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中文摘要 

 
 

  顯著性檢定是一種藉由計算p值的方法，用於衡量是否違反虛無假設的統計

證據，傳統的顯著性檢定選擇一個統計量T = t(X)，同時決定一個極端的集合，

此集合包含比觀測值 t(x0)極端或相當的所有點。但是，這個方法有可能無法找

到一個合適的統計量，或者不存在一個普遍性的最佳性質來支持既存的顯著性檢

定。因此，我們提出一個新的顯著性檢定，設定極端集合包含所有發生機率比觀

測值x0機率小的點，稱為最高密度顯著性(HDS)檢定。此方法應用到較小的機率

顯示存在更強的證據否定虛無假設的概念，且將一個樣本X藉由機率比分為極端

與非極端的兩個集合。在相同的p值檢定中，我們發現HDS檢定的非極端集合體

積最小，此為一最佳性質。我們更進一步延伸HDS檢定來建立控制圖，同時監控

所有的參數，並且能精準的達到第一類誤差的機率。藉由監控樣本點的機率來辨

識是否受到控制，不像傳統的控制圖是依據樣本平均和全距來監控。 
 
 
 
關鍵詞：控制圖，最高密定顯著性檢定，p 值，最小體積 
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Abstract 
 

The significance test is a method for measuring statistical evidence against null 
hypothesis H0 by computing p-value. The classical significance test chooses a test 
statistic T = t(X) and determines the extreme set representing the sample set with 
values t(x) greater than or equal to t(x0), where x0 is the observed sample. It may be 
difficult to choose a suitable test statistic for the test, or there is no generally accepted 
optimal theory to support the existed significance tests. Now, we propose a new 
significance test, called the highest density significance (HDS) test, setting extreme 
set including those sample points with probabilities less than or equal to it of x0. It 
applies the concept that the smaller probability of an observation X = x0 reveals 
stronger evidence of departure from H0. This test virtually classifies the sample space 
of random sample X into extreme set and the non-extreme set through a concept of 
probability ratio. We also show that this test shares an optimal property for that it has 
smallest volume among the class of non-extreme sets of significance tests with the 
same p-value. Further, we extend HDS test to set up a control chart which can 
monitor all the parameters simultaneously and the probability of type I error is 
precisely attained. Unlike the classical control charts that track statistics such as 
sample mean X  or sample range R, it is tracking the density value of the sample 
point to classify if it is in control.  
 
 

Key words: Control chart; highest density significance test; p-value; smallest volume 
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1 Introduction

With great application in numerous different fields such as natural science, social science,

or some others, statistics is frequently used to interpret characteristics of some phenom-

ena involving randomness and variability. It plays a key role in information extraction and

drawing conclusions for characteristics of the phenomena when a data set is collected from ex-

periments or field studies. Information extraction includes data reduction and summarizing

statistics from the raw data. Statistics not only analyze the observed data from experiments,

but also assists designing the experiments. Prior to analysis of statistics, the practitioners or

scientists should establish a statistical model that describes the data generation mechanism,

and this is for developing statistical methods to condense the information for further making

statistical inferences.

The simplest generic form of a statistical model, which was formulated by Fisher and may

be seen in Azzalini(1996) and Spanos(1999), contains a probability model and a sampling

model, and it purports to describe the population and its variation for data reduction. The

probability model represents a probability space assigning a probability distribution Pθ on

S where θ ∈ Θ is parameter point and S is the sample space. The sampling model is

viewed as the realization of the probability model or events drawn from the population. A

generalized statement of statistical model including regression related models may be seen

in McCullagh(2002) which is extended from Spanos(1999). Generally, the true parameter

θ of the probability model is usually unknown, but the parameters or the distributional

characteristics may be drawn conclusions from the observed data via statistical approaches.

The efficiency of a statistical approach relies on the amount and appropriateness of the

information being captured from the data. For specific, in-appropriateness of choosing sta-

tistical model will never collect full information for statistical inferences. On the other hand,

with a specified statistical model, various principles of information extraction resulted in var-

ious information sets. Then the usefulness of the information will depend on the preferences

of the practitioners or scientists for model and principle selection. The fact of statistical

inferences in the literature, point estimation and Neyman-Pearson framework of hypothesis

testing are solved respectively with solutions supporting with some desirable optimal prop-

erties. However, as interpreted in Birnbaum(1962) “method such as significance tests and
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interval estimates are in wide standard use for the purposes of reporting and interpreting the

essential features of statistical evidence.” These two important statistical inference prob-

lems are not solved with solutions supported with desirable properties( Detailed description

of these points will be stated latter).

Eventually, the practitioners or scientists would pay attention on what they should do,

what they should believe, or what the data does tell, and all of these problems depend on

the assumed statistical models and the ways of the data collection. Each specific inference

problem require a specific amount of information, i.e., there is no principle that provides

amount of information enough for every inference problem. For significance test problem,

we will study what an amount of information is appropriate and how it does to reveal a

desirable optimal property. Before to do this, we will review statistical inference problems.

The following sections will contain three categories which are the most parts of statistical

inference, point estimation, interval estimation and hypothesis test in statistical inference.

1.1 Point Estimation

Point estimation tries to present a value based on the observation to estimate the unknown

parameter (or distributional characteristics) which often represents a location point or scale

for the distribution. In point estimation with a mass data set, data reduction helps in

information condensation that help practitioners summarizing useful statistics. When a

summarized statistic is used for estimation of the unknown parameter, it is called an esti-

mator of θ. Although computational easiness and naivety often be factors for data reduction

to the practitioners, however, estimators developed from these considerations may not be

efficient for statistical inferences.

With a great effort for efficient estimation technique, there are many approaches proposed

for point estimation, for examples, the method of moments, maximum likelihood estimator,

Bayes estimators, or EM algorithm, etc. For selection of estimators, criterions for evaluating

estimators have also been proposed in literature. Some important ones are mean squared

error, best unbiased, equivariance, average risk optimality, minimaxity, admissibility and

asymptotic optimality (see Lehmann and Casella(1999) or Casella and Berger(2001)). In

the literature, it has been done in deriving estimators supported with optimal properties
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such as the uniformly minimum variance unbiased estimator, uniformly most powerful test,

Bayes estimator etc. With this achievement, we will not spend any effort on point estimation

to seek for any other optimality. However, the maximum likelihood estimator does provide

interesting information in the statistical model that is helpful for other statistical inference

problems.

For technique with asymptotic optimality, a widely adopted estimator in the parametric

model is maximum likelihood estimator which can be traced back to Fisher(1912, 1922a,

1922b, 1925a, 1925b, 1935). The maximum likelihood estimator is derived from solving a

parameter point with highest likelihood. It represents the most likely value in the parameter

space for which a sample point has already occurred. The use of most likely value leads

the maximum likelihood estimator to be not only consistent but also efficient. Besides from

estimation for estimators, the Fisher information revealed in the efficiency of the maximum

likelihood estimator has been applied in construction of other inference techniques such as

the score test and Wald’s test. This concept of most likely values may also be interesting for

some unsolved statistical inference problems.

1.2 Hypothesis Testing

In the topic of hypothesis testing, there are two important categories for hypothesis speci-

fication, the significance test and the Neyman-Pearson formulation. The Neyman-Pearson

formulation considers a decision problem which is composed by two components, null hy-

pothesis and alternative hypothesis. On the other hand, the significance test considers only

one hypothesis, the null hypothesis H0. The significance test may occurs that H0 is drawn

from scientific guess and we have no idea on assumption about alternative hypothesis when

the null hypothesis is not true. Another case is that the model is developed to be checked

with new data by a selection process on a subset when H0 is true. Then the problem for

significance test is more general than the Neyman-Pearson formulation in that when H0 is

not true there are many possibilities for the true alternative.
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1.2.1 Neyman-Pearson Formulation

The hypothesis testing for Neyman-Pearson formulation considering a null hypothesis H0 and

an alternative hypothesis H1 is different from significance test which considers only the null

hypothesis. The theory of Neyman-Pearson lemma applies the ratio of the likelihoods with

one that H0 is true and one that H1 is true. This leads to the result of most powerful test when

H0 and H1 are both simple and uniformly most powerful test for some composite hypotheses

and some specific distributions. Hacking(1965) interpreted the the law of likelihood in the

following:

If one hypothesis, H1, implies that a random variable X taking the value x with prob-

ability is f1(x), while another hypothesis, H2, implies that the probability is f2(x),

then the observation X=x is evidence supporting H1 over H2 if f1(x) > f2(x), and the

likelihood ratio, f1(x)/f2(x), measures the strength of the evidence.

The law of likelihood gathers the information of likelihoods for that H0 and H1 are true and

use the likelihood ratio to help statisticians in drawing conclusion of acceptance or rejection

of null hypothesis.

Besides that it has been with derived optimality, the Neyman-Pearson hypothesis testing

can be solved with sample size determination to have a desired power. The significance test

is not available in justifying the sample size for the fact that anything is possible when H0 is

not true. There is one other advantage for the Neyman-Pearson hypothesis testing. The use

of likelihood ratio will automatically derive the test statistic. This desired property is not

shared with most other hypothsis testing problems. With the interesting results including

the optimal property, samples size determination and test statistic derivation, the theory of

Neyman-Pearson lemma provides us a desired test when an alternative hypothesis may be

specified. However, in many practical situations, to specify an alternative hypothesis is not

appropriate. In this case, what can we do?

1.2.2 Significance Hypothesis Test

For developing more than 200 years, the significance test has been popularly used in many

branches of applied science. Some earlier applications of significance test include Armitage’s
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(1983) claim finding the germ of the idea in a medical discussion from 1662 and Arbuth-

not’s(1710) observation that the male births exceeds the female births. Some important

significance tests developed latter include the Karl Pearson’s(1900) χ2 test and W.S. Gos-

set’s (1908) student test , the first small-sample test. Significance tests were given their

modern justification and then popularized by Fisher who derived most of the test statistics

that were broadly adopted in a series of papers and books during 1920s and 1930s. Tradi-

tionally, a significance test is to examine whether a given data is in concordance with H0.

The practitioners generally formulate a null hypothesis of interest and specify a test statistic

to interpret if the observation provides evidence against H0. Then, the p-value is determined

as the probability of the sample set for that the test statistic is at least as extreme as its

observed value when H0 is true:

p = Pr(T at least as extreme as the value observed |H0).,

where T represents the test statistic.

A significance test always drawn conclusion in terms of p-value. It interprets the p-value

as evidence for that the data is consistent with the null hypothesis by concluding that

the hypothesis is significant or not to be true. This is different from the Neyman-Pearson

framework which always draws conclusion of acceptance or rejection of null hypothesis. The

significance test is often being criticized for that it is hard to provide acceptable reason in

supporting the chosen test statistic although the sufficient statistic is usually recommended.

There is other way in the interpretation of the p-value by saying that it represents the

strength of evidence against null hypothesis. From this point, the extreme set has to contain

sample points which are at least as large as the observed value or absolute value of the test

statistic (see this point in Schervish(1996) and Sackrowitz and Samuuel-Chan (1999))

Schervish(1996), Royall(1997) and Donahue(1999) argued that the typical p-value couldn’t

completely interpret the statistical evidence. With this concern, the p-value has been re-

defined as the probability of the extreme points determined by the joint density function.

In the empirical studies, Hung et al.(1997), and Donahue(1999) proposed modifications for

significance test based on the Neyman-Pearson approach where two hypotheses are assumed.

They discussed p-value in the class of Neyman-Pearson formulation regardless of no alter-
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native assumption. In other words, they connect the Neyman-Pearson formulation to the

significance test. This argument is different from the approach that we will introduce.

It is known that the likelihood function has been recognized as a mathematical represen-

tation of the evidence (Birnbaum 1962). However, without consistent technique to defining

evidence, the classical approaches for the discipline of the significance test really make users

confused for that the hypothesis may be significant for one test statistic and insignificant for

the other one. Thus, there needs one approach to interpret the statistical evidence that is

more convincing than the existing approaches. Hopefully there are interesting properties for

this new approach.

1.3 Interval Estimation

Point estimation is always criticized for reporting only a single value for the unknown param-

eter to the practitioners without flexibility presenting the description of variability. There

are two techniques to overcome this drawback. One is a range or interval containing the

parameter that contains a specified level of probability or confidence. The other one is hy-

pothesis testing which provides a tool with decision, either determining to reject or accept

H0 or reporting a p-value.

The techniques of interval estimation are always with close relation to them for point

estimation and hypothesis test. The interval with confidence level 1−α may be derived from

the inversion of a level 1−α acceptance region of hypothesis testing. Interval estimation may

also be derived from which Bayesian approaches which one is criticized for the reason of its

determination of subjectively prior distribution. Mood (1974) also categorized the methods

of parametric interval estimation into two main techniques. One is based on the pivotal-

quantity, and the other is based on the statistical method. Statistical method constructs

the confidence interval from the distribution of a statistic. The pivotal-quantity method is

the most popular one to derive the confidence interval. But, it requires the existence of a

pivotal quantity. However, the pivotal quantity is frequently absent. When this happens,

the alternative methods would be the statistical method or the inversion of hypothesis test.

Most of the methods stated above are connected with point estimation. They consider the

interval as a set composed by two points involving parameters, and they estimate the two
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points via point estimation.

Without using point estimation, Hyndman (1996) proposed the highest density regions

consisting of parameter points of relatively high density due as the confidence set for the

parameters. Formulated from likelihood function, the highest density region has the property

of smallest volume in sample space which will be discussed in latter section.

1.4 Control Chart

The control charts in Statistical Process Control (SPC) are useful tools to monitor whether

various production processes in industry are in statistical control or not. A process is in

statistical control when the probability distribution of a random variable which represents

the characteristic of the process is unchanged in time. It is often that the distribution

involves several parameters. The general way to treat this process is to construct a control

chart for each parameter,for example, the X̄ and R charts. As we have done for a process

with several characteristics(values), the most popular way to monitor the process is to draw

conclusion through the results from several control charts.

According to the fact that conclusion from a combination of control charts for variables, it

may lead to incorrect control (probability) limits. This drawback has been received extensive

attention in literature (Mason, et al. (1997) and Wierda (1994)). Incorrect control limits

happen not only in a multivariate variable case but also in the case of univariate variable

with distribution involving several parameters. Why not we construct a control chart to

assure that the control limits are correct for this circumstance? This problem is similar

to test several hypotheses simultaneously. Hence we could consider all of them in a single

hypothesis which could interpret if a process is in statistical control.

1.5 Summary

Started from introducing of statistical model, we reviewed the statistical inference approaches

in previous sections. The approach with techniques based on likelihood function is espe-

cially interesting. The use of maximum likelihood estimation leads to the desired property

of asymptotically attaining Cramer-Rao lower bound. On the other hand, the use of likeli-
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hood ratio results the most power test. In the following sections, we will study a point in

statistical inference that is somehow different from the sufficiency and conditionality. We

will investigate the information that is contained in the statistical model and introduce two

statistical principles. Then we will follow these principles to define a new extreme set and

conduct a new significance hypothesis test, highest density significance test, in section 3

and 4. Further, we will develop several different control charts for different distributions in

section 5.
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2 Probability and Plausibility

2.1 Concepts of Probability and Plausibility

Birnbaum(1962) proposed that “report of experimental results in scientific journals should

in principle be descriptions of likelihood functions, when adequate mathematical-statistical

models can be assumed, rather than reports of significance levels or interval estimates.” The

likelihood function formulated from statistical model has been broadly applied with a long

history in statistical inference. The simplest form of the statistical model is the case that

there existed a random sample X1, ..., Xn drawn from a distribution with pdf f(x, θ), x ∈
Rx, θ ∈ Θ where Rx is sample space of variable X and Θ is the parameter space.

Most statistical inference problems in parametric model arise from the fact that we do not

know the true parameter θ as we have the observations. According to the occurrence of the

observation, we wish to infer something requested from problems concerning about the true

parameter. For dealing with the raised statistical problem, we generally want to summarize

important and necessary information to develop a statistical procedure with desired property.

Among many available procedures, we expect a desired one to achieve the followings:

(a) Generally accepted criterion of optimal procedures.

(b) Demonstrate that the best procedure is possible, i.e. the best one is obtainable.

Various statistical problems need various amount of information to accomplish the achieve-

ment. For a general study, it is interesting to observe that the total amount information is

contained in the statistical model postulated by Fisher as

Γx = {f(x, θ)x ∈ Rx, θ ∈ Θ, X = (X1, ..., Xn) is a random sample}. (1)

For aiming in solving various statistical problems, there are several techniques implemented

for data reduction, which are proposed trying to gather possible information for inference

of θ. With disciplines of statistical problem, it has not been known if there is a technique

of data reduction that may accomplish our goal for dealing with various statistical inference

problems. The reason raising this question is related to the concept of the sufficiency which

was introduced by Fisher(1922). This concept is now played a central role in frequency

based inferences and then many frequentist approaches are recommended to rely on the

9



sufficient statistic. It is general in literature that we define a statistic S(X) to be sufficient

for the family {f(x, θ), θ ∈ Θ} if the conditional distribution of the random sample X given

a value of S(X) does not depend on θ (see, for example Spanos (1999, p627)). Suppose that

the sufficient statistic provides enough information for dealing with all statistical inference

problems. We must see that there is a statistical technique involving sufficient statistic for

every inference problem is shown to have some desirable properties. However, this is not

true in some important statistical inference problems.

Sufficient statistic perhaps plays the most important part in developing minimum variance

unbiased estimator. Let’s see its role in some other statistical inference problems. Mainly due

to Barnard (1949,1980), the pivotal quantity, an elegant technique, has been very popularly

applied for constructing the confidence interval. On the other hand, a significance test,

formulated by Fisher (1915), is a method for measuring statistical evidence against a null

hypothesis H0 and is done by selecting a test statistic T and computing the probability

of the tail area of the distribution of T beyond its observed value which is called the p-

value. The pivotal quantity for confidence interval and the test statistic for significance test

are generally recommended to be constructed involving the sufficient statistic without any

careful justification. Unfortunately, the statistical procedures based on them are not justified

with any desired optimal properties. It may be that the sufficient statistic, especially the

minimal one, condenses the information in the statistical model Γx so much that it is not

appropriate to be applied to all statistical problems.

Vapnik (1998, p12) argued the techniques for problems in statistical inferences that a

restricted amount of information only can solve some special problems and it can never

solve all different statistical problems with effective procedures. In interval estimation and

significance test, the lack of optimal properties reveals that there must have interesting

evidence that can’t be discovered in a sufficient statistic. Silvey (1975) and Lindsey (1996)

both pointed out that many frequentist theory and techniques for confidence sets appear ad

hoc because they are not wholly model-based, relying on the likelihood function, and other

single unified principle. It is lack a technique that can capture useful information embedded

in the data and the model for construction of inference methods.

Without applying the likelihood function, the techniques for confidence interval in liter-

ature are not convincing in terms of plausibility which has the information represented by

10



the size of the likelihood function L(θ, x) when X = x is observed. This indicates that we

should be careful in using sufficient statistic to construct confidence interval. The problem

raised by Silvey(1975) and Lindsey(1996) also occurs in the significance test problem. With

assuming that H0 is true, the existed significance tests do not restrict the set of probable

non-extreme points. This results that the p-values computed from these significant tests not

appropriate as evidence against H0.

Let’s examine the concern of Silvey (1975) and Lindsey (1996) about plausibility and

probability of sufficient-statistic based on confidence interval and significance test. When

vector X = x is observed , we say that θ1 is more plausible than θ2 if L(x, θ1) > L(x, θ2),

where L(θ, x) is the likelihood function for random sample X. Regarding to the null hy-

pothesis H0 : θ = θ0, we may say that sample point x1 is more probable than another point

x2 if L(x1, θ) > L(x2, θ). Suppose that C(X) is a 100(1− α)% confidence interval for θ and

A(x0) is the non-extreme set for a significance test. The likelihood sets corresponding with

confidence interval C(X) and significance test when X = x0 is observed are, respectively,

LSC = {L(θ, x) : θ ∈ C(x), x ∈ Rn
x} for confidence interval, and

LSA(x0) = {L(θ0, x) : x ∈ A(x0)} for significance test.

For interval estimation, the likelihood set is set of plausibilities values for a confidence

interval. As we have discussed above, a set to be more plausibility may be more suitable to

play as a confidence interval or significance test. Thus we have to choose a confidence set

whose corresponding likelihood set stay away from zero. On the other words, we want to

construct a confidence interval which includes the most plausible points. The likelihood sets

of some typical confidence intervals will be shown in the following examples.

Example 2.1. Let X1, ..., Xn be a random sample drawn from the normal distribution

N(µ, σ2). First we consider the confidence interval for mean µ with known variance σ = 1

for convenience, and then the sample space is Rx = R. The popularly used 100(1 − α)%

confidence interval based on sufficient statistic X̄ for µ is

(X̄ − zα/2
1√
n

, X̄ + zα/2
1√
n

).

Three facts are employed in deriving the likelihood set. (1). x̄ − zα/2
1√
n
≤ µ ≤ x̄ + zα/2

1√
n

if and only if n(x̄ − µ)2 ≤ z2
α/2. (2).

n∑
i=1

(Xi − X̄)2 ∼ χ2(n − 1) which has sample space

11



(0,∞). (3). X̄ and
n∑

i=1

(Xi − X̄)2 ∼ χ2(n− 1) are independent. The following we derive its

corresponding likelihood set.

LSC = { 1
(2π)n/2 e

−
n∑

i=1
(xi−µ)2

2 : µ ∈ (x̄− zα/2
1√
n
, x̄ + zα/2

1√
n
),




x1

...

xn


 ∈ Rn}

= { 1
(2π)n/2 e

− 1
2
(

n∑
i=1

(xi−x̄)2+n(x̄−µ)2)
: µ ∈ (x̄− zα/2

1√
n
, x̄ + zα/2

1√
n
),




x1

...

xn


 ∈ Rn}

= { 1
(2π)n/2 e

− 1
2
(y1+y2) : 0 ≤ y2 ≤ z2

α/2, 0 < y1 < ∞}
= { 1

(2π)n/2 e
− 1

2
y : 0 ≤ y < ∞}

= 1
(2π)n/2 (0, 1].

In this example, it has been shown that the likelihood set includes zero which indicates that

this confidence interval is implausible.

Similarly, the popularly used significance test based on sufficient statistic
n∑

i=1

Xi when

X = x0 is to compute p-value P (
√

n|X̄| ≥ √
n|x̄0||µ = 0) where µ = 0 representing that H0

is true. By denoting x̄0 as the sample mean of vector x0, the likelihood set of the significance

test derived in the following

LSA(x0) = { 1
(2π)n/2 e

−
n∑

i=1
x2

i

2 : |x̄| ≤ |x̄0|,




x1

...

xn


 ∈ Rn}

= { 1
(2π)n/2 e

− 1
2
(

n∑
i=1

(xi−x̄)2+nx̄2)
: |x̄| ≤ |x̄0|,




x1

...

xn


 ∈ Rn}

= LSC .

is identical to it for the confidence interval for mean.

Next, we consider the confidence interval for variance σ2 where µ = µ0 is also assumed

to be known. With sufficient statistic
∑n

i=1(xi = µ0)
2, the widely adopted 100(1 − α)%

confidence interval for σ2 is

(

n∑
i=1

(xi − µ0)
2

χ2
1−α/2

,

n∑
i=1

(xi − µ0)
2

χ2
α/2

).
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With σ2 restricting to the inequality, χ2
α/2 ≤

n∑
i=1

(xi−µ0)2

σ2 ≤ χ2
1−α/2 and each xi may take any

value in R, the likelihood set is

LSC = { 1
(2πσ2)n/2 e

−
n∑

i=1
(xi−µ0)2

2σ2 :




x1

...

xn


 ∈ Rn,

n∑
i=1

(xi−µ0)2

χ2
1−α/2

≤ σ2 ≤
n∑

i=1
(xi−µ0)2

χ2
α/2

}

= (0,∞).

The result is also shown that the likelihood set includes zero and its neighbors. The confi-

dence interval for σ is not a desired confidence interval in sense of plausibility.

Example 2.2. (Likelihood set for confidence interval based on sufficient statistic) Let

X1, ..., Xn be a random sample drawn from the negative exponential distribution with pdf

f(x, θ) = e−(x−θ)I(θ < x < ∞). The typical confidence interval for θ is constructed by the

pivotal quantity Y1 = X(1)− θ which has distribution Y1 = Gamma(1, 1
n
) which uses the the

sufficient statistic X(1). Let a and b be two positive constants satisfying 1−α = P (a < Y1 <

b), and then a 100(1− α)% confidence interval for θ is

(X(1) − b,X(1) − a). (2)

Since

n∑
i=1

(Xi−X(1))

n
∼ Gamma(n − 1, 1

n
) and it is independent of X(1) − θ, we may derive the

likelihood set for confidence interval (2) as

LSC = {e−
n∑

i=1
(xi−θ)

πn
i=1I(θ < xi < ∞) : θ ∈ (x(1) − b, x(1) − a),




x1

...

xn


 ∈ Rn}

= {e−[
n∑

i=1
(xi−x(1))+n(x(1)−θ)]

I(θ ≤ x(1)) : a < x(1) − θ < b, 0 <
n∑

i=1

(xi − x(1)) < ∞}

= (0, 1).

Similarly, it also happens in the case that using only the sufficient statistic makes able to

stay from zero. It also happens for a confidence interval which has likelihood set including

less plausible points.

In the case of null hypothesis H0 : θ = θ0, suppose that the observation of the random

sample is x0 = (x10, ..., xn0)
′ with x0(1) value of the first order statistic x(1). Then the
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significance test defines the p-value as P (X(1) ≥ x0(1)|θ = θ0). The significance test has the

same likelihood set for the confidence interval as shown in the following:

LSA(x0) = {e−
n∑

i=1
(xi−θ0)

πn
i=1I(θ0 < x1 < ∞) :




x1

...

xn


 ∈ Rn, x(1) < x0(1)}

= {e−[
n∑

i=1
(xi−x(1))+n(x(1)−θ0)]

I(θ0 < x1 < ∞) :




x1

...

xn


 ∈ Rn, x(1) < x0(1)}

= LSC .

We have examined the likelihood sets for the confidence interval and significance test that

are constructed by the sufficient statistic. With these results, we have several conclusions

and comments:

(a) Classically, the confidence interval may not contain the most plausible point, the maxi-

mum likelihood estimate, and a significance test may not contain the most probable point,

the point x∗ achieving maxx∈Rn
x
L(x, θ0). However, the examples mentioned above do contain

corresponding most plausible points and most probable points in the corresponding intervals

or significance tests. This indicates that the sufficient-statistic based statistical procedures

seems to be efficient in catching the information in the statistical model (1) for problems

searching for most plausible and most probable points.

(b) From the analyzed examples, the likelihood sets for confidence intervals includes all

displausible points (those as closer to zero), and the likelihood sets for significance tests

include all disprobable points. This provides evidence to support the concern of Silvey

(1975) and Lindsey (1996) about displausibility for existed confidence intervals, where we

also have the analogous result for significance test. We then may conclude that the sufficient

statistic does not contain all plausibility information and probability information, and then

it is inappropriate to say that it is sufficient for the family {f(x, θ), θ ∈ Θ}.

(c) As argued by Vapnik (1998), there requires information much more than it provided by

a sufficient statistic to deal with a more general statistical problems. Then the information

desired to construct the confidence interval is much more than what that the sufficient

statistic has provided.
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2.2 Probability and Plausibility Principles

In the interval estimation and hypothesis testing, we are looking for either subsets of pa-

rameter space or subsets of sample space respectively to estimate and test the parameter.

However, it is lack of a justification of optimal property for interval estimation or techniques

of some hypothesis testing problems. We expect to propose refined statistical principles

which may help in construction of desired and improved techniques.

In point estimation, the Roa-Blackwell theorem plays the most important key for devel-

oping the minimum variance unbiased estimator. The theorem mainly provides contribution

of sufficiency on point estimation. Birnbaum(1962) has shown that the sufficiency principle

and conditionality principle imply the likelihood principle. These principles are defined as

follow.

Sufficiency principle: Consider an experiment E = (X, θ, {f(x|θ)}) and suppose S(X) is

a sufficient statistic for θ. If x and y are sample points satisfying S(x) = S(y), then the

conclusions drawn from x and y should be identical.

Conditionality principle: Suppose that E1 = (X1, θ, {f1(x1|θ)}) and E2 = (X2, θ, {f1(x1|θ)})
are two experiments, where only the unknown parameter θ need to be common. Consider the

mixed experiment in which the random variable J is observed, where P (J = 1) = P (J =

2) = 1
2

(independent of θ, X1, or X2), and then experiment EJ is performed. Formally,

f ∗(x∗|θ) = f ∗((j, xj)|θ) = 1
2
fj(xj|θ). Then Ev(E∗, (j, xj)) = Ev(Ej, xj).

Likelihood principle: Suppose that E1 = (X, θ, {f1(x|θ}) and E2 = (Y, θ, {f2(y|θ}) are

two experiments, where the unknown parameter θ is the same in both experiments. Suppose

x∗ and y∗ are sample points from E1 and E2, respectively, such that L(θ|x∗) = CL(θ|y∗) for

all θ and for some constant C that may depend on x∗ and y∗ but not θ. Then the conclusions

drawn from x∗ and y∗ should be identical.

We have introduced the concepts of plausibility and probability, and we will develop some

principles based on them. These principles will lead us to construct interval estimation and

significance test with some optimal properties.
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Plausibility principle: For given x, if L(θ, x) = L(θ′, x), then any conclusion based on θ

and θ′ should be identical.

Probability principle: For given θ, if L(θ, x) = L(θ, x′), then any conclusion based on x

and x′ should be identical.

These two principles may solve Lindsey’s problem to avoid the ad hoc appearance of

the frequentist theory for that they are lack of unified optimality properties for interval

estimation and significance test.

Further, we want to investigate that the application of the probability and plausibility

principles do preserve information of probability and plausibility contained in likelihood

function through studying some procedures for some general statistical problems. We con-

sider a significance test with null hypothesis H0 : θ = θ0 to decide an acceptance region in

Rn
x to support H0. On the other hand, we need to decide a region in parameter space Θ to

support x for interval estimation problem when X = x is observed. The following definition

specifies one rule in deciding statistical procedures for many general statistical problems.

Definition 2.1. (i) A likelihood based supporting subregion of sample space for parameter

value θ0 is {x : L(θ0, x) ≥ a}. (ii) A likelihood based supporting subregion of parameter

space for observation x is {θ : L(θ, x) ≥ a}.

In the following examples, we propose procedures based on supporting subregions for some

statistical problems to investigate their properties of probability and plausibility.

Example 2.3. (Upper likelihood set) (a) Let X1, ..., Xn be a random sample drawn from

the normal distribution N(µ, 1), and the sample space Rx = R. Let’s consider a level

α test which has the acceptance region containing the set of values µ on the top of the

likelihood function for significance test with null hypothesis H0 : µ = µ0. By the fact that

1
(2π)n/2 e

−
n∑

i=1
(Xi−µ0)2

2 ≥ a if and only if
n∑

i=1

(Xi − µ0)
2 ≤ b for some b, and we choose b = χ2

n,α

where α = P (χ2
n ≥ χ2

α). With acceptance region

{x :
n∑

i=1

(xi − µ0)
2 ≤ χ2

α},
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we derive its corresponding likelihood set

LS = { 1
(2π)n/2 e

−
n∑

i=1
(xi−µ0)2

2 :




x1

...

xn


 ∈ Rn, subjected to

n∑
i=1

(xi − µ0)
2 ≤ χ2

α}

= { 1
(2π)n/2 e

− y
2 : 0 ≤ y ≤ χ2

α}
= 1

(2π)n/2 [e
−χ2

α/2, 1].

(b) Let X1, ..., Xn be a random sample drawn from the negative exponential distribution with

pdf f(x, θ) = e−(x−θ)I(θ < x < ∞). In the case of significance test for the null hypothesis

H0 : θ = θ0, a level α test is considering the highest area of the likelihood function as the

acceptance region. According to that L(θ, x1, ..., xn) ≥ a if and only if
n∑

i=1

(Xi − θ) ≤ b, and

similarly we have b =
χ2

2n,α

2
for significance test. The acceptance region of a significance level

α test is {x :
n∑

i=1

(xi − θ0) ≤ χ2
2n,α

2
}. We have its corresponding likelihood set as following.

LS = {e−
n∑

i=1
(xi−θ0)

:




x1

...

xn


 ∈ Rn, subjected to 0 ≤

n∑
i=1

(xi − θ0) ≤ χ2
2n,α

2
}

= {e−y : 0 ≤ y ≤ χ2
2n,α

2
}

= [eχ2
2n,α/2, 1].

The confidence intervals and acceptance regions are with likelihood sets away from zero. It

leads to the following conclusions:

(i) The confidence intervals constructed by likelihood function accomplish the desirability of

Lindsey (1996) in sense of containing plausible points of θ. Similarly, the acceptance regions

for significance test constructed in the same way contain only probable points of x. This

shows us that the likelihood function contains information of probability and plausibility.

(ii) Since the likelihood supporting regions are constructed based on two proposed principles,

information of probability and plausibility does been retained in the inference techniques for

interval estimation and significance problems.

(iii) The decomposition of the normal likelihood function as

1

(2π)n/2
e
− 1

2

n∑
i=1

(xi−µ)2

=
1

(2π)n/2
e
− 1

2
[

n∑
i=1

(Xi−X̄)2+n(X̄−µ)2]
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is involved with the sufficient statistic
n∑

i=1

Xi and the ancillary statistic
n∑

i=1

(Xi − X̄)2. For

the negative exponential case, it also involves sufficient statistic X(1) and ancillary statistic
n∑

i=1

(Xi −X(1)) because

e
−

n∑
i=1

(xi−θ)
= e

−[n(x(1)−θ)+
n∑

i=1
(xi−x(1))]

.

This indicates that probability and plausibility information is partially contained in the an-

cillary statistic which provides an evidence with significant contribution of ancillary statistic

to these two statistical inference problems.

(iv) Generally, the interval estimation and significance test require more information than

the sufficiency information to obtain desired inference procedures.

When we deal with confidence interval or significance test for µ in (a) of Example 2.3,

the procedures involve
n∑

i=1

(Xi − X̄)2 which is an ancillary statistic for µ. This also exists in

(b) of Example 2.3 where the procedures involve
n∑

i=1

(Xi −X(1)) which is also ancillary since

it has distribution independent of θ. We will apply these principles to construct a highest

density significance test and discuss its properties latter.
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3 Highest Density Significance Test

We have early reviewed the idea of significance testing. Classically p-value for a significance

test is the probability of an extreme determined from a pivotal quantity which is generally

recommended to be constructed with a sufficient statistic. There is no unified theory for

developing significance test so that this test doesn’t deserve any desirable optimal property

and then it is questionable for its interpretation. Hence people are still confused to interpret

the p-value since the p-values computed from two test statistics may be dramatically different.

People also argue the appropriateness in using the Neyman-Pearson formulation. First, in

many situations, we do not really know which assumption for H1 is appropriate. Second,

in some situations, there do have appropriate alternative hypotheses, however the best ones

(UMP tests) may not exist. Therefore, it is desired to develop a unified theory for significance

test that may automatically and appropriately decide the extreme sets for some computing

itsp-value. Here we proposed a technique using the joint pdf to decide the extreme set that

guarantees to include only the less probable sample points in it.

A significance test will be called the highest density significance test when its corresponding

extreme set for computing p-value includes only sample points that are less probable than

the observed sample point. It may be interpreted as a test with smallest volume non-extreme

set. There is an interesting connection between this new significance test and the Neyman-

Pearson formulation. The latter one is appealing for being interpreted as a most powerful

test and uniformly most powerful test. This appealing actually is contributed with setting an

alternative hypothesis so that a likelihood ratio may be applied to decide its corresponding

extreme set or the critical region. The appealing for using the likelihood function has also

been interpreted by Tsou and Royall (1995), and Hacking(1965) that the likelihood function

is a proper tool to capture the evidence of the statistical data for statistical inferences.

The Neyman-Pearson lemma considers the ratio of two likelihoods when observation x

is given to detect if this observation x is an extreme point. However, the highest density

significance (HDS) test considers, given a θ0, the probability ratio of a sample point x and

observation x0 to detect if x is an extreme point. Gibbons and Pratt (1975) criticized that

p-value of the two-sided minimum likelihood method could lead to absurdities when the

underlying distribution is the non-unimodal. They also recommended p-value for one tailed
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technique reporting that it could retain clear interpretation for the test. However, we argue

that the extremity for a sample point should be determined by its probability size, not its

corresponding value of a specified test statistic. We consider the HDS test motivated from

intuitive implication in probability and plausibility. We will later define the HDS test and

discuss it detail.

3.1 Definition and Properties

3.1.1 Likelihood-Based Significance Test

Let X1, ..., Xn be a random sample drawn from a distribution having a probability density

function (pdf) f(x, θ) with parameter space Ω. By letting vector X with X ′ = (X1, ..., Xn)

and sample space Λ, we denote the join pdf of X as L(x, θ) and also called it the likelihood

function. The interest of hypothesis testing is the simple one H0 : θ = θ0, for some θ0 ∈ Ω.

What is generally done in classical approach for significance test with observation X = x0,

particularly influenced by R. A. Fisher and being called the Fisherian significance test, is to

choose a test statistic and to determine a sample set consistent in terms of the distribution

of the test statistic to that H0 is not true. This sample set is called the extreme set. With

a test statistic T = t(X), it then defined the p-value as

px0 = Pθ0(T at least as extreme as the observed t(x0))

Although it is applicable in certain practical problems, however, its dependence on a specified

test statistic and the choice of one sided or two sided critical region are often questionable.

Moreover, there is generally no suitable justification of optimality even through the procedure

has been involved with sufficient statistic. Therefore, this classical significance test is often

arguable for dealing with null hypothesis H0.

In the way of classifying extreme set done in Neyman-Pearson framework with hypotheses

H0 : θ = θ0 versus H1 : θ = θ1, the theorem specifies the extreme set which is often called

the critical region or rejection region as

{x :
L(x, θ0)

L(x, θ1)
≤ L(x0, θ0)

L(x0, θ1)
}
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where k > 0 is chosen to achieve the restriction of significance level. With the help of using

the likelihood function to determine the extreme points, this test has a nice justification for

that it is a most powerful (MP) test. It has often been argued that the limitation of the

significance tests could not attain any desired optimal property because of being unable to

apply the technique of likelihood ratio for measuring the evidence against the null hypothesis

since there is no specified alternative hypothesis.

There is reason for that the maximum likelihood estimators is asymptotically efficient.

It is that the maximum likelihood chooses the most plausible parameter value when an

observation x is observed as the estimate of parameter θ. That is, it is the parameter

that greatest probability to x. For the significance test problem that is no specification

of alternative hypothesis, we may determine whether an observation x is an extreme point

through the probability of X = x when H0 is true. The joint pdf L(x, θ0) expresses the

relative “probability” of sample value x when H0 is assumed to be true. Then, for two

observation points xa, xb ∈ Λ, X = xa is more or equally probable than X = xb if the

probability ratio L(xa,θ0)
L(xb,θ0)

is greater than or equal to 1. A sample point is claimed as an point

only if it is at least as extreme as the observed value x0. This leads to an application of the

probability ratio between x and x0 for defining a new significance test.

Definition 3.1. Consider the null hypothesis H0 : θ = θ0. The HDS test defines the p-value

as

phd =

∫

{x:
L(x,θ0)

L(x0,θ0)
≤1}

L(x, θ0)dx.

There are some facts following with the method of highest density for significance test.

Based on some statistic T = t(X), Fisherian significance test considers the ratio of observa-

tions t(x) and t(x0),
t(x)
t(x0)

to determine the extreme set. Its extreme set varies with chosen

test statistic. On the other hand, the HDS test consistently applies the probability ratio to

determine its extreme set. Therefore, the extreme points included in Fisherian significance

test may be excluded from the extreme points of HDS test. This is somehow weird, and the

two approaches are discordant. One other interest result is that the random probability ratio

L(X,θ0)
L(x0,θ0)

will automatically determine the test statistic and one sided or two sided test will be

simultaneously determined from the probability ratio, which always confuse the practitioners

when the classical significance test is applied.
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3.1.2 Smallest Volume Non-Extreme Set significance Test

There exist desired properties in statistical inference for point estimation and hypothesis

testing, such as uniformly minimum variance of unbiased estimation and uniformly most

power tests. However, there is lack of any desired optimal property for the Fisherian signif-

icance tests. This makes it difficult in selecting a test statistic. We will define an evaluation

technique for significance test.

Definition 3.1. If a test with p-value p0 has smallest volume of non-extreme set among the

class of tests with the same p-value (p0), we call this significance test the p0 smallest volume

non-extreme set(SVNES) significance test.

Theorem 3.2. Suppose that the observation of the sample is x0. The HDS test with p-value

phd is the phd SVNES significance test.

proof. Consider a significance test with p-value phd that has set of no-extreme points B(x0).

Then,

1− phd =

∫

L(x,θ0)≥L(x0,θ0)

L(x, θ0)dx =

∫

B(x0)

L(x, θ0)dx. (3)

Deleting the common subset of {x : L(x, θ0) ≥ L(x0, θ0)} and B(x0) yields

∫

{x:L(x,θ0)≥L(x0,θ0)}⋂
B(x0)c

L(x, θ0)dx =

∫

B(x0)
⋂{x:L(x,θ0)≥L(x0,θ0)}c

L(x, θ0)dx. (4)

Now, for xa ∈ {x : L(x, θ0) ≥ L(x0, θ0)}
⋂

B(x0)
c and xb ∈ B(x0)

⋂{x : L(x, θ0) ≥
L(x0, θ0)}, we have L(xa, θ0) > L(xb, θ0). Thus,

volume({x : L(x, θ0) ≥ L(x0, θ0) and x ∈ B(x0)
c})

≤ volume({x : L(x, θ0) < L(x0, θ0) and x ∈ B(x0)}).
(5)

So, adding the volume {x : L(x, θ0) ≥ L(x0, θ0)}
⋂

B(x0) to both sides of (3),

volume({x : L(x, θ0) ≥ L(x0, θ0)}) ≤ volume(B(x0)).2 (6)

When X = x0 is observed, there are many alternative Fisherian significance tests dealing with

the hypothesis H0 : θ = θ0. The likelihood based significance test, HDS test, is appealing

to the justification of smallest volume of non-extreme set in the class of tests with the same

p-value.
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Theorem 3.3. Let X = (X1, ..., Xn) be a random sample from f(x, θ) with a observation

X = x. Consider the hypothesis H0 : θ = θ0 and we assume that the family of densities,

{f(x, θ) : θ ∈ Θ} has a monotone likelihood in the statistic T = t(x):

(a) If the monotone likelihood is nondecreasing in t(x), then the test with p-value

phd = Pθ0(t(X) ≤ t(x))

is a SVNES significance test.

(b) If the monotone likelihood is nonincreasing in t(x), then the test with p-value

phd = Pθ0(t(X) ≥ t(x))

is a SVNES significance test.

The proof is omitted because it is resulted from its monotone property. The theorem also

shows us that the HDS test is an one-sided Fisherian significance test. We suggest letting

the likelihood function to decide if it is an one-sided or two-sided significance test.

Theorem 3.4 The HDS test is invariant in linear transformation.

proof. Suppose Xi’s are i.i.d. as fθ(x) and xi’s are the observations. Let Yi = aXi + b for

a 6= 0. Then gθ(y) ,the density function of Yi, is 1
|a|f(y−b

a
).

phd = P (L(Y, θ) ≤ L(y, θ))

= P (
n∏

i=1

gθ(Yi) ≤
n∏

i=1

gθ(yi))

= P (
n∏

i=1

1
|a|fθ(

Yi−b
a

) ≤
n∏

i=1

1
|a|fθ(

yi−b
a

))

= P (
n∏

i=1

fθ(Xi) ≤
n∏

i=1

fθ(xi)).2

Obviously, not every nonlinear transformation of HDS test is still a HDS test because the

Jacobian depends on the transformation.

Sharing with one optimal property, it is interesting to compare the HDS test with the

Neyman-Pearson’s MP test in every aspect. We list some in a table that will show that the

HDS test share some other interesting properties.
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A comparison of MP test and HDS test

MP test HDS test

Hypothesis H0 : θ = θ0 vs. H1 : θ = θ1 H0 : θ = θ0

Classes of Tests Test with size p ≤ α Test with p-value = phd

Test Derivation Likelihood Ratio Probability Ratio

Optimality Most Power when H1 is true Smallest volume for non-extreme set

3.2 HDS Test for Continuous Distributions

We will illustrate the differences from two aspects between the classical Fisherian significance

and HDS test through a study of these two tests under several continuous distributions. First,

one is to see how much information contained in the model has been involved to measure the

evidence again H0. We will present a study of the HDS test with several examples where we

will see evidence against H0 drawn from sources from the statistical model. Second, it will

be seen that the HDS test has the advantage of observing a distributional shift. For this, we

will design some special situations assisting to explain these advantages. As recommended

by R.A. Fisher, the classical Fisherian significance tests should consider involving only the

sufficient statistics. Here we first use the normal distribution to interpret these two aspects.

Example 3.1. Let X1, ..., Xn be a random sample drawn from a normal distribution N(µ, σ)

and consider the null hypothesis H0 : µ = µ0, σ = σ0. An appropriate way to interpret this

hypothesis is to say that X is drawn from N(µ0, σ0) when H0 is true and anything is possible

when H0 is not true including non-normal distribution. With the fact that L(xa, µ0, σ0) ≥
L(xb, µ0, σ0) if and only if Σn

i=1(xia − µ0)
2 ≤ Σn

i=1(xib − µ0)
2 for x

′
a = (x1a, ..., xna) and

x
′
b = (x1b, ...xnb), the p-value of the HDS test with observed X1 = x10, ..., Xn0 = xn is

phd = Pµ0

(
n∑

i=1

(Xi − µ0)
2 ≥

n∑
i=1

(xi0 − µ0)
2

)
= P

(
χ2

n ≥
n∑

i=1

(xi0 − µ0)
2

σ2
0

)
,

where χ2
n is the random variable distributed as χ2 with degrees of freedom n.

In the hypothesis involving assumption of both µ and σ, the HDS test gives an exact

p-value which provides the evidence against the assumption that N(µ0, σ
2
0) is true. The

extreme set based on this HDS when observation x0 = (x10, ..., xn0)
′
is observed is

Ehd(x0) =

{
x |

n∑
i=1

(xi − x)2 + n(x− µ0)
2 ≥

n∑
i=1

(xi0 − µ0)
2, x ∈ Rn

}
,
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where the determination of extreme sample point x relies on two variations (x − µ0)
2 and

Σn
i=1(xi−x)2. One measures the departure of the sample mean from location parameter and

the other measures the dispersion of the sample point.

Let’s further consider the hypothesis H∗
0 : µ = 0 and we assume that σ = 1 is known. The

classical significance test of Fisher based sufficient statistic X̄ gives p-value

px = Pµ0(
√

n|X| ≥ √
n|x|) = P (Z ≥ √

n|x̄|),

where Z has the standard normal distribution N(0, 1). In fact, the HDS test for H∗
0 is

exactly the same as it for the hypothesis H0 and then it also has p-value. Let’s interpret the

difference between the HDS test and the classical significance test. Suppose that we have

drawn a sample of size even number n and the observation is as follows:

xi0 =





i× 1000 if i = 1, 3, 5, 7, ..., 2n− 1

−(i− 1)× 1000 if i = 2, 4, 6, 8, ..., 2n

Here Σn
i=1x

2
i0 is a huge value but x̄0 = 0 such that the Fisherian p-value px = P (|Z| ≥ 0) = 1

and HDS test p-value phd is approximately 0. There are completely opposite ways indicated

from the p-values of two significance test. The unsignificant p-value for Fisherian significance

test provides no evidence against H∗
0 , but the HDS test provides very strong evidence against

H∗
0 . It is interesting that the results of these two tests are completely different. Without

specified alternative hypothesis, the HDS test gives the p-value indicating that the pre-

assumption σ = 1 may be wrong although H∗
0 : µ = 0 is probably valid. In Fisherian

significance test, unsignificance p-value leads us to accept H∗
0 and do nothing further for this

wild observation. In fact, the strong evidence provided by the HDS test indicates that we

will not blindly believe that the population mean µ has been changed, but we will probably

suspect that σ or the distribution is no longer true.

Let’s see the use of HDS test on multivariate data. We consider that X1, ..., Xn is a

random sample drawn from a multivariate normal distribution Nk(µ, Σ). Suppose that the

null hypothesis is H0 : µ = µ0, Σ = Σ0, where µ0 and Σ0 are a known k-vector and a k × k

positive definite matrix, and we have observation (x10, ..., xn0). It is seen that L(X,µ0, Σ0) ≤
L(x0, µ0, Σ0) if and only if

∑n
i=1(Xi−µ0)

′
Σ−1

0 (Xi−µ0) ≥
∑n

i=1(xi0−µ0)
′
Σ−1

0 (xi0−µ0). Then,

25



the p-value of HDS test for this multivariate normal distribution is

phd = Pµ0,Σ0(
n∑

i=1

(Xi − µ0)
′
Σ−1

0 (Xi − µ0) ≥
n∑

i=1

(xi0 − µ0)
′
Σ−1

0 (xi0 − µ0))

= P (χ2(nk) ≥
n∑

i=1

(xi0 − µ0)
′
Σ−1

0 (xi0 − µ0))2

Example 3.2. Let X1, ..., Xn be a random sample drawn from the negative exponential

distribution with density function f(x, θ) = e−(x−θ)I(θ < x < ∞). Consider significance

tests for the null hypothesis H0 : θ = θ0. Let X(1) represent the first order statistic of this

random sample and we denote as random variable with gamma distribution Γ(a, b) where a

and b are its corresponding parameters. Given an observation (x10, ..., Xn0), the Fisherian

significance test generally chooses sufficient statistic X(1) as the test statistic that yields

p-value as follows.

px = Pθ0(X(1) − θ0 ≥ x(1)0 − θ0)

= P (Γ(1, 1
n
) ≥ x(1)0 − θ0)

since X(1) − θ has gamma distribution Γ(1, 1
n
), where x(1)0 is the observed value of X(1).

Now, let’s consider the HDS test for this hypothesis testing problem. Since L(xa, θ) ≥
L(xb, θ) is equivalent to

n∑
i=1

(xia − θ) ≤
n∑

i=1

(xia − θ), the p-value yielded for the HDS test is

phd = Pθ0(
1
n

n∑
i=1

(Xi − θ0) ≥ 1
n

n∑
i=1

(xi0 − θ0))

= Pθ0(
1
n

n∑
i=1

(Xi −X(1)) + (X(1) − θ0) ≥ 1
n

n∑
i=1

(xi0 − x(1)0) + (x(1)0 − θ0))

= P (Γ(n, 1
n
) ≥ 1

n

n∑
i=1

(xi0 − x(1)0) + (x(1)0 − θ0)),

where 1
n

∑n
i=1(Xi −X(1)) is distributed as Γ(n− 1, 1

n
) and is independent of X(1) − θ which

has distribution Γ(n, 1
n
).

The Fisherian significance test traditionally uses only the sufficient statistic, X(1), to com-

pute p-value and it will claims to have strong evidence of departure from H0 if x(1) − θ0 is

large enough to yield a small p-value. However, the HDS test computes the p-value based

on both X(1) and Σn
i=1(Xi −X(1)), where the latter measures the sum of distances between

each observation Xi and the first order statistic X(1). Thus, it uses information more than

it provided by the sufficient statistic to compute p-value.

In consideration of an extreme case, let’s assume that θ0 = 0 and the observation is

x(1)0 = 0.01 and x(i)0 = 100, i = 2, ..., n. In this situation, the Fisherian significance test
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will claim that there is no enough evidence against the null hypothesis. However, in this

rare case for an exponential distribution produced an observation like this, the small p-

value for HDS test leads to strong evidence against null hypothesis. There is no specified

alternative hypothesis in a significance test, leads us to suspect if the distribution is no longer

an exponential one. This needs a further investigation. 2

We have two conclusions drawn from the above two examples:

(I) The results showing in the examples indicate us that the HDS test is more sensitive than

Fisherian significance test significance to the rare events.

(II) This sensitivity makes the HDS test to have a desired property in sense of smallest

volume of non-extreme set that doesn’t happen in classical Fisherian significance tests.

Occasionally, HDS test leads to a test statistic exactly the same as it for a classical

Fisherian significance test.

Example 3.3. Let X1, ..., Xn be a random sample drawn from a distribution with pdf

f(x, θ) = θxθ−1, 0 < x < 1, θ ∈ R and θ 6= 0.

Suppose that we consider the null hypothesis H0 : θ = θ0. The joint pdf of X1, ..., Xn

under H0 is L(x, θ0) = θn
0 (

n∏
i=1

xi)
θ0−1. Since L(xa, θ0) ≥ L(xa, θ0) if and only if 0 <

n∏
i=1

xib ≤
n∏

i=1

xia < 1when θ0 > 1 and 0 <
n∏

i=1

xia ≤
n∏

i=1

xib < 1 when θ0 < 1 and the fact that

−
n∑

i=1

lnXi ∼ Gamma(n, 1
θ0

) when H0 is true, the p-value of the HDS test is

phd =





P (Γ(n, 1
θ0

) < −
n∑

i=1

lnxi0) if θ0 < 1, and
n∑

i=1

−lnxi0 < ∞

P (−
n∑

i=1

lnxi0 < Γ(n, 1
θ0

)) if θ0 > 1, and
n∑

i=1

−lnxi0 > 0

where x0 = (x10, ..., xn0) is the observation.

The HDS test uses the distribution shape under H0 automatically to classify the extreme

sets producing Ehd = {(x1, ..., xn)
′

: 0 < −
n∑

i=1

lnxi0 < −
n∑

i=1

lnxi0} if θ0 < 1 and Ehd =

{(x1, ..., xn)
′
: 0 < −

n∑
i=1

lnxi0 < −
n∑

i=1

lnxi} if θ0 > 1. However, this advantage is not shared

with the Fisherian significance test.

It is known that Xθ0
i , i = 1, ..., n are iid uniform distribution U(0, 1) when H0 is true.

For the Fishserian significance test, it traditionally uses the best statistic
n∏

i=1

xθ0
i . One of the

27



one-sided tests with extreme sets such as {(x1, ..., xn)
′
:

n∏
i=1

xθ0
i >

n∏
i=1

xθ0
i0} or {(x1, ..., xn)

′
:

n∏
i=1

xθ0
i <

n∏
i=1

xθ0
i0} and a two sided test is an alternative choice, where Mood et al.(1974)

choose a two-sided version.

In this example, the HDS test and the classical test both are constructed via a same

statistic. However, the HDS test has the advantage of automatically determining the extreme

set. 2

From these examples, we summarize some other conclusions in support of the HDS test.

Firstly, the HDS tests automatically determine the extreme set to compute p-values. On the

other hand, the Fisherian significance test may be struggling in determining a test statistic

or deciding if it is a one sided or two sided test. Secondly, the HDS test constructs the

extreme set Ehd containing sample points more weirder than those in the non-extreme set

such that L(x1, θ0) < L(x2, θ0) for x1 ∈ Ehd and x2 6∈ Ehd. This property holds in general

only for the HDS test. Thirdly, the HDS test usually use a statistic containing information

in the data related to both location and scale parameters to determine the extreme set. This

statistic, hence, often combines sufficient and ancillary statistics. However, the Fisherian

significance test only involves information contained in the data related to the parameter

which is discussed in null hypothesis. With using rich information, the HDS test seems

to be quite satisfactory in detecting distributional shift when the observation gives a small

p-value. In this situation, a further investigation is needed to detect what happen for a

small p-value. It may be thatH0 is not true or anothter distributional shift. Actually, these

possible conclusions are resulted from the use of likelihood function.

3.3 HDS Test for Discrete Distributions

Hypothesis testing for discrete distributions has seldom been discussed in literature. The

difficulty of constructing a test for hypotheses of parameters for discrete distribution is that

it could be rarely possible to construct a test with an exactly specified significance level when

the sample size is finite (see for examples, Welsh (1996, page 146) and Kotz and Johnson

(1982)).

The most popular use of level α test for discrete random variables is the normal approx-
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imation. However, it is an approximate level α test which in general is not a level α test

in the case of finite sample, and its exact significance level is not known without further

calculation. One other possibility for the discrete case is the Fisher’s fiducial approach. If

we consider hypothesis H0 : p = p0 for a binomial random variable, we may reject H0 then

if and only if Pp0(X ≤ x) < α/2 or Pp0(X ≥ x) < α/2 (see Garthwaite et al. (2002, p103))

where x is observed. We prefer to use the p-value to interpret a hypothesis testing problem

in replace of the significance level α test since we are dealing with significance test. We

re-state the HDS test in an appropriate way for dealing with discrete distribution.

Definition 3.5. Consider the hypothesis H0 : θ = θ0. The HDS test for discrete distribution

defines the p-value with observation X = x0 as

phd =
∑

L(θ0,x)≤L(θ0,x0)

L(θ0, x).

Generally there are many versions for constructing Fisherian significance test. The choice

of a test statistic may affects the conclusion of a test as it behaves in continuous case. The

following example presents the results from our concern.

Example 3.4. Let X be a random variable with binomial distribution b(n, p). Consider

the hypothesis H0 : p = p0 and assume that an observation x0 is available. There are

two popularly used Fisherian significance tests defining the p values. First, the normal

approximation defines p-value as

px0 = P (|Z| ≥ |x0 − np0|√
np0(1− p0)

)

where Z has the standard normal distribution N(0, 1). On the other hand, taking X as

a test statistic, it has a binomial distribution b(n, p0) when H0 is true. Typically, the test

statistic is applied to construct a one-sided Fisherian significance test (see Garthwaite et al.

(2002)) with p value as follows

px0 =





n∑
x=x0

(
n
x

)
px

0(1− p0)
n−x if x0 ≥ np0

x0∑
x=0

(
n
x

)
px

0(1− p0)
n−x if x0 < np0

.

Suppose that the observation is x0 = 18 with sample size n=20. We consider hypothesis

H0 : p = p0 = 0.7. In this situation, p-value px0 for the normal approximated Fisherian
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significance test is 0.051 and it for the one-sided Fisherian significance test is 0.0355. There-

fore, it often provides various conclusions when we use different Fisherian significance tests.

Otherwise, the HDS test defines the p-value as

phd =
n∑

x=0

(
n

x

)
px

0(1− p0)
n−xI(

(
n

x

)
px

0(1− p0)
n−x ≤

(
n

x0

)
px0

0 (1− p0)
n−x0)

where I(a ≤ b) is the indicator function of the event if a ≤ b which generates the p-value as

0.0526.2

We present the results in Example 3.4 only for reflecting the fact that in the discrete

distribution case there may also have several versions of test statistic for Fisherian significance

test and various conclusions may be drawn from these tests. Only a consistent way in

defining the significance test makes it sense in the interpretation of a p-value for statisticians.

However, as long as we decide to apply the HDS test to determine the bound of p-value so

that we may classify a test as a significant one or a non-significant one, this classification

should be further studied.

Whatever a Fisherian significance test can interpret, this test is not justified with any

desired optimal property. However, it is generally not true that tests for parameters of

discrete distributions are with the same p-value (see this point in Welsh (1996)). We slightly

revise the definition to enlarge the class of tests for comparison that results the following

theorem which may be analogously derived as we did for Theorem 3.2.

Theorem 3.6. Consider that the underlying distribution is discrete and the hypothesis is

H0 : θ = θ0. For given observation X = x0, suppose that the HDS test has p-value, phd, and

the number of elements x in the non-extreme set Ec
hd is denoted by nhd. For any significance

test with p-value smaller than or equal to phd and its element number in its corresponding

non-extreme set is denoted by n0. Then, n0 ≥ nhd.

This optimality of smaller element number for the HDS test does provide a justification for

its application to the discrete distributions.

Let’s consider the case that p0 = 0.5 and n = 50 to verify the result presented in Theorem

3.6, and we list the numbers of non-extreme sets for both HDS test and the one-sided

Fisherian significance test that they have p-values of some interest ones less than or equal
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to 0.05.

Table 1. Numbers of non-extreme points for HDS test and one-sided Fisherian significance

test with approximated equal p-value.

p-value HDS test One-sided test

0.001 23 ∼ 25 37 ∼ 38

0.005 21 ∼ 23 35 ∼ 36

0.01 19 ∼ 21 34 ∼ 35

0.02 17 ∼ 19 33 ∼ 34

0.03 17 ∼ 19 33 ∼ 34

0.04 15 ∼ 17 32 ∼ 33

0.05 15 ∼ 17 32 ∼ 33

For interpretation, suppose that we are interesting in the tests with p-values around 0.02.

Then, the HDS test takes about number 17 to 19 of x’s in sample space in the non-extreme

set for having p-value phds ≈ 0.02. However, one-sided Fisherian significance test takes about

number 33 to 34 of x’s in sample space in the non-extreme set to have the same p-value which

is about twice the number for HDS test.

Explicit formulations of p-value for Fisherian significance test and HDS test are generally

not obtainable in the case of discrete distribution. For considering the HDS test, we show two

results related to the computation of p-value when variable X follows a binomial distribution.

Theorem 3.7. Consider that random variable X has a binomial distribution b(n, p). Then

the p-value of the HDS test for hypothesis H0 : p = p0 with observation X = x0 and it for

hypothesis H0 : p = 1− p0 with observation X = n− x0 are identical.

Proof. It is followed from the fact that L(x0, p = p0) = L(n− x0, p = 1− p0). 2

The above theorem indicates that when the p-values of the HDS test for hypothesis H0 :

p = p0 with p0 ≤ 0.5 are available, then those for cases p0 > 0.5 are automatically implied.

It is very often that the hypothesis about binomial p is the case that p0 = 0.5. We list some

results of p-value for HDS test in the following theorem.
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Theorem 3.8. Consider that random variable X has a binomial distribution b(n, p) and

hypothesis H0 : p = 0.5. We also redenote the p-value for HDS test at X = x0 by phd,x0 .

Then, for n = 2k, the p-value of the HDS test is

(a) phd,x0 = phd,2k−x0 if x0 = k + 1, ..., 2k

(b) phd,x0 =





2
x0∑

x=0

L(x, p = 0.5) if x0 = 0, 1, ..., k − 1

1 if x0 = k

.

For n = 2k + 1, we have

(c) phd,x0 = phd,2k+1−x0 if x0 = k + 1, ..., 2k

(d) phd,x0 =





2
x0∑

x=0

L(x, p = 0.5) if x0 = 0, 1, ..., k

1 if x0 = k, k + 1

.

Proof. For n = 2k, we see that

L(x, p = 0.5)

L(x + 1, p = 0.5)
=

x + 1

2k − x





< 1 if x = 0, 1, ..., k − 1

> 1 if x = k, k + 1, ..., 2k

indicating that L(x, p = 0.5) is monotone increasing on {0, 1, ..., k} and monotone decreasing

on {k, k + 1, ..., 2k}. This indicates the results in (a) and (b).

On the other hand, for n = 2k + 1, we have

L(x, p = 0.5)

L(x + 1, p = 0.5)
=

x + 1

2k + 1− x





< 1 if x = 0, 1, ..., k − 1

= 1 if x = k

> 1 if x = k + 1, ..., 2k + 1

indicating that L(x, p = 0.5) is monotone increasing on {0, 1, ..., k} and monotone decreasing

on {k + 1, ..., 2k + 1} and the results in (c) and (d) are followed.2

For application, it is desired to have table of p-value for all cases of binomial distributions.

It is not difficult in computation of it for every situation of p0. For considering only p0 = 0.5,

we here display p-values in Appendix Tables A.1-A.6 for cases with sample size n is less than

or equal to 30.
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3.4 The Best Significance Tests

It is known that the Fisherian significance test is not generally accepted since tests of this

type do not automatically fulfill any desirable optimal property. With the fact that all HDS

tests are best significance tests in some sense, it then raises the question that if there is a

guide that some Fisherian significance tests are also best significance tests. The following

theorem provides this guide, simply for a special case.

Theorem 3.9. Let X = (X1, ..., Xn) be a random sample from f(x, θ) with an observation

X = x. Consider the hypothesis H0 : θ = θ0 and we assume that the family of densities

{f(x, θ) : θ ∈ Θ} has a monotone likelihood in a sufficient statistic T = t(X):

(a) If the monotone likelihood is nondecreasing in t(x), then the left hand Fisherian signifi-

cance test with p-value

px = Pθ0(t(X) ≤ t(x))

is a best significance test.

(b) If the monotone likelihood is nonincreasing in t(x), then the right hand Fisherian signif-

icance test with p-value

px = Pθ0(t(X) ≥ t(x))

is a best significance test.

Example 3.5. (a) Let X be random sample from the exponential distribution with pdf

f(x, θ) = θe−θxI(0 < x < ∞). The family of this exponential distribution has a monotone

likelihood nonincreasing in sufficient statistic
n∑

i=1

Xi. Then the Fisherian significance test

with p-value

px = Pθ0(
n∑

i=1

Xi ≥
n∑

i=1

xi) = P (Γ(n,
1

θ0

) ≥
n∑

i=1

xi)

is a best significance test.

(b) Let X = (X1, ..., Xn) be a random sample from the uniform distribution U(0, θ), θ > 0.

Considering the null hypothesis H0 : θ = θ0, the likelihood function is

L(θ, x) =
1

θn
I(0 < x(n) < θ)
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where X(n) is the largest order statistic which is sufficient for parameter θ. Since the space

of x(n) is (0,∞), the family of unform distribution under H0 has monotone likelihood non-

increasing in the sufficient statistic Y(n). The right hand Fisherian test with p-value

px = Pθ0(X(n) ≥ x(n)) =





∫ θ0

x(n)

n
θn
0
xn−1dx if x(n) < θ0

0 if ≥ θ0

=





1− (
x(n)

θ0
)n if x(n) < θ0

0 if x(n) ≥ θ0

is a best significance test.

From the theory we have developed for best significance test and Fisherian significance tests,

we may draw several conclusions from the fact that we apply likelihood function for the HDS

test:

(a) If the likelihood function L(x, θ) involves a univariate parameter θ and has a monotone

likelihood in a sufficient statistic, then a one sided Fisherian significance test based on the

sufficient statistic is a best significance test. This provides a guide in selecting tests statistic

and the choice of one sided or two sided test so that it shares an optimal property.

(b) If the likelihood function L(x, θ) involves a univariate parameter θ and statistics including

a sufficient one and some other ancillary statistics, then the sufficient statistic based Fisherian

significance test doesn’t share the optimal property. For examples, the best significance test

for hypothesis H0 : θ = θ0 in the negative exponential distribution of Example 3.2 involves
n∑

i=1

(Xi − θ0) which is an ancillary statistic.

(c) If the likelihood function L(x, θ1, ..., θk) involves k parameters and we testing hypoth-

esis H0 : θ1 = θ10, ..., θk = θk0, the Fisherian significance test is classically constructed

by Bonferroni technique combining tests, using separate sufficient statistics, for hypotheses

H0 : θj = θj0. This doesn’t share the optimal property. We have an example to explain this

point. The HDS test for hypothesis H0 : µ = µ0, σ = σ0 where sample is drawn from normal

distribution is based on statistic
n∑

i=1

(Xi−µ0)
2. This test statistic is the sum of

n∑
i=1

(Xi− X̄)2

and n(X̄−µ0)
2, one is a function of sample variance S2 and the other is a function of sample

mean where S2 and X̄ are separately sufficient for σ2 and µ.

(d) If the likelihood function L(x, θ1, ..., θk) involves k parameters but we preassume that
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θ2 = θ20, ..., θk = θk0 are known, the interest is to test H0 : θ1 = θ10, the traditional

Fisherian significance test is to construct the test statistic based on the sufficient statistic

for parameter θ1. This test definitely doesn’t share the optimal property. In this situation,

the likelihood function is of the form L(x, θ10, ..., θk0) that generally involve extra sufficient

statistics for θ2, ..., θk. However, these extra sufficient statistics are ancillary since their

corresponding parameters are preassumed to be known and then are not involved in the

Fisherian significance test.

(e) The HDS tests always employ all information of statistics involving in the likelihood

function. This is the reason that they are always optimal in sense of smallest volume.

In the rest of this section, we will evaluate the performance of HDS and Fisherian sig-

nificance tests for cases of several hypothesis problems. For significance test with only null

hypothesis, we are allowed to have data departure not only from the null hypothesis, but

also from any pre-assumption set on the statistical model including independence, identical

distribution, or some pre-assumed parameter values. We expect that a significance test may

provide p-value with strong evidence for any of these departures.

A model that the data will be drawn for simulation is called the true model. A model

that is assumed by the statistician before the execution of hypothesis testing is called the

pre-assumed statistical model. This pre-assumed model may coincides or not coincides with

the true statistical model for this situation of significance test. We design the following

situations for simulation study:

(a) The true model and the pre-assumed model are identical.

(b) The pre-assumed model has parameter values varies with the true model. This inconsis-

tency could be that the null hypothesis isn’t correct or other parameters in the model aren’t

correctly specified.

(c) The true model is with correlated sample and the pre-assumed model is with random

sample assumption.

Example 3.6. We consider two cases for simulation study where one is that the model

assumption and the null hypothesis are all correct and the other one is that the model

assumption is incorrect. In every simulation for various model assumption, we choose several
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sample sizes n = 5, 10, 20, 40, 100 and replications m = 10000. Suppose that pj, j = 1, ..., m

represents the computed p-values of all replication for one test, we compute average p-value

p̄ = 1
m

m∑
j=1

pj and standard error σ̂p = 1
m

m∑
j=1

(pj − p̄)2.

Case A: In this simulation, we draw random sample X = (X1, ..., Xn) from normal distri-

bution N(0, 1).

In first case, we assume that we have random sample drawn from N(µ, 1) and the consid-

ered assumption is H0 : µ = 0. This is the situation that H0 is correct and all preassumed

assumptions such as random sample, normality and σ and null hypothesis regarding with µ

are all correct. Significance tests for this case are expected to have large p-values. The HDS

test has p-value, with xi, i = 1, ..., n,

phd = Pµ=0,σ=1(
n∑

i=1

X2
i ≥

n∑
i=1

x2
i ) = P (χ2

n ≥
n∑

i=1

x2
i ). (7)

The Fisherian significance two sided test is with p-value

px = Pµ=0,σ=1(
√

n|X̄| ≥ √
n|x̄|) = P (|Z| ≥ √

n|x̄|) (8)

We display the average p-values and their standard errors for the two significance tests.

Table 2. Average p-value for two significance tests under H0 : µ = 0 when N(0, 1) is true.

n p̄hds σ̂p
hds p̄z σ̂p

z

5 0.4988 0.0829 0.5028 0.0838

10 0.5005 0.0820 0.4992 0.0823

20 0.5004 0.0830 0.4960 0.0832

40 0.5033 0.0849 0.5007 0.0829

100 0.4996 0.0829 0.4995 0.0828

We have two conclusions drawn from the results in Table 2:

(a) The average p-values and their corresponding standard errors for the HDS and Fisherian

significance tests are with values very close. So, these two tests perform quite similar when

the assumed statistical model is identical with the true statistical model.

(b) With p-value in average nearly 0.5, these two significance tests both provide no real

evidence against the assumed statistical model.
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Case B: In this simulation, we draw random sample X = (X1, ..., Xn) from normal distri-

bution N(0, 4).

In first case, we assume that we have random sample drawn from N(µ, 1) and the consid-

ered assumption is H0 : µ = 0. This is the situation that H0 is correct but the preassumed

σ = 1 is not true. The HDS test has p-value exactly the same as it in (7) and the Fisherian

significance two sided test is with p-value exactly the same as it in (8). We display the

average p-values and their standard errors for the two significance tests.

Table 3. Average p-value for two significance tests under H0 : µ = 0 when N(0, 4) is true.

n p̄hds σ̂p
hds p̄z σ̂p

z

5 0.0780 0.0282 0.2939 0.0930

10 0.0200 0.0063 0.2992 0.0951

20 0.0015 0.0002 0.2952 0.0932

40 8.4316e− 07 2.0733e− 07 0.3008 0.0956

100 1.7347e− 15 1.1108e− 26 0.2967 0.0929

In the second case, we have samples drawn from the same normal distribution N(0, 4).

We assume that we draw them from N(µ, 1) and the considered assumption is H0 : µ = 1.

This is a situation that H0 and the preassumed assumption on σ are all incorrect. Then

smaller p-values are again desired. The HDS test defines p-value as

phd = Pµ=1,σ=1(
n∑

i=1

(Xi − 1)2 ≥
n∑

i=1

(xi − 1)2) = P (χ2
n ≥

n∑
i=1

(xi − 1)2).

The Fisherian significance two sided test is with p-value

px = Pµ=1,σ=1(
√

n|X̄ − 1| ≥ √
n|x̄− 1|) = P (|Z| ≥ √

n|x̄− 1|).

The following table displays the average p-values and MSE’s for two significance tests.
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Table 4. Average p-value for two significance tests under H0 : µ = 1 when N(0, 4) is true.

n p̄hds σ̂p
hds p̄z σ̂p

z

5 0.0500 0.0177 0.1719 0.0704

10 0.0086 0.0022 0.1016 0.0459

20 0.0003 4.9857e− 05 0.0341 0.0156

40 1.8765e− 07 8.706e− 11 0.0039 0.0012

100 0 0 9.3025e− 07 2.3016e− 09

We have conclusions drawn from Tables 3 and 4:

(a) The HDS and Fisherian significance tests are with average p-values also decreasing when

the sample size decreases. This show that these two significance tests are more efficient in

detecting the evidence against the model change when the sample size is large.

(b) The average p-value in each corresponding sample size is smaller than it of the Fisherian

significance test. This shows that the former one is more efficient than the latter one in this

detection of evidence for a model shift.

(c) The average standard errors of the p-values for the HDS test are relatively smaller than

those of the Fisherian significance test. This shows the stability of using the HDS test.

Case C: In this simulation, we draw random sample X = (X1, ..., Xn) from the following

AR(1) model

Xi = ηi, i = 1, ..., n

ηi = ρηi−1 + εi

where εi’s are i.i.d. with normal distribution N(0, 1).

In this case, we assume that we have a random sample from N(µ, 1) and the considered

assumption is H0 : µ = 0. This is the situation that H0 is correct, however, the error

variables are not iid and are with AR(1) structure. It is expected to have small p-values for

significance tests. The p-values for HDS and Fisherian significance tests are with the same

forms, respectively, of (7) and (8). Suppose we will reject H0 when p value is less than 0.05.
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Table 5. Average p-value for two significance tests under H0 : µ = 0 when AR(1) is true.

ρ p̄hds nrej p̄z nrej

0.1 0.4819 624 0.2330 1398

0.2 0.4245 1001 0.2155 1866

0.3 0.3345 1873 0.1957 2423

0.4 0.2163 3675 0.1713 3282

0.5 0.1131 6228 0.1477 4061

0.6 0.0432 8337 0.1226 5013

0.7 0.0098 9608 0.0947 6106

0.8 0.0012 9945 0.0647 7345

0.9 6.8908e− 05 9996 0.0335 8600

1.0 6.4842e− 07 10000 0.0051 9777

We have several conclusions drawn from Table 5:

(a) In this situation that the data drawn from an AR(1) model, however, we compute two

significance tests based on a model of iid random variables. The p-values of two considered

significance tests are both decreasing when ρ is increasing from zero. It is reasonable that

when ρ is close to zero the true statistical and the assumed statistical model are similar.

(b) In cases that ρ’s are smaller than 0.4, the Fisherian significance test seems to be better

than the HDS test. When ρ’s are larger than 0.5, our new test seems to be better.

(c) When we set a significance level as 0.05 these two significance tests are with numbers

of rejection increase in ρ in a reasonable trend. One interesting fact is that for case that

ρ = 0.4 the HDS test has larger average p value but with larger number of rejection.

3.5 Some Further Developments of HDS Test

3.5.1 Approximate HDS Test

Approximation techniques are important for some statistical inference problems. Sometimes

the desirability comes from the mathematics difficult for deriving an inference technique,

and sometimes it is due to cheaper and quicker technique derivation. We then also consider
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approximation technique for HDS tests. THe p-value for the HDS test may be written as

phd = P (L(θ0, X) ≤ L(θ0, x)

= P (
n∏

i=1

f(Xi, θ0) ≤
n∏

i=1

f(xi, θ0))

= P (
n∑

i=1

lnf(Xi, θ0) ≤
n∑

i=1

lnf(xi, θ0))

= P (
n∑

i=1

(lnf(Xi, θ0)− Elnf(X, θ0)) ≤
n∑

i=1

(lnf(xi, θ0)− Elnf(X, θ0)))

Suppose that the variance of the log likelihood is finite. By the central limit theorem, we

have the following asymptotic p-value of HDS test.

phd ≈ P

(
Z ≤ 1

n

∑n
i=1 lnf(Xi,θ0)−Elnf(X,θ0)√

1
n

V arlnf(X,θ0)

)

= Φ

(
1
n

∑n
i=1 lnf(xi,θ0)−Elnf(X,θ0)√

1
n

V arlnf(X,θ0)

) (9)

Where Z represent the standard normal random variable, and Φ is its distribution function.

For application of approximate HDS test, suppose that now we have a random sample

X1, ..., Xn from binomial distribution b(k, p) with pdf

f(x, p) =

(
k

x

)
px(1− p)k−x, x = 0, 1, .., k,

and we consider hypothesis H0 : p = p0.

Let’s denote

µp = E[ln f(X, p)]

=
k∑

i=0

ln{(k
i

)
pi(1− p)k−i}(k

i

)
pi(1− p)k−i,

(10)

and

σ2
p = E[ln f(X, p)− µp]

2

=
k∑

i=0

[ln{(k
i

)
pi(1− p)k−i} − µp]

2
(

k
i

)
pi(1− p)k−i.

(11)

Then the p-value of an approximate HDS test is

pbin
hd.app = Φ(

1
n

k∑
i=1

[ln
(

k
xi

)
+ xi ln (p0(1− p0)

−1) + k ln (1− p0)]− µp0

n−1/2σp0

). (12)

There is a simulation result of b(5, p) example in Table 6. The true p’s are 0.1, 0.2, 0.3, 0.4,

and 0.5. n’s are 10, 20, 30, 50, and 100.
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Table 6. p-value of approximate HDS test for binomial distribution under H0 : p = 0.5.

true p 0.1 0.2 0.3 0.4 0.5

n = 10 0.0001 0.0212 0.1714 0.4088 0.5174

n = 20 5.7196e− 08 0.0019 0.0864 0.3612 0.5117

n = 30 6.2980e− 11 0.0002 0.0463 0.3275 0.5092

n = 50 2.1231e− 18 2.9588e− 06 0.0143 0.2808 0.5079

n = 100 7.1441e− 52 3.3474e− 11 0.0009 0.1998 0.5036

Consider another example that we have a random sample from a Cauchy distribution with

1
πσ

1
1+(x−µ

σ
)2

. For this distribution, we have

Elnfµ,σ(X) =
∫∞
−∞ ln( 1

πσ
1

1+(
(x−µ)

σ
)2

) 1
πσ

1

1+(
(x−µ)

σ
)2

dx

= −ln(πσ) + 2
∫ π/2

−π/2
ln(cos(θ))

π
dθ

= −ln(πσ)− 2ln2,

E(lnfµ,σ(X))2 =
∫∞
−∞(ln( 1

πσ
1

1+(
(x−µ)

σ
)2

))2 1
πσ

1

1+(
(x−µ)

σ
)2

dx

= (ln(πσ))2 − 4ln(πσ)
π

∫ π/2

−π/2
ln(cosθ)dθ + 4

π

∫ π/2

−π/2
(ln(cosθ))2dθ

= (ln(πσ))2 + 4ln(πσ)ln2 + 4
π
· 4.0932,

and

V arlnfµ,σ(X) = E(lnfµ,σ(X))2 − (Elnfµ,σ(X))2

= 4
π
· 4.0932− (2ln2)2.

Then the p-value of the approximate HDS test H0 : µ = µ0 for Cauchy(µ, σ) is

phd,app = Φ




1
n

∑n
i=1 lnf(xi, µ0, σ)− Elnf(X,µ0, σ)√

1
n
V arlnf(X,µ0, σ)




where σ is known.

We present simulated results in Table 7 and 8 where the sample is drawn from Cauchy

distribution with sample size n and known σ = 1. In Table 7, the data is further drawn when

the null hypothesis H0 : µ = 0 is true. The proportion of rejection is closer to the 0.05 when

the sample size is increasing. It indicates that the approximation HSD test is suitable for

testing µ when null hypothesis is true. In Table 8, the samples are drawn from Cauchy(1,1).

In this case, the null hypothesis is not true, like some other approximate hypothesis tests, and
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it is difficult to detect the false hypothesis since the proportion of rejection is 0.089 as n = 5.

Otherwise, the proportion of rejection increases with the sample size increasing although all

of the average p-values are larger than 0.1. For testing H0 : µ = 0, both examples show

that the approximate HDS test for Cauchy sample is easier to make a right decision when

the sample size is larger than 100. This agrees with the suggestion of Hass, Bain, and Antle

(1970).

Table 7. Approximate HDS test for Cauchy sample when null hypothesis is true.

H0 : µ0 = 0

n p̄hds σ̂p
hds nrej

5 0.5255051 0.0792775 676

10 0.5211978 0.08016141 631

20 0.5123106 0.08279323 618

40 0.508165 0.08168721 584

100 0.506423 0.08280831 533

200 0.5054276 0.08325652 524

significance level α = 0.05 with 10000 replicates

Table 8. Approximate HDS test for Cauchy sample when µ = 1.

H0 : µ0 = 0

n p̄hds σ̂p
hds nrej

5 0.4419071 0.06946822 890

10 0.4024538 0.06854606 1031

20 0.3570021 0.06623502 1302

40 0.2878691 0.05730798 1819

100 0.1891455 0.04020064 3234

200 0.1029821 0.02026250 5333

significance level α = 0.05 with 10000 replicates

The approximate HDS test will assist the practitioners to compute the p-value that may

automatically derive the test statistics. Hence, we do not need to worry about seeking for

the pivotal quantity. The practitioners only need to check the existence of 2nd moment of

the logarithmic likelihood function.
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3.6 Power of a Test

In Neyman-Pearson formulation, we evaluate a the test statistics based on its power which

is the probability of rejecting H0 when the H0 is false. Now, we consider the two-sided test

where there is no uniformly most powerful test. Suppose the sample is drawn from N(µ, σ2)

and the null hypothesis is H0 : µ = µ0 with known σ = σ0 and the alternative hypothesis is

H1 : µ 6= µ0. The typical level α test using the sufficient statistic X̄ sets the rejection region

| X̄−µ0

σ0/
√

n
| > z1−α/2 where z1−α/2 is the 1−α/2 quantile of the standard normal. This is not an

SVNES significance test. Thus its power is

βNP (µ, σ) = Pµ,σ(|X̄ − µ0| > σ0√
n
z1−α/2)

= 1− Φ(µ0−µ
σ/
√

n
+ z1−α/2

σ0

σ
) + Φ(µ0−µ

σ/
√

n
− z1−α/2

σ0

σ
)

(13)

when N(µ, σ) is the true distribution.

For the HSD test, the test statistic is

n∑
i=1

(xi−µ0)2

σ2
0

and the power is

βHDS(µ, σ) = Pµ,σ(

n∑
i=1

(Xi−µ0)2

σ2
0

> qχ2
n,1−α

)

= Pµ,σ(χ2

n,ncp=
n(µ−µ0)2

σ2

>
σ2
0

σ2 qχ2
n,1−α

),
(14)

where χ2

n,ncp=
n(µ−µ0)2

σ2

is a noncentral χ2 random variable with degree of freedom n and non-

centrality ncp = n(µ−µ0)2

σ2 and qχ2
n,1−α

is the 1− α quantile of central χ2
n random variable.

The points of power function of these two tests for H0 : µ = 0 with known variances σ = 1

and sample size n = 5 are shown in Figure 1 and 2. When the assumed variance is true

in Figure 3, the power of HDS test is equal or smaller than one of sufficient statistic based

test, which is denoted as NP in the figures. As the true variance is equal to 2 in Figure 4,

the comparison of the two tests shows that the HDS test has larger power when the true

means is close to it the null hypothesis is true but not in the other ways. On the other hand,

in Figure 5, the power of HDS test is larger than it based on the other one when the true

variance is equal to 3. Hence the HDS test is more sensitive to detect the distributional

change when the true variance is larger than the known value. When the true variance is

equal to 0.5 which is smaller than it in null hypothesis in Figure 6, the power of HDS test

is always smaller. Thus, in this situation, the HDS test can not be easy to reject the null

hypothesis.
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Figure 1: Power of HDS test and n=5
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Figure 2: Power of Neyman-Pearson test and n=5

mu

−4

−2

0

2

4

si
gm

a

0.5

1.0

1.5

2.0

2.5

3.0

pow
er

0.0

0.2

0.4

0.6

0.8

1.0

44



Figure 3: Powers of the two tests as σ2 = 1 and n=5
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Figure 4: Powers of the two tests as σ2 = 2 and n=5
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Figure 5: Powers of the two tests as σ2 = 3 and n=5
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Figure 6: Powers of the two tests as σ2 = 0.5 and n=5

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mu

po
w

er

NP
HDS

46



Figure 7: Powers of the two tests as µ = 0 and n=5
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Figure 8: Powers of the two tests as µ = 1 and n=5
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Further, the powers of the HDS test are smaller than the other’s when variances happen

to be smaller in the condition that the mean is fixed to be 0 and 1 in Figure 7 and 8,

respectively. With evaluation of the power, we have shown that HDS test for hypothesis of a

normal distribution can be easy to detect the false null hypothesis with larger true variance.

Although the HDS test has smaller power when the assumed variance is larger than true

one, it is not the main consideration of control chart which focuses on the larger dispersion.

The extension of the HDS test to control chart will be discussed in the following section.
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4 Control Charts

A process statistical control is to see if the process is stable. A stable process indicates that

the distribution of the characteristic is unchanged. Hence a process statistical control is to

test if there is a distribution shift. Usually, a distribution involves several parameters. Sup-

pose that the density function f with p parameters is denoted f(x, θ1, ..., θp). The common

method to deal with this problem is to design a statistical process control scheme for each

of p parameters separately. It can also be interpreted that a test for each hypothesis is with

probability of type I error α. For example, when a variable of a characteristic obeys a normal

distribution with mean µ and variance σ2, the popular technique is to construct X̄-chart to

monitor the shift of mean µ and R-chart to monitor the change of standard deviation σ.

Suppose that the control charts are constructed by statistics θ̂1, ..., θ̂p separately for the

p parameters and these statistics are independent. Then we will reject the hypothesis to

interpret that the process is statistical out of control if some of these charts lead to a verdict

of rejection. However, the overall probability of a type I error then becomes 1 − (1 − α)p.

A second method is to reject the hypothesis whenever all schemes lead to rejection. Then,

the overall probability of a type I error becomes αp. Since the different assertions for testing

hypothesis lead to various probability of type I error, it may confuse the user with controlling

the error probability. This is one deficit for the classical control charts.

There are another two deficits often occurring in the classical technique to develop control

charts. One is the ignorance of possible correlation among the p test statistics. For example,

the test statistics involved in X̄-chart and R-chart are actually correlated. It leads to incor-

rect (probability) control charts as we have mentioned. The other one is that an occurrence

of a shift in distribution it may not be detectable through a shift in one or more param-

eters involving in f . In explaining this point, Hoerl and Palm (1992) and Woodall (2000)

argued that the control charts are aimed to detect deviations from the model, including the

distribution assumption itself.

As considering these deficits, Grimshaw and Alt (1997) argued that the traditional X̄ and

R charts are efficient in detecting changes of distributional mean and variation. Besides,

their efficiencies can be remarkably reduced due to departures from the shape of the density

function. Thus they proposed a quantile control chart which has control limits estimated by
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a confidence band for a quantile vector. They showed that these charts are quite effective

in detecting changes in the distributional shape which are undetected through the X̄ and R

charts. However, we still need to concern that such a nonparameteric control chart generally

has less efficiency than appropriate parametric one when the distribution is known.

Unlike the classical Shwhart control chart tracking a sample point through its mean or

range, we track the value of its density. Any sample point x to be classified to have either a

chance cause or an assignable cause will be only determined by the size of its density. Thus

we need only to construct a lower limit for the sample density. This allows us to use only

one chart for monitoring the process no matter how many parameters be involved in the

distribution and the probability of type I error can be generally controlled with a specified

value.

4.1 Density Control Charts

In the hypothesis testing problem, the density function f can be anything other than f0 such

as f1 when H0 is false. f1 can be different from f0 in its mean, variation or the shape of the

density. In control charting, the practitioners concern whether the process is in statistical

control interpreted by a distribution. Thus we can extend the optimality of significance test

to control charting although there is a debate over the relation between hypothesis testing

and control charting (Woodall, 2000). This property is also introduced to tolerance interval

based on coverage interval of highest density values by Huang, Chen, and Welsh (2006).

Now, we can establish a control chart which has the same idea of HDS test according

to the relative values of a density function. Let X1, ..., Xn be a random sample drawn

from a distribution with pdf f . By setting a HDS test with level α, it leads to region

{x : L(x, f0) ≤ `(f0)} where `(f0) satisfies

α = Pf0(L(X, f0) ≤ `(f0)). (15)

We now introduce the framework of a new control chart including a lower density limit and

the tracking variable.

Definition 5.1. Let x be the sample point and L(x, f0) be its joint density. The density
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Shewhart control chart specifies the control limit for tracking variable L(x, f0) as

LCL = `(f0)

Tracking variable: L(x, f0)

where constant `(f0) satisfies (15).

Although there are many other applications, a control chart is very useful in online process

monitoring. To interpret the use of density control chart for detection of assignable causes,

let’s motivate it from the use of classical control chart. The classical Shwhart control chart

monitors a parameter θ with tracking an estimator θ̂ by setting control chart,

UCL = µθ̂ + 3σθ̂

LCL = µθ̂ − 3σθ̂

(16)

where µθ̂ and σθ̂ are, respectively, the mean and standard deviation of θ̂. For control chart

in (16), if the sample values of θ̂ fall in the control limits, i.e., θ̂ ∈ (LCL,UCL), and do not

exhibit any systematic pattern, we say that the process is in statistical control at the level

indicated by the chart, generally this level is not known. In the case of density control chart,

if the process density f remains at the function f0, then values of L(x, f0) should be larger

than `(f0). Here `(f0) is the lower α percentage point of the distribution of joint density

L(X, f0) when H0 is true. We then have a rule for online process monitoring through the

density control chart as:

If the sample values of L(x, f0) lies above the lower limit LCL = `(f0) and do not exhibit

any systematic pattern, we say that the process is in statistical control at the level 1− α.

In this setting, we may set any proper level such as 1 − α = 0.9, 0.95 or 0.9973. This is in

general with difficulty in the classical control chart.

Usually, the pdf f may often be represented in the form f(x, θ1, ..., θp) so that the joint pdf

L(x, f) and `(f0) may be formulated as L(x, θ1, ..., θp) =
∏n

i=1 f(xi, θ1, ..., θp) and `(θ1, ..., θp),

respectively. We also generally not know θ1, ..., θp. Therefore, the unknown parameters must

be estimated from preliminary samples taken when the process is thought to be in statistical

control. In fact, the answer of the question whether the process is in statistical control may

not be known. Thus we have to consider another way to deal with the p parameters such as

substitutes for them. Suppose that m samples are available, each containing n observations
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on the quality characteristic of interest. In practice, Shewhart(1931) substituted 1
m

∑m
j=1 x̄j

and 1
m

∑m
j=1 sj for µ and σ in the control charts where the x̄j and sj are j-th sample mean

and standard deviation. This method was also adopted by Chao and Cheng (1996) and

Spiring and Cheng (1998). Thus we extend it to all of the parameters of a distribution. Let

θ̂i1, θ̂i2, ..., θ̂ip, i = 1, ..., m be the estimated values, respectively, of θ1, ..., θp of the m groups

of the sample. Then the grand averages of these estimates are

θ̄j =
1

m

m∑
i=1

θ̂ij, j = 1, ..., p.

Woodall (2000) argued that a control chart is a test concerning the hypothesis that the

in-control parameter values are true. From this point, the hypothesis of distribution f for a

control chart is appropriate as

H0 : f(x, θ1, ..., θp) = f(x, θ̄1, ..., θ̄p).

Then, we have a control chart agreeing with Woodall’s point when the underlying distribution

involves parameters θ1, ..., θp.

Definition 5.2. The density Shewhart control chart specifies the framework of density

control chart as

LCL = `(θ̄1, ..., θ̄p)

Tracking variable: L(x, θ̄1, ..., θ̄p)

We notice that the rule for online process monitoring is still valid with the sample density

values replacing L(x, f0) by L(x, θ̄1, ..., θ̄p).

4.2 Density Control Charts for Some Distributions

4.2.1 Density Control Charts for Normal Distribution

One of the most important uses of a control chart is to improve the process. Consequently,

we may also use the the density control chart to evaluate if there are assignable causes. For

example, when a sample point X = x falls below the density control limit, this x may reveals

to be an out of control sample point and there may exist an assignable cause. If assignable

causes can be eliminated from the process, variability will be reduced and the process will

be improved. In this section, we introduce density control charts for normal distribution.
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Suppose that a quantity characteristic is normally distributed with unknown mean µ and

variance σ2, and then we have density at x as L(x, µ, σ) = 1
(2π)n/2(σ2)n/2 e

−
∑n

i=1(xi−µ)2

σ2 . Since
∑n

i=1(Xi−µ)2

σ2 ∼ χ2
n, the inequality L(X, µ, σ) ≥ `(µ, σ) subjected to 1−α = Pµ,σ(L(X,µ, σ) ≥

`(µ, σ)) yields `(µ, σ) = 1
(2π)n/2(σ2)n/2 e

−χ2
n,1−α

2 . The framework of the normal density control

chart is

LCL = 1
(2π)n/2(σ2)n/2 e

−χ2
n,1−α

2

Tracking variable: L(x, µ, σ) = 1
(2π)n/2(σ2)n/2 e

−
∑n

i=1(xi−µ)2

2σ2

According to Shewhart (1931), we can replace µ and σ by ¯̄x = 1
m

∑m
j=1 x̄j and s̄ = 1

m

∑m
j=1 sj

respectively, where x̄j and sj are the sample mean and the standard deviation of j-th group

respectively. The density control chart turns out to have the framework as

LCL = 1
(2π)n/2(s̄2)n/2 e

−χ2
n,1−α

2

Tracking variable: L(x, ¯̄x, s̄) = 1
(2π)n/2(s̄2)n/2 e

−
∑n

i=1(xi−¯̄x)2

2S̄2

Because the value of likelihood function is usually too small to monitor and no obviously

difference between in-control and out-of-control, the log-likelihood will be easier to identify

the out-of-control points. The framework for log-likelihood control chart is

LCL = −n
2
ln(2πs̄2)− χ2

n,1−α

2

Tracking variable: ln(L(x, ¯̄x, s̄)) = −n
2
ln(2πs̄2)−

∑n
i=1(xi−¯̄x)2

2S̄2

For a given observation x = (x1, ..., xn)′, we compare its probability L(x, ¯̄x, s̄) with the

lower control limit LCL and the control chart indicates a sign of out of control if L(x, ¯̄x, s̄) <

LCL.

Example 4.1. The process control of vane operating, which is an important functional

parameter for a component part for a jet aircraft engine, has been studied in constructing

statistical control charts by Montgomery, Runger and Hubele (2004) to assess the statistical

stability of this manufacturing process. With preliminary 20 samples of sample size 5, they

first constructed X̄ chart that indicates the samples, numbered 6, 8, 11, 19, are departure

from the process mean and R chart that indicates the sample, numbered 9, is shift with

variation. Removed these samples potentially resulted from assignable causes, they further

construct X̄ and R charts from the rest of 15 samples for future judgement of statistical

stability of the manufacturing process. These procedures are shown in Figure 9, 10, 11, and

12.
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Figure 9: X̄ chart for Vane Opening
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Figure 10: R chart for Vane Opening
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Figure 11: X̄ chart for Vane Opening,revised limits
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Figure 12: R chart for Vane Opening, revised limit
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Figure 13: Log-density control chart for Vane Opening
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Now, we want to construct density control chart from this preliminary samples. For easy

presentation in this study, we construct the log-density control chart as

LCL = −n
2
ln(2πs̄2)− χ2

n,1−α

2

Test statistic function: lnL(x1, ..., xn, ¯̄x, s̄) = −n
2
ln(2πs̄2)−

n∑
i=1

(xi−¯̄x)2

2S̄2

(17)

Computed from these 20 preliminary samples, we have ¯̄x = 33.32 and S̄ = 2.09748. Hence

the lower control limit for the log-density control chart is

LCL = −17.4010.

Plotting the test statistic function lnL(x1, ..., x5, ¯̄x = 33.32, s̄ = 2.09748) = −8.298398 −
n∑

i=1
(xi−33.32)2

8.7989
for these twenty samples associated with the control limit, we have the log-

density control chart in Figure 13.

We see that sample numbers 6, 8, 9, 19 are out of control on this log-density control chart.

We should discard these four samples, considered as being resulted from assignable causes,

and recompute the log-density control limit. Computing from the rest 16 samples, we have
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Figure 14: Log-density control chart for Vane Opening, revised limits
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¯̄x = 33 and S̄ = 1.81833. Hence the lower control limit for the log-density control chart is

LCL = −16.6869.

Again, plotting the test statistic function lnL(x1, ..., x5, ¯̄x = 33, s̄ = 1.81833) = −7.584304−
n∑

i=1
(xi−33)2

6.6127
for the preliminary twenty samples associated with the new control limit in Fig-

ure 14, we may see that the samples of possibly resulted from assignable causes is the set

numbered 6, 8, 9, 11, 15, 19. Since there is one more sample, numbered 11, found to be one

possibly resulted from assignable cause, we discard these five samples and recompute the

log-density control limit that yields ¯̄x = 33.0428 and S̄ = 1.79721. Hence we have a new

log-density control chart as

LCL = −16.6285

Test statistic function: lnL(x1, ..., xn) = −7.525884−
n∑

i=1
(xi−33.0428)2

6.4599

(18)

We may see that the samples of possibly resulted from assignable causes is still the set

numbered 6, 8, 9, 11, 15, 19. Hence, the log-density control chart of (18) in Figure 15 can now

be used to judge the statistical control of the manufacturing process. It is interesting that
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Figure 15: Log-density control chart for Vane Opening, twice revised limits
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the sample numbered 15 appears out of control in density control chart but not in X̄ and

R charts. This shows that a sample possibly resulted from assignable causes may not be

detected from the X̄ and R charts. The control chart of (18) should be revised periodically

and when the process has been improved.2

Let χ2
o =

∑n
i=1(xi−¯̄x)2

s̄2 which has χ2 distribution with degrees of freedom n, where ¯̄x is the

in control mean and s̄ is the in control standard deviation. From the relation L(x, ¯̄x, s̄) ≤
LCL if and only if χ2

o ≥ χ2
n,1−α, we may see that the density control chart is equivalent to

the following chi-square control chart,

UCL = χ2
n,1−α

LCL = 0

Tracking variable: χ2
o =

∑n
i=1(xi−¯̄x)2

s̄2

When x is observed, the control chart checks x by comparing the chi-square value χ2
o with

the lower and upper control limits. The rule for process online monitoring is: If the sample

chi-square values χ2
o fall within the control limits, LCL and UCL, and do not exhibit any

systematic pattern, we say that the process is in statistical control at level 1 − α. The

58



Figure 16: A control parabola for normal distribution.
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¯̄x

chi-square control chart may be represented graphically.

In other words, the monitor value of chi-square control chart is composed by two parts

since

χ2
o =

n(x̄− ¯̄x)2

s̄2
+

(n− 1)s2

s̄2
(19)

where x̄ = 1
n

∑n
i=1 xi is the mean and s2 = 1

n−1

∑n
i=1(xi − x̄)2 is the variance for the sample

point x with x′ = (x1, ..., xn). Equation (19) defines a parabola centered at (¯̄x, o) with

principal axes parallel to the s2 axis shown in Figure 16. The representation of this control

chart is analogous to semicircle chart proposed by Chao and Cheng (1996). Hence the

semicircle chart is a density control chart for normal distribution.

Taking χ2
o in (19) equal to χ2

n,1−α implies that the sample x with sample mean x̄ and

sample variance s2 is on the curve with value χ2
o. Any observation locating inside the

parabola indicates that the process is statistical in control, but otherwise it is statistical

out of control. We may call it the control parabola and Figure 17 is the example of Vane

Opening. Although it loses tracking time sequence which is also argued in semicircle control

by Cheng and Thaga (2006), this problem is popular in a single chart to monitor multiple

parameters. The log-likelihood control chart is suitable for monitoring the change of the

process with multiple parameters in the time sequence.
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Figure 17: Parabola control chart for vane opening
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4.2.2 Density Control Charts for Negative Exponential Distribution

Suppose that a process distribution for a quality characteristic is negative exponentially

distributed with probability density function

f(x, θ1, θ2) =
1

θ1

e
−x−θ2

θ1 , x ≥ θ2 (20)

where θ1 > 0 and θ2 ∈ R are unknown parameters. In this situation, we have joint den-

sity at x1, ..., xn as L(x1, ..., xn, θ1, θ2) = 1
θn
1
e
−

n∑
i=1

(xi−θ2)

θ1 . Suppose that we have a training

sample xij, i = 1, ..., n, j = 1, ..., m of m groups of size n from an in control distribution.

We can then calculate m location estimates θ̂2j = min{x1j, ..., xnj}, j = 1, ..., m and scale

estimates θ̂1j = 1
n

n∑
i=1

(xij − θ̂2j), j = 1, ..., m; as well as their average θ̄1 = 1
m

∑m
j=1 θ̂1j and

θ̂2 = min{θ̂21, ...., θ̂2m}. The appropriate hypothesis for this in control process distribu-

tion is H0 : X ∼ f(x, θ̄1, θ̂2). When we consider that θ̄1 and θ̂2 as the true θ1 and θ2,

we have

n∑
i=1

(Xi−θ̂2)

θ̄1
∼ Γ(n, 1). The inequality L(X1, ..., Xn, θ̄1, θ̂2) ≥ `(θ̄1, θ̂2) subjected to

1 − α = Pθ̄1,θ̂2
(L(X1, ..., Xn, θ̄1, θ̂2) ≥ `(θ̄1, θ̂2)) yields `(θ̄1, θ̂2) = 1

θ̄n
1
e−

χ2
2n,1−α

2 . We then have
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the following new control chart when the process distribution is negative exponential:

LCL = 1
θ̄n
1
e−

χ2
2n,1−α

2

Test statistic function: L(x1, ..., xn, θ̄1, θ̂2) = 1
θ̄n
1
e
−

n∑
i=1

(xi−θ̂2)

θ̄1 .

(21)

For a given observation x1, ..., xn, we compare its density value L(x1, ..., xn, θ̄1, θ̂2) with the

lower control limit LCL. The control chart indicates being out of control if L(x1, ..., xn, θ̄1, θ̂2) <

LCL.

We may choose t(X1, ..., Xn) = 1
n

n∑
i=1

(Xi − θ̂2) as the test statistic. With the fact that

χ2
0 =

2
n∑

i=1
(Xi−θ̂2)

θ̄1
has distribution χ2

2n when H0 is true and the relation L(x1, ..., xn, θ̄1, θ̂2) ≤
LCL if and only if χ2

0 ≥ χ2
2n,1−α, we may see that the new control chart is exactly a chi-

square control chart as

UCL = θ̄1

2n
χ2

2n,1−α

LCL = 0

Test function: t(x1, ..., xn) = 1
n

n∑
i=1

(xi − θ̂2)

(22)

The average run length (ARL) tell us, for a given situation in the distribution, how long

on the average we will plot successive control chart points before we detect a point beyond

the control chart. The ARL from the chart in (22) for this negative exponential distribution

is

ARL =
1

P (χ2
2n ≥ θ̄1

θ1
χ2

2n,1−α − 2n(θ2−θ̂2)
θ1

)
.

We performed a simulation to study the ARL with respect to location (θ2) shift and scale

(θ1) shift. With sample size n = 5 and in-control parameter values θ̄1 = 1.0 and θ̂2 = 0, the

following table display show the resulting ARL.
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Table 9. ARL for the mean and location shifts.

θ2 = 0 θ2 = 0.2 θ2 = 0.5 θ2 = 1.0 θ2 = 2.0 θ2 = 3.0

n = 5

θ1 = 1.0 370.37 258.01 151.41 64.03 13.06 3.43

θ1 = 1.2 76.26 57.57 38.10 19.65 5.91 2.23

θ1 = 1.5 17.83 14.57 10.84 6.79 2.97 1.57

θ1 = 2.0 5.01 4.42 3.68 2.77 1.71 1.22

θ1 = 2.5 2.66 2.44 2.17 1.80 1.34 1.10

θ1 = 3.0 1.87 1.76 1.62 1.44 1.18 1.05

n = 10

θ1 = 1.0 370.37 204.90 87.36 23.55 2.97 1.09

θ1 = 1.2 50.63 32.81 17.69 7.00 1.78 1.03

θ1 = 1.5 9.25 6.98 4.71 2.67 1.26 1.01

θ1 = 2.0 2.53 2.20 1.81 1.40 1.06 1.00

θ1 = 2.5 1.51 1.40 1.27 1.13 1.02 1.00

θ1 = 3.0 1.21 1.16 1.11 1.05 1.00 1.00

We have several conclusions drawn from the results in Table 9:

1. The ARL is strictly decreasing when either one of θ1 and θ2 or both increase. This density

control chart is with rapid detection of large shifts in the process level.

2. The rapidity in increases of θ1 and θ2 are significantly different. The above results reveals

that the detection of process out of control is not very sensitive when there is only location

change.

3. When sample size n increases the ARLs are decrease that reflect the efficiency of statistical

inferences for large sample sizes.

Example 4.2. Monitoring the semiconductor manufacturing process often involves a char-

acteristic having non-normal distribution. Levinson and Polny (1999) studied a particle

counts data generated from an Applied Materials etcher. This is data of size 48. For this

data and its generation in detail, see Levinson and Polny (1999). They fitted the data with a

χ2 test and showed that the three-parameter gamma distribution with following probability
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density function

f(x, θ1, θ2, θ3) =
1

Γ(θ3)θ
θ3
1

(x− θ2)
θ3−1e

−x−θ2
θ1 , x ≥ θ2

with mean µ = θ1θ3 + θ2 is appropriate to explain the this characteristic of particle counts.

In their study, the maximum likelihood estimates of distribution parameters are θ̂1 =

222.32, θ̂2 = 34 and θ̂3 = 1.172. The control limits for the Shewhart control chart of µ

with n = 1 are [−362.63, 951.79], and it has a serious problem since negative particles do

not exist.

With the fact that the value of θ̂3 is close to 1, the negative exponential distributions in (20)

may provide a simpler family to explain the particle counts. To investigate this conjecture,

we set hypothesis H0 for assuming that X follows the negative exponential distribution and

perform the χ2 test with cell classification identical to Levinson and Polny (1999) that leads

to p-value 0.2466 and the K-S test that leads to p-value 0.7889. Both tests support the use

of a negative exponential distribution.

We divide the data into 12 samples of size n = 4 and compute the density control chart

of (21) that yields the lower control limit and the sample values of the test statistic function

listed in the following tables and the log-density control charts in Figure 18 and 19.

Table 10. Lower control limit and sample values of the test statistic function

Control limit (×10−10) L(x1, .., x4, θ̂1, θ̂2)(×10−10)

LCL = 0.000115

0.158882 0.000014 0.025054 0.657089

0.003889 0.000107 0.067155 0.22817

0.005071 0.019951 0.621203 1.898203

This shows that samples numbered 2 and 6 are out of control. Although the density

control only uses only one test statistic to monitor the process quality, however, we still can

decompose the variability of each sample point into elements (for example, mean shift and

variation shift) that may be explained by the classical Shewhart control charts (X̄ and R

charts). For this purpose, we consider the chi-square chart of (22) for explain.

After revised the control limit, the upper control limit of the chi-square chart of (22) is

UCL = 401.83. By denoting v = 1
n

∑
i=1

(xi − x(1)) and u = x(1) for the chart in Figure 20,

variable v measures the variation of the sample and the distance between u and θ̂2 measures
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Figure 18: Log-density control chart for Particle Count
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Figure 19: Log-density control chart for Particle Count, revised limit
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Figure 20: χ2 control chart for negative exponential distribution.
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its location shift. Hence the diagonal line with axes u and v defined from the equation

v + (u− 35.5) = 401.83

represents a control limit to monitor the location and variation. Any sample point (x1, ..., xn)′

with values u and v lying above the diagonal line is classified as an out of control point and

we can tell if it is caused by the location shift and/or the variation shift. We would like a

sample point (x1, ..., xn)′ with value u = x(1) to be close to θ̂2 = 35.5. Then when this u

deviates sufficiently from the line u = 35.5, this indicates that this is due to a location shift.

We also would like the variability v to be as close to zero as possible. If this sample point

is out of the diagonal line and its position deviates sufficiently from the horizontal line, this

indicates that is caused by the variation. We plot the sample values of u and v for these 12

samples and the diagonal line in Figure 21.

There are two out of control sample points, numbered 2 and 6 with (u, v) = (207.0, 383.5)

and (334.5, 175.9) respectively, indicated both with location shift and variation shift. This

figure is interesting for that we may detect the shifts shown in various classical Shewhart

control charts.2
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Figure 21: χ2 control chart for Particle Count, revised limit
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4.3 Approximate Density Control Charts

We now revise the approximate HDS test to construct control chart. There are some reasons

for the need to construct approximate density control chart. First, when we treat the density

function L(X, f0) as a random variable, the quantile point `(f0) of (15) is not easy to be

derived for some reasons such as that the distribution of random density L(X, f0) is not

known. This leads to the fact that the exact density control chart is not attainable. Some

other lifetime characteristics are the examples of this type. Second, when we deal with

random variables having discrete distributions, to construct density control chart is more

convenient through the approximation methods.

Let X1, ..., Xn be a random sample from the distribution that H0 : f = f0 is true, where

f0 = f(x, θ1, ..., θp). We derive a technique of approximate density control chart through (9)

in section 4.1. If both E[ln f0(X)] and V ar[ln f0(X)] exist, we choose a constant `(f0) such

that

1− α = Φ(
n−1ln `(f0)− E[ln f0(X)]√

n−1V ar[ln f0(X)]
), (23)

where Φ is the distribution function of the standard normal distribution. From (23), an
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approximate density control chart is

LCL = en{E[ln f0(X)]+zα

√
n−1V ar[ln f0(X)]}

Tracking variable: L(x, f0)

In the same way, let θ̄1, ..., θ̄p be the estimates of these parameters, respectively, from the m

samples. Then an approximate density control chart has the framework as

LCL = en{E[ln f(X,θ̄1,...,θ̄p]+zα

√
n−1V ar[ln f(X,θ̄1,...,θ̄p]}

Tracking variable: L(x, θ̄1, ..., θ̄p)
(24)

For given observation x, if its density value L(x, θ̄1, ..., θ̄p) lies below the lower density control

limit LCL of (24), then this observation is suspicious to be generated from a process of

statistical out of control. We explain this approach with an example.

It is of interest to compare the exact and approximate density control charts in simula-

tion. We compute the average run length (ARL) for this comparison. Assuming that the

characteristic has a normal distribution N(µ, σ2) with in-control mean ¯̄x = µ0 and standard

deviation s̄ = σ0. From the exact chi-square control chart in previous Section 4.2.2, we may

see that the ARL when the underlying normal distribution has mean µ and variance σ2 is

ARLexact =
1

P

(
χ2

n,ncp=
n(µ−µ0)2

σ2

≥ σ2
0χ2

n,1−α

σ2

) .

On the other hand, the approximate density control chart for normal distribution may be

formulated as

LCL = −n
2
log(2πσ2

0)− n
2

+ z1−α
n√
2n

Test statistic function: − n
2
log(2πσ2

0)−
n∑

i=1
(xi−µ0)2

2σ2
0

We may derive the ARL for this approximate density control chart as

ARLAppro =
1

P (χ2

n,ncp=
n(µ−µ0)2

σ2

≥ σ2
0

σ2 (n−
√

2nz1−α))

We let 1−α = 0.9973 and µ0 = 0 and σ0 = 1 for computing the two ARL’s. The results are

displayed in the following tables.
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Table 11.


ARLexact

ARLappro


 for normal distribution (n = 5).

µ = 0 µ = 0.5 µ = 1.0 µ = 2.0 µ = 3.0

σ = 1.00


370.37

59.01





91.75

20.88





12.10

4.61





1.34

1.12





1.00

1.10




σ = 1.25


25.07

8.62





13.75

5.61





4.83

2.64





1.30

1.12





1.01

1.10




σ = 1.50


6.61

3.41





4.99

2.81





2.85

1.90





1.25

1.12





1.01

1.00




σ = 2.00


2.11

1.58





1.96

1.51





1.65

1.35





1.17

1.09





1.02

1.01




σ = 2.50


1.40

1.22





1.37

1.20





1.29

1.16





1.11

1.06





1.03

1.01




σ = 3.00


1.18

1.10





1.17

1.09





1.14

1.08





1.07

1.04





1.02

1.01




The ARLs for the approximate density control chart are all smaller than the corresponding

ARLs of the excat density control chart. Although we choose 1−α = 0.9973 for constructing

both exact and approximate density control charts, their actual probability of type I errors

are actually equal to 0.0027 only for the excat density chart where the approximate density

control chart has relative larger probability of type I error than 0.0027.

4.3.1 Approximate Binomial Density Control Charts

When a quality characteristic is not a numerical variable, we usually classify each item in-

spected as either defective or nondefective to the specifications on that quality characteristic.

Quality control charts for this type of characteristic are called the attributes control charts.

Among them, one is dealing with number of defects observed, and it is called the np chart.

We may analogously develop an approximate density control chart on number of defects.

Suppose that now we have a random sample X1, ..., Xn from Bernoulli distribution. The
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joint pdf of the sample is

L(x, p) = p
∑n

i=1 xi(1− p)n−∑n
i=1 xi ,

and then

E[lnf(X, p)] = (1− p)ln(1− p) + pln(p)

V ar[lnf(X, p)] = p(1− p)(lnp− ln(1− p))2.

Suppose that we have a training sample of m groups of sample size n from a statistical in

control process. Let p̂j be the sample mean of the j-th group. We then denote p̄ = 1
m

∑m
j=1 p̂j.

The framework of an approximate density control chart is

LCL = en{E[lnf(X,p̄)]+zα

√
n−1V ar[lnf(x,p̄)]}

Tracking variable: L(x, p̄)

4.3.2 Approximate Gamma Density Control Charts

Although the use of an exponential distribution to monitor the lifetime data makes the sta-

tistical inferences very simple, however, the applicability of this distribution is fairly limited

due to the reason that its hazard function is a constant. There are some other distributions

useful for lifetime data analysis, for examples, the Gamma, Weibull and Extreme value dis-

tributions. We consider one of them for constructing its density control chart. Suppose that

we have a random sample X1, ..., Xn drawn from a Gamma distribution Γ(θ1, θ2) with pdf

f(x, θ1, θ2) =
1

Γ(θ1)θ
θ1
2

xθ1−1e
− x

θ2 , x > 0.

This distribution fits variety of lifetime data adequately. It also arises in some situations

involving the exponential distribution. When we are considering construction of density

control chart for Gamma random variable, the fact that the distribution of the random

density f(X, θ1, θ2) is not easy to solve leads us to consider an approximate one. The joint

pdf of the random sample is

L(x, θ1, θ2) =
1

(Γ(θ1))nθnθ1
2

(πn
i=1xi)

θ1−1e
−

∑n
i=1 xi
θ2 .

By letting

m1(θ1, θ2) = E[lnf(X, θ1, θ2)]
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and

m2(θ1, θ2) = E[(lnf(X, θ1, θ2))
2],

we have

m1(θ1, θ2) = −ln(Γ(θ1))− θ1ln(θ2) + (θ1 − 1)E(ln(X))− θ1

and

m2(θ1, θ2) = [ln(Γ(θ1))]
2 + θ2

1[ln(θ2)]
2 + (θ1 − 1)2E[(ln(X))2] + θ1 + θ2

1 + 2θ1ln(θ2)ln(Γ(θ1))

−2ln(Γ(θ1))(θ1 − 1)E(ln(X)) + 2ln(Γ(θ1))θ1 − 2θ1ln(θ2)(θ1 − 1)E(ln(X))

+2θ2
1ln(θ2)− 2 (θ1−1)

θ2
E[Xln(X)].

We further let

V ar(θ1, θ2) = m2(θ1, θ2)− (m1(θ1, θ2))
2.

In the same way, we assume that we have a training sample of m groups of size n from the

statistical in control distribution, and E(ln(X)), E[(ln(X))2], and E[Xln(X)] are not easy

to compute. Then we may let

=

θ1=
1
m

∑m
j=1 θ̄1j

=

θ2=
1
m

∑m
j=1 θ̄2j

=

E (ln(X)) = 1
mn

∑m
j=1

∑n
i=1 ln(xij)

=

E [(ln(X))2] = 1
mn

∑m
j=1

∑n
i=1(ln(Xij))

2

=

E [Xln(X)] = 1
mn

∑m
j=1

∑n
i=1 xijln(xij).

The framework of an approximate Gamma density control chart may be derived as the

following:

LCL = en{m1(
=
θ1,

=
θ2)+z1−α(n−1V ar(

=
θ1,

=
θ2)1/2}

Tracking variable: L(x,
=

θ1,
=

θ2)
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5 Future Study

5.1 Nuisance Parameters

Let θ = (θ1, θ2)
′ be a vector of parameters in the statistical model. We assumed that θ1 is

the parameter of interest and θ2 represents the nuisance parameter. It has received much

attention for testing hypothesis about θ1 with θ2 leaving unknown. For the examples in

section 3.2 and 3.3, the null hypotheses are the cases that one parameter is tested and the

other parameters are assumed to be known. In fact, these cases are not very common in

the multiple parameter problems. Similarly, the HDS test may be revised to deal with this

hypothesis testing with nuisance parameter problems.

By the definition, phd =
∫{

x:
L(x,θ1,θ2)

L(xo,θ1,θ2)
≤1

} L(x, θ1, θ2)dx, and xo is the observation. We have

some possible solutions as followings:

(i)
∫{

x:
L(x,θ1,θ̂2)

L(xo,θ1,θ̂2)
≤1

} L(x, θ1, ∗)dx, where * could be any assigned value.

(ii)
∫{

x:
L(x,θ1,θ̂2(x))

L(xo,θ1,θ̂2(x))
≤1

} L(x, θ1, θ̂2(x))dx.

(iii) supθ2

∫{
x:

L(x,θ1,θ2)
L(xo,θ1,θ2)

} L(x, θ1, θ2)dx.

5.2 Significance Test for Hypothesis of Distribution Function

We have discussed the HDS test for exponential random variables. That is, we have a

random sample Y1, ..., Yn with the corresponding observations y1, ..., yn to test hypothesis

H0 : Y ∼ Exp(1). In this case, the p-value of the HDS test is

phd = P (
∏n

i=1 e−Yi ≤ ∏n
i=1 e−yi)

= P (
∑n

i=1 Yi ≥
∑n

i=1 yi)

= P (Γ(n, 1) ≥ ∑n
i=1 yi)

where Γ(n, 1) is a random variable with Gamma distribution Gamma(n,1).

Thus we may extend the test based on joint pdf to product of distribution functions.

Suppose we have a continuous random variable with distribution function, Fθ(x). It is known

that the random variable Fθ(X) is a uniform random variable where θ is true parameter
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with distribution U(0, 1). Then, −lnFθ(X) and −ln(1 − Fθ(X)) both have exponential

distribution Exp(1). Let X1, ..., Xn be random variables with identical distribution function

Fθ, and x1, ..., xn represent the sample observation. We may define a new significance test

for hypothesis H0 : X ∼ Fθ with p-value as

pF = P (
n∏

i=1

e−lnFθ(Xi) ≤
n∏

i=1

e−lnFθ(xi))

or

pF = P (
n∏

i=1

e−ln(1−Fθ(Xi)) ≤
n∏

i=1

e−ln(1−Fθ(xi)))

Thus,

pF = P (
n∑

i=1

−lnFθ(Xi) ≥
n∑

i=1

−lnFθ(xi))

= P (Γ(n, 1) ≥
n∑

i=1

−lnFθ(xi))

or

pF = P (Γ(n, 1) ≥
n∑

i=1

−ln (1− Fθ(xi))).

If we invert the former pF above to construct confidence interval, the result is analogous

to the confidence interval by pivotal-quantity method (Mood, 1974), which could provide

another approach to determine the confidence interval.

Obviously, it is doubted that the application of HDS test in goodness-of-test could not work

better than Kolmogorov-Smirnov goodness-of-test, but HDS test is an exact result. We need

more works on this part in the future. In Kolmogorov-Smirnov Goodness-of-test, the asymp-

totic p-value is 1 − H(
√

n sup
−∞<x<∞

|Fn(x) − Fθ(x)|), where H(t) = 1 − 2
∞∑

j=1

(−1)j−1e−2j2t2 .

Thus, we can also compare the K-S test to our new test.

There is also another question to decide one from above two versions of p-value. We have

to develop an unified theory and perform a simulation study.

5.3 Incomplete Data

Missing or incomplete data frequently happens in many statistical applications, and the

practitioners are usually supported by ad hot methods such as case deletion or imputation.

Omitting or deletion could lead to discard large amounts of information or bias. For example,

the EM algorithm would be the most popular method of point estimation, which is composed
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with E-step and M-step. The iterative algorithm is frequently applied for simulating multiple

imputations of missing values, and then it will lead to hypothesis test or interval estimation.

Here we will propose another approach for incomplete data via the viewpoint of highest

density. The simple cases of bivariate normal random variables are considered, and only some

observations are incomplete. Let X1, X2, ..., Xn be independently drawn from Nk(µ, Σ). Now

the p-value for the HDS test in this case is

phd = P (
n∏

i=1

(2π)−k/2|Σ|−1/2e(Xi−µ0)
′
Σ−1(Xi−µ0) ≤

n∏
i=1

(2π)−k/2|Σ|−1/2e(xi−µ0)
′
Σ−1(xi−µ0))

= P (χ2
nk ≥

n∑
i=1

(xi − µ0)
′
Σ−1(xi − µ0))

We may modify the complete data model shown above to the case of incomplete model by

replacing the joint pdf with the marginal density.

Besides, the lost follow-up is another case of incomplete data such as censoring in survival

analysis. In parametric model of survival analysis, the likelihood function of right censored

data is defined as L(θ, x) =
k∏

i=1

fθ(xi)
c∏

j=1

(1− Fθ(xi)), where i is in the set of complete data

and j is in the set of censored data. According to the definition of HDS test, the p-value of

HDS test H0 : θ = θ0 for survival analysis can be expressed as

phd = P (
k∏

i=1

fθ0(Xi)
c∏

j=1

(1− Fθ0(Xj)) ≤
k∏

i=1

fθ0(xi)
c∏

j=1

(1− Fθ0(xj))).

We need further study this HDS test.
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Appendix: p-values for Binomial HDS Test

Table A.1. p-value for binomial distribution under H0 : p = 0.5 (n = 2, ..., 5).

x n = 2 3 4 5

0 0.5 0.25 0.125 0.0625

1 1 1 0.625 0.375

2 1 1

Table A.2. p-value for binomial distribution under H0 : p = 0.5 (n = 6, ..., 10).

x 6 7 8 9 10

0 0.0313 0.0156 0.0078 0.0039 0.0020

1 0.2188 0.1250 0.0703 0.0391 0.0215

2 0.6875 0.4531 0.2891 0.1797 0.1094

3 1 1 0.7266 0.5078 0.3438

4 1 1 0.7539

5 1

Table A.3. p-value for binomial distribution under H0 : p = 0.5 (n = 11, ..., 15).

x n = 11 n = 12 13 14 15

0 0.0010 0.0005 0.0002 0.0001 0.0001

1 0.0117 0.0063 0.0034 0.0018 0.0010

2 0.0654 0.0386 0.0225 0.0129 0.0074

3 0.2266 0.1460 0.0923 0.0574 0.0352

4 0.5488 0.3877 0.2668 0.1796 0.1185

5 1 0.7744 0.5811 0.4240 0.3018

6 1 1 0.7905 0.6072

7 1 1
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Table A.4. p-value for binomial distribution under H0 : p = 0.5 (n = 16, ..., 20).

x 16 17 18 19 20

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0005 0.0003 0.0001 0.0001 0.0000

2 0.0042 0.0023 0.0013 0.0007 0.0004

3 0.0213 0.0127 0.0075 0.0044 0.0026

4 0.0768 0.0490 0.0309 0.0192 0.0118

5 0.2101 0.1435 0.0963 0.0636 0.0414

6 0.4545 0.3323 0.2379 0.1671 0.1153

7 0.8036 0.6291 0.4807 0.3593 0.2632

8 1 1 0.8145 0.6476 0.5034

9 1 1 0.8238

10 1

Table A.5. p-value for binomial distribution under H0 : p = 0.5 (n = 21, ..., 25).

x n = 21 n = 22 23 24 25

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0002 0.0001 0.0001 0.0000 0.0000

3 0.0015 0.0009 0.0005 0.0003 0.0002

4 0.0072 0.0043 0.0026 0.0015 0.0009

5 0.0266 0.0169 0.0106 0.0066 0.0041

6 0.0784 0.0525 0.0347 0.0227 0.0146

7 0.1892 0.1338 0.0931 0.0639 0.0433

8 0.3833 0.2863 0.2100 0.1516 0.1078

9 0.6636 0.5235 0.4049 0.3075 0.2295

10 1 0.8318 0.6776 0.5413 0.4244

11 1 1 0.8388 0.6900

12 1 1
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Table A.6. p-value for binomial distribution under H0 : p = 0.5 (n = 26, ..., 30).

x n = 26 n = 27 28 29 30

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.0001 0.0000 0.0000 0.0000 0.0000

4 0.0005 0.0003 0.0002 0.0001 0.0001

5 0.0025 0.0015 0.0009 0.0005 0.0003

6 0.0094 0.0059 0.0037 0.0023 0.0014

7 0.0290 0.0192 0.0125 0.0081 0.0052

8 0.0755 0.0522 0.0357 0.0241 0.0161

9 0.1686 0.1221 0.0872 0.0614 0.0428

10 0.3269 0.2478 0.1849 0.1360 0.0987

11 0.5572 0.4421 0.3449 0.2649 0.2005

12 0.8450 0.7011 0.5716 0.4583 0.3616

13 1 1 0.8506 0.7111 0.5847

14 1 1 0.8555

15 1
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