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Regression Analysis for Bivariate Failure-Time

Data under Three Types of Data Structures

Student: Jin-Jian Hsieh Advisor: Weijing Wang

Institute of Statistics, National Chiao Tung University

ABSTRACT

Bivariate survival analysis has received substantial attentions due to its wide
applications. The variables of interest may represent failure times occurred to two
different biological units or different event times measured from the same subject. In
the latter situation, the two failure times may have censoring or truncation relationship
which complicates statistical analysis. The thesis contains two projects, both of which
consider regression analysis for bivariate survival data.

The first project focuses on semi-competing risks data in which a terminal event
censors a non-terminal event. In particular we investigate how covariates affect the
marginal distribution of the time to a non-terminal event subject to dependent
censoring. Most existing methods utilize the technique of artificial censoring to
remove the sampling bias. However these approaches may result in efficiency loss
and may not be robust under model mis-specification. We propose a two-stage
procedure to tackle this problem. We also propose model selection methods to verify
the two main assumptions. Large-sample properties are also proved. Numerical
analysis is performed to evaluate finite-sample performances of the proposed
methods.

In the second part of the thesis, we consider the situation that covariates may
affect the level of association. We propose a flexible regression model and then
develop a unified inference procedure which can be applied to three different types of
data structures. For this part, we also present a model checking method for assessing
the appropriateness of the Clayton assumption. Large-sample analysis and numerical
studies are also presented.

Keywords: Archimedean copula; Bivariate failure-time; Clayton model; Dependent
censoring; Dependent truncation; Kendall's tau; Local odds ratio; Multiple events data;
Semi-competing risks data; Transformation model.
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Chapter 1. Introduction

Many biomedical studies involve analysis of multiple events. In recent years, the tech-
niques of multivariate survival analysis have been applied to analyze various types of
event-time data. Here we consider the bivariate case. Let (71,7%) be a pair of failure
times which are possibly correlated. Traditionally (77, 75) refer to the failure times of
different biological units such as twins, family members or paired organs on the same
person. In the past few years, applications have been extended to include variables
which have censoring or truncation relationship. Semi-competing risks data provide an
example in which a terminal variable, such as death, may censor a non-terminal variable
such as disease progression but not vice versa. The recent paper by Chaieb et al. (2006)
discusses another situation in which one variable truncates the other. They consider an
example of transfusion-related AIDS in which subjects were observed only if they had
developed AIDS during the study period which lasted for 102 months. The example
records the infection time (), measured from the beginning of the study, and the in-
duction time (77), from infection to AIDS, in months. Setting T, = 102 — S, subjects
are observed only if 77 < T,. See Figure 1-1 for illustration. Hence the induction time
T is subject to right truncation by 75. Although it seems that 77 and T5 should be
independent, dependence between the two variables was discovered by Tsai (1990) and
later researchers including Chaieb et al. (2006) and Emura et al. (2007). One possible
explanation of the dependence is that the medical practice for HIV-infected patients
may be different in different calendar years.

Statistical inference methods should account for the underlying data structures.
However for analysis of multiple event data, the possibility of dependent censoring or
truncation complicates subsequent statistical analysis. In the thesis, we are interested
in studying the covariate effects on either the marginal distributions or the dependence

structure based on multiple event data of various types. This article contains two dif-
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Figure 1-1: Illustration of AIDS data.

ferent projects. In the first part, we consider marginal regression analysis based on
semi-competing risks data. The challenge of statistical inference is that the regression
effect of interest can only be analyzed in presence of dependent censoring. In the second
part, we propose a model which describes how covariates affect the level of associa-
tion between the two failure times of interest. We aim to develop a unified inference
procedure which can handle the three different data structures mentioned above.
Chapter 2 reviews the model assumptions and data structures that will be considered
in both projects. Chapter 3 focuses on the first project on marginal regression analysis.
Section 3.1~3.3 review related literature and our main results are stated in Section 3.4.
Chapter 4 considers the second project about the regression analysis for association.
Section 4.1~4.3 provides the background information and the review of related literature.
The main results are summarized in Section 4.4. In Chapter 5, we give some concluding

remarks and discuss possible future research directions.



Chapter 2. Literature Review

We first introduce useful model assumptions for describing the association between two
failure time variables. Then, we examine three types of data, namely typical bivariate
data, semi-competing risks data and truncation data, which will be considered in the

thesis.

2.1. Copula Models and Archimedean Copula Models

Copula models are often used to describe the association between two failure time vari-
ables. In the book by Nelsen (2006), ” An Introduction to Copulas”: From one point a
view, copulas are functions that join or ”copulas” multivariate distribution functions to
their one-dimensional marginal distribution functions. Alternatively, copulas are multi-
variate distribution functions whose one-dimensional margins are uniform on the interval
(0,1). For the bivariate case, a copula function can be written as C(u, v), which may be
parameterized as C,(u,v) such that C,(.,.) : [0,1]* — [0, 1] and
(i) Cu(0,u) = Cyu(u,0) = 0 and Cy(1,u) = Cy(u, 1) = u for all u € [0, 1]; and
(i) Colug,v2) — Cylug,vy) — Colug, v1) + Coluy,v1) > 0 for all uy, us, v1, ve in I such
that uy < wu; and ve < 2.

The Archimedean copula (AC) family is a popular subclass of the copula family. A
copula is said to be ” Archimedean copula” (AC) if it can be expressed in the following

form
Ca(u,v) = 93 {Pa(u) + ¢alv)}, (1)

where ¢, : [0, 1] — [0, 00| satisfying ¢o(1) = 0, ¢, (t) < 0 and ¢”(t) > 0. Note that the
AC family simplifies the bivariate relationship via the univariate function ¢,(-). The
function ¢, () is called the generator of the copula. Important properties of AC models
have been derived in Genest and MacKay (1986), Oakes (1989) and Genest and Rivest
(1993).

Now, we introduce some commonly-seen examples of Archimedean copulas.



Example (a): the Clayton copula (1978), where the generator function is ¢, (t) = (£~ —

1)/(a — 1) for some (o > 1) and
Colu,v) = {ul ™ 0= — 1}/,
Ezample (b): the Frank copula (1979), where ¢,(t) = log[(1 —a)/(1—a!)] (o > 0) and
Co(u,v) = log, {1+ (a" — 1)(a” — 1)/(a — 1)}.
Ezample (c): the Gumbel model (1960), where ¢ () = {—log(t)}°*! (a > 0) and
Calu, v) = exp{—[(—log(w))**" + (= log(v))**1]/**V}.

When C(u,v) = uv, we have the product copula or independent copula.

Example (d): the Gumbel-Barnett copula, where ¢,(t) = log(1 — alog(t)) « € (0, 1].
Co(u,v) = uv exp{—alog(u) log(v)}.

In applications, the copula structure is usually imposed on the survival function of

bivariate failure times (77, 73) such that one can write
Pr(Ty > 5,15 > t) = Co.{Pr(Ty > s),Pr(1y > t)}. (2)
Accordingly an AC model defined on the joint survival function can be written as
Pr(Ty > 5,15 > t) = ¢, {¢a(Pr(T} > 5)) + ¢o(Pr(Th > t))}.

The AC family has nice analytic properties which are useful for further statistical infer-
ence.
Global association between (77, T%) can be summarized by Kendall’s tau, denoted as

7, which is defined as

T = Pl"{(TM — le)(Tgi - ng) > 0} — PI‘{(TM — le)(TQZ' — TQj) < 0}, (3)



where (T3;,Ty;) and (11;,T%;) (¢ # j) are two independent pair of (77,7%). Note that
7 = 0, if T} and Ty are independent; 7 > 0, if T} and T, are positively correlated;
7 < 0, if T1 and T, are negatively correlated. Kendall’s tau has a nice property of
rank invariance. For a copula model indexed by C,(+,-), the association parameter « is

related to Kendall’s 7 such that

7= 4/01 /01 Coo (1, ) Con(du, dv) — 1. (4)

Here we give some examples. For the Clayton model, 7 = (o — 1)/(a + 1); for the
Gumbel model, 7 = a/(a + 1); and for the Frank model, 7 = 1 + 4y~'{D;(y) — 1},

v = —log(a) and for integer k > 1, Dy is the Debye function defined by

k(7 ¢
Di(y) = = dt.
k(7) v: /0 o=

For describing local association, Oakes (1989) proposed the following cross ratio

function
Pr(Ty > s,Ty > t)DsDiPr(Ty > s,T» > t)
0(s,t) = , (5)
{DSPI'(Tl > S,Tg > t)}{DtPI"(Tl > S,TQ > t)}

where D, denotes the operator —d/ds. This function has an intuitive interpretation as
the ratio of the hazard rate of the conditional distribution of 7}, given T, = ¢, to that
of Ty, given Ty > t. Specifically it follows that

)\1(S|T2 = t)
0(s,t) = ————= 6

<S’ ) A1<S|TQ > t)7 ( )
where A;(s|A) is the hazard of 77 at time s given that event A occurs. The cross
ratio function for an AC model possesses some nice analytic properties. Oakes (1989)

showed that, for an AC model indexed by ¢,(), 8(s,t) depends on (s,t) only through
Pr(T} > s,T5 > t) such that

0(s,t) = 0,(Pr(Ty > 5, Ty > t)), (7)



where 0,(v) = —vé. (v)/¢, (v). The different expressions of (s, t) are useful in subse-
quent inference problems. For example equation (7) provides a semi-parametric expres-
sion of 0(s,t) in terms of a and Pr(7} > 5,7, > t) which can be analyzed nonparamet-

rically.

2.2. Different Types of Data Structures

In the thesis, we aim to study (77,7T») which, besides their association, may have cen-
soring or truncation relationship due to the restriction of the observational scheme. To
simplify the analysis, we assume that 7} (k = 1,2) are continuous random variables.

Define the following two regions: Ry = {(s,t) : 0 < s < 00,0 < t < oo} and
Ry = {(s,t) : 0 < s <t < oo}. The following three types of data structures will be
considered in the thesis.

Data Structure 1 - Typical bivariate failure time data. The failure times (7}, T5) have
no specific relationship and hence observations fall in the region of Ry;

Data Structure 2 - Semi-competing risks data. The time to the non-terminal event,
Ty, is subject to censoring by the time to the terminal event 75. One can observe
(Ty N1y, T, I(T7 < T5)) and the first two variables fall in R»;

Data Structure 3 - Truncation data. Let T be subject to right truncation by 75 or 75
subject to left truncation by 7} such that one can only observe replications of (77, 75)
with T} < T5 which are also located in Rs.

In Figure 2-1, hypothetical data from the three data types in absence of external cen-
soring are plotted.

Examples of the first type may be found in studies of twins or paired organs on
the same person. The study of association between the time of disease progression and
survival usually encounters the second type. The example of transfusion-related AIDS
mentioned earlier belongs to the third type.

Now we briefly discuss the difference of the latter two types of data which look similar
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Figure 2-1: (a): Typical bivariate data; (b): Semi-competing risks data;

(c): Truncation data.

at the first glance. For semi-competing risks data, observations with 7} > T, can be
identified and only their exact locations on the plane are uncertain. For truncation data,
in contrast, we have no information for observations with (77,75) € {(s,t) : 0 <t < s <
oo} and even whether they exist is unknown.

In Chapter 3, we will consider marginal regression analysis based on semi-competing
risks data in which 77 is subject to dependent censoring by 7,. In Chapter 4, we
consider association study under a general framework which includes all the three types
of data structures discussed above. We aim to study the regression effect on the level
of association by developing a unified inference procedure that can handle all the three

data structures.



Chapter 3. Regression Analysis for Marginal Effect
Based on Semi-Competing Risks Data

3.1. Model Framework and Data Structure

Let T be the time to the non-terminal event of major interest, usually a status of disease
progression, 15 be the terminal event, such as death. The name of ”semi-competing
risk” proposed by Fine et al. (2001) explains the fact that 75 is a competing risk for 7}
but not vice versa. Such a phenomenon has been analyzed by many researchers under
the framework of a multi-state model. Figure 3-1 depicts a simple three-state model,
also called as a ”disability model” or an ”illness-death” model. We refer state 1 as
the initial state; state 2 as the state of disease procession (i.e. occurrence, recurrence,

complications, metastases,..., etc.) and state 3 as the absorbing state such as death.

Initial State »| Disease Progression

v
Death

Figure 3-1: Illness-death model.

Since (77, Tz) usually represent two types of failure times on the same subject, we
may assume that they are both subject to a common external censoring variable denoted
as C. Assume that C' is independent of (77, 75). Under right censoring, semi-competing

risks data (Fine et al., 2001) consist of (Xj, d1;, Y, 2;), where
X:Tl/\TQ/\O, Yv:T’g/\C(7 (51 :I(Tl STQ/\C) and 52:I(T2 S C) (8)

10



3.2. Marginal Regression Model on the Non-terminal Event

The major goal of the first project is to assess the covariate effect on the non-terminal
event time, 77, based on the data (Xj,Y;, 01,09, Z;). The following regression model
will be considered:

h(Ty) = —ZT9+E, 9)

where Z is the p x 1 discrete covariate vector, 6 is the p x 1 parameter vector, h(t) is
a monotone function and ¢ is the error term. The parameter 6, which measures the
covariate effect on 77, is of major interest.

Model (9) can be classified into two classes. One class assumes that A(t) is a known
monotone function but leaves the distribution of € to be unknown. For example, when
h(t) = t, the model becomes a location-shift model with T} = —Z%760 + . When h(t) =
log(t), the model follows an accelerated failure time Model such that log(7T}) = —Z70+-«.
The other class assumes that h(t) is unknown but the distribution of & is completely
specified. For example, when ¢ is the extreme value distribution, the model becomes the

Cox proportional hazard model such that
F1,z($) 5. Fl,O(x)eXp(ZTe)a

where Fy .(x) = Pr(11 > z|Z = z). When ¢ is the standard logistic distribution, the

model follows the proportional odds model with
logit(1 — Fy.(x)) = logit(1 — Fyo(z)) + 276.

The challenge of estimating 6 comes from the fact that 7} is subject to dependent
censoring by T5. In fact, the marginal distribution of 77 is not identifiable nonpara-
metrically. Therefore, besides the model assumption in (9), additional assumptions are
needed for estimation of 8. A popular approach is to model marginal regression ef-
fects on both T} and 75 and impose the assumption that the bivariate error variables,

after removing the marginal effects, do not depend on the covariates. This approach

11



has been adopted by many authors and the technique of artificial censoring is used to
construct unbiased estimating functions. For example, under a two-sample setting, Lin
et al. (1996) considered a bivariate location-shift model and Chang (2000) assumed a
bivariate accelerated failure time model. This research direction has been further ex-
tended to general regression settings in which the non-terminal event is generalized to
be recurrence events (Ghosh and Lin, 2003; Lin and Ying, 2003) while death still serves
as a terminal event. The technique of artificial censoring is used in these papers to han-
dle the problem of dependent censoring. Despite theoretically appealing, the degree of
artificial censoring affects the efficiency of the resulting estimator. Peng & Fine (2006)
extended the setting of Lin et al. (1996) to include multiple covariates, but proposed
a new technique of artificial censoring which can improve the efficiency loss. Besides
the drawback of the artificial censoring technique, the model assumptions are somewhat
restrictive. Specifically these methods implicitly assume that the dependence structures
for the two groups, or for all the levels of covariates, are the same. In other words, they
do not account for the situation that covariates may affect the dependence structure. In
Section 3.3, we review the aforementioned papers.

In Section 3.4, we present our proposed methodology for estimating # in presence of
dependent censoring. Our idea considers to model the dependence between T7 and T5
by an AC model for each covariate group. Then 6 can be estimated without imposing
additional regression model on T5. We propose model checking methods to verify the
appropriateness of the two types of model assumptions. Except for the modeling flexi-
bility, our approach can make use of the available data, compared to the methods which

require artificial censoring.

3.3. Inference Methods Based on Artificial Censoring

The definitions of T}, T, and C' have been given earlier. Let Z be the covariate. Usually

it is assumed that C' is independent of (77, 75) conditional on Z. We review four papers

12



which utilize the technique of artificial censoring to remove the bias due to dependent

censoring.

3.3.1. Location-Shift Model

Lin, Robins & Wei (1996) considered a simplified case with binary Z. Specifically Z
denotes the group indicator taking values of 0 or 1. The model assumed that there
exist some unknown constants #y and 7y such that the bivariate random vectors (7}; —
00Z;, To; — moZ;) (i = 1,2,...,n) are independently and identically distributed from an
unspecified joint distribution not depending on Z;. In other words, (7},7%) follow a
bivariate location-shift model but the underlying dependence structure is un-specified.
The main objective of their paper is to draw inference about 6y but it is easier to
obtain an estimator of 7 first since 7T is subject to independent censoring by C'. In fact
estimation of 7 has been well studied (Louis, 1981; Wei & Gail, 1983). By constructing
a log-rank statistic based on the transformed data {Y;(n), s, Z;} (i = 1,2, ...,n), where
Y;(n) = Y; — nZ;, an estimating function for 7, is given by
S I{Y;(n) = Yi(n)}Z;
> I{Y(n) > Yi(n)}

The estimator 7 is the solution to Uf(n) = 0. Because the random variable (Tb; —

Ut () =n='/? Z 02i[Z; — -
i=1

n0Z;) (i = 1,2,...,n) have the same distribution and because the censoring time C;
is independent of ¥; in each group, the statistic UL (n,) is asymptotically zero-mean
normal (Fleming & Harrington, 1991). Therefore, 7 is consistent and asymptotically
normal (Louis, 1981; Wei & Gail, 1983).

In order to construct a valid estimating function of 8y, under dependent censoring,

the authors suggested to transform X; and 6;; to X;(n,0) and 01;(n, #), where

Xi(0,m) = (Tuy—0Z) N (Ty —nZ; —d) N (C; —nZ; — d),

6u(0,m) = I{(Ty —0Z) < (Tos —nZ; —d) N (C; —nZ; — d)},

13



withd =0if 0 <npand d =60 —mnif 8 > n. Note that uncensored observations may
become censored ones after the transformation. The hypothetical variable (T}; — 07;)
can be “observed” as X;(#,n) in presence of two sources of censoring by (Th; — nZ; — d)
and (C; —nZ; — d) with d1,(A,n) being the associated failure indicator. The transformed
data {X;(0,n),01:(0,n), Z;} (i =1,2,...,n) become homogeneous when (8,7) = (6y, o).
In other words, the transformation makes the joint distribution of the two groups on the
upper wedge be the same. Consequently the following log-rank type estimating function

can be constructed

Uy (6,m) = nlﬂijgu(g’n)[zi 2 X0, > iv('G,n)}Zj]j

=1l Z?:l [{X] (97 77) > X;(0, 7))}

which is centred around 0 when (6,71) = (6y,m0). Hence, U¥(0,n) is a reasonable esti-
mating function.

The authors proposed a two-stage estimation procedure instead of solving the equa-
tions U/(6,n) = 0 (j = 1,2) jointly. Specifically they suggested to obtain 7 from U{" (1)
and then solve UL (6,7) = 0. Consistency and asymptotic normality of 0 are proved in

the paper.

3.3.2. Accelerated Failure-Time Model

The methodology of Chang (2000) can be applied to recurrence data. Here, we consider
the simple situation with no recurrence (i.e. K =1 in Chang (2000)). The notations in
Chang (2000) have been modified According to our setup. Let Z be the binary covariate
which is coded as Z; = 0 if subject ¢ is in group 1 and Z; = 1 if subject ¢ is in group 2.
For the bivariate accelerated failure time model, Chang assumed that there exist some
unknown constants 6y and 7y such that the bivariate random vectors (eeoZiTu, e”oZiTgi)
(1 =1,2,...,n) are independently identically distributed with an unspecified joint distri-
bution that is independent of Z;.

Estimation of 7 is quite standard. Louis (1981) and Wei and Gail (1983) considered

14



a log-rank-type estimating function for 7y based on the transformed data {(e"%1Y;, d5)}
(1=1,2,...,n) as follows:

_1/2252 Z {7y > en%iY ) Z;
o > H{en?iY; > enziyi} -

Again, the challenging part is in estimation of 6,. Motivated by Lin et al. (1996),
Chang (2000) suggested to re-scale the observed censoring time Y; by multiplying by
e"%i~v where v = max{0,n — 0}, in order to guarantee the value of nZ; — v no greater

than the value of 0Z; for each Z;. Therefore, the transformed data become

Xi(Q,n) = Y%T, A "%y,

517;(9, T]) = I{eeZiTli S e"Zi_”Yi}.

For a censored observation, e’#T}; must be larger than e7%~"Y; and therefore 6,;(6, n) =
0. However, an uncensored observation may be artificially censored because it is likely
that e?%/T}; may exceed €"%~"Y; after the transformation. The proposed estimating
function of @ based on the transformed data, (X;(8,7),01(60,7),Z:) (i = 1,2,...,n), is

given by

j S0 > X0.0)) 2,
e =N 1/2 1:\Y, i v
Gzn) 2 Ol = S s Xy

The resulting estimators denoted as (6, 7))’ which solve U (6, 7) = (US(n), US(0,1)) =

0. In Chang (2000), she showed the corresponding estimators are consistent and asymp-

totic normal.

3.3.3. Location-Shift Model by Pairwise Artificial Censoring

Peng & Fine (2006) proposed a method for estimating the marginal effect on 77 which
uses a new artificial censoring technique by pairwise ranking. Following Lin et al. (1996),

they assumed a bivariate model for (Ty;,Ty;), i = 1,2,...n: Ty; = 0L Z; + &1; and
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Ty = nt Z; + 9;. They also made the assumption that &; = (1;,6%)7 (i = 1,2,...,n)
are independently and identically distributed with an unspecified joint survivor function
not depending on Z;.

Because T5 is subject to independent right censoring by C, estimation of 7, reduces
to a classical estimation problem. A log-rank test (Wei et al. (1990); Tsiatis (1990)) has
been constructed based on &y(n) = Y; — n? Z;, which is the observed proxy of the true
error €q; if n = ng. It can be written as

> i1 1{E25(n) > €2i(n)}Z;
> i1 I{€05(n) > Eai(n)}

Ul () =n"'? 2522‘[22' 1
i=1

An estimator 7 is obtained as the solution of UY () = 0 which is consistent and asymp-
totically normal.

Different from the artificial censoring technique of Lin et al. (1996) and Chang
(2000), Peng & Fine (2006) proposed an alternative rank estimator which can reduce
the level of artificial censoring. Specifically they suggested to trim separately within
pairs of observations, say {(X;,Y:, 01,02, Z;i), (X, Y, 015,025, Z;)}. The artificial cen-
soring parameter is no longer fixed across pairs and does not involve the bounds on
the support of the covariate distribution. A different value is determined for each pair

using the covariate vectors Z; and Z;. The data transformation within the (7, j) pair is

{Xi(j) (B), 51,i(j) (8); Xj(i) (8), Sl,j(i) (8)}, where

Xipn(B) = (T —0"Z;) NM{Toi — 0" Zi — di(B)} N Ci — 0" Z; — di;(B)},

Orin(B) = I[(Twi =07 Z) < {To — 0" Z; — di(8)} AN Ci — 0" Zi — di;(B)}],

di;(8) = max{0, (0 — )T Z;, (0 —n)TZ;} and B = (67,77)T. The choice of d;;(3) ensures
that both X;(j)(8) and 01(;)(8) can be determined from the observed data. Because

d;; () is always no greater than d defined in §3.3.1, the level of artificial censoring can

be reduced the approach of Lin et al. (1996). Define ;;(8) = d1.i;)(3)I{Xi(8) <
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Xw(8)} = 6160 (B I{X;0)(8) < Xij(B)} and notice that (Z; — Z;)i;(B) is symmetric
in i and j. Because (Ty; — 08 Z;, To; — g Z;) and (Ty; — 08 Z;, To; — n¢ Z;) are independent
and with a common survival function on the upper wedge, 1;;(/5) has mean 0 at the true
value By = (6%, nd)T. This suggests the following U-statistic estimating equation

_2\/— Z Z Z ¢lj(ﬁ)

1<i<j<n )

It follows that that E{UX(8;)} = 0. Thus a reasonable estimator for , denote by

0, can be obtained by solving UF{(67,77)T} = 0. Furthermore, it is shown that 3 is

consistent and asymptotic normal.

3.3.4. Artificial Censoring under Flexible Regression Models

The manuscript by Ding, Wang, Hsieh & Shi (2006) extend the artificial censoring

technique to a flexible regression setting. They considered the following models:

hl(Tl) = GTZ—i—Sl

ho(T2) = TITZ+527 (10)

where hq(t) is a known monotone function, hy(t) is a monotone function which may
be known or unknown, ¢; (j = 1,2) are the error terms. It is assumed that (€15,€2:)T
(¢t = 1,...,n) are independently and identically distributed with an unspecified joint
survivor function not depending on Z;.

Consider the situation when hy(t) is known and the distribution of 5 is unknown.
Estimation of 7y is straightforward. Let Th(n) = hy(T2) — n7Z, C(n) = ho(C) — 7 Z

and Y;(n) = Ta(n) A Ci(n). The estimating function for  can be constructed as

_12 salzs - Dot 0500 2 Vi),

An estimator 7 is the solution of UP () = 0.
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Estimation of 6 faces a new challenge that involves specification of an appropriate
transformation that can handle the more general model assumptions. Let Ti(f) =
hi(Ty) — 67 Z. For semi-competing risks data, (T7,Ts) are observable only if T} < Tb.
Hence, T1(0) = hy(T)) — 07 Z is subject to censoring by

h(Ty) — 07 Z = hy o hy (Tu(n) + 17 2) — 67 Z. (11)

The goal is to find a transformation which makes the joint distribution of all covariate
groups on the upper wedge to be the same. Hence, equation (11) has to be hold for all

values of Z. Therefore, the authors suggested the following transformation
Hy,(t) = insf2 hiohy*(t +n'z) — 07z,
FAS]

where €2 is the set of possible Z. The resulting transformed variables become

Xi(0,m) = Tu(8) A Hopy(T2i(n) A Ci(n))

01(0,m) = H{Tu(0) < Hon(Toi(n) A Cim))}-
Figure 3-2 provides a graphical illustration of the transformation based on a simple

example with a binary Z, hi(t) = t, ho(t) = log(t), and 6y = 1y = 1. Accordingly, the

estimating function based on the above transformation can be written as

D n i n—l N : o Z?:l I{Xj(evn) > vi(9>77)}Zj
UPO.m=n" ) S0 lZ - S s X))

!

The estimator 6 is the solution of UL (6,7) = 0. Denote 3 = (§7,77)T as the estimators
and B, = (07, 77)7 as the true parameters. It has been showed that n/2(3 — )
converges to a bivariate mean-zero normal distribution.

Consider the other situation that hy(t) is a unknown monotone function but the dis-
tribution of e, is completely specified. Additional difficulty arises since Hy,(t) involves

specification of hq(t) which is unknown. Because the distribution of e5 is known, hence
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Figure 3-2: The censoring lines draws in the transformed scale with hy(t) = t,

ho(t) = log(t), and 0y = ny = 1; the shaded region is artificially censoring.

Sy(t) = Pr(ey > t) is also a known function. Define the baseline survival function of T}

as
Since Sy(hy'(t)) = Sy(t), it follows that hy'(t) = Syt o Sy(t) and ho(t) = Syt o Sy(t).
Therefore,

Hyy(t) = inf hi(S3'(Sa(t +172))) — 6"z,

which is still unknown since Sy(t) is unknown. It is recommended to plug in a con-
sistent estimator Sy(t) for Sy(t). Therefore, H,4(t) can be replaced by f]gm(t) =
inf.eq hi(S5 1 (Sy(t+172))) —07 2. By applying existing methods, a reasonable estimator

of Sy(t) can be obtained. For example, under the Cox Proportional hazard model, one

19



may estimate Sy(t) by the Nelson-Aalen estimator.

3.3.5. Discussions

All the methods discussed above are developed under two types of assumptions. The
first assumption is about marginal regression models for both 7} and 75. The other
assumption is that the dependence structure is the same for each covariate group. In
practical applications, it may happen that different treatment plans change a patient’s
internal biological system. Therefore assuming a common dependence structure for dif-
ferent treatment groups may not be convincing. Furthermore when Z includes multiple
covariates as in the last two papers, the degree of efficiency loss due to artificial censoring
may be substantial. In Section 3.4, we consider another alternative to handle such a

situation.
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3.4. The Proposed Methodology for Marginal Regression Anal-

ysis
As in the previous papers we assume that
h(Tl) = —ZTG + €,

where 7T} is the time to a non-terminal event and is subject to censoring by 7T,. Given
semi-competing risks data (X, 014, Y, 02;, Z;) (i = 1,...,n), the parameter 6 is not iden-
tifiable without making additional assumptions. Unlike the aforementioned papers, we
do not want to specify the marginal regression on 75 as in (10). Instead, we model the
dependence structure of (77, 7%)|Z for each value of Z under an Archimedean copulas
assumption. Note that Z is a discrete covariate vector. We assume that (77, 73) jointly
follow an Archimedean copulas in the upper wedge P = {(z,y) : 0 <z <y < co}. Ac-
counting for the possibility that the dependence structures for different covariate groups
are different, we assume separate Archimedean copula (AC) models for each group such

that

Fz(xvy) — Cz,az{Fl,z(x)aFZ,z<y>}

= Ol bz0: [ F12(0)] + Pra[Fa (W]}, (12)

where ¢, ,.(-) : [0,1] — [0,00] is a generator function as described in Section 2.1,
F.(z,y) = Pr(Ty > o,Ty > y|Z = z), Fi.(z) = Pr(Ty > z|Z = z) and Fy.(y) =
Pr(T, > y|Z = z). Note that, for different groups, we allow not only different association

parameter «, but also different forms of ¢, ,.(+).

3.4.1. A Two-Stage Inference Procedure

The p-dimensional covariate vector for subject ¢ is denoted as Z; which takes discrete
values, say z1,...,2k. Denote ny = Y - I(Z; = z;) as the number of observations

for the kth sub-sample and n = Zle ng. The proposed inference procedure contains
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two steps. The parameters in model (12), namely «a,, Fs.(y), F.(x,y) and Fj .(x), are
estimated in the first stage. In the second stage, the proposed estimating function of

is constructed based on the estimator of Fj ,(x).
3.4.1.1. First-Stage: Estimating Nuisance Parameters

First we obtain the estimators of F,(z,y), F2.(y), Fi.(z), G(y) = Pr(C > y) and
a, denoted as Fz(m,y), Fgﬁz(y), Flvz(x), é’(y) and &, respectively, by applying existing
methods in the literature to the sub-sample with Z = z.

For x <y, it follows that F,(z,y) = Pr(X > z,Y > y|Z = 2)/G(y). Hence using
the plug-in approach, F,(z,y) can be estimated by

Bey) =Pr(X 22.Y 2412 = 2}/Gly) = 220N 20525 )

n.G(y)

1= O I(Y; = u, 095 = 0)/ >0 I(Y; > w))]. This estimator is

where G(y) = [, !
based on the assumption that covariates Z do not affect the distribution of censoring
variable C'. In the situation that the distribution of C' depends on discrete covariate Z,
G(y) can be modified by the corresponding K-M estimator G.(y) which uses only those
data points with Z; = z. Similarly the estimator of F5 ,(y) is given by
i 1Y 2y, Z; = )

n.G(y) '

There exist several estimators of a, based on semi-competing risks data. Assuming

Fy2(y) = (14)

the Clayton model in the upper wedge, the estimating function proposed by Day et
al. (1997) was constructed based on two-by-two tables and that proposed by Fine et
al. (2001) utilized the concordant information for paired observations. Wang (2003)
generalized the former approach to general AC models. In absence of covariates, her

estimating function of o can be expressed as

Lia,i) = n" / / w(e,y){Nu(dr,dy) — Bn(de, dy; o)}, (15)
(z,y)EP

where w(z,y) is a weight function,

904,7] (xa y>N10(d$7 y)N01 (i[), dy)

By (dx, dy; =
11(dz, dy; o, m) Oon(z,y) N1o(dz, y) + R(x,y) — Nio(dz,y)’
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Nu(de,dy) = Y77 I(X; = x,Y; = y,01;, = 1,09 = 1), Nyg(da,y) = >0, I(X; =
2,0 = 1,Y; 2 ), Not(w, dy) = S0, I(X; > 2,Yi =y, 00 = 1), R(x,y) = Y1, I(X;
m,}/i Z y) and (90[,77<I,y) — éa{F(x7y)} with

o Pt )
Yol = =0 g o~ U anw)

v

and 7 = F(x,y) can be estimated by /) = F(z,y) using the formula in (13) without
further partitioning by 2.

Here we modify Wang’s method to estimate ., by using only data points with Z; = z.
Then based on (12), one can derive Fi ,(z) in terms of ¢, ». (+), F.(z,y) and I .(y). Fine
et al. (2001) suggested to consider the relationship on the diagonal line y = x and, by

straightforward calculation, we get

Fy.(7) = ¢z-,(112{¢z,az [F.(2,7)] = $ra.[Fo-(2)]} = Ho(F.(z,7), Fy.(7), a.). (16)

The marginal function Fj .(x) can be estimated by
By (2) = 075 A [, 2)] = $oa.[F2x(2)]} = Ha(Fi(2, @), Foa(2), ). (17)

3.4.1.2. Second-Stage: Estimating the Regression Parameter

The proposed estimating equation of € is motivated by the following two-sample test
statistic with Z = 0, 1. Specifically to test Fj () = Fi1(t) for every ¢ within the range

of the data, one can use

= W / W () {Fl,o(x) - Fl,l(x)} dz, (18)

where W (x) is a weight function.

Now we modify the test statistic Ur in (18) to construct an estimating equation for
one-dimensional § with Z = 0,1. Let 6y be the true value of §. Model (9) induces a
functional transformation &y(-) such that &y, (F1o) = F11. When h(-) is known but the
distribution of ¢ is unknown, & (F)(t) = F[h~*{h(t) + 6}]; when h(-) is unknown but
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the distribution of ¢ is known, &(F)(t) = F. [F-'{F(t)} + 0], where F.(t) = Pr(e > t)
denotes the survival function of . Now we can define a function g(¢,6) such that
9(t,0) = &(F1o)(t) = Fra(t).

Then g(t,60) = 0 for all t. Since /2 [W(z)g(x,0)dx = 0, we can then estimate 6

by solving the corresponding estimating equation

U) = W/W(m)ﬁ(m,@)dx =0,

where §(t,0) = f@(ﬁl,o)(t) - F1,1(t)-

The above idea can be modified to account for the situation that Z contains mul-

tiple covariates but all of them have finite discrete values. In such a case, let {z;, k =
1,2,..., K} denote the set of all possible Z values. Now z;, 6 and 6, are p x 1 vec-
tors. When model (9) is true, it follows that & _.,yrg,(F1z,) = F1,-;. Define g;(t,0) =
Ear o(Frz)(8) = Frz, (1) and gi(t,0) = gzgje<ﬁl,zk)(t) — Py, (t), where 2 = z; — 2, and
E |2, 1s the estimator (17) based on the sub-sample with Z = z;. The estimating function

then becomes

nEm;

U0) = w0z { / W (1) (1,0t} (19)

=y AT
where wy(-) and Wy;(-) are the weight functions, and ¢;; is the largest value of X in the
pooled sub-sample with Z = 2z, or Z = z;. The proposed estimator of ¢ is the solution
to U(A) = 0, denoted as 6.

Asymptotic properties of 6 which solves U (#) = 0 are given in the following theorem.
Theorem 1A: Assume that models (9) and (12) hold. Under the regularity conditions
stated in Appendiz 1, 0 is a consistent estimator of 6y and \/ﬁ(é — b6y) is asymptotically
normal with mean-zero, where 6y is the true value.

The proof of Theorem 1A is provided in Appendix 2. Since it is not easy to estimate

the asymptotic variance of 0 by an analytic formula, we suggest to use a bootstrap or a

jackknife method to estimate its variance.

24



In practice, the weight function may also be estimated. Replacing Wj;(t) in (19)

with Wy, (t), we have the following estimating function:

U0) =Y wolzi;6)z; el

k<j

{ /0 W (0)dus (1, 0)dt)}.

ng +n;

The Gehan-type weights are often used (page 230 of Klein and Moeschberger, 2003)
which can be written as

(s, + )G, (2) Gy ()
nkézk (ZE) + njézj (l’) 7

Wij(z) =

where G, () is the Kaplan-Meier estimator of G, (z) = Pr(C' > z|Z = z). Note that
Wi, () is an estimator of

(Ck‘ == CJ)GZk <x>GZj (.T)

Wk](x) - Cszk(.'E) aF Cszj (.T) ’

where ¢, and ¢; are the constants defined in the first regularity condition (a) listed in
Appendix 1. Let 6 solves U (0) = 0. Its asymptotic properties are stated in the following
theorem. In Appendix 3, we present the proof.

Theorem 1B: If ij (t) uniformly strongly converges to Wy;(t), then under the conditions
for Theorem 1A, the solution to the estimating equation U(0) = 0 is also asymptotically
normal. That is, let O denote the solution to U(0) = 0, then /n(6 — 6y) weakly converges
to a mean-zero normal random variable, where 0y is the true value.

For computation, we may use the fact that £ o(t) and F} ,(t) are piecewise constant
functions. Let {1y < ... < #(,) be the observed ordered times of X in the pooled sample
and set t(g) = 0. Then Fl,o(t) and FLl(t) are constants on the time intervals (¢;_1y, ¢
Usually, the estimated weight functions such as the Gehan-type weights can also be
taken to be piecewise constant functions between Z(;_;) and f; which would enable
simplication for compuation. For example, with piecewise constant weight function

W (t), the quantity corresponding to Uy in (18) can be rewritten as

n ngn n % 7
Ur =y (;1 : _ Wte) {te —ta-n} {Fl’o(t(i)> - Fl’l(t“))} ' (20)
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For illustration, we now derive the estimating equations under a two-sample setting
for selected examples.
Example 1: Cox PH model
When ¢ has the extreme value distribution, model (9) becomes the Cox proportional
hazard model. Then F.(t) = exp{—exp(t)} and &(F) = F*?). When 6 equals its true
value 6, it follows that

Fia(@) = {Fio(z)}™).

Therefore g(t,0) = Fy o(t)*P® — F} 1(t), and the estimating equation is

R / G n R
U(@) _ m;ih /0 W(t) {FLO(t)exp(O) i Fl,l(t)} dt = 0.

Under the piecewise constant weight function, the resulting estimating equation becomes

A non n ~ ~ L A
0(8) = 1/ =32 W ko)t — ton} { Frolt)™™ — Falte) } = 0.
=1

Example 2: The proportional odds model

When ¢ is the standard logistic distribution, model (9) becomes the proportional odds

model, where F.(t) = m and &(F) = exp(e)—FF;xp(e)JrF‘ When 6 equals its true value

0, it follows that

' Fio(t)
Fia(#) = exp (o) — Fio(t) exp(fo) + Fio(t)’
and
- Fio(t) —Fy (1),

exp(0) — Fi0(t) exp(6) + Fio(t)

So the estimating equation is

oo nem [l Fio(t) _F =
00 =" | W(t){expw)—Fl,o<t>exp<e>+ﬁl,o<t> F1’1<t>}dt_0'

Under the piecewise constant weight function, the resulting estimating equation becomes

2 NNy SN Fl O(t(i)) A
(0) =4/ - ; (tay){tw —t 1)}[eXp(9) ol 11(tw)]

t@) exp(0) + Fio(te)
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Example 3: The accelerated failure time model
When h(t) = log(t), model (9) becomes the accelerated failure time model. Now
& (F)(t) = F(exp(A)t). When 6 equals its true value 6y, it follows that

Fl,l(t) = FL()(eXp(Qo)t),

and
g(t,0) = Fio(exp(o)t) — Fia(t).

So the estimating equation is

01(6) g /R / W(e) { Frofexp(0)t) — Fia (1)} di = 0,

where Fy o(exp(8)t) = Pr{T} > exp(#)t|Z = 0} = Pr{exp(—6)Ty > t|Z = 0} which is

the estimator Fo(t) based on the transformed data {(exp(—0)X;, exp(=6)Y;, 01;, da;) :
i =1,2,...mp} and denote as Fl*jo(t). Let t~(1) =) W= f(n) be the order times of the
pooled sample {exp(—6)X; : i = 1,2,...,n0} and {X; : j = 1,2,...,ny}. Under the

piecewise constant weight function, the resulting estimating equation becomes

R non n - = e SR A ~
U(9) = 4/ 31 =Y Wke)te = ta-n HEFro(En) — Fiife)) =0.
=1

3.4.2. Model Selection

The proposed procedure is developed based on two assumptions: the dependence struc-
ture of an AC model characterized by ¢,,.(-) in (12) and the regression model in (9).
By specifying the dependence relationship between 7T} and 75 for each value of Z, we
can avoid making unnecessary assumption about the covariate effect on 75, as in Lin et

al. (1996). Now we discuss how to justify the imposed assumptions.
3.4.2.1. Selection of a Copula Model

We first consider how to check whether a copula model ¢, ,. (+) fits the data at hand for

each covariate group. Without loss of generality and to simplify the presentation, the
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discussions here are based on a homogeneous sample {(X;,d1;,Y:, 00;) (i = 1,2,...,n)}

such that (7}, T3) follows an AC model

F(z,y) = Ca(Fi(2), F2(y)) = do ' {@alF1(2)] + dalF2(y)]}- (21)

We briefly summarize our ideas. Consider the function Fl(ty,ty) = Pr(Ty > t1, Ty >
ts|d; = 1,82 = 1) which is identifiable nonparametrically in the upper wedge {(t1,t2) :
0 < t; <ty < 0o}. By comparing the nonparametric estimator of F1(¢;,¢,) and its
model-based estimator for F'!(¢;,t,) based on some distance measure, one can find
the most plausible model which is the one that yields the smallest distance among
the candidates. Furthermore a formal goodness-of-fit test can be constructed if the
distribution of the distance measure under the null hypothesis can be derived. Since
analytic derivations are complicated, we suggest using the bootstrap re-sampling method
to obtain the cut-off value in the test.

The nonparametric estimator, denoted as F'(ty, t5) (t; < t5), is given by S0 | I(X; >
t,Y; > 1,01, = 1,00, = 1)/ >0 I(01; = 1,09 = 1). Assume that there are K model
candidates CF ( 1(z), Fa(y)) (B = 1,2,...,K), each of which can be characterized by

) Note that the definition of o depends on the chosen model. For an AC model
indexed by ¢, the model-based estimator, denoted as EM(t,t5), can be computed
over the region {t; <t} as follows:

I Fk (dx, dy)G(y)
fyzo [T, Fuldo, d5)C(0)
where Fj,(dz, dy) = Fy(x,y)— Fi(x+dz,y) — Fp(z, y+dy) + F(z+dz, y+dy), Fp(z,y) =
¢g€)71{¢g€) [Fy(z)] + ¢g€) [F5(y)]}. To verify whether a copula model od fits the data,

Fil(ti,t) =

9

we can perform a formal testing procedure as follows. Consider testing Hy : ¢, =

versus H, : ¢ # gb&k) Define

D* = sup |[FY (ty,t5) — F (t1, 1)) (22)

t1<to
We can reject Hy if D* > ¢, where ¢y, is the critical value satisfying Pr(D* > ¢x|Hy) = v,

the pre-specified type-one error rate.
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Because the distribution of D* is difficult to derive analytically, we suggest using the
bootstrap re-sampling method to obtain the cut-off value, p-value and power. Here we
briefly describe the procedure. A bootstrap sample under model qb&k) can be generated
as follows. Recall that given the original data, we have obtained G(c), Fy(y) and Fy(z)
under the assumption of model ¢, Then generate (U, V;*) ~ copula model k with
Ur ~ U(0,1) and V* ~ U(0,1). Then set 7% = s if Fi(st) < 1 — U < Fi(s),
Ty =t if Fy(tt) < 1=V < Fy(t) and CF ~ G(c). Given (T3, T3, CF) (i = 1,...,n),
we can construct a bootstrap sample {(X},07;,Y;",05) (i = 1,2,...,n)}, where X =
TLNANTS NCH Y =T5 NCE, 67, = I(T; < Ty, ANCY) and 65, = (T3, < CF). With a
bootstrapped sample, we can compute the corresponding values of D*. Repeating the
bootstrapping procedure many times, the distribution of D* can be approximated by
the empirical counterparts from the bootstrapped samples.

The above tests will reject the null hypothesis if the data obviously violates the
copula model ¢((f). In practice, we may be more interested in choosing the best fitted
copula model from several candidates indexed by k£ = 1,2, ..., K. For this purpose, we
can select the model that yields the smallest D*.

Now we derive theoretical properties of the proposed model selection procedure. In
Appendix 4, we provide the proof of Theorem 2.

Theorem 2: Assume that (11, T3) follow model (21) and both variables are continuous
and the independent censoring variable C' has bigger support than the supports of T and
T. Suppose that there are K model candidates in the AC family. Let the kth model
C'((lk)(u, v) be characterized by qbgg) (t) which possesses reqular analytic properties in t and
s continuous in o whose parameter space is a closed set. If ¢((f) 1s the true copula model,
D" 250 asn — oo. If oP is not the true model, Pr(liminf, .., D* > 0) = 1. Further-
more let k denote the copula model that yields the smallest D* among all the candidates.

Then qS&k) 18 consistent if the true copula model is included in the list of candidates.
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3.4.2.2. Selection of the Covariate Model

After specifying the form of model (12), our procedure requires choosing an appropriate
regression model in (9). If model (9) is correctly specified, gx;(t,6p) = 0 and it is
reasonable to expect that gy, (¢, é) is closer to zero for the correct model than a wrong
model for moderate sample sizes. This fact can be used to check the model assumption
(9). Let D = maxy ;s |gx;(,0)|. A formal model checking procedure can be formulated
as testing the hypothesis Hy: the form of model (9) is correct versus H,: the form of
model (9) is not correct. The null hypothesis is rejected if Dp is too big. The cutoff
value for the test can be calculated by applying the bootstrapped method which can
also be used for model selection. Suppose that there are several choices for model (9),
say model k£ =1,2,..., K. To select the best fitted model, we can simply choose the one

with smallest D%, where D% is calculated under model .

3.4.3. Numerical Analysis

3.4.3.1. Simulation Results

We design several simulation settings to examine the validity and robustness of the
proposed methods. Data generation algorithms for the Clayton model and the Frank
model have been given in Prentice and Cai (1992) and Genest (1987), respectively.
In the following analysis, we set the weight functions as wy(z;;0) = 1 and Wi,(x) =
(ni +n;)G., (x)@zj(x)/(nléz (x) + njézj (x)). For each estimator under evaluation, the
average bias and the standard deviation based on 1000 runs are reported.

The first analysis compared our proposed estimator 6 and its competitor estimator
0, proposed by Lin et al. (1996). The results are summarized in Table 3-1 and 3-2. We
set (g,€)|Z to follow an AC model with Z = 0,1. Then based on (¢,&, Z), the value of
(Ty,T,) can be determined from the models hy (1) = —600Z + ¢ and hy(Ty) = —noZ + €.
Here we set 0y = 19 = 0.5 and ng = n; = 150. Note that all the assumptions are satisfied

for 6. However in the evaluation of éL, the covariate model for 7] is correct but their as-

sumption about common dependence structures for the two groups or the extra assump-
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tion on a covariate model for T, may be mis-specified. In some settings, ., or 7, may be
different for z = 0, 1. In the first four cases of Table 3-1, we generated the location-shift
model with hy(t) = ho(t) =t , —0y+¢c ~ exp(0.8), =+ ~ exp(1l), C|Z =1 ~ U(0,6),
and C|Z =0 ~ U(0.5,6.5) but the copula dependence structures for the two groups may
vary. We will use the notation {Clayton(7), Frank(r)} to denote the situation that
one group with Z = 0 follows the Clayton model with 7 = 75 and the other with Z =1
follows the Frank model with 7 = 7. The dependence structures for the first four cases
are case 1: {Clayton(0.5), Clayton (0.5)}, case 2: {Clayton(0.8), Clayton(0.1)}, case 3:
{Frank(0.5), Clayton(0.5)} and case 4: {Frank(0.8), Clayton(0.1)}. In case 1 where the
conditions for both estimators are valid, 0r, slightly outperforms 6. However in the last
three cases, 6, is biased. It seems that the bias of 6}, is affected more by the discrepancy
in the level of associations for the two groups than the difference in the dependence
structures. The dependence structures in cases 5-8 of Table 3-2 follow the same patterns
as in cases 1-4 of Table 3-1. Here we set hy(t) =t but ha(t) = log(t), —0o+¢€ ~ exp(0.8),
exp(—mno) exp(§) ~ exp(l), C|Z =1 ~ U(0,6) and C|Z = 0 ~ U(0.5,6.5). Note that
ho(t) # hi(t) which is a condition that violates the assumption made by Lin et al.
(1996). We see that 0 outperforms 01, even more since, for the latter, the two types of

assumptions are both mis-specified.

Model [ 6r,

case 1:| -0.0026 (0.0934) -0.0025 (0.0909)
case 2: | -0.0013 (0.1136) 0.0969 (0.0849)
case 3: | 0.0022 (0.0950) -0.0122 (0.0888)
case 4: | 0.0008 (0.1100) 0.0982 (0.0840)

Table 3-1: Finite sample performance of two estimators evaluated under j situations:
the correlation structures are the same for two covariate groups in the first case and
different in the last three cases. The first number is the average bias of the estimator

and the number in the parenthesis is the standard deviation based on 1000 replications.
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Model 0 0r.

case 5: -0.0041 (0.0974) 0.0890 (0.1175)
case 0: -0.0067 (0.1135) 0.3387 (0.1127)
case 7: 0.0025
case §: 0.0125

0.1156
0.1152

0.0884 (0.1170
0.3793 (0.1081

( ) )
( ) )

Table 3-2: Finite sample performance of two estimators evaluated under j situations
with different covariate models for progression time and death time (thus invalides éL)
The first number is the average bias of the estimator and the number in the parenthesis

18 the standard deviation based on 1000 replications.

The second analysis checks the validity of the proposed method for selecting an
appropriate copula model. We generated {71y;,T5;,C;} (i = 1,---,150), where T3; ~
exp(0.8), Ty; ~ exp(1), and C; ~ U(0,6) and (73;, T;) ~ copula model (7 = 0.5). There
are two copula models under comparison where model k£ = 1 is the Clayton model and
model k£ = 2 is the Frank model. First we set the Clayton model as the true one. The
mean and standard deviation (in parentheses) of D' and D? are 0.0780 (0.0187) and
0.1397 (0.0304) based on 1000 replications. The percentages of successfully selecting the
Clayton model are 93.4% based on the order of D7 (7 = 1,2). Then we set the Frank
model as the true one. The mean and standard deviation (in parentheses) of D' and
D? are 0.1398 (0.0330), 0.0819 (0.0206). The percentages of successfully selecting the
Frank model are 92.3% based on the order of D’ (j = 1,2). Finally, we examine the
proposed testing procedure using the re-sampling method. Under the Clayton model,
we set up the goodness-of-fit test: Hj : the data follows the Clayton model versus H, :
the data does not follow the Clayton model. By re-sampling 1000 times, we obtained
D' = 0.0511 with p-value=0.909 and the cut-off value: ¢; = 0.1004 (at 0.05 significance
level). Hence Hj is accepted which is a correct decision. For the same data set, we run
the analysis again with Hj : the data follows the Frank model versus H, : the data does
not follow the Frank model. We obtained that D? = 0.1247 with p-value=0.012; the
cut-off value (7 = 0.05): ¢o = 0.1058. Accordingly we reject Hy which is also a correct
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decision.

The purpose of the third analysis is to examine the proposed method for selecting an
appropriate regression model. We generate data for Z = 0 or Z = 1 with equal sample
sizes in each group. First we generated data according to margins 71|72 = 0 ~ exp(0.8),
Ty|Z =0 ~exp(l),C|Z =0~ U(0,6), T1|Z =1 ~ exp(0.8)+0y, T5|Z = 1 ~ exp(1)+bo,
C|Z =1 ~ U(0,6) + 6p. The correlation structure follows the Clayton model with
To = 0.5, 71 = 0.6. There are four regression models under consideration: the location
shift model (LS), the accelerated failure time model (AFT), the Cox proportional hazard
model (PH) and the proportional odds model (PO). Table 3-3 lists the proportions of
each model being selected by the proposed method based on 500 simulation runs. The
results shown that the correct model (LS) is chosen most of the times (96.2% when
n = 100, 99.6% when n = 200 and 100% when n = 400). Secondly, we generated data
according to margins 71|Z = 0 ~ exp(0.8), T3|Z = 0 ~ exp(1), C|Z = 0 ~ U(0,6),
T1|Z =1 ~ exp(—by) exp(0.8), T4|Z = 1 ~ exp(—by)exp(1l), C|Z =1 ~ U(0,6). The
correlation structure again follows the Clayton model with 75 = 0.5, 71 = 0.6. Note that
in this case both AFT and PH models are correct. Together, these two models are chosen
most of the times. As the sample size increases, the proportion of a correct decision also

increases (79% when n = 100, 82.8% when n = 200 and 92% when n = 400).

Chosen model

True n LS AFT PH PO
LS 100 | 96.2% | 3.8% 0% 0%
200 | 99.6% | 0.4% 0% 0%
400 | 100% 0% 0% 0%
AFT and PH | 100 | 0.8% | 43.4% | 35.6% | 20.2%
200 | 0.2% | 39% |438% | 1™%
400 | 0% | 47.8% | 44.2% | 8%
Table 3-3: Proportion of the covariate models selected by the proposed method based on

500 replications. The first column lists the true covariate model; the second column
lists the sample size; the last four columns contain the proportion of each of the four

covariate models selected.
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In the fourth analysis, we examine the finite-sample performance of 6 when Z con-
tains multiple covariates. Under the model h(T)) = —Z'0 + ¢, where 0’ = (64,02),
7' =(ZW, Z2@) ZMW=0or 1, Z@=0 or 1, we can partition the sample into four groups
with Z] = (0,0), Z) = (0,1), Z = (1,0) and Z} = (1,1). The sample sizes in the four
groups are 75 with 7oy = 0.2, 70,1y = 0.3, 71,0y = 0.4 and 7(;;) = 0.5. The Clayton
and Frank models are evaluated. Four regression models, namely LS, AFT, PH and PO
are considered. The true parameter values are set to be 6 = (0.3,0.3). The marginal
distributions in the group Z] = (0,0) follow T} ~ exp(0.8), T ~ exp(1). The censoring
distribution is C' ~ U(0, 6). The average bias and the standard deviation based on 1000
simulation runs are reported in Table 3-4. The results show that the proposed method

still performs well under the more general regression setting.

Model LS AFT PH PO

Clayton | -0.0024 (0.1113)  0.0029 (0.1736)  -0.0022 (0.1507) ~ 0.0039 (0.2683)
-0.0015 (0.1105)  0.0058 (0.1662)  -0.0032 (0.1514)  -0.0023 (0.2633)

Frank | -0.0042 (0.1016)  -0.0084 (0.1734)  0.0067 (0.1544)  -0.0028 (0.2573)

0.0011 (0.0995) -0.0094 (0.1661) -0.0096 (0.1680) 0.0013 (0.2602)

Table 3-4: Finite sample performance of g'. The first number is the average bias of 91,
the second number in the parenthesis is the standard deviation of 6, based on 1000
replications; The third number is the average bias of 65 and the fourth number in the

parenthesis is the standard deviation of 05 based on 1000 replications.

3.4.3.2. Real Data

The proposed methodology is applied to the bone marrow transplants data given in
Klein and Moeschberger (2003, p.484). There were 137 leukemia patients receiving bone
marrow transplants. Let 77 be the time to relapse of leukemia, T5 be the time to death
and C' be the time from transplant to the end of study. Let & = I[(T} < Ty A C)
be the relapse indicator and let d; = [(T5 < C) be the death indicator. The sample

can be divided into three groups with Z’ = (0,0) indicating the AML low-risk group,
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Z" = (0,1) indicating the ALL group and Z’ = (1,0) indicating the AML high-risk
group. The regression model of interest is h(7}) = —Z2'0 + €, where 6’ = (6, 0) which
measures whether the disease type affects the relapse time.

For each covariate group, we test the hypothesis Hy : ¢, ~ the Clayton model
versus H, : not Hy,. By bootstrapping 1000 times, the p-values of D¢ for the AML
high-risk group, the ALL group and the AML low-risk group are 0.752, 0.656 and
0.177, respectively. Hence the Clayton model is adopted for all the three groups. Using
Day’s method (or equivalently Wang’s method) to estimate 7., we obtain 7 )=0.7485
(0.1176),70,1)=0.7894 (0.0853) and 7(;,0)=0.7685 (0.0872), where the number in paren-
theses is the estimated standard derivation using the jackknife method. The above
analysis implies that the dependence structures in the three groups are similar and the
two events are highly correlated.

Then we choose a model for measuring the group effect on 7. Figure 3-3 shows the
fitted log-log plot of E (x) for the three groups. Since the three curves look parallel, we
choose the proportional hazard (PH) model to measure the group effect. Based on the
method described in Section 3.4.2.2, we can formally test the PH model assumption.
By bootstrapping 1000 times, we obtain p-value=0.774 which implies that this model is
appropriate. Figure 3-4 depicts the three survival curves of 2] (). Under the PH regres-
sion model and the Clayton assumption for each covariate group, we obtain 6:=1.3624
(0.3765) and 6,=0.9503 (0.3984). The results show that the risk of relapse for the AML
high-risk group is 3.9 times to the risk for the AML low-risk and the risk for the ALL
group is 2.59 times to that for the AML low-risk group. The difference is statistically

significant.
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Figure 3-3: Log-Log plot for the three groups. Solid line: AML high risk group; dashed
line: ALL group; dotted line: AML low risk group.
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Figure 3-4: F (x) for the three groups. solid line: AML high risk group; dashed line:
ALL group; dotted line: AML low risk group.
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Chapter 4. Regression Analysis for Association

Based on Three Types of Data

4.1. Preliminary

The second part of the thesis studies the effect of covariates on the level of association
between T and T, which may follow one type of the three data structures discussed in
Section 2.2. In general, we may describe the association in terms of global association or
local dependence. For measuring global association, the Pearson’s correlation coefficient
and Kendall’s tau are more well-known. In particular, the rank invariance property of
Kendall’s 7 makes it very useful for describing the relationship between lifetime variables
which are often skewed. For describing local association, the function 6(s,t) in (5)
proposed by Oakes (1989) is often used in applications of survival data.

With covariates, most existing methods focus on studying the covariates effects on
the marginal distributions. We have studied one of such application in Chapter 3. Now,
we consider another application which investigates how covariates affect the degree of
association. Our major goal is to develop a unified inference approach which can handle
the three types of data structures discussed in Section 2.2. Here is the outline of our
discussions. In Section 4.2, we review the paper on association under Clayton assumption
with time transformations (Fine et al., 2000). In Section 4.3, we review a related paper
on testing constancy of association across different covariate strata (Ghosh, 2006). Then

we present our proposed inference procedure in Section 4.4.

4.2. Association in a Copula with Time Transformations

Fine & Jiang (2000) considered estimation of the cross ratio in Clayton’s copula in
which covariates are incorporated into the marginal distributions via semi-parametric
accelerated life regression models. Let 77 and T, be survival times with absolutely

continuous joint distribution. Under Clayton model, the predictive hazard is constant,
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ie.
)\1(8’T2 = t) _ )\2(75|T1 = S) —a
)\1(8’T2 > t) )\2(t|T1 > S) ’

where A;(t|A) is the hazard of T at time ¢ given that event A has occurred. (23) holds

(23)

if and only if T} and T, have joint survival function
PI‘(Tl > S,TQ > t) = {F1<S)17a + FQ(Zf)lia — 1}1/(170[), (24)

where Fi(s) = Pr(T} > s) and Fy(t) = Pr(Ty > t). The distribution (24) originates in a

gamma frailty model (Hougaard, 1986). This is
Pr(Ti> 5, T > t) = / (Fu(5) Fo(0)}* f(w) oo,
0

where f(w) o< exp[—w + {(1 — a)™! — 1} log(w)].

With covariates, a bivariate marginal effect model is considered which can be written
as hy(Ty) = BL Zy +&1 and ho(Ty) = BL Zy+ ey, where (31, 52) and (Z1, Z,) are regression
parameters and covariate vectors. hy(.) (k = 1,2) are known monotone functions. At
the true hy, and Sy, let TF = i(Ty, Zi,), where Wy(z, 2) = hy(z) — B2 (k = 1,2) which

is a known function, monotone in z for fixed z, and

Pr(T; <wu|Zy) =Pr(T; <u) (k=1,2).

Y

This structure is convenient when analyzing correlation between accelerated lifetimes.

Consider the pairs
{17 = V1T, Z11), Tpy = (T, Zon)}, ATV, = Wi(Th2, Z12), T35 = Va(Te, Zos)},
which are independent and satisfy (24) conditional on covariates. It can be shown that
Pr{(T}; — T5)(Ty, — Ty) > 01211, Z1a, Zon, Zon} = (1 +a) 7,

but the probability for (711, 7%1) and (T2, T52) may not be the same.
Their ideas can be applied to multivariate failure times data and clustered failure

times data. Here, we consider the simple case, bivariate failure times data. With
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censoring, the data consist of n replications of (X,Y, 51,52,2), where X = T} A (Y,
Y =Ty NCy, 6 = (T} < CY), 09 = I(Ty < Cy), and 7 = (Z1,7Z5) is a p X 2 matrix
of bounded covariate vectors. Assume (C4, Cy) is independent of (71, 73) conditional on
Z and denote the observations by (Xi,Y;,(Su,dgi,Z-) (1 = 1,2,...,n). Marginally, the

failure times satisfy linear regression models. That is,
h;(T;:) = @JIZji +e5i, (1=1,2), (25)

where h; is a known function, §; is an unknown p x 1 parameter vector, and €;; (i =
1,2, ...,n) are independent and identically distributed with unknown Pr(e;; > ) = Fj(z)
(7 = 1,2). Fine et al. (2000) assumed that & = (e€1;,€9), for i = 1,...,n, have a
independent and common, but completely unspecified, joint distribution. The pairwise
model for e1; and ey; satisfies (24) with parameter . One can estimate the parameter
B, in (25) using the methodology proposed by Lin & Wei (1992). Let e1;(5) = hi(X;) —
BT Z1; and eg(B) = ho(Y;) — B Zy; (i = 1,2, ...,n). A rank-based estimating function for

Bj (j = 1,2) is given by
UJ(ﬁ) = Z/;OO wj(ﬁ, U)[ZJZ = Sjl(ﬁ, u){SJOWaU)}fl]dNﬁ(ﬁ,u),

where w;(5,u) is a weight function, Nj;(5,u) = H{e;;(B) < w,0;; = 1}, Sju(B,u) =
n~t 3 Hej(B) > u}Z5!, and for a vector v, v®° = 1 and v®' = v. When 10;(3, u) =
Sjo(B,w), U;(B) is Gehan’s statistic, which is monotone in each of the components of (.
A popular class of weights is w; (5, u) = w{Fj(ﬁ, u)}, where w(.) is a twice continuously
differentiable function on [0, 1] and F;(, u) is the left-continuous version of the Kaplan-
Meier estimator based on the pairs {e;(3),d;i,4 =1, ...,n} (Wei, Ying & Lin, 1990).
Next, consider the estimation of «. The term Ay, (51, B2) indexes whether the pairs

{hi(Ty) — BE Zyy, ho(Ty) — 8% Zy} and {hy(T1m) — B Zim, ho(Tam) — B Zaym} are concor-

dant or discordant. Formally, Ay, (51, 52) equals

I{h1(T) — ha(Tim) — B1 (Zn = Zim) Hho(Tu) — ho(Tom) — B3 (Zor — Zom)} > 0].
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Conditional on covariates, Ay, (310, 820) has mean ag(1 + ag) ™!, where «q is the true
value of a and (319, B20) are the true value of (5, B2). With censoring, A, (01, 52) can

be determined when

min{h, (Ty) — BF Zu, hi(Tim) — B1 Zim} < min{hy(Cy) — 81 Zu, hi(Cim) — B Zim},

min{hy(To) — B3 Zot, ho(Tom) — B3 Zam} < min{ho(Cy) — B3 Zat, ha(Com) — B3 Zom}-

Let Dyn(01, 52) equal 1 when this occurs and 0 otherwise. With 8, = (9 and 5y =
(20, it is natural to estimate a by the ratio of the numbers of concordant pairs to
discordant pairs, among all pairs where concordance status is determinable (Oakes,
1982). An estimating function can be constructed as follows. Suppose W (u, v) is random
positive function converging uniformly over v and v to a deterministic limit. Assume
that the limit is finite over the support of Ei,(Fi0) and Eoyy,(620), where Ejpy(5) =
min{e;;(3), ejm(5)}, for j = 1,2. Define a(f, 2) as the solution to U(By, Fa2, ) = 0,

where

U(B1, B2, ) = Z WA{Eum(81), E2lm(52)}Dlm(51, Bo){Aim (B1; B2) — (1l + a)_l}-

l<m

The profile estimator «(f;, 2) has the following closed form expression:

Zl<m W{Ellm(ﬁl)a Ele(ﬁZ)}Dlm (51, 52)Alm(517 52)
> iem WA E1um(B1)s Eotm (82) } Dim (B, B2){1 — Ap (81, B2) }

A useful weight function is

n

I/Va_b1 (z,y) =n"" Z I{en;(41) > min(a, z), e2;(f2) = min(b, y)},

i=1
where a and b are constants. In addition, the authors showed that (Bl, Bg, &) are consis-
tent and asymptotic normal.

4.3. Testing Constancy of Association across Strata

Ghosh (2006) considered semi-competing risks data with covariates: {(Xj, d1;, Y, 02;, Z;)
(Z == 1, ...,TL)}, where Xz == Tli /\Tgl A Ci, Y; = TQi /\017 5“ = [(Th § TQZ' /\C’Z)7 and (521' =
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I(Ty; < ;). If the covariate takes discrete values, it is assumed that (s, t|Z = 2) = a,,
where 0(s,t|Z = z) = M(s|Ty = t,Z = 2)/M(s|Ty > t,Z = z) and A\(s|A, Z = 2) is
the hazard function of 77 at time s for a subject with Z = z given that event A also
occurs. Thus, a Clayton-Oakes frailty model is assumed for each stratum defined by Z.
The interest is in testing the null hypothesis that the predictive hazard ratio does not
depend on Z (i.e. Hy: o, = ).

For testing the null hypothesis Hy : 0(s,t|Z) = a, Ghosh (2006) proposed using the
following class of test statistics

K
L Z Z W (Xij, Yij) (Dijz = Dig) A, (26)

z=1 i<j
where Ay; = I{(X; — X;)(Y; = Y;) > 0}, Xij = Xi A X, Vi, = Vi AT, Cyy = Ci AC,
D;; = I(Xij < f/ij < CN’ij), D;j, = I(Xij < f/ij < CN’ij,Zi = Z; = z), and W,(u,v) is a
weight function that converges uniformly to w(u,v), a bounded deterministic function.
Note that the statistics U; provides a measure of the difference between stratified and
unstratified analysis. Ghosh proved that under the null hypothesis, n=%2U; has a limit
normal distribution with mean zero.

However, it is not easy to derive an analytic expression for the variance of the limiting
distribution of U;. Ghosh suggested a re-sampling method originally proposed by Parzen,
Wei & Ying (1994) for variance estimation. Equation (26) can be written as the following

form:

U => ) Uy, (27)

z=1 i<y
where U;;, = WZ(XU, ﬁj)(Dijz —D,;;)A;;. The first step is to generate n standard normal

random variables (Gfy, ..., G,) and calculate the perturbations of (27) as follows

K

z=1 i<y
Under the null hypothesis, n=32U; and n=3/2U; have the same limiting distribution.

The algorithm can be summarized as follows:
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1. Generate n i.i.d. N(0,1) random variables (Gy,...,G,) and calculate U5 .

2. Repeat step 1 M times.
There are two ways of constructing a 95% confidence interval for the limit of n=3/2U;.
The first is to calculate the standard error based on empirical replications of U;. The

other way is to take 2.5th and 97.5th percentiles of the empirical distribution of U;.
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4.4. The Proposed Inference Procedure for the Association
Model

We aim to develop a regression model that describes the effect of covariate on the
dependence structure. We also want to propose a unified inference approach which can
handle the three data structures discussed in Section 2.2.

To achieve the second objective, we need to find an appropriate dependence measure
for each data structure. In Section 4.4.1, a flexible way of model formulation is presented.
In Section 4.4.2, we describe the proposed regression model and in Section 4.4.3, we
include external censoring in the three data structures. The proposed inference method
is discussed in Section 4.4.4. In Section 4.4.5, we present a model checking method for
Clayton assumption. We also present the numerical analysis for the proposed inference

methods in Section 4.4.6.

4.4.1. Model Formulation

Most methods developed for typical bivariate survival data analyze the joint survival
function

Fa(S,t) = PI"(Tl > S,T2 > t),

which seems to be a straightforward extension from the univariate analysis. Mathemat-
ically the joint behavior between 77 and 75 can also be described other functions such

as

Fy(s,t) = Pr(Ty <s,Ty > t)

F.(s,t) = Pr(Th <s,Ty <t)

Fu(s,t) = Pr(Ty > s, Ty <1).
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Choosing an appropriate function for further analysis depends not only on its interpre-
tation but also the mathematical applicability. Note that 6(s,t) in (5) is defined based
on the joint survival function F,(s,t). Now we denote 0(s,t) = 0,(s,t). Oakes (1989)
derived another expression of 6,(s, t) which is useful for further extensions and statistical
inference. Specifically one can write

Pr(A;; = 1\T1,z‘j = 57T2,ij =1)
PI‘(Aij = O‘Tl,ij =S, TQ,U = t)’

0.(s,t) =

where Ay; = I[(Ty; — Th,)(To; — T;) > 0] and Ty = Ths A Tiy (k = 1,2). Based on this
representation, 6,(s,t) can be viewed as the odds ratio of concordance given the corner
value (T, Toi;) = (5,1).

We can extend the ideas of ,(s, t) as follows. The two pairs, (11;, %) and (T4, T5;),
can form four grid points (a,b,c,d) shown in Figure 4-1 with a = (leij,fzij), b =
(Tl,z'ja TQ,ij), = (Tuj, Tgﬂ'j), and d = (Tl,z'jv TQ,U-), where T,“j = Ty N1y and T,“] =TV
Ty; (k= 1,2). Selecting a different corner point gives a new odds ratio of concordance.

Define

Pr(A;; = 1|corner = )
0.(s,t) = L 2
(5:%) Pr(A;; = O|corner = %) (29)

= e e e [

{DsFu(s, ) H{ Do Fi(s, 1)}

_ ADE(s, ) {DiFi(s,t)} .
~ E.(s,t)D,D,F.(s,1) i O (30)

When T and 75 are independent, 60.(s,t) = 1. In general 0,(s,t) describes local de-
pendence at (s,t) such that 0,(s,t) > 1 indicates positive association and 6,(s,t) < 1
indicates negative association. From the above derivations, we see that imposing a struc-
ture on a version of 6,(s,t) is associated with model specification on the corresponding

joint function Fi(s,t).
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Figure 4-1: Four grid points formed by two pairs of observation.

(a): (i,7) pairs are concordant; (b): (i,j) pairs are discordant.

The two representations of ,(s,t) in (29) and (30) provide useful insight for further
statistical inference. Specifically the first identity is equivalent to

B 1 ) s 1) o
Pr(A;; = 1|corner * = (s,t)) = T+ 0.(5.1) (x=a, b, c, d).

This implies that the inference of 6. (s, t) can be made by applying the method of moment
based on data replications of A;;. This approach has been adopted by Fine (2001) based
on 0,(s,t) for semi-competing risks data and by Chaieb et al. (2006) based on 6,(s,t)
for truncation data. The second identity of 0.(s,t) suggests that one can construct the
log-rank type of statistics based on a series of two-by-two tables. Figure 4-2 shows four
versions of the table construction. This approach has been taken by Day et al. (1997)
and Wang (2003) for analyzing semi-competing risks data based on the table in Figure
4-2(a) and by Emura, Wang and Hung (2006) based on Figure 4-2(b) for analyzing
truncation data.

To choose an appropriate version of 6,(s,t), one should examine whether the biolog-
ical meaning is reasonable as well as whether the data provide enough information for
the purpose of inference. As mentioned earlier, most existing methods specify the model

assumption based on F,(s,t) which has a direct relationship with 6,(s,t). For the first
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Figure 4-2: Four versions of table construction.

data structure, it seems that all four versions are mathematically suitable and corner a
is usually adopted due to its straightforward interpretation. For semi-competing risks
data, 0(s,t) is an obvious suitable candidate. However 6,(s,t) is still appropriate since,
from the second identity, the information provided by (T} ATy, Ty, I(T} < Ty)) is enough
for recovering every component of 6,(s,t) for (s,t) € Ry. However for truncation data,
only 6,(s,t) is suitable. Note that for modeling dependent truncation data, Chaieb et
al (2006) proposes a related measure

. _ Fy(s,t)DsDiFy(s,t)
%0 = D, Fs 0} DFe 0y~ D

Setting 6,(s,t) = « is equivalent to assuming the Clayton copula on Fy(s,t):
Pr(T) < 5,Ty > t) = {Pr(T}y < 8)' %+ Pr(Ty > )1 — 1}1/0-),
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4.4.2. The Proposed Regression Model

Consider the situation that the levels of association between (77,73) vary in different
covariate groups. Let Z = (1,74, ..., Z,)" be a vector of common discrete covariates for

(Ty,Ty). We assume that for a chosen corner point * (x = a,b, ¢, d),

Pr(A;; = 1|corner * = (s,t),Z; = Z; = Z)

07 (s,t
«(5,0) Pr(A;; = Olcorner * = (s,t), Z; = Z; = Z)

= exp(Z70), (31)
where 3 = (8o, b1, .., 3p)". Equivalently the above model assumes that

exp(Z7T3)
Pr(A;; = 1jcorner * = (s,t),Z; = Z; = Z) = 1+ exp(Z73)

=n(Z"p). (32
Note that (; is the log odds of concordance for the baseline group with Z; = Z, = ... =
Z, = 0. The slope parameter G, (k = 1,2,...,p) can be viewed as the difference of log
odds by increasing one unit of Z; with the rest of Z/s being fixed. The above model

assumption is equivalent to assuming that (77, 75)|Z follows Clayton’s model with
F.(s,t)2) = {Fly*($|Z)1—exp(ZTﬁ) P FQ,*(HZ)l—exp(ZTﬁ) _ 1}1/(1—exp(ZTﬁ))’ (33)

where Fy.(s|Z) = Pr(11 > s|Z) for x = a,d; F1.(s|Z) = Pr(T} < s|Z) for x = b,c,
Fy . (t|Z) = Pr(Ty > t|Z) for * = a,b; Fy,.(t|Z) = Pr(1y < t|Z) for * = ¢,d. The main
purpose is to estimate 3. From previous discussions, we consider the model (s, t) =
exp(Z7T3) for typical bivariate failure-time data and semi-competing risks data. For the

truncation data, we consider the model 67 (s, t) = exp(ZT3).

4.4.3. Three Data Structures with External Censoring

Now we incorporate external censoring. To simplify the presentation, we may use the
same notation with different definitions under different data structures. We also discuss

the condition under which the value of A;; is certain for pair (i, 7).
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Data Structure 1: Typical bivariate data subject to right censoring
Assume that (77, T3) is subject to independent censoring by (C7, Cs) such that observed
variables become X = TYACY, Y = TonCy, 6y = [(T7 < C4), and 6, = (T, < Cy). Based
on observed variables (X, 01;) and (X, d1;), to know the order of T}; and T3, the smaller
variable has to be uncensored. Similar properties can be applied for determination of
the order of Ty; and T5; based on (Y}, d2;) and (Y}, d2;). Formally define Tk,ij = Ty N Ty,
and C’kw =Cypi ANCi; (k=1,2). As long as Tl,ij < él,z’j and T2,ij < C~'27ij, the value of
A;; is known for sure which means that the (4, j) pair is orderable on the plane.
Data Structure 2: Semi-competing risks data subject to censoring
If often happens that (73,75) are subject to a common external censoring variable C'.
Observed variables are denoted as X =Ty AToANC, Y =To ANC, 6, = I(T1 < To ANCO),
and 0y = I(Ty < C). Applying previous arguments, the order of 73; and T}; can be
known as long as Tl,z'j < Tgﬂj and Tl,ij < é’ij, where C’ij = C; A\ Cj. The order of Ty,
and T5; can be known as long as TQJ']' < C‘Z] Combining both conditions, the orderable
condition for semi-competing risks data can be defined as T LB TQM < C’Z]
Data Structure 3: Truncation data subject to censoring
Recall that T3 is subject to left-truncation by 7T or T} is subject to right-truncation by
T5 so that (7T,7%) can be observed only if 77 < T,. Now we assume that 75 is subject
to right censoring by C'. Hence, the observed variables become X =T}, Y =T, AC
and dy = I(T5, < C'). We can set 6; = 1 which means that 7} is always uncensored. The
order of T5; and T5; can be known as long as Tzij < éw

In absence of covariates, observed variables can be denoted as (X,Y,d;,ds) for the
three data structures. For each data type, statisticians have developed inference proce-
dures for investigating the dependent relationship between T} and 75 based on a random
sample of (XY, 41, d2). There are two approaches which turn out to be applicable to all
the three data structures. The first approach utilizes the moment condition of A;; in

(29). The second approach is developed via constructing a series of two-by-two tables
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based on equation (30). This paper extends the first approach to a regression setting in
which the dimension of regression parameters may exceed 1 and hence the method of

moment is not directly applicable.

4.4.4. The Proposed Inference Procedure

Let (T1;,Ts, Z;) (i = 1,2,...,n) be a random sample following the model assumption
in (31) or its equivalent versions in (32) or (33). Note that (71,7%) may be any of
the three data types introduced earlier. In presence of external censoring, the observed
data are denoted as (X, Y}, 014, 09, Z;) (i = 1,2, ...,n) which are random replications of
(X,Y, 01,09, Z) described in Section 4.3.3.

When the covariates are discrete, we can partition the sample according to distinct
values of Z. For a pair of observations in each sub-sample, they need to satisfy two
criterion in order to be used in the analysis. Specifically we select a pair (i,7) with
Z; = Z; = z such that the corresponding value of A;; is known and the chosen corner
value is located in the model region. For typical bivariate data and semi-competing
risks data, we choose * = a. For truncation data, we set * = b. Since the first type
of data falls in Ry, we don’t have to impose any restriction. For semi-competing risks
data, the restriction for making corner a to fall in R; is Tl,ij < szij. For truncation
data, we should set Tlﬂ»j < T2,z’j for making corner b to fall in Ry. Let D;;(z) be the
orderable indicator that shows whether pair (7, j) with Z; = Z; = z can be selected in
the analysis. For the three types of data structure, D;;(z) is defined as follows. For
typical bivariate data, D;;(2) = I(Th.y < Ciaij Toiyy < Caijy Zi = Z; = z); for semi-
competing risks data, D;;(z) = I(Tl,ij < T~2,ij < C’ij, Z; = Z; = z) and, for truncation
data, D;(z) = I(Ty; < Thij < Cijy Zi = Z; = ).

Now we discuss estimation of 3. Since the dimension of # usually exceeds 1, we can
not directly apply the method of moment based on equation (32) as in existing methods

developed for homogeneous data (Fine et al., 2001; Chaieb et al., 2006). Instead, we
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apply the least-squares principle to minimize

= SN WXy, Vi) Dy (2)[ Ay — (=T, (34)

z 1<J

where D;;(z2) is defined above, W, is the weight function and the definition of (X;, Y;;)
depends on the data type which is given below. For typical bivariate data under right
censoring, Xij = X; AN X; and ffij = Y; A'Yj; for semi-competing risks data, )N(ij =
Tw/\fzﬂ-j/\é’ij and f/ij = T27ij/\C~’ij; and, for truncation data, Xij = Tln‘j and ffij =YiAY.
The proposed estimator, denoted as B, is the one such that U(f) is minimized which
can be obtained by solving u(8) = 0, where u() = 0U(3)/98. In the simulations, we

will evaluate the weight function of the form,

n,

Yor H{X; > min(a, z),Y; > min(b, y), Z; = z}’

Wz,a,b (LU, y) =

where n, is the sample size of Z = z; a and b are constants. With a = b = 0, the
function reduces to 1 which is the un-weighted case. With a = b = oo, the weight
function becomes n,/ > " I{X; > ,Y; >y, Z; = z}. The following theorem provides
the asymptotic properties of B The proof of Theorem 3 is provided in Appendix 5.
Theorem 3: Letﬁ denote the solution minimizing (34). We make the following regularity
assumptions: (a) The list of possible covariate values is Z = {z1,...,zx} which spans
a non-degenerate linear space. That s, the dimensionaltiy of linear space spanned by
Z equals p, the dimensionality of B. (b) n,, /n converge to constants 0 < ¢ < 1 for
k=1,.,K. (c¢) The weight function W,(u,v) has a uniform bounded limit W, (u,v).
That is, sup, ,, , |[W.(u,v) — W.(u,v)| — 0 in probability, where W, is deterministic and
bounded for (u,v) in the support of (XU,YQJ) Let 3% be the true value of 3. Then 3 is a
consistent estimator and \/ﬁ(ﬁA — (%) converges in distribution to a multivariate normal
distribution with variance ¥ which is consistently estimated by S =11 (f 1Y where

(1eup) > :
[ == ) J - JZ Y
( 712 B0 ‘B h (p+1)x (p+1) ( j>(P+1)><(P+1)

~
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Ji=n3 012 Y (QULOP . + QLR + Q0P ) + D (@A)

z k<l<m k<l

A(/ﬂ) ZQWZ Xza{/; Dz A’L_ NV eXp(BO_‘:—i_B;DZAp)Zk
sz (Xij, Yij) Dig(2)[Aij — n(2"B))( (Lt oxp(Bo + - + B, 2,))?

).

4.4.5. Checking the Clayton Assumption

Shih (1998) proposed a testing procedure to verify the Clayton assumption for typical
bivariate right censored data. The test statistic is expressed as the difference of two
estimators of the association parameter which converges to zero when the Clayton as-
sumption holds but converges to a non-zero value when the model assumption is violated.
This idea has been applied to semi-competing risks data by Fine et al. (2001). Now
under the current regressing setting, we develop a unified approach of model checking
which can handle the three data structures. Note that our result is the first application
in the literature which can deal with dependent truncation data.

Let Uy () and Uy () follow the same form as U () with the weight function W, being
specified as W, ; and W, 5 respectively. The following weight functions are suggested.

For typical bivariate right censored data and semi-competing risks data, we can set

Ty

Wz,l(w7y):1; Wz,2(xay)zzn [(X>$ Y>y Z_Z)a
=] i Z Ly Yy Y, Ly =

and for truncation data,

n,

Wz,l(‘rvy) — 17 WZ,2(‘T7y> =

Let BWM be the solution to u;(3) =0 (i = 1,2). In principle, different weight functions
can also be applied and the choice would affect the power of the corresponding test.
Shih (1998) suggested to choose two weight functions such that, under the assumed
model, one produces a more efficient estimator while the other results in a less efficient

estimator.
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The proposed test statistic can be expressed as

= n(BWz,l - BWZ,Q),f_l(BWZ,l - BWZ,2)’

where I' = <f,]> ,
(p+1)x(p+1)

- _ Ax(j *(1 x(7) Ax(7) A
Fij =n? 2[2 Z lez kaz + lez lrrfz l7§1z knjlz + Z klz ka

z k<l<m k<l

and QZE? is defined in Appendix. In Appendix 6, we show that when the regression
assumption 0Z(s,t) = exp(Z’f3) holds, T converges in distribution to Xz% +1- That is, for

a 7-level test, we reject the null hypothesis if T > x2, ., where Pr(x2,, > x3.1,) = 7-

4.4.6. Numerical Analysis

4.4.6.1. Simulations Results

We performed simulations to assess finite-sample performances of the proposed methods.
Three regression settings were examined: case 1 (two groups): 07(s,t) = exp(Bo+ 1 21),
where Z = (1,0) or (1,1); case 2 (three groups): 6%(s,t) = exp(fy + B1Z:), where
Z = (1,0), (1,1) or (1,2)" and case 3 (three groups): 0Z(s,t) = exp(Bo + 5121 + [22),
where Z = (1,0,0)’, (1,1,0)" or (1,0, 1)". The values of parameters were set as follows.
For case 1 and case 2, (fy,31) = (0.5,0.5) and (1,1); and for case 3, (0o, (1,32) =
(0.5,0.5,0.5) and (1,1,1). For each group, we generated (77,73) which follow model
(32). For typical bivariate data and semi-competing risks data, we set * = a and,
for truncation data, we set * = b. The marginal distributions were generated from
Ty ~ exp(0.8) and Ty ~ exp(l). Right censoring is incorporated in the three data
structures. For all the cases, the censoring distribution was generated from U(0,6). For
bivariate censored data, we set C] to be independent of C5 and the censoring proportion
of T; (j = 1,2) is around 0.15. For semi-competing risks data, the censoring rate for
Ty which is subject to dependent censoring by Ts varies from 0.35 (7 = 0.76) to 0.48

(1 = 0.25). For truncation data, the missing proportion Pr(7} > T5) and the censoring
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rate Pr(T; > C|Ty <1Ty) (j = 1,2) vary with 7. When 7 = 0.25, Pr(77 > T5) ~ 0.43,
Pr(Ty > C|TY < Ty) =~ 0.09 and Pr(Ty > C|T7 < T3) =~ 0.23. When 7 = 0.76,
Pr(Ty > Ty) = 0.27, Pr(T) > C|T} <T,) =~ 0.11 and Pr(T, > C|T} <T5) ~ 0.18.

The sample size was chosen to be 150 and 300. Two weight functions with (a,b) =
(0,0) and (a,b) = (00, 00) were evaluated. The results for the three regression settings
are summarized in Table 4-1 ~ 4-3 respectively. Based on 1000 replications, we computed

1000 BZ-(B) /1000 — B¢ (bias), and the empirical standard deviation of 3; (5;) and the
estimated standard deviation \/nTin ( 6;), and the coverage probability of the nominal
0.95 confidence interval for f3; (Cov95).

In all the cases, the proposed estimator B performs well and the variance estimator
o produces confidence intervals with reasonable coverage probabilities. For typical bi-
variate right-censored data and semi-competing risks data, the estimator with weight
function (a,b) = (00, 00) performs better than (a,b) = (0,0) but, for truncation data,
we get the opposite conclusion since there is no information in the wedge 77 > T5.
Therefore, we evaluated another weight function,

Wz*(a:,y):nz/zn:I{Xigx,YiZy,Zi:z}, (35)
i=1
and the results are presented in Table 4-4. We see that the new weight function does

improve the performances.
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Bias o o Cov95 Bias o o Cov95
Data (a,b) | Do n = 150 n = 300
b1
Data 1| (0,0) | 0.5 | 0.0065 0.1855 0.1821 0.957 | 0.0015 0.1259 0.1283  0.945
0.5 |-0.0025 0.2619 0.2593 0.948 | -0.0007 0.1935 0.1835 0.953
1 | 0.0117 0.1960 0.1856  0.957 | 0.0059 0.1332 0.1308 0.942
1 | 0.0085 0.2858 0.2693 0.954 | 0.0067 0.1841 0.1890 0.956
(00,00) | 0.5 | 0.0066 0.1751 0.1656 0.947 | -0.0003 0.1127 0.1150 0.951
0.5 | 0.0050 0.2578 0.2400 0.951 | 0.0096 0.1669 0.1677 0.945
1 [ 0.0083 0.1787 0.1728 0.953 | 0.0054 0.1278 0.1222 0.946
1 [-0.0079 0.2751 0.2553 0.942 | 0.0032 0.1862 0.1775 0.949
Data 2 | (0,0) |[0.5]-0.0003 0.2343 0.2259 0.954 | -0.0015 0.1600 0.1586  0.949
0.5 |-0.0094 0.3372 0.3137 0.952 | 0.0020 0.2229 0.2208 0.954
1 | 0.0106 0.2282 0.2167 0.945 | -0.0070 0.1592 0.1540 0.954
1 [-0.0093 0.3030 0.3006 0.955 | 0.0016 0.2132 0.2121 0.950
(00,00) [ 0.5 | 0.0071 0.1996 0.1959 0.953 | 0.0051 0.1399 0.1382 0.950
0.5 | 0.0073 0.2760 0.2793 0.956 | -0.0028 0.1923 0.1956  0.948
1 | 0.0034 0.1975 0.1971 0.941 | 0.0026 0.1346 0.1386 0.946
1 | 0.0045 0.2889 0.2838  0.947 | -0.0011  0.1927 0.1956  0.944
Data 3 | (0,0) |0.5]-0.0015 0.1518 0.1469 0.959 | 0.0033 0.0999 0.1012 0.956
0.5 | 0.0078 0.2341 0.2236 0.952 | -0.0013 0.1565 0.1540 0.961
1 | 0.0060 0.1745 0.1691 0.950 | -0.0034 0.1180 0.1160 0.945
1 [-0.0041 0.3370 0.3205 0.951 | 0.0023 0.2192 0.218