.3162 
1.6 0.9472 2.3084 0.1817 0.9629 3.4119 0.7329 
2 0.9984 3.9743 0.2915 0.9993 5.0692 1.3343 

2.4 1 5.2293 0.4575 1 5.7832 2.0908 
2.8 1 5.8044 0.6943 1 5.9674 3.0549 
3.2 1 5.9684 1.0264 1 5.9972 4.3056 
3.6 1 5.9966 1.4831 1 5.9998 5.8821 

 

6 
 

 

 

 4 1 5.9998 2.0786 1 6 7.7491 
0.4 0.096 0.0538 0.0494 0.1001 0.0643 0.0625
0.8 0.2928 0.2602 0.0978 0.3128 0.3689 0.1724 
1.2 0.6629 0.9143 0.2023 0.7085 1.5934 0.5752 
1.6 0.9397 2.3218 0.3986 0.9637 4.2532 1.6098 
2 0.9978 4.4118 0.743 0.9994 6.9366 3.3318 

2.4 1 6.5242 1.2968 1 8.3728 5.5397 
2.8 1 8.0005 2.1325 1 8.8678 8.0954 
3.2 1 8.7066 3.3009 1 8.9814 10.8182 
3.6 1 8.9381 4.8334 1 8.9983 13.4291 

9 
 

 

 

 4 1 8.991 6.6943 1 8.9999 15.7008 
0.4 0.1003 0.0561 0.0522 0.1049 0.0689 0.066
0.8 0.2943 0.2279 0.137 0.317 0.3471 0.2332 
1.2 0.6345 0.7404 0.343 0.6899 1.49 0.8954 
1.6 0.9133 1.8866 0.7717 0.9514 4.3488 2.7385 
2 0.9938 3.8253 1.5594 0.9986 7.9071 5.8046 

2.4 0.9999 6.3038 2.831 1 10.3445 9.2255 
2.8 1 8.7015 4.6453 1 11.479 12.2556 
3.2 1 10.4545 6.9271 1 11.8716 14.5664 
3.6 1 11.4261 9.4534 1 11.9756 16.1374 

12 
 

 

 

 4 1 11.833 11.9298 1 11.9964 17.0865 
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Table 8: 0R  of the Bonferroni method, the FDR method, and the OAAT/FDR procedure 

when all the samples are from the in-control process for various combinations of m and n. 

m  n  Bonferroni  FDR OAAT/FDR 

30 5 0.0508 0.0578 0.0521 

30 10 0.05 0.0559 0.051 

30 15 0.0505 0.0558 0.0515 

50 5 0.0507 0.0573 0.052 

50 10 0.0496 0.0552 0.0508 

50 15 0.0508 0.056 0.0518 

100 5 0.05 0.0559 0.0513 

100 10 0.0494 0.0546 0.0505 

100 15 0.0508 0.0563 0.052 
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Figure 1: 1R /  (denoted by γ 1) and 1m 0R /  (denoted by γ 0) for various 

combinations of m and  (n=5). The x-axis is the shift size 

0m

1m δ . The solid line with 

diamonds corresponds to the traditional method and the dashed line with triangles corresponds 

to the OAAT/traditional procedure. 
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Figure 2: 1R /  (denoted by γ 1) and 1m 0R /  (denoted by γ 0) for various 

combinations of m and  (n=10). The x-axis is the shift size 

0m

1m δ . The solid line with 

diamonds corresponds to the traditional method and the dashed line with triangles corresponds 

to the OAAT/traditional procedure.  
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Figure 3: 1R /  (denoted by γ 1) and 1m 0R /  (denoted by γ 0) for various 

combinations of m and  (n=15). The x-axis is the shift size 

0m

1m δ . The solid line with 

diamonds corresponds to the traditional method and the dashed line with triangles corresponds 

to the OAAT/traditional procedure. 
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Figure 4: 1R /  (denoted by γ 1) and 1m 0R /  (denoted by γ 0) for various 

combinations of m and  (n=5). The x-axis is the shift size 

0m

1m δ . The solid line with 

diamonds corresponds to the Bonferroni method and the dashed line with triangles 

corresponds to the OAAT/Bonferroni procedure. 
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Figure 5: 1R /  (denoted by γ 1) and 1m 0R /  (denoted by γ 0) for various 

combinations of m and  (n=10). The x-axis is the shift size 

0m

1m δ . The solid line with 

diamonds corresponds to the Bonferroni method and the dashed line with triangles 

corresponds to the OAAT/Bonferroni procedure. 
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Figure 6: 1R /  (denoted by γ 1) and 1m 0R /  (denoted by γ 0) for various 

combinations of m and  (n=15). The x-axis is the shift size 

0m

1m δ . The solid line with 

diamonds corresponds to the Bonferroni method and the dashed line with triangles 

corresponds to the OAAT/Bonferroni procedure. 
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Figure 7: , P̂ 1R /  (denoted by γ1) and 1m 0R /  (denoted by γ0) when m=30, n=5, 

and  subgroups shift from {

0m

1m 0µ } to { 0µ δσ+ }. The x-axis is the shift size δ . The solid 

line with diamonds corresponds to Bonferroni method and the dashed line with triangles 

corresponds to FDR method.  
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Figure 8: 1R /  (denoted by γ 1) and 1m 0R /  (denoted by γ 0) for various 

combinations of m and  (n=5). The x-axis is the shift size 

0m

1m δ . The solid line with 

diamonds corresponds to Bonferroni method, the dashed line with triangles corresponds to 

FDR method and the dotted line with pluses corresponds to the OAAT/FDR procedure. 
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Figure 9: 1R /  (denoted by γ 1) and 1m 0R /  (denoted by γ 0) for various 

combinations of m and  (n=10). The x-axis is the shift size 

0m

1m δ . The solid line with 

diamonds corresponds to Bonferroni method, the dashed line with triangles corresponds to 

FDR method and the dotted line with pluses corresponds to the OAAT/FDR procedure. 
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Figure 10: 1R /  (denoted by γ 1) and 1m 0R /  (denoted by γ 0) for various 

combinations of m and  (n=15). The x-axis is the shift size 

0m

1m δ . The solid line with 

diamonds corresponds to Bonferroni method, the dashed line with triangles corresponds to 

FDR method and the dotted line with pluses corresponds to the OAAT/FDR procedure. 
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