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1. On supervised learning of multivariate skew normal

mixture models with missing information

1.1. Introduction

Finite mixture models have become a flexible and powerful probabilistic learn-
ing tool for heterogeneous multivariate data and been used extensively in classi-
fication and clustering. During the last two decades, the usefulness of gaussian
mixture (GMIX) (Pearson,1984) and Student’s ¢ mixture (TMIX) models, see Peel
and McLachlan (2000), Shoham (2002), Shoham et al. (2003) and Lin et al. (2004),
are being increasingly applied in various research fields such as pattern recognition,
data mining, computer vision, signal and image processing, machine learning and
bioinformatics, etc. For a comprehensive introduction to mixture models and their
applications, see monographs by Titterington et al. (1985), McLachlan and Basford
(1988), McLachlan and Peel (2000), Frithwirth-Schnatter (2006) and the references
therein. Recently, mixtures of univariate skew normal and skew ¢ distributions as
natural extensions of univariate gaussian mixtures have been considered by Lin et
al. (2007a; 2007b).

It is common in situations where data may exhibit highly asymmetric observa-
tions and thus statistical inferences drawn from the ordinary gaussian assumptions
may frequently yield unreliable inferences. To reduce unduly skewness encountered
in general practice, one commonly adopted approach is through the best known
data-based power transformation proposed by Box and Cox (1964). Although such
a treatment is very convenient to use, the achievement of joint normality is rarely
satisfied and the transformed variables become more difficult to interpret. Instead

of applying transformation methods, there has been a growing interest in propos-



ing a wider class of distributions, the multivariate skew normal (MSN) distribution,
which contains an extra vector of parameters in regulating skewness and includes
the gaussian family as a special case.

The MSN distribution was originally studied by Azzalini and Dalla Valle (1996)
and some further attractive features and applications are given in Azzalini and Cap-
itaino (1999). Based on this class of distributions, a number of extensions or alter-
native proposals have appeared during the last decade. Arellano-Valle and Genton
(2005) studied the family of fundamental skew normal (FUSN) distributions, giv-
ing a unified scheme to obtain MSN distributions starting from symmetric ones.
Subsequently, Arrellano-Valle and Azzalini (2006) provide a survey on some of its
extensions and variants. Sahu et al. (2003) defined a new class of MSN distributions
and remarked that this sort of formulation is more flexible in terms of adjusting the
correlation structure than the MSN of Azzalini and Dalla Valle (1996). Recently,
Lin (2009) introduced a new mixture modeling framework with component densities
using the MSN distribution of Sahu et al. (2003) and showed its great flexibility in
modeling asymmetrically data.

Learning mixture models from incomplete data has become a powerful tool to
handle real-world multivariate data sets with complex missing patterns. The work
was pioneered by Ghahramani and Jordan (1994), who applied the Expectation
Maximization (EM) algorithm (Dempster et al.,1997) to compute maximun likeli-
hood (ML) estimates of the GMIX model with arbitrary patterns of missingness.
Lin et al. (2006) extended their approach by introducing some efficient learning
strategies from both ML and Bayesian perspectives. Wang et al. (2004) presented
an ordinary EM algorithm for ML estimation of TMIX models with missing infor-

mation. Related work on using the parameter expanded Expectation Maximization



(PX-EM) algorithm (Liu et al., 1998) for the supervised learning of TMIX models
with incomplete data was done by Lin et al. (2008).

Throughout this dissertation, we assume that the mechanism of missingness
is missing at random (MAR), which means the probability of outcome data be-
ing missing is conditionally independent of the values of missing data when given
the observed data, see Rubin (1976), Schafer (1997), and Little and Rubin (2002)
for a more detailed discussion. For computational aspects, we offer an analytically
tractable EM algorithm coupled some useful model-based tools to handle data with
general missing patterns in the class of multivariate skew normal mixture (MSN-
MIX) model. To reduce complications during the EM procedure, we introduce two
binary auxiliary matrices for indexing the observed and missing components of each
datum. Under this model, we also offer a conditional predictor to retrieve the miss-
ing components and a classifier for allocating partially observed vectors.

In the next two sections, we describe the MSN and the multivariate truncated
normal distributions, define the notations and study some related properties. In
Section 1.4, we present the MSNMIX model in an incomplete data framework and
offer a computationally feasible EM algorithm to compute the ML estimates. The
standard errors are derived from the information-based method instead of using re-
sampling techniques. In Section 1.5, the proposed methodologies are applied to a
real data set with varying proportions of synthetic missing values. Some concluding

remarks are given in Section 1.6.

1.2. The multivariate skew normal distribution

A random vector Y = (Yi,...,Y,)" is said to have the p-dimensional skew

normal distribution with a p x 1 location vector &, a p X p positive definite scale



covariance matrix X, and a p x p skewness matrix A = Diag{\;,...,\,} if its joint

probability density function (pdf) is given by
V(Y] €5, A) =27,(Y] £, Q)2,(ATQ7(Y - €) | A), (1.1)

with Q =X + A’ and A = (I, + A T'A) =1, - AQ A, where I, isap x p
identity matrix. Moreover, ¢,(- | pu, %) and ®,(- | ) denote the pdf of N,(u,3)
and cumulative density function (cdf) of N, (0, X), respectively. If the p-dimensional
random vector Y has the pdf in Eq. (1.1), it will be denoted by Y ~ SN, (€, %, A).
Typically, if A is assumed to be a diagonal matrix, then the covariance structure of
Y is not affected by the skewness. By the above reason, we assumed A is a diagonal
matrix throughout this paper.

Assuming Z ~ N,(0,L,), it follows that |Z| is distributed as a p-dimensional
standard half-normal distribution, denoted by HN,(0,1,). A two-level hierarchical

version of the linear mixed-effects model
Y=(+Ay+e (1.2)
can be expressed by:

Y[y ~ N(§+Av, %),

v HNP(07IP)7

where v and € are independently distributed as HN,(0,1,) and N,(0,3), respec-
tively. Then the marginal distribution of Y is SN, (£, X, A). By Lin (2009), we have
the following lemma.

Lemma 1.1 Let Y ~ SN,(§,%,A). Then
() B(Y) = £ +,/2A1,



(i) cov(Y) =3+ (1 — 2) A?,

where 1, is a p-dimensional vector of ones.

1.3. The multivariate truncated normal distribution

We use the notation ITY_; [>° = [*°... [* for the abbreviation of multiple

i 1 ap
integrals. A p-dimensional random vector Y = (Vi,...,Y,)" is said to have the
p-dimensional truncated normal distribution with a p x 1 location vector w, a p X p
positive definite scale covariance matrix 3, and a truncated hyperplane region A =
{Y=M,....Y,)"|V1 >a,...,Y, > a,} with a; being arbitary real numbers for

all e = 1,...,p if its joint pdf is given by
1
F(Y k2 A) = —6,(Yp, E)I(Y), (1.3)

where o = IT¢_, faoo ép(Y |, 2)dY and I,(Y) is the indicator functions whose value
equals one if Y € A and zero elsewhere. If the p-dimensional random vector Y has
the pdf in Eq. (1.3), it will be denoted by Y ~ T'N,(u, %;A). By Lin (2009), we
have the following lemma.
Lemma 1.2 Let Y ~ T'N,(pu, X; A). Then
p
E(Y:) =pi+a > onif(a) G, (1.4)
r=1
where o;; denotes the (7, j)th entry of X, f.(a,) = ¢(a|p, o) denotes a normal
density with mean i, and variance o, for the rth variable evaluated at a, and G,y =
ILis 27 p 1 (Yol B50)dY () with ¢, 1 (Y81, 255, ) being the conditional

density of the remaining p — 1 variables given Y, = a,..



Moreover,

p
_ OriOrj
E(YY;) = mBEY;) + mE(Y:) — pap; + 05 + o™ {Z o (ar = ) fr(ar) Gy
r=1 r
p p OO
+Zl(71'r ; (Usj o Orp ]> fT,s(araas)G(rs) } ’ (15)

where f, s(a,as) is a bivariate normal density of the (r, s)th variables of N,(u, )
evaluated at (a,,as) and G = H#m fa(jo Pp—2(Y(rs) \,;,2 v, ngi)dY(m) with
Pp—2(Y (rs) |u2 s oo, %) being the conditional density of the remaining p — 2 variables
given Y, = a, and Y, = as.

Let [A],s denote the (r, s)th entry of A. Expressions in Egs (1.4) and (1.5) can

be written in matrix form as follows:
E(Y)=p+a'Sq=m, (1.6)
where q = (q1,...,¢,)" is a p x 1 vector with rth entry is f.(a,)G(), and
EYY=pn" +nu" —pp’ + =+ 'S(H + D)X, (1.7)

where H is a p x p matrix with all diagonal entries being zero and fs(a,, as)G(rs) on

the (r, s)th off-diagonal entry, and D is a p x p diagonal matrix with rth diagonal
entry is Ur_rl ((ar - ,U/r)fv‘(ar)G(r) - [EH}TT)

1.4. A multivariate skew normal mixture model with missing information
1.4.1. The model

In the MSNMIX model, we let Y = (Yy,...,Y,) be a set of p-dimensional
random sample arising from a population with g subclasses Cy,...,C,. That is, each

Y; has the density

f(Y;|©) szwa | €,20A),  w; >0, sz_1 (1.8)



where A; = Diag(\;) with A; = (Ajy1,...,\;p) | and the unknown parameter vector
© contains the mixing probabilities w; (i = 1,...,g— 1), the elements of component
locations &,’s, the distinct elements of component scale covariance matrices X;’s
and the skewness vectors A;’s. Note that the notation ¢,(- | §;, X;, A;) is the MSN
density defined in (1.1) and Diag(-) denotes a diagonal matrix created by extracting
the main diagonal elements of a square matrix or the diagonalization of a vector.

The mean and covariance of Y; are given by
g

cov(Y;) = { —w;) i +w } Zwlw]uluw

i#j

i Mm

where p, = €, + \/2/_7r)\i and X = %, + (1 — 2/7)A7} are the mean vector and
covariance matrix of SN, (§;, X;, A;), respectively.

To pose model (1.8) into an EM framework, we introduce allocation variables
Z; = (Zy,...,7Z,)", one for each individual Y, whose role is to encode which
component has generated Y. Specifically, the indicators Z; (j = 1,...,n) are a

g x 1 vector of binary variables, whose elements are

1 if Y, belongs to group s,
Zgj =
0 otherwise,

and satisfy Y 7 | Z;; = 1. This implies Z; follows a multinomial random vector with
1 trial and cell probabilities wy, . .., w,, denoted by Z; ~ M(1;wy, ..., w,).

A three-level hierarchical representation of (1.8) can be expressed by
Y, | (’Yjw Zij=1) ~ Np(§ + Az")’j, ),
v | (ZZ] = 1) ~ HNP(OaIP)7
Z] ~ M(l;wl,...,wg), (19)
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fori =1,...,9g and j = 1,...,n. From (1.9), we therefore declare the complete

data vector to be (Y,Z,v), where Y = (Y{,...., Y, Z = (Z],...,Z)" and

~y=(v{,...,))". From (1.9), the complete data likelihood function for © is
L(©®|Y,Z,~) o [T (widp(Y; 1 &+ Airy;, 20)) 77 . (1.10)
i=1 j=1

We are interested in ML estimation problem of model (1.8) when Y may be
partially observed. The underlying missingness mechanism is assumed to be MAR.
Simply speaking, the missingness of data is unrelated to missing values, but it might
depend on the observed values.

Following Lin et al. (2006), we partition Y into two components (Y;»’T7 Y}T‘T)T,
where Y3 (p} x 1) and Y ((p—p$) x 1) denote the observed and missing components
of Y;, respectively. To facilitate the computation, we introduce two types of the
binary indicator matrices, denoted by O; (p} x p) and Mj ((p — p§) X p), satisfying
Y7 =0;Y; and Y}' = M;Y, which can be extracted from a p-dimensional identity
matrix I, corresponding to row positions of Y7 and Y7' in Y}, respectively. It is
straightforward to verify that (a) Y; = O/ Y9 +M]Y"; (b) O;O; + M/ M; =1,.

Furthermore, we can establish the following results.

Theorem 1.1 Let Y; ~ Y37 withp(Y; | &, %, Ay), and let Y5 and Y} be the

observed and the missing components corresponding to Y j, respectively. We have

(a) The marginal density of Y§ is 327 withye (Y51€5;, 257, A77), where &; = 0§,

Z_]7 17

2%9 = 03210; and A?;) = OjAlO;r
(b) The conditional density of Y given Y§ is

g
FOCP YD) =22 i (Y3 | €570, Q™) (A2 (Y — &) | A),

ij
=1



where Wy = widyy (Y7 | &4 7)) 2 hor wntbn (Y5 | &35 X5 A7), €557 =
M (€& + QC2(Y; — &) and Q2™ = M;(I, — Q,C)QM] with Q2 =
0,90/ and CZ = 0] Q% 0.

Proof. The proof is given in Appendix A.

Theorem 1.2 From (1.9), we have the following conditional distributions:
(a) The conditional distribution of Y3 given «y; and Zi; =1 is
Y9 | (7,0 Ziy = 1) ~ NyspaSy, 520),
where pg; = 0;(&; + Ayy;) and 77 = 0;3,0, .
(b) The conditional distribution of Y} given Y3, ~;, and Zi; =1 is
Y| (V39502 = 1) ~ Nyrag (%, S),
where Nzr'l;"o = M](Ez + Az”Yj + Ez‘S%p(Yj - & — Ai’)’j)); E?g}mo = Mj(Ip -
%iS50)E:M] , and 83 = O/ (0,%;0,)710;.
(c) The conditional distribution of ~v; given Y§ and Z;; = 1 is
v, | (Y5, Zij = 1) ~ TN, (A CR(Y; =€), 1, — AiCF A RY ),
where RE is RP with all elements being positive real numbers.

Proof. The proofs of part (a) and part (b) are straightforward and hence are
omitted. The proof of part (c) is given in Appendix B.

Let E(v,|Y$, Z; = 1) = n;; and E(v;v, |Y$, Zi; = 1) = ¥,;. Both of which are
implicit functions of parameters §;, 3; and A; and can be easily evaluated by using

Egs. (1.6) and (1.7). The following corollary is a direct implication of Theorem 1.2.

9



Corollary 1.1 Recalling Y; = O]TY;? + 1\/I]TY;T1 and OjTOj + M]TMj =1, these

give rise to O] O;(I, — X;89°) = 0. We can obtain

(a) E(Y; | Y5, Zij =1) =&+ Aimy; + LS (Y, — & — Aimy).

(b) cov(Y; | Y5, Zyy = 1) = (I, = 3iSY) (B + Ai( ¥y — myymip) AT, — S%0))
(c) E(Yyy, | Y3, Zij =1) = (I, = 2:S%)(€my; + AiWyj) + ZiSyY m)-

For a p-dimensional observation with the probability of its missingness greater
than or equal to zero for each attribute, there are 2P — 1 unique patterns of missing-
ness. In general, completely missing pattern does not happen. This indicates that
the missing rate should be smaller than (p—1)/p. To lessen the computational load,
Lin et al. (2006) have described a simple procedure by rearranging Y according to

unique missing patterns of data.

1.4.2. An efficient EM procedure for ML estimation

The EM algorithm of Dempster et al. (1977) has been widely used in the
literature to carry out ML estimation in a variety of incomplete data problems.
We offer an efficient EM algorithm for learning model (1.8) from incomplete data.

For notational simplicity, let T = (£,,...,&,,31,..., 3, A1,..., Ay) and w =
(wy,...,wy)" . Let YO = (Y9, Y3, -+, Y2 and Y™ = (YP, YJ, -+, Y™) represent
the observed portion and the missing portion of the data, respectively. From (1.10),

the complete data log-likelihood function of ®, aside from additive constant terms,

10



can be written by

( |Y Z,v)
g n n
ZZ ;log(w;) % log | %] (Z )—H:r (E 1ZQ”> )
i=1 j=1 =1 Jj=1 Jj=1

where
Qi = Zi;(Y; =& — Ay (Y, — & — Aivy)) "
Given the observed data Y° and the current parameter estimates (:)(k), the E-

step needs to compute the expected log-likelihood of the complete data.

Lemma 1.3 The conditional expectation of Eq. (1.11) is given by

~ (k) o Ak
Q") = E(w@Y.Z7)Y,6")

— Quw|®") + Qx(r1&™).

It follows that

g n
(k) -
QwO") = 3" 7 log(w), (1.12)
i=1 j=1
.k n . n
Q,(re") = > |log|z (Zzgj@)Hr <2;1ZQ<’“>> . (1.13)
i=1 j=1 j=1
where
(k) o ~o(k) »~00(k) «oo(k)
S0 _ w; wp;(le&j 7zij aAij ) 1.14)
o g A(k) o1 a0(k) Aoo(k) ~oo(k).’ ( :
i ; ¢p°(Y‘|€z’j ) i' 7Aij )
% 0o( ~(k < (k)
Yy = s S Dy, (1, - 5" S )(£§)+A§ )m(f)), (1.15)
k - (k & (k) qoo(k)y & (F) . (k)
Qz(j) = Zi(j) [(IP_Ei Sij( ))Ei +( —& - A gg )( =& — A7 zg)
A (k (k) k)~ (k)T\ /A (K T
+HAD A (T - pPa )(Aﬁj)—Ai) ] (1.16)

11



~ 0(‘)(k) o(k)

with & = 0,&". 57" = 0,570], A7" = 0,A”0], Al = @

L, —
£V A" and §2°0 = 07(0,35707)10; fori =1,...,gand j=1,...,n
Proof. The proof is given in Appendix C.

The EM algorithm is as follows:
E-step: Given @ = G:)(k), compute Zz(]k, Q(k and Y ®) for i = 1,...,9 and
j=1,...,n, using Eqs (1.14), (1.16) and (1.15).
M-step:
1. Update w by maximizing Eq. (1.12) over w; subject to their sum is unity,

which gives

k+1

3|'—‘
M:

j=1
. A (k) 5. (k) oL .
2. Fix A; at A; ', update &, * by maximizing Eq. (1.13) over §,, which leads to

s (k)< () k)

é(k+1) = 1Z )Y( ZJ 1Z( “)

7 (k) :
ijl Zz’j

3. Fix €, at €(k+ and A; at Al(-k), update 25“ by maximizing Eq. (1.13) over ¥,

which leads to

n o (k+1/2)
(k+1) - Zj—l sz

Z] IZk)

)

where Q K2 is Ql(f) in Eq. (1.16) with &, replaced by éﬁk“) and A; replaced by
A

4. Here A; assumed to be diagonal, say A; = Diag(;), where A; is a p-dimensional

(k+

+1) and 3 at 21-

vector. Fix §; at £ , update )\(k by maximizing Eq. (1.13)

12



over \;, which leads to

j\ngrl) _ < (k+1)~ ZZ(k )

x ( e Z (v -l AT v - &) )) 1,
where 1, denotes a p-dimensional vector of ones and the operator ® denotes the
elementwise product of two matrices of the same dimension.

The detailed proof of the M-steps is shown in Appendix D.

Since the stability and monotone convergence of EM are maintained, the itera-
tions are repeated until a suitable convergence rule is satisfied, e.g., ||© U6 [
is sufficiently small. When the convergence is achieved, the resulting estimates are
denoted by © = (w1, ... ,u?g_l,él, o ,ég, S f]g, A, ... ,Ag). Therefore, the

posterior probability of the Y; belonging to group ¢ can be estimated by

= UA)Z 177 17
w*A:P(Zi.:”Yo @)_ wp( |€] J )

i J ) = N .
’ Zzgzl wi¢p ( | €zg7 I )
According to the ML classification theory of (Basford and McLachlan, 1985), Y

(o]0)

(1.17)

is assigned to group s if wg; > wy; for i =1,..., g and ¢ # s. Consequently, the ML

predictor for the missing component Y7 is given by

1.4.3. Estimation of standard errors

Under the regularity conditions given in Zacks (1971, Chapter 5), the standard
errors of the ML estimates, ©, can be obtained by inverting the observed or ex-

pected information matrix. Efron and Hinkely (1978) suggested using the observed

13



information matrix instead of the expected information matrix for the evaluation of
the standard errors. Meilijson (1989) showed a remark that the observed as well as
the expected information matrix could be estimated consistently by the empirical
covariance matrix of the individual scores.

Let ¢.;(®|Y;, T;,Z;) be the complete data log-likelihood formed from the single

observation Y. The individual score is defined as

8£Cj(®|Yjv "Yj) Z])
00

u(Y?|®) = E(

Y;,@).

The empirical information matrix, according to Meilijson’s formula, is defined as
L(O]Y?) =) u(Y®)u'(Y;e) - n'U(Y|®)U (Y°|®), (1.19)
j=1
where U(Y?|®) = >7"_ u(Y$|©).
Let vech(-) be the matrix operator which stacks only the distinct elements of a

symmetric matrix into a single vector. The ML estimates © substituted for © in

the Eq. (1.19) and then it reduced to

3

-
oy __ ~ 00
L(O]Y?) =) ujuj,
J=1
where
~o o1&
u; = u(Y;|®)
_ ~0 ~0 Aol Aol a0l Aol ol Aol \T
- <uj’w17'"7uj7w971’uj7£17'"7uj7£g7uj70'17“"ujzag7uj7kl7"'7uj7xg) ’
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with A; = diag(A;) and o; = vech(3;). Expressions for the elements of G} are given

by
qo o i Zy
Jwr Wy (O ’
o LA -l .
We = Zy%i (Y —&—Aimy),
~ o~ 1~ ~
ﬁ?’ai = vech (ZHBZ] — §Zz]D1ag(BU)> s
ﬁ‘]) X Dlag (ZUS%O((Yj - gz)ﬁ; - Az\i’U)) )
where

~

Bij = S?JQ (Az(‘i’zg - 'flzg'flT>Az + (YU - 52 - Azﬁzg)(YZJ - éz - Aﬁhgf) SZO - S?JQ'

ij

The detailed proof is shown in Appendix E.

1.5. Experimental results

For illustration purposes, we apply the techniques presented so far to a subset
of the Australian Institute of Sport (AIS) data, including 13 physical variables on
102 male and 100 female athletes, which are treated as two intrinsic classes. The
data were originally reported by Cook and Weisberg (1994) and have been analyzed
already by Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999) and Az-
zalini (2005), among others. They pointed out the AIS data are better suited to
the MSN distribution than gaussian, but neglected the situation where patterns of
multimodality happen. In this example, we select three attributes: BMI, Bfat and
LBM, which represent the body mass index, the percentage of body fat and lean
body mass, respectively.

Fig. 1.1 depicts pairwise bivariate scatter plots of the data with superimposed

contours of the fitted 2-component MSNMIX distribution. It can be observed from
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the figure that the scatter plots and fitted densities reveal an apparent bimodal
asymmetric mixture pattern for each of the three pairs of variables. Note that the
mixture components for BMI and LBM are not well separated because the two at-

tributes are highly correlated with the Pearson’s correlation coefficient being 0.71.
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Figure 1.1: AIS data: bivariate scatter plots and fitted 2-component MSNMIX

contours (+: Female; o: Male)
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To conduct experimental studies, we first generate 500 synthetic missing data
sets by deleting at random from the experimental data under various missing rates,
r%, where each datum retains at least one observed attribute. The missing rates
of the synthetic data range from 10% up to 40% (increased by 10%). A relative
difference of 1075 in successive values of the log-likelihood is used as a stopping
guideline for the EM algorithm.

We fit a MSNMIX model with density (1.8) to 500 synthetic missing data sets
for g = 1 and ¢ = 2, where ¢ = 1 corresponds to the MSN model (a special
case of MSNMIX model with a single component) of Sahu et al. (2003), which
cannot capture the bimodality. Specifically, the 2-component MSNMIX model can

be written as

FY510) =wi(Y; | €1,50, M) + (1 —w)o(Y; | €5, 30, A) (G =1,...,202),

where
&it Oi11 05312 0413 >\i,11 0 0
&= & |, Xi= 0;12 0322 023 and A; = 0 N2 0
&3 0i13 0523 0433 0 0 )‘i,33
fori=1,2.

For comparison, we test the null hypothesis Hy : ¢ = 1 (MSN) wversus the alter-
native hypothesis H; : ¢ = 2 (MSNMIX). The numbers of free parameters under
Hy and H; are 12 and 25, respectively. The likelihood ratio test (LRT) statistic,
given by the difference in values of —2 times the log-likelihood between two nest
models, is used to judge which of the two models is more suitable for this data set.
Fig. 1.2 displays the histograms of converged log-likelihood values of the null and

the alternative models along with a summarized box plot for their LRT statistics.
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It is readily seen that the LRT statistics are highly significant compared with the

X35 distribution for all cases.
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Figure 1.2: A comparison of converged log-likelihood values of the null (¢ = 1)
and the alternative (¢ = 2) models and their LRT statistics, where dotted line
(- )=x35(0.99) = 27.69 and dashed line (— — —)=x%5(0.95) = 22.36, for various

proportions of missing values (Replications=500)
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To exemplify the predictive accuracies on the imputation of missing values, we
compare the MSN and MSNMIX predictors, see Eq. (1.18), together with the tra-
ditional randomization-based mean imputation (MI) predictor, known as a common
heuristic by filling in a single value for each missing value with the observed sample
mean of the associated attribute. As a measure of precision, the mean absolute
error (MAE) and the mean absolute relative error (MARE) are used to evaluate
the prediction discrepancy. Comparison results are listed in Table 1.1. The relative
improvement percentage (RIP) in Table 1.1 is defined as the percentage decrease
in the relative prediction error when comparing MSN and MSNMIX predictors. In
this study, we found that both model-based predictors substantially outperform MI
for all cases. Furthermore, the MSNMIX predictor exhibits considerable promising
accuracy in the prediction of missing values when compared with those of MSN

imputations over a wide range of missing rates.

Table 1.1: A comparison of averaged prediction accuracies and the associated stan-
dard deviations in parentheses for three imputation methods with varying propor-

tions of missing values. The relative improvement percentage (RIP) is measured by

(MSN-MSNMIX)/MSNx100%. (Replications=500)

Missing MAE MARE

rate MI MSN  MSNMIX RIP(%) MI MSN  MSNMIX RIP(%)
6.114 3.476 3.326 0.243 0.154 0.141

10% 4.32 8.44
(0.733)  (0.495) (0.499) (0.032) (0.024) (0.023)
6.124 3.777 3.637 0.246 0.166 0.155

20% 3.71 6.63
(0.493) (0.321) (0.337) (0.024) (0.032) (0.018)
6.115 4.096 3.967 0.244 0.177 0.167

30% 3.15 5.65
(0.380) (0.300) (0.319) (0.018) (0.015) (0.015)
6.115 4.382 4.275 0.245 0.190 0.182

40% 2.44 4.21
(0.302) (0.284) (0.307) (0.017) (0.014) (0.015)
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As another illustration, we compare the supervised learning of classification ac-
curacies between the GMIX and MSNMIX classifiers, see Eq. (1.17). Comparisons
are made on the trivariate data and a reference bivariate sample (BMI, LBM). Table
1.2 shows the average misclassification rates from these models. As seen in the ta-
ble, the misclassification rates of the MSNMIX classifier are all significantly smaller
than those of GMIX classifier, especially for the bivariate sample with RIPs ranging
between 43.3% and 60.1%. These observations signify that the MSNMIX model

provides a sound statistical basis for clustering.

Table 1.2: A comparison of averaged misclassification rates (%) between GMIX
and MSNMIX models with standard deviations in parentheses for three imputa-
tion methods with varying proportions of missing values. The relative improve-
ment percentage (RIP) is measured by (GMIX-MSNMIX)/GMIXx100%. (Replica-
tions=500)

Missing Trivariate data Bivariate data (bmi, 1bm)

rate GMIX MSNMIX RIP(%) GMIX MSNMIX RIP(%)

5.35 477 27.36  10.93

10% 10.8 60.1
(0.015)  (0.010) (0.129)  (0.022)
6.99 6.24 3171 14.60

20% 12.0 54.0
(0.024)  (0.014) (0.136)  (0.028)
9.84 8.61 3475 18.68

30% 12.5 46.2
(0.034)  (0.018) (0.123)  (0.036)
1311 11.63 3620  20.52

40% 11.3 43.3
(0.037)  (0.023) (0.105)  (0.020)
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1.6. Concluding remarks

We have established some properties related to the MSNMIX model in a miss-
ing information framework. The proposed model is very flexible in dealing with
heterogeneous data that involve strong skewness and is persistent to the presence of
missing observations. We discussed in detail how the EM algorithm coupled with
auxiliary matrices can be applied on learning models from incomplete data in an effi-
cient manner. Experimental results indicate that the MSNMIX model performs well
for imputations as well as clustering when asymmetric multimodality and missing
outcomes simultaneously occur in the input data. Finally, we highlight that, with
the growing advances of modern stochastic computing technology and inexpensive
high-speed computer power, it is worthwhile to pursue a fully Bayesian treatment
(e.g., Hastings, 1970; Tanner and Wong, 1987; Diebolt and Robert, 1994; Escobar
and West, 1995) in this context for enriching up-to-date account of the theory and

applicability:.
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2. Robust Statistical Modeling Using The Multivariate
Skew t Distribution With Incomplete Data

2.1. Introduction

In the statistical modeling of multivariate data, sometimes, not all designed
measurements are fully collected. The occurrence of missing values in multivariate
analysis is a common problem that might lead to biased estimates of parameters or
inefficient inferences. Learning multivariate normal (MVN) models from incomplete
data has been well-developed and systematically studied in the literature, see e.g.,
Anderson (1957), Hocking and Smith (1968), Rubin (1987) and Liu (1999). For
analyzing data with incomplete observations, modern imputation methods such as
the Expectation Maximization (EM; Dempster et al., 1977) and data augmentation
(DA; Tanner and Wong, 1987) algorithms can be easily implemented by using the
statistical packages: proc MI in SAS (SAS 2001) and the Missing Data Analysis
Library in S-PLUS (Schimert et al., 2000).

Typically, the normality assumption for incomplete multivariate data is usually
hard to be justified. Further, in some situations, the underlying distribution of input
data may be asymmetrically distributed or it may contain some influential outliers.
The multivariate ¢ (MVT) distribution is a useful model for robust inference and
covers a wide variety of applications (Kotz and Nadarajah, 2004). As pointed out by
Liu (1995), to fit data having longer than normal tails, multiple imputations under
MVT models allow to yield more valid statistical inferences than using the normal
distribution. Lange et al. (1989) remarked the MVT model is not a panacea for
modeling data with highly asymmetric observations.

Over the past decades, there has been a growing interest in proposing a para-
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metric family of multivariate skew ¢ (MST) distribution (Jones and Faddy, 2003;
Azzalini and Capitaino, 2003), which is an extension of the MVT family with addi-
tional shape parameters to regulate skewness. In this paper, we consider the missing
imputation problems under a new class of MST distribution, defined by Sahu et al.
(2003), can accommodate a wider range of distributional features. Sahu et al. (2003)
remarked that the correlation structure within this family is not affected by the in-
troduction of skewness parameters.

In this class of MST models, we are devoted to developing tactical learning
tools to handle missing data problems. Throughout, the mechanism of missingness
is assumed to be MAR, pioneerly introduced by Rubin (1976), meaning that the
missingness of input data depends only on the observed values. A computationally
flexible Monte Carlo Expectation Conditional Maximization (MCECM) algorithm
that incorporates two auxiliary matrices is provided to carry out ML estimation
under a general pattern of missingness.

To pose the MST model in a Bayesian framework, a DA scheme for Bayesian
sampling is developed to create multiple imputations of missing data. The priors are
chosen to be weakly informative to avoid improper posterior distributions. Using a
fully Bayesian approach to implement this model, the posterior and predictive in-
ferences can be accurately extracted from a large converged Monte Carlo dependent
samples.

In Sections 2.2 and 2.3, we describe the MST distribution and multivariate trun-
cated t distribution with a simple pseudo random number generator via the Gibbs
sampler, respectively. In Section 2.4, we describe a feasible MCECM procedure to
conduct estimation and imputation of MST models from incomplete data. A simple

way of calculating information-based standard errors of estimates is also presented.
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In Section 2.5, an efficient DA scheme is employed to carry out a fully Bayesian
inference as well as multiple imputations of missing values. In Section 2.6, the
proposed methodologies are illustrated through two real examples with complete
and synthetic missing values. Some concluding remarks are briefly summarized in

Section 2.7.

2.2. The multivariate skew t distribution

For notational simplicity, we denote t,( - | p, 3, v) to be the p-dimensional MVT
distribution with location vector p, scale covariance matrix 3 and degrees of free-
dom v and T,(- | 3;v) is the cdf of ¢,(0, X, v).

A p-dimensional random vector Y = (Y7, ...,Y,)" issaid to have the p-dimensional
MST distribution with a p x 1 location vector &, a p X p positive definite scale co-
variance matrix X, a p x p skewness matrix A = Diag{\;,...,\,}, and degrees of

freedom v if its joint pdf is given by

FOY| €., A,0) = 270, (Y] €,Q,0)T, (q, / 5:1; ‘A; v+ p) , (2.1)

where @ = X + A% A = (I, + A TIA) L = I, - AQ A, g=AQ (Y — &) and

U= (Y —-§&"Q (Y — §&). If the p-dimensional random vector Y has the pdf in
Eq. (2.1), it will be denoted by Y ~ ST,(&, %, A, v).
A three-level hierarchical version of the MST model can be expressed by:
Y ‘ (77 T) ~ Np(é + A77 2/7—)7
Y | T~ HNP<O7IP/T>7
T ~ I'(v/2,v/2) . (2.2)
It follows from (2.2), the marginal distribution of Y is ST,(§, %, A, v). By Sahu et

al. (2003), we have the following Lemma.
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Lemma 2.1 Let Y ~ ST,(€, %, A,v). Then

(a)
E(Y)=¢&+ \/?IEZZ)A,

(b)

cov(Y) = Vi2(2+ (1- ;)y) +§ (Uiz - (Flig)fg) AN,

where XA = Diag(A).
From Lemma 2.1, the mean exists when v > 1 and covariance matrix exists
when v > 2. Note that there is an error in the expression of cov(Y) in Sahu et al.

(2003, pp. 137) that A? is replaced by AX" in Lemma 2.1.

2.3. The multivariate truncated ¢ distribution

In this subsection, we briefly describe properties of the multivariate truncated
t distribution whose truncations are left-positioned at arbitrary points. Further, we
provide a simple means to generate random samples from this distribution.

Let T't,(p, 3, v; A) denote a p-variate truncated ¢ distribution for ¢,(u, 3, v) ly-

ing within a truncated hyperplane region A = {x = (z1,...,2,) " |x1 > a1,..., 2, >
a,} and use the notation [[7_, [ = aolo e fao: for the abbreviation of multiple
integrals. Specifically, we say a p-dimensional random vector X = (Xy,..., X,)" ~

Tt,(p, X, v; A), if its density is given by
1
Pl 2 4) = 1, (x|, S, T (x), 2.3

where o = [[}_, faio tp(x|p, X, v)dx is the normalizing constant and I, (x) is the
indicator function whose value equals one if x € A and zero elsewhere.

Now, we present a flexible Gibbs procedure to draw random samples from (2.3).
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Let L be the Cholesky factor such that ¥ = LLT. If Z = L™'X, then
Z~Tt,(u1,,v;B), B={Lz>a},

where p* =L u = (pi, ... ,,u;‘,)T. Based on the property of the MVT distribution
concerning its conditional distribution, the full conditionals required for the Gibbs

sampler are

v+o_,

ZZ_, =z_,)~Tt ( « T O

,V—Fp—l;BT), r=1,...,p, (2.4)
and each which follows a univariate truncated t distribution with truncation B,.

Here 6, = (z_, —p*,) (z_, —p*,), B, = {Z, € R | Lz > a} and z_, is a

subvector of z by disposing of the rth entry. To generate random variates from
(2.4), it can be easily done by using the ‘R’ programs provided by Nadarajah and
Kotz (2007).

In summary, the Gibbs sampler proceeds as follows:

1. Get initial values X(© from the support region A. Set Z(® = LX) and
=1.
(k) _(k—1) (k=1)

2. Generate Z¥ r = 1,... p, from f(zr|z§k),...,zr_1,zr+1 ,.-.y2p ), which

is a truncated t distribution as in (2.4).
3. Return the values X*) = LZ®. Set k = k + 1.

4. Repeat Steps 2 and 3.

2.4. The multivariate skew ¢ distribution with missing information
2.4.1. Definition and some properties

Let Y = (Y4,...,Y,) be arandom sample of size n taken from ST,(&, %, A, v)

with n > p. According to (2.2), a three-level hierarchical representation of MST
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models can be expressed as

Y| (v,m) ~ Ny(§+Av;, 2/,
vl ~ HNy(0,1,/7),

. o~ D(v/2,v/2) (j=1,...,n). (2.5)

To set up estimating equations for multivariate data allowing for missing
values, we partition Y, into two components (Y;?T,Y;“T)T, where Y (p§ x 1) and
Y ((p—p§) x 1) denote the observed and missing components of Y, respectively.
To facilitate computation, we introduce two types of the binary indicator matrices,
denoted by O; (p§xp) and M ((p—p§) xp), satisfying Y§ = O;Y; and Y = M;Y},
which can be extracted from a p-dimensional identity matrix I, corresponding to
row positions of Y§ and Y} in Y}, respectively. It can be easily verified that (a)
Y; = O] Y?+M]Y?; (b) OfO; + M/M; = I,. Accordingly, some important

consequences are summarized in the following theorem.
Theorem 2.1 Given the specification of (2.5), we have
(a) The conditional distribution of Y§ given ~; and Tj is

Y;') | (7j77—j) ~ NP?( i T'_IE(]?())a

'y
where ¢§ = O;(& + Avy;) and £° = 0;30] .
(b) The conditional distribution of Y3* given Y3, ~v;, and 7; is

Ym ’ (YO7’7J,TJ> ~ Np*p?(cm.o,Tj_lz?m.o)’

J J J
where ¢} = M; (£+A7j+ES§?O(Yj—E—A7j)), ¥ = 1\/Ij(IP—ZS?O)EI\/I;r
and 82° = 0] (0,;X0;)'0;.
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(c) The marginal distribution of Y is STp?(E‘;7 329, A%, v) with density

o © 0| ¢O 00 o V—i_p? 00, 0
f(Yj) = 2pjtp§?(Yj‘€j7Qj a’/)Tp;’(qM/ I/—l—U](-) |Aj aV‘f‘pj)»

o 00 00 ) 00(yoo ! o o
where & = O0;§, A)° = OjAOjT, Q70 = OjQOjT, q; = AJ°Q (Yj — &),

J

oo~ 1 00 00001 A 00
Up = (Y;—€)TC(Y; =€), C° = 0/ Q7 O; and A =T —A°Q}° A%

(d) The posterior distribution of ~; given Y? follows a multwariate truncated t
distribution. That is
U?+v
o * J * o. p

where qf = ACS°(Y; — §) and A} =1, — ACS°A.

(e) The conditional distribution of 7; given Y3 and =y, is

x~1 * (e}
p+p}+v (v —a) AT (v, — ) + Us +V>

Tj ‘ (YEJPYJ)NF< 2 ) 2

Proof. The proofs of part (a) and part (b) are straightforward and hence are omit-

ted. The proof of part (c), (d), and (e) are given in Appendix F.

2.4.2. ML estimation via the MCECM procedure

To compute the ML estimates for the parameter vector 8 of MST models with
partially observed data, we adopt a simple modification of the MCEM algorithm
(Wei and Tanner, 1990), namely the MCECM algorithm. More precisely, it is an
extension of the ECM algorithm (Meng and Rubin, 1993) in which the E-step is
evaluated by approximating the conditional expectations through observations sim-

ulated by Markov chain Monte Carlo (MCMC) methods (Hastings, 1970), while the

28



M-step is simplified by performing a sequence of conditional maximization (CM)
steps.

For notational simplicity, let @ = (£,%, A, v). Let Y° = (Y9, Y3, -+ ,Y?) and
Y™ = (Y™, YR, -+, Y™ represent the observed portion and missing portion of the
data, respectively. The complete data log-likelihood function of 0, ignoring additive

constant terms, is

(01, Y™ v, T)

no., v v n
= 710g§—n10gF(§>—§log|E| ZT] < —|—p—1>ZlogT]

7j=1

__ZTJ7J Vi ZQ (2.6)

where Q; = 7;,(Y; — € — A’Yj)(Yj —&- A'Vj)T‘

(K o AR\ (K o A\ ~(k OA()
Let Tj( ) = E(r]Y$,0°7), /{é ) = E(log7;[Y5,0 ), 775 ) = E(7v;1Y$%,0 ) and
- o (k
\Ili-k) =F (Tj'yj'ij|Y;?,9( )) be the necessary conditional expectations involved in
~ (k ~(k) (k) 2 (k
(2.6). Let 6’( ) (5( ), Z( ), A( ), 7(®)) denote the estimates of @ at the kth iteration.

- (k
Given the observed data Y° and the current parameter estimates 8 = 0( ), we can

calculate

o = E@Q; Y0

J

A N T ~
+(b)" — &)n? (A - )T, (2.7)
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Proof. The detailed proof is given in Appendix G.

Furthermore, a Monte Carlo estimate of the )-function can be evaluated as

o m (k) (k) o A (k)
Q6" ZE 01Y°, Y™ 45,5 %) vo,0"), (2.9)
where 'y[ ] {'ngaj = 1,...,n} and %E;ES) = {jﬁn),g = 1,...,n} for m =

1,..., M, are a set of independent random samples generated from each f(v,, 7;/Y?)
- (k
given 0 = 0( ). The exact sampling of «; and 7; can be conveniently implemented

through the following generators:

U( +V(k) A K
k+1 |Y°~Tt( k)’ j A.(k)
pj—{—y() J

) 4 RY),
and

(k+1) ’ ( (k+1) YO)

. o k1) ax(NT A XN (k1) ax(k ro(k) | oA
NF<V(k)+p+pj (7;;) Qj( ))TA]' ('75‘,;:)_(1]'( ))+Uj()+y(k)>
2 ’ 2 ’
~x(k) A (k) ~o00(k) 2 (k) A *(k) 00( (k) pro(k) .
where q; 7 = A C;(Y; — &), A, —I—A C MA , U = (Y =
)T ® v,y and 6 = 070" 0, with 07 = 0,3 +A")07].

Therefore, the conditional expectations defined above can be readily approximated

as

M M
# e MY AN R MY T log 7l
m=1 m=1
M M
~ (K — ~(k) ~ (k A (k) 2
IS VN O T RSP V) N e e AR R 1))
m=1 m=1

Formally, the MCECM algorithm can be implemented as follows:

~(k)  a(R) o (k)

~ (k)
MCE-step: Given 0 = 0( , compute Monte Carlo expectations 7;, £;, 1;” and
= (k) . .
¥, by using (2.10) for j =1,...,n

CM-steps:
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A(k

CM-Step 1. Fix A = A(k), update & ) by maximizing (2.9) over &, which leads to

where §2°® = 0T(0,£"0T)10;.

k+1

CM-Step 2. Fix £ = é( : and A = A(k), update ﬁ](k) by maximizing (2.9) over

32, which gives

n &KE+L/2)
g _ 2y
n
A (k+1/2) . (k) . . 2 (k+1) A (F)
where €2, is ;7 in (2.7) with & and A replaced by & and A,

respectively.

~ (k+1)

CM-Step 3. Fix £ = £ (k4D

and ¥ = 3 , updating S\(k) by maximizing (2.9)

over A yields
~(k ~ —1 n R —1 R 1 n R ok A R T
A (2 ey ) (2 OY (B -6 T+ AP
Jj=1 j=1
where Agk) and lA)gk) are defined in (2.8). It follows immediately that AFTY

Diag A ).

CM-Step 4. Obtain #**+Y as the solution of the following equation

v AVE YA
log(§>+1—DG<§)+5Z</€j — # >_0,

j=1

where DG(z) = I'"(z) /T'(z) is the digamma function.

The detailed of the CM-steps are shown in Appendix H.
Iterations of the above MCE- and CM- steps are alternated repeatedly until a

suitable convergence rule is satisfied, e.g., the relative difference in successive values
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of the log-likelihood is less than a tolerance value, say 10712, As the log-likelihood
function tends to have multiple modes, the algorithm needs to be initialized with a
variety of several starting values. For the choice of initial values, Lin (2009) proposed
a simple way of automatically generating a selection of initial values. The global
optimum solution is obtained by comparing their relative converged log-likelihood
values. Under suitable regularity conditions (Chan and Ledolter, 1995), the algo-
rithm converges to local optimum of the likelihood function. The resulting ML
estimates are denoted by 6 = (€, 3, X, 7). It follows from Theorem 2.1(b) that the
ML predictor for the missing component Y7 can be determined as

A

Y2 = M; (€ + A%, + 282(Y; - € - AY))), (2.11)

J

where 4, = E(v,|Y°, 9), which can be approximated by Monte Carlo average of
U S+

samples simulated from 7't (q], e

A U+ DY RE).

2.4.3. Standard errors estimates

Under certain regularity conditions, we apply the information-based method of
Meilijson (1989) to compute the asymptotic covariance of the ML estimates. Let
£cj(0]Y;,7,,7;) be the complete data log-likelihood formed from the single observa-

tion Y;. The individual score is defined as

((%cj(ijv'Yj’Tj) ‘Y‘?,H).

u(Y;|0) =F 50

The empirical information matrix, according to Meilijson’s formula, is defined as

L(0]Y°) =) u(Y$6)u' (Y5|0) — n 'U(Y°|0)UT(Y°|6), (2.12)

j=1
where U(Y°[0) = >_7_, u(Y$|0).

Let vech(-) be the matrix operator which stacks only the distinct elements of
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a symmetric matrix into a single vector. Substituting the ML estimates 6 into 6,
(2.12) is reduced to
L(0]|Y°) = ZA;A; : (2.13)

T ol

where 0} = u(Y}’]é) = (ﬂ;?;-, w,,ul,,49,)" isa (p?+5p+2)/2 x 1 score vector and
o = vech(X). Then, the asymptotic covariance matrix of 6 can be approximated by
the inverse of (2.13). Expressions for the elements of i} can be obtained by standard

matrix differentiation. Technical derivations are given as follows:

W, = 7SP(Y; &) - S;?oAnJ, u;, = vech <C] — —Dlag(CJ)> :
W, = Diag (S(Y, - &) - SPAY,),

>
0
AN

I

N | —
RN
o
oo

|
N——
+
—_

| >
g 3
VRS
N |
N—
+

=N

S

|

D
N—

+(ES°Y, + D€ - &)n; (DA - A)T
+75(385°Y; + D€ — £)(8SY; + D€ — €)'

and f)j =1I, - 23;0

The detailed proof is shown in Appendix I.

2.5. A fully Bayesian approach

Due to the growing advances of modern computing technology, the Bayesian
method is frequently considered as an alternative way to deal with missing data

problems. Tanner and Wong (1987) proposed the DA algorithm, which has been
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shown to be an effective procedure for multiple imputations of missing data. In this
section, we construct an efficient DA algorithm that combines the latent variables
~, T, and unobserved data Y™ to simulate the posterior distribution of 6.

The DA algorithm consists of the imputation step (/-step) and the posterior step
(P-step). At the kth iteration, the I-step is defined by drawing imputations of 7§~k),
Tj(k), and Y;-n(k) from the predictive distributions p(~y,;[Y®, o)), p(75l7v,, Y°, o)),
and p(Y}|v,, Y°, 75, B(k)), respectively, for 7 = 1,...,n, and the P-step refers to
generating 0 from p(@]Y°, Y+ 7(+1) ~(E+D) If jterations are performed
by a sufficiently long time, then the simulations ')Ig.k), Tj(k), Y}n(k), and 0% are dis-
tributed according to p(,;[Y*), p(7;]Y°), p(Y;*[Y?), and p(0]Y*), respectively.

To avoid yielding the improper posterior distributions, we need to choose the
proper prior distributions for the parameter vector 8 = (§,3, A, v). Let W,(a,X)
denote the p-dimensional Wishart distribution with degrees of freedom a and p x p
scale matrix 3. When the prior information is not available, a convenient strategy

of avoiding improper posterior distribution is to use diffuse proper priors. The prior

distributions adopted are as follows:

£ ~ Ny(a,k™),

B~ W,(2a,(2B) 1),
B ~ W,(2y,(2H)™),
A ~ N,(0,T),

log (%) ~ U(-10,10),
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where (a, k, o, v, H,T") are fixed as appropriate quantities to yield the proper pos-

terior distributions. Thus, the joint prior density function of @ and B is

- (Qa—p— 1
m(6,B) oc [B|*ET AT exp { — D (6 —a) k(€ )}

X exp {—tr((Z_l +H)B) — % ATI“l)\} J,, (2.14)

where J, = v (0 < v < 00) is the Jacobian of transforming log(1/v) to v.
Multiplying (2.14) with the complete data likelihood function, the joint posterior
density can be obtained by
p (97 Ba Yma T, 'Y‘ YO) (S8 ’/T(B, B) H f(Y;n‘Y]Oa Tj? ’Yja 0) f(Tj’Y;?? ’Yj? 0)
j=1
x f(v;[Y5.6) f(Y7]6). (2.15)
To implement the DA algorithm, we are now in a position to present the full condi-

tional posterior densities.

Theorem 2.2 The full conditional posteriors of 0, B, ~v;, 7; and Y}* are as follows

(the symbol | ---7 denotes conditioning on all other variables):

v+U?
]A*- 0. RP)
V+p ]>l/+pj> + />

©
J

P(vlY5.0) ~ Tt,(q.

p (7l Y5,0) ~ F(p+p?+” (v; —aj) A} (vj—q§)+U;+y>
J 77 j7 ’

2 2
p(YPY5,7,7m5,0) ~ Ny (70, 77 1 27™°),
p&l---) ~ Np(p' k"),
p(Bl---) ~ W,(2v, (2H")™),
p(E7 )~ Wy(a®, BT,

PA[---) ~ Np(87,T7),
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n

k¥ — (Z 2 R), p =k (g—l(ZTj(Yj —Av;)) + na), (2.16)
— =
v = a+y, H=H+3Z (2.17)

o = 2a+n, B '=2B+) 7(Y;-&-Ay)(Y;-€— Ay,  (218)
j=1

n 1 n
- = (F_l +37'o er'yj'y;) 0 =T" (E_l © ZTj’)’j(Yj - €)T> L,
j=1 Jj=1

(2.19)

The full conditional distribution of v is

p(v|--) ( V/f/;/2> (HTV/Q) exp(—%Z@) " (2.20)

Jj=1

3

which 1s not of a standard form.

Proof: The detailed proof is shown in Appendix J.
In the simulation process, samples for v, 7, Y™, B, and 0 are alternately
generated. The DA algorithm using the “M-H within Gibbs” sampler (Chib and

Greenberg, 1995) can be implemented as follows:

[-Step:

V+U * O. p * o *
V—i—ij v+ p; RJr), where qj, U7 and A are

1. Generate ~; from T, (q],

given in Theorem 2.1.

2. Generate 7; from

% x—1 * o
F(ﬁ‘i‘p?""/ (v, —ap)TA] (v, —a;) +U; +V)
2 ’ 2 '

m m-o _—1lgymm-o m-o mm-o :
3. Generate Y} from N, (¢}, 7, X7"°), where (7" and 37" are as in The-

orem 2.1.
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P-Step:

1. Generate € from N,(pu*, k"), where p* and k* are given in (2.16).

2. Generate B from W,(2v*, (2H*)™!), where v* and H* are given in (2.17).
3. Generate X' from W,(a*, B*7!), where a* and B* are given in (2.18).
4. Generate X from N,(8",I'"), where 6" and I'* are given in (2.19).

5. Generate v from (2.20) via the M-H algorithm.

To elaborate on the P-Step 5 of the above algorithm, we first transform v
to v* = log(1/v) and then apply the M-H algorithm to the function g(v*|---) =

p(v*|---)e™". The candidate jumping kernel is chosen as N (v** 62*), where the

y YUk

02" is taken by v®*I71(®)). Denote by 1h(z) = d?/da?logT(z) the trigamma

v

function. Here

n

I(v) = iz [w (g) — (ngj) - y(f(:;f)p;?) _§+ pr?

i=1
is the Fisher information of v corresponding to the MVT distribution.

Edwards et al. (1963) proposed the “Principle of Stable Estimation” from
the Bayesian perspective. By virtue of this point, we need to specify the para-
meters, (a,k,a,v,H,T'), so as to be insensitive to change of the prior. In this
paper, we choose a to be the sample mean vector of the observed data and k= =
(1 —r) 'Diag{R3,..., R2}, where R; is the range of the observed values for the ith
variable and r is the missing rate in the sense of the percentage of missing values
of the data, which is used to adjust the flatness. The specification of the hyperpa-

rameters makes a weak prior information for £&. As a generalization of Richardson

and Green (1997), we choose « = p+1, v = (p+1)/10, H = 10k, and T is taken
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as a diagonal matrix with relative large variances, say 10* for each variable.
Given a set of converged Monte Carlo DA samples 8% (¢ =1,...,L), using
the Rao-Blackwellization (Gelfand and Smith, 1990), the Bayesian predictor for the

missing component Y is given by

L
- 1
Y= =) E(YPY,6Y)

J
/=1

ll

1

L
oo®
= M= > (g@ + A 2080 (y; g A%g.@’)). (2.21)
/=1

|

2.6. Numerical Illustrations
2.6.1. The Interview Data

In this subsection, we apply the likelihood-based procedure to the interview
data used by Sahu et al. (2003). This data set consists of bivariate measurements
of science scores (Y;;) and non-academic scores (Y;2) on 731 applicants for the ad-
mission to a certain medical school. Each application was evaluated on its own
academic and nonacademic performance. The score of nonacademic performance
was recorded with the summation of the seven performance categories, including
the work experience, sense of responsibility, commitment and caring, motivation,
study skills, interest and referees’ comments.

The score in science was obtained from the secondary examination for selected
applicants with qualified non-academic totals. Sahu et al. (2003, p.144) concluded
the MSN model is favored when compared with the MST model, especially it make
great improvements over the usual MVN model. Our goal for this example is to
investigate a good learning model under the complete data and different missing

data scenarios.
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Table 2.1: Comparison of ML estimation and modeling adequacy among three fitted

models.
Parameters MVN MSN MST
estimation  mle se mle se mle se
& 8.08 0.09 10.35 0.16 10.29 0.16
& 25.68 0.14 28.90 0.20 28.60 0.25
11 5.08 0.29 2.10 0.31 1.82 0.28
012 2.49 0.33 1.97 0.31 1.49 0.26
092 10.85 0.40 4.07 0.55 3.74 0.55
A1 — — —2.86 0.19 —2.58 0.21
Ao - — —4.09 0.20 —3.36  0.35
v — — - - 11.21 3.38
m 5 7 8
08" [y°) ~3496.30 3451.38 ~3435.93
AIC 7002.60 6916.76 6887.86
BIC 7025.57 6948.92 6924.62

To conduct the complete data analysis, we fit the bivariate MVN, MSN and MST
models separately to the data. The resulting ML solutions, including the parame-
ter estimation and the associated standard errors calculated via the inverse of the
observed information, together with the maximized log-likelihood values E(@(k)|Y°)
and two widely used information criteria, Akaike information criterion (AIC) and
Bayesian information criterion (BIC), are listed in Table 2.1. All estimates are sig-
nificant, compared with two times their standard errors. Note that a smaller value
of AIC and BIC is associated with a better fitted model. The results indicate that
the MST model is the favorite choice because it has the smallest AIC and BIC values

when compared with the other two competitive models. Moreover, the estimated
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Figure 2.1: The scatter plot of the interview data, overlaid on several contour lines

obtained from the fitted MST model.

degrees of freedom of the fitted skew ¢t model is 11.21, confirming the presence of
somewhat thick tails.

The fitted MST contours superimposed on a scatter plot along with two summary
histograms concerning their marginal distribution are depicted in Fig. 2.1. It is clear
to observe that the fitted contours adapt the shape of the scattering pattern ideally,
indicating the appropriateness of the use of MST distribution.

To conduct experimental studies under the incomplete data scenario, we con-

struct several artificially missing data sets by deleting at random from the interview
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data with various missing rates (r = 0.1,0.2,0.3,0.4), and they are subsequently fit-
ted with the MVN, MSN and MST models. The above simulation and fitting were
repeated 500 times. The density plots of the converged log-likelihoods are depicted
in Fig. 2.2. We found that the MST model also provides better model-fitting results
even through the data were missing.

For this example with synthetic missing values, we are also interested in testing
the null hypothesis Hy : MSN model (v = o) wversus the alternative hypothesis
H; : MST model. The likelihood ratio test (LRT) statistic, given by the difference
in values of —2 times the log-likelihood between two nest models, is used to judge
which of the two models is more appropriate for this data set. Fig. 2.3 displays the
box plots for each of 500 LRT statistics under four missing rates. In all 2,000 cases,
the numbers of LRT statistics that are significant at the 5% significant level are 500,
500, 499 and 411 with respect to missing rates r = 0,1,0,2,0.3,0.4. Therefore, the
MST model works well for the fitting of multivariate continuous data in the presence

of asymmetrically atypical observations and a number of missing values.
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(a) r=10% (b) r=20%

0.04 0.04
0.03 o0.03
0.02 0.02
o0.01 o0.01
0.00 k- - ooo it - -
—3180 -3150 —3120 —3090 —3060 —2843 -2813 -2783 -—2753 -2723
(c) r=30% (d) r=40%
0.03 0.03
0.02 o0.02
o0.01 0.01
0.00 - 0.00 =
—2505 —2475 —2445 —2415 —2385 —2165 -2135 -2105 -—2075 —2045

Figure 2.2: The densities plots of the convergent log-likelihood values under MST
(solid line), MSN (dashed line) and MVN (dotted line) models for various propor-

tions of missing values. (Replications=500)

MSN vs. MST

50

40

=
]
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|

missing rate

Figure 2.3: Boxplots of 500 LRT statistics (MSN vs. MST) for various missing rates.
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2.6.2. The Wind Speed Data

We show a further comparison of Bayesian imputation method to the trivariate
wind speed data, which were used by Gneiting et al. (2006) and subsequently
analyzed by Azzalini and Genton (2008) for the study of spatial distribution of wind
speed by means of another version of the MST distribution proposed by Azzalini
and Capitanio (2003). This data set contains 278 hourly average speed assembled at
three meteorological towers: Goodnoe Hills (gh), Kennewick (kw) and Vansycle (vs)
from 23 February to 30 November 2003 recorded at midnight. For the measurements
of this data set, the positive and negative signs stand for a westerly wind direction

and an easterly wind direction, respectively.

gh

-20

20 40

kw

o

-20

VS

-40 -20 0 20 40

-20 0 20 40 -40  -20 0 20 40

Figure 2.4: Wind speed data: bivariate scatter plots and their fitted MST contours.
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To explore the distribution of wind speed data, Fig. 2.4 depicts pairwise bivariate
scatter plots along with superimposed ML fitted MST contours. The patterns of
fitted densities exhibit the presence of skewness and heavy tails, as displayed in Fig.
5 of Azzalini and Genton (2008) by using another MST distribution.

As in the previous example, we compare the MVN, MSN and MST models with
the winspeed data, while they are fitted by using the MCMC sampling. We ran
ten parallel chains with the starting values of each chain drawn independently from
the prior distributions. The multivariate potential scale reduction factor (MPSRF)
of Brooks and Gelman (1998), based on the parallel ten chains, was used to assess
convergence. Posterior inferences for the three models, including the mean, standard
deviation, and 2.5% and 97.5% quantiles, are shown in Table 2.2.

As seen in the table, it is found that the posterior intervals for the skewness pa-
rameters are all significantly different from zero, justifying the existence of skewness
for the variables. Moreover, the Bayesian estimate for v = 4.33 is extremely small,
signifying the presence of highly heavy-tailed distributions. For model comparison,
the associated values of deviance information criterion (DIC; Spiegelhalter et al.,
2002) of the models are included in the table. The result indicates that the MST
model is the preferred choice because it has the smallest DIC value.

To examine the predictive abilities among three DA predictors, we utilize the
cross validation approach to evaluate their performances. The missing data sets are
generated artificially by deleting at random from the wind speed data under four
missing rates » = 0.1,0.2,0.3,0.4. To implement the DA algorithm, we run 10,000
iterations with the first 5,000 iterations as the burn-in and store the remaining 5,000
iterations as the inference samples. It is noted that our chosen burn-in number is

much larger than needed. Simulations were run a total of 100 replications for each
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Table 2.2: Summarized posterior inferences and the associated DIC values among

three models.

Posterior Parameter

estimates &1 &2 &3 o11 012 013 022 023 033 A1 A2 A3 v

MVN: (DIC=6527.20)

Mean 12.71 14.02 16.97 178.98 110.40 127.32 298.89 148.53 186.54 — — —
Std. Dev. 0.80 1.04 0.82 1527 1546 13.39 25.80 16.66 15.89 — — —
Median 12.71 14.03 16.96 178.28 109.63 126.51 297.21 147.68 185.64 — — —
Qo.025 11.12 11.99 15.39 151.33 81.72 103.06 253.82 118.34 158.17 — — —
Qo.o75 14.31 16.10 18.57 211.62 143.13 155.36 354.45 183.79 220.37 — — —

MSN: (DIC=6481.56)

Mean 20.14 26.57 19.98 132.78 103.35 118.42 194.09 144.60 174.11 —893 —15.36 —3.81 —
Std. Dev. 290 149 1.09 25.00 13.85 13.15 24.63 15.56 15.63 3.34 1.36 0.93 —
Median 20.85 26.59 19.97 129.61 102.71 117.87 192.77 143.96 173.50 —9.88 —15.40 —3.80 —
Qo.025 11.44 2355 17.80 92.17 7850 94.84 149.84 11590 144.81 —12.58 —17.92 —5.69 —
Qo.o75 23.71 29.55 22.12 188.47 132.68 145.88 246.67 176.56 206.74 1.86 —12.60 —2.03 —

MST: (DIC=6394.67)

Mean 20.56 26.57 23.31 98.81 67.78 80.50 130.08 96.95 100.38 —7.39 —12.14 —-5.46 4.33
Std. Dev. 141 145 1.01 17.11 1199 11.54 20.13 12.92 13.04 1.69 1.53 1.08 0.78
Median 20.63 26.59 23.35 97.98 67.27 80.19 129.36 96.24 99.82 —-7.46 —12.23 —-5.51 4.29
Qo.025 17.68 23.68 21.23 66.82 46.12 59.35 93.77 74.08 77.28 —10.50 —14.93 —-7.43 2.99
Qo.o75  23.07 29.31 25.19 135.24 9298 104.36 173.23 124.11 12741 —-3.92 —-8.93 —-3.20 6.11
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Table 2.3: Coverage probabilities for missing values generated artificially from vari-
ous missing rates. Values within parentheses are empirical standard errors. (Repli-

cations=100)

Missing rates

Models
10% 20% 30% 40%
MVN 0.169 0.195 0.203 0.225
(0.042) (0.027) (0.024) (0.022)
MSN 0.833 0.815 0.797 0.790
(0.049) (0.048) (0.054) (0.052)
MST 0.934 0.934 0.906 0.896
(0.033) (0.023) (0.027) (0.027)

missing rate r and each simulated missing data set was imputed using three DA
predictors. Using the imputed samples, we calculate the 95% predictive interval for
each missing datum and record whether or not the interval covers the true value.
The average of coverage probabilities are given in Table 2.3. As it can be seen, the
MST predictor yields much better coverage probabilities (close to the nominal 0.95

level) than the other two predictors.

2.7. Conclusion

From the likelihood-based and a Bayesian point of view, we have described
analytically flexible estimation and imputation methods for MST models under a
complete data framework. The proposed modeling approach can effectively accom-
modate the possible skewness as well as heavy tails for a general missingness pattern

of the data. We present a convenient hierarchical representation that is useful for the
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implementation of computing algorithms. We offer a workable DA procedure, which
can be used to simulate the entire posterior distributions of the parameters and per-
form multiple imputations in case of data incompleteness. The proposed algorithmic
schemes through the incorporation of auxiliary matrices can significantly lessen the
computing complexity. The experimental studies have highlighted the superiority of
MST models on the provision of more adequate results when the available data are
possibly incomplete. Finally, it is worthwhile to remark that the situation in which
no missing values in data can be treated as a special case, namely with O; taken by

I, for all <.
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3. Robust model-based clustering using multivariate skew ¢

mixtures with missing information

3.1. Introduction

Finite mixture models are known as powerful and flexible tools, which have been
fully developed and used in various area and real problems. Moreover, the mixture
models have been successfully applied in various kinds of area such as modelling
the gene data, the failure rate data and unsupervised clustering problems. There
are a number of fairly board monographs in this area, for example, Titterington et
al. (1985), McLachlan and Basford (1988), McLachlan and Peel (2000), Frithwirth-
Schnatter (2006) and the references therein.

Peel and McLachlan (2000) proposed the MVTMIX model as a robust extension
of the MVNMIX model when the underlying data have heavy tails. In some situ-
ations, the ¢ mixtures may not be suitable to handle data with highly asymmetric
observations. Lin et al. (2007a) proposed a novel univariate skew ¢ mixture model,
which allows to regulate skewness and accommodate heavy tail simultaneously. De-
spite having sound experimental results using STMIX, its application is still limited
to data with univariate outcomes. We are motivated to propose a multivariate
version of skew ¢ mixture (MSTMIX) model.

We assume that the mechanism of missingness is MAR, meaning that the miss-
ingness depends only on the observed values but not on the missing values. With
the occurrence of missing values, we offer an efficient MCECM for the fitting of the
MSTMIX model. The MCECM algorithm is a modification of the EM algorithm
where the E step is computed numerically through Monte Carlo simulations. Since

the E-step involved multiple integrations and the integrations are complicated, the
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MCECM algorithm is used to solve this problem.

In Section 3.2, we describe the MSTMIX model, define the notations, and present
some important statistical properties within the missing information framework. An
efficient MCECM algorithm is used to compute the ML estimates and the associ-
ated standard errors are derived from the information-based technique. Issues on
classification and prediction problems of incomplete features are also discussed. The
proposed techniques are examined by using a simulation study and a real data set

in Section 3.3. Some concluding remarks are given in Section 3.4.

3.2. The multivariate skew ¢ mixture distribution with missing informa-

tion
3.2.1. Definition and some properties

In the MSTMIX model, we assume that Y = (Y ,...,Y,])T from a p-dimensional
random sample from a population with g subclasses G1,...,Gy. The pdf of Y, can

be written as

g g
i=1 i=1

where w;’s are mixing probabilities, f,(-|€,3, A,v) denotes a p-dimensional MST
density with location vector &, positive definite scale covariance matrix X, skew-
ness matrix A = Diag(X) with A = (Aq,...,),)", degrees of freedom v, ® =
(Wi, wg, &y € B0, B Ay A v,) are the mixture model pa-

rameters subject to Y 7, w; = 1.
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The mean and covariance of Y are given by

g
E(YJ) = Z Wiy,
i=1

g g
cov(Y;) = Y {’wi (1 —w;) papa! + wiEf} = wiwipp
i=1 i#j
where
Vi F(”;l)
p = &+ — o A
Voo I(%)
and

V)

1N

5= e (- D) (- (TS

are the mean vector and covariance matrix of ST,(§;,3;, A;, v;), respectively.

For each Y, it is convenient to introduce a set of zero-one indicator variables
Z; = (Zyj,...,Zy)" for j=1,...,n, which is a multinomial random vector with 1
trial and cell probabilities wy, ..., w,, denoted as Z; ~ M(1;wy,...,w,). Note that
the rth element Z,; = 1 if Y; arises from component 7. A four level hierarchical

representation of Eq. (3.1) can be expressed by:

Yj | (’YjaTj7Zij = 1) ~ Np(€1 + Ai7j72i/Tj)a
v | (75, Zij = 1) ~ HN,(0,L,/75),
T | (Ziy=1) ~ T(i/2,vi/2),

Z; ~ M(1Lw,...,w,), (3.2)

fori=1,...,9,7=1,...,n.
Let Y = (Y],.... Y. Z=(Z],...)Z))", v = (v],...,7])" and 7 =

(t1,...,7) . From (3.2), the complete data log-likelihood function of ©, ignoring
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additive constant terms, is

Ec(@|Y, Z,’)’,T)
g n
;;Zij{log(wz log<2> logF<2>——log|§]|+ log 7
3 - T;V;
_Ej(Yj —&- Aﬁj)TEz‘ Y- & — Aiyy) — j2 } (3.3)

We consider the ML estimation problem of model (3.1) when Y may be partially
observed. As in previous strategy, we partition the random vector Y, into two
components (Y;T,Y?T)T, with p; = p} + pi*, where Y2 (p§ x 1) and Y}* (p} x 1)
denote the observed and the missing components of Y, respectively.

Theorem 3.1 From (3.2), it can be shown that

(a) The distribution of Y3 given ~y;, 7; and Z;jj = 1 is

Y?|(7j7Tj7Zij =1) ~ Npe ( EOO/TJ)

Z]7
where ¢5; = 0;(&; + Ayy;) and Y = 0,50 .
(b) The conditional distribution of Y3* given Y3, v;, 7j and Zj; = 1 is
Y;-n|(Y;-),")’j,Tj7 Zz‘j = ].) ~ Np—p]( Zlo, Emm O/T])
where C;?O = Mj(ﬁz + Ai’Yj + EiS?]Q(Yj - & — Aﬂ’j)): Z;?m.o = Mj(Ip -
SOO)E M , and S;);) = OI(O]ElO;—)_IO]

(c) The marginal distribution of Y§ is 3 7_, w; foe (Y9165, 257, AS7, vi), where € =

17 17

Ojgi and A?f = C)]./XZO;r

(d) The posterior distribution of v, given Y$ and Z;; = 1 is multivariate truncated

t distribution. That is

Ui+

(Y525 = 1) ~ Tt a2 A
J
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where U = (Y;—€,)TC(Y,;—€,), A% = L—A,CPA;, and qf; = A,CL(Y;~
£), C =07 Q2 0, and QF = O;(A? + 5,)0] .

(e) the posterior distribution of T; given Y7, v, and Zi; = 1 is a gamma distribution.

That s

+pl v (v —ay) AL (v —a) + UG + v
Tj’(Y?77j7Zij:1)NF<p pj (’73 qJ) J (’y] qj) j >

2 ’ 2

Proof. The proofs of part (a) and (b) are straightforward and hence are omitted.

The proof of part (c), (d), and (e) are given in Appendix K.

Corollary 3.1 From (3.2), we have the following:

(a) The conditional expectation of T; given Y5 and Zi; =1 is

Vi+pc')+2 *
E(Tj |Y§>,ZZ]:1): 5
Uij v « | vitp§ % o
Ty q;; Ug+vi | Aij?%‘ + 1
(b) The conditional expectation of log(7;) given Y§ and Z;; =1 is

E(logrj | Y;),Zz‘j = 1)

« [VitP$+2 .
_ DG<W+?§> o\ Ty T | Aot +2) 1
2 Uioj-f—l/i ui+p;?

Tp(q;‘kj U v |Afj5”l'+p?)

vi + 5
+T_1 * J
p (q” \/ Us v

P ora, Ue + v Ue + v
XH/ ’ 9o (X)tp (X’ L XA;‘}';VH-Z??) dX—10g< w2 Z>,

vi +p§

Ajjv + p?)

Vi +p+ 10 Vi + 3 Ug — p?
g(x) = DG (ﬂ)_DG( Py)_ p_ U5 —p))
’ 2 ) v UG+

x—1 o 1
xTAJ; x> (vi+p+p)(x" A} x)
Uy + v U+ v) (UG + v +xT A} %)

I

— log <1+
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where q;;, is the rth element of ai; = (qij1, - - -5 Gjp)-

Proof: The proof is given in Appendix L.

3.2.2. ML estimation via the MCECM procedure

For notational simplicity, let @ = (w1, ..., wg, &, ..., &, X1, ..., By, Aq, ..., Ay,
V,...,V,), Let YO = (Y9, Y9, -+ Yo)and Y™ = (Y, YD, --- ,Y") represent the
observed portion and the missing portion of the data, respectively. The complete

data log-likelihood function of ©, ignoring additive constant terms, is

((O®|Y, Y™, Z,~,T)

g n g n
V; v;

>3 Zitogw) + 33 2 {5 ow () ~losT (3) + 5 howmy = 7}
=1 j=1 =1 j=1

1 g n n
—52 log | 34| <Z Z,]) +tr (2 ! Ql]) : (3.4)

=1 7=1 7=1
where sz = Zl] ( € Al’yj E A—Z’Y‘]) .

Let 7 = E(T]|Y°, 5= 1,0") &% = Blogrve, z; = 1,6"), a® =
E(Tj7j|Y?Zij = 1,@ ) and li’ij = E(T]’)’j'y | = 1,@ ) be the necessary
conditional expectations involved in (3.4). Let o - (w§’“’, . ,wg’“), éik), o ,é;k),
2§k), ce jfik), Aik), . ,A;k), ﬁ%k), ce ﬁék)) denote the estimates of ® at the kth it-

eration. Given the observed data Y° and the current parameter estimates @ = @(

we can calculate

A(k) 01 2°F) & oo(k) oo(k) 5 )
Ak o Ak ] fp (Y|£7, ) i' 7Az" Yy )
Zz(j) = Pr(Zij =1 | Yj’ © ) = - oo(k) ]A oo(k) . (k)\’ (35)
fp (YO|£7,j ’ i' 7Aij Vi )

and
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" (k ()T A (K
(bz('j) - Ei)"?z(j) (Az(j) - Az’)T ) (3.6)
where
AY = 1,- 35785 ")A" and BY = 57800y, + 1, - 578" (3.7)

Proof: The proof is given in Appendix M.

Furthermore, a Monte Carlo estimate of the Q)-function can be evaluated as

M
A ~ (k) 1 o vm (k) ~(k o @®
QO07) = 12> E(t(0| YY" 4.7 +®.2,6")v,0"), 38
A*k‘) L. A*(Ic . L.
Wherev[]:{”m, —1,...,g,j:1,...,n}and7'[]—{Um, =1,...,9;7 =
1,...,n} for m = 1,..., M, are a set of independent random samples generated

from each f(v;,7;|Y$, Zij = 1) given © = (;)(k). The exact sampling of «v; and 7;

can be conveniently implemented through the following generators:

~ (k+1) o x(k) Uz Z (k) (k) 0. P
g | (Y52 = 1) ~ Tty (51", _(k)_Aij o 9 RE),
p;+ v

and

’ij
. o okt ax(ENT AXR) TN (k1) ax(k ~o(k) Ak
N F(Vi( ) +p+pj (’Yz(j,m) - qij( ))TAij (’)’z(j,m) - qij( )) + Uz'j( ) + Vi( )
2 ’ 2 ’
00 o k k ~ (k “o
where g/® = AP ey, — gy AT — 1, - APErWAY ) 7o® — (v, -

k)2

eM)Teee® v, -y and ¢2o® :o}nij "0, with @ = 0,5+ A
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Therefore, the conditional expectations defined as above can be readily approxi-

mated as
M M
OIS S MRS re i
m];l m=1 y
TTREESED VEED N P T RSP Sl R e ISR CX)
m=1 m=1

Formally, the MCECM algorithm can be implemented as follows:

MCE-step: Given © = @ , compute Monte Carlo expectations 7, l(]k), mgf), ﬁgf) nd

= (k) . . .
W, by using (3.9) fori=1,...,gand j=1,...,n

CM-steps:

CM-Step 1. Update w by maximizing Equation (3.8) over w; subject to their

sum is unity, which gives
A(k;+1 Z Z(k

CM-Step 2. Fix A; = Agk), update éik) by maximizing (3.8) over &;, which leads
to

n > (k oo(k) (k) . (k
é(k+1) o 23:1 Zi(j) Zy 12, 2 S ( Ai "h(j)
L 5 (k) A (k) ’
Zj:l Zij Ti(j

where S37" = 0T (0,%;

~(k A N
CM-Step 3. Fix ¢, = EE v and A; = Agk), update Egk) by maximizing (3.8) over

33, which gives

n o GFE+rL/2)
(k1) Zj:l Q

3 == <
! n (k)
Zj:l ZZ]
2 (k)

is QZ(;C) in (3.6) with &, and A; replaced by éz(-kﬂ) and A,

1 Y

)

where Q (k+1/2)

respectively.
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~ (k+1) (k+1)

CM-Step 4. Fix €, = €, and 3, =3, ', updating S\Ek) by maximizing (3.8)

over \; yields

)A\ (k+1) _ ( (k+1)~ Z )

n

(k+1)~t (k k) k+1) T A ma @\
( Z( )b( )77(]) +Az('j)‘1’ij) >1p7

where A(]-c) and Bz(f) are defined in (3.7). It follows immediately that Agkﬂ) =

D1ag()\(k+1))

(k+1)

~ (K
, and X; = ZE H), obtain ﬁi(kﬂ) as the

I
>

CM-Step 5. Fix €, = &7, A,

solution of the equation

log (5) +1-DG (5 ) + = k)Z_:Z (3 - #P) =0,

=17
The detailed proof of the CM-steps is shown in Appendix N.

If the degrees of freedom are assumed to be identical, i.e. v = -+ =y, = v,
the above CM-step 5 can be CML-step as follows:

~ (k+1)

) Az ey

(k+1)
1

CML-step: Fix &, = ,and 3; = 3. . obtain 7® as the

solution of

oz (£) +1-DG (£) + 2 3757 200 (& - #9) —o.
i=1 j=1
The MCECM algorithm described in this section tends to be robust to the choice
of starting values for the parameters. For the specification of initial values, Seidel
et al. (2000) have demonstrated some strategies and stopping rules in the fitting

of mixture model. Here, we choose the ML estimates for the complete data as the

initial values for the parameters.
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Applying Bayes’ theorem, the posterior probability of the Y; belonging to group
1 can be estimated by
. by fs (Y5163, 35, Ay 0
wy = P(Zy; = 1Y°,0) = — fﬂ( s18: 25, Ay ) : (3.10)
iil wifp;-’ (Y?|€Z]7 Ezj b AZ] ) )

By the ML classification theory (Basford and McLachlan, 1985), Y is assigned to

group s if wy; > w}; fort=1,...,g and i # s.

Consequently, the ML predictor for the missing component Y is given by

V= BYPIY)

J

~

= M, Z (é + AZ'yU + 3 SOO(Y & — Af)’zg))a

where 4,; = E(v,[Y°, Z;; = 1,@)), which can be approximated by Monte Carlo

U + U o
average of samples simulated from Tt (qU7 ?A

pj+ 2j7Vi+p§§ Rﬁ-)

3.2.3. Estimation of standard errors

Under some regularity conditions, we provide the information-based method
used by Meilijson (1989) to compute the asymptotic covariance of the ML estimates
of mixture model parameters.

Let £.;(®|Y},~;,7j,Z;) be the complete data log-likelihood formed from the

single observation Y ;. The individual score is defined as

00 (O|Y 5,7, 75, Zy)
( v e)

00
The empirical information matrix, according to Meilijson’s formula, is defined as

u(Yj®)=F

L(OY°) =) u(Y$®)u'(Y]|®) - n'U(Y|®)U'(Y°®), (3.11)

j=1
where U(Y°|®) = > " u(Y}(O©).

Let vech(:) be the matrix operator which stacks only the distinct elements of a

o7



symmetric matrix into a single vector. The ML estimates © substituted for © in

the Eq. (3.11) and then it reduced to

n
-
0\ __ ~0O
L(O®]Y?) =) ujuj,
Jj=1
where
~O o
u; = u(Y}|0)
_ ~0 ~0 Aol 0T Aol ~ol Aol Aol ~0 ~0 T
- (uj7w17'"7ujawg71’uj7€17“' Jgg uj70-17.‘"uj7o'g7uj’A17“"u.j7Ag’uj»l/l""7uj7yg)

with A; = diag(A;) and o; = vech(3;). Expressions for the elements of G} are given

by
o Ly Zg
jy W - N N7
J W, W,
A0 _ 7 [~ Qoo - _Aoo
Uje, = Zij (TzJSij (YJ fi) S; Al"w)

~ 1 ~
ﬁ;),ai = vech (ng — §D1ag(CU)> s
uj,, = Diag [Zw (S?]9(Yj — &) - Si’f&‘i’uﬂ ,

(log<2>—|—1—DG< )+&ij—ﬁj),

~ (k ~ (k
where 7i;, Rij, 7;; and W;; are 7 /%l(-f), f]ijk) and \Ilgj) in (3.9) with o replaced

~0
Vi

by © and é ZJ (f]-ﬁlf{ijf]

and D;; = (I, — 218%9). If the degrees of freedom are assumed to be equal, say

g ~0

- . . ~o
V== Vg =V, we haVe uj,l/ - i=1 uiji'

The detailed proof is shown in Appendix O.
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3.3. Experimental results
3.3.1. Example 1: Simulated data

For learning MSTMIX models with missing observations, we conduct a simula-
tion study to compare the misclassification rates under the MVNMIX, MVTMIX,
MSNMIX and MSTMIX models. We first generated 500 observations from each of
a three-component MSTMIX model at missing rates ranging from 10% to 40% with
an increment of 10%. The presumed parameters of the MSTMIX model are given

as

& = (03)7, &=(3,0, &=(-30)",

— 3 -
2 1 10 2 -1
E1 = ) ZJ2 = ) 233 = )
11 0 2 -1 1
1 0 10 -1 0
A1 = ) A2 = ) A3 = )
0 -1 01 0 1

with mixing probabilities w; = wy = w3 = 1/3 and degrees of freedoms v; = v, =
v3 = 4.

The simulation aims to compare the performance of the four mixture models in
terms of the average misclassification rates. For simplification of illustration, we
fit a three component MSTMIX model with equal but unknown degrees of free-
dom. Now, we provide a simple way to obtain the initial values for the parameters,
say 7 = (@, e &7, &) 8 s AT A e,
The technique proceeds as follows: (i) Impute each missing value by averaging the
sample mean of non-missing values of the corresponding variable. The imputed

sample is denoted by Y = (\?1, ..., Y,). (ii) Perform a K-means clustering. (iii)

Compute the zero-one component membership indicator Zgo) = {Zi(jg) 7, according
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to the K-means clustering results. (iv) Generate a random number a from U(0,1).

(v) The initial values of the parameters are chosen as

n >(0)
@z‘(O) _ Zj—lZ'j 2(0)

Y

“ ~(0) /o7 =4 0

S; + (a — 1)Diag(S;),

where 5\5(;) can be either positive or negative, depending on the sign of the sample

skewness of the ith variable with

Z@_l A(O) Y
I"l’i - J (0 9
Z] IZ
o) 3
S Z0Y = ) (Y — )T
Z] 1 Z 0)

for j,k =1,...,pand i = 1,...,g. (vi) As for the degrees of freedoms, we set a

Si = [sig] =

relative large values, say ﬁfo) = Aéo) = Aéo) = 100.

The MCECM algorithm is employed until the difference in successive values of
the log-likelihood is less than a tolerance value, say 107°. For each iteration, we
recorded the misclassification rates in Table 3.1. It is clear to see that the MSTMIX
model outperforms the other three mixtures with varying proportions of missing

values.

3.3.2. Example 2: The AIS data

The famous Australian Institute of Sport (ALS) data set was reported by Cook
and Weisberg (1994). This data set has been analyzed by Azzalini and Dalla Valle
(1996) and Azzalinin (2005), including 13 variables on 100 female and 102 male
Australian athletes. We focused on the bivariate sample of two variables body

mass index (BMI; kg/m?) and body fat percentage (Bfat). The scatter plot of this
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Table 3.1: A comparison of the average misclassification rates and the associated

standard deviations in parentheses with various missing rates (Replications = 500)
r (%) MVNMIX MVTMIX v MSNMIX MSTMIX v

10 0.520 0.195  4.091  0.191 0.173  3.946
(0.119)  (0.018)  (0.258)  (0.015)  (0.010)  (0.197)
20 0.491 0241  4.108  0.259 0219  3.900
(0.108)  (0.027)  (0.520)  (0.046)  (0.015)  (0.255)
30 0.509 0291  3.994  0.316 0.260  3.947
(0.093)  (0.032) (0.596) (0.063)  (0.020)  (0.363)
40 0.515 0.337  3.824  0.372 0.309  3.909

(0.070) (0.038)  (0.679)  (0.065)  (0.018)  (0.298)

bivariate data set appears some outlying observations and a bimodal asymmetric
mixture pattern.

This example is intended to illustrate the effect of robustness of the MSTMIX
model after some perturbed values and missing values are introduced into the orig-
inal data set simultaneously. The technique proceeds as follows: (i) generate one
synthetic missing data by deleting at random from the bivariate data set under
various missing rates (r = 10, 20, 30%). (ii) add one of the contaminated values
(£5,£10,+15,4+20) to the first observation of the second variable. (iii) compute
the ML estimates of each model and then classify each observation by Eq. (3.10).

Among these models, the average misclassification rates and the associated sam-
ple standard deviations for all possible combinations of missing rates and perturba-
tions are listed in Table 3.2. As anticipated, the MSTMIX model provides better

clustering results than the other three models for all cases.
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Table 3.2: A comparison of misclassification rates when fitting models with a single
perturbation for various proportions of missing values (Replications = 100). Values

in parentheses are the associated standard deviations.

Constants
Missing rate -20 -15 -10 -5 +5 +10 +15 +20
r=10% MVNMIX

0.204 0295 0290 0289 0291 0297 0300  0.310
(0.036)  (0.026) (0.031) (0.030) (0.033) (0.033) (0.030) (0.032)
MVTMIX

0.221 0225 0220 0220 0220 0221 0220  0.220
(0.018)  (0.018) (0.018) (0.018)  (0.018) (0.019) (0.018)  (0.018)
MSNMIX

0.142 0142 0135 0135 0137  0.139  0.144  0.147
(0.021)  (0.021)  (0.023) (0.022)  (0.019) (0.020)  (0.020)  (0.017)
MSTMIX

0.108  0.116  0.109 0109  0.113  0.114  0.112  0.111
(0.015)  (0.017)  (0.017) (0.017) (0.017) (0.016) (0.018)  (0.017)
r=20% MVNMIX

0.369  0.361  0.356  0.350  0.354  0.359  0.368  0.371
(0.036)  (0.034) (0.032) (0.034)  (0.038) (0.034) (0.036) (0.036)
MVTMIX

0.254 0255 0246  0.251 0251 0252 0251  0.252
(0.030)  (0.028)  (0.032) (0.029) (0.032) (0.032) (0.030)  (0.029)
MSNMIX

0.172  0.167  0.168  0.164  0.165  0.169  0.174  0.182
(0.027)  (0.025)  (0.025) (0.023)  (0.027) (0.028) (0.027)  (0.030)
MSTMIX

0.151  0.156  0.157 0152 0152  0.153  0.153  0.153
(0.024)  (0.022) (0.022) (0.022) (0.022) (0.024) (0.023) (0.022)
r=30% MVNMIX

0.461  0.449 0444 0453 0444 0454 0456  0.464
(0.050)  (0.053)  (0.053) (0.045) (0.050) (0.053) (0.055)  (0.052)
MVTMIX

0277 0273 0257 0273 0262 0262 0265  0.265
(0.043)  (0.042) (0.046) (0.040) (0.047) (0.048) (0.047)  (0.045)
MSNMIX

0211 0219 0223 0211 0212 0214 0229  0.220
(0.026)  (0.035) (0.042) (0.036) (0.035) (0.035) (0.041)  (0.033)
MSTMIX

0.198 0209 0206  0.198 0201  0.205  0.206  0.200
(0.024)  (0.030)  (0.033) (0.028) (0.030) (0.034)  (0.029)  (0.030)
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3.4. Concluding remarks

We develop an efficient MCECM algorithm for the learning MSTMIX models
under a missing information framework. Two binary auxiliary matrices are incor-
porated in the model that can substantially reduce the computational cost. Experi-
mental results indicate that the MSTMIX model performs well for robust clustering
when outlying observations and missing values both occur in the input data.

In the last two decades, many researchers (e.g. Diebolt and Robert 1994; Escobar
and West 1995; Bensmail et al. 1997) have paid attention to the problem of Bayesian
mixture modeling due to the popularity of MCMC techniques. More recently, the
application of reversible jump MCMC (Green 1995; Brooks et al. 2003) has been
shown to provide great power and flexibility by allowing simultaneous Bayesian
estimation of both parameters and number of components (Richardson and Green
1997; Zhang et al. 2004; Dellaportas and Papageorgiou 2006). Therefore, it is
worthwhile to investigate the applicability of a fully Bayesian treatment in this

context.
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Appendix

A. Proof of Theorem 1.1

The following lemma is used in proving the results.
Lemma A.1 If A; is a diagonal matrix, then ()jAl-OjTOinOjT = OjA?OjT and
M;A;MTM;AM] = M;AIM .

We partitioned the random vector Y, and its parameters &;, 3; and A; as

follows:
Yj: Y;) = Oij , &= 5%- _ Ojﬁi 7
MY & Mg
3, = p Bt _ | 020, O;ZMy
i g M;X%,0;] M;Z;M/
and
Al | AT Oy | |OAO] Oy
Oppopg A" Oprpe  MyAM]
By Lemma A.1
Q=3+ A} = 0;(3: + A))O] 0;%,M/ ey e

M;%,0] M(Z+A)M] Qe e
Note that 3; and A; are symmetric matrix. Thus, ;, €77 and Q7™ are

. . U
symmetric matrices and Q7" = Q2.

64



Let A2l =B, = [le Big]. Thus, we have

-1

Q- [e]e} 0o om
Q- min mo mm

AT =
B B 1 1 1 1 —
100 00 om ymm-o mo ()00 __ (oo om ymin-o
Zj 0 Q’L] <Q’L] QZ] Q’L] QZ] + Ip?) QZ] QZ] QZ]

mim mm-o— ! mo oo+ mm-o— !

0 Aj —QEmeT QIO Qn

1

i -1 -1 -1 -1 -1 -1
e]6] (e]0) om mm-o mo (e]0) (e]0] [(e]0) (e]0) om mm-o
AL (Q QPQETOT QIO £ Q) —ARQY Qo

mm ymm-o~ ! mo (yoo* mm ymm-o~t
=AY Q57 A

= |:Bi1 Bz'z] )
mm-o _ mim mo oo~ yom :

I 00 0o~ yomymm-o—1! mo yoo~—! oo~ 1!
Aij (QU Qij Qij Qij Qij + Qij )

mm ymm-o_ !+ (ymo (oo !
_Aij Qij Qij Qij

By =

i ’\ 00 00~ yom ymm-o~! (ymo
’L] (Qlj QZ] QZ] Q'L] + Ip(;) 0071
4\_ mmgzmm-o_1 mo ij
%} ] Qij

and

qoo oo~ yomymm-o—?! Qoo oo’lﬂom
B ¥/ Qi]’ Qij Qij ¥/ Qij ij Qmm-o—1
i2 mm ymm-o~ 1 mm i ’
A N

From the above calculation, we have the following results
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-1
mo ()00

00 00~ yom ymm-o~! (ymo
Aij (Qij Qij Qij Qij +Ip§) Qoo_l
mm ymm-o~ ! (ymo ij
—A; 2
0000~ yom
_Aij Qij Qij

min

mm-o~ ! mo oo !
+ Qe ey
[ 0000~ ! yom (ymm-o~! (ymo 00 00(yoo~ ! ommm-o~! mo
AZPQeT QeI QI L A% - ACQT Qoranme T

-1
Q7
_Ammﬂmm-oflgmo + Ammﬂmm-oflﬂmo R

iJ i i i ] ]

00
Aij (200_1
iy

0 m ., 0
p; ij

—1
AQTIA,
00
Bil Bi2
Amm
tj
00 mm
[BilAij Bi2A7jj ]
00 oo~ ! omymm-o~ ! mo 00! A 0o 00001 omymm-o~—! A mm
Aij (Qij Qij Qij Qij +Ip§> Qij Aij _Aijﬂij Qij Qij Aij
mm n’1m~0*1 mo 00*1 00 mm mm~0*1 mm
=AY Q7 A A Ajj

Y

(A.1)
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and

mm-op 1
_ B -
—A9°Q0° Qom 1 1
. ij ® %ij ij mm-o~! ymm-o /(ymm-0o~ 1\ T 0o(oo~ ! yom\T mm "
= A Q™ QT ) [_(Aij Qp Q) Aj
ij
I 00(yoo ! om-
_ _Az] Qz] QU Szr‘r_lm-o_1 _(QmoQoofleo) Amm

A
_ [AvenamanmetaranT Ay - Ay arapme A
mm mm-o~ 1 mo ()00~ 1 A oo mmEmm-o- 1 A mm
(A.2)
Since
A; + BB, = I, — AiQ'A; + BpQl" B, | (A.3)

we substituted (A.1) , (A.2) to (A.3) to obtain

-1
A% A
ij "% ] p;-’ XP;-H

A; + BB, = I,-

Oppspy Qg

0000~ A 00
Ip;?_Az‘jQij Aij Op;’Xp;-“

Oy xas Ly

Thus, we have

fY3, Y} Zi; =1,0)
= 26,(Y; | € 9200, (AQ7(Y; - €) | A))

Y}) — 5;)3 ‘Az>
Yy o€

= 20 (Y15, Q)0 (YTIED Q)0 (B (Y5 — £5) + B Y — €3) | A)),

= Pa(YIIEs Qe (YTIEn ., 2um)0, ( [By Byl
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where €7 = €5} + QIO (Y — £5).

J ]

The marginal density of Y;? is given by
f(Y3|Z; =1,0) = /f(Y;?,YﬂZij =1,0) dy”
— [ rou v aan (e o)

x P <B~ (Y5 — &) + Bi(Y] — &) | Az-) dY3

J

2 (bp 'YO 51‘7, QOO / (bp Ym’gm o Qmm O)

X ® (B (YO — £2) + Bu(Y™ —gw)m,-) dy™.

J
m- o m __ m-o __ m mo (oo ! [o) o}

Thus, we have

(Ym‘sm o Qmmo) ¢pﬂl( ’0 Qmmo)

and

@, (B (Y] - &) + Ba(Yy — €5) | A)

J

v

— @, (Bu(Y] — €) + Bu(z + Qo (VS €) | A))

= (I)p ((le + BZ'QQEOQ?;_I)(YQ — E?j) + Bjoz | Az)

J

By Lemma 2.1 of Arellano-Valle and Genton (2005), we have
F(Y312; = 1.0)
= 20,V )
/ B (2]0, ), (B + B ) (Y0 — £2) + Biz|A,) da
= 20, (YI1E ) B0, (B + Baoa (XS - €)) + Baz|A) )
20, (YOIE, ) By (Bay + BuQio ) (Y — €3)| A, + BB
= 250, (YS1&5 ) @y (AR (Y7 - €5)|Ty — ATQEAT).
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Thus, Y? | (Z; = 1,0) ~ SN, (ggj, 5, A;?;). It implies that

g g
FOY510) = > F(Y51Zi; = 1,0)p(Z; = 1) = > witbye (Y51€5, 557, ASY).
Py i1
(b) By virtue of ¢,(Y;1&;, Q) = by (Y51€7;, Q) Pppe (Y3577, Q™). see Theo-

rem 2.5.1 of Anderson (2003), we can deduce that

JY;,Y7)
f(Y3)
20> widp (Y5 | &, Qz‘)q)p(Aiﬂ;l(Yj - &) [ A)
Doi1 Wity (Y3 | €5, 257, A7)

FOYG 1Y)

g
= P iy (Y| €5°, Q™) 0, (A2 (Y, — &) | A).
=1
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B. Proof of Theorem 1.2(c)
From equation (1.9), we have the following densities
;p? oo|—2 o o oo™t o o
(X5, 22 = 1,0) = (2m) = |5 Fexp (= (Y5 — pi5) TS50 (Y5 - i) /2)
and
f('Yj‘Zij =1) = QP(QW)_TPQXP( - 'Y]'T'Yj/2)[Ri('Yj)-
Thus, we have
fF(Y3,71Zi = 1,0)
= f(Y5lv;, Zis = 1,0) f(v;|Zi; = 1)
oo|—1 (¢} o oo~ ! o o
X |Eij| 2exp{ - ((Yj - /J’ij)TEij (Yj - Mz‘j) +’)’JT’YJ'> /Q}IRﬂ(Vj)
1 _ 00 _
< [ p{ — (9, = AT = €)TAST Ay, — AT(Y, — €)) +) 'yj)/2}
XI]Ri (’7j>7
where
o o 0071 (e] o
(Yj - l-l’z'j)TEij (Yj - Nz‘j) + ’Y]'T’Yj
= (0,Y; = 0j(&; + Ay) '35 (0;Y; — 0;(&; + Avy)) + 7,7,
= (Yj & — Aﬂ’j)TO;'rE?file(Yj & - Aﬁj) + ’7’;’7’]'
=y~ AT E)TAST A, — AT (Y, - £) ]
To prove the identity
(’)’j — A;l(Yj - £i))TAiS?]9Ai(7j - A;l(Yj -&))+ 'YjT’Yj
(o]e) T [e]¢} -1 [e]e}
= (v, - ACR(Y;-8) (T, - ACHA) (v — ACH(Y; - §))
+HY; - €)' CP(Y; — &),
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00 __ TOoo !
where C5° = O, Q° O;.
We need the following lemma.
Lemma B.1 Let x, a and b be p x 1 vectors, and let Q; and Q5 be p X p symmetric

matrices such that (Q; + Q2) ! exists. Then

(x—a)' Qi(x—a)+ (x —b) ' Qy(x —b)
= (x—%)'Q(x—%)+(a—b)'Q:Q 'Qz(a—b),
where x = Q7 1(Qia+ Qyb) and Q = Q; + Q..
From Lemma B.1, we take x = 7;, a = Ai_lzij, b =0, Q = A;Sj7A; and

QQ - Ip.

Therefore,

Q=Q:+Q = ASJA +1,
= AO/Z)Y OjA; +1,

= (Oin)TZ?fil(Oin) + I,

-1

Q' = (Ip + (Oin)TE?]fl(Oin))
= I, - L(0O;A)" (£ + (0;A)L(0;A)7) " (0;A))1,
= I,— (0;A)" (0,%,0] + 0,A;A,0]) " (O,A))
= I, - (0;A)7 (0,(Z; + A2)0O]) ' (0,A,)
= I,— (0;A)'Qy " (0;A)

= I, - A,CPA,, (B.1)
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Q '(Qia+ Qob)

>
I

I, - (Oin)TQ?ffl(Oin» ASPANT(Y; - &)

(
= (Ip - (Oin)TQ?}fl(Oin)) AiS(Y; — &)
(Ip - (Oin)TQ?ffl(OinD (0;A) T2 05(Y; - &)
((Oa‘Ai)TE?})_l - (Oin)TQf})_l(OjAz‘)T(Oin)E?f_l> 0;(Y; - &)
= (0,A)7 (3 —y '(0,470])z5 ) O5(Y, - &)
= (0,A)" (07 - (@ - =BT ) 04(Y; - €)
= (0;A)" (53?;)71 -3 4+ Q?ffl) 0;(Y; — &)
= (0;A)"Qy0;(Y; - &)

= ANCY(Y; &), (B.2)
and

QQ'Q = AiS?fAz(Ip— (Oin)TQ?]fl(Oin))Ip
= (0;A)"= (0,40 (T, - (0,A) 25 (0;A)))
= (0;8)" (=7 - =57 (0,020))9257 ) (0M)
= (0,007 (Z0 =@ - =) (08)
= (0;A)"Q(0;A))

= ACJA;
Thus, we have

(a—b)'QQ 'Qe(a—b) = (A7(Y; —&)TACHA(AT(Y; - &)
= (Y; — &) AT ACYNAT (Y — &)

- (Yj - Ez‘)TC?ﬂY]’ - €z) (B-3)
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Substituting Equations (B.1), (B.2), and (B.3) into Lemma B.1, the identity is
proved.

Moreover, the equation \2;?]9| = |Q;?J9||Ip - A C

A;| holds.

The posterior distribution of v, given Y7 and Z;; = 1 is given by

f(7j|Y;‘)v Zij = 17 @)
f(Y?a7j|Zij =1,0)

T YNz, =1.8) (Y3712 = 1,0)

00 —1 1 o o oo~ ! o o)
X ’21']' ‘ 2exp{ - §<(Yj - l*l’ij)TEij (Yj - “’ij) + ’YjT’Yj> }IR{;(’YJ‘)?

* |—% 1 * x—1 *
& |Aij| ZeXP{ - 5((')’;‘ - qz‘j)TAij (’Yj - qij)) }]Rﬁ (73’)7

where AY; = I, — A;,CPA;, qf; = AC(Y; — &), and C* = O] Q7Y O;.

It implies that

Y,1(Y$, Zij = 1) ~ TN, (A CF(Y; — &), I, — AiCP A, RY).
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C. Proof of Lemma 1.3

Let 2 = B(Z,|Y°, 6"

A

), YH —B(Y;|1Z; = 1,Y°,0") and

A (k)

Ql(f) = E(Z;(Y; — & — Aiv;)(Y; — & — Airy;) T|Y°,© ). Then, it can be shown

that

) . g0k 000
(k)) ( d}p (Y |€’L] ) i' ) Aij )
N . oo(k) 2 oo(k), "
g (k wp (Y0|€z] ) i' ) A"Lj )

2% = P(Zy; = 1Y°,©

v

Since Y; = O] Y? + MY and O; O;(I, — fzgk)é?’?(’“)) = 0, we have

ij

Ysz(Jk) - E<Yj’Zij:17Yoaé(k))
— BO]Y?+MIY"Z; =1,Y°,6")
Tyo T m _ o "

T~0 T m o 5"

)}Zm — 17Y0a é)(k)>
_ T~70 T
= 0, Y7+ M;
~(k ~ (k ~ (k) 200 ~(k ~ (k
«E (Mj (gﬁ LAy, gy, g™ AW
o 2(k) 2 (k) o A k)
= 0y + MM, (& + AE(y, |25 = 1. v, 0")

& (F) qoo(k a(k) 2 (k) o &)
B8 &7 - A E(vﬂzijzl,Y,@ ))

0o 2(k < (k)
= ofvy e (6 + AR 4 58y, - g - APA))
- (k)Aoo A( ) A(k)A
= O;'rOij‘f‘(Ip_OjToj)(Ip_zi Sij(k))<€i +A’i m(f))

O (k

P8ty 41, - £V 8e) e 1 ATR®),
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and

COV(Yj —-& - Ai’Yj|Zz'j =1,Y°, é(k))

Cov(O] Y2+ MIY™ — ¢, — Ay, Z; = 1,Y°,0")

Cov(M] Y — Ayy,|Zi; = 1,Y°, &™)

B(Cov(M]Y™ — Ay, Z = 1,Y%,~,,0")| 2 = 1, Y°,6")

+Cov (B(MY™ = Aiv,|Z; = 1,Y°, 7,0 2, = 1,Y°,6")

( (k))

k) 0 A
)M, |Z; =1,Y°,0
(k)

E(M] Cov(Y?|Zi; =1,Y°,v;,©

(k)>

+Cov(M,E(Y?|Z;; =1,Y%,~7;,0 ") — Aiy;|Z; = 1,Y°,©

M M(T, — 5507800 S MIM, + Cov (MM (€ + AL,
37800y, — &Y — Ay ) — Ay |25 = 1,7°,6")

(1, — 578005 4 cov(MIM, (€ + Ay,

+2z(‘k)sif(k) (Y; — éz(k) - Az(‘k)’)’j)) - Ai7j|Zij =1Y° (:)(k))

i i i v Mg
xCov(y,|Z; = 1,Y°,0) (1, - 57§ AY — AT
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Therefore,

o A
Qb = B(Z;(Y; — & — Av)(Y; — & — Amy,)T[Y,07)
0 A (k) A (k)
= E(Zy|Y°, 0 " )E((Y; — & — Av;)) (Y, — & — Ay;) | Z; =1, Y°,© )
o A K) o AK)
= E(Z4|Y*,©) |:E(Yj_£i_Ai7j|Zij:17Y ,07)

<E(Y; - & — Am|Z =1, Y°,0")T

+COV(YJ — €Z — A173|Zz] — ].,YO, @(k'))i|

= (k & (F) qoo(k) & (k) ok . (k)N -~ (k . (k
= Zi(j) [(Ip -3 Sij( )>Ei + (Yz(j) —& - Ai”?z(j))(Yz(j) —& - Ai’r’z(j))—r
A () 5 (B) (k) ()T (A (R) T
+(Aij - Ai)(q’ij = NNy )(Aij - Ai) } )
where A = (1, — 57§20 A",
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D. Proof of the M-steps

CM-step 1:

The mixing probabilities w;’s are subject to the constraint » 7, w; = 1. Define
L=>7 >0 Z () log(w;) — A(>_7_, w; — 1), where A is the Lagrange multiplier.
Let dL/dw; = 0 and dL/d\ = 0, we have w; = 37, Zi) /A and 3¢ w; = 1. Tt

follows that A = n and the estimate of w; at the (k + 1)th iteration is

n 5 (k)
Ak+1) Zj:l Zij

w:
' n

CM-step 2:
~ (k
Taking the partial derivative of QQ(T|®( )) with respect to &, and setting it to

zero yields

~ (k) n
0Q110) 10 <E,1ZQ@>

73 2 0€

7j=1
10 z _1A(k) (k)
= jag L UEANN 6 - AR ¢ - aal))
=
10 o) o) . (k) (k)
- _53_§Z;(Zz‘j (V) = & = Amiy) STV — & - Am)))
=

= Zz ‘2P - & - Am)

= 2;12218‘-‘3’(?“‘ — & — AAY)

= 0.

~ (k
With A; fixed at AZ(» ), solving this equation gives




CM-step 3:
Recalling the differential formulae with respect to a matrix, one has

dlog |A|
9A

dtr(AB)

=2A' —Diag(A™') and DA

= 2B — Diag(B),

NG
for any given symmetric matrix A and B. Taking the partial derivative of QQ(T|®( ))

with respect to X' and setting it to zero yields

A(k) n
9Q:(T|©) 10 (k) 1 (k)
2Nl VA log |2 7 tr [ o

X! 203! Og' | Z i ; ij
0 —log |=; ] (Z Zf?) +tr <2ilzngf)>
L j=1 Jj=1

(—2%; + Diag(X2 <ZZ ) + 2 (Z Qgc))
j=1
—Diag <Z Qg?)

J=1

1
205!

1

= 0.

5 (k41 ~ (k
Fix &, at EE = and A; at AZ(- ), solving this equation obtains

n &E+L/2)
2§k+1) _ Zj:l Qz’j
v N n (k)
> i=1 2

(k+1/2) is Qgc) in Equation (1.16) with &, replaced by ékﬂ) and A; replaced

where Q
by AZ-
CM-step 4:
A (k) & (F) qoo(k)y & (F) . ~ (k) .
Let A;;" = (I,—3,; 'S;;"")A; . The sum of the term in the Q(Y|® ) function

can be rearranged by

tr(Ei (Y — & — A (YW — ¢, — Anl) )
— tr(zgl(YZ@ —E)(YP —€)") —ztr(zgl(Yff) — &)l A7)

—I—tr(Z IARPHET AT>

sz 1
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A (k
Now, taking the partial derivative of QQ(T\@( )) with respect to A; and setting

it to zero yields

00,(1|6"™)

O
_ 109 N oM
- Taoa <2i 2

j=1
19 —10(k)

= —gax 2t ()

g
_ 19 - Z(k) 2t 2*1 Y(k) A(k)TA Z 1A o (k) » k)TAT
- _58)\7, ij | T4 i ( ij _Ez)nij +1t i T

L e e T ' .
= 524 [_QDlag<Ei1(Y§j)_€i)n§j) >+2D1ag<2 AR D) )
-

+2Diag (21 (A — AR (] - anT))]

i ij ij
. _nAkAk . (k)T . g N A0 (k) ()T
= Diag <2i ' ZZi(j)(Yz(j) - fi)"h(j) > - Dlag(Ei A ZZZ‘(J]'C)UZ(‘?)"TE;‘C) >
oy =
—Diag(E 1AlzZ(k Ej)nz(f) ))
+Diag<§] 122 NI ngj)nﬁf) ))

n

= Diag(s; 122 (Y =0l + AP —alal )]

—Diag(Z 1AzZZ(k )

_ - (k (K (k)T k) a (B (k) ()TN
= <Eil®zzi(j) [(Yz(j)_ﬁi)nz(‘j) +Az(j)(‘1'z‘j —nz(j)"?gj) )} )112

(ZJ © Z 20 )
Note that the last equality follows from the fact that Diag(ADB) = (A ®

BT) Diag(D) (D is a diagonal matrix) with Diag(-) denoting the diagonal elements
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. . . . 2 (k+1
of a square matrix and ‘®’ the elementwise product of two matrices. With §; = 55 )

and X; = ZA)EHU, setting 8Q2(T|@(k))/8)\i = ( yields the estimate of X,

n -1
~ A 71 A A
)\Ek+l) _ <2§k+l) o Z Zz(]k)‘I’Ef)>

j=1
o (k+1)~! " Lk aB)B) ()T & T( o (k) -~ (k 2 (k+1)
X (Ei © Z Zi(j)<(‘1’ij - ngj)m(j) )Az’j( ) + nz('j)(Yz(j) =&, )T>> 1,.
j=1
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E. Proof of s; for the MSNMIX model

The single observation of the complete data log-likelihood, ignoring additive

constant term, is

The first derivatives of £.;(©|Y

Thus,

The first derivatives of /.;(©|Y

Z;,v;) with respect to w;

Oy  Ziy  Zy;

ow; w; Wy
_g(%i _ Zeilyo @) = Zii _ Zai
o, w; w7 o W,
1 Y 1 g

oL

= 7. 351
851 17 (

cj(@\ v Zj,7;)

1 1
Yz, [mg(w@)——logrm LY 6 - A TS, - 6 Ay
=1

18

Z;,v;) with respect to §; is

18

Y;—& - Ai'Yj)T> }

Thus,
Wie = E(ZUE; Y - & — Ay, |YS, @)
= Z E<Ez ( ]_EZ_AfY]) YO
Lol
7%, (Y — & — Aiyy),
where E(v,|Y$, Zi; = 1 ,0) = 7;; and E(Y;]Y$, Z;; = 1, Q)= Y”
The first derivatives of £;(®|Y},Z;,~,;) with respect to 3
0lc; Zi; 0 .
- log |2 t<2‘ Y. — & — Ay,
0% 282i{0g’ [+ tr (27 (Y — & — Ayy)
7.

+Diag (E[l (

Z

2

~Z2{om7 - Diag(E) - 257 (Y, - & - A (

ij

2
Y, —&—Am,) (Y- €& —Any)) B

(2B;; — Diag(B;;)),
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)
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where B;; = E;7'R; 3, — 37" and Ry; = (Y, — &, — Ary;) (Y; - & — Ai')’j)T'

Thus,

Z,; )
a, = vech{E( J (9B, — Diag(By;)) ‘Y}’,@)}

(2B,] — Diag(B;, )) } ,

1

where ]:%z-j =3 RUE E Wlth

)

~ ~

Ri]’ - E(R1]|Y;), Zij - 1, @)
= (I,-3; SOO)E + (Y — & — Amw)< Y, — & — Aiﬁij)T
~ T

+((T, — 2Se)A; — Ai) (s — ny05) (L, — ZiSe)A; — Ay)

Therefore,

A ~ ~ ~

By = 857 (Al — ny )M+ (Vi — € = Aain) (Y — & — Aii,)T) S5 — 27,
Furthermore, we can obtained

E(Y~] Y% Z; = 1,0) = (I, — 2,82 (€7 + Aly) + 3,827,

1 zg J YR

from the law of iterative expectations. The first derivatives of £.;(®[Y, Z;,~;) with

respect to A; is

?f;j = Diag (Zijzi_l(Yj —-& - Ai'Yj)’YjT) .
Thus,
W, = E(Diag (2,5 (Y, ~ & — A7) [Y5.0)
— Diag (ZijE<2;1(Yj —&, - AT [0 25 = 1.0))
~ Diag ( SE(0Y, = &)nf — Ay)
where E('y]'y 1Y =1,0) = lilm
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F. Proof of Theorem 2.1(c), (d), and (e)

The following lemma is used in proving the results.

Lemma F.1 If 7 ~ I'(«v, 3), then for any a € R?

Bl (av) = T, (/520 )

where T,,( - ; 2a) denotes a p-dimensional cdf of the ¢ distribution with degrees of

freedom 2a.
Proof of Theorem 2.1(c):

We partitioned the random vector Y; and its parameters &, 3 and A as follows:

L YF | 105Y; & |05¢
oo Y MY & & Mgl
5 DA _ O]-EOjT O]-le\/IjT 7
E;-no 2;’"“ 1\/IJ-EOJ-T MjEMjT
and _
A | A Opar| _ |OAO] 0
Oppy AT Oprxpy  MGAM
By Lemma A.1
Q- LA — 0;(= + A0/ O;xM; _ | o
M,;X0]  M;(Z+ A*)M] Qe Qe

Note that 3 and A are symmetric matrix. Thus, €2, £27° and 7™ are symmetric

. T
matrices and Q;)m = Q;-no.
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Let AQ ™! =B = [B1 BQ] Thus, we have

r —1
Aol - AT 0 o
0 APm| Qe o
00 [ oo~ 1 om ymm-o— 1 moyoo ! oo~ ! omymm-o~}
AP0 | QT QTN + 1) —Q Q)

mm mm-o~ 1 mo (yoo* mm-o~ 1

[ 00 oo~ 1 omymm-0_ ! mo (yoo ! oo~ L 00(yoo~ ! yomymm-o—?!
AF(QF° QFRQETe QR+ Q5 ) —ATQE QO]
mm mm~0’1 mo 0071 mm mm-o*1

-]
where Q7" = QP — QEPOQ?O_lﬂ?m. Thus, we have

Bl - -AmmS)mm'o*1S)moszoo*1
Y J J J

i 00 oo~ yomymm-o— 1! mo

_ A] (QJ Q] Q] Q] +Ip‘7)) 0.071
mm ymm-o_ mo J

— AT 9}

and

—1 a1 —1
_AQOQQO QQQOm o _AQOQQO qu .
B2 — J J J J — J J J Qmm-o
mm ymm-o~ 1 mm J ’
Aj Qj Aj

From the above calculation, we have the following results

B, + B0

A% (e Qoo e | L) —AZQXT

— Qoo 4 Qumo~ ! mogyoo™!
mmymm-o_* mo J mm J J J
i Ay §; A;
i -1 a1 -1 a1
AR QT AR — AP |
- mm ymm-o ! mo mm ymm-o mo J
i APmQETOTI QIO 4 AT O
00
_ Aj S‘zoo’1
= ; ,
OleXpO
L J
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0 AM™
- |:B 1 A;-)O BQ A;nm:|

0000 ! omymm-0_ 1 mo (yoo* 00 0000~ yomymm-o0~1 A mm
A.‘7 Q] <Qj Q] Q] Q] +Ip§’)Aj _Aj Q] Q] Q] A.‘7

_A;me;nm~o_1Q;pOQ?O_1A?o A;pmg;nm-o_lA;pm ’
(F.1)
and
B, B,
Ao o | ) )
mm-o~ ! (ymm-o/ymm-o~ '\ T 0000~ ! (yom mm
_ e A A [_(A]. Qe Qo) T A ]
J
_A;?OQ?O_IQ?HI mm-o~! mo )00~ ! A 0o mm
- Amm € —(Q7°Q5° AF) Aj ]
J
A?OQ?o_lQ?mﬂgnm-o_lﬂznog(;o_lA?o _ A?OQ?O_lﬂng;nm-o_lA‘rjnm (F 2)
- mm mm~0*l mo 00*1 00 mm mm-of1 mm ’ ’
I =AY Qe Af AP A}
Since
A+ BB, =1, — AQ'A + B,Q"B; (F.3)

we substituted (F.1) , (F.2) to (F.3) to obtain

APNL AL 0oy
A+B,QM°B] = I,— | 7 7 "7

0 0
Py Xpj Py xpy
00001 A 00
0 I

11 O 1
Pj XPpj P;

Since

Yj | (’YjaTj) ~ NP(€ + A’Yj?E/Tj)
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and
v, | 7~ HN,(0,1,/75),
we have
FOY5 1), m5) = 0p(Y,1€ + Ay, 2/ 75)

and

fv; I m) = 2p¢p(’)’j|071p/7'j)]Rﬁ ()

By Lemma B.1, we have

(Y, —€—Av,)"S7(Y; — €~ Ay;) +/ L'y,

= (Y-8 (Y, = &)+ (v, — AQ7(Y; =€) A7 (v, - AQT(Y; — &),
where @ =2 + A® and A = (I, + AX7'A)~L. Thus,

¢p(Yj|£ + A')’ja E/Tj) : ¢p(7j‘07 Ip/Tj)IRﬁ ('Yj)

= &(Y51€,Q/75) - dp(v,;|AQT (Y — €), A/ 7)) Ier ().

Thus,
f(Yj|Tja 9) = - f(Yj | 7jaTj70)f('7j | ije)d’Yj
+

_ / 26,16+ A, /1) - 6,(,10,T,/ 1),

+

= [ 201 R AR Y, ). A m)d,

+

= YO,V I6.9/5) [ oY, - ). Al

= 2°6,(Y;€,9Q/7;)2,(yTTAQT (Y - §)|A).

86



Thus,

FOY3, Y775, 0)
= 270,(Y,1€,Q/7) P, (TAQT(Y; — €)|A)

(0] o [e]6} m m- o mim-o YO_€O
= 20, (VIIE 0 )y (V1€ 2 /)% (V7 (B B | o \A)

J J

= 270 (Y51&5, Q5°/75) by (Y |€57°, 7"/ 75)

<y (7 (Bi(YS — €9) + Ba(Y] — 1) | A),

oy . -1 o, .
where condition mean &7 = £ + Q7°Q°  (Y§ — &) and conditional covariance

Qe = (QF™ — Q?OQ;?O_lﬂz?m) /7j. The marginal density of Y§ given 7; and

is as follows
Y5100 = [ 100371 6) Xy

= 20, (YOlE, 0 /) / B (Y€, Qo /7

<, (V7 (Bi(Y3 — ) + Bu(Y] - &) | A) Y-

m m-o m __ m-o __ m mo oo ! o o

Thus, we have
G (YT |E57°, QU0 /75) = ¢y (2|0, Q7™ /1)
and

o

bS]

(V7 (Bi(YS — &)+ Ba(Y7 — 1)
= 0, (v (Bi(YS — &) + Balz + Q00 (Y - ) | A)
\/_

o

= o,(7 ((B1 B ) (YO — € 4 Bgz> | A).

J
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By Lemma 2.1 of Arellano-Valle and Genton (2005), we have

f(Y3|75,0)
= 2%, (Y7[€7, Q5% /7))

x / Gy (210, 2/ 73)0, (75 ((By + Ba2= s ) (Y5 — £9) + Bz ) |A) d
= 20, (Y315, /B @, (V7 (B + Bo2e ) (Y5 - €) + BoZ) |A) |
= 20,0 (Y51€5,Q5°/7;) @, (/75 (B + BQQ;POQ;?O”)(Y;? —&)|A + B2 °B,)

= 20 (Y185, ) By (VAP (Y5 — €D)|Ly — AR A).

TjNF(V/2vV/2)7

we have

<[ e (< IV g (V- ) +0])
0
XDy (VTALRE (YO — €9) Lo — AP A% dr;

J
= L)

vy .
- <E> = |Q?0 |_% v+p?
2 I'(%) . v T (y00-1 o —*
Bl —erarovy - &) + 0]}
y /°° F(”i iy (Y7 — €)' (Y5 —€))+ V)
0 2 2
X By (AR (Y5 — €9)|Le — AP°Q° AS°)dr;

J
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™% [V *%? v "2”? ool F(”Z”?)
= (5) "(5) "G) e
2 2 J

2

V+P§~’
) [w; —E)T (V-8
2

[T Sl L i PR
0 2 2

00 0071 o
iy (AT (V:

—&9) }Ip? — A;OQ;O* AS°)dr;

V+p? )

v+p]
o o\ T oo~ 1 o o T2
14

T
= 2pj(7ry)_7lﬂqo 1|_% 3

’ F(a)

[eS) o o T(oo™ 0

. 2 S

x @y (VT AR (Y5

€)+V>

— |1 — AP AT)dr,
+
— P X tyo (EJ’QOO ) (AOOQOO (YO _£ )<7/ p]

J

where Up = (Y;—€)TCP(Y;—£), AP = Ly — A7
with the last equality is by Lemma F.1

Proof of Theorem 2.1(d):

The joint density of Y3 and «; is as follows

(Y5, ;)

/ f 77]77] de

©

v
PJ 5

['(3)

0 V+P+PJ
x/ 7'( >
J

0

exp { 7, (A — (Y~ € SPAY, — (Y, — &)
+v, 7 + I/) /Q}de

[SIN

227r_

=502
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v+p+p]

_ p<u+p+p])<mj (Y, — TSy [Ay, — (Y, - £>1+vm+v> 2

2

v+p+p]

—AN(Y;—8) +v] v, + u) ?

2

By Lemma B.1, we let x = ~,, a = A_I(Yj —€),b=0,Q = AS°A, Q; =1,
Q=Q+Q, = ASPA+1, and & = Q" (Qia+ Qsb) = ATASPAA (Y, — &) =
ATASP(Y; — £).
Furthermore, we have
(a) ATASP(Y, — £) = AC®(Y; —£), where C° = 0T 0; and (h)Q,Q'Q, =
ACPA.
Proof:
(a)
ATASE(Y, — €)

= (L= (0,027 (0;0)) AS°(Y; — €)
(Ip (0;A) "5 (Q,A)) (0,A)T=5°0,(Y; - §)
= (0,075 = (0;0)72 " (0,A)(0,A) TS5 ) (Y — €9)

= (0;A)7 (2?071 - Q?Oil(ojAQOjT)E?Ofl) (Y5 — &)

J J
T oo~ ! oo~ ! oo~ ! oo oo~ 1 o o
= (0;A)7 (7 - - =) (Yo - €)
= (0A) (T - = ) (Y - €)

= (0;A)TQ° (Y9 - &9)

= ACP(Y; - €)
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QQ'Q = ASPA(L - (0;4) 2 '(0;0))1,
= (0;A)7=5" (0;4)(T, - (0;4)72° ' (0,4))
= (0;A)7 (3 - =771 (0,A%0])025 ) (0,A)
= (0;A)7 (3" = e - B )(0A)

= (0;A)7Q° (0;A)

= ACA.
Thus,
fvY3) o< f(YF,7;)
v+p+p§
o (=AY = QITATS ALy — ATNY - O )y )
v+p+p]
* w1 * o a
= <['Yj - qj]TAj [’Yj - qj'] + (Uj + V))
N w1 N v+p+p§
~ <['Yj - qj']TAj [’Yj - Qj] n 1>*
U +v
% 1 * o v p+p?
_ (['Yj - qj]TAj [v; —qjl p; +v + 1)_ =
p;tv Uy +v 7

where qj = AC?O(Yj — &), and Aj =1, - ACj°A.

U]‘?—i-u
ps+v

It implies v;|Y§ ~ Tt,(q}, AL v+ pl RE).
Proof of Theorem 2.1(e):
The conditional density of 7; given Y3 and «; is as follows

f(Y;?> 7]'7 Tj)
f(Y;)7 7])
e s

R ([Avj—<Yj—s>JTS§°[Aw—<Yj—€>1+’%+”> 2
F<u+192+p§> 2

X exp { - Tj([A’Yj —(Y; = &)]"SP°[Ay,; — (Y; = &) +~/v; + V)/Q}-

F(mlY3 ;) =
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It implies

. v+p+p) (A — (Y =T SPIAy; — (Y, =& +)v; +v
7l(Y5,v;) ~T SR 5 :

By Lemma B.1, we have

v+ (v —g)TA (v — g+ U+ v
Tj|(Y§‘>»'7j)NF< 2; p]’(% qj) : (g] q]) : )
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G. Proof of the Q§k)

Let Qg-k) =E(7;(Y; =6 —Av;)(Y; — £ —Av;)T|Y9, 6 6 ) Since Y; = O] Y9 +

m & (k) qoo(k
M]Y}" and O] O;(I, — XS] ( )) = 0, we have

(k)

(Y € A7J|Y]77J7TJ70 )
H(F)
)

= E(O]Y9+M;Y"—¢&—Av,[YS,~,,7;,0

o T~70 T m (k)
= 0,Y] - &~ Av; +M; E(Y\ ,’)’j,TJ,Q )

o - N & (k) qoo(k &
- OjTYj_g_APYj—i_MjTMj(g +A" ’>’j+2 Sy, &7 - A

& (k) qoo(k ~ (k) 2 00(k
= 0]0;Y; — & — Avy; + MIM;(27SPMy; + (I, - 78"y (¢

~ (k) OO
= 0]0,Y; — €&~ Av; +(I,— 0] 0,)2"S7My;

j
- (k)Aoo k A(k) N (k)
HI, — BSPIYET + A ))

& (k) qoo & (k)
= 2USY, - (€ Ay + (1, -2

A (B)
B(Y; =& — Av,;[Y7,7;,6)

o (k)
= E( (Y € A7]|Y]77]77j7 )|Y ’Tj7

)

- g S9°<k>Yj — €+ Ay + (1, -3" S‘;" )€Y + A"y ) ve 7,0
S;,o(k)) é(k) _¢

+ (1, - 59820~ A) By v2.7,.0
(k))

= W8y, 4 (1, -
(k

)

= B gt (A - A) By, Y570

J

and

Cov(Y; — & — Av,[Y2, 75,8

)
A (k
= Cov(O] Y9+ MY — & — Avy,[YS, 75, 6' ))

= Cov(M, YY" — Av,[Y?, T],e(k))
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E(COV(M;—Y;-H - A'yj|Y;?7 Vi Tj, { . 75,0 0

+Cov(E(MIYm A’YJ|YJ7’YJ7TJ: |YOvTJaA )

E(M] Cov(Y™[YS,v,, 7,0 )M, Y2, 75, 6")
Cov (M E(Y™[Y? 0"y — A~ Yo, 7, 0"
+ OV( ( | 32 Vs Ths ) 'Yj| j Tjs )
B(AMIM, (I, - £8P M [ve, 7, 8")
Tj
OO B A o A
+Cov(My M (€ + A"y, + 780 (Y; - &7 — A y))) — Ay, Y5, 7,,07)
1 ~ N A A ~
=1, - 58S+ cov(((1, - £8AY - Ay [¥5,7,6")
]
;(I — 50gee) 5
J
+((@, = =8P OAY — A)Cov(v,[Y2, 7,0 (1, - £P2F)AY — )T
1 = (k) 200(k)~ < (k) - o RO
(1, - 578005 ® 1 (A — A)Cov(v,[Y2, 75,0 ") (AW — A),
J

where A = (1, - 278N AY ana B = 50800y 1 (1, - 5P ge0) ™

B((Y; — € — Av,)(Y; — € — Av,)T[Y2,7,,8")

o _ ab) o~ g™
= E(Y; — € Av)[Y5. 7.0 E(Y, — & — Av,|Y7,7,07)"
~(k
—|—COV(YJ' — E - A7j|Y§)77—j7 0( )>
) A () o . "
— |:bj —5+(Aj —A)E(’yjle,Tjﬁ )]
~ (K A (K o 5 !
x B g+ (AP - A) Bl 57,6

~ ~

~(k
+(A§k) - A)COV(’)’J-|Y;?,T]',0( ))(Ag,’“) _ A)T + =1, - 5§ (k))E
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7j
A o, g o A .
+(AW — A)YE(, Y2, 75,6V E(v, Y9, 7,0 7)T (AW — A)
A o w :
+(A§k) — A)Cov(v,]Y9, 75,6 )(Agk) _A)
! T
(k) (k) ~ (k) )7
j _€)< j _£> —i—(bj —S)E(73|Y],7-],0 ) (AJ —A)

= B(r(Y; —€—Av,)(Y; —€—Av,)'[Y2,0)

o 20 wo ak)
= E(nBE(Y; —€—Av,)(Y; —€—Ay,)'|Y9,75,0 )[Y5,.6)

J
= (AW Z A)E(ry] Y2, 0 (AW — )T
+ (B — &) B, v5,0™) T (A - A)T
+ (AP = A) Bl 2,6 (b - g)T
B |v2.0™) (B —€) (B —€) + (1, - 57805
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H. Proof the of CM-steps

(k & (k) &

Let A;k) — (1, — ﬁ](k)é‘;o(k))[& ) and Bg@) _ ﬁ](k)S§°(k)Yj . S(?O(’“))g |
CM-step 1:

Taking the partial derivative of () with respect to & and setting it to zero yields

Q. _ 190 N o®)
o€ = 28€tr (E 1291 )

1 N N
= o[ g —2m A - ]
j=1
= =Y [P -0+ AP - ai]
j=1
= 0.

CM-step 2:

Taking the partial derivative of @ with respect to X! and setting it to zero yields

n 1 N oW

Jj=1

80 9

) ) S
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~(k+1 ~ (k
Fix & at E( ) and A at A( ), solving this equation obtains

SO _ 2 ngﬂm’
n
where Q;kﬂm is Q§k) in Equation (2.7) with & replaced by é(kﬂ) and A replaced
by A(k).
CM-step 3:

Here A assumed to be diagonal, say A = Diag(\), where A is a p-dimensional

vector. Taking the partial derivative of ) with respect to A and setting it to zero

yields
oQ 10 LN o (B)
— = ———tr | X .
I 2N r( ;QJ
_ 10 ¢ —-10 k)
10 <« - k)

= 5oy 2 (@AY - M)ET AP - A)T)
j=1
20 (27 (B — )V (AP — A)T)]
= —% y [—2Diag (£1(AY - 2)¥") — 2Diag (571 (B - )nVT)]
j=1
~ —Diag (zzlAzn:\if( )> + Diag (21§n: (6 — £ + Ag’“\ifﬁk)))
J=1 j=1
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_ = = (k) _ & N (k ~ ()T NOEION
- —(z oY ¥ )A+(Z 1@2((b§.>—s)n§.> + AW ) )1p.
J=1 j=1

(kH), setting 0Q)/OX = 0 yields the estimate of A

S\(HI) ( (k+1)" Z‘I’ > < (k+1)~" ®Z<B A(k+1)) ()T A(k\il )>T>1p.

With ¢ = " and = =
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I. Proof of s; for the MST model

The single observation of the complete data log-likelihood, ignoring additive

constant term, is

v v v 1 _ v
lej(OY ,7,,75) = §log——logf‘(§)+§log‘2 1}+§10g7'j

2
I

5 {(Yj—E_A’Yj)Tzfl (Y; =€ - Av)) +’/}'

Let ]j] = (Ip - giS?O).

Furthermore, we can obtained
E(;Y,[Y?,0) = #D;€ + D;A#
from the law of iterative expectations.

The first derivatives of £.;(0]Y;,v;, 7;) with respect to £ is

ol _
6_£] =787 (Y; - & - Ay;).

Thus,

W, —B(nE (Y, — €~ Av)

Yo, é) = #89°(Y; — &) — S°An,.

The first derivatives of £.;(0]Y;,v;,7;) with respect to X is

Il 10 - i
6_23 - —58—2{10g|2]+tr (E ' (Y &= Av)) (Y, — € - Av)) )}
1

_ _5{22_1 — Diag(E71) 25717 (Y; — € — Av;) (Y; — €~ Avy;) =7

+Diag (2‘%- (Yi—¢—Av) (Y, —¢-Av) Z_l) }
1

= 5 (2C; - Diag(C;)),
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where C; = SR, — 27  and Ry = 75 (Y, — € - Av,) (Y, —€—Av;) .

Thus,
), = Vech{E< (2C; — Diag(C ‘ A)}
1 . .
= vech{éE(ZCj — Diag(C;) j,9>}
1/
= vech {§<2Cj — Dlag(Cj))} :
A P e
where C; =¥ R;X -3  with
R, = B(Ry[Y:0

Furthermore, we can obtained
E(7, Y7, [Y5.0) = Dj(€n; + A¥;) + £8°Y,n]

from the law of iterative expectations. The first derivatives of £.;(0|Y,~;,7;) with

respect to A is

aéc' . _
a—)\j Diag (7;% "Y; - ¢ - A'yj)'ij)
Thus,
s = B(Ding (%~ Ama]) V3.
= Diag <E<Tj2 —&— A'yj)'yJ Y 9))

= Diag <2_1E(Tij’7}—’Y?, 9) — 2_ (é’fIJT + A‘I’J))
= Diag (87 (¥, - &)a] — A,)).
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The first derivatives of £.;(0]Y;,v;,7;) with respect to v is

8;5 = % {log (g) +1-DG (g) + log(7) — Tj} .
Thus,
W, = (% {1og (g) +1-DG (g) +log(m;) — Tj} ‘Y;?, é)

E
1 1% v . .
= 5 10g 5 +1—DG 5 +I€j—7'j .
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J. Proof of Theorem 2.2

The proposed model is as follows:

Y17Y27 e 7Yn ~ STp(éa E7A7 V)7

where A = Diag(A).

The prior distributions are as follows:

& ~ Nyars™)

A ~ N,(0,T)
SUB ~ W,(2,(2B) )

B ~ W,y(2y,(2H)™)

1
log (Z) ~ U(-10,10),

where a and 0 are p x 1 vector, k, B, H, and I" are positive definite matrix, o and
v are scalars.

The prior densities are as follows:

7€) = Cn twl o {-je—a) k(e - )}

x e {3 amE-a)}

2@ Vexp {—jtr (((2B) 1) 'S )}

T(Z7HB) = : T
=B 2572 (2B)~![3G9T, (1(2a))
o BBt 2@ P Dexp{—tr(BE )}
Bl exp { ~3or (((2H) ) ' B) }
7(B) =

22| (2H) 12V, (1(27))
x |B|z® P Vexp{—tr(HB)}
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where T'(3(2x)) = [T0_, Tp(3(2x + 1 —4)). Let 8 = (§,%,A,v). The joint prior
density for (6,B) is
7(6,B) o [SECP BT
X exp {—%(g —a) k(€ —a) - tr(BX™) — tr(HB) — %)\TI“U\} :
The complete-data likelihood of (Y, 7,) is
L0, 7,7) = L(O]Y°, Y™, T,7)

= H f(Y;)a Y;na Ty 7]'0)
=1

n

= Hf Y25, 75, 0) (Y3, 75,7,16)

n

= Hme‘ iv T3 Y ) (TJ’Y;)7’7]7e)f(vg‘Y?e)f(Y;’e)

- v\ 3 N\ y T,
() ) e (o))
where A; = (Y; — & — A'yj)TE’l(Yj — & - A'yj).

The joint posterior density function is as follows

p(0,B,Y" 7, v|Y°) «x =w(6,B).(0|Y,T,7). (J.1)

By using Equation (J.1), we have the following posterior distributions.

The conditional distribution of «; given Y7 and 6 is as follows
p(v;1Y5,0) ocp(6, B, Y™, 7,v|Y?) o< f(v,[Y7,0).

103



It implies that

o

o * I/+Uj * 0 P
’)’j|(Yj70) ~ Ttp(% rp?Aj?V +D;; R+>7

by Theorem 2.1(d). The conditional distribution of 7; given Y%, v, and 6 is as

follows
p(Tj‘Y;')a Y H) & p(0> B, Y" T, ,y’Yo) X f(Tj‘Y;)a Y 0)

It implies that

o AT A* L * o
p+pi+v (v;—q;) A (v;—q;) +Uj ‘l‘V)

Tj’(Y;>7j70)NF< 9 > 9

by Theorem 2.1(e). The conditional distribution of Y given Y7, 7;, v, and 6 is as

follows

p(Y;rn|Y;)a T3, '7]'7 0) X p(07 Ba Yma T, 7|YO) (S8 f(Y;n|Y07 Tj, 7]‘7 0)

J

It implies that

Y3757, Y0, 0) ~ Ny (70, 7 1270,

J

by Theorem 2.1(b).

(e]

The conditional distribution of B given Y3, Y, 7;, v; and 0 is as follows

p(Bl7;, YO, Y™ ~4..0) o [B|*"2® P Dexp [ —tr(BE™!) — tr(HB)}
= |B|%(2a+27_p_1)exp {-tr (Z'+H)B)}
— |B[3COt)-pDeyp {—%tr (227" + H)B)}
= Bl e {Ju )},
where H* = 7' + H and v* = a + 7.

Thus,

B|(7;, Y, Y, v;,0) ~ W, (277, (2H") ).

104



The conditional distribution of X' given & A, Y°, Y™ 7.~, and B is as follows

p(2_1|€7 A> Yoa an’ 7,7, B)

x |E_1]§("+2ap1)exp{ —tr(BX; ! ZTJ }

_ ‘E_l ’ %(n+2afp71)exp {

—%tr (E_l <2B + ZT]'(Yj —&—Av,)(Y; — &~ A'7j>T>> }

j=1

_ lOé*f _ 1 _ *
= |Zlppletor Dexp{—?cr(ﬁ 'B )},

where a* =n +2a and B* = 2B + 37 7(Y; — € — Av;)(Y; =€ — Av;)".
Thus,

SE A Y, Y™ 7,9, B) ~ W, (o, (BY) 7).

The conditional distribution of € given ¥7' A, Y°, Y™ 7 ~, and B is as follows

p(€|2_1,A,YO,Ym,T,7,B) X €exp {_% <<£ - a)TK’(S - a) + jlejAj) } )

where (§ —a) k(€ —a) + 27, 7;A; can be expressed as

ZTJAJ +(¢—a) k(¢ —a)
= Y (Y, — €~ Ay)TSTHY; — €~ Ay;) + (€ —a) k(€ —a)

j=1

= ij (Y]S7Y; + €787+ 4] AZ Ay, — 2Y 271 — 29 AS Y
+2’y AX™ £)+£ k€ —2a'k€E+a' ka

x &' (ZTJ- >g+g - 2ZTJYT2 €+2ZTN AX e

—2a'kE

= ¢7 (Z X 4 n) £E—2 (Z TijTE’I — ZijijAE’l + aTK,> 3
j=1

Jj=1 Jj=1
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= £'(k)g -2 3 Y 27— Y v AT +ak | kF(KF)TE
iYj J

J=1 J=1
T

= &'k E-2 |k (Z LY - Z Ty AST + aTn) (k*)7€
= £ (k) TTE—2(p) (k) TE

= ET(r)E=2p) () T+ ()T (KT Tt = ()T (KY) T

= (E—p)(K)HE—p) — (L) (k) Tt

x (£—p)T(K)THE— 1Y),

with p* = k* [Z_l <Z?:1 7;(Y; — A’yj)> + K,a} and k* = (37 7,8 4+ k)7L
Thus,

E(ZLA Y, Y™ 7,4, B) ~ N,(u*, k).

The conditional distribution of A given & ,X71,Y°, Y™ 7,4, and B is as follows

1 n
p(A|E_17£7A7Y07Ym7T777B) X €exp {_5 (ATI‘_lA + ZTJAJ) } )

J=1

where ATT7IX + Z?Zl 7;A\; can be expressed as

> A+ ATT A
j=1

x Y 7 (v AZT Ay, = 2] ASTH (Y - £)) + ATTTIA
j=1

= Z T ()\TDiag('yj)Z’lDiag('yj)/\ — 2}\TDiag('yj)271(Yj — E)) + AT\

=1
- AT (Z TjDiag(’)’j)E_lDiag('yj)> A — 2)\T ZTjDiag(Vj)E_l(Yj . 5)
j=1 pu
AT
= A (Pl + Z TjDiag(’)’j)ElDiag('yj)) A—2XT Z 7;Diag(v,) S (Y; — €)
j=1 p
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X

-1
with I'™ = (I‘_l +> i TjDiag('yj)E_lDiag('yj)) = (I‘_l—i-Z_l@Zj:l Tj'yj'ij>

AT =22

ATTH) 7N = 22T (@) I + (T T(TF) 7H T AY) — (T (1) (T )
(A= TA)T(T) 1A = T*A%) — (A% T (1)1 (T"A)

(A =T X)) A = T*X\)

(A=) () (A =57,

-1

and 6* =T (2?21 TjDiag(’yj)E_l(Yj - 5)) =I" (2_1 © > Ty (Y — f)T> 1,

Thus,

AZTLEAY, Y™ 7,4, B) ~ N,(6*,T%).
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K. Proof of Theorem 3.1(c), (d), and (e)

Proof of Theorem 3.1(c):

We partitioned the random vector Y; and its parameters §;, 3; and A; as follows:

Y; = Y;? = 0, £ = gﬁ] = 0,¢;
J , ; v ’
Y;n MY, éij M;¢€;
[el¢] om T T
5 IS It _ 0,%,0;] 0O,Z;M,]
! mo mm T T
Eij Eij szioj MjEiMj
and
A = A?](') Op;?Xme _ O]AZOJT Op;?Xp;.“
Op;_n ><p§.’ A?Jlm Op;_n Xp;? MJ AzM;r
By Lemma A.1
o T 00 om
Q=% +A}= 0;(2; + Ai)oj 0,3;M; _ o

M;3,0]  M(Z; + A)M] Qpe ne
Note that 3; and A; are symmetric matrix. Thus, €2;, fo and Q?;m are
symmetric matrices and QEJ;HT = ;°.
Let A;Q; ' =B, = [Bi1 BiZ]' Thus, we have

-1

(e]0) [e]6] om
AY 0 | |ar o
0 ij ij ij

AQTT =

(2

[ 00 [ oot omymm-o ! mo yoo— ! oo~ ! omymm-o~ !
Ay 0| [y (T QIeOrT + L) —Qp QO
mm nr1m~0*1 mo 00*1 nr1m~0*1
0 A7 — QIO QRO Q

[ 00 oo~ ! omymm-o~ ! mo (yoo—* oo~ L 00(yoo~! yomymm-o~?!
Aij (sz ﬂij Qij Qij Qij +ng ) _Aij Qij Qij Qij

mmymm-o_* mo (oo ! mm ymm-o !
_Aij Qij Qij Qij Aij Qij

= [Bil B'L’Z]a
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1

mm-o- - __ mm mo oo ! om

B 1 =1 -1 -1
B A (77 QEPQE™ QoY+ Q)
il = —1 -1
mm mm-o mo [e]6]
I 00 00~ yomymm-o~! (ymo
AT Qe 3 +Ip;?) oo "
- mm ymm-o_ mo ij
_Aij Qij Qij
and
1 —1 -1
—A°Q00 QomQummo —A°Q Qom
1] .o~ 1
A 1] 1] 1] 1] 1] 1 mm-o
Bi2 - mm ymm-o~ 1 - mm Qij ’

From the above calculation, we have the following results

B + B

[ [e]¢] 0o~ 1 om ymm-0— 1 mo 0000~ yom
_ AT (0T " €07° + L) Qo 4 —AGy Y Qum-o~! (gmo yoo!
_AmemmO’lQmo v Amm v t v
i @ i i
[ 00 ()00t om ymm-o~— 1 mo 0o 0000~ ! yom (ymm-o~! mo
_ Aij Qij Qij Qij Qij + Aij o Aij Qij Qij Qij Qij qu—l
o mm ymm-o~ 1 mo mm ymm-o~ ! (ymo v

—1
AQTIA,
00
= |Bi Bp o
0 Al
— 00 mm
00001 omymm-o~ ! mo (yoo~—* 00 0000~ mom ymm-0~1 A mm
Aij Qij (QZJ Qij Qij Qij +Ip?)AZj _Az'j Qij Qij Qij Aij
mmymm-o_ ! (ymo oo~ ! A 0o mmymm-o_ ' A mm
_Aij Qij Qij Qij Aij Aij Qij Aij

(K.1)
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and

mm-op |

_ B -

—A%°Q0° Qom 1 1

_ ij S 9ij ij mm-o~ ' ymm-o/ymm-o~ '\ T 0ooo ! yom\T mm

= A Q) Qo (Q ) [_(Aijﬂi]‘ Qi) AL
ij

[ 00001 om-
_ _Aij Qij Qij Qr.r}m-ofl _(QmOQOO_lAOO) Amm
] i ij ij i

| AT
[ 00(yoo~ ! omymm-o~?! mo)oo~1 A 0o 0000~ momymm-o~! A mm
mmymm-o_* mo oo 1 A oo mmymm-o— ! A mm ’ )
Since
A; + BpQieB), = I, — AiQ7'A; + BpQl" B, | (K.3)

we substituted (K.1) , (K.2) to (K.3) to obtain

-1
A2°Q°° "A°° 0
ij ¥ 1] P? Xp;'n

A+ BiQQEm'OBi—; = I, -

Opgmy - Oppcpy

(e]e] 0071 oo
Ip;? - Az’j Qij Aij Opgx;;;n

Op}n Xp? Ip;n

Since
Y| (vminZij=1) ~ Np(& + Ay, Zi/75)
and
Y | (5. Zij = 1)~ HNy(0,1,/7;),
we have

FOYj 19,15, Zi = 1) = (1€ + Aiy;, 24/ 75)
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and

v 175, Zi5 = 1) = 224, (7510, L, /75) I e (7;).

By Lemma B.1, we have

(Y; =& —Av) S (Y — & — Aiyy) +, Ly

= (Yj - Ei)Tﬂfl(Yj - 51) + ('Yj - Aiﬂfl(Yj - gi))TAfl(')’j - Aigfl(Yj - 57,))7

where ; = 3; + A7 and A; = (I, + A37TA;) 7Y Thus,
¢p(Yj|5i + Ai7j’ Ei/Tj) : ¢P(7j|07 Ip/Tj)IRﬁ (’Yj)
= (Y€, Q:/7) - 0p(v, | AT (Y, = &), A/ 75) I ()
Thus,
f(Y;|Zi; =1,7;,0) = /Rp T 1775, Zij = 1,0) f(v; | 74, Zij = 1,0)d;
+

= /RP 2¢p (Y& + Niyj, i/ 75) - 6p(7510, L/ 75) dy

+

= [ 2o /) - AT (Y - €. A,

Ry

= 200, (Y,[€;, /7)) P (VT AT (Y, — &)A).
Thus,
f(Y3. Y2 =1,7;,0)

= 2p¢p(Yj|£ia Qi/Tj)(Dp(\/T_inQi_l(Yj - Ez)‘AZ)

20,(Y,160 /) [ oI AR (Y, - €, Al )i,

0| ¢o 0o m|em-o (ymm-o 0'_5(1?'
= 20,0 (Y31€5,, Q% /7;)pm (Y€1 °, Q) /Tj)cbp(,/—rj [Bﬂ Big] Y; é‘i A;
s

= 2p(Y71€5, Q) 75) opm (Y1&55°, 05 75)
%@, (/7 (Bu(YS — €5) + Ba(Y) — €2)) | Ar).
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.. . -1 oL .
where condition mean &£7° = £ + Q5°Q%  (Y$ — &7;) and conditional covariance

Q5 Ty = (" — QY Q) /7.

The marginal density of Y7 given Z;; = 1,7;, © is as follows
f(Y312y=1,7;,0) = /f(Y;-’,Y?IZU = 1,7;,0) dY}'

=2, (YOS, 0/7,) / By (Y€, Qo /7

<, (/75 (Ba(YS — &) + Bu(Y] — €1)) | A)dYY.

m m-o m __ m-o __ m mo yoo ! o o
Let z = Y] —Eij , then Y7 —z—l—ﬁ'ij —Z+€ij+9i]’ Qij (Yo — &)

J v

Thus, we have

G (Y1655, 0T/ 75) = ¢y (2]0, 7™ /75)

and

(I)p<\/7_j (Bil(Y? — &) + B(Y) — 5?;))
= &,(7 (Ba(Y: - €) + Bu(s+ Q0 (Y - £5)) | A))

= 0, (v ((Ba +Bofeay ) (Y — £) + Buz) | A).
By Lemma 2.1 of Arellano-Valle and Genton (2005), we have

f(Y51Zi; =1,7;,0)
= %@ (Y715, Q7 /7))

x / Spp (210, 2™ /), (/75 (Bus + By ) (Y5 — €3) + Boz) |A,) de
= 20, (Y31€5, /) B @, (7 (Bi + By ) (Y5 - &) + BaZ) |A) }
= 200,0(Y71€5, 95 /1) P, (y/75(Bir + B Qo) (Y0 — £9)|A; + BpQl™°B)

° 0| ¢O 00 0ooo~ ! o o 0000~ A 00
= 2pj¢p§(Yj|€ Qi‘/Tj>q)p}?(\/7TinjQij (Yj_E )}Ipﬁ_Aijsz Aij)'

K J i
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Since
7| (Ziy=1) ~ T(vi/2,v:/2),
we have

f(Y31Zi; =1,0)

_ / F(YS|Z,y = 1,7,.0) f(1,]Z,; = 1)dr,

= (= —|Q
(2 L'(%)

v+pg 1

[T e (< nlon - g (v - €5) + ) 2)

X @y (VTATQT (Y5 — &)Ly — AFQT A7) dr;

1

X

00~

_1
¢ ‘ 2
()

ij j
T —4 %% oo-1/_1 F(”i;pj)
= &) R
2 o oo~ 1 o o 2
%[(Y? — &)y (Y9 — &) + Vz}}
o oo~ ! o o
X/mr<yi+p? (Y?_fij>TQij (Y _fij>+%'>
; 2 2
00 ()00t o o 0000~ A 00
X(I)P? (\/T_JAij Qz‘j (Yj - sij){lp;’ - Aij Qz’j Az’j )de
s _% v; _% v; Di;pj 1, 1 F(Vi+p?>
-
2 2 2 ) P(%)
2

o oo™t o o
o [(Y? — &)1 (Y- &)+
2

o 0071 (e} o

X/OOF(VH‘p? (Y;')_gij)TQij (Yj _fij>+Vi>
. 9 2

XPpo (VTAZT QY (Y5 — £5)|Le — APQY AY)dr;
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O
_vitry

e TR Ty — €9) T (YO — £9) 2
= W) Iy |
’ (%) Vi
o 0071 o o
X /OOF<Vi +ry (Y7 &) (Y- &) +Vi>
) 2 2
By (VAR (Y9 — €)|Le — AQ A dr
-1 vi +p§
— 2 xt, <ez,n$‘-’,uz->Tpo.(A§f)ﬂ;’9 ;- () | A ),
J J J J J J J Uij+yl J J

where US = (Y, E)Tcoo( — &), AY = Ip;_) — A?fQ;?O A%o, and Cp7 =
O;Q?floj with the last equality is by Lemma F.1.
Thus,

Y012 = 1,0 ~ STy (&5, 00, A 1),

Hence, it implies that

g

g
FOYS1©) = D (Y51 Zi; = 1,0)p(Zi = 1) = > wifype (Y5165, 57, A, vs).

i=1
Proof of Theorem 3.1(d):

The conditional density of Y7, «;, and 7; given Z;; = 1 is as follows

fOYS, ;7125 = 1)

= (Y5 |77, Zis = V) f(v; | 75, Ziy = 1) f(75]Zi5 = 1)

p‘? E?O 2 (0] 00 (0]
= ) F 2L e (= Y3 O5(E + AT (S5 /7) Y3 — O5(€s + Ar)l/2)
J
P PR T+ 1 %71 vi_
x2(2m) " H 2| exp (=] (D) ,/2) 2t exp(—vimy/2)
T 7 I'(%)
P ptp v o L vi+p+p§
_ 2%71.7 J;J 21/ EOO| 27_( )—1
(%)

xexp (= l(y; = ATNY, — €)) TATSTA(Y, = ATNY - €) + ) Ty, + wl/2).
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The conditional density of Y7 and «; given Z;; = 1 is as follows
fOY5, 7125 = 1)
= / f 377]77-]|ZZJ = 1)d7—j

Vi 0o vtptpd

no vy g 3 _1 1)-1

— 2 2T - |ZOO 7_'( 2 )
F(?) 0

X exp { —Tj <[Az")’j — (Y, = &)1 S5y, — (Y; =€) + )7, + Vi>/2}d7—j

v+p+p§
(v (Ao = (Y5 — &) SHIA, — (Y, — &)l +7] 7, +v .
2 2
2?3-“ p+p9 %%
X221 2 — ?9 2
rig)

Let x =7,,a= AN Y;—€),b=0,Q = A, S A and Qo = I,. By Lemma B.1,
we have

(v, = ATHY; = & ASE Ay, — ATHY; = &)l +77 ;)

= <(’Y ng)TA* (7j - qj]) + Uioj>7
where q;; = A;CP(Y; — &) and AL =1, — A;CP A,
Thus,

f(v1Y3, Ziy = 1) oc f(Y5,7]Zi =1)
V¢+P+PCJ')
o< ([Ary; = (Y3 =€) SP Ay — (Y = &)+, v +vi)  °
VrHH‘P?

= (v, =AY = &)TA SNy, — AT (Y =€) +] v +vi) 2

_V,L'+P+P§')
= (I = @) Ay by — ]+ (U5 + )
* * * vi+p+r§
([’)’j - qz‘j]TAij ["Yj - qij] n 1>_ppj
U'O» + v
* * o v +p2
_ ([7 qz]]TA [ qz_y] p] +v + 1>_ +p2 =
p] + V; U;} +v
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It implies v,|(Y9, Z;; = 1) ~ Tt,(q; Ugitvi g

J 157 Po+v; 57

vi + 03 R
Proof of Theorem 3.1(e):

The conditional density of 7; given Y7, v, and Z;; = 1 is as follows

f(Y?a7j7Tj|Zij = ]-)
f(Y5,79,1Zi; = 1)

f(Tj’Y?>7ja Zij = 1) =

vi+p+p]
_ 1 ([Am—<Yj—sz->JTs;?f[Am—<Yj—£i>]+mj+ui> :
o v+p+p? 9
r(=5%)
(u¢+p+p§?)_1
xri 7 Texpd =7 (A, — (Y5 €)]TSEA, — (Y, - )]

v, + z/i)/Q}.
It implies that

7i|(Y5,7;, Zij = 1)

o~ T (Vi +p+p; [Ai’Yj —(Y; - fz‘)]TS%Q[Ai'Yj —(Y; = &) + ’Y]‘T'Yj + Vi)
2 ’ 2 '

By Lemma B.1, we have

Tj|(Y})77]’7Zij =

*71 * o
)~ T (ui Fpp (v —ah) ALy, — ) + UG+ Vi)
7 5 .
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L. Proof of Corollary 3.1

The conditional density of Y7, «v;, and 7; given Z;; = 1 is as follows

f(Y;77j7Tj|Zij = 1)
= f(Y7| ’Y]aTj,Zij =1 f(v, | 75, Zi; = 1) f(751Zi5 = 1)

EOO
= (27"')77J

Coxp (Y5 - 0,6+ AT (S5/m) Y5 — O (€: + Ary,)/2)

()

7j

w\s.

v

o L, 1 I _ 4 Yi_q
x2P(2m) "2 |2 2exp<—~ij(—p) 1Pyj/Z) 2 —7.°  exp(—vi7;/2)
7j 7j s’

A B BN G nas § W T v
= 2771 FQ(%) Xl eXP<—Tj’Yj’Yj/2> GXP<—§TJ‘>
< exp (= 15[y, — (Y5 — €)]TS Ay, — (Y5 - €))/2)
m V' Vi vi+p+p9
o 2%77__1721)7 |ZOO| 27_( 2 ])_1
I'(%)

xexp (= 7il(v; = ATY; — €)) TATSI Ay, — ATHY, — €)) + ) Ly, +wil/2).

Let x =7, a=A;'(Y;—¢&), b=0,Q = A;SA; and Q; = I,. By Lemma B.1,

we have

([v; = ATHY; = €T AST Ay, — ATHY =€)+ /7))

= (v, — @) Ay (v, — ay) + U3).
Thus,

fOY5,v;, 7125 = 1)
m o v vitptp?

P P+p; _
= 2 Ry ’1exp{—n[(Yj—sl-)Tcg%Yj—s»w}/z}
2

X exp { — (- ay) AL (- qi’})/2}-
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Thus,

fOY5,71Zi5 = 1)

= / f a7]77]|sz = 1)d7]

RSN I CE L S S
= 2277 2 mziﬂ 2T exp _Tj[(Yj_éi) Cz‘j(Yj—Ei)‘*‘Vz}m
2
></R+exp{—7j(7j ay) AL (v —ay)/ }dvj
i 7?*’1’? %% oo|—1 (Di+z+p?)_1 T o0
= 2%m (%) DLy exp _Tj[(Yj_ﬁz‘) Cz’j(Yj_Ez‘)‘f'Vz}m
2

*

AW -
x(2m)2 [—2[2 @, (qj;| A% /)

m, 2 vy B3 00 AT _l VZ;pJ -1 T (oo
~ <;>2;(%)|z A1 T e oY, - £TCR(Y, - €) + u] 2}
, (a;y/T1AT) -

The conditional density of 7; given Y3 and Z;; = 1 is as follows

f(Tj | Y;), Zij = 1) XX f(Y}),Tj|Zij = 1)
w

xT;? exp { -7 [(Yj - Ei)TC?f(Yj —&)+ Vi] /2}@1? (quﬁ|Afj) :

Thus,

vi+p§

o 1771 * *
f@ Y5, Zg=1) = Cir; 2 @, (q(/751A7)

X exp { T [(YJ —&) CRY, - &)+ yl} /2}'

Using the property of the probability density function, we have

> V“Lp? -1 00 * *
/ ClTj 2 eXp{ — T [(Yj - gi)TCij (Yj — &)+ Vi] /2} X P, (qij’\/ Tj’Aij) drj =1.
0
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It implies

o
_ V¢+Pj
2

i ;p?> (% (Y, - €)TCR (Y, — &) + ”D

& vi +p% 1 00 * *
<[ (P[0 - eTeny € +4] ) @ 0 vmian) an - 1

By Lemma F'.1

v -H”J?
2

ar J;p?) (% [(Yj —&) CR(Y; - &)+ ”D

1
Vi + 1§ 2
xT qf-( v ) A vi+p) | =1
( Y, &) CR(Y, — &) +v) Bt

Therefore,

o
Vﬁ-Pj

o 5 [(Yj —&)CR(Y;— &)+ VzD

vi+p? N vi+p§ 2 . o
N )Tp<qij((vj—éiﬁcs;(n—&)m) A ””rpj)

By Lemma F.1

E(r; | Y3, Zi; =1)
vitp§+2

= /OO Cir; ° €xp { —Tj [(Yj - €i)TC?jp(Yj - &)+ Vz} /2}
0

x @y (af;v/751A7) dr

vi+pf+2
vi+pi+2 (1 oo o2
= e (Hovs - ey, - )+
& vi+pr+2 1 00
/ r (Tja 5 [(Yj - Ei)TCij (Y; — &)+ Vl])
0
x®, (qi;y/75]1 A7) dr;
_V¢+p?+2

= Cle(

Vz+p(])+2) <]_
2

% (Gl - eoropt - e+ )

Vi +pj +2 2
<xT. | g J A v+ pl+2
p (qw ((Y] _ Si)TC%’)(Yj _ 52) + Vi) | ] p] )
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V; +qu
(Y; — fi)TC%J(Yj —&)tv

1
* Vi+pjo'+2 . . O
Tp (qu ((ngl)Tcgf(ngl)Jr%) |Az]7 v; + p; + 2>

1
* vitps R o
Tp <qz] ((Yj_gi)TCE’f(Yj—gi)-i-w) |AZ]’ Vi + p])

* vit
Tp<qz_7 yf[JJO |A7,j; Z+pj+2)

X

Vi + 1§

UZ'O‘ + v % vi+p7 ’
j Ty(qj w+Uo |AG;vi + 1)

where U = (Y; — &) 7C%(Y; — &) and q}; = A;,C2(Y,; — &)).

Since [ f(1; | Y2, Z;j = 1)dr; = 1, we have

dl/l/ f(r 1Y, Z;j =1)dr; =0
Vz+p]
y / Cir; ° ! eXP{ =T [(Yj — &) CR(Y; — &)+ Vi] /2}

x®y (a7 A7;) drj = 0,

rita] . -
where C = (Uij;yi) : <F(#>Tp (q* :-:_Up{’ |AG; vi +p§?>> :

By Leibnitz’s rule, we have

Us + v vi+ 15 vi t P °
1og( B )+(U£}+;)—DG< 2 j>+E(10gleYj’Zw=1)
1

( * VZ +p

Tp q VZ.|_U0 ’Az]; Vi +p‘;)

qz]l qz]p
/ / i (%)t (5] A X ———— v + pj)dx; = 0,

where a; = (g5, a5,) " and g,(x,) = DG (—”’W) DG (“57) - ke +

- P?-H/i
1 _
p(UR—p3) —log 1+ X;I—Aij X; + (V¢+p+P}’)(X;~'—Aij sz
(it P} (U5 +v) Vit (U8 +v) (UG +vitx] AT x;

E(r|Y3, Zi;=1) -
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v

Let A = t,(x;|Aj; X S2—;v; +p§). Thus,

V—i—p
0 * +p -1 0 % % UO + v -1
6_7/<T (qu X <UO ; > |AZJ7 Vi +pj)> = al/i (TP(Qz]|Az] v, +p;) y Vi +p])>

qul ngp —1
=5 / / p (XA X ———; 1 —|—p])dxj>

o\ B vit+p+p§
uz+p+p vi+pS \ 2 - i
/ i1 / iip |A | 1/2<Ufj+lii> 1 X;'FA:] 1Xj ’ d -1
L
" o, V1+p3 ) (7 (v 4 p9))P/2 Ui + vi ’

1 9in e A Vi +p 415
- _ {/].../”_Dg(ﬂ>
* Vi"’_pc') * o —00 —00 2 2
dj; ) Vi

TI?( ij ui+Uz>.|Az‘ja Z+pj)
*71
Apa (vt A A pU5—19) —élog 1+xJTA” X,
2 2 2p2+u 2 (i +p)(UG+y) 2 o + v,
-1
TA
A W +p+p;’)[ gw}%);]
+ 2 TA*_l d J
14 2
Upivi
_ 1 {/1 /( <ul+p+p])
a l/z—&-p 2
2T2( V+UO ‘A,U; Z_'_p]
Vit Py Ui — XTAf-ﬂx»
_DG< P])_ o " o f]) —log [14+ 21—
2 P; + Vi (Vi +pj)<Uij + Vi) Uij +

(vi+p+p2)(x] A} %))
(Vi—f-Ufj)(UO‘f—Vl-f-XTA* ' X;)

X A de}.
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E(logT;|Y?, Z;; = 1)
% Vl+p +2
_Dpa (Vi—f—pjo) (l/fﬁ—p;)) ol ij u+U° ’AZJ’VZ+pJ+2)_1
’ Tp(qZ] erUz) |AZ]7VZ +p])
1 a1 a;; O-
" [ [ aeonbslag x
* vi+p; A* —o0 —o0 +p
Ty(aj; VA US |AL;vi + 1)

UQ + v;
—log (U—

2

)
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M. Proof of the ngk)

Let
(k) o1 20(k) goo(k) ~oo(k)
Z(k) —E(Z~~|Y° é(k’))_ w; fp‘;(Yj|€ij »EZ']‘ 7Aij aVi)
oo LY ) g (k) o1 20(k) goo(k) 2 oo(k) .
i=1 Wi fp;—’(Yj|£ij 722']' 7Aij ayi)
and
Q(’f) — E Tivo &K
i (ZijTj(Y‘ - & — Az"Yj)(Yj & — Az”Yj) 'Y°,© )

( )

= E(Z;[Y°,© " )E(Zymi(Y; — & — Aiy;)(Y; — & — Aiy,)T|Y°, Z; = 1,0

~

= Z.(].C)E(Tj(Yj —-& - Ai')’j)(Yj —-& — Ai')’]) |Y0 i =1, @ )

v

Since Y; = O] Y? + MY and O; O;(I, — ﬁ:gk)é‘.’?(’“)) = 0, we have

ij

(Y, — & — Ay, [Y3v,.m. 2 = 1,01
= E(O] Yo+ MJY™ — € — Av,[Y%,~,, 75, Z; = 1,0
— OIYS— & — Asy, + MIE(Y?[Y?,y,, 75, Zi = 1,0")

o ¢ A & (k) qoo(k 2 (k) < (k)
- OjTYj_gz‘_Ai'YjWLMjTMJ(Ei +Ai 7‘+Ei Si'()(Yj_éi —A; 7))

~

(k 00 ( ) N (k)
= 0;0,Y; — & — Ayy; + M/ M (E S Y + (L, - %S5 )& + A, ;)

- OTOij & — Ay + (I, — O-TO )E Soo(k Y,

+HI, -5 0@ 4+ A" v;)

- msy <€i+Am>+<Ip—2§’“’8?f<’“>><s§’“) A
B(Y; — & — Ay, Y075, Zy = 1,0")

= E(E(Y'_€i_Ai7j|Y;77j7Tj7Zij:1 )| 5> Tis -»zl,é(k))

= B(2870Y; - 6+ Ay + (1, - 27870

% i )

& (k) A (F)
<& + A sz = 1.0")
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and

RIS L)
A (k)
)

ij
(1, - =S AY — A B Y572, ~ 1.0

v

_ p® NG o _1.6%
= by’ =&+ (A — AE(,[Y], 75,25 =1,0 )

Cov(Y; — & — Ay, Y0, 75, Ziy = 1,0")

Cov(O] Y2 +MIY™ — ¢, — Ay, |Y0, 75, Z; = 1,0")

Cov(MIY™ — Ay, |Y0, 7, Zi; = 1,0")

B(Cov(M] Y™ — Ay, [Y2, 5,75, Z; = 1,0")[ Y2, 7, Z,; = 1,6")
—FCOV(E(M]-TY;-H — Ay Y5, v, 75, Zig =1, (':) ‘ T, Z. ,('-)(k))

E(M] Cov(Y]IY5, 7,75, Ziy = 1,0 k))Mj’Y})vijZij = 17@(k))

+Cov (MTE(Y™[YS, 5,7, Zi = 1,0") = Ay, [ Y2, 7, 7 = 1,0
E(%M}Mj(lp — 28Oy sPMIM Y2, 7, 25 = 1,0")
+Cov (MM, (& + Ay, + 37800y, - éi'“) - A@w-))
A, | Y7, 2 = 1,0
leap - 57855+ cov (4, - 278 AY - M)y | vem. 2z = 1.6")
%(Ip = 3085 (1, — V8RN — A Cov(m, Y2, 7, Ziy = 1,0
< (1, — £g0 AN _ AT
(0, g™ (AB — A)Cov(y, Y0, 7, 7 = 1,0) (AW — A,
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o A (k)
E((Yj & - Ai')’j)(Yj —& - Az")’j)T|Yj7Tja Zi; =1, S )

o A (k) (o) A (k)
E(Y; = & — A [Y5, 75, 25 = 1,0 )E(Y; — & — Ay, [ Y5, 75, Zi; = 1,0 )T

~ (k
+COV(Y]' — Ez — Ai’yj‘Y?,Tj, Zl] = 1, @( )>

~ (k
[ S (A(’“ Ai> By, Y%, 7, Z; = 1,0' ))}

~ (k ~ (K o NONE & (k) qoo(k
X [bgﬁ—gﬁ(Ag)—Ai) B(v,[Y2, 75, Z; = 1,0 )} + (L, — 33 g

(k) T

)(A]) Ai)

+(AY — A E(y,[YS, Tj,zi:1,é)(‘“))E(7j|Y9,Tj,ZZ-jzl,é)(k))T(Agf)—Ai)T
+(A® — A)Cov(r,|Y, 75, Zy = 1,0") (AP A)T

(b~ &) () ~&) ( ~&)BOyl¥5m 2, =1, (AP - )
+ (A = A) Bl Y275, 25 =1,6) (bgj) - @)T + le(Ip — 5 geomy 5
+(AD — ANE(y T[S, 2 = 1,0") (AW — AT

E(r(Y; — & — Arv))(Y; — & — Am) Y%, 2, = 1,6")

B(rE((Y; — &~ Av))(Y; — € — Av)) Y2, 7,. 2, = 1,07)v3, 2, = 1.6")

(AY — A)E(ry,v] Y5 2, = 1,6™) (AY — A)T

~ ~ (k o T
* (bg‘c) - €i> By, |Y2, Zy = 1,07 (Az(f) - Az‘)
A ~ (k ~ T
+ (A = A) By, Y5, 2, = 1,6") (B — ¢,)
~ (k) 200 ~ (k o ~ (k N N T
+(Ip - EE )Sij (k))zi : + E(Tj|Yja Zz‘j =1, 9( )) (bgf) - Ez) <b§f) - 5;) .
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N. Proof of the CM-steps

2 (k A(k)Aook A(k) " (k A(k)Aook A(k)Aook A(k)
Let A§j>:(1p—2i SMNA" and b§j>:2 Sij()Yj—i—(Ip—Ei sl.j“)g .

i A %

CM-step 1:

The mixing probabilities w;’s are subject to the constraint ) 7, w; = 1. Define
L=>7>7, Zi(f) log(w;) — A>_7_, w; — 1), where X is the Lagrange multiplier.
Let dL/dw; = 0 and dL/d\ = 0, we have w; = 37, Z{) /A and 3¢ w; = 1. Tt

follows that A = n and the estimate of w; at the (k + 1)th iteration is

AR
lz)gk-l—l) _ Zj_l b_
n

CM-step 2:

Taking the partial derivative of Q5 with respect to &, and setting it to zero yields

0Q, 10 N k)
e 2a€itr<2i >

19 ¢ 1 5 () 1 (R) (k) T
= _5851 . [tr(zz Zl’j Tij (bw _Ez)(bw _Ez) )
j:
(ST 20 (A — ARl (B —€)T)
(S 2B — T (AD — A)T)
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=Y (200G — &) + ZP0(AY - A)alY

) Z] v

With A; fixed at Agk), solving this equation gives

(k) 2 (R) (k) qoo(k) 1 (k) . (k

é(k+1) Zj 1Z 7 ( ; Z] 1 2 Sij( )Ai "h(j)

(A k :
Z] 1 )

CM-step 3:

Taking the partial derivative of QQ, with respect to X; ' and setting it to zero yields
1 (w1 1N o)

(2 Z Q%) _ Diag (é Qg?)) )]

~(k+1 ~ (k
Fix &, at 55 v and A; at AZ(- ), solving this equation obtains

0Q) 0

ozt axt

; (23; — Diag(X (Z Z )

MIH

= 0.

n &E+L/2)
& (k+1) Zj:l Qij

Z == 4
n k)
> i—1 %

Y

where Qgﬂﬂm is Qz(f) in Eq. (3.6) with &, replaced by éikﬂ) and A; replaced by
AY
CM-step 4:

Here A; assumed to be diagonal, say A; = Diag(\;), where A, is a p-dimensional

vector. Taking the partial derivative of ()3 with respect to A; and setting it to zero
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yields

20\ 4
J:
10 & 1 5k) A (k) = (k) 2 (k) T
= oo 2 (BT (AG - AT (A - AT
1 ]:

5N i Zij (A 455 \ £
1 ]:1
—1 5(k) 1. (k NOWIRG

+20(27 2 B - ) (ALY - A)T)]
= Y [Diag (27 2P (AY - 081 ) + Diag (21206 — €))7

j=1

~ o) (G BT | A (k)g, (k)
~ Ding (zz 28 (6 6)aT + AP ))
j=1
1 . 5 (k) (F)
—Diag <Zi A; Zw i )
j=1
_ . k k A NOEION
= (21 ! © Z Zz(]) ((b’fj) éz)nz(f)—r + Agg)\];’z] ) >1P
j=1
ooy 20
4 1) 1) ?
j=1
. 2 (k+1) & (b1 . . .
With &, =€, and 3; =3, | setting 0Q3/0A; = 0 yields the estimate of A\;

~(k ~ -1 o ~ -1
)\5 +1) _ (Egkﬂ) @ZZ-(]-’C)\P@)

j=1

~ (k+1)71 L N A(k+1) . O
(202D (b - & AT+ APE) 1,
j=1
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O. Proof of s; for the MSTMIX model

The single observation of the complete data log-likelihood, ignoring additive

constant term, is
€C(®|Yj7 Zj7 Vi Tj)

9
i i Vi 1 Vi

= Z Zij{ log(w;) + % log (%) - logF(;) ~3 log |3;| + 5 log 7;

i=1

0

2

_ TiVi
(Yj —-& - Ai’Yj>TZi 1(Yj —& - Ai’)’j) - ]2 }

Let ]ADij = (I, — 213330) The first derivatives of £.(®[Y}, Z;,v,, 7;) with respect

to w; is
Oej _ Zij  Zg;
ow;  w;  w,
Thus,
a° _E(@_@YQ é)) _ Zi _ Zgi
Jwi W; Wy 77 UA)z ’lZ)g ’

Furthermore, we can obtained

~

E(1,Y;YS, Z; =1,0) = 7;Dy€; + Dy Ay, + 7, 8:52Y

from the law of iterative expectations. The first derivatives of (.(®|Y},Z;,v,,7;)
with respect to &, is

0L
3

= Zimi2 (Y — & — Aiyy).
Thus,

ﬁ;& = E(ZZJTJEZ_I(YJ — gz — Al’}’J)

Y:,0)

A

= Zij (fijggf(Yj - éz) - S?JOAzﬁzg> :

YO, Z;; = 1,@)
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The first derivatives of (.(®|Y},Z;,~,,7;) with respect to 3; is

gig = —Z; 3;- { log | %] + tr (EZITJ‘ (Y; =& —Ary;) (Y- & - An’j)T> }
— _Z; {2571 - Diag(=71) - 25717 (Y — & - Ay,) (Y5 — & - Aryy) =
+Diag (3717 (Y; — & - Am,) (Y, - &~ Ay)) ' =7) |
= % (2C;; — Diag(Cy;)),

where Cij = Zij (Z,L_lRUEz_l — 22_1) and Rz’j = Tj (Yj — fz — AZ")/]) (YJ — 51 — Al’yj)—r

Thus,
Y 1 | o 2
uj, = vech {E<§ (2C;; — Diag(Cy;)) ‘Yj, @)}
1 , L
— vech {gE(zcij - Diag(Cy)| Y5, ©) }
1/ . y
= vech 5(2CU—D1ag(CZ])) s
~ ~ A —1.~ 1 ~ —1
where G5 = Zy; (3, RS, = %) with
Ry = BE(Ry[Y:Z;=10)

Furthermore, we can obtained
E(Tij’YjT|Y§)7 Zij =1, é)) = f)ij (éz’f?; + Ai‘i"ij) + giSQQYj"Atha

from the law of iterative expectations. The first derivatives of (.(®|Y},Z;,v,,7;)

with respect to A; is

oL,

N Diag (Zi;m; 57 (Y, — & — Ay ) -
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Thus,

ﬁ?,)q = E<Dlag (ZUTJEz_l(YJ - €7, - AZV])V;F) ’Y;')7 é)

= Diag <E<Zij7-j271(Yj —&— Ay |5, é))

= Diag< ( —&— A7J)7J Y5, Zij = 1’é>>
— Diag [ ( Z_ (7Y v, |Y =1, (':)) — 2;1(&"7; + Az‘i’u))]
= Diag [ (SOO ( (Y; - & )i — Az\i’w))] :

The first derivatives of (.(®[Y}, Z;,,,7;) with respect to v; is

%LVC: = %{log(Q)—Fl—DG( )+10g(7'])—7']}

Thus,
~0 Zij A
ag,, = E<2 {10g<2>+1—DG< >+log(7] —TJ}‘ )
— [log(2>+1—DG< )—FHU ﬁ-j}.
If the degrees of freedom are assumed to be equal, i.e., v; = --- = v, = v, then
'\ Z,; 2
i, = Y5 [log(2> +1—DG< ) + ki — ﬁj} Z i,
i=1
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