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摘   要 

 

雙變數存活分析已被廣泛應用於生物醫學的研究。早期的研究課題較偏向於

探討兩個不同生物個體或器官組織存活時間之關連性。近年來的應用方向則拓廣

到同一個體所發生不同事件的時間。後者在分析上，往往伴隨所探討的時間變數

間彼此具有設限或截切關係，使得統計推論變得更為複雜。本論文包含兩個研究

計劃，均在迴歸的架構下分析雙變數之存活時間。我們特別針對前面所述特殊的

設限或截切資料，提出統計推論的方法。 

第一個計劃針對半競爭風險資料，探討解釋變數對“中介事件發生時間＂的

影響。分析的難度在於所欲探討的時間長度受制於相關設限。大部分文獻所提出

的方法均利用“人為設限＂﹝artificial censoring﹞的技巧，以處理相關設限

所造成的偏誤。不過這個方法因把部份觀測值捨棄而會產生估計效率上的損失，

亦因添加了額外的模型假設而有缺乏穩健性的缺點。我們提出兩階段估計方法可

改善前述方法的缺點。我們亦針對兩個所提出的假設，發展模型檢驗的方法。論

文中並推導了大樣本性質，並且透過數值分析評估各推論方法在有限樣本下的表

現。 

在第二個計劃中，我們建構關聯性的迴歸模式，並且發展一套推論方法可以

彈性的分析三種截然不同的資料結構。我們也針對此模式假設，提出模型檢驗的

方法。論文中亦呈現大樣本分析與數值分析。 

 

 

關鍵字﹕阿基米得關聯模式；雙變數存活時間；相關設限；相關截切；局部勝算

比值；多重事件資料；半競爭風險資料；轉換模型。 
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ABSTRACT 
 

Bivariate survival analysis has received substantial attentions due to its wide 
applications. The variables of interest may represent failure times occurred to two 
different biological units or different event times measured from the same subject. In 
the latter situation, the two failure times may have censoring or truncation relationship 
which complicates statistical analysis. The thesis contains two projects, both of which 
consider regression analysis for bivariate survival data. 

The first project focuses on semi-competing risks data in which a terminal event 
censors a non-terminal event. In particular we investigate how covariates affect the 
marginal distribution of the time to a non-terminal event subject to dependent 
censoring. Most existing methods utilize the technique of artificial censoring to 
remove the sampling bias. However these approaches may result in efficiency loss 
and may not be robust under model mis-specification. We propose a two-stage 
procedure to tackle this problem. We also propose model selection methods to verify 
the two main assumptions. Large-sample properties are also proved. Numerical 
analysis is performed to evaluate finite-sample performances of the proposed 
methods. 

In the second part of the thesis, we consider the situation that covariates may 
affect the level of association. We propose a flexible regression model and then 
develop a unified inference procedure which can be applied to three different types of 
data structures. For this part, we also present a model checking method for assessing 
the appropriateness of the Clayton assumption. Large-sample analysis and numerical 
studies are also presented. 
 
Keywords: Archimedean copula; Bivariate failure-time; Clayton model; Dependent 
censoring; Dependent truncation; Kendall's tau; Local odds ratio; Multiple events data; 
Semi-competing risks data; Transformation model. 
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Chapter 1. Introduction

Many biomedical studies involve analysis of multiple events. In recent years, the tech-

niques of multivariate survival analysis have been applied to analyze various types of

event-time data. Here we consider the bivariate case. Let (T1, T2) be a pair of failure

times which are possibly correlated. Traditionally (T1, T2) refer to the failure times of

different biological units such as twins, family members or paired organs on the same

person. In the past few years, applications have been extended to include variables

which have censoring or truncation relationship. Semi-competing risks data provide an

example in which a terminal variable, such as death, may censor a non-terminal variable

such as disease progression but not vice versa. The recent paper by Chaieb et al. (2006)

discusses another situation in which one variable truncates the other. They consider an

example of transfusion-related AIDS in which subjects were observed only if they had

developed AIDS during the study period which lasted for 102 months. The example

records the infection time (S), measured from the beginning of the study, and the in-

duction time (T1), from infection to AIDS, in months. Setting T2 = 102 − S, subjects

are observed only if T1 ≤ T2. See Figure 1-1 for illustration. Hence the induction time

T1 is subject to right truncation by T2. Although it seems that T1 and T2 should be

independent, dependence between the two variables was discovered by Tsai (1990) and

later researchers including Chaieb et al. (2006) and Emura et al. (2007). One possible

explanation of the dependence is that the medical practice for HIV-infected patients

may be different in different calendar years.

Statistical inference methods should account for the underlying data structures.

However for analysis of multiple event data, the possibility of dependent censoring or

truncation complicates subsequent statistical analysis. In the thesis, we are interested

in studying the covariate effects on either the marginal distributions or the dependence

structure based on multiple event data of various types. This article contains two dif-
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Figure 1-1: Illustration of AIDS data.

ferent projects. In the first part, we consider marginal regression analysis based on

semi-competing risks data. The challenge of statistical inference is that the regression

effect of interest can only be analyzed in presence of dependent censoring. In the second

part, we propose a model which describes how covariates affect the level of associa-

tion between the two failure times of interest. We aim to develop a unified inference

procedure which can handle the three different data structures mentioned above.

Chapter 2 reviews the model assumptions and data structures that will be considered

in both projects. Chapter 3 focuses on the first project on marginal regression analysis.

Section 3.1∼3.3 review related literature and our main results are stated in Section 3.4.

Chapter 4 considers the second project about the regression analysis for association.

Section 4.1∼4.3 provides the background information and the review of related literature.

The main results are summarized in Section 4.4. In Chapter 5, we give some concluding

remarks and discuss possible future research directions.
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Chapter 2. Literature Review

We first introduce useful model assumptions for describing the association between two

failure time variables. Then, we examine three types of data, namely typical bivariate

data, semi-competing risks data and truncation data, which will be considered in the

thesis.

2.1. Copula Models and Archimedean Copula Models

Copula models are often used to describe the association between two failure time vari-

ables. In the book by Nelsen (2006), ”An Introduction to Copulas”: From one point a

view, copulas are functions that join or ”copulas” multivariate distribution functions to

their one-dimensional marginal distribution functions. Alternatively, copulas are multi-

variate distribution functions whose one-dimensional margins are uniform on the interval

(0, 1). For the bivariate case, a copula function can be written as C(u, v), which may be

parameterized as Cα(u, v) such that Cα(., .) : [0, 1]2 → [0, 1] and

(i) Cα(0, u) = Cα(u, 0) = 0 and Cα(1, u) = Cα(u, 1) = u for all u ∈ [0, 1]; and

(ii) Cα(u2, v2) − Cα(u1, v2) − Cα(u2, v1) + Cα(u1, v1) ≥ 0 for all u1, u2, v1, v2 in I such

that u2 ≤ u1 and v2 ≤ v1.

The Archimedean copula (AC) family is a popular subclass of the copula family. A

copula is said to be ”Archimedean copula” (AC) if it can be expressed in the following

form

Cα(u, v) = φ−1
α {φα(u) + φα(v)}, (1)

where φα : [0, 1] → [0,∞] satisfying φα(1) = 0, φ′α(t) < 0 and φ′′α(t) > 0. Note that the

AC family simplifies the bivariate relationship via the univariate function φα(·). The

function φα(·) is called the generator of the copula. Important properties of AC models

have been derived in Genest and MacKay (1986), Oakes (1989) and Genest and Rivest

(1993).

Now, we introduce some commonly-seen examples of Archimedean copulas.
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Example (a): the Clayton copula (1978), where the generator function is φα(t) = (t1−α−
1)/(α− 1) for some (α > 1) and

Cα(u, v) = {u1−α + v1−α − 1}1/(1−α).

Example (b): the Frank copula (1979), where φα(t) = log[(1−α)/(1−αt)] (α > 0) and

Cα(u, v) = logα{1 + (αu − 1)(αv − 1)/(α− 1)}.

Example (c): the Gumbel model (1960), where φα(t) = {− log(t)}α+1 (α > 0) and

Cα(u, v) = exp{−[(− log(u))α+1 + (− log(v))α+1]1/(α+1)}.

When C(u, v) = uv, we have the product copula or independent copula.

Example (d): the Gumbel-Barnett copula, where φα(t) = log(1− α log(t)) α ∈ (0, 1].

Cα(u, v) = uv exp{−α log(u) log(v)}.

In applications, the copula structure is usually imposed on the survival function of

bivariate failure times (T1, T2) such that one can write

Pr(T1 > s, T2 > t) = Cα{Pr(T1 > s), Pr(T2 > t)}. (2)

Accordingly an AC model defined on the joint survival function can be written as

Pr(T1 > s, T2 > t) = φ−1
α {φα(Pr(T1 > s)) + φα(Pr(T2 > t))}.

The AC family has nice analytic properties which are useful for further statistical infer-

ence.

Global association between (T1, T2) can be summarized by Kendall’s tau, denoted as

τ , which is defined as

τ = Pr{(T1i − T1j)(T2i − T2j) > 0} − Pr{(T1i − T1j)(T2i − T2j) < 0}, (3)

6



where (T1i, T2i) and (T1j, T2j) (i 6= j) are two independent pair of (T1, T2). Note that

τ = 0, if T1 and T2 are independent; τ > 0, if T1 and T2 are positively correlated;

τ < 0, if T1 and T2 are negatively correlated. Kendall’s tau has a nice property of

rank invariance. For a copula model indexed by Cα(·, ·), the association parameter α is

related to Kendall’s τ such that

τ = 4

∫ 1

0

∫ 1

0

Cα(u, v)Cα(du, dv)− 1. (4)

Here we give some examples. For the Clayton model, τ = (α − 1)/(α + 1); for the

Gumbel model, τ = α/(α + 1); and for the Frank model, τ = 1 + 4γ−1{D1(γ) − 1},
γ = − log(α) and for integer k ≥ 1, Dk is the Debye function defined by

Dk(γ) =
k

γk

∫ γ

0

tk

et − 1
dt.

For describing local association, Oakes (1989) proposed the following cross ratio

function

θ(s, t) =
Pr(T1 > s, T2 > t)DsDtPr(T1 > s, T2 > t)

{DsPr(T1 > s, T2 > t)}{DtPr(T1 > s, T2 > t)} , (5)

where Ds denotes the operator −∂/∂s. This function has an intuitive interpretation as

the ratio of the hazard rate of the conditional distribution of T1, given T2 = t, to that

of T1, given T2 > t. Specifically it follows that

θ(s, t) =
λ1(s|T2 = t)

λ1(s|T2 > t)
, (6)

where λ1(s|A) is the hazard of T1 at time s given that event A occurs. The cross

ratio function for an AC model possesses some nice analytic properties. Oakes (1989)

showed that, for an AC model indexed by φα(·), θ(s, t) depends on (s, t) only through

Pr(T1 > s, T2 > t) such that

θ(s, t) = θ̃α(Pr(T1 > s, T2 > t)), (7)
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where θ̃α(v) = −vφ
′′
α(v)/φ

′
α(v). The different expressions of θ(s, t) are useful in subse-

quent inference problems. For example equation (7) provides a semi-parametric expres-

sion of θ(s, t) in terms of α and Pr(T1 > s, T2 > t) which can be analyzed nonparamet-

rically.

2.2. Different Types of Data Structures

In the thesis, we aim to study (T1, T2) which, besides their association, may have cen-

soring or truncation relationship due to the restriction of the observational scheme. To

simplify the analysis, we assume that Tk (k = 1, 2) are continuous random variables.

Define the following two regions: R1 = {(s, t) : 0 < s < ∞, 0 < t < ∞} and

R2 = {(s, t) : 0 < s ≤ t < ∞}. The following three types of data structures will be

considered in the thesis.

Data Structure 1 - Typical bivariate failure time data. The failure times (T1, T2) have

no specific relationship and hence observations fall in the region of R1;

Data Structure 2 - Semi-competing risks data. The time to the non-terminal event,

T1, is subject to censoring by the time to the terminal event T2. One can observe

(T1 ∧ T2, T2, I(T1 ≤ T2)) and the first two variables fall in R2;

Data Structure 3 - Truncation data. Let T1 be subject to right truncation by T2 or T2

subject to left truncation by T1 such that one can only observe replications of (T1, T2)

with T1 ≤ T2 which are also located in R2.

In Figure 2-1, hypothetical data from the three data types in absence of external cen-

soring are plotted.

Examples of the first type may be found in studies of twins or paired organs on

the same person. The study of association between the time of disease progression and

survival usually encounters the second type. The example of transfusion-related AIDS

mentioned earlier belongs to the third type.

Now we briefly discuss the difference of the latter two types of data which look similar

8
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? 

Figure 2-1: (a): Typical bivariate data; (b): Semi-competing risks data;

(c): Truncation data.

at the first glance. For semi-competing risks data, observations with T1 > T2 can be

identified and only their exact locations on the plane are uncertain. For truncation data,

in contrast, we have no information for observations with (T1, T2) ∈ {(s, t) : 0 < t < s <

∞} and even whether they exist is unknown.

In Chapter 3, we will consider marginal regression analysis based on semi-competing

risks data in which T1 is subject to dependent censoring by T2. In Chapter 4, we

consider association study under a general framework which includes all the three types

of data structures discussed above. We aim to study the regression effect on the level

of association by developing a unified inference procedure that can handle all the three

data structures.
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Chapter 3. Regression Analysis for Marginal Effect

Based on Semi-Competing Risks Data

3.1. Model Framework and Data Structure

Let T1 be the time to the non-terminal event of major interest, usually a status of disease

progression, T2 be the terminal event, such as death. The name of ”semi-competing

risk” proposed by Fine et al. (2001) explains the fact that T2 is a competing risk for T1

but not vice versa. Such a phenomenon has been analyzed by many researchers under

the framework of a multi-state model. Figure 3-1 depicts a simple three-state model,

also called as a ”disability model” or an ”illness-death” model. We refer state 1 as

the initial state; state 2 as the state of disease procession (i.e. occurrence, recurrence,

complications, metastases,..., etc.) and state 3 as the absorbing state such as death.

 

Initial State Disease Progression 

Death 

1T  

2T  

Figure 3-1: Illness-death model.

Since (T1, T2) usually represent two types of failure times on the same subject, we

may assume that they are both subject to a common external censoring variable denoted

as C. Assume that C is independent of (T1, T2). Under right censoring, semi-competing

risks data (Fine et al., 2001) consist of (Xi, δ1i, Yi, δ2i), where

X = T1 ∧ T2 ∧ C, Y = T2 ∧ C, δ1 = I(T1 ≤ T2 ∧ C) and δ2 = I(T2 ≤ C). (8)
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3.2. Marginal Regression Model on the Non-terminal Event

The major goal of the first project is to assess the covariate effect on the non-terminal

event time, T1, based on the data (Xi, Yi, δ1i, δ2i, Zi). The following regression model

will be considered:

h(T1) = −ZT θ + ε, (9)

where Z is the p × 1 discrete covariate vector, θ is the p × 1 parameter vector, h(t) is

a monotone function and ε is the error term. The parameter θ, which measures the

covariate effect on T1, is of major interest.

Model (9) can be classified into two classes. One class assumes that h(t) is a known

monotone function but leaves the distribution of ε to be unknown. For example, when

h(t) = t, the model becomes a location-shift model with T1 = −ZT θ + ε. When h(t) =

log(t), the model follows an accelerated failure time Model such that log(T1) = −ZT θ+ε.

The other class assumes that h(t) is unknown but the distribution of ε is completely

specified. For example, when ε is the extreme value distribution, the model becomes the

Cox proportional hazard model such that

F1,z(x) = F1,0(x)exp(zT θ),

where F1,z(x) = Pr(T1 ≥ x|Z = z). When ε is the standard logistic distribution, the

model follows the proportional odds model with

logit(1− F1,z(x)) = logit(1− F1,0(x)) + zT θ.

The challenge of estimating θ comes from the fact that T1 is subject to dependent

censoring by T2. In fact, the marginal distribution of T1 is not identifiable nonpara-

metrically. Therefore, besides the model assumption in (9), additional assumptions are

needed for estimation of θ. A popular approach is to model marginal regression ef-

fects on both T1 and T2 and impose the assumption that the bivariate error variables,

after removing the marginal effects, do not depend on the covariates. This approach

11



has been adopted by many authors and the technique of artificial censoring is used to

construct unbiased estimating functions. For example, under a two-sample setting, Lin

et al. (1996) considered a bivariate location-shift model and Chang (2000) assumed a

bivariate accelerated failure time model. This research direction has been further ex-

tended to general regression settings in which the non-terminal event is generalized to

be recurrence events (Ghosh and Lin, 2003; Lin and Ying, 2003) while death still serves

as a terminal event. The technique of artificial censoring is used in these papers to han-

dle the problem of dependent censoring. Despite theoretically appealing, the degree of

artificial censoring affects the efficiency of the resulting estimator. Peng & Fine (2006)

extended the setting of Lin et al. (1996) to include multiple covariates, but proposed

a new technique of artificial censoring which can improve the efficiency loss. Besides

the drawback of the artificial censoring technique, the model assumptions are somewhat

restrictive. Specifically these methods implicitly assume that the dependence structures

for the two groups, or for all the levels of covariates, are the same. In other words, they

do not account for the situation that covariates may affect the dependence structure. In

Section 3.3, we review the aforementioned papers.

In Section 3.4, we present our proposed methodology for estimating θ in presence of

dependent censoring. Our idea considers to model the dependence between T1 and T2

by an AC model for each covariate group. Then θ can be estimated without imposing

additional regression model on T2. We propose model checking methods to verify the

appropriateness of the two types of model assumptions. Except for the modeling flexi-

bility, our approach can make use of the available data, compared to the methods which

require artificial censoring.

3.3. Inference Methods Based on Artificial Censoring

The definitions of T1, T2 and C have been given earlier. Let Z be the covariate. Usually

it is assumed that C is independent of (T1, T2) conditional on Z. We review four papers

12



which utilize the technique of artificial censoring to remove the bias due to dependent

censoring.

3.3.1. Location-Shift Model

Lin, Robins & Wei (1996) considered a simplified case with binary Z. Specifically Z

denotes the group indicator taking values of 0 or 1. The model assumed that there

exist some unknown constants θ0 and η0 such that the bivariate random vectors (T1i −
θ0Zi, T2i − η0Zi) (i = 1, 2, ..., n) are independently and identically distributed from an

unspecified joint distribution not depending on Zi. In other words, (T1, T2) follow a

bivariate location-shift model but the underlying dependence structure is un-specified.

The main objective of their paper is to draw inference about θ0 but it is easier to

obtain an estimator of η0 first since T2 is subject to independent censoring by C. In fact

estimation of η0 has been well studied (Louis, 1981; Wei & Gail, 1983). By constructing

a log-rank statistic based on the transformed data {Y̌i(η), δ2i, Zi} (i = 1, 2, ..., n), where

Y̌i(η) = Yi − ηZi, an estimating function for η0 is given by

UL
1 (η) = n−1/2

n∑
i=1

δ2i[Zi −
∑n

j=1 I{Y̌j(η) ≥ Y̌i(η)}Zj∑n
j=1 I{Y̌j(η) ≥ Y̌i(η)} ].

The estimator η̂ is the solution to UL
1 (η) = 0. Because the random variable (T2i −

η0Zi) (i = 1, 2, ..., n) have the same distribution and because the censoring time Ci

is independent of Yi in each group, the statistic UL
1 (η0) is asymptotically zero-mean

normal (Fleming & Harrington, 1991). Therefore, η̂ is consistent and asymptotically

normal (Louis, 1981; Wei & Gail, 1983).

In order to construct a valid estimating function of θ0, under dependent censoring,

the authors suggested to transform Xi and δ1i to X̌i(η, θ) and δ̌1i(η, θ), where

X̌i(θ, η) = (T1i − θZi) ∧ (T2i − ηZi − d) ∧ (Ci − ηZi − d),

δ̌1i(θ, η) = I{(T1i − θZi) ≤ (T2i − ηZi − d) ∧ (Ci − ηZi − d)},
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with d = 0 if θ ≤ η and d = θ − η if θ > η. Note that uncensored observations may

become censored ones after the transformation. The hypothetical variable (T1i − θZi)

can be “observed” as X̌i(θ, η) in presence of two sources of censoring by (T2i − ηZi − d)

and (Ci− ηZi− d) with δ̌1i(θ, η) being the associated failure indicator. The transformed

data {X̌i(θ, η), δ̌1i(θ, η), Zi} (i = 1, 2, ..., n) become homogeneous when (θ, η) = (θ0, η0).

In other words, the transformation makes the joint distribution of the two groups on the

upper wedge be the same. Consequently the following log-rank type estimating function

can be constructed

UL
2 (θ, η) = n−1/2

n∑
i=1

δ̌1i(θ, η)[Zi −
∑n

j=1 I{X̌j(θ, η) ≥ X̌i(θ, η)}Zj∑n
j=1 I{X̌j(θ, η) ≥ X̌i(θ, η)} ],

which is centred around 0 when (θ, η) = (θ0, η0). Hence, UL
2 (θ, η) is a reasonable esti-

mating function.

The authors proposed a two-stage estimation procedure instead of solving the equa-

tions UL
j (θ, η) = 0 (j = 1, 2) jointly. Specifically they suggested to obtain η̂ from UL

1 (η)

and then solve UL
2 (θ, η̂) = 0. Consistency and asymptotic normality of θ̂ are proved in

the paper.

3.3.2. Accelerated Failure-Time Model

The methodology of Chang (2000) can be applied to recurrence data. Here, we consider

the simple situation with no recurrence (i.e. K = 1 in Chang (2000)). The notations in

Chang (2000) have been modified According to our setup. Let Z be the binary covariate

which is coded as Zi = 0 if subject i is in group 1 and Zi = 1 if subject i is in group 2.

For the bivariate accelerated failure time model, Chang assumed that there exist some

unknown constants θ0 and η0 such that the bivariate random vectors (eθ0ZiT1i, e
η0ZiT2i)

(i = 1, 2, ..., n) are independently identically distributed with an unspecified joint distri-

bution that is independent of Zi.

Estimation of η0 is quite standard. Louis (1981) and Wei and Gail (1983) considered

14



a log-rank-type estimating function for η0 based on the transformed data {(eηZiYi, δ2i)}
(i = 1, 2, ..., n) as follows:

UC
1 (η) = n−1/2

n∑
i=1

δ2i[Zi −
∑n

j=1 I{eηZjYj ≥ eηZiYi}Zj∑n
j=1 I{eηZjYj ≥ eηZiYi} ].

Again, the challenging part is in estimation of θ0. Motivated by Lin et al. (1996),

Chang (2000) suggested to re-scale the observed censoring time Yi by multiplying by

eηZi−ν , where ν = max{0, η − θ}, in order to guarantee the value of ηZi − ν no greater

than the value of θZi for each Zi. Therefore, the transformed data become

X̌i(θ, η) = eθZiT1i ∧ eηZi−νYi,

δ̌1i(θ, η) = I{eθZiT1i ≤ eηZi−νYi}.

For a censored observation, eθZiT1i must be larger than eηZi−νYi and therefore δ̌1i(θ, η) =

0. However, an uncensored observation may be artificially censored because it is likely

that eθZiT1i may exceed eηZi−νYi after the transformation. The proposed estimating

function of θ based on the transformed data, (X̌i(θ, η), δ̌1i(θ, η), Zi) (i = 1, 2, ..., n), is

given by

UC
2 (θ, η) = n−1/2

n∑
i=1

δ̌1i(θ, η)[Zi −
∑n

j=1 I{X̌j(θ, η) ≥ X̌i(θ, η)}Zj∑n
j=1 I{X̌j(θ, η) ≥ X̌i(θ, η)} ].

The resulting estimators denoted as (θ̂, η̂)′ which solve UC(θ, η) = (UC
1 (η), UC

2 (θ, η))′ =

0. In Chang (2000), she showed the corresponding estimators are consistent and asymp-

totic normal.

3.3.3. Location-Shift Model by Pairwise Artificial Censoring

Peng & Fine (2006) proposed a method for estimating the marginal effect on T1 which

uses a new artificial censoring technique by pairwise ranking. Following Lin et al. (1996),

they assumed a bivariate model for (T1i, T2i), i = 1, 2, ..., n: T1i = θT
0 Zi + ε1i and
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T2i = ηT
0 Zi + ε2i. They also made the assumption that εi = (ε1i, ε2i)

T (i = 1, 2, ..., n)

are independently and identically distributed with an unspecified joint survivor function

not depending on Zi.

Because T2 is subject to independent right censoring by C, estimation of η0 reduces

to a classical estimation problem. A log-rank test (Wei et al. (1990); Tsiatis (1990)) has

been constructed based on ε̌2i(η) = Yi − ηT Zi, which is the observed proxy of the true

error ε2i if η = η0. It can be written as

UP
1 (η) = n−1/2

n∑
i=1

δ2i[Zi −
∑n

j=1 I{ε̌2j(η) ≥ ε̌2i(η)}Zj∑n
j=1 I{ε̌2j(η) ≥ ε̌2i(η)} ].

An estimator η̂ is obtained as the solution of UP
1 (η) = 0 which is consistent and asymp-

totically normal.

Different from the artificial censoring technique of Lin et al. (1996) and Chang

(2000), Peng & Fine (2006) proposed an alternative rank estimator which can reduce

the level of artificial censoring. Specifically they suggested to trim separately within

pairs of observations, say {(Xi, Yi, δ1i, δ2i, Zi), (Xj, Yj, δ1j, δ2j, Zj)}. The artificial cen-

soring parameter is no longer fixed across pairs and does not involve the bounds on

the support of the covariate distribution. A different value is determined for each pair

using the covariate vectors Zi and Zj. The data transformation within the (i, j) pair is

{X̌i(j)(β), δ̌1,i(j)(β); X̌j(i)(β), δ̌1,j(i)(β)}, where

X̌i(j)(β) = (T1i − θT Zi) ∧ {T2i − ηT Zi − dij(β)} ∧ {Ci − ηT Zi − dij(β)},

δ̌1,i(j)(β) = I[(T1i − θT Zi) ≤ {T2i − ηT Zi − dij(β)} ∧ {Ci − ηT Zi − dij(β)}],

dij(β) = max{0, (θ− η)T Zi, (θ− η)T Zj} and β = (θT , ηT )T . The choice of dij(β) ensures

that both X̌i(j)(β) and δ̌1,i(j)(β) can be determined from the observed data. Because

dij(β) is always no greater than d defined in §3.3.1, the level of artificial censoring can

be reduced the approach of Lin et al. (1996). Define ψij(β) = δ̌1,i(j)(β)I{X̌i(j)(β) ≤
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X̌j(i)(β)}− δ̌1,j(i)(β)I{X̌j(i)(β) ≤ X̌i(j)(β)} and notice that (Zi−Zj)ψij(β) is symmetric

in i and j. Because (T1i−θT
0 Zi, T2i−ηT

0 Zi) and (T1j−θT
0 Zj, T2j−ηT

0 Zj) are independent

and with a common survival function on the upper wedge, ψij(β) has mean 0 at the true

value β0 = (θT
0 , ηT

0 )T . This suggests the following U-statistic estimating equation

UP
2 (β) = 2

√
n

∑
1≤i<j≤n

(Zi − Zj)ψij(β)

n(n− 1)
.

It follows that that E{UP
2 (β0)} = 0. Thus a reasonable estimator for θ0, denote by

θ̂, can be obtained by solving UP
2 {(θT , η̂T )T} = 0. Furthermore, it is shown that β̂ is

consistent and asymptotic normal.

3.3.4. Artificial Censoring under Flexible Regression Models

The manuscript by Ding, Wang, Hsieh & Shi (2006) extend the artificial censoring

technique to a flexible regression setting. They considered the following models:

h1(T1) = θT Z + ε1

h2(T2) = ηT Z + ε2, (10)

where h1(t) is a known monotone function, h2(t) is a monotone function which may

be known or unknown, εj (j = 1, 2) are the error terms. It is assumed that (ε1i, ε2i)
T

(i = 1, ..., n) are independently and identically distributed with an unspecified joint

survivor function not depending on Zi.

Consider the situation when h2(t) is known and the distribution of ε2 is unknown.

Estimation of η0 is straightforward. Let Ť2(η) = h2(T2) − ηT Z, Č(η) = h2(C) − ηT Z

and Y̌i(η) = Ť2i(η) ∧ Či(η). The estimating function for η can be constructed as

UD
1 (η) = n−1

n∑
i=1

δ2i[Zi −
∑n

j=1 I{Y̌j(η) ≥ Y̌i(η)}Zj∑n
j=1 I{Y̌j(η) ≥ Y̌i(η)} ].

An estimator η̂ is the solution of UD
1 (η) = 0.
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Estimation of θ faces a new challenge that involves specification of an appropriate

transformation that can handle the more general model assumptions. Let Ť1(θ) =

h1(T1) − θT Z. For semi-competing risks data, (T1, T2) are observable only if T1 ≤ T2.

Hence, Ť1(θ) = h1(T1)− θT Z is subject to censoring by

h1(T2)− θT Z = h1 ◦ h−1
2 (Ť2(η) + ηT Z)− θT Z. (11)

The goal is to find a transformation which makes the joint distribution of all covariate

groups on the upper wedge to be the same. Hence, equation (11) has to be hold for all

values of Z. Therefore, the authors suggested the following transformation

Hθ,η(t) = inf
z∈Ω

h1 ◦ h−1
2 (t + ηT z)− θT z,

where Ω is the set of possible Z. The resulting transformed variables become

X̌i(θ, η) = Ť1i(θ) ∧Hθ,η(Ť2i(η) ∧ Či(η))

δ̌1i(θ, η) = I{Ť1i(θ) ≤ Hθ,η(Ť2i(η) ∧ Či(η))}.

Figure 3-2 provides a graphical illustration of the transformation based on a simple

example with a binary Z, h1(t) = t, h2(t) = log(t), and θ0 = η0 = 1. Accordingly, the

estimating function based on the above transformation can be written as

UD
2 (θ, η) = n−1

n∑
i=1

δ̌1i(θ, η)[Zi −
∑n

j=1 I{X̌j(θ, η) ≥ X̌i(θ, η)}Zj∑n
j=1 I{X̌j(θ, η) ≥ X̌i(θ, η)} ].

The estimator θ̂ is the solution of UD
2 (θ, η̂) = 0. Denote β̂ = (θ̂T , η̂T )T as the estimators

and β0 = (θT
0 , ηT

0 )T as the true parameters. It has been showed that n1/2(β̂ − β0)

converges to a bivariate mean-zero normal distribution.

Consider the other situation that h2(t) is a unknown monotone function but the dis-

tribution of ε2 is completely specified. Additional difficulty arises since Hθ,η(t) involves

specification of h2(t) which is unknown. Because the distribution of ε2 is known, hence
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Figure 3-2: The censoring lines draws in the transformed scale with h1(t) = t,

h2(t) = log(t), and θ0 = η0 = 1; the shaded region is artificially censoring.

S̃2(t) = Pr(ε2 > t) is also a known function. Define the baseline survival function of T2

as

S2(t) = Pr(T2 > t|Z = 0).

Since S2(h
−1
2 (t)) = S̃2(t), it follows that h−1

2 (t) = S−1
2 ◦ S̃2(t) and h2(t) = S̃−1

2 ◦ S2(t).

Therefore,

Hθ,η(t) = inf
z∈Ω

h1(S
−1
2 (S̃2(t + ηT z)))− θT z,

which is still unknown since S2(t) is unknown. It is recommended to plug in a con-

sistent estimator Ŝ2(t) for S2(t). Therefore, Hη,θ(t) can be replaced by Ĥθ,η(t) =

infz∈Ω h1(Ŝ
−1
2 (S̃2(t+ηT z)))−θT z. By applying existing methods, a reasonable estimator

of S2(t) can be obtained. For example, under the Cox Proportional hazard model, one
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may estimate S2(t) by the Nelson-Aalen estimator.

3.3.5. Discussions

All the methods discussed above are developed under two types of assumptions. The

first assumption is about marginal regression models for both T1 and T2. The other

assumption is that the dependence structure is the same for each covariate group. In

practical applications, it may happen that different treatment plans change a patient’s

internal biological system. Therefore assuming a common dependence structure for dif-

ferent treatment groups may not be convincing. Furthermore when Z includes multiple

covariates as in the last two papers, the degree of efficiency loss due to artificial censoring

may be substantial. In Section 3.4, we consider another alternative to handle such a

situation.
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3.4. The Proposed Methodology for Marginal Regression Anal-

ysis

As in the previous papers we assume that

h(T1) = −ZT θ + ε,

where T1 is the time to a non-terminal event and is subject to censoring by T2. Given

semi-competing risks data (Xi, δ1i, Yi, δ2i, Zi) (i = 1, ..., n), the parameter θ is not iden-

tifiable without making additional assumptions. Unlike the aforementioned papers, we

do not want to specify the marginal regression on T2 as in (10). Instead, we model the

dependence structure of (T1, T2)|Z for each value of Z under an Archimedean copulas

assumption. Note that Z is a discrete covariate vector. We assume that (T1, T2) jointly

follow an Archimedean copulas in the upper wedge P = {(x, y) : 0 < x ≤ y < ∞}. Ac-

counting for the possibility that the dependence structures for different covariate groups

are different, we assume separate Archimedean copula (AC) models for each group such

that

Fz(x, y) = Cz,αz{F1,z(x), F2,z(y)}

= φ−1
z,αz

{φz,αz [F1,z(x)] + φz,αz [F2,z(y)]}, (12)

where φz,αz(·) : [0, 1] 7→ [0,∞] is a generator function as described in Section 2.1,

Fz(x, y) = Pr(T1 ≥ x, T2 ≥ y|Z = z), F1,z(x) = Pr(T1 ≥ x|Z = z) and F2,z(y) =

Pr(T2 ≥ y|Z = z). Note that, for different groups, we allow not only different association

parameter αz but also different forms of φz,αz(·).

3.4.1. A Two-Stage Inference Procedure

The p-dimensional covariate vector for subject i is denoted as Zi which takes discrete

values, say z1, . . . , zK . Denote nk =
∑n

i=1 I(Zi = zk) as the number of observations

for the kth sub-sample and n =
∑K

k=1 nk. The proposed inference procedure contains
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two steps. The parameters in model (12), namely αz, F2,z(y), Fz(x, y) and F1,z(x), are

estimated in the first stage. In the second stage, the proposed estimating function of θ

is constructed based on the estimator of F1,z(x).

3.4.1.1. First-Stage: Estimating Nuisance Parameters

First we obtain the estimators of Fz(x, y), F2,z(y), F1,z(x), G(y) = Pr(C ≥ y) and

αz, denoted as F̂z(x, y), F̂2,z(y), F̂1,z(x), Ĝ(y) and α̂z respectively, by applying existing

methods in the literature to the sub-sample with Z = z.

For x ≤ y, it follows that Fz(x, y) = Pr(X ≥ x, Y ≥ y|Z = z)/G(y). Hence using

the plug-in approach, Fz(x, y) can be estimated by

F̂z(x, y) = P̂r{X ≥ x, Y ≥ y|Z = z}/Ĝ(y) =

∑n
i=1 I(Xi ≥ x, Yi ≥ y, Zi = z)

nzĜ(y)
, (13)

where Ĝ(y) =
∏

u<y[1 − (
∑n

i=1 I(Yi = u, δ2i = 0)/
∑n

i=1 I(Yi ≥ u))]. This estimator is

based on the assumption that covariates Z do not affect the distribution of censoring

variable C. In the situation that the distribution of C depends on discrete covariate Z,

Ĝ(y) can be modified by the corresponding K-M estimator Ĝz(y) which uses only those

data points with Zi = z. Similarly the estimator of F2,z(y) is given by

F̂2,z(y) =

∑n
i=1 I(Yi ≥ y, Zi = z)

nzĜ(y)
. (14)

There exist several estimators of αz based on semi-competing risks data. Assuming

the Clayton model in the upper wedge, the estimating function proposed by Day et

al. (1997) was constructed based on two-by-two tables and that proposed by Fine et

al. (2001) utilized the concordant information for paired observations. Wang (2003)

generalized the former approach to general AC models. In absence of covariates, her

estimating function of α can be expressed as

L(α, η̂) = n−1

∫ ∫

(x,y)∈P
w(x, y){N11(dx, dy)− Ẽ11(dx, dy; α, η̂)}, (15)

where w(x, y) is a weight function,

Ẽ11(dx, dy; α, η) =
θα,η(x, y)N10(dx, y)N01(x, dy)

θα,η(x, y)N10(dx, y) + R(x, y)−N10(dx, y)
,
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N11(dx, dy) =
∑n

i=1 I(Xi = x, Yi = y, δ1i = 1, δ2i = 1), N10(dx, y) =
∑n

i=1 I(Xi =

x, δ1i = 1, Yi ≥ y), N01(x, dy) =
∑n

i=1 I(Xi ≥ x, Yi = y, δ2i = 1), R(x, y) =
∑n

i=1 I(Xi ≥
x, Yi ≥ y) and θα,η(x, y) = θ̃α{F (x, y)} with

θ̃α(v) = −v
∂2φα(v)/∂v2

∂φα(v)/∂v
= −v

φ
′′
α(v)

φ′α(v)

and η = F (x, y) can be estimated by η̂ = F̂ (x, y) using the formula in (13) without

further partitioning by Z.

Here we modify Wang’s method to estimate αz by using only data points with Zi = z.

Then based on (12), one can derive F1,z(x) in terms of φz,αz(·), Fz(x, y) and F2,z(y). Fine

et al. (2001) suggested to consider the relationship on the diagonal line y = x and, by

straightforward calculation, we get

F1,z(x) = φ−1
z,αz

{φz,αz [Fz(x, x)]− φz,αz [F2,z(x)]} = Hz(Fz(x, x), F2,z(x), αz). (16)

The marginal function F1,z(x) can be estimated by

F̂1,z(x) = φ−1
z,α̂z

{φz,α̂z [F̂z(x, x)]− φz,α̂z [F̂2,z(x)]} = Hz(F̂z(x, x), F̂2,z(x), α̂z). (17)

3.4.1.2. Second-Stage: Estimating the Regression Parameter

The proposed estimating equation of θ is motivated by the following two-sample test

statistic with Z = 0, 1. Specifically to test F1,0(t) = F1,1(t) for every t within the range

of the data, one can use

UT =

√
n0n1

n

∫
W (x)

{
F̂1,0(x)− F̂1,1(x)

}
dx, (18)

where W (x) is a weight function.

Now we modify the test statistic UT in (18) to construct an estimating equation for

one-dimensional θ with Z = 0, 1. Let θ0 be the true value of θ. Model (9) induces a

functional transformation ξθ(·) such that ξθ0(F1,0) = F1,1. When h(·) is known but the

distribution of ε is unknown, ξθ(F )(t) = F [h−1{h(t) + θ}]; when h(·) is unknown but
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the distribution of ε is known, ξθ(F )(t) = Fε [F−1
ε {F (t)}+ θ], where Fε(t) = Pr(ε ≥ t)

denotes the survival function of ε. Now we can define a function g(t, θ) such that

g(t, θ) = ξθ(F1,0)(t)− F1,1(t).

Then g(t, θ0) = 0 for all t. Since
√

n0n1

n

∫
W (x)g(x, θ0)dx = 0, we can then estimate θ

by solving the corresponding estimating equation

U(θ) =

√
n0n1

n

∫
W (x)ĝ(x, θ)dx = 0,

where ĝ(t, θ) = ξθ(F̂1,0)(t)− F̂1,1(t).

The above idea can be modified to account for the situation that Z contains mul-

tiple covariates but all of them have finite discrete values. In such a case, let {zk, k =

1, 2, ..., K} denote the set of all possible Z values. Now zk, θ and θ0 are p × 1 vec-

tors. When model (9) is true, it follows that ξ(zj−zk)T θ0
(F1,zk

) = F1,zj
. Define gkj(t, θ) =

ξzT
kjθ(F1,zk

)(t)− F1,zj
(t) and ĝkj(t, θ) = ξzT

kjθ(F̂1,zk
)(t)− F̂1,zj

(t), where zkj = zj − zk and

F̂1,zk
is the estimator (17) based on the sub-sample with Z = zk. The estimating function

then becomes

U(θ) =
∑

k<j

w0(z
T
kjθ)zkj

√
nknj

nk + nj

{
∫ tkj

0

Wkj(t)ĝkj(t, θ)dt} (19)

where w0(·) and Wkj(·) are the weight functions, and tkj is the largest value of X in the

pooled sub-sample with Z = zk or Z = zj. The proposed estimator of θ is the solution

to U(θ) = 0, denoted as θ̂.

Asymptotic properties of θ̂ which solves U(θ) = 0 are given in the following theorem.

Theorem 1A: Assume that models (9) and (12) hold. Under the regularity conditions

stated in Appendix 1, θ̂ is a consistent estimator of θ0 and
√

n(θ̂− θ0) is asymptotically

normal with mean-zero, where θ0 is the true value.

The proof of Theorem 1A is provided in Appendix 2. Since it is not easy to estimate

the asymptotic variance of θ̂ by an analytic formula, we suggest to use a bootstrap or a

jackknife method to estimate its variance.
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In practice, the weight function may also be estimated. Replacing Wkj(t) in (19)

with Ŵkj(t), we have the following estimating function:

Û(θ) =
∑

k<j

w0(z
T
kjθ)zkj

√
nknj

nk + nj

{
∫ tkj

0

Ŵkj(t)ĝkj(t, θ)dt}.

The Gehan-type weights are often used (page 230 of Klein and Moeschberger, 2003)

which can be written as

Ŵkj(x) =
(nk + nj)Ĝzk

(x)Ĝzj
(x)

nkĜzk
(x) + njĜzj

(x)
,

where Ĝzk
(x) is the Kaplan-Meier estimator of Gzk

(x) = Pr(C ≥ x|Z = zk). Note that

Ŵkj(x) is an estimator of

Wkj(x) =
(ck + cj)Gzk

(x)Gzj
(x)

ckGzk
(x) + cjGzj

(x)
,

where ck and cj are the constants defined in the first regularity condition (a) listed in

Appendix 1. Let θ̃ solves Û(θ) = 0. Its asymptotic properties are stated in the following

theorem. In Appendix 3, we present the proof.

Theorem 1B: If Ŵkj(t) uniformly strongly converges to Wkj(t), then under the conditions

for Theorem 1A, the solution to the estimating equation Û(θ) = 0 is also asymptotically

normal. That is, let θ̃ denote the solution to Û(θ) = 0, then
√

n(θ̃−θ0) weakly converges

to a mean-zero normal random variable, where θ0 is the true value.

For computation, we may use the fact that F̂1,0(t) and F̂1,1(t) are piecewise constant

functions. Let t(1) ≤ . . . ≤ t(n) be the observed ordered times of X in the pooled sample

and set t(0) = 0. Then F̂1,0(t) and F̂1,1(t) are constants on the time intervals (t(i−1), t(i)].

Usually, the estimated weight functions such as the Gehan-type weights can also be

taken to be piecewise constant functions between t(i−1) and t(i) which would enable

simplication for compuation. For example, with piecewise constant weight function

Ŵ (t), the quantity corresponding to UT in (18) can be rewritten as

ÛT =

√
n0n1

n

∑n

i=1
W (t(i))

{
t(i) − t(i−1)

} {
F̂1,0(t(i))− F̂1,1(t(i))

}
. (20)
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For illustration, we now derive the estimating equations under a two-sample setting

for selected examples.

Example 1: Cox PH model

When ε has the extreme value distribution, model (9) becomes the Cox proportional

hazard model. Then Fε(t) = exp{− exp(t)} and ξθ(F ) = F exp(θ). When θ equals its true

value θ0, it follows that

F1,1(x) = {F1,0(x)}exp(θ0) .

Therefore g(t, θ) = F1,0(t)
exp(θ) − F1,1(t), and the estimating equation is

Û(θ) =

√
n0n1

n

∫ t(n)

0

Ŵ (t)
{

F̂1,0(t)
exp(θ) − F̂1,1(t)

}
dt = 0.

Under the piecewise constant weight function, the resulting estimating equation becomes

Û(θ) =

√
n0n1

n

n∑
i=1

Ŵ (t(i)){t(i) − t(i−1)}
{

F̂1,0(t(i))
exp(θ) − F̂1,1(t(i))

}
= 0.

Example 2: The proportional odds model

When ε is the standard logistic distribution, model (9) becomes the proportional odds

model, where Fε(t) = 1
1+exp(t)

and ξθ(F ) = F
exp(θ)−F exp(θ)+F

. When θ equals its true value

θ0, it follows that

F1,1(t) =
F1,0(t)

exp(θ0)− F1,0(t) exp(θ0) + F1,0(t)
,

and

g(t, θ) =
F1,0(t)

exp(θ)− F1,0(t) exp(θ) + F1,0(t)
− F1,1(t).

So the estimating equation is

Û(θ) =

√
n0n1

n

∫ t(n)

0

Ŵ (t)

{
F̂1,0(t)

exp(θ)− F̂1,0(t) exp(θ) + F̂1,0(t)
− F̂1,1(t)

}
dt = 0.

Under the piecewise constant weight function, the resulting estimating equation becomes

Û(θ) =

√
n0n1

n

n∑
i=1

Ŵ (t(i)){t(i) − t(i−1)}[
F̂1,0(t(i))

exp(θ)− F̂1,0(t(i)) exp(θ) + F̂1,0(t(i))
− F̂1,1(t(i))] = 0.
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Example 3: The accelerated failure time model

When h(t) = log(t), model (9) becomes the accelerated failure time model. Now

ξθ(F )(t) = F (exp(θ)t). When θ equals its true value θ0, it follows that

F1,1(t) = F1,0(exp(θ0)t),

and

g(t, θ) = F1,0(exp(θ0)t)− F1,1(t).

So the estimating equation is

Û(θ) =

√
n0n1

n

∫
Ŵ (t)

{
F̂1,0(exp(θ)t)− F̂1,1(t)

}
dt = 0,

where F̂1,0(exp(θ)t) = P̂r{T1 ≥ exp(θ)t|Z = 0} = P̂r{exp(−θ)T1 ≥ t|Z = 0} which is

the estimator F̂1,0(t) based on the transformed data {(exp(−θ)Xi, exp(−θ)Yi, δ1i, δ2i) :

i = 1, 2, ..., n0} and denote as F̂ ∗
1,0(t). Let t̃(1) ≤ . . . ≤ t̃(n) be the order times of the

pooled sample {exp(−θ)Xi : i = 1, 2, ..., n0} and {Xj : j = 1, 2, ..., n1}. Under the

piecewise constant weight function, the resulting estimating equation becomes

Û(θ) =

√
n0n1

n

n∑
i=1

W (t̃(i)){t̃(i) − t̃(i−1)}[F̂ ∗
1,0(t̃(i))− F̂1,1(t̃(i))] = 0.

3.4.2. Model Selection

The proposed procedure is developed based on two assumptions: the dependence struc-

ture of an AC model characterized by φz,αz(·) in (12) and the regression model in (9).

By specifying the dependence relationship between T1 and T2 for each value of Z, we

can avoid making unnecessary assumption about the covariate effect on T2 as in Lin et

al. (1996). Now we discuss how to justify the imposed assumptions.

3.4.2.1. Selection of a Copula Model

We first consider how to check whether a copula model φz,αz(·) fits the data at hand for

each covariate group. Without loss of generality and to simplify the presentation, the
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discussions here are based on a homogeneous sample {(Xi, δ1i, Yi, δ2i) (i = 1, 2, ..., n)}
such that (T1, T2) follows an AC model

F (x, y) = Cα(F1(x), F2(y)) = φ−1
α {φα[F1(x)] + φα[F2(y)]}. (21)

We briefly summarize our ideas. Consider the function F 11(t1, t2) = Pr(T1 ≥ t1, T2 ≥
t2|δ1 = 1, δ2 = 1) which is identifiable nonparametrically in the upper wedge {(t1, t2) :

0 < t1 ≤ t2 < ∞}. By comparing the nonparametric estimator of F 11(t1, t2) and its

model-based estimator for F 11(t1, t2) based on some distance measure, one can find

the most plausible model which is the one that yields the smallest distance among

the candidates. Furthermore a formal goodness-of-fit test can be constructed if the

distribution of the distance measure under the null hypothesis can be derived. Since

analytic derivations are complicated, we suggest using the bootstrap re-sampling method

to obtain the cut-off value in the test.

The nonparametric estimator, denoted as F̂ 11(t1, t2) (t1 ≤ t2), is given by
∑n

i=1 I(Xi ≥
t1, Yi ≥ t2, δ1i = 1, δ2i = 1)/

∑n
i=1 I(δ1i = 1, δ2i = 1). Assume that there are K model

candidates C
(k)
α (F1(x), F2(y)) (k = 1, 2, ..., K), each of which can be characterized by

φ
(k)
α . Note that the definition of α depends on the chosen model. For an AC model

indexed by φ
(k)
α , the model-based estimator, denoted as F̃ 11

k (t1, t2), can be computed

over the region {t1 ≤ t2} as follows:

F̃ 11
k (t1, t2) =

∫∞
y=t2

∫ y

x=t1
F̃k(dx, dy)Ĝ(y)

∫∞
y=0

∫ y

x=0
F̃k(dx, dy)Ĝ(y)

,

where F̃k(dx, dy) = F̃k(x, y)−F̃k(x+dx, y)−F̃k(x, y+dy)+F̃k(x+dx, y+dy), F̃k(x, y) =

φ
(k)
α̂

−1{φ(k)
α̂ [F̂1(x)] + φ

(k)
α̂ [F̂2(y)]}. To verify whether a copula model φ

(k)
α fits the data,

we can perform a formal testing procedure as follows. Consider testing H0 : φα = φ
(k)
α

versus Ha : φα 6= φ
(k)
α . Define

Dk = sup
t1≤t2

|F̂ 11(t1, t2)− F̃ 11
k (t1, t2)|. (22)

We can reject H0 if Dk > ck, where ck is the critical value satisfying Pr(Dk > ck|H0) = γ,

the pre-specified type-one error rate.
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Because the distribution of Dk is difficult to derive analytically, we suggest using the

bootstrap re-sampling method to obtain the cut-off value, p-value and power. Here we

briefly describe the procedure. A bootstrap sample under model φ
(k)
α can be generated

as follows. Recall that given the original data, we have obtained Ĝ(c), F̂2(y) and F̂1(x)

under the assumption of model φ
(k)
α . Then generate (U∗

i , V ∗
i ) ∼ copula model k with

U∗
i ∼ U(0, 1) and V ∗

i ∼ U(0, 1). Then set T ∗
1i = s if F̂1(s

+) < 1 − U∗
i ≤ F̂1(s),

T ∗
2i = t if F̂2(t

+) < 1 − V ∗
i ≤ F̂2(t) and C∗

i ∼ Ĝ(c). Given (T ∗
1i, T

∗
2i, C

∗
i ) (i = 1, ..., n),

we can construct a bootstrap sample {(X∗
i , δ∗1i, Y

∗
i , δ∗2i) (i = 1, 2, ..., n)}, where X∗

i =

T ∗
1i ∧ T ∗

2i ∧ C∗
i , Y ∗

i = T ∗
2i ∧ C∗

i , δ∗1i = I(T ∗
1i ≤ T ∗

2i ∧ C∗
i ) and δ∗2i = I(T ∗

2i ≤ C∗
i ). With a

bootstrapped sample, we can compute the corresponding values of Dk. Repeating the

bootstrapping procedure many times, the distribution of Dk can be approximated by

the empirical counterparts from the bootstrapped samples.

The above tests will reject the null hypothesis if the data obviously violates the

copula model φ
(k)
α . In practice, we may be more interested in choosing the best fitted

copula model from several candidates indexed by k = 1, 2, ..., K. For this purpose, we

can select the model that yields the smallest Dk.

Now we derive theoretical properties of the proposed model selection procedure. In

Appendix 4, we provide the proof of Theorem 2.

Theorem 2: Assume that (T1, T2) follow model (21) and both variables are continuous

and the independent censoring variable C has bigger support than the supports of T1 and

T2. Suppose that there are K model candidates in the AC family. Let the kth model

C
(k)
α (u, v) be characterized by φ

(k)
α (t) which possesses regular analytic properties in t and

is continuous in α whose parameter space is a closed set. If φ
(k)
α is the true copula model,

Dk P−→ 0 as n →∞. If φ
(k)
α is not the true model, Pr(lim infn→∞ Dk > 0) = 1. Further-

more let k̂ denote the copula model that yields the smallest Dk among all the candidates.

Then φ
(k̂)
α is consistent if the true copula model is included in the list of candidates.
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3.4.2.2. Selection of the Covariate Model

After specifying the form of model (12), our procedure requires choosing an appropriate

regression model in (9). If model (9) is correctly specified, gkj(t, θ0) = 0 and it is

reasonable to expect that ĝkj(t, θ̂) is closer to zero for the correct model than a wrong

model for moderate sample sizes. This fact can be used to check the model assumption

(9). Let DR = maxk,j,t |ĝkj(t, θ̂)|. A formal model checking procedure can be formulated

as testing the hypothesis H0: the form of model (9) is correct versus Ha: the form of

model (9) is not correct. The null hypothesis is rejected if DR is too big. The cutoff

value for the test can be calculated by applying the bootstrapped method which can

also be used for model selection. Suppose that there are several choices for model (9),

say model k = 1, 2, ..., K. To select the best fitted model, we can simply choose the one

with smallest Dk
R, where Dk

R is calculated under model k.

3.4.3. Numerical Analysis

3.4.3.1. Simulation Results

We design several simulation settings to examine the validity and robustness of the

proposed methods. Data generation algorithms for the Clayton model and the Frank

model have been given in Prentice and Cai (1992) and Genest (1987), respectively.

In the following analysis, we set the weight functions as w0(z
′
ijθ) = 1 and Ŵij(x) =

(ni + nj)Ĝzi
(x)Ĝzj

(x)/(niĜzi
(x) + njĜzj

(x)). For each estimator under evaluation, the

average bias and the standard deviation based on 1000 runs are reported.

The first analysis compared our proposed estimator θ̂ and its competitor estimator

θ̂L proposed by Lin et al. (1996). The results are summarized in Table 3-1 and 3-2. We

set (ε, ξ)|Z to follow an AC model with Z = 0, 1. Then based on (ε, ξ, Z), the value of

(T1, T2) can be determined from the models h1(T1) = −θ0Z + ε and h2(T2) = −η0Z + ξ.

Here we set θ0 = η0 = 0.5 and n0 = n1 = 150. Note that all the assumptions are satisfied

for θ̂. However in the evaluation of θ̂L, the covariate model for T1 is correct but their as-

sumption about common dependence structures for the two groups or the extra assump-
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tion on a covariate model for T2 may be mis-specified. In some settings, αz or τz may be

different for z = 0, 1. In the first four cases of Table 3-1, we generated the location-shift

model with h1(t) = h2(t) = t , −θ0 +ε ∼ exp(0.8), −η0 +ξ ∼ exp(1), C|Z = 1 ∼ U(0, 6),

and C|Z = 0 ∼ U(0.5, 6.5) but the copula dependence structures for the two groups may

vary. We will use the notation {Clayton(τ0), Frank(τ1)} to denote the situation that

one group with Z = 0 follows the Clayton model with τ = τ0 and the other with Z = 1

follows the Frank model with τ = τ1. The dependence structures for the first four cases

are case 1: {Clayton(0.5), Clayton (0.5)}, case 2: {Clayton(0.8), Clayton(0.1)}, case 3:

{Frank(0.5), Clayton(0.5)} and case 4: {Frank(0.8), Clayton(0.1)}. In case 1 where the

conditions for both estimators are valid, θ̂L slightly outperforms θ̂. However in the last

three cases, θ̂L is biased. It seems that the bias of θ̂L is affected more by the discrepancy

in the level of associations for the two groups than the difference in the dependence

structures. The dependence structures in cases 5-8 of Table 3-2 follow the same patterns

as in cases 1-4 of Table 3-1. Here we set h1(t) = t but h2(t) = log(t), −θ0 +ε ∼ exp(0.8),

exp(−η0) exp(ξ) ∼ exp(1), C|Z = 1 ∼ U(0, 6) and C|Z = 0 ∼ U(0.5, 6.5). Note that

h2(t) 6= h1(t) which is a condition that violates the assumption made by Lin et al.

(1996). We see that θ̂ outperforms θ̂L even more since, for the latter, the two types of

assumptions are both mis-specified.

Model θ̂ θ̂L

case 1: -0.0026 (0.0934) -0.0025 (0.0909)

case 2: -0.0013 (0.1136) 0.0969 (0.0849)

case 3: 0.0022 (0.0950) -0.0122 (0.0888)

case 4: 0.0008 (0.1100) 0.0982 (0.0840)

Table 3-1: Finite sample performance of two estimators evaluated under 4 situations:

the correlation structures are the same for two covariate groups in the first case and

different in the last three cases. The first number is the average bias of the estimator

and the number in the parenthesis is the standard deviation based on 1000 replications.
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Model θ̂ θ̂L

case 5: -0.0041 (0.0974) 0.0890 (0.1175)

case 6: -0.0067 (0.1135) 0.3387 (0.1127)

case 7: 0.0025 (0.1156) 0.0884 (0.1170)

case 8: 0.0125 (0.1152) 0.3793 (0.1081)

Table 3-2: Finite sample performance of two estimators evaluated under 4 situations

with different covariate models for progression time and death time (thus invalides θ̂L).

The first number is the average bias of the estimator and the number in the parenthesis

is the standard deviation based on 1000 replications.

The second analysis checks the validity of the proposed method for selecting an

appropriate copula model. We generated {T1i, T2i, Ci} (i = 1, · · · , 150), where T1i ∼
exp(0.8), T2i ∼ exp(1), and Ci ∼ U(0, 6) and (T1i, T2i) ∼ copula model (τ = 0.5). There

are two copula models under comparison where model k = 1 is the Clayton model and

model k = 2 is the Frank model. First we set the Clayton model as the true one. The

mean and standard deviation (in parentheses) of D1 and D2 are 0.0780 (0.0187) and

0.1397 (0.0304) based on 1000 replications. The percentages of successfully selecting the

Clayton model are 93.4% based on the order of Dj (j = 1, 2). Then we set the Frank

model as the true one. The mean and standard deviation (in parentheses) of D1 and

D2 are 0.1398 (0.0330), 0.0819 (0.0206). The percentages of successfully selecting the

Frank model are 92.3% based on the order of Dj (j = 1, 2). Finally, we examine the

proposed testing procedure using the re-sampling method. Under the Clayton model,

we set up the goodness-of-fit test: H0 : the data follows the Clayton model versus Ha :

the data does not follow the Clayton model. By re-sampling 1000 times, we obtained

D1 = 0.0511 with p-value=0.909 and the cut-off value: c1 = 0.1004 (at 0.05 significance

level). Hence H0 is accepted which is a correct decision. For the same data set, we run

the analysis again with H0 : the data follows the Frank model versus Ha : the data does

not follow the Frank model. We obtained that D2 = 0.1247 with p-value=0.012; the

cut-off value (γ = 0.05): c2 = 0.1058. Accordingly we reject H0 which is also a correct
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decision.

The purpose of the third analysis is to examine the proposed method for selecting an

appropriate regression model. We generate data for Z = 0 or Z = 1 with equal sample

sizes in each group. First we generated data according to margins T1|Z = 0 ∼ exp(0.8),

T2|Z = 0 ∼ exp(1), C|Z = 0 ∼ U(0, 6), T1|Z = 1 ∼ exp(0.8)+θ0, T2|Z = 1 ∼ exp(1)+θ0,

C|Z = 1 ∼ U(0, 6) + θ0. The correlation structure follows the Clayton model with

τ0 = 0.5, τ1 = 0.6. There are four regression models under consideration: the location

shift model (LS), the accelerated failure time model (AFT), the Cox proportional hazard

model (PH) and the proportional odds model (PO). Table 3-3 lists the proportions of

each model being selected by the proposed method based on 500 simulation runs. The

results shown that the correct model (LS) is chosen most of the times (96.2% when

n = 100, 99.6% when n = 200 and 100% when n = 400). Secondly, we generated data

according to margins T1|Z = 0 ∼ exp(0.8), T2|Z = 0 ∼ exp(1), C|Z = 0 ∼ U(0, 6),

T1|Z = 1 ∼ exp(−θ0) exp(0.8), T2|Z = 1 ∼ exp(−θ0) exp(1), C|Z = 1 ∼ U(0, 6). The

correlation structure again follows the Clayton model with τ0 = 0.5, τ1 = 0.6. Note that

in this case both AFT and PH models are correct. Together, these two models are chosen

most of the times. As the sample size increases, the proportion of a correct decision also

increases (79% when n = 100, 82.8% when n = 200 and 92% when n = 400).

Chosen model

True n LS AFT PH PO

LS 100 96.2% 3.8% 0% 0%

200 99.6% 0.4% 0% 0%

400 100% 0% 0% 0%

AFT and PH 100 0.8% 43.4% 35.6% 20.2%

200 0.2% 39% 43.8% 17%

400 0% 47.8% 44.2% 8%

Table 3-3: Proportion of the covariate models selected by the proposed method based on

500 replications. The first column lists the true covariate model; the second column

lists the sample size; the last four columns contain the proportion of each of the four

covariate models selected.
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In the fourth analysis, we examine the finite-sample performance of θ̂ when Z con-

tains multiple covariates. Under the model h(T1) = −Z ′θ + ε, where θ′ = (θ1, θ2),

Z ′ = (Z(1), Z(2)), Z(1)=0 or 1, Z(2)=0 or 1, we can partition the sample into four groups

with Z ′
1 = (0, 0), Z ′

2 = (0, 1), Z ′
3 = (1, 0) and Z ′

4 = (1, 1). The sample sizes in the four

groups are 75 with τ(0,0) = 0.2, τ(0,1) = 0.3, τ(1,0) = 0.4 and τ(1,1) = 0.5. The Clayton

and Frank models are evaluated. Four regression models, namely LS, AFT, PH and PO

are considered. The true parameter values are set to be θ′0 = (0.3, 0.3). The marginal

distributions in the group Z ′
1 = (0, 0) follow T1 ∼ exp(0.8), T2 ∼ exp(1). The censoring

distribution is C ∼ U(0, 6). The average bias and the standard deviation based on 1000

simulation runs are reported in Table 3-4. The results show that the proposed method

still performs well under the more general regression setting.

Model LS AFT PH PO

Clayton -0.0024 (0.1113) 0.0029 (0.1736) -0.0022 (0.1507) 0.0039 (0.2683)

-0.0015 (0.1105) 0.0058 (0.1662) -0.0032 (0.1514) -0.0023 (0.2633)

Frank -0.0042 (0.1016) -0.0084 (0.1734) 0.0067 (0.1544) -0.0028 (0.2573)

0.0011 (0.0995) -0.0094 (0.1661) -0.0096 (0.1680) 0.0013 (0.2602)

Table 3-4: Finite sample performance of θ̂′. The first number is the average bias of θ̂1,

the second number in the parenthesis is the standard deviation of θ̂1 based on 1000

replications; The third number is the average bias of θ̂2 and the fourth number in the

parenthesis is the standard deviation of θ̂2 based on 1000 replications.

3.4.3.2. Real Data

The proposed methodology is applied to the bone marrow transplants data given in

Klein and Moeschberger (2003, p.484). There were 137 leukemia patients receiving bone

marrow transplants. Let T1 be the time to relapse of leukemia, T2 be the time to death

and C be the time from transplant to the end of study. Let δ1 = I(T1 ≤ T2 ∧ C)

be the relapse indicator and let δ2 = I(T2 ≤ C) be the death indicator. The sample

can be divided into three groups with Z ′ = (0, 0) indicating the AML low-risk group,
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Z ′ = (0, 1) indicating the ALL group and Z ′ = (1, 0) indicating the AML high-risk

group. The regression model of interest is h(T1) = −Z ′θ + ε, where θ′ = (θ1, θ2) which

measures whether the disease type affects the relapse time.

For each covariate group, we test the hypothesis H0 : φα ∼ the Clayton model

versus Ha : not H0. By bootstrapping 1000 times, the p-values of DC for the AML

high-risk group, the ALL group and the AML low-risk group are 0.752, 0.656 and

0.177, respectively. Hence the Clayton model is adopted for all the three groups. Using

Day’s method (or equivalently Wang’s method) to estimate τz, we obtain τ̂(0,0)=0.7485

(0.1176),τ̂(0,1)=0.7894 (0.0853) and τ̂(1,0)=0.7685 (0.0872), where the number in paren-

theses is the estimated standard derivation using the jackknife method. The above

analysis implies that the dependence structures in the three groups are similar and the

two events are highly correlated.

Then we choose a model for measuring the group effect on T1. Figure 3-3 shows the

fitted log-log plot of F̂1(x) for the three groups. Since the three curves look parallel, we

choose the proportional hazard (PH) model to measure the group effect. Based on the

method described in Section 3.4.2.2, we can formally test the PH model assumption.

By bootstrapping 1000 times, we obtain p-value=0.774 which implies that this model is

appropriate. Figure 3-4 depicts the three survival curves of F̂1(x). Under the PH regres-

sion model and the Clayton assumption for each covariate group, we obtain θ̂1=1.3624

(0.3765) and θ̂2=0.9503 (0.3984). The results show that the risk of relapse for the AML

high-risk group is 3.9 times to the risk for the AML low-risk and the risk for the ALL

group is 2.59 times to that for the AML low-risk group. The difference is statistically

significant.
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Figure 3-3: Log-Log plot for the three groups. Solid line: AML high risk group; dashed

line: ALL group; dotted line: AML low risk group.
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Figure 3-4: F̂1(x) for the three groups. solid line: AML high risk group; dashed line:

ALL group; dotted line: AML low risk group.
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Chapter 4. Regression Analysis for Association

Based on Three Types of Data

4.1. Preliminary

The second part of the thesis studies the effect of covariates on the level of association

between T1 and T2 which may follow one type of the three data structures discussed in

Section 2.2. In general, we may describe the association in terms of global association or

local dependence. For measuring global association, the Pearson’s correlation coefficient

and Kendall’s tau are more well-known. In particular, the rank invariance property of

Kendall’s τ makes it very useful for describing the relationship between lifetime variables

which are often skewed. For describing local association, the function θ(s, t) in (5)

proposed by Oakes (1989) is often used in applications of survival data.

With covariates, most existing methods focus on studying the covariates effects on

the marginal distributions. We have studied one of such application in Chapter 3. Now,

we consider another application which investigates how covariates affect the degree of

association. Our major goal is to develop a unified inference approach which can handle

the three types of data structures discussed in Section 2.2. Here is the outline of our

discussions. In Section 4.2, we review the paper on association under Clayton assumption

with time transformations (Fine et al., 2000). In Section 4.3, we review a related paper

on testing constancy of association across different covariate strata (Ghosh, 2006). Then

we present our proposed inference procedure in Section 4.4.

4.2. Association in a Copula with Time Transformations

Fine & Jiang (2000) considered estimation of the cross ratio in Clayton’s copula in

which covariates are incorporated into the marginal distributions via semi-parametric

accelerated life regression models. Let T1 and T2 be survival times with absolutely

continuous joint distribution. Under Clayton model, the predictive hazard is constant,
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i.e.
λ1(s|T2 = t)

λ1(s|T2 > t)
=

λ2(t|T1 = s)

λ2(t|T1 > s)
= α, (23)

where λj(t|A) is the hazard of Tj at time t given that event A has occurred. (23) holds

if and only if T1 and T2 have joint survival function

Pr(T1 > s, T2 > t) = {F1(s)
1−α + F2(t)

1−α − 1}1/(1−α), (24)

where F1(s) = Pr(T1 > s) and F2(t) = Pr(T2 > t). The distribution (24) originates in a

gamma frailty model (Hougaard, 1986). This is

Pr(T1 > s, T2 > t) =

∫ ∞

0

{F1(s)F2(t)}ωf(ω)dω,

where f(ω) ∝ exp[−ω + {(1− α)−1 − 1} log(ω)].

With covariates, a bivariate marginal effect model is considered which can be written

as h1(T1) = βT
1 Z1 +ε1 and h2(T2) = βT

2 Z2 +ε2, where (β1, β2) and (Z1, Z2) are regression

parameters and covariate vectors. hk(.) (k = 1, 2) are known monotone functions. At

the true hk and βk, let T ∗
k = Ψk(Tk, Zk), where Ψk(x, z) = hk(x)− βT

k z (k = 1, 2) which

is a known function, monotone in x for fixed z, and

Pr(T ∗
k ≤ u|Zk) = Pr(T ∗

k ≤ u) (k = 1, 2).

This structure is convenient when analyzing correlation between accelerated lifetimes.

Consider the pairs

{T ∗
11 = Ψ1(T11, Z11), T

∗
21 = Ψ2(T21, Z21)}, {T ∗

12 = Ψ1(T12, Z12), T
∗
22 = Ψ2(T22, Z22)},

which are independent and satisfy (24) conditional on covariates. It can be shown that

Pr{(T ∗
11 − T ∗

12)(T
∗
21 − T ∗

22) > 0|Z11, Z12, Z21, Z22} = α(1 + α)−1,

but the probability for (T11, T21) and (T12, T22) may not be the same.

Their ideas can be applied to multivariate failure times data and clustered failure

times data. Here, we consider the simple case, bivariate failure times data. With
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censoring, the data consist of n replications of (X, Y, δ1, δ2, Z̃), where X = T1 ∧ C1,

Y = T2 ∧ C2, δ1 = I(T1 ≤ C1), δ2 = I(T2 ≤ C2), and Z̃ = (Z1, Z2) is a p × 2 matrix

of bounded covariate vectors. Assume (C1, C2) is independent of (T1, T2) conditional on

Z̃ and denote the observations by (Xi, Yi, δ1i, δ2i, Z̃i) (i = 1, 2, ..., n). Marginally, the

failure times satisfy linear regression models. That is,

hj(Tji) = βT
j Zji + εji, (j = 1, 2), (25)

where hj is a known function, βj is an unknown p × 1 parameter vector, and εji (i =

1, 2, ..., n) are independent and identically distributed with unknown Pr(εji > x) = Fj(x)

(j = 1, 2). Fine et al. (2000) assumed that ε̃i = (ε1i, ε2i), for i = 1, ..., n, have a

independent and common, but completely unspecified, joint distribution. The pairwise

model for ε1i and ε2i satisfies (24) with parameter α. One can estimate the parameter

βj in (25) using the methodology proposed by Lin & Wei (1992). Let e1i(β) = h1(Xi)−
βT Z1i and e2i(β) = h2(Yi)−βT Z2i (i = 1, 2, ..., n). A rank-based estimating function for

βj (j = 1, 2) is given by

Uj(β) =
n∑

i=1

∫ ∞

−∞
ŵj(β, u)[Zji − Sj1(β, u){Sj0(β, u)}−1]dNji(β, u),

where ŵj(β, u) is a weight function, Nji(β, u) = I{eji(β) ≤ u, δji = 1}, Sjl(β, u) =

n−1
∑n

i=1 I{eji(β) ≥ u}Z⊗l
ji , and for a vector v, v⊗0 = 1 and v⊗1 = v. When ŵj(β, u) =

Sj0(β, u), Uj(β) is Gehan’s statistic, which is monotone in each of the components of β.

A popular class of weights is ŵj(β, u) = w{F̂j(β, u)}, where w(.) is a twice continuously

differentiable function on [0, 1] and F̂j(β, u) is the left-continuous version of the Kaplan-

Meier estimator based on the pairs {eji(β), δji, i = 1, ..., n} (Wei, Ying & Lin, 1990).

Next, consider the estimation of α. The term ∆lm(β1, β2) indexes whether the pairs

{h1(T1l)−βT
1 Z1l, h2(T2l)−βT

2 Z2l} and {h1(T1m)−βT
1 Z1m, h2(T2m)−βT

2 Z2m} are concor-

dant or discordant. Formally, ∆lm(β1, β2) equals

I[{h1(T1l)− h1(T1m)− βT
1 (Z1l − Z1m)}{h2(T2l)− h2(T2m)− βT

2 (Z2l − Z2m)} > 0].
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Conditional on covariates, ∆lm(β10, β20) has mean α0(1 + α0)
−1, where α0 is the true

value of α and (β10, β20) are the true value of (β1, β2). With censoring, ∆lm(β1, β2) can

be determined when

min{h1(T1l)− βT
1 Z1l, h1(T1m)− βT

1 Z1m} < min{h1(C1l)− βT
1 Z1l, h1(C1m)− βT

1 Z1m},

min{h2(T2l)− βT
2 Z2l, h2(T2m)− βT

2 Z2m} < min{h2(C2l)− βT
2 Z2l, h2(C2m)− βT

2 Z2m}.

Let Dlm(β1, β2) equal 1 when this occurs and 0 otherwise. With β1 = β10 and β2 =

β20, it is natural to estimate α by the ratio of the numbers of concordant pairs to

discordant pairs, among all pairs where concordance status is determinable (Oakes,

1982). An estimating function can be constructed as follows. Suppose W (u, v) is random

positive function converging uniformly over u and v to a deterministic limit. Assume

that the limit is finite over the support of E1lm(β10) and E2lm(β20), where Ejlm(β) =

min{ejl(β), ejm(β)}, for j = 1, 2. Define α(β1, β2) as the solution to U(β1, β2, α) = 0,

where

U(β1, β2, α) =
∑

l<m

W{E1lm(β1), E2lm(β2)}Dlm(β1, β2){∆lm(β1, β2)− α(1 + α)−1}.

The profile estimator α(β1, β2) has the following closed form expression:
∑

l<m W{E1lm(β1), E2lm(β2)}Dlm(β1, β2)∆lm(β1, β2)∑
l<m W{E1lm(β1), E2lm(β2)}Dlm(β1, β2){1−∆lm(β1, β2)} .

A useful weight function is

W−1
a,b (x, y) = n−1

n∑
i=1

I{e1i(β̂1) ≥ min(a, x), e2i(β̂2) ≥ min(b, y)},

where a and b are constants. In addition, the authors showed that (β̂1, β̂2, α̂) are consis-

tent and asymptotic normal.

4.3. Testing Constancy of Association across Strata

Ghosh (2006) considered semi-competing risks data with covariates: {(Xi, δ1i, Yi, δ2i, Zi)

(i = 1, ..., n)}, where Xi = T1i ∧T2i ∧Ci, Yi = T2i ∧Ci, δ1i = I(T1i ≤ T2i ∧Ci), and δ2i =

40



I(T2i ≤ Ci). If the covariate takes discrete values, it is assumed that θ(s, t|Z = z) = αz,

where θ(s, t|Z = z) = λ1(s|T2 = t, Z = z)/λ1(s|T2 > t, Z = z) and λ1(s|A,Z = z) is

the hazard function of T1 at time s for a subject with Z = z given that event A also

occurs. Thus, a Clayton-Oakes frailty model is assumed for each stratum defined by Z.

The interest is in testing the null hypothesis that the predictive hazard ratio does not

depend on Z (i.e. H0 : αz = α).

For testing the null hypothesis H0 : θ(s, t|Z) = α, Ghosh (2006) proposed using the

following class of test statistics

U1 =
K∑

z=1

∑
i<j

Wz(X̃ij, Ỹij)(Dijz −Dij)∆ij, (26)

where ∆ij = I{(Xi − Xj)(Yi − Yj) > 0}, X̃ij = Xi ∧ Xj, Ỹij = Yi ∧ Tj, C̃ij = Ci ∧ Cj,

Dij = I(X̃ij < Ỹij < C̃ij), Dijz = I(X̃ij < Ỹij < C̃ij, Zi = Zj = z), and Wz(u, v) is a

weight function that converges uniformly to w(u, v), a bounded deterministic function.

Note that the statistics U1 provides a measure of the difference between stratified and

unstratified analysis. Ghosh proved that under the null hypothesis, n−3/2U1 has a limit

normal distribution with mean zero.

However, it is not easy to derive an analytic expression for the variance of the limiting

distribution of U1. Ghosh suggested a re-sampling method originally proposed by Parzen,

Wei & Ying (1994) for variance estimation. Equation (26) can be written as the following

form:

U1 =
K∑

z=1

∑
i<j

Uijz, (27)

where Uijz = Wz(X̃ij, Ỹij)(Dijz−Dij)∆ij. The first step is to generate n standard normal

random variables (G1, ..., Gn) and calculate the perturbations of (27) as follows

U∗
1 =

K∑
z=1

∑
i<j

UijzGiGj. (28)

Under the null hypothesis, n−3/2U∗
1 and n−3/2U1 have the same limiting distribution.

The algorithm can be summarized as follows:
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1. Generate n i.i.d. N(0, 1) random variables (G1, ..., Gn) and calculate U∗
1 .

2. Repeat step 1 M times.

There are two ways of constructing a 95% confidence interval for the limit of n−3/2U1.

The first is to calculate the standard error based on empirical replications of U∗
1 . The

other way is to take 2.5th and 97.5th percentiles of the empirical distribution of U∗
1 .
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4.4. The Proposed Inference Procedure for the Association

Model

We aim to develop a regression model that describes the effect of covariate on the

dependence structure. We also want to propose a unified inference approach which can

handle the three data structures discussed in Section 2.2.

To achieve the second objective, we need to find an appropriate dependence measure

for each data structure. In Section 4.4.1, a flexible way of model formulation is presented.

In Section 4.4.2, we describe the proposed regression model and in Section 4.4.3, we

include external censoring in the three data structures. The proposed inference method

is discussed in Section 4.4.4. In Section 4.4.5, we present a model checking method for

Clayton assumption. We also present the numerical analysis for the proposed inference

methods in Section 4.4.6.

4.4.1. Model Formulation

Most methods developed for typical bivariate survival data analyze the joint survival

function

Fa(s, t) = Pr(T1 > s, T2 > t),

which seems to be a straightforward extension from the univariate analysis. Mathemat-

ically the joint behavior between T1 and T2 can also be described other functions such

as

Fb(s, t) = Pr(T1 ≤ s, T2 > t)

Fc(s, t) = Pr(T1 ≤ s, T2 ≤ t)

Fd(s, t) = Pr(T1 > s, T2 ≤ t).
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Choosing an appropriate function for further analysis depends not only on its interpre-

tation but also the mathematical applicability. Note that θ(s, t) in (5) is defined based

on the joint survival function Fa(s, t). Now we denote θ(s, t) = θa(s, t). Oakes (1989)

derived another expression of θa(s, t) which is useful for further extensions and statistical

inference. Specifically one can write

θa(s, t) =
Pr(∆ij = 1|T̃1,ij = s, T̃2,ij = t)

Pr(∆ij = 0|T̃1,ij = s, T̃2,ij = t)
,

where ∆ij = I[(T1i − T1j)(T2i − T2j) > 0] and T̃k,ij = Tki ∧ Tkj (k = 1, 2). Based on this

representation, θa(s, t) can be viewed as the odds ratio of concordance given the corner

value (T̃1,ij, T̃2,ij) = (s, t).

We can extend the ideas of θa(s, t) as follows. The two pairs, (T1i, T2i) and (T1j, T2j),

can form four grid points (a, b, c, d) shown in Figure 4-1 with a = (T̃1,ij, T̃2,ij), b =

(T̆1,ij, T̃2,ij), c = (T̆1,ij, T̆2,ij), and d = (T̃1,ij, T̆2,ij), where T̃k,ij = Tki∧Tkj and T̆k,ij = Tki∨
Tkj (k = 1, 2). Selecting a different corner point gives a new odds ratio of concordance.

Define

θ∗(s, t) =
Pr(∆ij = 1|corner = ∗)
Pr(∆ij = 0|corner = ∗) (29)

=
F∗(s, t)DsDtF∗(s, t)

{DsF∗(s, t)}{DtF∗(s, t)} if ∗ = a, c

=
{DsF∗(s, t)}{DtF∗(s, t)}

F∗(s, t)DsDtF∗(s, t)
if ∗ = b, d. (30)

When T1 and T2 are independent, θ∗(s, t) = 1. In general θ∗(s, t) describes local de-

pendence at (s, t) such that θ∗(s, t) > 1 indicates positive association and θ∗(s, t) < 1

indicates negative association. From the above derivations, we see that imposing a struc-

ture on a version of θ∗(s, t) is associated with model specification on the corresponding

joint function F∗(s, t).
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Figure 4-1: Four grid points formed by two pairs of observation.

(a): (i, j) pairs are concordant; (b): (i, j) pairs are discordant.

The two representations of θ∗(s, t) in (29) and (30) provide useful insight for further

statistical inference. Specifically the first identity is equivalent to

Pr(∆ij = 1|corner ∗ = (s, t)) =
θ∗(s, t)

1 + θ∗(s, t)
(∗ = a, b, c, d).

This implies that the inference of θ∗(s, t) can be made by applying the method of moment

based on data replications of ∆ij. This approach has been adopted by Fine (2001) based

on θa(s, t) for semi-competing risks data and by Chaieb et al. (2006) based on θb(s, t)

for truncation data. The second identity of θ∗(s, t) suggests that one can construct the

log-rank type of statistics based on a series of two-by-two tables. Figure 4-2 shows four

versions of the table construction. This approach has been taken by Day et al. (1997)

and Wang (2003) for analyzing semi-competing risks data based on the table in Figure

4-2(a) and by Emura, Wang and Hung (2006) based on Figure 4-2(b) for analyzing

truncation data.

To choose an appropriate version of θ∗(s, t), one should examine whether the biolog-

ical meaning is reasonable as well as whether the data provide enough information for

the purpose of inference. As mentioned earlier, most existing methods specify the model

assumption based on Fa(s, t) which has a direct relationship with θa(s, t). For the first
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Figure 4-2: Four versions of table construction.

data structure, it seems that all four versions are mathematically suitable and corner a

is usually adopted due to its straightforward interpretation. For semi-competing risks

data, θb(s, t) is an obvious suitable candidate. However θa(s, t) is still appropriate since,

from the second identity, the information provided by (T1∧T2, T2, I(T1 ≤ T2)) is enough

for recovering every component of θa(s, t) for (s, t) ∈ R2. However for truncation data,

only θb(s, t) is suitable. Note that for modeling dependent truncation data, Chaieb et

al (2006) proposes a related measure

θ̌(s, t) =
Fb(s, t)DsDtFb(s, t)

{DsFb(s, t)}{DtFb(s, t)} = 1/θb(s, t).

Setting θb(s, t) = α is equivalent to assuming the Clayton copula on Fb(s, t):

Pr(T1 ≤ s, T2 > t) = {Pr(T1 ≤ s)1−α + Pr(T2 > t)1−α − 1}1/(1−α).
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4.4.2. The Proposed Regression Model

Consider the situation that the levels of association between (T1, T2) vary in different

covariate groups. Let Z = (1, Z1, ..., Zp)
T be a vector of common discrete covariates for

(T1, T2). We assume that for a chosen corner point ∗ (∗ = a, b, c, d),

θZ
∗ (s, t) =

Pr(∆ij = 1|corner ∗ = (s, t), Zi = Zj = Z)

Pr(∆ij = 0|corner ∗ = (s, t), Zi = Zj = Z)

= exp(ZT β), (31)

where β = (β0, β1, ..., βp)
T . Equivalently the above model assumes that

Pr(∆ij = 1|corner ∗ = (s, t), Zi = Zj = Z) =
exp(ZT β)

1 + exp(ZT β)
≡ η(ZT β). (32)

Note that β0 is the log odds of concordance for the baseline group with Z1 = Z2 = ... =

Zp = 0. The slope parameter βk (k = 1, 2, ..., p) can be viewed as the difference of log

odds by increasing one unit of Zk with the rest of Z ′
is being fixed. The above model

assumption is equivalent to assuming that (T1, T2)|Z follows Clayton’s model with

F∗(s, t|Z) = {F1,∗(s|Z)1−exp(ZT β) + F2,∗(t|Z)1−exp(ZT β) − 1}1/(1−exp(ZT β)), (33)

where F1,∗(s|Z) = Pr(T1 > s|Z) for ∗ = a, d; F1,∗(s|Z) = Pr(T1 ≤ s|Z) for ∗ = b, c,

F2,∗(t|Z) = Pr(T2 > t|Z) for ∗ = a, b; F2,∗(t|Z) = Pr(T2 ≤ t|Z) for ∗ = c, d. The main

purpose is to estimate β. From previous discussions, we consider the model θZ
a (s, t) =

exp(ZT β) for typical bivariate failure-time data and semi-competing risks data. For the

truncation data, we consider the model θZ
b (s, t) = exp(ZT β).

4.4.3. Three Data Structures with External Censoring

Now we incorporate external censoring. To simplify the presentation, we may use the

same notation with different definitions under different data structures. We also discuss

the condition under which the value of ∆ij is certain for pair (i, j).
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Data Structure 1: Typical bivariate data subject to right censoring

Assume that (T1, T2) is subject to independent censoring by (C1, C2) such that observed

variables become X = T1∧C1, Y = T2∧C2, δ1 = I(T1 ≤ C1), and δ2 = I(T2 ≤ C2). Based

on observed variables (Xi, δ1i) and (Xj, δ1j), to know the order of T1i and T1j, the smaller

variable has to be uncensored. Similar properties can be applied for determination of

the order of T2i and T2j based on (Yi, δ2i) and (Yj, δ2j). Formally define T̃k,ij = Tki ∧ Tkj

and C̃k,ij = Cki ∧ Ckj (k = 1, 2). As long as T̃1,ij < C̃1,ij and T̃2,ij < C̃2,ij, the value of

∆ij is known for sure which means that the (i, j) pair is orderable on the plane.

Data Structure 2: Semi-competing risks data subject to censoring

If often happens that (T1, T2) are subject to a common external censoring variable C.

Observed variables are denoted as X = T1 ∧ T2 ∧ C, Y = T2 ∧ C, δ1 = I(T1 ≤ T2 ∧ C),

and δ2 = I(T2 ≤ C). Applying previous arguments, the order of T1i and T1j can be

known as long as T̃1,ij < T̃2,ij and T̃1,ij < C̃ij, where C̃ij = Ci ∧ Cj. The order of T2i

and T2j can be known as long as T̃2,ij < C̃ij. Combining both conditions, the orderable

condition for semi-competing risks data can be defined as T̃1,ij < T̃2,ij < C̃ij.

Data Structure 3: Truncation data subject to censoring

Recall that T2 is subject to left-truncation by T1 or T1 is subject to right-truncation by

T2 so that (T1, T2) can be observed only if T1 < T2. Now we assume that T2 is subject

to right censoring by C. Hence, the observed variables become X = T1, Y = T2 ∧ C

and δ2 = I(T2 ≤ C). We can set δ1 = 1 which means that T1 is always uncensored. The

order of T2i and T2j can be known as long as T̃2,ij < C̃ij.

In absence of covariates, observed variables can be denoted as (X,Y, δ1, δ2) for the

three data structures. For each data type, statisticians have developed inference proce-

dures for investigating the dependent relationship between T1 and T2 based on a random

sample of (X, Y, δ1, δ2). There are two approaches which turn out to be applicable to all

the three data structures. The first approach utilizes the moment condition of ∆ij in

(29). The second approach is developed via constructing a series of two-by-two tables
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based on equation (30). This paper extends the first approach to a regression setting in

which the dimension of regression parameters may exceed 1 and hence the method of

moment is not directly applicable.

4.4.4. The Proposed Inference Procedure

Let (T1i, T2i, Zi) (i = 1, 2, ..., n) be a random sample following the model assumption

in (31) or its equivalent versions in (32) or (33). Note that (T1, T2) may be any of

the three data types introduced earlier. In presence of external censoring, the observed

data are denoted as (Xi, Yi, δ1i, δ2i, Zi) (i = 1, 2, ..., n) which are random replications of

(X,Y, δ1, δ2, Z) described in Section 4.3.3.

When the covariates are discrete, we can partition the sample according to distinct

values of Z. For a pair of observations in each sub-sample, they need to satisfy two

criterion in order to be used in the analysis. Specifically we select a pair (i, j) with

Zi = Zj = z such that the corresponding value of ∆ij is known and the chosen corner

value is located in the model region. For typical bivariate data and semi-competing

risks data, we choose ∗ = a. For truncation data, we set ∗ = b. Since the first type

of data falls in R1, we don’t have to impose any restriction. For semi-competing risks

data, the restriction for making corner a to fall in R2 is T̃1,ij ≤ T̃2,ij. For truncation

data, we should set T̆1,ij < T̃2,ij for making corner b to fall in R2. Let Dij(z) be the

orderable indicator that shows whether pair (i, j) with Zi = Zj = z can be selected in

the analysis. For the three types of data structure, Dij(z) is defined as follows. For

typical bivariate data, Dij(z) = I(T̃1,ij < C̃1,ij, T̃2,ij < C̃2,ij, Zi = Zj = z); for semi-

competing risks data, Dij(z) = I(T̃1,ij < T̃2,ij < C̃ij, Zi = Zj = z) and, for truncation

data, Dij(z) = I(T̆1,ij < T̃2,ij < C̃ij, Zi = Zj = z).

Now we discuss estimation of β. Since the dimension of β usually exceeds 1, we can

not directly apply the method of moment based on equation (32) as in existing methods

developed for homogeneous data (Fine et al., 2001; Chaieb et al., 2006). Instead, we
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apply the least-squares principle to minimize

U(β) =
∑

z

∑
i<j

Wz(X̃ij, Ỹij)Dij(z)[∆ij − η(zT β)]2, (34)

where Dij(z) is defined above, Wz is the weight function and the definition of (X̃ij, Ỹij)

depends on the data type which is given below. For typical bivariate data under right

censoring, X̃ij = Xi ∧ Xj and Ỹij = Yi ∧ Yj; for semi-competing risks data, X̃ij =

T̃1,ij∧T̃2,ij∧C̃ij and Ỹij = T̃2,ij∧C̃ij; and, for truncation data, X̃ij = T̆1,ij and Ỹij = Yi∧Yj.

The proposed estimator, denoted as β̂, is the one such that U(β) is minimized which

can be obtained by solving u(β) = 0, where u(β) = ∂U(β)/∂β. In the simulations, we

will evaluate the weight function of the form,

Wz,a,b(x, y) =
nz∑n

i=1 I{Xi ≥ min(a, x), Yi ≥ min(b, y), Zi = z} ,

where nz is the sample size of Z = z; a and b are constants. With a = b = 0, the

function reduces to 1 which is the un-weighted case. With a = b = ∞, the weight

function becomes nz/
∑n

i=1 I{Xi ≥ x, Yi ≥ y, Zi = z}. The following theorem provides

the asymptotic properties of β̂. The proof of Theorem 3 is provided in Appendix 5.

Theorem 3: Let β̂ denote the solution minimizing (34). We make the following regularity

assumptions: (a) The list of possible covariate values is Z = {z1, ..., zK} which spans

a non-degenerate linear space. That is, the dimensionaltiy of linear space spanned by

Z equals p, the dimensionality of β. (b) nzk
/n converge to constants 0 < ck < 1 for

k = 1, ..., K. (c) The weight function Wz(u, v) has a uniform bounded limit W̃z(u, v).

That is, supz,u,v |Wz(u, v)− W̃z(u, v)| → 0 in probability, where W̃z is deterministic and

bounded for (u, v) in the support of (X̃ij, Ỹij). Let β∗ be the true value of β. Then β̂ is a

consistent estimator and
√

n(β̂ − β∗) converges in distribution to a multivariate normal

distribution with variance Σ which is consistently estimated by Σ̂ = Î−1Ĵ(Î−1)′, where

Î =

(
− 1

n2

∂2U(β)

∂βk∂βl

|β=β̂

)

(p+1)×(p+1)

, Ĵ =
(
Ĵij

)
(p+1)×(p+1)

,
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Ĵij = n−3
∑

z

[2
∑

k<l<m

(Q̂
(i)
klzQ̂

(j)
kmz + Q̂

(i)
klzQ̂

(j)
lmz + Q̂

(i)
lmzQ̂

(j)
kmz) +

∑

k<l

(Q̂
(i)
klzQ̂

(j)
klz)],

Q̂
(k)
ijz = 2Wz(X̃ij, Ỹij)Dij(z)[∆ij − η(z′β̂)](− exp(β̂0 + ... + β̂pZp)Zk

(1 + exp(β̂0 + ... + β̂pZp))2
).

4.4.5. Checking the Clayton Assumption

Shih (1998) proposed a testing procedure to verify the Clayton assumption for typical

bivariate right censored data. The test statistic is expressed as the difference of two

estimators of the association parameter which converges to zero when the Clayton as-

sumption holds but converges to a non-zero value when the model assumption is violated.

This idea has been applied to semi-competing risks data by Fine et al. (2001). Now

under the current regressing setting, we develop a unified approach of model checking

which can handle the three data structures. Note that our result is the first application

in the literature which can deal with dependent truncation data.

Let U1(β) and U2(β) follow the same form as U(β) with the weight function Wz being

specified as Wz,1 and Wz,2 respectively. The following weight functions are suggested.

For typical bivariate right censored data and semi-competing risks data, we can set

Wz,1(x, y) = 1, Wz,2(x, y) =
nz∑n

i=1 I(Xi ≥ x, Yi ≥ y, Zi = z)
,

and for truncation data,

Wz,1(x, y) = 1, Wz,2(x, y) =
nz∑n

i=1 I(Xi ≤ x, Yi ≥ y, Zi = z)
.

Let β̂Wz,i
be the solution to ui(β) = 0 (i = 1, 2). In principle, different weight functions

can also be applied and the choice would affect the power of the corresponding test.

Shih (1998) suggested to choose two weight functions such that, under the assumed

model, one produces a more efficient estimator while the other results in a less efficient

estimator.
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The proposed test statistic can be expressed as

T = n(β̂Wz,1 − β̂Wz,2)
′Γ̂−1(β̂Wz,1 − β̂Wz,2),

where Γ̂ =
(
Γ̂ij

)
(p+1)×(p+1)

,

Γ̂ij = n−3
∑

z

[2
∑

k<l<m

(Q̂
∗(i)
klz Q̂

∗(j)
kmz + Q̂

∗(i)
klz Q̂

∗(j)
lmz + Q̂

∗(i)
lmzQ̂

∗(j)
kmz) +

∑

k<l

(Q̂
∗(i)
klz Q̂

∗(j)
klz )],

and Q̂
∗(i)
klz is defined in Appendix. In Appendix 6, we show that when the regression

assumption θZ
∗ (s, t) = exp(Z ′β) holds, T converges in distribution to χ2

p+1. That is, for

a γ-level test, we reject the null hypothesis if T > χ2
p+1,γ, where Pr(χ2

p+1 > χ2
p+1,γ) = γ.

4.4.6. Numerical Analysis

4.4.6.1. Simulations Results

We performed simulations to assess finite-sample performances of the proposed methods.

Three regression settings were examined: case 1 (two groups): θZ
∗ (s, t) = exp(β0+β1Z1),

where Z = (1, 0)′ or (1, 1)′; case 2 (three groups): θZ
∗ (s, t) = exp(β0 + β1Z1), where

Z = (1, 0)′, (1, 1)′ or (1, 2)′ and case 3 (three groups): θZ
∗ (s, t) = exp(β0 + β1Z1 + β2Z2),

where Z = (1, 0, 0)′, (1, 1, 0)′ or (1, 0, 1)′. The values of parameters were set as follows.

For case 1 and case 2, (β0, β1) = (0.5, 0.5) and (1, 1); and for case 3, (β0, β1, β2) =

(0.5, 0.5, 0.5) and (1, 1, 1). For each group, we generated (T1, T2) which follow model

(32). For typical bivariate data and semi-competing risks data, we set ∗ = a and,

for truncation data, we set ∗ = b. The marginal distributions were generated from

T1 ∼ exp(0.8) and T2 ∼ exp(1). Right censoring is incorporated in the three data

structures. For all the cases, the censoring distribution was generated from U(0, 6). For

bivariate censored data, we set C1 to be independent of C2 and the censoring proportion

of Tj (j = 1, 2) is around 0.15. For semi-competing risks data, the censoring rate for

T1 which is subject to dependent censoring by T2 varies from 0.35 (τ = 0.76) to 0.48

(τ = 0.25). For truncation data, the missing proportion Pr(T1 > T2) and the censoring
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rate Pr(Tj > C|T1 ≤ T2) (j = 1, 2) vary with τ . When τ = 0.25, Pr(T1 > T2) ≈ 0.43,

Pr(T1 > C|T1 ≤ T2) ≈ 0.09 and Pr(T2 > C|T1 ≤ T2) ≈ 0.23. When τ = 0.76,

Pr(T1 > T2) ≈ 0.27, Pr(T1 > C|T1 ≤ T2) ≈ 0.11 and Pr(T2 > C|T1 ≤ T2) ≈ 0.18.

The sample size was chosen to be 150 and 300. Two weight functions with (a, b) =

(0, 0) and (a, b) = (∞,∞) were evaluated. The results for the three regression settings

are summarized in Table 4-1∼ 4-3 respectively. Based on 1000 replications, we computed
∑1000

B=1 β̂
(B)
i /1000 − β∗i (bias), and the empirical standard deviation of β̂i (σ̄i) and the

estimated standard deviation
√

n−1Σ̂ii ( σ̂i), and the coverage probability of the nominal

0.95 confidence interval for β̂i (Cov95).

In all the cases, the proposed estimator β̂ performs well and the variance estimator

σ̂ produces confidence intervals with reasonable coverage probabilities. For typical bi-

variate right-censored data and semi-competing risks data, the estimator with weight

function (a, b) = (∞,∞) performs better than (a, b) = (0, 0) but, for truncation data,

we get the opposite conclusion since there is no information in the wedge T1 > T2.

Therefore, we evaluated another weight function,

W ∗
z (x, y) = nz/

n∑
i=1

I{Xi ≤ x, Yi ≥ y, Zi = z}, (35)

and the results are presented in Table 4-4. We see that the new weight function does

improve the performances.
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Bias σ̄ σ̂ Cov95 Bias σ̄ σ̂ Cov95
Data (a, b) β0 n = 150 n = 300

β1

Data 1 (0, 0) 0.5 0.0065 0.1855 0.1821 0.957 0.0015 0.1259 0.1283 0.945
0.5 -0.0025 0.2619 0.2593 0.948 -0.0007 0.1935 0.1835 0.953
1 0.0117 0.1960 0.1856 0.957 0.0059 0.1332 0.1308 0.942
1 0.0085 0.2858 0.2693 0.954 0.0067 0.1841 0.1890 0.956

(∞,∞) 0.5 0.0066 0.1751 0.1656 0.947 -0.0003 0.1127 0.1150 0.951
0.5 0.0050 0.2578 0.2400 0.951 0.0096 0.1669 0.1677 0.945
1 0.0083 0.1787 0.1728 0.953 0.0054 0.1278 0.1222 0.946
1 -0.0079 0.2751 0.2553 0.942 0.0032 0.1862 0.1775 0.949

Data 2 (0, 0) 0.5 -0.0003 0.2343 0.2259 0.954 -0.0015 0.1600 0.1586 0.949
0.5 -0.0094 0.3372 0.3137 0.952 0.0020 0.2229 0.2208 0.954
1 0.0106 0.2282 0.2167 0.945 -0.0070 0.1592 0.1540 0.954
1 -0.0093 0.3030 0.3006 0.955 0.0016 0.2132 0.2121 0.950

(∞,∞) 0.5 0.0071 0.1996 0.1959 0.953 0.0051 0.1399 0.1382 0.950
0.5 0.0073 0.2760 0.2793 0.956 -0.0028 0.1923 0.1956 0.948
1 0.0034 0.1975 0.1971 0.941 0.0026 0.1346 0.1386 0.946
1 0.0045 0.2889 0.2838 0.947 -0.0011 0.1927 0.1956 0.944

Data 3 (0, 0) 0.5 -0.0015 0.1518 0.1469 0.959 0.0033 0.0999 0.1012 0.956
0.5 0.0078 0.2341 0.2236 0.952 -0.0013 0.1565 0.1540 0.961
1 0.0060 0.1745 0.1691 0.950 -0.0034 0.1180 0.1160 0.945
1 -0.0041 0.3370 0.3205 0.951 0.0023 0.2192 0.2189 0.955

(∞,∞) 0.5 0.0134 0.2330 0.2155 0.952 0.0065 0.1664 0.1641 0.951
0.5 -0.0012 0.3456 0.3259 0.956 -0.0055 0.2508 0.2372 0.953
1 0.0216 0.2667 0.2437 0.950 0.0091 0.1923 0.1766 0.950
1 0.0160 0.4942 0.4362 0.942 0.0026 0.3575 0.3125 0.945

Table 4-1: Simulation results for case 1. Data 1: Typical bivariate right-censored data;

Data 2: Semi-competing risks data; Data 3: Truncation data.
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Bias σ̄ σ̂ Cov95 Bias σ̄ σ̂ Cov95
Data (a, b) β0 n = 150 n = 300

β1

Data 1 (0, 0) 0.5 0.0036 0.2096 0.2076 0.947 0.0084 0.1456 0.1459 0.946
0.5 0.0061 0.1761 0.1711 0.955 -0.0005 0.1187 0.1192 0.949
1 0.0137 0.2228 0.2197 0.954 0.0079 0.1649 0.1556 0.958
1 0.0095 0.2308 0.2311 0.953 0.0025 0.1709 0.1597 0.953

(∞,∞) 0.5 0.0060 0.1974 0.1895 0.952 0.0086 0.1353 0.1330 0.950
0.5 0.0046 0.1656 0.1606 0.950 -0.0007 0.1131 0.1109 0.950
1 0.0162 0.2071 0.2083 0.960 0.0053 0.1489 0.1459 0.949
1 -0.0030 0.2271 0.2267 0.960 0.0049 0.1578 0.1543 0.960

Data 2 (0, 0) 0.5 -0.0023 0.2612 0.2531 0.941 -0.0036 0.1868 0.1794 0.951
0.5 0.0102 0.2115 0.2035 0.945 0.0035 0.1418 0.1407 0.948
1 0.0091 0.2832 0.2589 0.946 -0.0067 0.1865 0.1819 0.947
1 0.0077 0.2665 0.2543 0.950 0.0076 0.1838 0.1741 0.948

(∞,∞) 0.5 -0.0054 0.2315 0.2256 0.951 0.0018 0.1622 0.1565 0.951
0.5 0.0052 0.1874 0.1844 0.946 0.0058 0.1285 0.1273 0.950
1 0.0121 0.2557 0.2385 0.942 0.0068 0.1712 0.1664 0.945
1 -0.0054 0.2587 0.2466 0.948 -0.0058 0.1649 0.1643 0.945

Data 3 (0, 0) 0.5 -0.0045 0.1776 0.1742 0.956 0.0043 0.1204 0.1187 0.948
0.5 0.0070 0.1753 0.1668 0.950 -0.0028 0.1180 0.1114 0.951
1 -0.0078 0.2225 0.2079 0.943 0.0023 0.1421 0.1418 0.947
1 0.0298 0.3234 0.3207 0.948 0.0080 0.2081 0.2064 0.951

(∞,∞) 0.5 0.0087 0.2668 0.2447 0.947 0.0037 0.1947 0.1825 0.952
0.5 0.0086 0.2560 0.2416 0.943 -0.0005 0.1833 0.1700 0.952
1 0.0138 0.3305 0.2901 0.953 0.0076 0.2313 0.2076 0.949
1 0.0562 0.4820 0.4359 0.940 0.0337 0.3192 0.2919 0.948

Table 4-2: Simulation results for case 2. Data 1: Typical bivariate right-censored data;

Data 2: Semi-competing risks data; Data 3: Truncation data.
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Bias σ̄ σ̂ Cov95 Bias σ̄ σ̂ Cov95
Data (a, b) β0 n = 150 n = 300

β1

β2

Data 1 (0, 0) 0.5 0.0133 0.2351 0.2237 0.945 -0.0012 0.1543 0.1572 0.955
0.5 0.0062 0.3405 0.3194 0.950 0.0089 0.2283 0.2245 0.950
0.5 -0.0068 0.3353 0.3186 0.956 0.0035 0.2232 0.2247 0.948
1 0.0155 0.2379 0.2263 0.950 0.0087 0.1715 0.1603 0.948
1 -0.0065 0.3490 0.3283 0.949 -0.0067 0.2486 0.2319 0.947
1 0.0083 0.3525 0.3268 0.954 0.0001 0.2487 0.2322 0.954

(∞,∞) 0.5 0.0142 0.2182 0.2020 0.945 0.0062 0.1442 0.1432 0.941
0.5 0.0052 0.3104 0.2943 0.949 0.0047 0.2102 0.2076 0.953
0.5 0.0071 0.3099 0.2949 0.952 0.0044 0.2133 0.2071 0.946
1 0.0194 0.2190 0.2145 0.939 0.0047 0.1526 0.1497 0.956
1 -0.0052 0.3164 0.3178 0.959 0.0022 0.2209 0.2189 0.949
1 -0.0047 0.3247 0.3185 0.954 0.0093 0.2173 0.2193 0.961

Data 2 (0, 0) 0.5 -0.0054 0.2823 0.2780 0.952 -0.0009 0.1995 0.1944 0.949
0.5 0.0101 0.3972 0.3855 0.960 -0.0014 0.2844 0.2706 0.956
0.5 0.0027 0.3956 0.3843 0.945 0.0059 0.2700 0.2704 0.952
1 -0.0012 0.2799 0.2670 0.945 0.0070 0.1926 0.1879 0.947
1 0.0056 0.3881 0.3696 0.953 -0.0025 0.2665 0.2596 0.952
1 0.0123 0.3994 0.3708 0.953 0.0028 0.2623 0.2594 0.949

(∞,∞) 0.5 0.0153 0.2572 0.2428 0.949 0.0057 0.1744 0.1697 0.947
0.5 -0.0017 0.3676 0.3456 0.949 0.0088 0.2565 0.2404 0.952
0.5 0.0077 0.3674 0.3451 0.946 -0.0025 0.2408 0.2417 0.947
1 0.0149 0.2604 0.2441 0.947 0.0036 0.1732 0.1718 0.961
1 0.0063 0.3724 0.3541 0.953 -0.0024 0.2489 0.2435 0.946
1 0.0092 0.3925 0.3539 0.950 0.0058 0.2544 0.2437 0.963

Data 3 (0, 0) 0.5 -0.0072 0.1863 0.1823 0.940 -0.0005 0.1253 0.1257 0.944
0.5 0.0039 0.3009 0.2807 0.949 -0.0004 0.1900 0.1910 0.959
0.5 0.0060 0.2916 0.2802 0.953 0.0065 0.1939 0.1913 0.955
1 0.0052 0.2242 0.2134 0.943 -0.0039 0.1503 0.1446 0.945
1 0.0358 0.4464 0.4092 0.942 0.0050 0.2768 0.2731 0.941
1 0.0319 0.4357 0.4054 0.948 0.0015 0.2924 0.2729 0.948

(∞,∞) 0.5 0.0161 0.2934 0.2561 0.947 0.0022 0.2142 0.1908 0.952
0.5 0.0101 0.4348 0.3866 0.949 0.0071 0.3036 0.2834 0.945
0.5 0.0011 0.4551 0.3864 0.947 0.0032 0.3103 0.2841 0.950
1 0.0326 0.3289 0.2856 0.945 0.0064 0.2289 0.2100 0.950
1 0.0443 0.6228 0.5166 0.945 0.0171 0.4321 0.3755 0.952
1 0.0321 0.6232 0.5109 0.953 0.0145 0.4346 0.3750 0.948

Table 4-3: Simulation results for case 3. Data 1: Typical bivariate right-censored data;

Data 2: Semi-competing risks data; Data 3: Truncation data.
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Bias σ̄ σ̂ Cov95 Bias σ̄ σ̂ Cov95
Case β n = 150 n = 300

Case 1 0.5 -0.0036 0.1103 0.1020 0.955 -0.0038 0.0663 0.0658 0.953
0.5 0.0007 0.1632 0.1600 0.947 0.0015 0.1075 0.1021 0.954
1 -0.0017 0.1322 0.1226 0.947 0.0015 0.0802 0.0783 0.957
1 0.0085 0.2529 0.2463 0.946 -0.0071 0.1611 0.1553 0.945

Case 2 0.5 0.0073 0.1369 0.1267 0.947 -0.0043 0.0819 0.0806 0.957
0.5 0.0044 0.1311 0.1226 0.953 0.0008 0.0781 0.0768 0.956
1 -0.0085 0.1284 0.1592 0.948 -0.0019 0.1025 0.0995 0.947
1 0.0167 0.2517 0.2465 0.954 0.0055 0.1453 0.1469 0.955

Case 3 0.5 -0.0088 0.1396 0.1346 0.949 -0.0024 0.0883 0.0848 0.936
0.5 0.0033 0.2239 0.2118 0.949 0.0011 0.1389 0.1323 0.955
0.5 0.0086 0.2111 0.2109 0.956 -0.0063 0.1345 0.1319 0.951
1 -0.0030 0.1686 0.1610 0.950 -0.0038 0.1025 0.1015 0.945
1 -0.0011 0.3502 0.3273 0.945 0.0063 0.2112 0.2035 0.954
1 0.0152 0.3539 0.3313 0.947 -0.0027 0.2114 0.2022 0.945

Table 4-4: Simulation results for truncation data with weight function W ∗
z (x, y) in (35).

4.4.6.2. Robustness in Presence of Marginal Heterogeneity

The proposed methodology requires that observations in each subgroup with the same

value of Z are identically distributed. In practice, there may exist covariates which

may also affect the marginal distributions. If these covariates are discrete, they can be

included in the list of Z and the proposed methods are still valid but may lose some

efficiency due to extra grouping. We design two regression settings to examine this effect.

In the first setting, let Zj =0 or 1 (j = 1, 2) such that Z1 affects association and Z2

affects the marginal distribution. We compare two model specifications with model 1:

θZ
∗ (s, t) = exp(β0 + β1Z1 + β2Z2) and model 2: θZ

∗ (s, t) = exp(β0 + β1Z1). The results

are summarized in Table 4-5. The results of model 1 indicate that our method is valid

by extra grouping. The results of model 2 show that, if the marginal heterogeneity is

ignored, the estimator of the intercept term β0 is biased while the estimator of β1 still

has reasonable performance. The purpose of the second setting is to evaluate the loss in

efficiency due to unnecessary grouping. Let Z1 affects association and Z2 is a redundant
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covariate. Table 4-6 shows that model 1 which includes Z2 produces slightly larger bias

and variation.

For the simulation settings, set β0 = 0.5, β1 = 0.5 and β2 = 0, this is Z1 affects the

association, Z2 doesn’t affect the association. Let (T1, T2) follows the Clayton copula

and the sample size and replications are 200 and 1000, respectively. For the first setting,

Z2 affects the marginal distribution. Let Z2 affect the marginal distribution by the

proportional hazard relationship, i.e. Si(t|Z2) = Si0(t)
exp(ηZ2) (i = 1, 2), where Si0(t)

is the baseline survival function, Si(t|Z2) = Pr(Ti > t|Z2) and set η=0.5 and 1. For

the baseline survival function, Si0(t), the distribution of T1 follows exp(0.8) and the

distribution of T2 follows exp(1). For the second setting, Z2 is a redundant covariate.

Let T1 follow exp(0.8) and T2 follow exp(1). The censoring variables are generated from

U(0, 6). For typical bivariate data, we set C1 to be independent of C2.

When there exist continuous covariates that affect the marginal distributions, we can

group them into distinct classes. On the other hand, if the marginal covariate effect is

ignored, we may suspect that the proposed method can estimate the slope parameters

more accurately than the intercept parameter. A possible solution is to mimic the idea

of Fine et al. (2000) who construct an association model based on error terms in which

is the marginal effects have been removed. Since this is not a straightforward extension

for more complicated data structures, we will leave it as future work.
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Model 1: with grouping Model 2: without grouping
Data PH effect β0 Bias σ̄ σ̂ Cov95 Bias σ̄ σ̂ Cov95

β1

β2

Data 1 η = 0.5 0.5 0.0010 0.2059 0.1918 0.950 0.0384 0.1640 0.1533 0.949
0.5 0.0089 0.2381 0.2188 0.954 -0.0098 0.2322 0.2200 0.952
0 0.0004 0.2339 0.2265 0.954

η = 1 0.5 -0.0057 0.2037 0.1922 0.957 0.1466 0.1575 0.1507 0.837
0.5 0.0137 0.2255 0.2048 0.948 -0.0357 0.2216 0.2174 0.947
0 0.0045 0.2291 0.2239 0.942

Data 2 η = 0.5 0.5 0.0028 0.2421 0.2389 0.940 0.0364 0.1918 0.1910 0.952
0.5 0.0065 0.2784 0.2625 0.953 -0.0123 0.2675 0.2666 0.950
0 -0.0142 0.2795 0.2802 0.940

η = 1 0.5 0.0025 0.2407 0.2376 0.953 0.1524 0.1878 0.1865 0.877
0.5 -0.0059 0.2677 0.2564 0.948 -0.0533 0.2648 0.2631 0.942
0 -0.0123 0.2869 0.2756 0.948

Data 3 η = 0.5 0.5 0.0015 0.1717 0.1606 0.953 0.0035 0.1253 0.1233 0.956
0.5 0.0089 0.2054 0.1878 0.956 -0.0122 0.1934 0.1879 0.958
0 0.0022 0.2059 0.1985 0.948

η = 1 0.5 -0.0085 0.1644 0.1588 0.951 -0.0066 0.1194 0.1224 0.946
0.5 0.0164 0.1984 0.1789 0.948 -0.0354 0.1827 0.1843 0.944
0 0.0011 0.2052 0.1958 0.950

Table 4-5: Simulations with marginal heterogeneity. Data 1: Typical bivariate

right-censored data; Data 2: Semi-competing risks data; Data 3: Truncation data.

Model 1: with gouping Model 2: without grouping
Data β0 Bias σ̄ σ̂ Cov95 Bias σ̄ σ̂ Cov95

β1

β2

Data 1 0.5 0.0062 0.2012 0.1934 0.950 0.0041 0.1572 0.1572 0.951
0.5 0.0074 0.2371 0.2149 0.956 0.0061 0.2291 0.2245 0.952
0 0.0011 0.2408 0.2322 0.951

Data 2 0.5 -0.0043 0.2571 0.2394 0.951 -0.0018 0.2025 0.1944 0.950
0.5 0.0089 0.2929 0.2766 0.952 0.0025 0.2849 0.2709 0.949
0 0.0003 0.2961 0.2848 0.956

Data 3 0.5 0.0045 0.1709 0.1606 0.946 -0.0014 0.1276 0.1253 0.946
0.5 0.0068 0.2009 0.1968 0.946 0.0081 0.1894 0.1908 0.951
0 -0.0086 0.2037 0.2021 0.959

Table 4-6: Simulations with marginal homogeneity. Data 1: Typical bivariate

right-censored data; Data 2: Semi-competing risks data; Data 3: Truncation data.
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4.4.6.3. Real Datas

The proposed methods are applied to analyze two data sets: the bone marrow transplan-

tation data (Klein and Moeschberger, 2003) which belong to semi-competing risks data

and the transfusion-related AIDS data (Kalbfleisch and Lawless, 1989) which belong to

truncation data.

For the first data set, the main objective is to investigate how the disease type (ALL,

AML low risk, AML high risk) affects the level of association between the survival time

(T2) and the time to develop the chronic graft-versus-host disease (T1). In presence of

right censoring, we only observe (X,Y, δ1, δ2, Z), where X is the time to chronic graft-

versus-host disease or death or the end of study, Y is the time to death or the end of study

and δj indicates whether Tj is observed (j = 1, 2). The covariate vector Z = (Z1, Z2)
T is

coded as follows: (Z1, Z2) = (0, 0) if the disease type is the ALL group; (Z1, Z2) = (1, 0)

for the AML low risk group and (Z1, Z2) = (0, 1) for the AML high risk group.

The regression model can be written as: θZ
a (s, t) = exp(β0 + β1Z1 + β2Z2), where β0

is the log odds of concordance for the baseline (ALL) group, β1 represents the difference

of the log odds by comparing the AML low risk group with the baseline group, β2 is

the difference of the log odds by comparing the AML high risk group with the baseline

group. Hence β1−β2 measures the difference of the log odds between the AML low risk

group and the AML high risk group.

Applying the testing procedure discussed in Section 4.4.5, we obtain that T = 2.9034

with P-value=0.407 which implies that the Clayton model is suitable for this data. We

run two analyses with different weight functions. When a = b = ∞, the estimators and

the corresponding standard errors given in the parentheses for β and β1 − β2 are β̂0=-

0.5355 (0.2756), β̂1=1.2188 (0.4770), β̂2=0.5629 (0.3666) and β̂1 − β̂2=0.6559 (0.4582).

Accordingly the odds ratios for the above three sets of comparison are exp(β̂1)=3.3831,
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exp(β̂2)=1.7557 and exp(β̂1 − β̂2)=1.9268. Although there seems to be positive associ-

ation between the two failure times for each risk group, only the result by comparing

the AML low risk group and the baseline group is statistically significant in which the

former reveals larger association. With the weight function a = b = 0, the estimators

and the corresponding standard errors in the parentheses for β and β1 − β2 are β̂0=-

0.4480 (0.3107), β̂1=1.2573 (0.5075), β̂2=0.4875 (0.3952) and β̂1 − β̂2=0.7698 (0.4697).

The results of the two analyses are similar.

The second data set is from a study of blood-transfusion related AIDS (Kalbfleisch

and Lawless, 1989). There are 293 subjects who infected HIV by contaminated blood

transfusions and developed AIDS between January 1, 1978 and July 1, 1986. The data

include the infection time (S) measured from the beginning of the study and induction

time (T1) in months, and the age in years at the time of transfusion. Subjects are

included in the sample only if they developed AIDS within the study period which

lasted 102 months. Let T2 = 102 − S. Hence the sampling criteria is T1 ≤ T2. Tsai

(1990) analyzed this data and rejected the null hypothesis of quasi-independence. Now

we want to investigate whether age affects the level of association. For the age variable,

we classify it into three groups: 0-4 years, 5-59 years and≥ 60 years. Hence, the covariate

Z = (Z1, Z2)
T is coded as (Z1, Z2) = (0, 0) if the age of subject is in the ≥ 60 years

group; (Z1, Z2) = (1, 0) for the 5-59 years group and (Z1, Z2) = (0, 1) for the 0-4 years

group. Therefore, we consider the regression model: θZ
b (s, t) = exp(β0 + β1Z1 + β2Z2).

Since the data contain many ties, we modify the data by adding a uniform random

variable between (−0.4, 0.4) to each subject. Applying the testing procedure in Section

4.4.5, we find T = 1.395 with p-value=0.707. Therefore, the Clayton model is suitable

for this data. We run two analyses with different weight functions. When a = b =

0, the estimators and the corresponding standard errors given in the parentheses for

β and β1 − β2 are β̂0 =0.2168 (0.0982), β̂1 =-0.0435 (0.1464), β̂2 =-0.0336 (0.1938),

β̂1 − β̂2 =-0.0099 (0.1994). Accordingly the odds ratios for the above three groups
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are exp(β̂1) =0.9574, exp(β̂2) =0.9669 and exp(β̂1 − β̂2) =0.9901. From the results,

the difference of the association for the three age groups is not significantly. From the

results: β̂0 =0.2168 (0.0982), β̂0 + β̂1 =0.1733 (0.1087) and β̂0 + β̂2 =0.1832 (0.1671),

it implies that the quasi-independent assumption is not appropriate for the ≥ 60 years

group. The conclusion coincides with Tsai (1990). With the weight function (35), the

estimators and the corresponding standard errors in the parentheses for β and β1 − β2

are β̂0 =0.2128 (0.0693), β̂1 =0.0023 (0.0993), β̂2 =-0.0496 (0.0989), β̂1 − β̂2 =0.0519

(0.1002).
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Chapter 5. Conclusions

In this article, we consider two projects: regression analysis on marginal effect and

association. In the first project, we model the failure time to a non-terminal event by a

flexible transformation model under semi-competing risks data. To handle the problem

of dependent censoring, we make an additional assumption that, for each covariate

group, failure times of the two types of events follow a copula model in the identifiable

region. Model checking procedures are also proposed to examine the appropriateness of

these two model assumptions. To select an appropriate regression model for the non-

terminal event, a formal model checking procedure is also proposed using the bootstrap

method. The proposed strategy for checking the copula assumption is to compare the

non-parametric estimator with its model-based estimator of a chosen reference function,

say F 11(t1, t2). Compared to existing methods such as that proposed by Lin et al. (1996),

our approach allows for different dependence structures in each group, avoids making

additional model assumption on the terminal event and utilizes all the data without

paying the price for artificial censoring. The simulation analysis confirms our conjecture

that the estimator proposed by Lin et al. (1996) becomes unreliable if the dependence

structures in the two groups are different.

For possible future research of marginal regression analysis, one may examine how

to choose such a function or a combination of several functions that contain most of the

model information characterized by φ(·) so that the corresponding test procedure would

detect the departure from the null hypothesis better and hence gives higher power.

The proposed regression method can handle multiple covariates with discrete values.

Extension to continuous covariates has to face the challenge of imposing additional

regression assumptions on model (12) or adopting some nonparametric techniques like

smoothing. This goes beyond the scope of the current article but may deserve further

investigation.
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In the second project, we develop a unified inference approach to assessing the co-

variate effects on the level of association between two failure times which may be typical

bivariate variables or have censoring/truncation relationship. We also develop a method-

ology to check the Clayton assumption for the three types of data.

Although we assume the Clayton copula, the proposed regression model can easily

be extended to allow for dependency of local variation. Note that the form of θZ
∗ (s, t)

in (32) can be extended to allow for the dependency on (s, t). For example, we may

assume that θZ
∗ (s, t) = exp(Z ′β)+η · (F∗(s, t)−v0), where v0 ∈ [0, 1] is a pre-determined

constant. The interpretation of β depends on the chosen value v0. For example if we set

v0 = 0.5, β represents the covariate effect for the covariate group at the ”median” time

region with F∗(s, t) = 0.5. Since such an extension may involve additional parameters,

say F∗(s, t) we leave it as a future research topic. Currently the proposed method can

only be applied to the discrete covariates. When there exists continuous covariates, we

can group the covariates into several classes or apply smoothing techniques.
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Appendix

Appendix 1: Regularity Conditions of Theorem 1A and 1B

Let

Ū(θ) =
∑

k<j

w0(z
T
kjθ)zkj

√
ckcj

ck + cj

{
∫ Tkj

0

Wkj(t)gkj(t, θ)dt} (A.1)

where ck = limn→∞ nk/n, and (0, Tkj) is the support of X in the subgroup with Z = zk

or Z = zj. First we state the regularity conditions:

(a). As n →∞, ck = limn→∞ nk/n > 0 for all k values;

(b). For each Z = zk, the Hzk
(u, v, α) has bounded partial derivatives with respect to

u, v and α, where Hz(u, v, α) = φ−1
z,α{φz,α(u)− φz,α(v)} is defined in (16).

(c). For each Z = zk, the standard regularity conditions hold for estimating Fzk
(x, x)

and F2,zk
(x) (e.g. conditions for Theorem 6.3.2 in Flemingm and Harrington, 1991)

so that
√

nk{F̂zk
(x, x)− Fzk

(x, x)} and
√

nk{F̂2,zk
(x)− F2,zk

(x)} converge weakly

to Gaussian processes;

(d). The weight functions w0(x) and Wkj(t) are positive and bounded and w0(x) is

differentiable with continuous derivatives;

(e). For each of the two classes of model (9), we impose the following assumptions:

(e1) for the first case, h(t) is differentiable, h′(t) 6= 0 and is continuous, W̃kj(t) =

Wkj(t)/h
′(t) is differentiable and

∫ |W̃kj(t)|dt < ∞;

(e2) for the second case, the distribution of ε has a density fε(t) which is differ-

entiable with bounded derivative;

(f). The function Ū(θ) defined in (A.1) is differentiable with respect to θ and the

matrix ( ∂
∂θ1

Ū(θ0), ...,
∂

∂θp
Ū(θ0)) is nonsingular. Furthermore Ū(θ) 6= 0 for θ 6= θ0

and lim inf‖θ‖→∞ |Ū(θ)| > 0.
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Appendix 2: Proof of Theorem 1A

By the proof of (A.12) in the Appendix 7, it follows that U(θ)/
√

n converges (in

probability) to

Ū(θ) =
∑

k<j

w0(z
T
kjθ)zkj

√
ckcj

ck + cj

{
∫ Tkj

0

Wkj(t)gkj(t, θ)dt},

in which the convergence is uniform in θ. Consider a compact set Dr = {‖θ − θ0‖ ≤
r} where r is a positive constant. By assumption (f) Ū(θ) 6= 0 for θ 6= θ0 and

lim inf‖θ‖→∞ |Ū(θ)| > 0, then the continuity of Ū(θ) implies that inf‖θ−θ0‖>r |Ū(θ)| > 0.

The (uniform) convergence of U(θ)/
√

n to Ū(θ) implies that there will be no solution

for U(θ) = 0 outside the compact set Dr when n is large. Since this is true for every

r > 0, θ̂ is consistent.

By Taylor expansion we get

U(θ̂) = 0 = U(θ0) +

p∑

l=1

∂

∂θl

U(θ̌)(θ̂l − θl,0), (A.2)

where θ̌ is an intermediate value between θ0 = (θ1,0, ..., θp,0)
T and θ̂ = (θ̂1, ..., θ̂p)

T . Hence

we have the following expression:

1√
n

(
∂

∂θ1

U(θ̌), ...,
∂

∂θp

U(θ̌))
√

n(θ̂ − θ0) = −U(θ0). (A.3)

From (A.13) about the convergence of 1√
n

∂
∂θl

U(θ) to ∂
∂θl

Ū(θ) locally uniformly at θ = θ0

and the consistency of θ̂, we can show that 1√
n
( ∂

∂θ1
U(θ̌), ..., ∂

∂θp
U(θ̌))

P−→ ( ∂
∂θ1

Ū(θ0), ...,
∂

∂θp
Ū(θ0))

which, by assumption (f) is a non-singular constant matrix. By (A.14), U(θ0) is asymp-

totic normal with mean zero. Therefore
√

n(θ̂−θ0) is asymptotic normal with mean zero

because it has the same asymptotic distribution as −( ∂
∂θ1

Ū(θ0), ...,
∂

∂θp
Ū(θ0))

−1U(θ0).

This completes the proof.

Now we consider the situation that the weight function Wkj(x) is estimated by

Ŵkj(x). An example is the Gehan-type weight suggested in Klein and Moeschberger
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(p.230)

Ŵkj(x) =
(nk + nj)Ĝzk

(x)Ĝzj
(x)

nkĜzk
(x) + njĜzj

(x)
,

where Ĝzk
(x) is the Kaplan-Meier estimator of Gzk

(x) = Pr(C ≥ x|Z = zk). Replacing

Wkj(t) in (19) with Ŵkj(t), we have

Û(θ) =
∑

k<j

w0(z
T
kjθ)zkj

√
nknj

nk + nj

{
∫ tkj

0

Ŵkj(t)ĝkj(t, θ)dt}.

Appendix 3: Proof of Theorem 1B

Compared with the previous proof, we only need to show that (A) [Û(θ)−U(θ)]/
√

n

uniformly strongly converges to zero; (B) ∂
∂θl

[Û(θ)−U(θ)]/
√

n strongly converges to zero

which takes place locally uniformly at θ = θ0 and (C) Û(θ0)− U(θ0) strongly converges

to zero.

Firstly,

[Û(θ)−U(θ)]/
√

n =
∑

k<j

w0(z
T
kjθ)zkj

√
(nk/n)(nj/n)

(nk/n) + (nj/n)
{
∫ tkj

0

[Ŵkj(t)−Wkj(t)]ĝkj(t, θ)dt}.

(A.4)

We have
√

(nk/n)(nj/n)

(nk/n)+(nj/n)
→

√
ckcj

ck+cj
, w0(z

T
kjθ0)zkj is bounded and tkj is bounded by T <

∞.

These facts together with the uniform strong convergence of Ŵkj(t) to Wkj(t) implies

the uniform strong convergence of (A.4) to zero. So (A) holds.

Secondly,

Û(θ0)−U(θ0) =
∑

k<j

w0(z
T
kjθ0)zkj

√
(nk/n)(nj/n)

(nk/n) + (nj/n)
{
∫ tkj

0

[Ŵkj(t)−Wkj(t)]
√

nĝkj(t, θ0)dt}.

(A.5)

By the facts that
√

(nk/n)(nj/n)

(nk/n)+(nj/n)
→

√
ckcj

ck+cj
, w0(z

T
kjθ0)zkj is bounded and tkj is bounded

by T < ∞ as well as
√

nĝkj(t, θ0) = Op(1) for all t and Ŵkj(t)−Wkj(t) = op(1), we can

show strong convergence of (A.5) to zero. So (C) holds.
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Finally

∂
∂θl

[Û(θ)− U(θ)]/
√

n

=
∑

k<j w′
0(z

T
kjθ)zkjzkj,l

√
(nk/n)(nj/n)

(nk/n)+(nj/n)
{∫ tkj

0
[Ŵkj(t)−Wkj(t)]ĝkj(t, θ)dt}

+
∑

k<j w0(z
T
kjθ)zkj

√
(nk/n)(nj/n)

(nk/n)+(nj/n)
∂

∂θl
{∫ tkj

0
[Ŵkj(t)−Wkj(t)]ĝkj(t, θ)dt}.

(A.6)

√
(nk/n)(nj/n)

(nk/n)+(nj/n)
→

√
ckcj

ck+cj
, w0(z

T
kjθ)zkj and ĝkj(t, θ) are bounded and tkj is bounded by

T < ∞. From assumption (d) that w′
0(t) is continuous, thus w0(z

T
kjθ) is locally bounded.

Also
√

(nk/n)(nj/n)

(nk/n)+(nj/n)
→

√
ckcj

ck+cj
, |ĝkj(t, θ)| ≤ 2 and tkj is bounded by T < ∞. These facts

plus the uniform strong convergence of Ŵkj(t) to Wkj(t) implies that the first term in

(A.6) converges uniformly (in θ) and strongly to zero. To prove the second term, we

need to consider the two regression classes separately.

For the first case that ξθ(F )(t) = F [h−1{h(t) + θ}],
∑

k<j w0(z
T
kjθ)zkj

√
(nk/n)(nj/n)

(nk/n)+(nj/n)
∂

∂θl
{∫ tkj

0
[Ŵkj(t)−Wkj(t)]ĝkj(t, θ)dt}

=
∑

k<j w0(z
T
kjθ)zkj

√
(nk/n)(nj/n)

(nk/n)+(nj/n)∫ h−1{h(tkj)+zT
kjθ}

h−1{h(0)+zT
kjθ}

[Ŵkj(h
−1{h(t∗)−zT

kjθ})−Wkj(h
−1{h(t∗)−zT

kjθ})]zkj,l

h′(h−1{h(t∗)−zT
kjθ}) dF̂1,zk

(t∗).

(See the proof of (A.11) in Appendix 7.) This quantity locally (at θ0) uniformly strongly

converges to zero due to the boundedness of w0(z
T
kjθ)zkj,

√
(nk/n)(nj/n)

(nk/n)+(nj/n)
→

√
ckcj

ck+cj
, the

uniform strong convergence of Ŵkj(t) to Wkj(t), the fact that tkj is bounded by T < ∞,

local boundedness of 1/h′(h−1{h(t∗) − zT
kjθ}) due to the continuity of h′(t), and the

boundedness of F̂1,zk
. That is, the second term in (A.6) locally uniformly strongly

converges to zero.

For the second case that ξθ(F )(t) = Fε [F−1
ε {F (t)}+ θ], then ξ′θ(F )(t) = fε[F

−1
ε {F (t)}+

θ]. Hence

∑
k<j w0(z

T
kjθ)zkj

√
(nk/n)(nj/n)

(nk/n)+(nj/n)
∂

∂θl
{∫ tkj

0
[Ŵkj(t)−Wkj(t)]ĝkj(t, θ)dt}

=
∑

k<j w0(z
T
kjθ)zkj

√
(nk/n)(nj/n)

(nk/n)+(nj/n)

∫ tkj

0
[Ŵkj(t)−Wkj(t)]zkj,lfε[F

−1
ε {F̂ (t)}+ zT

kjθ]dt,

which converges uniformly to zero, due to the boundedness of w0(z
T
kjθ)zkj,

√
(nk/n)(nj/n)

(nk/n)+(nj/n)
→

√
ckcj

ck+cj
, uniform strong convergence of Ŵkj(t) to Wkj(t), tkj is bounded by T < ∞ and
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the boundedness of fε[F
−1
ε {F̂ (t)} + zT

kjθ]. That is, the second term in (A.6) locally

uniformly strongly converges to zero.

In summary (A.6) locally uniformly strongly converges to zero. That is, (B) holds.

This completes the proof.

Discussion of the regularity conditions

Here we examine the plausibility of some assumptions.

Assumption (b) requires that the imposed AC model has reasonable analytic prop-

erties. For most commonly used models in the family, explicit expressions of H(u, v, α)

are available and have nice analytic properties such as differentiability.

Assumption (d) is related to the weight functions w0(x) and Wkj(t). It is easy to

find reasonable weight functions which satisfy the above conditions. Examples of w0(x)

include the unweighted version with w0(x) ≡ 1 or any positive analytic functions such

as power functions. Examples of Wkj(t) may be the unweighted one, the Gehan-type

function with Wkj(t) = G(t).

Now we examine assumption (e1) which involve both Wkj(t) and the first class of

model (9). The requirement that h′(t) 6= 0 and is continuous is easily met by commonly

seen transformations including the location-shift model with h(t) = t, the AFT model

with h(t) = log(t) or other power transforms. The condition on W̃kj(t) = Wkj(t)/h
′(t)

looks complicated at the first glance. However, if we let both Wkj(t) and h(t) be ana-

lytic, then obviously W̃kj(t) is differentiable and W̃ ′
kj(t) is absolutely integrable so that

W̃kj(t) =
∫ t

0
W̃ ′

kj(u)du.

Assumption (e2) is also easy to attain by most continuous distributions. In particular,

the proportional hazards model (with ε following the extreme value distribution) and

the proportional odds model (with ε following the logistic distribution) clearly satisfy

this assumption.

The condition (f) is related to properties of Ū(θ) defined in (A.1). The differentiabil-

ity property is easy to achieve. The derivations in the proof of (A.11) provide a concrete
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example. Non-singularity of ( ∂
∂θ1

Ū(θ0), ...,
∂

∂θp
Ū(θ0)) is harder to verify but is a standard

regularity condition for this type of estimator in solving an estimating equation. For the

second statement in (f), notice that as ‖θ‖ → ∞,
∫ Tkj

0
Wkj(t)[ξzT

kjθ(F1,zk
)(t)− F1,zj

(t)]dt

converges to either
∫ Tkj

0
Wkj(t)[1− F1,zj

(t)]dt or
∫ Tkj

0
Wkj(t)[0− F1,zj

(t)]dt except along

the direction zT
kjθ = 0. When there are enough z1, z2, ..., zK values so that they do not fall

into a degenerate p−1 dimensional linear subspace, then lim inf‖θ‖→∞ |
∫ Tkj

0
Wkj(t)[ξzT

kjθ(F1,zk
)(t)−

F1,zj
(t)]dt| > 0 for some k and j along every direction. If we take the weight function

w0(x) such that lim inf |x|→∞ w0(x) > 0, then as ‖θ‖ → ∞, some terms in the sum for Ū(θ)

in (A.1) is bounded away from zero for every direction. Hence lim inf‖θ‖→∞ |Ū(θ)| > 0

unless the terms in sum of (A.1) happen to cancel each other out. Such a cancellation

rarely happens. Considering the weight function Wkj(t) in a metric functional space, the

set of weight functions that allow the canceling effect has measure zero. In other words,

if a weight function is selected at random, the second statement of (f) holds almost

surely.

Appendix 4: Proof of Theorem 2

First, the empirical distribution function is uniformly consistent. That is, as n →∞,

sup
t1≤t2

|F̂ 11(t1, t2)− F 11(t1, t2)| P−→ 0.

By Theorem 3.4.2 in Fleming & Harrington (1991), Ĝ(t) and F̂2(t) are uniformly con-

sistent for G(t) and F2(t), respectively. In Fine et al. (2001), they show that F̂1(t)

uniformly and strongly converges to F1(t) for the Clayton family. Their result can be

extended to all members in the AC family, see the proof of (A.8). These facts together

with the continuous mapping theorem implies that F̃ 11
k (t1, t2) uniformly converges to

F̄ 11
k (t1, t2, α̂) =

∫∞
y=t2

∫ y

x=t1
F̄k(dx, dy, α̂)G(y)∫∞

y=0

∫ y

x=0
F̄k(dx, dy, α̂)G(y)

,

for t1 ≤ t2, where F̄k(dx, dy, α̂) = F̄k(x, y, α̂)− F̄k(x+dx, y, α̂)− F̄k(x, y+dy, α̂)+ F̄k(x+

dx, y + dy, α̂), F̄k(x, y, α̂) = φ
(k)
α̂

−1{φ(k)
α̂ [F1(x)] + φ

(k)
α̂ [F2(y)]}.
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If φ
(k)
α is the true copula model, then α̂

P−→ α and F̄ 11
k (t1, t2, α̂) uniformly converges

to F 11(t1, t2). Therefore,

Dk

≤ supt1≤t2 |F̂ 11(t1, t2)− F 11(t1, t2)|+ supt1≤t2 |F̃ 11
k (t1, t2)− F̄ 11

k (t1, t2, α̂)|
+ supt1≤t2 |F̄ 11

k (t1, t2, α̂)− F 11(t1, t2)|
P−→ 0

If φ
(k)
α is not the true copula model, let dk(α

∗) = supt1≤t2 |F̄ 11
k (t1, t2, α

∗)−F 11(t1, t2)|.
Then dk(α

∗) > 0 for all α∗ ∈ Ak. To see this, let us consider when dk(α
∗) = 0. That is,

∫∞
y=t2

∫ y

x=t1
F̄k(dx, dy, α∗)G(y)∫∞

y=0

∫ y

x=0
F̄k(dx, dy, α∗)G(y)

=

∫∞
y=t2

∫ y

x=t1
F (dx, dy)G(y)∫∞

y=0

∫ y

x=0
F (dx, dy)G(y)

for all t1 ≤ t2, where F (dx, dy) = F (x, y)−F (x+dx, y)−F (x, y+dy)+F (x+dx, y+dy),

F (x, y) = φα
−1{φα[F1(x)] + φα[F2(y)]}. Let p∗ =

∫∞
y=0

∫ y

x=0
F̄k(dx, dy, α∗)G(y) and p =

∫∞
y=0

∫ y

x=0
F (dx, dy)G(y). Then p and p∗ are constants independent of t1 and t2. Hence

the above equation becomes

∫ ∞

y=t2

∫ y

x=t1

[F̄k(dx, dy, α∗)/p∗ − F (dx, dy)/p]G(y) = 0

for all t1 ≤ t2. Therefore,

F̄k(dx, dy, α∗)/p∗ − F (dx, dy)/p = 0

on the region {(x, y) : x ≤ y and G(y) > 0}. Consider the variables u = F1(x) and

v = F2(y), it is easy to see that F (dx, dy) = Cα(du, dv) and F̄k(dx, dy, α∗) = C
(k)
α∗ (du, dv).

By the assumption that C has bigger support than the supports of T1 and T2, both F1(x)

and F2(y) change from 1 to 0 on the region {(x, y) : x ≤ y and G(y) > 0}. Therefore

we have

C
(k)
α∗ (du, dv)/p∗ − Cα(du, dv)/p = 0

on the region {(u, v) : 0 ≤ F1[F
−1
2 (v)] ≤ u ≤ 1}. In other words,

p
∂2

∂u∂v
C

(k)
α∗ (u, v) = p∗

∂2

∂u∂v
Cα(u, v)
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on the region {(u, v) : 0 ≤ F1[F
−1
2 (v)] ≤ u ≤ 1} which clearly contains a non-empty

open set. Therefore, the analyticity of φ
(k)
α∗ and φα implies that

p
∂2

∂u∂v
C

(k)
α∗ (u, v) = p∗

∂2

∂u∂v
Cα(u, v)

on the region {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. This together with the fact that

C
(k)
α∗ (0, 0) = Cα(0, 0) = 0 implies

pC
(k)
α∗ (u, v) = p∗Cα(u, v)

on the region {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. Since C
(k)
α∗ (1, 1) = Cα(1, 1) = 1,

p = p∗. Now, C
(k)
α∗ (u, v) = Cα(u, v) on the region {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. This

contradicts with the fact that C
(k)
α∗ (u, v) is not the true copula model. Hence dk(α

∗) > 0

for all α∗ ∈ Ak. This fact together with the closedness of Ak and the continuity in α∗

implies that dk = infα∗∈Ak
dk(α

∗) > 0. Therefore,

Dk

≥ supt1≤t2 |F̄ 11
k (t1, t2, α̂)− F 11(t1, t2)| − supt1≤t2 |F̂ 11(t1, t2)− F 11(t1, t2)|

− supt1≤t2 |F̃ 11
k (t1, t2)− F̄ 11

k (t1, t2, α̂)|
≥ dk − supt1≤t2 |F̂ 11(t1, t2)− F 11(t1, t2)| − supt1≤t2 |F̃ 11

k (t1, t2)− F̄ 11
k (t1, t2, α̂)|

P−→ dk > 0.

Now we have proved that, as n →∞, Dk P−→ 0 if φ
(k)
α is the true copula model; and

Pr(lim infn→∞ Dk ≥ dk > 0) = 1 if φ
(k)
α is not the true copula model. So if there are K

candidate models and let

d = inf
{k:1≤k≤K, φ

(k)
α is not true copula model}

dk.

Then d > 0. And as n →∞, Pr(Dk > d/2) → 1 if model k is wrong while Pr(Dk <

d/2) → 1 if model k is correct. Therefore k̂ is consistent.

Discussion of Theorem 2

Notice that there may be more than one correct candidate models. For example, φα =

φ
(k1)
α1 = φ

(k2)
α2 . In such cases, Theorem 2 states that with probability one, for large n,
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k̂ = k1 or k̂ = k2. That is, the selected model will be one of the correct models for large

n, but do not specify which one.

Theorem 2 requires that the true and candidate AC models are all analytic in t and

continuous in α. This condition can be easily verified for all commonly used AC models.

The assumption requires a closed parameter space for α. This condition is satisfied

for most commonly used AC model by including the limiting copula. For example, the

Gumbel family is

Cα(u, v) = e−[(−logu)α+(−logv)α]1/α

(α ≥ 1).

The parameter space can be defined as [1,∞] by including the case α = ∞ corresponding

to the copula of Fréchet upper bound C∞(u, v) = min{u, v}.
We have proved Theorem 2 for continuous random variables T1 and T2. From the

proof, we can see that this condition can be relaxed to the situation that T1 and T2 have

positive density on intervals (t1,x, t2,x) and (t1,y, t2,y) respectively, where t1,x < t2,x and

t1,y < t2,y. Then the region {(u, v) : u = F1(tx), v = F2(ty), t1,x ≤ tx ≤ t2,x, t1,y ≤ ty ≤
t2,y, tx ≤ ty} contains a non-empty open set and the previous proof still works.

Appendix 5: Proof of Theorem 3

We first show that the statistics n−2U(β) in (34) has a positive limiting deterministic

function in β that is minimized at β = β∗. Let Ũ(β) denote the statistic U(β) in (34)

with the weight function Wz replaced by its deterministic limit W̃z. That is,

Ũ(β) =
∑

z

∑
i<j

W̃z(X̃ij, Ỹij)Dij(z)[∆ij − η(z′β)]2.

Then

n−2|U(β)− Ũ(β)| ≤ n−2
∑

z

∑
i<j |W̃z(X̃ij, Ỹij)−Wz(X̃ij, Ỹij)|Dij(z)

≤ 1
2
supz,u,v |W̃z(u, v)−Wz(u, v)|

which by assumption (c) converges to zero in probability. Therefore we only need to

show that the limit of Ũ(β) in probability is positive and is minimized at β = β∗. Under
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the model assumptions, for those Zi = Zj = z and Dij(z) = 1, ∆ij is a Bernoulli random

variable with Pr(∆ij = 1) = η(z′β∗). Hence E{[∆ij − η(z′β)]2|Zi = Zj = z, Dij(z) =

1} = η(z′β∗)[1− η(z′β∗)] + [η(z′β∗)− η(z′β)]2. So

n−2
z E{∑i<j W̃z(X̃ij, Ỹij)Dij(z)[∆ij − η(z′β)]2}

= {η(z′β∗)[1− η(z′β∗)] + [η(z′β∗)− η(z′β)]2}n−2
z

∑
i<j W̃z(X̃ij, Ỹij)E[Dij(z)].

By the law of large numbers, n−2
z

∑
i<j W̃z(X̃ij, Ỹij)E[Dij(z)] converges to a positive

constant. Let dz denote the limit. Then

E[n−2Ũ(β)]

=
∑

z(n/nz)
−2n−2

z E{∑i<j W̃z(X̃ij, Ỹij)Dij(z)[∆ij − η(z′β)]2}
→ ∑

z c2
z{η(z′β∗)[1− η(z′β∗)] + [η(z′β∗)− η(z′β)]2}dz.

Let LU(β) denote the limiting function
∑

z c2
z{η(z′β∗)[1−η(z′β∗)]+[η(z′β∗)−η(z′β)]2}dz.

This expectation LU(β) is minimized if and only if η(z′β∗) = η(z′β) for all z ∈ Z. By

condition (a), that means β = β∗. By the law of large numbers, we can see that n−2Ũ(β)

converges to its expectation. Hence n−2U(β) also converges to LU(β) which is uniquely

minimized by β = β∗.

We notice that when |β| → ∞, η(z′β) → 0 or 1 for each non-zero z value. Therefore
∑

z c2
z[η(z′β∗) − η(z′β)]2dz is uniformly bounded above an constant ε outside a neigh-

borhood of β = β∗ (when |β| is big). Therefore the minimizer to U(β) in (34) can only

occurs in the neighborhood of β = β∗ in probability for large n. Then the uniform

convergence of n−2U(β) within this neighborhood implies the consistency of β̂.

Let u(β) denote the gradient of U(β). That is, u(β) = ∂U(β)
∂β

=
(

∂U(β)
∂βk

)
(p+1)×1

, where

∂U(β)

∂βk

=
∑

z

∑
i<j

2Wz(X̃ij, Ỹij)Dij(z)[∆ij − η(z′β)](− exp(β0 + ... + βpZp)Zk

(1 + exp(β0 + ... + βpZp))2
).

The local minimizer of U(β) also solves u(β) = 0. So without loss of generality, we can

take β̂ as a consistent root of u(β) = 0. Let ũ(β) denote u(β) with Wz replaced by W̃z.

Under model (31), E[ũ(β∗)] = 0. By Taylor expansion:

√
n(β̂ − β∗) = (− 1

n2

∂u(β)

∂β
|β=β∗)

−1n−3/2u(β∗) + op(1)
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= I−1{n−3/2u(β∗)}+ op(1). (A.7)

Straightforward calculations similar to those in Fine and Jiang (2000) show that

n−3/2u(β∗) = n−3/2ũ(β∗) + op(1) =

(
n−3/2

∑
z

∑
i<j

Q
(k)
ijz

)

(p+1)×1

+ op(1),

where Q
(k)
ijz = 2W̃z(X̃ij, Ỹij)Dij(z)[∆ij − η(z′β∗)](− exp(β∗0+...+β∗pZp)Zk

(1+exp(β∗0+...+β∗pZp))2
). By the central

limit theorem for U-statistic and Slutsky’s theorem:
√

n(β̂−β∗) converges in distribution

to a multivariate normal distribution with variance Σ which is consistently estimated by

Σ̂ = Î−1Ĵ(Î−1)′, where

Î =

(
− 1

n2

∂2U(β)

∂βk∂βl

|β=β̂

)

(p+1)×(p+1)

, Ĵ =
(
Ĵij

)
(p+1)×(p+1)

,

Ĵij = n−3
∑

z

[2
∑

k<l<m

(Q̂
(i)
klzQ̂

(j)
kmz + Q̂

(i)
klzQ̂

(j)
lmz + Q̂

(i)
lmzQ̂

(j)
kmz) +

∑

k<l

(Q̂
(i)
klzQ̂

(j)
klz)],

∂2U(β)

∂βk∂βl

=
∑

z

∑
i<j

2Wz(X̃ij, Ỹij)Dij(z)
exp(2z′β)ZkZl + (∆ij − η(z′β))(exp(3z′β)− exp(z′β))ZkZl

(1 + exp(z′β))4
.

Appendix 6: Asymptotic properties of the Test Statistic T

Under the assumption, θZ
∗ (s, t) = exp(Z ′β), the distributions of β̂Wz,1 and β̂Wz,2 are

centered around the same β∗. By the results of Appendix 5, we have

√
n(β̂Wz,1 − β̂Wz,2) = n−3/2

∑
z

∑
i<j

(I−1
1 Q̃1,ijz − I−1

2 Q̃2,ijz) + op(1)

= n−3/2
∑

z

∑
i<j

Q̃∗
ijz + op(1),

where Q̃∗
ijz =

(
Q
∗(k)
ijz

)
(p+1)×1

= I−1
1 Q̃1,ijz − I−1

2 Q̃2,ijz, Q̃m,ijz =
(
Q

(k)
m,ijz

)
(p+1)×1

, Im is I

with Wz replaced by Wz,m, and Q
(k)
m,ijz is Q

(k)
ijz with W̃z replaced by W̃z,m (m = 1, 2).

By the central limit theorem for U-statistic and Slutsky’s theorem:
√

n(β̂Wz,1 − β̂Wz,2)
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converges in distribution to a mean-zero multivariate normal distribution with variance

Γ which can be consistently estimated by Γ̂ =
(
Γ̂ij

)
(p+1)×(p+1)

, where

Γ̂ij = n−3
∑

z

[2
∑

k<l<m

(Q̂
∗(i)
klz Q̂

∗(j)
kmz + Q̂

∗(i)
klz Q̂

∗(j)
lmz + Q̂

∗(i)
lmzQ̂

∗(j)
kmz) +

∑

k<l

(Q̂
∗(i)
klz Q̂

∗(j)
klz )].

Therefore, T = n(β̂Wz,1 − β̂Wz,2)
′Γ̂−1(β̂Wz,1 − β̂Wz,2) converges in distribution to χ2

p+1.

Appendix 7: Proofs of Intermediate Results

To establish large-sample properties of θ, we need to prove the following intermediate

results.

F̂1,zk
(t) is uniformly and strongly consistent for F1,zk

(t) over t ∈ [0, Tk] and√
n{F̂1,zk

(t)− F1,zk
(t)} converges weakly to a mean-zero Gaussian process.

(A.8)

ξθ(F̂1,zk
(t)) is uniformly strongly consistent for ξθ(F1,zk

(t)), over both t and θ. (A.9)
∫ tkj

0

Wkj(t)ĝ(t, θ)dt
P−→

∫ Tkj

0

Wkj(t)g(t, θ)dt uniformly in θ. (A.10)

∂

∂θl

∫ tkj

0

Wkj(t)ĝ(t, θ)dt
P−→ ∂

∂θl

∫ Tkj

0

Wkj(t)g(t, θ)dt locally uniformly at θ = θ0.

(A.11)

U(θ)/
√

n
P−→ Ū(θ) uniformly in θ. (A.12)

∂

∂θl

U(θ)/
√

n
P−→ ∂

∂θl

Ū(θ) locally uniformly at θ = θ0. (A.13)

U(θ0) converges in distribution to a mean-zero normal random variable. (A.14)

Proof of (A.8):

Fine et al. (2001) proved this condition for the Clayton family and here we ex-

tend their proof to the AC family. By applying the results in Chapter 6 of Fleming

and Harrington (1991), uniform and strong consistency of F̂zk
(x, x) and F̂2,zk

(x) can be

shown under standard regularity conditions. By assumption (b) that Hzk
(u, v, α) has

bounded derivatives, a continuous mapping theorem gives uniform and strong consis-

tency of F̂1,zk
(t) = Hzk

(F̂zk
(x, x), F̂2,zk

(x), α̂k) to F1,zk
(t).
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To establish weak convergence of
√

nk{F̂1,zk
(t) − F1,zk

(t)}, consider the following

martingale representation of the one-dimensional processes:

√
nk{F̂zk

(t, t)− Fzk
(t, t)} = −Fzk

(t, t)
1√
nk

n∑
i=1

∫ t

0

1

πzk
(u)

dMzk,i(u) + op(1), (A.15)

√
nk{F̂2,zk

(t)− F2,zk
(t)} = −F2,zk

(t)
1√
nk

n∑
i=1

∫ t

0

1

π2,zk
(u)

dM2,zk,i(u) + op(1), (A.16)

where πzk
(t) and π2,zk

(t) are limits of

π̂zk
(t) =

1

n

n∑
i=1

I(Xi ≥ t, Zi = zk), π̂2,zk
(t) =

1

n

n∑
i=1

I(Yi ≥ t, Zi = zk), (A.17)

respectively,

Mzk,i(t) = I(Xi ≤ t, δ̃i = 1, Zi = zk)−
∫ t

0
I(Xi ≥ u, Zi = zk)dΛzk

(u),

M2,zk,i(t) = I(Yi ≤ t, δ2,i = 1, Zi = zk)−
∫ t

0
I(Yi ≥ u, Zi = zk)dΛ2,zk

(u)

which are martingales defined with respect to appropriate filtrations, δ̃i = δ1,i + δ2,i −
δ1,iδ2,i, Λzk

(u) and Λ2,zk
(u) are the cumulative hazard functions of T1 ∧ T2 and T2, re-

spectively. Applying the functional and finite-dimensional delta methods, we can show

that
√

nk{F̂1,zk
(t)− F1,zk

(t)} is asymptotically equivalent to

J(t) = H1(Fzk
(t, t), F2,zk

(t), αk)
√

nk{F̂zk
(t)− Fzk

(t)}
+H2(Fzk

(t, t), F2,zk
(t), αk)

√
nk{F̂2,zk

(t)− F2,zk
(t)}

+H3(Fzk
(t, t), F2,zk

(t), αk)
√

nk{α̂zk
− αzk

},
(A.18)

where

H1(u, v, α) = ∂Hzk
(u, v, α)/∂u = φ′zk,α(u)/φ′zk,α[φ−1

zk,α{φzk,α(u)− φzk,α(v)}], (A.19)

H2(u, v, α) = ∂Hzk
(u, v, α)/∂v = φ′zk,α(v)/φ′zk,α[φ−1

zk,α{φzk,α(u)− φzk,α(v)}], (A.20)

H3(u, v, α) = ∂Hzk
(u, v, α)/∂α = [φ(1)

zk,α(u) + φ(1)
zk,α(v)]/φ(1)

zk,α[φ−1
zk,α{φzk,α(u)− φzk,α(v)}].

(A.21)

Here φ′zk,α(t) = ∂φzk,α(t)/∂t and φ
(1)
zk,α(t) = ∂φzk,α(t)/∂α. The third term in (A.18) is

asymptotically normal (Wang, 2003), and is naturally tight because it is time-independent.
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Using (A.15) and (A.16), the first two terms in (A.18) are asymptotically equivalent to

sum of tight martingale integrals. The multivariate central limit theorem gives joint

asymptotic normality of {J(t1), ..., J(ts)} for any finite collection of times (t1, ..., ts).

Since J(t) is sum of tight processes, it is also tight. By finite-dimensional convergence

and the tightness property,
√

nk{F̂1,zk
(t)−F1,zk

(t)} converges weakly to a sum of mean-

zero Gaussian processes which is also a mean-zero Gaussian process.

Proof of (A.9): The result in (A.9) is a corollary of (A.8). For the first case that

ξθ(F )(t) = F [h−1{h(t) + θ}], it follows that

sup−∞<t<∞ |ξθ(F̂1,zk
)(t)− ξθ(F1,zk

)(t)|
= sup−∞<t<∞ |F̂1,zk

(h−1{h(t) + θ})− F1,zk
(h−1{h(t) + θ})|

= sup−∞<t<∞ |F̂1,zk
(t)− F1,zk

(t)|.
For the second case that ξθ(F )(t) = Fε [F−1

ε {F (t)}+ θ], we have ξ′θ(F )(t) = fε [F−1
ε {F (t)}+ θ]

where fε is the density for Fε. So the boundedness of fε in assumption (e2) gives a uni-

form bound for ξ′θ(F )(t). Hence the uniform strong convergence of F̂1,zk
(t) to F1,zk

(t)

implies the uniform strong convergence of ξθ(F̂1,zk
(t)) to ξθ(F1,zk

(t)). In both cases, the

uniform (in t) and strong convergence of F̂1,zk
(t) to F1,zk

(t) implies the strong conver-

gence of ξθ(F̂1,zk
(t)) to ξθ(F1,zk

(t)) uniformly in both t and θ.

Proof of (A.10): It follows that

| ∫ tkj

0
Wkj(t)[ξzT

kjθ(F̂1,zk
)(t)− F̂1,zj

(t)]dt− ∫ Tkj

0
Wkj(t)[ξzT

kjθ(F1,zk
)(t)− F1,zj

(t)]dt|
≤ ∫ Tkj

0
Wkj(t)|ξzT

kjθ(F̂1,zk
)(t)− ξzT

kjθ(F1,zk
)(t)|dt +

∫ Tkj

0
Wkj(t)|F̂1,zj

(t)− F1,zj
(t)|dt

+
∫ Tkj

tkj
Wkj(t)|ξzT

kjθ(F̂1,zk
)(t)− F̂1,zj

(t)|dt.

By (A.8) and (A.9), |F̂1,zj
(t) − F1,zj

(t)| and |ξzT
kjθ(F̂1,zk

)(t) − ξzT
kjθ(F1,zk

)(t)| converge

uniformly and strongly to zero. Together with the boundedness of Wkj(t) in assumption

(d) and Tkj < ∞, we can show that the first two terms on the right-hand side converge

uniformly and strongly to zero. Since Wkj(t) is bounded, |Wkj(t)[ξθ(F̂1,zk
(t))−F̂1,zj

(t)]| ≤
2|Wkj(t)| is also bounded uniformly in θ. This together with the fact that tkj

P−→ Tkj

implies the uniform strong convergence of the third term to zero. The above results

prove (A.10).
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Proof of (A.11): We can write

∂

∂θl

∫ tkj

0

Wkj(t)ĝ(t, θ)dt =
∂

∂θl

∫ tkj

0

Wkj(t)ξzT
kjθ(F̂1,zk

)(t)dt

and
∂

∂θl

∫ Tkj

0

Wkj(t)g(t, θ)dt =
∂

∂θl

∫ Tkj

0

Wkj(t)ξzT
kjθ(F1,zk

)(t)dt.

For the first case that ξθ(F )(t) = F [h−1{h(t) + θ}], let f1,zk
(t) denote the density of

F1,zk
(t) and let zT

kj = (zkj,1, ...zkj,p). Then

∂
∂θl

∫ Tkj

0
Wkj(t)ξzT

kjθ(F1,zk
)(t)dt

= ∂
∂θl

∫ Tkj

0
Wkj(t)F1,zk

(h−1{h(t) + zT
kjθ})dt

=
∫ Tkj

0
Wkj(t)f1,zk

(h−1{h(t) + zT
kjθ})/h′{h(t) + zT

kjθ}zkj,ldt

=
∫ Tkj

0
W̃kj(t)zkj,ldF1,zk

(h−1{h(t) + zT
kjθ}).

Performing a change of variable for t∗ = h−1{h(t) + zT
kjθ}, the above partial derivative

equals ∫ h−1{h(Tkj)+zT
kjθ}

h−1{h(0)+zT
kjθ}

W̃kj(h
−1{h(t∗)− zT

kjθ})zkj,ldF1,zk
(t∗).

The next goal is to derive a similar expression for ∂
∂θl

∫ tkj

0
Wkj(t)F̂1,zk

(h−1{h(t) +

zT
kjθ})dt. The challenge is that F̂1,zk

(t) is a step function and hence not differentiable.

Here we adopt a different approach to show the convergence. Let t(1) ≤ . . . ≤ t(nkj) be

the observed ordered times of X in the pooled sample of Z = zk or Z = zj, and set

t(0) = 0. Also let m1 denote the smallest integer such that t(m1) ≥ h−1{h(0)+ zT
kjθ}, and

let m2 denote the largest integer such that t(m2) ≤ h−1{h(tij) + zT
kjθ}. Then using the

fact that F̂1,zk
(t) is a step function, we have

∂
∂θl

∫ tkj

0
Wkj(t)F̂1,zk

(h−1{h(t) + zT
kjθ})dt

=
∑m2

i=m1+1
∂

∂θl

∫ h−1{h(t(i))−zT
kjθ}

h−1{h(t(i−1))−zT
kjθ} Wkj(t)F̂1,zk

(t(i))dt

+ ∂
∂θl

∫ h−1{h(t(m1))−zT
kjθ}

0 Wkj(t)F̂1,zk
(t(m1))dt + ∂

∂θl

∫ tkj

h−1{h(t(m2))−zT
kjθ} Wkj(t)F̂1,zk

(t(m2+1))dt

=
∑m2

i=m1+1 F̂1,zk
(t(i))[−Wkj(h

−1{h(t(i))−zT
kjθ})zkj,l

h′{h−1{h(t(i))−zT
kjθ}} +

Wkj(h
−1{h(t(i−1))−zT

kjθ})zkj,l

h′{h−1{h(t(i−1))−zT
kjθ}} ]

−F̂1,zk
(t(m1))

Wkj(h
−1{h(t(m1))−zT

kjθ})zkj,l

h′{h−1{h(t(m1))−zT
kjθ}} + F̂1,zk

(t(m2+1))
Wkj(h

−1{h(t(m2))−zT
kjθ})zkj,l

h′{h−1{h(t(m2))−zT
kjθ}}

=
∑m2

i=m1
[F̂1,zk

(t(i+1))− F̂1,zk
(t(i))]

Wkj(h
−1{h(t(i))−zT

kjθ})zkj,l

h′{h−1{h(t(i))−zT
kjθ}}

=
∫ h−1{h(tkj)+zT

kjθ}
h−1{h(0)+zT

kjθ} W̃kj(h
−1{h(t∗)− zT

kjθ})zkj,ldF̂1,zk
(t∗).
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In the above derivation, if m2 = nkj, t(m2+1) can be any time greater than t(nkj) and

F̂1,zk
(t(m2+1)) = 0.

Hence we obtain the inequality

| ∂
∂θl

∫ Tkj

0
Wkj(t)ξzT

kjθ(F1,zk
)(t)dt− ∂

∂θl

∫ tkj

0
Wkj(t)F̂1,zk

(h−1{h(t) + zT
kjθ})dt|

≤ | ∫ h−1{h(Tkj)+zT
kjθ}

h−1{h(0)+zT
kjθ} W̃kj(h

−1{h(t∗)− zT
kjθ})zkj,ld[F1,zk

(t∗)− F̂1,zk
(t∗)]|

+| ∫ h−1{h(Tkj)+zT
kjθ}

h−1{h(tkj)+zT
kjθ} W̃kj(h

−1{h(t∗)− zT
kjθ})zkj,ldF̂1,zk

(t∗)|.
(A.22)

Now we are ready to show the convergence. Consider the convergence over a compact

neighborhood D = {θ : ‖θ − θ0‖ ≤ r}. Then D∗ = {s : s = h−1{h(t) − zT
kjθ}, t ∈

[0, Tkj], θ ∈ D} is also a compact set. Because W̃kj(s) is continuous (since it is dif-

ferentiable by assumption (e1)), W̃kj(s) is bounded on D∗. This local boundedness of

W̃kj(h
−1{h(t∗)− zT

kjθ})zkj,l as well as the fact that tkj
P−→ Tkj implies the local uniform

convergence to zero of the second term on the right-hand side of (A.22). The first term

on the right-hand side of (A.22) is

|zkj,l

∫ h−1{h(Tkj)+zT
kjθ}

h−1{h(0)+zT
kjθ} W̃kj(h

−1{h(t∗)− zT
kjθ})d[F1,zk

(t∗)− F̂1,zk
(t∗)]|

= |zkj,l

∫ h−1{h(Tkj)+zT
kjθ}

t∗=h−1{h(0)+zT
kjθ}

∫ h−1{h(t∗)−zT
kjθ}

u=0 dW̃kj(u)d[F1,zk
(t∗)− F̂1,zk

(t∗)]|
= |zkj,l

∫ Tkj

u=0
{[F1,zk

(h−1{h(Tkj) + zT
kjθ})− F̂1,zk

(h−1{h(Tkj) + zT
kjθ})]

−[F1,zk
(h−1{h(u) + zT

kjθ})− F̂1,zk
(h−1{h(u) + zT

kjθ})]}dW̃kj(u)|
≤ 2|zkj,l| supt |F1,zk

(t)− F̂1,zk
(t)| ∫ Tkj

u=0
|dW̃kj(u)|.

The last quantity has a finite upper bound for large n due to the absolute integrability

of W̃ ′
kj(u) by assumption (e1) and the uniform strong convergence of F̂1,zk

(t) to F1,zk
(t).

This finite bound also shows that the integral in the next to last expression above is

in fact absolutely integrable, and justifies the changing the order of integration in the

double integration. Also, this upper bound converges to zero uniformly. Therefore local

uniform convergence (at θ = θ0) of ∂
∂θl

∫ tkj

0
Wkj(t)ĝ(t, θ)dt to ∂

∂θl

∫ Tkj

0
Wkj(t)g(t, θ)dt can

be established for the first case.

For the second case that ξθ(F )(t) = Fε [F−1
ε {F (t)}+ θ], then ξ′θ(F )(t) = fε [F−1

ε {F (t)}+ θ]

where fε is the density for Fε. Applying Taylor series expansions and using the fact that
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tkj
P−→ Tkj, it follows that

∂
∂θl

∫ tkj

0
Wkj(t)ξzT

kjθ(F̂1,zk
)dt− ∂

∂θl

∫ Tkj

0
Wkj(t)ξzT

kjθ(F1,zk
)(t)dt

=
∫ Tkj

0
Wkj(t)zkj,lf

′
ε[F

−1
ε {F1,zk

(t)}+ zT
kjθ][F̂1,zk

(t)− F1,zk
(t)]dt + op(1).

The above term converges uniformly strongly to zero due to the boundedness of Wkj(t)

and f ′ε(t) (see assumptions (d) and (e2)) and the uniform strong convergence of F̂1,zk
(t)

to F1,zk
(t). Therefore, this completes the proof for locally uniformly convergence (at

θ = θ0) of ∂
∂θl

∫ tkj

0
Wkj(t)ĝ(t, θ)dt to ∂

∂θl

∫ Tkj

0
Wkj(t)g(t, θ)dt in the second case.

Proof of (A.12): Recall that

U(θ)/
√

n =
∑

k<j

w0(z
T
kjθ)zkj

√
(nk/n)(nj/n)

(nk/n) + (nj/n)

∫ tkj

0

Wkj(t)ĝkj(t, θ)dt.

By (A.10),
∫ tkj

0
Wkj(t)ĝ(t, θ)dt converges uniformly (in θ) and strongly to

∫ Tkj

0
Wkj(t)g(t, θ)dt.

By assumption (a),
√

(nk/n)(nj/n)

(nk/n)+(nj/n)
converges to

√
ckcj

ck+cj
. These together with the bound-

edness of w0(z
T
kjθ)zkj in assumption (d) implies that the above expression converges

uniformly (in θ) and strongly to

Ū(θ) =
∑

k<j

w0(z
T
kjθ)zkj

√
ckcj

ck + cj

∫ Tkj

0

Wkj(t)gkj(t, θ)dt.

Proof of (A.13): One can write

∂
∂θl

U(θ)/
√

n =
∑

k<j w′
0(z

T
kjθ)zkj,lzkj

√
(nk/n)(nj/n)

(nk/n)+(nj/n)

∫ tkj

0
Wkj(t)ĝkj(t, θ)dt

+
∑

k<j w0(z
T
kjθ)zkj

√
(nk/n)(nj/n)

(nk/n)+(nj/n)
∂

∂θl

∫ tkj

0
Wkj(t)ĝkj(t, θ)dt.

From assumption (d) w′
0(t) is continuous, thus w0(z

T
kjθ) is locally bounded at θ = θ0.

Similar to the proof of (A.12), using (A.10), assumption (b) and the local boundedness

of w′
0(z

T
kjθ), the first term converges uniformly (locally at θ = θ0) to

∑

k<j

w′
0(z

T
kjθ)zkj,lzkj

√
ckcj

ck + cj

∫ Tkj

0

Wkj(t)gkj(t, θ)dt.

For the second term, note that ∂
∂θl

∫ tkj

0
Wkj(t)ĝ(t, θ)dt converges strongly and locally

uniformly (at θ = θ0) to ∂
∂θl

∫ Tkj

0
Wkj(t)g(t, θ)dt by (A.11). This fact together with
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assumption (b) and the boundedness of w0(z
T
kjθ)zkj from assumption (e) implies that

the second term locally uniformly strongly converges to

∑

k<j

w0(z
T
kjθ)zkj

√
ckcj

ck + cj

∂

∂θl

∫ Tkj

0

Wkj(t)gkj(t, θ)dt.

Hence ∂
∂θl

U(θ)/
√

n locally uniformly strongly converges to

∂
∂θl

Ū(θ) =
∑

k<j w′
0(z

T
kjθ)zkj,lzkj

√
ckcj

ck+cj

∫ Tkj

0
Wkj(t)gkj(t, θ)dt

+
∑

k<j w0(z
T
kjθ)zkj

√
ckcj

ck+cj

∂
∂θl

∫ Tkj

0
Wkj(t)gkj(t, θ)dt.

Proof of (A.14):

We want to show that U(θ0) is asymptotic normal with mean zero. As in (19),

U(θ0) =
∑

k<j

w0(z
T
kjθ0)zkj

√
nknj

nk + nj

{
∫ tkj

0

Wkj(t)ĝkj(t, θ0)dt}.

Since gkj(t, θ0) ≡ 0, it follows that

U(θ0)

=
∑

k<j w0(z
T
kjθ0)zkj

√
nknj

nk+nj

∫ tkj

0
Wkj(t)[ĝkj(t, θ0)− gkj(t, θ0)]dt

=
∑

k<j w0(z
T
kjθ0)zkj

√
nknj

nk+nj

∫ tkj

0
Wkj(t)[ξzT

kjθ0
(F̂1,zk

)(t)− ξzT
kjθ0

(F1,zk
)(t)]dt

−∑
k<j w0(z

T
kjθ0)zkj

√
nknj

nk+nj

∫ tkj

0
Wkj(t)[F̂1,zj

(t)− F1,zj
(t)]dt

=
∑

k<j w0(z
T
kjθ0)zkj

√
cj

ck+cj

∫ tkj

0
Wkj(t)

√
nk[ξzT

kjθ0
(F̂1,zk

)(t)− ξzT
kjθ0

(F1,zk
)(t)]dt

−∑
k<j w0(z

T
kjθ0)zkj

√
ck

ck+cj

∫ tkj

0
Wkj(t)

√
nj[F̂1,zj

(t)− F1,zj
(t)]dt.

(A.23)

Due to the boundedness of w0(z
T
kjθ0)zkj, it suffices to prove that each of

∫ tkj

0
Wkj(t)

√
nj[F̂1,zj

(t)−
F1,zj

(t)]dt and
∫ tkj

0
Wkj(t)

√
nk[ξzT

kjθ0
(F̂1,zk

)(t)−ξzT
kjθ0

(F1,zk
)(t)]dt converges in distribution

to a mean-zero normal random variable. Then each term in the sums on the right-hand

side of (A.23) weakly in distribution to a mean-zero normal random variable, and hence

U(θ0) converges in distribution to a mean-zero normal random variable.

Now let us prove
∫ tkj

0
Wkj(t)

√
nj[F̂1,zj

(t) − F1,zj
(t)]dt converges in distribution to

a mean-zero normal random variable. As shown in the proof of (A.8),
√

nj[F̂1,zj
(t) −
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F1,zj
(t)]dt = J(t) + op(1) where J(t) in (A.18) was shown to be a tight process. This to-

gether with the boundedness of Wkj(t) and tkj
P−→ Tkj implies that

∫ tkj

0
Wkj(t)

√
nj[F̂1,zj

(t)−
F1,zj

(t)]dt =
∫ Tkj

0
Wkj(t)J(t)dt. Notice that

∫ Tkj

0

Wkj(t)J(t)dt =

∫ Tkj

t=0

Wkj(t)

∫ t

u=0

dJ(u)dt =

∫ Tkj

u=0

W ∗
kj(u)dJ(u)

where W ∗
kj(u) =

∫ Tkj

t=u
Wkj(t)dt. Because Wkj(t) is bounded and positive and Tkj <

∞, W ∗
kj(u) is also positive and bounded. Therefore,

∫ Tkj

u=0
W ∗

kj(u)dJ(u) converges in

distribution to a mean-zero normal random variable.

The remaining part is to prove that the convergence of
∫ tkj

0
Wkj(t)

√
nk[ξzT

kjθ0
(F̂1,zk

)(t)−
ξzT

kjθ0
(F1,zk

)(t)]dt to a mean-zero normal random variable.

For the first case that ξθ(F )(t) = F [h−1{h(t) + θ}], by a change of variable for

t∗ = h−1{h(t) + zT
kjθ0}, we have

∫ tkj

0
Wkj(t)

√
nk[ξzT

kjθ0
(F̂1,zk

)(t)− ξzT
kjθ0

(F1,zk
)(t)]dt

=
∫ tkj

0
Wkj(t)

√
nk[F̂1,zk

[h−1{h(t) + zT
kjθ0}]− F1,zk

[h−1{h(t) + zT
kjθ0}]]dt

=
∫ h−1{h(tkj)+zT

kjθ0}
h−1{h(0)+zT

kjθ0} W̃kj(h
−1{h(t∗)− zT

kjθ0})h′(t∗)√nk[F̂1,zk
(t∗)− F1,zk

(t∗)]dt∗.

From assumption (e1) that W̃kj(t) and h′(t) are continuous, W̃kj(t) is bounded on the

compact set [0, Tkj], and h′(t) is bounded on the compact set [h(0) + zT
kjθ0, h(Tkj) +

zT
kjθ0]. Using the boundedness of W̃kj(t), the boundedness of h′(t) and the mono-

tonicity of h(t) (hence h′(t) always positive or always negative), the new weight func-

tion W̃kj(h
−1{h(t∗) − zT

kjθ0})h′(t∗) =
Wkj(h

−1{h(t∗)−zT
kjθ0})h′(t∗)

h′(h−1{h(t∗)−zT
kjθ0}) in the above integral is

also positive and bounded. Therefore, the same reasoning for proving the conver-

gence of
∫ tkj

0
Wkj(t)

√
nj[F̂1,zj

(t)−F1,zj
(t)]dt shows that

∫ h−1{h(tkj)+zT
kjθ0}

h−1{h(0)+zT
kjθ0} W̃kj(h

−1{h(t∗)−
zT

kjθ0})h′(t∗)√nk[F̂1,zk
(t∗)−F1,zk

(t∗)]dt∗ converges in distribution to a mean-zero normal

random variable.

For the second case that ξθ(F )(t) = Fε [F−1
ε {F (t)}+ θ], then ξ′θ(F )(t) = fε [F−1

ε {F (t)}+ θ]

where fε is the density for Fε. Applying Taylor series expansions, it follows that

√
nk{ξzT

kjθ0
(F̂1,zk

(t))− ξzT
kjθ0

(F1,zk
(t))} a

= ξ′zT
kjθ0

(F1,zk
)(t)

√
nk{F̂1,zk

(t)− F1,zk
(t)}.
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Therefore ∫ tkj

0

Wkj(t)
√

nk[ξzT
kjθ0

(F̂1,zk
)(t)− ξzT

kjθ0
(F1,zk

)(t)]dt

is asymptotically equivalent to

∫ tkj

0

Wkj(t)ξ
′
zT
kjθ0

(F1,zk
)(t)

√
nk[F̂1,zk

(t)− F1,zk
(t)]dt.

Consider the new weight function Wkj(t)ξ
′
zT
kjθ0

(F1,zk
)(t) which is still positive and bounded.

Hence the same reasoning for proving the convergence of
∫ tkj

0
Wkj(t)

√
nj[F̂1,zj

(t)−F1,zj
(t)]dt

shows that
∫ tkj

0
Wkj(t)ξ

′
zT
kjθ0

(F1,zk
)(t)

√
nk[F̂1,zk

(t) − F1,zk
(t)]dt converges in distribution

to a mean-zero normal random variable. This completes the proof.
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