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An optimal hypercube approximation of the distribution

function of sum of positive dependent random variables

Student: Hsin Ming Lu Advisor: Dr. Nan Fu Peng

Institute of Statistics
Natinal Chiao Tung Unveristy

Abstract

We present optimal geometric numerical methods for computing the
distribution function and the density function of sum of several positive
dependent random variables with known joint distribution function. This
method involves integration on high dimensional hypercubesm, and
estimating the volume of “half” hypercubes. Numerical results are also
presented.
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Abstract

We present optimal géometric numerical'méethods for computing the distri-
bution function and the density fiinetion-of sum of several positive dependent
random variables with known joint distribution function. This method in-
volves integration on high dimensionalhypercubes, and estimating the volume

of "half” hypercubes. Numerical results are also presented.



1. INTRODUCTION

The aim of this paper is to present some geometric ideas on numerically computing
the distribution function and the density function of sum of k positive dependent
continuous random variables. This problem is originated from acquiring the distri-
bution function and the density function of a renewal in a renewal process in which
a renewal contains several dependent steps, each is Weibull distributed. Unlike inde-
pendent r.v.’s, there have been few papers concentrated on sum of dependent r.v.’s.
The result of Serfozo (1986) need strong restrictions on dependent r.v.’s. We offer
an innovative idea to express the approximations of distribution function and den-
sity function of sum of positive dependent random variables in a closed form. Our
numerical method deal with sum of arbitrary k positive dependent r.v.’s as long as
their joint distribution function or joint survival function are known and their joint
density function is uniformly continuous.
Assume Xy, X, ..., X, are£iv.’s with joint distribution function

G(z1, g, ..., x) or joint survivalfunction S(zy, 23, ..., xy). Let
R = {ze RELEZ0] fori = 1,2, ..k} .
For a € Ri and b > 0, we define a hypercube in Rﬁ that
By, o={xe R, x; € a,a;+0b], fori=1,2 .k}, (1)
and define a "half” hypercube for s € (0, k)
Bgva:{meRﬁ: z€ B, sand 'a <1z <1a+bs} (2)

where 1 € R% is a column vector with each element being 1. The hyperplane that
is tangent to By ,is {x € R¥: 1’z =1"a+ bs} . We call the "half” hypercube B;j
a type-s set with size b and tail a. Without loss of generality, let k = 3 and we
present type-1 set and type-2 set with size 1 and tail 0 in figure 1.

To approximate the distribution function F(t) = [ B, g(x)dx where g is the joint
density function, we in section 2 decompose Btl, o into union of subsets of the form

(1) and (2) and then estimate B} by some unions and exclusions of hypercubes.
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Figure 1: The left is type-1 set and the right is type-2 set.

Integration of g on a hypercube can be obtained easily in terms of G, see Durrett

(1994) p120 and p121 as the following formula.
Pla; < X; <V, for ic= 112, 5 k) = Z(—l)i Z G(c1,5 62,0 Chy),s

where ¢; = (c1,,Co,, .oy Ck,) € Dy and
D; = {(dy,ds, ...,dy) : exacti'd's’are a's and (k —1i) d's are V's}.

The key of our method is to find a suitable hypercube, or a few hypercubes,
to replace a Bj , contained in B} o. To do so, the volume of that Bj , has to be
known. Unlike Albert (2002), Barrow and Smith (1979) and Mitra (1971) in which
are presented the distribution function of sum of uniformly distributed r.v.’s, we
propose a recursive formula which is easier to obtain. In section 3, we present an

optimal approximation and some compared approximations of F'(¢). In section 4, we

present an optimal approximation of f(t) = dl;—it). Numerical results are attached
in section 5. The first example is of sum of independent Gamma r.v.’s, and it’s
shown that the excellent performance to the hypercube approximation. The second
example involves sum of i.i.d. Weibull r.v.’s, and it’s well known that the Weibull
model plays an important role in many fields such as reliability applications and

so on, see Pham and Lai (2007). Santos Filho and Yacoub(2006) deal with the

3



approximation of probability density function and distribution function of sum of
i.i.d. Weibull r.v.’s in a simple and closed form. In our method, not only gives a
simple and closed form also offers a good performance in precision of Weibull sums.
The third example is about the dependent r.v.’s and some cases can be found in

Nelson (1999). Some remaining discussions are listed in section 6.



2. DECOMPOSITION OF B! , AND THE VOL-
UME OF B; |,

In this section, we present a decomposition of Btly o and furthermore this decompo-
sition can be used to obtain the volume of By , contained in Btl, o- For a positive

integer j, defining
w) = {ze Rt Vz=jand z; € ZT U{0}, fori= 1,2, k},
we have the following decomposition of B{ 4.

Theorem 1. Let ¢ € (0,1). If [1] <k, then

8 |
Blo=UJ U Bidy - 3)

7=0 yew()
and if [ﬂ >k, then
1]+ B
Bg, 0o~ U U Bct,cty U U U Bcct,cgy : (4)
§=0 yew GEL k1 yEwl

Furthermore, the intersection of any two sets'in (3) and (4) has Lebesque measure

ZEero.

PROOF. We prove (4) only, for (3) can be obtained from (4). Suppose [1] > k
and let

[2]-* [4]
Btl, 0o~ U U Bct,cty U U U Bct,cty
7=0 yecw® j:[%],kJrl ycwl)

By the structure of B} g, it is obvious that the intersection of any two sets in B}
has Lebesque measure zero. For x € B; 0, We observe that there exists k nonnegative
integers dy, da, ..., dj, such that x; € [ctd;, ct(d; + 1)]. Since t > Zle x> S8 ctd;,
we have Zle d; < [ﬂ Hence © € Bt cta C Btl’ o- Therefore, Btl’ 0o C Bt{ o

For 0 < ;5 < [ﬂ — k, we have % > j + k. Therefore, if y € w9 and x € Bet ety
then z; € [cty;, ct(y; + 1)] C [0,¢] and

1
0<cj=cl’y<lVe<cl'(y+1)=ct(j+k) <ct-—=t.
C



Figure 2: The unions of type-1 set and type-2 set in three-dimension.

Hence x € B} . We have By C B  OF Betery (1B} ¢ = Betety-
For 2] —k+1 < j < [ andigle w"), if € € Bayuy (B}, then z; €

[cty;, ct(y; + 1)] and
1 1
caly<1lz<t=ctj+ect ——j = ctl’'y+ct ——j

Conversely, if x € Bct cty

Hence x € Bct iy and we have Begay () Bilg C Bct ety

then z; € [cty;, ct(y; + 1)] C [0,¢] and

1
0<ctj=ctl’'y<1Vz<ctl'y+ct (— _j) — ¢
c

1 ¢ 1
Hence ¢ € B, ; and so Bct ety C Betety B} o We have Bct cty = Betety By o)

then (4) holds. O

Corollary 1. For a positive integer n > k,

n—k
Bo=\UUB..|U U U Bt

n—k
-(Uus.)U(U U Bl 1y
J=0 yew) J=0 yew(n—7)



According to corollary 1, for any ”section size” n € N and n > k, we can decom-
pose Bt{ o into unions of hypercubes and unions of type-j set, for j =0,1,2, ..., k—1.
In figure 2, we show the unions of type-1 set and type-2 set in three dimension. Note
that type-0 set has Lebesque measure zero. Denote m; the Lebesque measure in

RE. Tt is obvious that
mi(By, o) = b mi (B ,) = bPma (B3 o).
The following theorem is an easy consequence of theorem 1.

Theorem 2. For s € (0,1]

Sk

mk(Big, 0) - Ha (6)
and for s € (1, k)
Sk [s]
mi(BY, o) = znmde, Co T mi(BiT5). (7)
- r=1

PROOF. (6) is trivial and we prove (7) enly: For s € (1,k), we let ¢ = £ and
apply (3) to obtain

Il
[
B
LY
o

I
Q
e
+
8
|
—
s
—~
S
=
ot
~

The last equality holds since the number of y € w® is C¥*~! "and my(BL o) =
we obtain (7). O

k!

Note that the volume of Bf  also represents the distribution function of sum
of uniformly distributed r.v.’s that have been shown in Albert (2002), Barrow and
Smith (1979) and Mitra (1971). In a geometric viewpoint, we present the volume
of Bf ¢ through a recursive formula in theorem 2 above. Therefore, we have the

volume of type-s set with size b and tail a, that is my(B; ,).



Figure 3: The left is optimal case, the middle is case 1 and the right is case 2

3. AN OPTIMAL APPROXIMATION OF F(t)

We in this section provide an optimal volume-invariant approximation to F'(¢). That
is, we present an optimal set Bt o such that My (E} 0> = my (B} ) and approx-
imate F(t) = thI, g(z )mk(da: by fB m)mk(dm) We first find an optimal
estimate of B Ly the type—j set| with 1ta,11 =y and size - and without loss of gen-

erality, manlpulate this method in B 0 the typge 1 set w1th tail 0 and size 1, for
1<j<k—1landjeZt. Let ,“L..".";n |

A—{BZO\Bd(ld)l 0<d<l<1

. (8)
and my, (Bl, o\ B, (l—d)l) =my (B{ o)}

be a class of sets, each of which is the difference of two hypercubes and volume-
invariant from Bi o- Given [, the d in (8) is d = (IF —my (B{ 0))%. First, We
present two different volume-invariant sets as the following.
Case 1: dy; =0 and [y; = (mk (B{ 0))%;
Case 2: dy; and ly; satisfy ly; — doj = % and I5; — d5; = my, (B{ o), where By o\
Bu,, (11 € Ajyi=1,2.

Next, finding the optimal o;; and (3, as the following. Let 0 < o;; < 3; < 1 satisty

mg (B{ 0\ (Bﬂj» 0\ B, (ﬁj—aj)l))
=my, ((Bg,, 0 \ Ba,, (3,—a;)1) \B{ 0)
- inf mi (B, o\ Ba, a-a1) \ BY, o) -

By, 0\Bg, (lfd)leA



The first equality holds since my (ng7 0\ Ba,, (gj,aj)l) = my (B{ 0). It is easy
to see that the a; and 3; can be minimized the nonoverlapping part of B{, o and
By o\ Ba, (—ap1 € A;. In figure 3, we present the optimal volume-invariant set and
two different cases as above in two-dimension. The dark parts in figure 3 represents
the estimate of B{, o- To obtain the optimal o; and f;, we need the following

theorem.
Theorem 3. For By, o \ By, 1—a1 € Aj, we have
mi ((Br, o\ Ba, a-a1) \ Bl o)
; k i i\ i—k(=d)
—my (B o) — lFm <va 0) +1(1=d<g)dm (B " ).
where I is an indicator function.

PROOF. If { —d > i, then my, (By, g—ay1 (Bl o) = 0. We have

mi, (B, o\ Bal (_ayx)\B1, o)
=my, ((By, 0 \Blgo) \ Ba utan)
=my, (By, 0 \ B{, o)1t ((Bl, o\ B{, 0) m By, (l—d)l)
=my, (B, 0) — miy (Bl, 0 ﬂB{ o) — mu (Ba, (—ay1)
1"~y (B, o[ Bl ) — "

my 1, 0 ﬂ 1o
1" —d" — Py (B] o)
—mi. (B, o) = 'my (B1 o)
The second equality from the bottom holds since % >1. Ifl—-d< %, then
. i—k(i=d) i—k(i—=d)
my, <Bd, (I—d)1 ﬂ B{, 0> = My (Bd, (ld—d)l) - dkm’f (BL o’ ) )

Hence we have theorem 3. O
Some numerical results of o; and 3; are listed in table 1, for j = 0,1, ...,k — 1. Note

that for j = 0, we let ag = Gy = 0.

Let
n—k k—1
A1
Bi o= U U B%v%y U U U (Biﬁjv%y \ B%am%[yﬂﬁj—aj)l])
=0 yew® J=0 yew(n—i)

9



Table 1: The optimal o; and 3;
Bi a; kg B a;
2 1 0.816497 0.408249 6 1 0.349801 0.276119
2 0.687728 0.541633
3 1 0.602942 0.374505 3 0.927982 0.719393
2 .0.999999 0.550319 4 0.999999 0.657172
5 1.000000 0.334008

4 1 0483559 0.337726
2 0.895692 0.615614 7
1.000000 0.451797

0.307856  0.251513
0.610611 0.498411
0.856245 0.693457
0.988259 0.783328
0.999999 0.586961
1.000000  0.295597

1 0.405585 0.305058
2 0.782639 0.585206
3 0.992610 0.716314
4 1.000000 0.383834"

S O = W N

be our estimate of B} . Thé second part of th‘e‘r‘ight hand side of Btl o represents

the estimate of the unions of Bi Ly for y € ‘w9 and j =0,1,...,k — 1. In each

7, we have

k
my (B,Bj, y \ Baj, y+(ﬁraj)1>

N———

M (Biﬁj:%y \ B%@j%[w(ﬂr%)l})

mi (Bs,, 0\ Baj, (,-a,)1)
k .

) me (8, 0) = (B1,,).

Therefore, we obtain my, (B} o) = my, (B’tl 0). In the other hand, the nonoverlap-

I I
S~ N~/ N~ X
S|+ 3|+ 3|
N———
Bl
EIE
I

ping parts of B} o and B} , are minimized, thus B} o would be a reasonable and

optimal estimate of B} ¢ of (5).
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Furthermore, our approximation E'(t) to F(t) is

|
T

; g(@)m(de) (9)

gar%[w(ﬁj*a]’)l]

n—k
t t
- ) n n

]:0 y6w(ﬂ)
k—1 " ¢
+> {P (Eyisxisﬁwﬁﬁj), z‘=1,2,...,k:)
i)

E[yi + (& memiSeir s E(yi +8), i=1,2, >/€>] :

|
e
/\ o
~
o~

The following theorem shows that F(f)&onverges to F(t) when section size n tends to
infinity under the condition that the joint density function ¢ is uniformly continuous.
Before the theorem, we need the following lemma which is elementary.

Lemma 1. Given n and t, suppose that g is uniformly continuous in Ri, and for

all y € Ri and z, w € Bt t,, then we have
M
| 9(2) — g(w) |< —, for some M > 0.
n

Theorem 4. Suppose that g is uniformly continuous in [0,t]*, then

| F(t) — F(t) |— 0 as n — +o0.

Furthermore, the convergence rate of F(t) is n2.

PROOF. Note that

J
Bt o)\ (Bgﬁj,ﬁy \ Biaﬁ[w(ﬁj—a»u) C Bty

and <B%ﬁj,%y \ Bt imwfajm) \Bi., CBey

n%in

11



For each y € w9 and fixing a point z € Br t,, we have by lemma 1 that

y?

- g(m)mi(dz)
Loy %m(ﬁr%m) \BY 1,

n’'n

g(@)my(dz) | |
?I\<B%Bj’%y\Bt g 7L[y+(ﬁ]7aj>1]>

. g(z)mi(dz)

\B
Ty

Lo %[w(ﬁj—aj)l])\

tg. t
ﬁﬁ]vny

- g(@)mi(de) |
B%,%y\<3tﬁ + \Biaj n[er(B]*a])l])

(9620 + 57 ) o)

. , J
J=0 yewn—7) (B%ﬁj,%y\Bt g, L y+(8; =60y )1])\B%,%y

>@m—%)MMH
]

y\ (Bﬁﬁj,%y\B%Qj,L[y-‘-(ﬂj—ﬂj)l

n

2M A
=2 Z — (B%,%y\(Bﬁﬁj,% \ Bra, t(y+8;-am ))

] =0 yEw(n 7)

k k-1 g
( )T > [mk (51, 0) = s (B0
j—k(ﬁj—aj)

+1 (ﬁj —a; < %) ofmy | By ¢ ™

oM (t\* .,
<— =) kcn — 0 as n — o0,
n \n
for some ¢; > 0. The last inequality holds due to the fact that the number of

12



elements in w7 ig Ck+n 7=1 when n is suitably larger than k. O

In order to show the priority of the optimal approximation of F(t), we also
present two compared volume-invariant estimates of Bt{ o- For 7 =0,1,..,k —1,
the first estimate Btl 0(1)’ is to let dy; = 0 and [;; = (mk (B{ 0))%, and the second
estimate él 0(2)’ is to let dy; and ly; satisty l dzj =my (B{ 0) and ly; — dy; = %,
where By, o\ Ba,;, (;,-a;,1 € Aj,1=1,2. That is

(UUsa)U(U U B,

17

J=0 yewl) J=0 yewln=1)
and
) n—=k k—1
B oy = | U B |UIU U (B%J, \ Biay, ty+is;- dzm])
7=0 yewl) 7=0 yewn—)

Therefore, we have

Foy(t) = /B o (@) ()

A1
t, 0(1)

_Z - ( yZ§X<t(yl+1) z:l,2,...,k>

Jj= Oyew(J)
t
+Z Z < yi < X; < (yz+l1]) 2:1,2,...,k)
J= OyE(u(” J)
and

Fo) = [ al@)m(de)

t, 0(2)

:nZkZP( <X<t(yl+1) 1,2,...,k)

7=0 yew
k—1
+y > {P( v < X; < (yz+12j) z:1,2,...,k>

§=0 yew(n—i)

t

:IH-

to be the compared approximations with respect to F (t). Some numerical results of

E(t), F(l)(t) and F(Q)(t) are shown in section 5.

13



4. AN OPTIMAL APPROXIMATION OF f(t)

Our optimal estimate f(t) of f(t) is the derivative of F(t) where F(t) is a slight
modification of F (t). Therefore, points of R]_fl show up throughout this section.
In order to be consistent with the notations in the previous sections, we denote
without alteration a vector in R* by a or «, etc, and denote a vector in RF~! by
a*=Y or £*=V etc. Furthermore, we let 1; € R* and 1; = (0, ...,0,1,0, ..., 0), the
1th component of which is one and the others are zero, for ¢ = 1,2, ..., k. For any

fixed component index i € {1,2,...,k}, let
IZ;, a+(s—a;))l; — {w € Rﬁ- Ly < L < a; + b’ J 7& b T = S} (10)

be a "hyperdisc” with 7th component equals to s and the others fall in the interval
[aj, a; + b], for j # i. The hyperdisc D, at(s—ap1, 0 (10) isin fact (k—1)-dimensional

and we denote my_; the Lebesqué'measure'iir R*~'. The next lemma is elementary.

Lemma 2.

d

G| e
th,ta (11)

k
:Z (ai—i-b)/_ g(Zymy_1(d=) —ai/‘ g(z)mk_l(dz)] :
=1 D:l:b,t(a+b1i) Zb,ta
Let B! 41y C R4~ be similarly defined as (2), we have
ft) = / g(z® Dt =10V gDy (dz V) (12)
B

1
t, o(k—1)

Note that the following notation y; = (y(jm,y(j)’g, ...,y(j%k) € wY that coincides
with ¥ = (y1, 2, ..., yx) € W and it is not difficult to see from (9) and (11) that

14



k
Yy y<j>,;+1/i 9(2)my_1(dz)

- N D
j=0 y(j)EoJ(J) i=1 %,%(y(]‘)+1i)

—M/ g(z)my_1(dz)
D’L

n ‘t t
n'nY(j)
k—1 k
Yn—3) + 5;
DD IR AL g(z)m 1 (d2)
- N D*
3=0 y sy €wn=1) i=1 %8505 (U (n—j)+6514)

Yo / g(=)mi-(dz)

n i
%ﬂj’%y(n—j)
y(J)n—BJ/ 9(2)mp_(dz)
D%"‘jv%(y(nvj)"’(ﬂj*aj)l‘Hljli)
Y(n—3),i (B )
— z)my_1(dz
5 i g(z)my_1(dz)

%O‘jﬁ%(y(n_j)"'(ﬁj—aj)l)
Since y)i+1 = Y1), and y ;) H1€ wUtL we can reduce the first mathematical

expression of the right hand side of the above formula to obtain

o=y Yy e/ () (dz)

=1y pyr) €0 EHD FowY (k1)
E k-1
Y(n—j K + 6
DM el [ 9(2)m1(02)
i=1 j=0 Y(n—j €wln=7) D%Bj’%(y(n—j)+ﬁj1i)
Yn—j K
- / | g(z)my,1(dz) (13)
%ﬁj’%y(n—j)
n—j),i T Dj
W/ g(2)my_1(dz)
%ajv%(y(nfj)Jr(ﬁj*aj)lJrajli)
Y-y + (B — ay) /
- z _1(dz
- 1 9(z)my._1(dz)

%aj’%(y(n—j)"'(ﬁ]'_aj)l)

15



Recall that we called F(t) in (9) volume-invariant, and f(¢) has similar property as

we derive as the following. Set g =1 and my (B} o) = my <Btl 0>, we have

1
Mme—1 <Bt, 0(k71)>

=1 y(n7k+1)€w(n_k+l)

k n
Y()i + B i (14)
£ 3 S P (D)

i=1 j=n—k+1y; wl®

Wi (D )
n el D%ﬂnﬂ':%yu)

o |: n Mg—1 (D%an~j7%(y(j)"'_(ﬁnfj_anfj)l"!‘anfjli))

Yi)i + By — any) i
o n it (D;t{an—ja%(y(]’)‘i‘(ﬁn—j_an—j)l)> ’

Noting that in (14) the D’swith megative sign are not necessarily subsets of the

D’s with positive sign, we thus from (14)-eall f(t) = % weighted-signed-measure

invariant. The derivative of any ‘other-volume-invariant approximation of F(t) of
the form (9) should also be weighted-signed-measure invariant. The next theorem
shows that f(¢) is a candidate of approximation of f(t). The proof of theorem 5

below is similar to that of theorem 4, and is hence omitted it here.

Theorem 5. Suppose that g is uniformly continuous, then

|J?(t)—f(t)\—>0asn—>+oo.

Furthermore, the convergence rate of f(t) isn L.

Now we proceed acquiring an optimal approximation of f(t). Let D,E:j ) = {zc € Ri

. 1’z = j} and observe that for y € w9, D,(:) mounting on B, 1, 18 equivalent

n’ n

to Dl(cj) mounting on B{, o- Denote dis (:E, D;@) = |j?/1;| the distance between the

point & and the hyperplane D,E:j). Recall that a set B; o \ B, 1—q1 in A; of (8)
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, S
plays the major role in estimating B{ o, where d = (I* —my (B] ¢))*. Let the set

of vertices of By o \ B, 1—a)1 is

D _ {o, 1> 1, (1—d)1,d) 1, + (1 —d)1
b=1 b=1
with {1,429, ..., im} C{1,2,... .k}, m=1,2,... . k—1}.
Next theorem makes our criterion for choosing optimal f (t) possible.

Theorem 6. For each j, 1< j<k—1andj € Z*, we have
k-1 k-1
Z dis(:v,D(j) <ZC’ |j—ml|+ZC'k|j—kl+(k’ m)d|>
j m=0

PROOF. Since

| j—ml]
(zZLb,D”) By

- ; = [kl — (k —m)d
s<d;1ib+(l—d)1,p,§>>:|] [ V(E )l |

for all (iy,1s, ..., 4m), we have the theorem. O

and

Our optimal approximation f(t) of f(t) must satisfy f(¢) = €% and F(t) =

dt
fgtl’ . g(x)my(dx) where

n—k k—1
Blo=({U U B, JUIU U ( 1y \ B, tmmém)

J=0 yew® J=0 ycwn—9)

. 1
with 7; and 0; satisfying 0; = ( —my (Bi o))" and
. @Y _; : (4
Z' dis <:c,Dk > —1rllf Z dis (m,Dk )
wezy) zezl)

In figure 4, given the optimal 7; and d;, we show the distance between the point x
and the hyperplane in two-dimension. The optimal 7; and J; are listed in table 2
for j =0,1,...,k — 1. Note that 7y = dp = 0. Numerical results of f(t) are shown in

section 5.
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Figure 4: The distance between the point  and the hyperplane in the optimal case

Tahle 2:, TPhe optimal '}é and d;
i e ),
2 1 0.750004 0.2500bk¢(7°6 1 0.348916 0.273116
2 0.682740 0.524109
3 1 0.590962 0.341192 3 0.905298 0.607947
2 0.977867 0.466793 4 1.000000 0.657177
5

0.999996 0.333149

4 1 0470973 0.294631
2 0.863099 0.484134 7
0.999999 0.451796

0.304235 0.237667
0.603599 0.471527
0.848451 0.662802
0.972706 0.702235
0.997605 0.495816
0.999981 0.251129

0.399080 0.282191
0.771495 0.545529
0.971687 0.619478
0.999138 0.331933

S O = W N~

= W N =
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Table 3: Sum of independent Gamma random variables, each with scale parameter

1 and shape parameter 1, 1, 2, 3 and 4, respectively.

t n  F) F(t)  RE(F(t)) () f(t)  RE(f(t))
325 0.000292 0.000293 0.003556  0.000810 0.000813  0.002956

20 0.000293  0.000894 0.000811  0.000637
6 25 0.042621 0.042621 0.000014 0.041303 0.041232 0.001732
50 0.042621  0.000002 0.041275  0.000675
9 25 0.294012 0.293557 0.002190 0.118580 0.118156 0.003575
20 0.293897  0.000552 0.118431 0.001255
1225 0.652771 0.651690 0.004767 0.104837 0.104576  0.002487
20 0.652499  0.001196 0.104723  0.001093
15 25 0.881536 0.880589  0.009064 0.048611 0.048691 0.001652
20 0.881299  0.002264 0.048602  0.000172
18 25 0.969634 0.969163 0.015991 0.014985 0.015120  0.009002
20 0.969517 _.0.003974 0.015008  0.001523
21 25 0.993749 0.993588  0.025957 10.003485 0.003554 0.019769
20 0.993709 | ~0.006411 0.003499  0.004011

Ly

5. NUMERICAL RESULTS

We present numerical computation ‘on three types of distributions, each involves
sum of five random variables. In each case, we choose the section size n = 25 and
n = 50.

Example 1: (Independent but non-identically distributed r.v.’s) The first in-
cludes five independent Gamma r.v.’s, each with scale parameter 1 and shape pa-
rameter 1, 1, 2, 3 and 4, respectively. It’s well known that the sum of five Gamma
r.v.’s is still Gamma distributed with scale parameter 1 and shape parameter 11.

The main results and the compared approximations are listed in table 3 and 4, re-

spectively. For i = 1,2, let RE(F(t)) = 1500k RE(Fy) () = Fo-m00! and

RE(f(t)) = w stand for corresponding relative error of F(t), F(Z-) (t) and f(t)
when F(t) and f(t) are available. Figure 5 compares the exact cumulative distribu-
tion function and probability density function with the approximation results (box

symbol) in table 3 for section size n = 50. It’s shown that the hypercube approxi-
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Figure 5: Comparison of the exact cdf and pdf with the hypercube approximations

[ ——

Table 4: Sum of independent _Gamm’ei }ré;nn_‘_d'om variables, each with scale parameter

1 and shape parameter 1, 1,22, 3"and 4¢respectively. (compared approximations)

t n F(t) Py (W GhECER) (1) Fo(t)  RE(Fp(t))
325 0.000292 0.000294  0.005904 0.000294  0.005557
50 0.000293" 1710.001527 0.000293  0.001438
6 25 0.042621 0.042618  0.000083 0.042618  0.000070
50 0.042620  0.000011 0.042621  0.000009
9 25 0.294012 0.293211  0.003857 0.293257  0.003636
50 0.292810  0.000972 0.293822  0.000916
12 25 0.652771 0.650877  0.008353 0.650980  0.007901
50 0.652295  0.002100 0.652321  0.001982
15 25 0.881536 0.879870  0.015948 0.879956  0.015125
50 0.881120  0.003981 0.881143  0.003763
18 25 0.969634 0.968799  0.028344 0.968840  0.026941
50 0.969427  0.007006 0.969438  0.006632
21 25 0.993749 0.993461  0.046448 0.993474  0.044239
50 0.993679  0.011345 0.993682  0.010752
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Table 5: Sum of i.i.d. Weibull random variables, each with the same shape param-
eter 2 and scale parameter 1.
t 0 PO Fal) Fal) )
2.814097 25 0.050203 0.050410 0.050384 0.601481
50 0.050026 0.050075 0.050068 0.601295
3.357615 25 0.150178 0.150540 0.150498 1.249670
50 0.149882 0.149965 0.149955 1.251369
3.702083 25 0.250187 0.250554 0.250516 1.630926
50 0.249910 0.249991 0.249982 1.634485
3.987351 25 0.350015 0.350294 0.350271 1.841351
50 0.349838 0.349896 0.349890 1.846241
4.251523 25 0.449991 0.450116 0.450116 1.916361
50 0.449970 0.449987 0.449987 1.921880
4.513044 25 0.549681 0.549611 0.549647 1.871391
50 0.549849.1.10.549818 0.549824 1.876739
4.789864 25 0.649437 #0:649152: 0.649204 1.712146
50 0.649806 1(1).649“722‘;0.649735 1.716465
5.106096 25 (E749394 0.748904 -D.748978 1.435130
50 0749945 0749813 - 0.749832  1.437538
5511143 25 0.849149 0.848519 0.848605 1.027061
50 0.849807 ""0.849644 0.849666 1.026800
6.217922 25 0.949411 0.948872 0.948938 0.438777
50 0.949942 0.949808 0.949825 0.435943

mation results match the exact cdf and pdf well. An interesting numerical result is
that RE(f(t)) is much smaller than n~!, the convergence rate of f(t), as shown in
theorem 5.

Example 2: (Independent and identically distributed r.v.’s) The second includes
five i.i.d. Weibull r.v.’s with shape parameter 2 and scale parameter 1. The results
are listed in table 5. Although relative error is not available in table 5. We see that
n = 25 is good enough when compared to double the section size from n = 25 to
n = 50. The t’s chosen in table 5 are estimated quantiles. It’s also shown that the

three different hypercube approximations display a good performance in precision.
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Table 6: Sum of dependent random variables with joint survival function
exp(— 25:1 t; — 0.5112_,t;)
i n ) Fo)  Fe®) 0
1 25 0.004369 0.004367 0.004367 0.017522
50 0.004371 0.004370 0.004371 0.017534
3 25 0.183282 0.183133 0.183153 0.161367
50 0.183434 0.183396 0.183401 0.161537
5 25 0.555022 0.554577 0.554635 0.183577
50 0.555484 0.555369 0.555384 0.183728
7 25 0.833752 0.833208 0.833275 0.085304
50 0.834315 0.834177 0.834194 0.085122
9 25 0.941615 0.941326 0.941356 0.034339
50 0.941860 0.941794 0.941802 0.034266
11 25 0.984243 0.984160 0.984174 0.011102
50  0.984368 410984334, 0.984338 0.011050
13 25 0.996348 0.996298 0:996305 0.002749
50 0.996409 0.996403 01996405  0.002726

In Santus Filho and Yacoub(2006), some moments of sum of Weibull r.v.’s are
needed to solve some parameters, and moréover a simple and closed approximation
form can be obtained. In stead of Santus Filho and Yacoub (2006), our method
is based on decomposing Btly o and making some estimates on type-j set, for j =
0,1,....k — 1. We also offer a simple and closed approximated distribution function
and density function of sum of not only Weibull but also arbitrary positive random
variables while their joint distribution function or joint survival function are given.

Example 3: (Dependent r.v.’s) In the third example, we present four kinds of
dependence r.v.’s. These examples can be found in Nelson (1999) p20, p29, p46 and
p51, and involve five dependent r.v.’s with joint survival functions, S(t1, ta, t3, t4, t5) =

P(X; > ty, Xo > to, X3 > t3, Xy > t4, X5 > t5), each of which is a simple imitation
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Table 7:  Sum of dependent random variables with joint survival function
exp(— Z?Zl t; — 0.1 max;—15t;).
ton F(t) f@)
125 0.026341 0.041180
50 0.026410 0.041218
5 25 0.629634 0.163108
50 0.630152 0.163180
9 25 0.960979 0.025592
50 0.961216 0.025492
13 25 0.997747 0.001714
50 0.997780 0.001692
17 25 0.999905 0.000078
50 0.999908 0.000076
21 25 0.999997 0.000003
50, 410:999997 0.000003
25 25 1.600000. +,0.000000
501008900 - 10.000000

of two dimensional copula.

9

(1) S(tl, tg,tg,t4,t5) = exp(— Ztl — 051_[15:125@),
i=1
5

(2) S(tl, t2,t3,t4,t5) = exp(— tz —0.1 m1a>% tl),
i=1 -

5 15
(3) S(t1,ta,ts,ta,t5) = <1 + Ztil{ti20}> ;
i—1

5

1 .
(4) S(t,t2,t3,t4,t5) = exp(— nax ti) + 3 exp(—2 21 t:) [1 - eXP(SiT:nllBE) tz)] :

The results are listed in table 6 to table 9, respectively. Note that we only present
the optimal approximations of F'(t) and f(t) in table 7 to table 9. Some dependent
examples about the Weibull model are provided in Lai and Xie (2006) p164 and
pl65, and thus our hypercube method can be also used to obtain the approximation

of distribution function and density function of sum of dependent Weibull r.v.’s.
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Table 8: Sum of dependent

(1+>0, tz‘l{tizo})_l‘5

random variables with joint survival function

t 0 P 7
1 25 0.064330 0.018105
50 0.0644K2 0.018121
5 25 0.591137 0.080680
50 0.591353 0.080733
9 25 0.775959 0.085038
50 0.776119 0.085083
13 25 0.854939 0.081448
50 0.855056 0.081485
17 25 0.896567 0.076873
50 0.896656 0.076905
21 25 0.921547 0.072559
50.+20:921617 | 0.072588
25 25 0.937890 0.068724
50 -0.937947 0.068750

6. DISCUSSION

Some numerical results in section 5 show that the more overlapping with these

hypercubes , our estimators are, the more accurate our approximation reach. In

fact, B} o in the proof of theorem 1 can be used to be our estimator of B} g, yet

this kind of estimator provides a less precision unless the section size n is huge.

Each type-j set, for j = 1,2,...,k — 1, hides behind k type-(j — 1) sets, hence the

roofs belong to the out most hypercubes of B; o leaving others unattended. We

alternatively estimate all type-j sets individually and thus there are some ”holes”

in our estimate 3} o, forj =12, ... k—1.

The volume-invariant set A; in (8) can be extended to

o fiera

k

U B

m=1

_1
k" kd,

): O<d<i<1

k

and my, ((Bl, 0\ B, (—ay1) U (U Bk*%d, .
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Table 9: Sum of dependent random variables with joint survival function

exp(— max;_15t;) + 3 exp(—2 S 1) [1— exp(3ming_y5t;)].

~

t n  F) f(t)
1 25 0176449  0.181858
50 0.175551  0.182028
5 25 0.631992  0.074024
50 0.631940  0.074011
9 25 0.834713  0.033051
50 0.834712  0.033050
13 25 0925727  0.014855
50 0.925727  0.014855
17 25 0.966627  0.006675
50 0.966627  0.006675
21 25 0.985004  0.002999
50,420:985004,,  0.002999
25 25 0993262 .0.001348
5010993262 » 10.001348

where 1,, = (0,...,0,1,0,...,0) thesmth compbnent is 1 and the others are zero. For

instance, we take l3; = (mk (B{ 0))% and ds; = ls; —

Blow=|U U B:sy

U U U ((B;lajafly \ B%d:sr%[yﬂli%f—dﬁ)l]) U (

7=0 yewn—i)

J
+, and

k
B, 1
U Lk™kdgj, L(y+izilm)

m=1

be our estimate of Bi o- Figure 6 shows the alternative volume-invariant set in

two-dimension. The dark part represents the estimate of Bi 0
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Figure 6: The alternative volume-invariant set

Table 10: Sum of independent, Cémm]']alrgn&olfi""yariables, each with scale parameter
1 and shape parameter 1, 1,-2,.3 andlli.,.'%;éspécfivgely. (alternative volume-invariant
set) : " & -

B — ]

n_ P EEEERR (B RE(Fi)(t)
325 0.000292 0.000294  0.005141

~

50 0.000293  0.001331
6 25 0.042621 0.042618  0.000082
50 0.042620  0.000010
9 25 0.294012 0.293313  0.003366
50 0.292836  0.000848
12 25 0.652771 0.651124  0.007265
50 0.652356  0.001829
15 25 0.881536 0.880092  0.013825
50 0.881174  0.003463
18 25 0.969634 0.968913  0.024473
50 0.969455  0.006087
21 25 0.993749 0.993501  0.039914
50 0.993688  0.009841
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Let F (3)(t), based on this kind of estimate, be the approximation of F(t), and

Fot) = [ gl@milda)

3 o(3)
t
—Z >r ( b S XS (gt 1), i 1,2,...,k>
.7 O'yEL,,J(J)
+Z Z [ (yz§X< —(ys + 135), Zzl,?,...,k)
J7=0 yewn-7)
t t
_P<E[yi+(l3j_d2j)]§X E(yﬁ—lg]) z:1,2,...,k)
k ; ;
+ P (tus s L itay) i
m=1 n n

t t

(ym + l3j> S Xm <ym + l3j + k™ kd3])1 .

n n
Some numerical results are presented in table 40. The results, which compare with
F(l)(t) or F(g) (t), show a good performance in precision. Therefore, many kinds of
the volume-invariant sets can be considered, and in each case the common goal is
to increase the overlapping part. of the 'estimate-and Bt{ 0

Note that our method is suitable for.small sample size k. For large k, there are
many well-known methods that can be used to obtain the approximated distribution
function of sum of r.v.’s, such as the central limit theorem and Edgeworth expansion.
This paper present an innovative idea which combines probability and geometry
to approximate the distribution function and density function of sum of positive
r.v.’s while the their joint distribution function G is given. Further analysis will

be concentrated on applying our method to some relative fields such as biology,

reliability and so on.
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