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摘    要 

 

本論文內容分成三個主題。 

在第一個主題，我們提出一多變量管制圖來偵測多變量製程變異降低的方

法，此為根據多變量單邊檢定 0 0: .H vsΣ = Σ 1 0 0:H andΣ ≤ Σ Σ ≠ Σ 所建立之管制圖，

其中 Σ和 0Σ 分別為所監控品質特性目前的和在控制狀態下的共變異數矩陣，考慮

0Σ 已知或未知兩種情形，我們分別導出概似比檢定統計量，並以此建立管制圖。

透過統計模擬對幾種 Σ的變化來比較平均連串長度，證實所提出的管制圖對多變

量製程變異降低的問題比現有基於雙邊概似比檢定所建立的管制圖，在偵測能力

上有相當不錯的效率。並以一個實例和模擬例子，證實所提出的管制圖具有應用

性及有效性。 

在第二個主題，我們結合第一個主題所提出的多變量管制圖及先前 Yen and 



Shiau (2008) 所提的一個偵測多變量製程變異增加的管制圖建立一結合性多變量

管制圖來偵測多變量製程變異增加或降低的方法。並且考慮 0Σ 為已知或未知兩種

情形。透過統計模擬對幾種 Σ的變化來比較平均連串長度，說明所提出的基於不

均等尾端機率管制界限所建立之結合管制圖，對多變量製程變異增加或降低的問

題，比現有基於雙邊檢定所建立的管制圖在偵測能力上也有相當不錯的效率。並

以兩個實例和模擬例子，證實所提出的管制圖具有應用性及有效性。 

此外，對監控多變量常態製程平均值向量， 2T 管制圖是一被廣泛使用的統計

製程管制工具，有一個主要缺點：當 2T 管制圖偵測到製程為失控狀態時並無法直

接提供那一個品質特性或那幾個品質特性是造成製程失控原因的資訊。第三個主

題的目的則為提出一個根據概似比原理的方法，當 2T 管制圖發出失控訊號時，來

找出那一個個別的品質特性平均值最有可能發生改變而不是試著決定那一個個

別的品質特性是否失控。此方法對現行所使用的
2T 管制圖方法為一個診斷輔助工

具而不是替代工具。 
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Abstract 
 
 

The contents of this dissertation are divided into three main subjects.  

In the first subject, a multivariate control chart for detecting decreases in process 

dispersion is proposed. The proposed chart is constructed based on the one-sided 

likelihood ratio test (LRT) for testing 0 0: .H vsΣ = Σ 1 0 0:H andΣ ≤ Σ Σ ≠ Σ , where Σ  

and 0Σ  are respectively the current and the in-control process covariance matrix of 

the distribution of the quality characteristic vector of interest. Both cases of known and 

unknown 0Σ  are considered. For each case, the LRT statistic is derived and then used 

to construct the control chart. A comparative simulation study is conducted and shows 

that the proposed control chart outperforms the existing two-sided-test-based control 

charts in terms of the average run length. The applicability and effectiveness of the 

proposed control chart are demonstrated through two real examples and two simulated 

examples. 

By combining the above mentioned one-sided LRT-based control chart and the 



one-sided LRT-based control chart for detecting dispersion increases proposed by Yen 

and Shiau (2008), we propose a combined chart scheme for detecting both cases of 

dispersion increases and decreases. Both cases of known and unknown 0Σ  are 

considered. It is found that a combined chart using an equal tail probability to 

construct a control limit is biased. By simulation studies, the proposed combined chart 

scheme when using a set of unequal tail probabilities for the two charts outperforms 

the existing two-sided-test-based control charts in terms of the average run length, 

when the process dispersion increases or decreases. Two real examples and two 

simulated examples are used to illustrate the applicability and effectiveness of our 

proposed combined chart.  

About the third subject, Hotelling's 2T  chart is a well-known statistical process control 

tool for simultaneously monitoring elements of the mean vector of a multivariate normal pro-

cess. But it has a drawback that an out-of-control (or a significant) 2T  value does not gives 

us direct information as to which variables in 2T  are likely to have caused the out-of-control 

condition. We propose a method, based on likelihood principle, for identifying a variable or a 

group of variables in a multivariate normal process with an unknown covariance matrix that is 

likely to be responsible for the out-of-control condition signaled by a significant 2T  value. 

Unlike certain existing methods, our method is not a control/monitoring but a diagnostic tool. 

Two examples from earlier literatures and one based on simulation are used to illustrate the 

proposed method. Finally, we compare our results with that of other existing methods for 

these three examples. 
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Chapter 1

Introduction

Control charts is one of the basic quality improvement tools in statistical process control

(SPC) for a process to identify special causes of variation and signal the need to take necessary

corrective actions. When special causes are present, the process is said to be out of control.

If the variation is due to common causes alone, the process is said to be in statistical control.

In many situations, a process needs to monitor two or more quality characteristics, in

which some are correlated. Multivariate SPC methods are designed to account for the

correlations among the variables and to simultaneously monitor the variables through time.

Hence, multivariate SPC is a broad field of research as well as applications devoted to the

improvement of products and processes.

There are two phases of SPC or multivariate SPC, namely, Phase I and Phase II. In Phase

I analysis, historical observations are analyzed for determining whether the process is in

control, to understand the variation in the process, and to estimate the in-control parameters

of the process. In contrast, Phase II aims at on-line monitoring of future observations

by using the control limits calculated from the in-control data obtained from Phase I to

determine if the process continues to be in-control. The objective of Phase II analysis is to

quickly detect a process change. It is obvious that a successful Phase II analysis depends on

a successful Phase I analysis. Although both of the two phases are devoted to identifying

out-of-control situations, each phase has its own purpose.
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The purpose of the control charts is to test whether the process is in statistical control.

In the past, substantial work on multivariate SPC has focused on monitoring/controlling the

process mean vector and many of them are based on Hotelling’s T 2 statistic (Hotelling, 1947),

one of the most popular statistics for monitoring multivariate normal processes. However,

process dispersion is such an important issue in process improvement that in recent years

there have been more and more studies on monitoring multivariate process dispersion in

the literature. Many of these techniques are centered on two-sided tests of H0:Σ = Σ0 vs.

H1:Σ 6= Σ0 so that both increases and decreases in multivariate process dispersion can be

monitored simultaneously.

The study on this thesis addresses three main subjects. In monitoring multivariate pro-

cess dispersion, a one-sided control chart designed for detecting decreases in multivariate

process dispersion is proposed in Chapter 2 and a scheme combining two one-sided control

charts, one for monitoring increases and one for decreases in multivariate process dispersion,

is developed in Chapter 3. As a diagnostic and complementary tool for monitoring multi-

variate process mean, we propose in Chapter 4 a method for identifying influential univariate

variables in multivariate process control when an out-of-control is signaled by a T 2 chart.

We introduce the three subjects in the following.

In most processes, more attention has been paid to the case when the process dispersion

increases. However, it is also important to detect decreases in dispersion, that is, detecting

process improvement. Consider the hypotheses H0: Σ = Σ0 vs. H1: Σ ≥ Σ0 and Σ 6= Σ0,,

where Σ ≥ Σ0 means that Σ − Σ0 are positive semidefinite. Yen and Shiau (2008) con-

sidered both cases of known and unknown Σ0 and proposed for each case a simple and

yet effective one-sided likelihood-ratio-test-based (LRT-based) control chart for the detec-

tion of increases in dispersion. In this dissertation, Chapter 2 presents and evaluates two

similar one-sided LRT-based control charts (derived based on the hypotheses H0: Σ = Σ0

vs. H1: Σ0 ≥ Σ and Σ 6= Σ0,) for detecting decreases in process dispersion in the cases
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of known and unknown Σ0 respectively. The techniques of Chapter 2 is similar to that in

Yen and Shiau (2008). Presumably, the detecting power of a one-sided test should be larger

than that of the corresponding two-sided test if the process dispersion indeed increases (or

decreases).

Yen and Shiau (2008) reported that their one-sided chart outperforms the existing control

charting techniques based on some two-sided tests in terms of the average run length. In

Chapter 2, we show by simulation that the proposed control chart for monitoring disper-

sion decreases has better performance than the existing two-sided control charts. Thus, for

simultaneously monitoring both increases and decreases in process dispersion, it is natural

to consider combining the two one-sided LRT-based control charts mentioned above to con-

struct a combined-chart scheme. Pachares (1961) showed the two-sided confidence interval

based on a equal-tailed probability (i.e., α/2) leads to a biased test for a two-sided hypoth-

esis testing on the variance of a normal population. Lowry, Champ, and Woodall (1995)

reported that when using R or S chart, it is much more difficult to detect decreases than

increases in variance. Hence, we anticipate that the proposed combined chart using unequal

tail probabilities instead of an equal tail probability to construct the control limits will get

a satisfactory performance.

Hotelling’s T 2 chart is a well-known SPC tool for simultaneously monitoring elements

of the mean vector of a multivariate normal process. It is a powerful tool because the T 2

statistic is the likelihood-ratio test statistic for testing H0 : µ = µ0 and, if µ0 = 0, it is the

uniformly most powerful and invariant (under scalar transformations) test among all tests

of population (process) mean vector that are based on the sample mean vector and sample

covariance matrix (Anderson, 2003, p. 192).

However, Hotelling’s T 2 control chart has several drawbacks in practice. The major

drawback of a T 2 chart is that it does not provide direct information as to which individual

variable(s) may be responsible for the out-of-control condition (i.e., rejection of H0) when the
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chart signals out of control (by a significant T 2 value). Since T 2 is an aggregated statistic,

an out-of-control T 2 value does not necessarily imply that at least one individual variable is

out-of-control. Thus, further diagnostic work is needed.

Another practical drawback of the T 2 chart is the potential confounding. Because T 2 is

invariant under scalar transformations (e.g., the T 2 statistic will have the same value when

all observations from the process become twice larger) it can not detect the change in scale

(and hence variation). In other words, when all observations are shifted by a constant, the

value of T 2 remains the same. For this reason, T 2 is not recommended for simultaneously

detecting changes in the mean vector and the covariance matrix. Hence, before using a T 2

chart to monitor and control the mean of the process, we must assure that the covariance

matrix of the process has not changed over time, as we normally do in a univariate X̄-chart.

Hence, in Chapter 4, we propose a method, which is based on the likelihood principle,

for identifying a variable or a group of variables in a multivariate normal process with an

unknown covariance matrix Σ that is likely to be responsible for the out-of-control condition

signaled by a significant T 2 value. Unlike certain existing methods, our method is not a

control/monitoring but a diagnostic and complementary tool.

Finally, in Chapter 5, we give some concluding remarks for this dissertation. And some

discussion for possible future research issues and generalizations are given for the three

subjects addressed in this dissertation.
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Chapter 2

A Multivariate Control Chart for
Detecting Decreases In Multivariate
Process Dispersion

2.1 Background

Control charting is one of fundamental quality improvement tools in SPC for detecting

process changes and signalling possible needs for corrective actions. This chapter proposes

and studies a multivariate control chart particularly designed for detecting decreases in dis-

persion for processes in which two or more possibly correlated quality characteristics need

to be monitored simultaneously.

Although substantial work on SPC methods has been devoted to monitoring the pro-

cess mean, Montgomery (2008) pointed out that monitoring the process dispersion is just

as, or even more, important. When monitoring a process, it is important to quickly detect

increases and decreases in dispersion. Increases in dispersion will possibly cause some level

of deterioration in the quality of the process output and lead to an increasing number of

defective units. On the contrary, decreases in dispersion eventually result in improved prod-

uct performance, fewer defects, and lower manufacturing cost. While detecting increases in

process dispersion is necessary for preventing more defective product items to be produced,

detecting decreases has its own merits. First, a search for special causes may lead to a
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substantial process improvement. Second, if the process indeed has a lower dispersion, the

control limits of the monitoring statistic need to be adjusted accordingly.

Several control charts have been suggested for the detection of increases in process dis-

persion, see, for example, Page (1963), Tuprah and Ncube (1987), Crowder and Hamilton

(1992), and Lowry, Champ, and Woodall (1995) for the univariate case, and Sakata (1987),

Calvin (1994), and Yen and Shiau (2008) for the multivatiate case. However, monitoring of

decreases in dispersion has received a lot less attention and only a few control schemes for

the univariate case have been proposed. Nelson (1990) suggested a runs rule for R chart

to detect decreases in process standard deviation σ but did not evaluate its performance.

Acosta-Mejia (1998) proposed a CUSUM chart based on the subgroup range when small

subgroups are considered to detect decreases in σ. Its performance is evaluated and com-

pared to that of the R chart with probability limits, the R chart with Nelson’s runs rule, and

the CUSUM chart based on the natural log of the subgroup variance suggested by Chang

and Gan (1995). Nevertheless, multivariate control charts specifically designed for detecting

decreases in process dispersion is basically non-existing in the literature. Therefore, our mo-

tivation for this chapter is to develop a control scheme particularly designed for monitoring

decreases in process dispersion for multivariate processes.

Consider a multivariate process with p possibly correlated quality characteristics of inter-

est. Suppose that the p × 1 quality characteristic vector X is distributed as a multivariate

normal distribution (denoted by Np(µ, Σ)) with unknown mean vector µ and covariance

matrix Σ. In the literature, a substantial amount of research work has focused on monitor-

ing/controlling the process mean vector µ and many of them are based on the Hotelling’s

T 2 statistic (Hotelling, 1947), one of the most popular statistics for monitoring multivariate

normal processes. For SPC applications, Mason and Young (2002) studied the T 2 statistic

and its variation in great detail. However, the T 2 chart has a notorious drawback that it is

sensitive not only to shifts in the mean µ but also to changes in the covariance matrix Σ.
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For example, see Hawkins (1991, 1993), Mason, Tracy, and Young (1995, 1996, 1997), and

Montgomery (2008). This confounding of “location” and “scale” shifts is not desirable for

the diagnostic purpose. It would be more effective for quality improvement to have separate

diagnostics for changes in process mean and process dispersion.

Although developing methods for monitoring multivariate process dispersion is more dif-

ficult than that for process mean due to the more complicated distribution theory involved,

there have been more researches devoted to multivariate process dispersion monitoring in the

literature in recent years. See, for example, Wierda (1994), Mason, Champ, Tracy, Wierda,

and Young (1997), and Woodall and Montgomery (1999).

Alt (1985) provided a summary of techniques for monitoring multivariate process disper-

sion. Alt and Bedewi (1986) proposed two control charting techniques for the covariance

matrix: one based on the likelihood ratio principle and the other making use of the so-called

sample generalized variance, |S|, which is the determinant of the sample covariance matrix

S. Alt and Smith (1998) proposed a
√
|S| chart. Djauhari (2005) proved that the standard

way of using |S| and
√
|S| for multivariate process dispersion control charting leads to a

biased estimate of the control limits and presented an improved control chart with unbiased

control limits and a smaller average run length (ARL) than that of the standard chart.

Reynolds and Cho (2006) proposed two new multivariate exponentially weighted moving

average (MEWMA) control charts for monitoring Σ. The proposed control charts were in-

tended to be used in conjunction with the standard MEWMA control chart designed for

monitoring µ. They showed that the proposed combined control chart, using a combination

of two MEWMA charts with one based on the sample means and the other based on the sum

of squared regression adjusted deviations from the target, had the best overall performance

when compared with other existing control charts for simultaneous monitoring of µ and

Σ. Tang and Barnett (1996a, 1996b), utilizing some independent statistics resulting from

decomposing the covariance matrix Σ, proposed some Shewhart procedures for monitoring
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and detecting changes in Σ, which they claimed are more effective in quality improvement.

Levinson, Holmes, and Mergen (2002) proposed a control chart, called G chart, that can

detect changes in Σ. Yeh, Lin, Zhou, and Venkataramani (2003) developed a multivariate

EWMA control chart for detecting changes from |Σ0|, the determinant of the in-control

variance-covariance matrix. Yeh, Huwang, and Wu (2004), using the unbiased likelihood

ratio test for testing H0:Σ = Σ0 vs. H1:Σ 6= Σ0, developed a multivariate control chart

for detecting changes from Σ0 and reported that it can effectively monitor small changes

from Σ0. Yeh, Lin, and McGrath (2006) reviewed multivariate control charts designed for

monitoring changes in Σ that have been developed in the last 15 years and proposed a new

multivariate EWMA control chart. They also discussed the performance comparisons in the

literature, which were scattered and limited in the scopes. One important concern worthy

of future investigation is to compare all the existing charts in a systematic, organized, and

thorough manner.

The afore-mentioned techniques are all centered on two-sided tests of H0:Σ = Σ0 vs.

H1:Σ 6= Σ0. These techniques can detect either increases or decreases in multivariate process

dispersion. In most processes, more attention has been paid to the case when the process

dispersion increases. However, it is also important to detect decreases in dispersion, that

is, signaling process improvement. Thus, the following two one-sided tests for monitoring

respectively increases and decreases in dispersion are both considered:

H0: Σ = Σ0 vs. H1: Σ ≥ Σ0 and Σ 6= Σ0, (2.1.1)

and

H0: Σ = Σ0 vs. H1: Σ ≤ Σ0 and Σ 6= Σ0, (2.1.2)

where Σ ≥ Σ0 and Σ ≤ Σ0 mean that Σ − Σ0 and Σ0 − Σ are positive semidefinite

respectively. We say that the dispersion increases (decreases) if Σ−Σ0 (Σ0−Σ) is positive

semidefinite. This means that, when the process is out-of-control for every p×1 vector a 6= 0,
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the variance of every possible linear combination is greater than or equal to (less than or

equal to) that when the process is in control, i.e., a′Σa ≥ a′Σ0a (a′Σa ≤ a′Σ0a) for all

a 6= 0. Presumably, the detecting power of a one-sided test should be larger than that of the

corresponding two-sided test if the process dispersion indeed increases or decreases. That

is, a one-sided test would be more sensitive to the detection of an out-of-control condition.

However, the testing of the equality of covariance matrices against various types of one-sided

alternatives has not yet been fully developed. The difficulty is that the one-sided nature of

the hypotheses leads to a restricted parameter space and techniques from order restricted

inference need to be used.

The following is a brief literature review of one-sided tests for the hypotheses (2.1.1).

Assuming that Σ0 is known, Calvin (1994) divided (2.1.1) into two sequential testing hy-

potheses and constructed a two-stage control charting scheme. The process dispersion is

claimed to have increased only when both control charts of the two stages are out of control.

In practice, Calvin’s method is more complicated than the usual one-chart scheme. Assum-

ing that µ and Σ0 are unknown, Sakata (1987) derived the likelihood ratio test (LRT) of

(2.1.1) using a “modified” likelihood function instead of the exact likelihood function. Based

on the exact likelihood function, Yen and Shiau (2008) proposed a simple and yet effective

one-sided LRT-based control chart based on the hypotheses (2.1.1) for detecting increases in

dispersion for each of the cases when both Σ0 is known and unknown. They also evaluated

the performance of the proposed charts based on simulations of the average run length and

showed that it outperforms the existing two-sided control charts for various settings under

their study.

The purpose of this chapter is to present and evaluate a simple and yet effective one-sided

LRT-based control chart derived based on the hypotheses (2.1.2) for detecting decreases in

process dispersion. The technique of this chapter is similar to that in Yen and Shiau (2008).

The rest of the chapter is organized as follows. Section 2.2 describes the proposed one-
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sided LRT-based control chart in detail. Both cases of known and unknown Σ0 are consid-

ered. Section 2.3 provides a method for computing the control limit. Section 2.4 describes the

existing competing techniques based on the two-sided tests of H0:Σ = Σ0 vs. H1:Σ 6= Σ0 for

both cases of known and unknown Σ0. From the perspective of the ARL, the performance

of the proposed control chart is compared with that of the existing two-sided control charts

based on simulation studies. Section 2.5 discusses the application of the proposed chart to

some real-life and simulated examples to demonstrate the applicability and effectiveness of

the proposed chart. Section 2.6 concludes the chapter with a discussion on some related

issues. Appendices A.1 and A.2 provide respectively our derivations of the LRT statistics of

the cases of known and unknown Σ0.

2.2 One-Sided LRT-based Control Chart

Let X=(X1, · · · , Xp)
′ be a p-dimensional random vector representing the p possibly cor-

related quality characteristics of interest. Assume that X has a p-dimensional multivariate

normal distribution Np(µ,Σ). Similar to Yen and Shiau (2008), in order to derive the LRT

statistic for testing (2.1.2), we borrow some techniques from Anderson, Anderson, and Olkin

(1986), Anderson (1989), and Kuriki (1993), in which the authors focused on multivariate

components of variance models under the condition that the effect covariance matrix is pos-

itive semidefinite with a maximum rank. We remark that the model considered in these

papers is different from the one considered in this chapter.

Suppose that the in-control covariance matrix Σ0 is positive definite and Σ ≤ Σ0. Let

Θ = Σ0 −Σ with rank(Θ) = k, 0 ≤ k ≤ p. Consider a more general setting of hypotheses

than (2.1.2):

H∗
0 :Θ ≥ 0 with k ≤ k0 vs. H∗

1 :Θ ≥ 0 with k ≤ k1, (2.2.1)

where k0 and k1 are two given integers and k0 < k1. When k0 = 0 and k1 = p, H∗
0 and H∗

1 in
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(2.2.1) are equivalent to H0 and H1 in (2.1.2), respectively. Hence, (2.1.2) is a special case

of (2.2.1).

2.2.1 One-Sided LRT Statistic When Σ0 is Known

Assume that Σ0 is known. At time t, a subgroup of n random p×1 vectors, X t1, · · · , X tn,

is sampled from the process. Each X tj is distributed as a p-dimensional normal distribution

Np(µ,Σ) with both µ and Σ unknown. Let the sample mean and sample covariance matrix

of the n observations obtained at time t be, respectively,

X̄ t ≡ 1
n

n

Σ
j=1

X tj ,

St ≡ 1
n

n

Σ
j=1

(X tj − X̄ t)(X tj − X̄ t)
′.

(2.2.2)

Then Bt ≡ nSt has a Wishart distribution (denoted by Wp(n − 1,Σ)) with n − 1 degrees

of freedom and covariance matrix Σ. We remark that the reason for using n instead of the

usual n − 1 in the sample covariance matrix St is to simplify the derivation of the LRT of

(2.2.1). It is interesting to know whether St is positive definite, like Σ. Dykstra (1970)

proved that St is positive definite with probability 1 if and only if n > p.

Theorem 2.1. The LRT statistic for testing (2.2.1) is

λ̃ ≡




k∗1
Π

i=k∗0+1
{di exp [−(di − 1)]}n

2 , for k∗0 < k∗1

1 , for k∗0 = k∗1

, (2.2.3)

where d1 ≥ · · · ≥ dp > 0 are the roots of |St − dΣ0| = 0, k∗0 = min(k0, p
∗
D), k∗1 = min(k1, p

∗
D),

and p∗D is the number of 0 < di < 1.

The proof is given in Appendix A.1. Based on Theorem 2.1, we have the following

corollary.

Corollary 2.1. When k0 = 0 and k1 = p, the LRT statistic for testing (2.1.2) is

λ =





p∗D
Π
i=1
{di exp [−(di − 1)]}n

2 , for p∗D > 0

1 , for p∗D = 0
. (2.2.4)

12



The testing procedure is typically performed by the statistic

TD ≡ − 2 log λ

=





n
p∗D
Σ
i=1

[(di − 1)− logdi] , for p∗D > 0

0 , for p∗D = 0
. (2.2.5)

The rejection region of the test is {TD > TD(α)}, where the critical value TD(α) is chosen

such that the significance level equals α. In other words, TD(α) is the (1− α)th quantile of

the distribution of TD. Since the distribution of TD is not easy to derive, we obtain TD(α),

the critical value of the test, based on Monte Carlo simulation.

Since Σ0 is assumed symmetric positive definite, there exists a unique symmetric positive

definite matrix Σ
1/2
0 such that Σ0=(Σ

1/2
0 )(Σ

1/2
0 ) (Golub and Van Loan (1989), p. 395). To

simplify the notation, (Σ
1/2
0 )−1 is denoted by Σ

−1/2
0 . Let Ztj ≡ Σ

−1/2
0 X tj. Then {Ztj, j =

1, · · · , n} is a random sample of size n from Np(Σ
−1/2
0 µ, Ip), if X tj follows Np(µ,Σ0). Thus,

Z̄t ≡ Σ
−1/2
0 X̄ t and S

(z)
t ≡ Σ

−1/2
0 StΣ

−1/2
0 are the sample mean and sample covariance matrix

of the transformed sample, respectively. First, note that nS
(z)
t is distributed as Wp(n−1, Ip),

which does not depend on µ and Σ0. Second, since |St − dΣ0| = |Σ0|
∣∣∣S(z)

t − dIp

∣∣∣ and Σ0 is

assumed positive definite, |St − dΣ0| = 0 and
∣∣∣S(z)

t − dIp

∣∣∣ = 0 have the same roots, which

implies that, when the process is in control, the distribution of TD based on the eigenvalues of

StΣ
−1
0 is the same as that based on the eigenvalues of S

(z)
t . Thus, without loss of generality,

when the process is in control, we can assume that µ = 0 and Σ0 = Ip when studying the

distribution of TD. This invariance property greatly simplifies the control limit computation.

2.2.2 One-Sided LRT Statistic When Σ0 is Unknown

Assume that both µ and Σ0 are unknown. Suppose that we have obtained m training

samples, {X1j}n
j=1, · · · , {Xmj}n

j=1, each of size n, from the in-control process to estimate µ

and Σ0 in Phase I of the control charting process. In Phase II, when the on-line process

monitoring begins, a random sample of size n, {X t1, · · · ,X tn}, is taken from the process
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at time t. To avoid confusion, let t > m. Assume that X ij, j = 1, · · · , n, i = 1, · · · ,m,

are independent and identically distributed (i.i.d.) as Np(µ0,Σ0) and X tj, j = 1, · · · , n, are

i.i.d. as Np(µ,Σ), where µ, Σ, µ0, and Σ0 are all unknown. To test if the process dispersion

increases at time t, we derive the LRT statistic in the following. Let the sample mean and

the sample covariance of the mn observations in the m training samples be

¯̄X ≡ 1
mn

m

Σ
i=1

n

Σ
j=1

X ij ,

S0 ≡ 1
mn

m

Σ
i=1

n

Σ
j=1

(X ij − ¯̄X)(X ij − ¯̄X)′,
(2.2.6)

respectively. Thus, A ≡ mnS0 is distributed as Wp(mn − 1,Σ0). In our derivation of the

LRT, we need the condition that S0 is positive definite. Note that this condition holds with

probability 1 if and only if mn > p.

Theorem 2.2. Assume S0 is positive definite, the LRT statistic for the hypothesis (2.2.1)

is

λ̃′ ≡




k?
1

Π
i=k?

0+1

[
βw

i

(wβi+1−w)

]mn+n
2 , for k?

0 < k?
1

1 , for k?
0 = k?

1

, (2.2.7)

where w = 1
m+1

, β1 ≥ · · · ≥ βp > 0 are the roots of |St − βS0| = 0, k?
0 = min(k0, p

?
D),

k?
1 = min(k1, p

?
D), and p?

D is the number of 0 < βi < 1.

The proof is given in Appendix A.2. The following corollary immediately follows:

Corollary 2.2. When k0 = 0 and k1 = p, the LRT statistic for hypotheses (2.1.2) is

λ′ =





p?
D

Π
i=1

[
βw

i

(wβi+1−w)

]mn+n
2 , for p?

D > 0

1 , for p?
D = 0

. (2.2.8)

As before, the testing procedure is usually performed by the statistic

T ′
D ≡ −2 log λ′

=





(mn + n)
p?

D

Σ
i=1

[log(wβi + 1− w)− w log βi] , for p?
D > 0

0 , for p?
D = 0

. (2.2.9)
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The rejection region of the test is {T ′
D > T ′

D(α)}, where T ′
D(α) is the (1 − α)th quantile of

the distribution of T ′
D.

Let Zij ≡ Σ
−1/2
0 X ij, j = 1, · · · , n, i = 1, · · · ,m. Then {Z1j}n

j=1, · · · , {Zmj}n
j=1 are

m random samples, each of size n, from Np(Σ
−1/2
0 µ0, Ip). Further, ¯̄Z ≡ Σ

−1/2
0

¯̄X and

S
(z)
0 ≡ Σ

−1/2
0 S0Σ

−1/2
0 are the corresponding sample mean and sample covariance matrix,

respectively. When the process is in control, by the same argument in the previous subsection,

the distribution of T ′
D based on the eigenvalues of StS

−1
0 is the same as that based on the

eigenvalues of S
(z)
t (S

(z)
0 )−1, and hence independent of µ0 and Σ0.

2.2.3 The Proposed Control Charts

It is easy to construct the control charts based on the LRT statistics derived in the

previous two subsections by taking the critical values TD(α) and T ′
D(α) as the control limits

of the control charts for cases of known and unknown Σ0, respectively. Thus, if the moni-

toring statistic TD (T ′
D) is greater than the control limit TD(α) (T ′

D(α)), then the process is

considered out of control. The control limits can be obtained by an empirical approach to

be described in the next section.

2.3 The Control Limits

As discussed earlier, the control limits are independent of the in-control process mean

µ0 and covariance matrix Σ0. Thus, without loss of generality, we can assume that µ0 = 0

and Σ0 = Ip when obtaining the control limits by Monte Carlo simulation.

2.3.1 The Control Limit When Σ0 is Known

When Σ0 is known, the control limit TD(α) can be estimated by the sample (1 − α)th

quantile of the empirical distribution of TD computed based on the eigenvalues of S
(z)
t .

The following procedure is used for computing the control limit. Let N be the number of

simulated values of TD in one simulation and b be the number of replications.
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Procedure 3.1. (Computing the control limit when Σ0 is known)

Step 1. Input p, n, α, N , and b.

Step 2. For t=1 to N , do

i. Generate n i.i.d. random vectors X t1, · · · ,X tn from Np(0, Ip);

ii. Compute St by (2.2.2) ;

iii. Compute the eigenvalues of St, d1 ≥ · · · ≥ dp;

iv. Compute TD,t by (2.2.5).

Step 3. Compute the (1− α)th sample quantile of {TD,1, · · · , TD,N}.

Step 4. Repeat Steps 2-3 b times. Take the average of the b quantiles as the control limit

CLp, n, α.

The purpose of Step 4 of Procedure 3.1 is to give a more precise quantile estimate and

to provide information on the precision of the computed control limit CLp, n, α.

For p = 2, 3, 4, n = 5, 10, 15, 20, 25, 30, 35, 40, α = 0.05, 0.01, 0.0027, N = 1, 000, 000, and

b = 100, Table 2.1 gives CLp, n, α and its standard error (in parentheses). We observe the

followings from this table:

• For the same p and α, the larger the n is, the smaller the CLp, n, α is.

• For the same n and α, the larger the p is, the larger the CLp, n, α is.

• The smaller the α is, the larger the standard error is. This is typical for quantile

estimators, especially when the tail is long.

2.3.2 The Control Limit When Σ0 is Unknown

Similarly, when Σ0 is unknown, the control limit can be constructed as the sample

(1−α)th quantile of the empirical distribution of T ′
D based on the eigenvalues of S

(z)
t (S

(z)
0 )−1.

Procedure 3.2 computes the control limit.
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Procedure 3.2. (Computing the control limit when Σ0 is unknown)

Step 1. Input p, m, n, α, N , and b.

Step 2. For t=m+1 to m + N , do

i. Generate mn i.i.d random vectors X11, · · · ,Xmn from Np(0, Ip);

ii. Generate n i.i.d random vectors X t1, · · · , X tn from Np(0, Ip);

iii. Compute S0 and St by (2.2.6) and (2.2.2), respectively;

iv. Compute the eigenvalues of StS
−1
0 , β1 ≥ · · · ≥ βp;

v. Compute T ′
D,t−m by (2.2.9).

Step 3. Compute the (1− α)th sample quantile of {T ′
D,1, · · · , T ′

D,N}.

Step 4. Repeat Steps 2-3 b times. Take the average of the b quantiles as the control limit

CLp, m, n, α.

For p = 2, 3, 4, m = 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100, n = 5, α= 0.05, 0.01,

0.0027, N = 1, 000, 000, and b = 100, Table 2.2 gives CLp, m, n, α and its standard error (in

parentheses). The followings are observed from the table:

• For the same p, α, n, the larger the m is, the larger the CLp, m, n, α is.

• For the same m, n, α, the larger the p is, the larger the CLp, m, n, α is.

• The smaller α is, the larger the standard error is.

The MATLAB programs used for computing the control limits, which can be useful for

practitioners, are available at http://www.stat.nctu.edu.tw/subhtml/source/teachers/jyhjen.htm.

Users can compute the control limit by inputting the appropriate parameters, p, n, m, α, N ,

and b according to their applications.
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2.4 A Comparative Study

In this section, we describe three existing techniques based on the two-sided tests of

H0:Σ = Σ0 vs. H1:Σ 6= Σ0 for both cases of known and unknown Σ0. Furthermore,

we compare our proposed one-sided LRT-based control chart with these competing control

charts in terms of out-of-control ARL.

2.4.1 Two-sided LRT and Two-sided Modified LRT

We first describe the two-sided LRT for testing H0: Σ = Σ0 v.s. H1: Σ 6= Σ0. When Σ0

is known, the two-sided LRT statistic given in Anderson (2003, p. 439) is

λ∗ = n−
pn
2

∣∣∣BtΣ
−1
0

∣∣∣
n/2

exp{−1

2
tr

(
BtΣ

−1
0

)
+

pn

2
}

=
∣∣∣StΣ

−1
0

∣∣∣
n/2

exp{−n

2
tr

(
StΣ

−1
0

)
+

pn

2
}, (2.4.1)

where Bt = nSt is defined earlier. Since St and Σ0 are symmetric and positive definite, from

Theorem 4.14 of Schott (2005) and a simple transformation, there exists a nonsingular matrix

Z such that St = ZDdZ
′ and Σ0 = ZZ ′, where Dd = diag(d1, · · · , dp) with d1 ≥ · · · ≥ dp

being the roots of |St − dΣ0| = 0. Then

λ∗ =
∣∣∣ ZDdZ

′(ZZ ′)−1
∣∣∣
n/2

exp{−n

2
tr

(
ZDdZ

′(ZZ ′)−1
)

+
pn

2
}

= | Dd|n/2 exp{−n

2
trDd +

pn

2
} = { | Dd| exp [−tr(Dd − Ip)] }n/2

=
p

Π
i=1

{ di exp [−(di − 1)] } n/2. (2.4.2)

Note that (2.4.2) (for the two-sided LRT) and (2.2.4) (for the one-sided LRT) are of the

same form. The difference is that the one-sided LRT only includes those 0 < di < 1 in the

product while the two-sided LRT uses all di’s.

Moreover, Sugiura and Nagao (1968) showed that the two-sided LRT based on λ∗ is

biased, but the two-sided modified LRT based on

λ∗(Mod) = (
e

n− 1
)

p(n−1)
2

∣∣∣BtΣ
−1
0

∣∣∣
(n−1)/2

exp{−1

2
tr

(
BtΣ

−1
0

)
} (2.4.3)
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is unbiased. Note that when replacing n by n− 1 (2.4.1) becomes (2.4.3).

Anderson (2003, p.413) gave the LRT test of the equality of q covariance matrices of q

sets of random samples, each from a multivariate normal distribution, without specifying

a common covariance matrix. For our problem with Σ0 unknown, by treating the training

samples {X11, · · · ,Xmn} as the first set and the current sample {X t1, · · · , X tn} as the second

set of random samples (i.e., q = 2), the two-sided LRT statistic is

λ? =

∣∣∣ A
mn

∣∣∣
mn/2∣∣∣Bt

n

∣∣∣
n/2

∣∣∣A+Bt

mn+n

∣∣∣
(mn+n)/2

, (2.4.4)

where A = mnS0 and Bt = nSt are defined in Section 2.2. Assuming S0 is positive

definite, by Theorem 4.14 of Schott (2005), there exists a nonsingular matrix Y such that

St = Y DβY ′ and S0 = Y Y ′, where Dβ = diag(β1, · · · , βp) with β1 ≥ · · · ≥ βp being the

roots of |St − βS0| = 0. Then (4.4) becomes

λ? =
|Y Y ′|mn/2|Y DβY ′|n/2

∣∣∣∣
mY Y ′

+Y DβY
′

m+1

∣∣∣∣
(mn+n)/2

=
|Y Y ′|(mn+n)/2|Dβ|n/2

|Y Y ′|(mn+n)/2
∣∣∣∣
(mIp+Dβ)

m+1

∣∣∣∣
(mn+n)/2

=
p

Π
i=1

β
n
2
i

(m+βi

m+1
)

mn+n
2

=
p

Π
i=1

[
βw

i

(wβi + 1− w)

]mn+n
2

, (2.4.5)

where w = 1
m+1

. Again, the difference between the one-sided LRT statistic (2.2.8) and the

two-sided LRT statistic (2.4.5) lies on whether or not 0 < βi < 1.

Furthermore, it was shown in Das Gupta (1969) that the two-sided LRT based on (2.4.4)

is biased. An unbiased two-sided LRT was derived in Sugiura and Nagao (1968) based on

λ?(Mod) =
|A|(mn−1)/2|Bt|(n−1)/2

|A + Bt|(mn+n−2)/2
, (2.4.6)

which can be obtained from (2.4.4) with mn replaced by mn− 1 and n by n− 1.

In this chapter, the control charts based on (2.4.3) and (2.4.6) are referred to as the

two-sided “Modified-LRT” control charts.
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2.4.2 A Control Chart Based on Decomposition Method

Assuming that Σ0 is known, Tang and Barnett (1996a, 1996b) proposed a multivariate

Shewhart chart for monitoring H0:Σ = Σ0 vs. H1:Σ 6= Σ0 that is based on decomposing

Bt/(n− 1) into a sum of a series of independent χ2 statistics. Decompose Σ and Bt/(n− 1)

the same way and define σ2
i·1,···,i−1 and s2

i·1,···,i−1 respectively as the conditional population and

sample variance of the ith variable given the first i−1 variables. Also, define Σi,i+1,···,p·1,···,i−1

as the conditional population covariance matrix of the last p− i + 1 variables given the first

i−1 variables. σ2
1 and s2

1 are respectively defined as the population and sample variance of the

first variable. In addition, let ϑi and Ri (i = 2, · · · , p) denote respectively the (p− i+1)× 1

vectors of population and sample regression coefficients when each of the last p−i+1 variables

is regressed on the (i− 1)-th variable while the first i− 2 variables are held fixed. Note that

ϑ2 and R2 should be interpreted as the (p− 1)× 1 vectors of unconditional population and

sample regression coefficients when each of the last p − 1 variables is regressed on the first

variable. When the current sample of n observations is drawn, an appropriate statistic based

on a decomposition is given by

T (decom) =
2p−1∑

j=1

Z2
j , (2.4.7)

where

Z2
1 = Φ−1

{
χ2

n−1

[
(n− 1)s2

1

σ2
1

]}
,

Z2
j = Φ−1

{
χ2

n−j

[
(n− 1)s2

j·1,2,···,j−1

σ2
j·1,2,···,j−1

]}
, for j = 2, 3, · · · , p,

Z2
p+1 = Φ−1

{
χ2

p−1

[
(n− 1)s2

1(R2 − ϑ2)
′Σ−1

2,···,p·1(R2 − ϑ2)
]}

,

and, for j = 3, · · · , p,

Z2
p+j−1 = Φ−1

{
χ2

p−j+1

[
(n− 1)s2

j−1·1,2,···,j−2(Rj − ϑj)
′Σ−1

2,···,p·1,···,j−1(Rj − ϑj)
]}

.

Note that Φ−1{·} is the inverse of the distribution function of N(0, 1) and χ2
v[x] = P (χ2

v ≤ x)

is the distribution function of a χ2 distribution with v degrees of freedom. When the process
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is in control, Zj’s are i.i.d. as N(0, 1) and hence T (decom) is distributed as χ2
2p−1. Thus the

control chart can be established by plotting T (decom)’s against the sampling sequence and

an out-of-control alarm is signaled soon as T (decom) exceeds the upper control limit (UCL),

χ2
2p−1[α]. Note that the decomposition is not unique since it depends on how the p variables

are arranged. Tang and Barnett (1996a) suggested the variables should be arranged in

decreasing order of importance from 1 to p to reflect the relative importance of variables

involved in particular.

In this chapter, the control charts based on (2.4.7) is referred to as the “TB-dcecomposed”

control chart.

2.4.3 The G Chart for Covariance Matrices

Assume that Σ0 is unknown. Denote S̄ ≡ 1
m(n−1)

m

Σ
i=1

n

Σ
j=1

(X ij − X̄ i)(X ij − X̄ i)
′, where

X̄ i ≡ 1
n

n

Σ
j=1

X ij. For monitoring changes in Σ, Levinson, Holmes, and Mergen (2002) proposed

a multivariate Shewhart chart, called the G-chart, based on the following statistic:

G = Cg ln




|Sp|(m+1)(n−1)

∣∣∣S̄
∣∣∣
m(n−1)∣∣∣ Bt

n−1

∣∣∣
(n−1)


 , (2.4.8)

where Cg = 1 −
[

1
m(n−1)

+ 1
n−1

− 1
(m+1)(n−1)

]
×

[
2p2+3p−1
6(p+1))

]
and Sp = m(n−1)S̄+Bt

(m+1)(n−1)
. When

the process is in control, the approximate distribution of G follows χ2
p(p+1)/2 and Levinson,

Holmes, and Mergen (2002) suggested that χ2
p(p+1)/2,α/2 and χ2

p(p+1)/2,1−α/2 are used as the

UCL and lower control limit (LCL).

However, when n is small, our empirical studies show that the control limits suggest by

Levinson, Holmes, and Mergen (2002) are not accurate (for example, if α = 0.0027, the

in-control ARL is a lot less than 370). Therefore, we then simulate the distribution of G and

fund that the value of G, is larger than that for the in-control process dispersion when the

process dispersion increases or decreases. Thus, the suggested control limits by Levinson,

Holmes, and Mergen (2002) are not appropriate for our purpose. Based on these reasons, we
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obtain the control limits for the statistic G by simulation and only consider the UCL since

the G statistic is analogous to LRT. We refer to the control charts based on (2.4.8) as the

“LHM-G” control chart.

2.4.4 Comparisons

In this subsection, we compare the ARL performance of the proposed procedure with

that of the existing techniques described in the previous three subsections using Monte

Carlo simulation.

Denote the average run length of the in-control process and out-of-control process by

ARL0 and ARL1, respectively. Let TD (T ′
D) denote the test statistic for the case of known

(unknown) Σ0. To estimate ARL, we first generate N statistics TD,1, · · · , TD,N (T ′
D,1, · · · , T ′

D,N)

for a very large number N and compute the proportion of TD,i’s (T ′
D,i’s) that exceed the

control limit at a significance level α as described in Section 2.3. After repeating the above

steps b times, we obtain b proportions. To estimate ARL, two procedures can be considered:

(i) take the reciprocal of each proportion as an estimate of ARL and then take the average

of these b ARL estimates to be the final ARL estimate; (ii) average the b proportions and

take the reciprocal of the average as the ARL estimate. For the first ARL estimator, the

standard error can be obtained easily by taking the sample standard deviation of the b ARL

estimates and then dividing it by
√

b. The standard error of the second estimator can be

obtained by the following argument. Note that, multiplying each proportion by N , we have

b statistics that are i.i.d. as binomial(N, θ), where θ is the detecting power, the probability

that TD (T ′
D) statistic of a randomly selected sample exceeds the control limit. When the

process is in control, the detecting power is equal to α. Denote the second ARL estimator

by ÂRL. Since ÂRL is the reciprocal of the maximum likelihood estimator (MLE) of θ,

then, by the asymptotic efficiency property of MLE, it can easily be shown that ÂRL has
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an asymptotic normal distribution with mean 1/θ and standard deviation

(
1− θ

Nbθ3

) 1
2

.

Then the standard error of this ARL estimator can be calculated by

[
ÂRL

2
(ÂRL− 1)/(Nb)

] 1
2

. (2.4.9)

It is found from our simulation study that the difference between the results of the two

estimating procedures is negligible. We thus only report the results of the second approach

in this chapter.

Assume that the covariance matrix has been “decreased” from Σ0 to Σ, i.e., Σ0 −Σ is

positive semidefinite and Σ 6= Σ0. As shown earlier, the distribution of TD (T ′
D) is invariant

in Σ0. Thus, without loss of generality, we can assume that Σ0 = Ip when simulating the

distribution of TD (T ′
D). For simplicity of discussion, we consider p = 2. To create out-of-

control scenarios, express Σ as

[
∆1 ρ

√
∆1∆2

ρ
√

∆1∆2 ∆2

]
, where ∆i ≤ 1, i = 1, 2. This means

the variance of the ith quality characteristic has been decreased by a factor of ∆i, i = 1, 2

and ρ is the correlation coefficient. We consider studying ARL1 for various combinations of

∆1, ∆2, and ρ. It can be easily shown that the eigenvalues of Σ0 −Σ are

1

2

[
(2−∆1 −∆2)±

√
(∆1 −∆2)2 + 4ρ2∆1∆2

]
(2.4.10)

and, under the condition that Σ0 −Σ is positive semidefinite, the restricted range of ρ is

|ρ| ≤
[
(1−∆1)(1−∆2)

∆1∆2

] 1
2

. (2.4.11)

Note that (2.4.11) implies that we cannot consider the case when ∆1 = ∆2 = 1 and ρ 6= 0,

i.e., the case when only the correlation changes.

In our comparative study, setting α = 0.0027 which results in ARL0 = 370.4, we consider

the following cases: p = 2; n = 5, 10 for known Σ0; m = 25, 50 and n = 5 for unknown Σ0.

The in-control covariance matrix is Σ0 = Ip and the out-of-control covariance matrix is Σ.

The following three scenarios of Σ are considered:
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(1) ∆1 = ∆2 = c and ρ = 0, (that is, Σ = cΣ0), for c = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4,

0.3, 0.2, 0.1.

(2) ∆1 6= ∆2 and ρ = 0. for the following 8 combinations: (∆1, ∆2) = (0.8,1), (0.6,1),

(0.4,1), (0.2,1), (0.8,0.6), (0.6,0.4), (0.4,0.2), (0.2,0.8).

(3) For ρ 6= 0, under the condition (2.4.11), we choose |ρ| =0.2 and 0.4 for the following

4 combinations: (∆1, ∆2) =(0.6,0.6), (0.6,0.4), (0.4,0.4), (0.4,0.2). Note that these 4

combinations are selected from scenarios (1) and (2) so that we can study the effect of

ρ on ARL performance.

In the simulation study, we take N = 1, 000, 000 and b = 100 to obtain the ARL estimate

along with its standard error for each scenario. When Σ0 is known, for α = 0.0027, the one-

sided, two-sided LRT, and two-sided Modified-LRT control limits obtained are respectively

22.23621, 22.68151, and 17.67692 for n = 5; 16.84193, 17.53596, and 15.45388 for n = 10.

It is found that, with the afore-mentioned control limits obtained from empirical study,

ARL0 ≈ 370 with standard error
√

1−0.0027
Nb·0.00273 around 0.7118152. Moreover, the control limit

for both n = 5, 10 based on TB-decomposed control chart, is χ2
3(0.9973)=14.15625. Table 2.3

gives the estimates of ARL1 and their standard errors (in parentheses) of the one-sided, two-

sided LRT, two-sided Modified-LRT, and TB-decomposed control charts for the scenarios

(1)-(3) described above. The following results are observed:

(i) The ARL1 value of the one-sided control chart is much smaller than that of the other

three control charts for all cases tested. This shows that the one-sided control chart

greatly outperforms the three compering control charts when dispersion decreases, es-

pecially for the smaller subgroup size n = 5. Furthermore, it is surprising that the two-

sided LRT control chart is unbiased in all cases tested and has a better ARL1 perfor-

mance than the Modified-LRT and TB-decomposed. In addition, the TB-decomposed

control chart is biased in the sense that some of its ARL1 values are greater than 370.
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Hence, the TB-decomposed control chart has the worst performance.

(ii) Given c, the ARL1 for n = 10 is smaller than that for n = 5. This result also confirms

the general observation that the detecting power gets larger when the subgroup size

gets larger. For fixed n, ARL1 is smaller when c is smaller. This again is not surprising

since it is easier to detect larger shifts.

(iii) For all the combinations of ∆1 and ∆2 in scenarios (1)-(3), the ARL1 for n = 10 is

smaller than that for n = 5. For fixed n, ρ, and one of ∆1 and ∆2, say ∆2, the ARL1

decreases when ∆1 decreases. These results are expected. Also, a smaller ARL1 results

in a smaller standard error due to (2.4.9).

(iv) For the effect of ρ, we first observe that, by (2.4.10), the eigenvalues of Σ0−Σ depend

on ρ through ρ2. Hence the sign of ρ does not play any role in ARL1 performance

as found in our simulation study. The ARL1 decreases when |ρ| increases from 0

to 0.4. This means that the ability of the proposed chart detecting a decrease in

dispersion gets better when the correlation (positive or negative) between the two

quality characteristics becomes stronger.

For the case of unknown Σ0, the one-sided, two-sided LRT, two-sided Modified-LRT, and

LHM-G control limits obtained respectively are 22.07988, 22.58894, 53.27833, and 14.48746

for m = 25; 22.16664, 22.66328, 58.79951, and 14.49071 for m = 50. The ARL1 values along

with their standard errors are given in Table 2.4. Similar observations as those discussed

earlier for the case of known Σ0 can also be made here. It is interesting to observe that

the ARL performance of the two-sided Modified-LRT control chart and the LHM-G control

chart are very close, with the former being slightly better.
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2.4.5 Comparing the Detecting Power for Increases Versus De-
creases in Dispersion

Lowry, Champ, and Woodall (1995) reported that detecting decreases in variance is much

harder than detecting increases in the univariate case. In this subsection, we study this same

issue for the multivariate case with the control chart presented in this chapter and the control

chart designed for detecting dispersion increases proposed in Yen and Shiau (2008). Yen and

Shiau (2008) proposed the following statistics for testing (2.1.1) for detecting increases in

dispersion are, respectively:

TI =





n
p∗I
Σ
i=1

[(di − 1)− logdi] , for p∗I > 0

0 , for p∗I = 0
(2.4.12)

for the case of known Σ0 and

T ′
I =





(mn + n)
p?

I

Σ
i=1

[log(wβi + 1− w)− w log βi] , for p?
I > 0

0 , for p?
I = 0

(2.4.13)

for the case of Σ0 unknown, where p∗I is the number of di > 1 and p?
I is the number of

βi > 1. For the case of Σ = cΣ0 with c = 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, Tables 2.5

presents the ARL1 values of the one-sided chart proposed in Yen and Shiau (2008) and

the charts described earlier in Subsections 2.4.1-2.4.3. Note that the ranges of the changes

in covariance matrix for increases and decreases are different, that is, (1,∞) for increases

and (0,1) for decreases. Thus, for a fair comparison, it is more reasonable to take a log

transformation on the sign of changes, i.e., log(c), so that the two ranges become (0,∞) and

(−∞,0). Each of the Figures 2.1-2.4 depicts the ARL1 curves of all the control charts under

study for both cases of monitoring increases and decreases in dispersion and in both of the

original and logarithm scales for c. Figures 2.1 (for n = 5) and 2.2 (for n = 10) are for the

case of known Σ0 and Figures 2.3 (for m = 25 and n = 5) and 2.4 (for m = 50 and n = 5)

are for the case of unknown Σ0. By comparing two control charts of Yen and Shiau (2008)

and that of this chapter, the following results are observed:
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(i) By the statistics (2.2.5) and (2.4.12) ((2.2.9) and (2.4.13)), it can be seen that 1

separates the eigenvalues into two sets, one for (2.2.5) ((2.2.9)) and the other for

(2.4.12) ((2.4.13)), for all di’s (β’s). Hence, the rejection regions of testing (2.1.1) and

(2.1.2) are disjoint.

(ii) Observed from the ARL1’s, we find that the power of the one-sided chart in Yen and

Shiau (2008) for monitoring increases in dispersion is better than that of the proposed

chart in this Chapter for monitoring decreases in dispersion. The comparison is based

on the same absolute logarithm scale of values c (for example, log(1.25) = |log(0.8)|,
log(2) = |log(0.5)|, log(2.5) = |log(0.4)|). For example, from the cases of n = 5 and

n = 10 for known Σ0 shown in Tables 3 and 5, it can be observed that the ARL1’s

for detection increases with c = 1.25, 2, 2.5 are, respectively, 69.2106, 6.91187, and

4.73748 for n = 5 and 43.9506, 3.21706, and 1.77936 for n = 10. They are all a lot

smaller than those for detecting decreases with c = 0.8, 0.5, 0.4, which are, respectively,

233.475, 82.6634, and 49.4864 for n = 5 and 135.346, 16.9510, and 7.11778 for n = 10.

Similarly, for the cases of m = 25 and m = 50 when Σ0 is unknown, we can observe

from Tables 4 and 5, the outcomes are in a similar manner.

For the control charts described in Subsections 2.4.1-2.4.3, except the case of the two-

sided LRT control chart, the results all lead to the same conclusion presented above. The

power of the two-sided LRT control chart for monitoring increases in dispersion is worse than

that for monitoring increases in dispersion. This is becomes the two-sided LRT control chart

is biased for detecting dispersion increases. We also observe that the two-sided Modified-

LRT and LHM-G control charts are both unbiased for detecting either dispersion increases or

decreases and the TB-decomposed control chart is biased for detecting dispersion decreases.
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2.5 Examples

In this section, the application of the proposed control chart is illustrated by a real-

life example. In addition, two simulated examples are presented to demonstrate the better

detecting power of the one-sided control chart over the existing two-sided control charts when

the dispersion decreases.

2.5.1 A real example

A set of real data for assuming the semiconductor failure rate was taken in a semicon-

ductor company. The failure rates are strongly correlated to the process stability, unsuitable

personal operations, and so on. In order to get the failure rate of the process, the wafer ac-

ceptance tests are taken. Two quality characteristics monitored are the functions of “write”

and “erase”, which are two test items related to a wafer acceptance test and failure rate

calculation for each wafer. These two values are strongly related to the stability of the pro-

cess measurement technique. The two failure rates are measured on each wafer after the

write-action and erase-action, respectively. Thus the two variables are correlated. Let X1

and X2 be the averages of the five successive measurements for the write-action and erase-

action, respectively. Denote X = (X1, X2). 50 subgroups of random samples, each of size

5, were taken from the original process. The sample mean is ¯̄X =

(
1.98920
6.14052

)
and sample

covariance matrix is S = 1
(50×5−1)

50

Σ
i=1

5

Σ
j=1

(X ij− ¯̄X)(X ij− ¯̄X)′ =

(
0.84598 0.54288
0.54288 5.46428

)
. Data

are given in Table 2.6. First, we use the usual |S| and T 2 control charts to inspect whether

these data were taken from an in-control process. Figure 2.5 depicts the |S| and T 2 control

charts, under an in-control false-alarm rate of α = 0.0027 so that indicating the process

were stable that these samples can be used as the training samples. By (2.2.6), we have

S0 =

(
0.84260 0.54071
0.54071 5.44242

)
and the sample correlation coefficient between the 250 X1’s and

X2’s is ρ̂ = 0.2525.
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For p = 2, m = 50, n = 5, and α = 0.0027, by the procedure described before, the one-

sided, two-sided, two-sided Modified-LRT, and LHM-G control limits are 22.16664, 22.66328,

58.79951, and 14.49071, respectively. We use these control limits to monitor another 21

subgroups of samples, each of size 5, taken on-line from the process. Table 2.7 gives these

data. The control charts are displayed in Figure 2.6. It is found that the 9th, 11th, 14th,

and 15th subgroups exceed the control limit of the one-sided control chart, while the 9th,

11th, and 15th subgroups exceed the control limit of the two-sided control chart, and the

9th and 15th subgroups exceed the control limit of the two-sided modified-LRT and LHM-G

control chart. This demonstrates that the one-sided control chart is more sensitive than the

other three control charts.

2.5.2 Simulated examples

Consider the real-life example described in the previous subsection. Suppose the random

vector X from the in-control process is distributed as Np(µ0,Σ0) with µ0 = ¯̄X and Σ0 = S0.

We simulate some in-control data and out-of-control data to investigate the effectiveness of

the proposed control chart.

100 subgroups of samples, each of size 5, are generated. The first ten subgroups and the

51st to 60th subgroups are from the in-control process. 11th to 50th subgroups are from

Np(
¯̄X,Σ1) and the 61st to 100th subgroups are from Np(

¯̄X,Σ2) with Σ1 ≤ Σ0 and Σ2 ≤ Σ0.

Let Σ1=

[ √
∆1 0

0
√

∆2

]
S0

[ √
∆1 0

0
√

∆2

]
and Σ2=




√
∆′

1 0

0
√

∆′
2


S0




√
∆′

1 0

0
√

∆′
2


, where

∆1, ∆2, ∆′
1, and ∆′

2 are all smaller than 1. Two scenarios are considered for Σ1 and Σ2 cor-

responding to: (i)(∆1, ∆2) = (0.6, 0.4) and (∆′
1, ∆

′
2) = (0.2, 0.4) and (ii) (∆1, ∆2) = (0.4, 0.4)

and (∆′
1, ∆

′
2) = (0.2, 0.2).

Figures 2.7-2.8 depict all of the one-sided, two-sided, two-sided Modified-LRT, and LHM-

G control charts for scenario (i) and (ii), respectively. It is quite striking to observe that, for

scenario (i)((ii)), the one-sided control chart effectively picks 2 (3) and 4 (8) out-of-control
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points from the first and the second out-of-control regions, respectively, while the two-sided,

two-sided Modified-LRT, and LHM-G chart pick 1, 0, 0 (2, 1, 1) and 3, 2, 2 (6, 4, 4) out-

of-control points from the first and the second out-of-control regions for scenario (i)((ii)),

respectively. The figures also demonstrate that the second out-of-control region is easier to

detect than the first out-of-control region and scenario (ii) is easier to detect than scenario

(i), as one would expect.

2.6 Discussions

In this chapter, we have proposed and studied a control chart based on the one-sided

likelihood ratio test that is specifically designed for detecting decreases in dispersion for

multivariate processes. Both cases when the in-control covariance matrix Σ0 is known or

unknown are considered. It was shown that the control limit does not depend on µ0 and

Σ0. The performance study showed that the proposed control chart indeed outperforms the

existing control charts based on the two-sided tests of H0:Σ = Σ0 vs. H1:Σ 6= Σ0 in terms

of the ARL, when the process dispersion decreases.

The proposed control chart is a Shewhart-type chart. It is well known that EWMA and

CUSUM charts are more sensitive to small changes. An EWMA extension of the proposed

chart will be reported in a follow-up study. A combination of a Shewhart and an EWMA

(or CUSUM) chart can provide a more effective control since a wider range of dispersion

decreases will be covered. This is definitely worthy of future investigations.

The proposed control chart is analogous to those of Yen and Shiau (2008), which is a

one-sided LRT-based control chart for detecting dispersion increases for multivariate pro-

cesses. For a more effective monitoring, one can consider using the control chart of Yen and

Shiau (2008) or the proposed chart in the current chapter for monitoring only increases or

only decreases in dispersion. Furthermore, when detecting both increases and decreases in

dispersion, a combined chart based on these two one-sided LRT-based control charts could
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potentially outperform a two-sided LRT-based control chart. This is the subject of the next

chapter.
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Figure 2.1: The ARL curves of four control charts for both cases of increases and decreases,
including the original and logarithm scales for c, when Σ0 is known (n = 5).
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Figure 2.2: The ARL curves of four control charts for both cases of increases and decreases,
including the original and logarithm scales for c, when Σ0 is known (n = 10).
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Figure 2.3: The ARL curves of four control charts for both cases of increases and decreases,
including the original and logarithm scales for c, when Σ0 is unknown (m = 25,n = 5).
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Figure 2.4: The ARL curves of four control charts for both cases of increases and decreases,
including the original and logarithm scales for c, when Σ0 is unknown (m = 50,n = 5).
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TABLES

Table 2.1 The control limits and their standard errors (in parentheses) for various p, n, and

α when Σ0 is known.

α = 0.05 α = 0.01 α = 0.0027

n = 5 12.07387 (.00157) 17.73936 (.00372) 22.23621 (.00650)
n = 10 8.897327 (.00125) 13.32618 (.00297) 16.84193 (.00504)

p = 2 n = 15 8.005460 (.00115) 12.12254 (.00248) 15.39511 (.00496)
n = 20 7.550712 (.00099) 11.52044 (.00228) 14.67947 (.00447)
n = 25 7.272272 (.00120) 11.15209 (.00253) 14.23805 (.00427)
n = 30 7.078561 (.00106) 10.89676 (.00228) 13.94104 (.00444)
n = 35 6.934560 (.00102) 10.70614 (.00226) 13.71810 (.00405)
n = 40 6.819769 (.00106) 10.55508 (.00248) 13.54144 (.00442)

n = 5 22.90575 (.00229) 31.43728 (.00525) 38.17811 (.00972)
n = 10 14.71335 (.00158) 20.27104 (.00314) 24.54849 (.00568)

p = 3 n = 15 12.91980 (.00143) 17.94842 (.00297) 21.82590 (.00521)
n = 20 12.06823 (.00150) 16.87110 (.00302) 20.57219 (.00490)
n = 25 11.55274 (.00127) 16.21673 (.00261) 19.81813 (.00590)
n = 30 11.20298 (.00114) 15.77728 (.00290) 19.32009 (.00515)
n = 35 10.94578 (.00112) 15.44731 (.00248) 18.93584 (.00504)
n = 40 10.74509 (.00134) 15.19751 (.00251) 18.64674 (.00543)

n = 5 46.32313 (.00392) 62.63170 (.00997) 75.76703 (.01772)
n = 10 22.33401 (.00201) 29.18483 (.00416) 34.37385 (.00783)

p = 4 n = 15 19.04439 (.00178) 25.05275 (.00380) 29.59728 (.00602)
n = 20 17.57767 (.00163) 23.24285 (.00323) 27.51586 (.00578)
n = 25 16.72193 (.00165) 22.18989 (.00330) 26.32282 (.00612)
n = 30 16.14666 (.00138) 21.48316 (.00293) 25.53406 (.00590)
n = 35 15.72819 (.00145) 20.98150 (.00283) 24.95429 (.00600)
n = 40 15.40851 (.00128) 20.59187 (.00272) 24.52203 (.00621)
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Table 2.2 The control limits and their standard errors (in parentheses) for various n=5 and

p,m, α when Σ0 is unknown.

α = 0.05 α = 0.01 α = 0.0027

m = 25 11.92729 (.00166) 17.58328 (.00369) 22.07988 (.00679)
m = 30 11.94909 (.00148) 17.60504 (.00333) 22.10407 (.00628)
m = 35 11.97148 (.00165) 17.63610 (.00374) 22.13565 (.00747)
m = 40 11.98110 (.00165) 17.64386 (.00307) 22.14124 (.00647)
m = 45 11.99234 (.00147) 17.65663 (.00373) 22.15535 (.00680)
m = 50 12.00225 (.00151) 17.66655 (.00366) 22.16664 (.00623)

p = 2 m = 55 12.00584 (.00158) 17.67245 (.00384) 22.16867 (.00632)
(n = 5) m = 60 12.01185 (.00136) 17.67432 (.00314) 22.17503 (.00594)

m = 65 12.01496 (.00147) 17.68237 (.00301) 22.17948 (.00611)
m = 70 12.02254 (.00151) 17.68813 (.00297) 22.18749 (.00607)
m = 80 12.02643 (.00162) 17.69250 (.00340) 22.19493 (.00646)
m = 90 12.03081 (.00138) 17.69783 (.00348) 22.19774 (.00691)
m = 100 12.03676 (.00150) 17.70677 (.00329) 22.21453 (.00584)

m = 25 22.66663 (.00247) 31.18786 (.00587) 37.90671 (.01013)
m = 30 22.70397 (.00240) 31.23109 (.00535) 37.96759 (.01007)
m = 35 22.72928 (.00239) 31.25447 (.00556) 37.96784 (.00985)
m = 40 22.75709 (.00240) 31.28772 (.00566) 37.99968 (.01074)
m = 45 22.77365 (.00255) 31.29524 (.00471) 38.00987 (.01079)
m = 50 22.78922 (.00267) 31.31723 (.00435) 38.05282 (.00813)

p = 3 m = 55 22.79606 (.00230) 31.33093 (.00471) 38.04586 (.01016)
(n = 5) m = 60 22.80513 (.00283) 31.32847 (.00535) 38.04199 (.01049)

m = 65 22.81211 (.00228) 31.33656 (.00459) 38.06254 (.00975)
m = 70 22.82176 (.00218) 31.35669 (.00561) 38.07508 (.00948)
m = 80 22.82944 (.00250) 31.35271 (.00537) 38.05986 (.00904)
m = 90 22.83594 (.00256) 31.37675 (.00593) 38.09044 (.01058)
m = 100 22.84349 (.00225) 31.37371 (.00480) 38.10482 (.00782)

m = 25 45.97473 (.00432) 62.29930 (.01021) 75.41831 (.02022)
m = 30 46.02699 (.00448) 62.34284 (.01002) 75.50858 (.02075)
m = 35 46.06585 (.00458) 62.36199 (.00963) 75.51993 (.01836)
m = 40 46.10179 (.00447) 62.39709 (.01035) 75.53980 (.02111)
m = 45 46.12730 (.00486) 62.43510 (.01036) 75.59381 (.01772)
m = 50 46.14573 (.00472) 62.46074 (.00916) 75.57842 (.01859)

p = 4 m = 55 46.15985 (.00451) 62.46803 (.01013) 75.60569 (.01877)
(n = 5) m = 60 46.17025 (.00493) 62.47965 (.00967) 75.60087 (.01921)

m = 65 46.17819 (.00544) 62.48028 (.00928) 75.61300 (.02026)
m = 70 46.19099 (.00438) 62.51232 (.01000) 75.64397 (.01940)
m = 80 46.21218 (.00465) 62.52291 (.01128) 75.65437 (.01847)
m = 90 46.21615 (.00463) 62.53290 (.01026) 75.67351 (.01673)
m = 100 46.23938 (.00391) 62.55555 (.01099) 75.67159 (.01945)
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Table 2.3 (a) ARL1 and their standard errors (in parentheses) of the one-sided and the

three two-sided control charts when Σ0 is known and n = 5.

p = 2 n=5

∆1 ∆2 One-sided
Two-sided

LRT Modified-LRT TB-decomposed

[ρ = 0]
0.9 0.9 298.983 (.51611) 314.880 (.55786) 353.000 (.66229) 496.845 (1.1064)
0.8 0.8 233.475 (.35598) 254.553 (.40533) 310.482 (.54620) 537.819 (1.2461)
0.7 0.7 175.510 (.23185) 195.367 (.27237) 252.949 (.40150) 479.370 (1.0485)
0.6 0.6 124.864 (.13897) 140.358 (.16569) 189.433 (.26004) 364.898 (.69608)
0.5 0.5 82.6634 (.07470) 93.2962 (.08963) 129.793 (.14730) 244.197 (.38082)
0.4 0.4 49.4864 (.03446) 55.8158 (.04132) 79.3682 (.07026) 142.781 (.17001)
0.3 0.3 25.5262 (.01264) 28.6359 (.01505) 41.0587 (.02599) 69.1756 (.05712)
0.2 0.2 10.3866 (.00318) 11.5322 (.00374) 16.3339 (.00640) 25.0818 (.01231)
0.1 0.1 2.81299 (.00038) 3.03468 (.00043) 3.99012 (.00069) 5.27597 (.00109)

0.8 1 292.969 (.50060) 305.901 (.53415) 338.103 (.62077) 399.009 (.79603)
0.6 1 211.343 (.30651) 225.849 (.33866) 263.982 (.42809) 313.678 (.55467)
0.4 1 128.709 (.14545) 138.392 (.16221) 166.308 (.21383) 184.734 (.25040)
0.2 1 52.6129 (.03780) 56.6234 (.04223) 68.9434 (.05683) 67.5800 (.05514)

0.8 0.6 170.073 (.22114) 188.601 (.25832) 242.327 (.37645) 472.288 (1.0253)
0.6 0.4 77.8419 (.06824) 87.8123 (.08182) 121.782 (.13384) 236.375 (.36265)
0.4 0.2 21.8535 (.00998) 24.4871 (.01187) 34.8693 (.02029) 60.2424 (.04637)
0.2 0.8 43.6235 (.02848) 48.4802 (.03341) 64.2977 (.05116) 81.0882 (.07257)

[ρ = 0.2]
0.6 0.6 117.658 (.12708) 131.958 (.15101) 176.398 (.23362) 353.679 (.66420)
0.6 0.4 73.3948 (.06245) 82.6247 (.07465) 114.051 (.12127) 229.145 (.34611)
0.4 0.4 46.7310 (.03160) 52.6636 (.03785) 74.6288 (.06404) 137.985 (.16150)
0.4 0.2 20.7560 (.00923) 23.2491 (.01097) 33.0219 (.01869) 58.3553 (.04419)

[ρ = 0.4]
0.6 0.6 96.2540 (.09394) 106.761 (.10979) 139.138 (.16353) 315.542 (.55962)
0.6 0.4 60.5702 (.04675) 67.8713 (.05550) 92.2621 (.08814) 206.056 (.29507)
0.4 0.4 38.8405 (.02389) 43.6855 (.02854) 61.3143 (.04762) 123.844 (.13726)
0.4 0.2 17.4736 (.00709) 19.5435 (.00842) 27.5368 (.01419) 52.5819 (.03776)
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Table 2.3 (continued) (b) ARL1 and their standard errors (in parentheses) of the one-sided

and the three two-sided control charts when Σ0 is known and n = 10.

p = 2 n=10

∆1 ∆2 One-sided
Two-sided

LRT Modified-LRT TB-decomposed

[ρ = 0]
0.9 0.9 231.379 (.35119) 264.566 (.42952) 320.872 (.57388) 447.483 (.94554)
0.8 0.8 135.346 (.15688) 165.032 (.21136) 220.625 (.32696) 361.246 (.68565)
0.7 0.7 73.8704 (.06306) 91.9113 (.08764) 128.586 (.14524) 220.068 (.32572)
0.6 0.6 37.0430 (.02224) 45.9560 (.03081) 65.3752 (.05245) 111.343 (.11696)
0.5 0.5 16.9510 (.00677) 20.6787 (.00917) 29.1816 (.01549) 48.0918 (.03300)
0.4 0.4 7.11778 (.00176) 8.43177 (.00230) 11.5158 (.00373) 17.8846 (.00735)
0.3 0.3 2.86157 (.00039) 3.24077 (.00049) 4.13835 (.00073) 5.83895 (.00128)
0.2 0.2 1.30750 (.00007) 1.38223 (.00009) 1.56255 (.00012) 1.88248 (.00018)
0.1 0.1 1.00114 (<10−5) 1.00195 (<10−5) 1.00496 (<10−5) 1.01318 (<10−5)

0.8 1 218.002 (.32114) 241.937 (.37554) 282.737 (.47457) 330.960 (.60118)
0.6 1 102.165 (.10276) 116.061 (.12449) 142.131 (.16885) 168.282 (.21765)
0.4 1 33.7151 (.01928) 38.1904 (.02329) 46.9748 (.03185) 53.6292 (.03891)
0.2 1 5.92378 (.00131) 6.54248 (.00154) 7.74691 (.00201) 8.33526 (.00226)

0.8 0.6 67.9924 (.05565) 83.8212 (.07628) 115.561 (.12369) 204.400 (.29151)
0.6 0.4 14.9257 (.00557) 18.1365 (.00751) 25.3001 (.01247) 42.7605 (.02763)
0.4 0.2 2.34435 (.00027) 2.62424 (.00033) 3.26253 (.00049) 4.60519 (.00087)
0.2 0.8 4.90073 (.00097) 5.66636 (.00122) 7.09728 (.00175) 8.54222 (.00235)

[ρ = 0.2]
0.6 0.6 31.9588 (.01778) 39.3761 (.02439) 55.0788 (.04050) 102.047 (.10258)
0.6 0.4 13.1879 (.00460) 15.9629 (.00617) 21.9999 (.01008) 39.8826 (.02487)
0.4 0.4 6.42251 (.00150) 7.58589 (.00195) 10.2652 (.00312) 16.8478 (.00671)
0.4 0.2 2.19874 (.00024) 2.45094 (.00030) 3.01835 (.00043) 4.44193 (.00082)

[ρ = 0.4]
0.6 0.6 20.1843 (.00884) 24.1900 (.01165) 32.0725 (.01788) 72.8507 (.06175)
0.6 0.4 8.95023 (.00252) 10.6660 (.00332) 14.1725 (.00514) 30.7313 (.01676)
0.4 0.4 4.67435 (.00090) 5.45385 (.00115) 7.14850 (.00177) 13.5552 (.00480)
0.4 0.2 1.81738 (.00016) 1.99743 (.00020) 2.38678 (.00028) 3.87256 (.00066)
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Table 2.4 (a) ARL1 and their standard errors (in parentheses) of the one-sided and the

three two-sided control charts when Σ0 is unknown, m = 25, and n = 5.

p=2, n=5 m = 25

∆1 ∆2 One-sided
Two-sided

LRT Modified-LRT LHM-G

[ρ = 0]
0.9 0.9 300.251 (.51940) 317.853 (.56579) 354.692 (.66706) 354.932 (.66774)
0.8 0.8 235.100 (.35971) 258.969 (.41594) 313.832 (.55508) 314.597 (.55711)
0.7 0.7 176.663 (.23414) 199.286 (.28062) 256.435 (.40984) 257.768 (.41305)
0.6 0.6 126.486 (.14169) 144.363 (.17285) 194.099 (.26972) 195.610 (.27288)
0.5 0.5 83.9913 (.07652) 96.4599 (.09424) 133.833 (.15425) 135.165 (.15656)
0.4 0.4 50.5025 (.03553) 57.9341 (.04371) 82.0479 (.07387) 82.8456 (.07495)
0.3 0.3 26.1424 (.01311) 29.8303 (.01602) 42.6076 (.02748) 43.0115 (.02788)
0.2 0.2 10.6687 (.00332) 12.0253 (.00399) 16.9773 (.00679) 17.1750 (.00691)
0.1 0.1 2.89294 (.00040) 3.15760 (.00046) 4.14626 (.00074) 4.18972 (.00075)

0.8 1 293.752 (.50261) 308.764 (.54167) 339.894 (.62571) 340.328 (.62691)
0.6 1 212.269 (.30854) 228.781 (.34528) 266.099 (.43326) 267.060 (.43561)
0.4 1 129.483 (.14677) 140.726 (.16635) 168.520 (.21812) 169.368 (.21977)
0.2 1 53.1694 (.03840) 57.7512 (.04351) 69.9848 (.05813) 70.5043 (.05878)

0.8 0.6 171.540 (.22402) 192.841 (.26710) 246.668 (.38662) 247.790 (.38927)
0.6 0.4 79.1554 (.06998) 90.7739 (.08601) 125.299 (.13969) 126.240 (.14128)
0.4 0.2 22.3772 (.01035) 25.4904 (.01261) 36.1465 (.02143) 36.5399 (.02178)
0.2 0.8 44.1723 (.02902) 49.8000 (.03479) 65.7451 (.05290) 66.3392 (.05362)

[ρ = 0.2]
0.6 0.6 118.830 (.12899) 135.289 (.15678) 180.368 (.24156) 181.286 (.24341)
0.6 0.4 74.3733 (.06371) 85.1623 (.07813) 117.014 (.12604) 118.198 (.12796)
0.4 0.4 47.6579 (.03255) 54.6337 (.04001) 77.1867 (.06737) 77.9034 (.06832)
0.4 0.2 21.2264 (.00955) 24.1688 (.01163) 34.1903 (.01970) 34.5395 (.02000)

[ρ = 0.4]
0.6 0.6 97.2977 (.09548) 109.372 (.11386) 141.832 (.16832) 142.733 (.16993)
0.6 0.4 61.4337 (.04776) 69.9163 (.05804) 94.5625 (.09147) 95.3010 (.09255)
0.4 0.4 39.5626 (.02457) 45.2396 (.03009) 63.2515 (.04991) 63.8848 (.05066)
0.4 0.2 17.8613 (.00733) 20.3000 (.00892) 28.4961 (.01494) 28.7979 (.01518)
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Table 2.4 (continued) (b) ARL1 and their standard errors (in parentheses) of the one-sided

and the three two-sided control charts when Σ0 is unknown, m = 50, and n = 5.

p=2, n=5 m = 50

∆1 ∆2 One-sided
Two-sided

LRT Modified-LRT LHM-G

[ρ = 0]
0.9 0.9 300.256 (.51941) 319.078 (.56907) 355.630 (.66971) 356.410 (.67191)
0.8 0.8 235.460 (.36054) 259.269 (.41666) 313.185 (.55336) 313.845 (.55511)
0.7 0.7 176.523 (.23387) 199.084 (.28020) 255.558 (.40774) 256.112 (.40907)
0.6 0.6 125.881 (.14067) 143.369 (.17107) 192.197 (.26576) 193.403 (.26827)
0.5 0.5 83.4934 (.07583) 95.6114 (.09300) 132.205 (.15143) 132.645 (.15219)
0.4 0.4 50.1027 (.03511) 57.2803 (.04297) 80.8473 (.07224) 81.2036 (.07272)
0.3 0.3 25.8802 (.01291) 29.4328 (.01569) 41.9253 (.02682) 42.0998 (.02699)
0.2 0.2 10.5447 (.00326) 11.8503 (.00390) 16.6923 (.00661) 16.7629 (.00666)
0.1 0.1 2.85666 (.00039) 3.11066 (.00045) 4.07562 (.00071) 4.09409 (.00072)

0.8 1 293.583 (.50218) 309.474 (.54354) 340.219 (.62661) 340.244 (.62668)
0.6 1 212.496 (.30903) 228.879 (.34551) 264.982 (.43053) 265.262 (.43121)
0.4 1 129.315 (.14648) 140.637 (.16619) 167.787 (.21669) 168.097 (.21729)
0.2 1 53.0649 (.03829) 57.6590 (.04340) 69.7328 (.05781) 69.8278 (.05793)

0.8 0.6 171.314 (.22357) 192.250 (.26587) 244.673 (.38193) 245.632 (.38419)
0.6 0.4 78.7650 (.06946) 90.0171 (.08493) 124.023 (.13756) 124.163 (.13779)
0.4 0.2 22.1775 (.01021) 25.1889 (.01239) 35.6433 (.02098) 35.7590 (.02108)
0.2 0.8 44.0036 (.02886) 49.5413 (.03452) 65.2279 (.05228) 65.4355 (.05253)

[ρ = 0.2]
0.6 0.6 118.565 (.12856) 134.681 (.15572) 179.101 (.23902) 179.712 (.24024)
0.6 0.4 74.1842 (.06346) 84.6650 (.07744) 115.953 (.12432) 116.257 (.12481)
0.4 0.4 47.3171 (.03220) 54.0651 (.03938) 76.0597 (.06590) 76.3590 (.06629)
0.4 0.2 21.0257 (.00941) 23.8594 (.01141) 33.6936 (.01927) 33.8194 (.01937)

[ρ = 0.4]
0.6 0.6 96.9475 (.09496) 108.827 (.11301) 140.659 (.16623) 141.060 (.16694)
0.6 0.4 61.0850 (.04735) 69.3900 (.05738) 93.6283 (.09011) 93.7191 (.09024)
0.4 0.4 39.2932 (.02432) 44.7793 (.02963) 62.4353 (.04894) 62.5788 (.04911)
0.4 0.2 17.7091 (.00724) 20.0673 (.00876) 28.1036 (.01463) 28.1960 (.01470)
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Table 2.5 ARL1 and their standard errors (in parentheses) of the one-sided and the three

two-sided control charts when Σ0 is known or unknown.

∆1 ∆2 One-sided
Two-sided

LRT Modified-LRT TB-decomposed

[ρ = 0] [n = 5]
1.25 1.25 69.2106 (.05716) 440.129 (.92231) 272.795 (.44973) 115.050 (.12287)
1.5 1.5 23.8224 (.01138) 358.564 (.67802) 128.429 (.14498) 39.9944 (.02497)
1.75 1.75 11.5632 (.00376) 208.000 (.29926) 57.1190 (.04279) 18.1724 (.00753)
2 2 6.91187 (.00168) 105.702 (.10816) 28.6055 (.01503) 10.1564 (.00307)
2.25 2.25 4.73748 (.00092) 55.3383 (.04079) 16.4050 (.00644) 6.57161 (.00155)
2.5 2.5 3.56269 (.00057) 31.7439 (.01760) 10.5358 (.00325) 4.71030 (.00091)
2.75 2.75 2.85965 (.00039) 19.8941 (.00865) 7.37932 (.00186) 3.63512 (.00059)
3 3 2.40662 (.00029) 13.4635 (.00475) 5.52952 (.00118) 2.96044 (.00041)

[ρ = 0] [n = 10]
1.25 1.25 43.9506 (.02880) 334.228 (.61012) 159.591 (.20098) 81.0847 (.07256)
1.5 1.5 12.2232 (.00409) 101.751 (.10213) 41.2284 (.02615) 20.8143 (.00927)
1.75 1.75 5.46448 (.00115) 31.6456 (.01752) 14.4928 (.00532) 8.26446 (.00223)
2 2 3.21706 (.00048) 13.0682 (.00454) 6.90922 (.00168) 4.40205 (.00081)
2.25 2.25 2.26244 (.00025) 6.84932 (.00166) 4.09836 (.00072) 2.86533 (.00039)
2.5 2.5 1.77936 (.00016) 4.27350 (.00077) 2.82486 (.00038) 2.13220 (.00023)
2.75 2.75 1.50672 (.00011) 3.02003 (.00043) 2.16195 (.00023) 1.73069 (.00015)
3 3 1.34228 (.00008) 2.33100 (.00027) 1.77936 (.00016) 1.49254 (.00010)

∆1 ∆2 One-sided
Two-sided

LRT Modified-LRT LHM-G

[ρ = 0] [m = 25 n = 5]
1.25 1.25 76.3834 (.06632) 440.498 (.92347) 282.889 (.47496) 285.185 (.48076)
1.5 1.5 27.1195 (.01386) 375.955 (.72799) 145.116 (.17421) 149.254 (.18173)
1.75 1.75 13.2349 (.00463) 237.788 (.36591) 68.4090 (.05617) 71.4286 (.05994)
2 2 7.88379 (.00207) 130.624 (.14872) 35.2062 (.02059) 37.0370 (.02223)
2.25 2.25 5.35542 (.00112) 71.7085 (.06030) 20.2915 (.00891) 21.3624 (.00964)
2.5 2.5 3.98820 (.00069) 41.7738 (.02667) 12.9662 (.00449) 13.6377 (.00485)
2.75 2.75 3.16790 (.00047) 26.2012 (.01315) 8.99172 (.00254) 9.43396 (.00274)
3 3 2.64070 (.00034) 17.6311 (.00719) 6.66174 (.00159) 6.97367 (.00170)

[ρ = 0] [m = 50 n = 5]
1.25 1.25 72.9696 (.06190) 443.137 (.93179) 278.493 (.46392) 279.565 (.46660)
1.5 1.5 25.4780 (.01261) 370.844 (.71318) 137.053 (.15986) 139.435 (.16406)
1.75 1.75 12.3797 (.00418) 225.850 (.33866) 62.8724 (.04945) 64.1026 (.05092)
2 2 7.38949 (.00187) 118.806 (.12895) 31.8424 (.01768) 32.6797 (.01839)
2.25 2.25 5.03749 (.00101) 63.7458 (.05049) 18.2982 (.00761) 18.7605 (.00791)
2.5 2.5 3.76963 (.00063) 36.7302 (.02196) 11.7049 (.00383) 11.9904 (.00398)
2.75 2.75 3.01011 (.00043) 22.9691 (.01077) 8.15272 (.00218) 8.35205 (.00226)
3 3 2.51985 (.00031) 15.4818 (.00589) 6.06996 (.00137) 6.21263 (.00142)
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TABLE 2.6 50 Training Samples of Wafer Data

WRITE (X1) ERASE (X2)
K n=1 n=2 n=3 n=4 n=5 n=1 n=2 n=3 n=4 n=5
1 2.630 4.000 2.920 0.948 2.220 5.190 5.220 4.890 5.950 5.260
2 0.747 1.750 1.240 0.863 1.580 6.720 4.380 5.510 4.920 4.790
3 1.450 1.380 3.470 1.580 1.740 6.400 6.460 6.740 5.810 7.180
4 1.390 2.900 2.370 0.958 1.560 4.860 5.110 3.840 7.370 6.530
5 1.840 1.320 1.950 2.530 2.250 3.950 8.300 13.50 7.170 5.000
6 3.900 1.180 0.973 1.320 2.220 24.20 3.650 5.380 3.870 6.550
7 2.460 2.450 1.660 2.000 2.530 9.590 5.510 7.560 9.090 8.350
8 1.350 1.340 1.150 1.830 1.580 4.340 7.280 5.630 6.460 4.400
9 2.910 1.570 0.857 1.850 1.390 5.500 6.100 3.070 5.260 8.000
10 1.460 2.030 2.250 1.460 2.000 6.270 4.220 5.950 5.130 4.770
11 1.780 2.020 1.330 1.340 1.720 6.400 8.540 4.660 5.460 7.730
12 1.850 1.810 1.830 1.980 2.470 5.390 7.100 6.060 3.700 19.90
13 1.170 2.270 1.920 2.810 0.958 6.370 5.710 6.030 8.600 4.480
14 1.410 1.740 1.940 3.330 1.490 4.260 5.660 6.450 9.170 7.780
15 1.510 3.720 1.330 3.230 1.640 3.860 5.110 5.840 6.200 4.380
16 2.310 3.790 1.840 0.898 2.060 7.180 5.500 6.830 5.520 5.520
17 2.350 3.550 2.090 2.560 1.550 8.120 11.80 6.360 4.700 5.010
18 3.270 2.660 2.160 1.700 1.670 7.160 4.850 4.550 5.600 4.560
19 1.430 1.700 1.290 1.100 1.960 5.470 4.720 4.400 6.740 5.320
20 1.420 1.070 1.810 1.780 2.030 4.130 7.140 4.300 3.550 4.410
21 4.150 1.390 1.520 0.878 3.030 6.280 7.540 4.860 4.660 5.930
22 0.967 2.030 2.280 1.580 1.780 4.620 7.790 5.090 3.740 5.800
23 0.928 1.920 1.120 6.250 1.160 4.280 6.350 5.220 6.210 6.320
24 1.620 1.710 1.220 3.350 2.220 5.510 7.510 5.070 4.260 6.380
25 2.820 1.670 2.270 1.080 2.420 5.060 5.280 5.500 4.410 6.540
26 2.880 1.960 1.560 1.640 1.580 5.970 9.790 3.670 6.030 6.860
27 1.300 1.610 5.010 3.190 4.770 6.340 11.70 4.110 6.970 5.800
28 1.620 2.500 3.350 2.890 1.670 8.400 5.220 5.030 14.10 4.950
29 1.150 1.990 1.380 1.960 1.400 6.810 4.850 4.300 7.180 6.480
30 1.950 1.020 1.330 1.880 1.680 5.300 3.410 5.780 5.220 7.850
31 5.700 3.060 1.020 2.350 1.670 5.920 7.770 5.270 4.170 9.140
32 1.810 2.300 3.490 2.100 2.190 7.650 5.530 6.030 5.390 5.400
33 0.986 1.280 1.870 1.510 1.760 5.870 6.080 6.910 5.380 6.880
34 1.560 1.970 1.600 1.290 7.050 5.960 4.080 7.590 4.620 16.50
35 1.300 1.510 1.670 1.640 1.680 5.550 7.290 5.130 4.140 5.470
36 1.040 1.250 1.030 3.370 1.400 5.890 4.590 3.910 9.310 5.260
37 2.140 0.960 1.830 1.980 0.999 6.270 6.150 6.570 6.180 4.560
38 1.650 1.920 0.968 1.660 1.130 4.450 6.410 4.880 5.580 8.880
39 2.310 1.550 2.710 1.290 2.440 6.500 5.490 3.600 4.570 3.780
40 3.620 1.180 1.760 2.100 1.290 7.930 8.180 13.10 3.530 12.30
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TABLE 2.6 (Continuted) 50 Training Samples of Wafer Data

WRITE (X1) ERASE (X2)
K n=1 n=2 n=3 n=4 n=5 n=1 n=2 n=3 n=4 n=5
41 3.890 1.240 2.510 1.230 3.240 4.590 6.060 7.130 4.400 5.190
42 1.860 3.080 1.710 1.260 1.050 9.560 6.360 6.340 5.340 5.860
43 2.280 2.420 2.660 2.610 2.830 4.700 4.850 7.430 5.220 5.540
44 1.600 2.590 0.813 3.000 1.620 5.390 5.560 7.440 6.960 6.400
45 1.840 3.130 2.150 4.070 1.320 5.110 8.000 4.630 4.250 3.570
46 1.550 1.800 1.930 2.010 1.290 3.500 4.870 4.850 5.260 5.910
47 1.380 2.580 1.200 4.780 1.840 5.600 5.200 5.270 7.500 5.500
48 2.380 1.130 1.540 1.060 2.500 7.970 5.180 4.820 4.860 6.810
49 2.520 1.790 1.210 2.560 1.170 4.660 5.550 7.000 7.250 6.750
50 1.610 2.060 2.230 1.640 1.010 7.770 3.770 6.960 5.070 5.990

TABLE 2.7 On-line Samples of Wafer Data

WRITE (X1) ERASE (X2)
t n=1 n=2 n=3 n=4 n=5 n=1 n=2 n=3 n=4 n=5

1 2.260 2.310 2.740 2.120 1.990 6.220 4.840 6.520 5.120 8.970
2 1.850 1.580 1.520 1.820 1.980 7.290 6.570 6.180 3.950 4.840
3 1.230 2.650 2.630 1.330 1.670 5.500 8.220 5.010 4.510 4.080
4 2.090 2.800 1.700 3.530 1.630 5.520 5.870 4.490 12.80 8.250
5 2.280 1.760 2.570 1.120 1.610 5.930 7.170 4.240 6.060 6.600
6 2.150 1.720 1.610 4.040 1.910 12.70 8.650 4.600 6.170 6.370
7 2.990 1.820 2.130 2.650 2.310 4.720 6.280 8.050 7.490 4.230
8 2.730 1.730 2.120 1.500 3.100 5.580 5.920 5.620 4.380 4.920
9 1.470 2.060 2.480 1.560 1.860 4.340 5.620 6.000 4.870 4.930
10 2.040 1.960 1.640 1.520 2.050 4.690 6.100 7.510 5.470 11.20
11 1.660 1.720 1.410 1.770 1.480 4.480 6.150 5.450 5.650 5.700
12 1.720 2.210 1.480 1.830 1.630 4.610 6.880 4.990 5.380 6.870
13 2.010 1.680 2.740 1.210 1.520 8.650 7.220 7.850 8.480 6.470
14 2.330 2.760 2.290 2.480 2.020 5.350 7.910 5.030 5.800 4.570
15 1.950 1.830 1.680 1.950 2.160 5.730 5.020 5.280 5.270 6.100
16 1.340 2.290 2.100 2.640 2.870 4.730 5.890 5.710 6.760 3.440
17 1.840 2.170 1.470 1.850 1.920 8.520 7.340 4.270 4.260 10.70
18 1.850 1.840 1.240 2.330 1.490 4.200 4.200 5.190 5.010 4.940
19 1.440 1.600 3.160 2.450 1.570 8.460 5.820 10.90 4.520 5.220
20 2.940 2.500 1.320 2.620 1.540 7.250 4.750 3.820 6.440 4.810
21 2.010 2.250 1.190 1.190 1.190 7.240 5.520 10.20 8.010 4.890
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Chapter 3

Combining Two One-sided Control
Charts for Monitoring Multivariate
Process Dispersion

3.1 Background

Over the last two decades, the problem of multivariate quality control has received con-

siderable attention and, as a result, there have been increasing research works in multivariate

control charts published in statistical and quality journals. When monitoring a multivariate

process, while it is important to monitor the process mean, it is just as important to monitor

both increases and decreases in process dispersion. In this chapter, we propose a combined

chart that incorporates two one-sided likelihood ratio test based control charts for detecting

both increases and decreases in process dispersion.

Consider a multivariate process with p possibly correlated quality characteristics. Sup-

pose that the p × 1 quality characteristic vector X is distributed as a multivariate normal

distribution (denoted by Np(µ, Σ)) with unknown mean vector µ and covariance matrix Σ.

In the literature, a substantial amount of research work has focused on developing multi-

variate control charts for monitoring the process mean vector µ. Excellent reviews of these

developments can be found in, for example, Wierda (1994), Lowry and Montgomery (1995),

Mason, Champ, Tracy, Wierda, and Young (1997), and Montgomery (2008).
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Although developing methods for monitoring process dispersion is more difficult than

that for process mean due to the more complicated distribution theory involved, there has

been some research in recent years devoted to multivariate process dispersion monitoring in

the literature. Particularly, papers by Wierda (1994), Mason, Tracy, and Young (1997), and

Woodall and Montgomery (1999) mentioned the importance of controlling the process dis-

persion. Also, the development and discussions of multivariate control charts for monitoring

changes in the covariance matrix can be found in, for example, Alt (1984), Alt and Be-

dewi (1986), Sakata (1987), Alt and Smith (1998), Calvin (1994), Tang and Barnett (1996a,

1996b), Levinson, Holmes, and Mergen (2002), Yeh, Lin, Zhou, and Venkataramani (2003),

Yeh, Huwang, and Wu (2004), Djauhari (2005), Reynolds and Cho (2006), and Huwang,

Yeh, and Wu (2007). Recently, Yeh, Lin, and McGrath (2006) reviewed multivariate control

charts designed for monitoring changes in the covariance matrix that have been developed in

the last 15 years and proposed a new multivariate EWMA control chart. They also discussed

comparisons of chart performance between their chart and charts in the literature.

In most processes, more attention would be paid to investigate if the process dispersion

increases. However, it is also important to detect decreases in dispersion, which in essence

leads to process improvement. When a chart is used to simultaneously monitor for both

increases and decreases in process dispersion a desirable feature is to have all of its out-of-

control average run length (ARL) values smaller than the in-control ARL. Such a chart

was defined as being ARL-unbiased by Pignatiello, Acosta-Mejia, and Rao (1995). Pachares

(1961) showed the two-sided confidence interval based on an equal tail probability, say, α/2,

leads to a biased test for a two-sided hypothesis test for the variance of a normal population.

Consequently, a chart uses an equal tail probability to construct a limit for detecting changes

in variance, it will be ARL-biased. For example, Pignatiello, Acosta-Mejia, and Rao (1995)

reported that an R chart with equal-tail-probability limits is ARL-biased. Lowry, Champ,

and Woodall (1995) reported that when using R or S chart, it is much more difficult to detect
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decreases than increases in variance. As variance decreases, the out-of-control ARL value

increases, thus becoming larger than the in-control ARL. Acosta-Mejia (1998) proposed

combining two one-sided CUSUM chart based on the subgroup range for monitoring both

increases and decreases in dispersion. Acosta-Mejia, Pignatiello, and Rao (1999) discussed

and compared several control charts for monitoring increases and decreases in the variance

of a normal process and demonstrated their proposed chart is superior to other procedures.

Extending to the multivariate case, most of techniques for monitoring the covariance

matrix are all centered on two-sided tests of

H0: Σ = Σ0 vs. H1: Σ 6= Σ0. (3.1.1)

These techniques can detect either increases or decreases in multivariate process dispersion.

In current chapter, we consider the two one-sided tests, (2.1.1) and (2.1.2), for monitoring

increases and decreases in dispersion. Yen and Shiau (2008) proposed a simple and yet

effective one-sided LRT-based control chart based on the hypotheses (2.1.1) for detecting

increases in dispersion for each of the cases of known and unknown Σ0. They reported that

their one-sided chart outperforms the existing control charting techniques based on the two-

sided tests in terms of the average run length. An analogous one-sided LRT- based control

chart based on the hypotheses (2.1.2) for detecting decreases in dispersion has been proposed

and studied in Chapter 2.

The purpose of this chapter is to combine the two one-sided LRT-based control charts

mentioned above to construct a scheme for monitoring both increases and decreases in dis-

persion simultaneously. In addition, we also show the control limits of the proposed chart are

better suited when using a set of unequal tail probabilities instead of equal tail probabilities.

The rest of the chapter is organized as follows. Section 3.2 describes in detail the proposed

LRT-based combined control chart. Both cases of known and unknown Σ0 are considered.

Section 3.3 describes the existing techniques based on the two-sided tests of (3.1.1) for both

cases of known and unknown Σ0. From the perspective of the ARL, the performance of
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the proposed combined control chart is compared with that of the existing two-sided control

charts based on simulation studies. Section 3.4 discusses the application of the proposed chart

to some real-life data to demonstrate the applicability and the effectiveness of the proposed

chart. Section 3.5 concludes the chapter with a brief summary and further discussion.

3.2 A Combined Chart Based On Two One-Sided LRT-

based Control Charts

3.2.1 A Combined LRT-based Control Chart When Σ0 is Known

As described in Subsection 2.2.1, when monitoring increases in dispersion, the one-sided

control chart based on the LRT statistic for testing hypothesis (2.1.1), proposed by Yen

and Shiau (2008), is constructed based on calculating the statistic TI in (2.4.12). When

monitoring decreases in dispersion, the one-sided control chart based on the LRT statistic

for testing hypothesis (2.1.2) is constructed based on calculating the statistic TD in (2.2.5).

The rejection region for the test (2.1.1) ((2.1.2)) is {TI > TI(αI)} ({TD > TD(αD)}), where

the critical value TI(αI) (TD(αD)) is chosen such that the significance level equals αI (αD).

In other words, TI(αI) (TD(αD)) is the (1 − αI)th ((1 − αD)th) quantile of the distribution

of TI (TD). As before, without loss of generality, we can assume that µ0 = 0 and Σ0 = Ip

when studying the distribution of TI (TD).

When Σ0 is known, a combined LRT-based control chart can be constructed by combining

the two one-sided control charts described above. Hence, the combined LRT-based control

chart for monitoring both increases and decreases in dispersion simultaneously signals an

out-of-control alarm if

TI > TI(αI) or TD > TD(αD), (3.2.1)

where the critical values TI(αI) and TD(αD) are taken as the control limits and obtained by

controlling the type I error probability. Similar to Yen and Shiau (2008) and Chapter 2,

we use Monte Carlo simulation to obtain TI(αI) and TD(αD), the critical values of the two

51



tests. By the nature that each test takes care of one side of the alternative and the two test

test statistics, TI and TD, are calculated with two disjoint sets of eigenvalues, {di|di > 1}
and {di|0 < di < 1}, we would expect these two regions, {TI > TI(αI)} and {TD > TD(αD)},
are disjoint. Unfortunately, this is not true theoretically. However, our simulation study

indicates that the two rejection regions are disjoint in practice. Hence, the type I error

probability for the combined LRT-based control chart is practically αI + αD. The control

limits, TI(αI) and TD(αD), can be obtained by an empirical approach to be described in

Subsection 2.3.1.

3.2.2 A Combined LRT-based Control Chart When Σ0 is Un-
known

As described in Subsection 2.2.2, the LRT statistic to test if the process dispersion in-

creases at time t is T ′
I in (2.4.13). See Yen and Shiau (2008). And the LRT statistic for

testing decreases in dispersion is T ′
D in (2.2.9). See Chapter 2. The rejection region for

the test (2.1.1) ((2.1.2)) is {T ′
I > T ′

I(α
′
I)} ({T ′

D > T ′
D(α′D)}), where the critical value T ′

I(α
′
I)

(T ′
D(α′D)) is chosen such that the significance level equals α′I (α′D).

Similar to the case of known Σ0 given in the previous subsection, we can construct a

combined chart for detecting changes in process dispersion by combining the two one-sided

charts constructed with the LRT statistics (2.4.13) and (2.2.9) respectively.

3.2.3 The Control Limits

As shown earlier, the control limits does not depend on the in-control process mean µ0

and covariance matrix Σ0. Thus, without loss of generality, we can assume that µ0 = 0 and

Σ0 = Ip when obtaining the control limits by Monte Carlo simulation.

For the case of known Σ0, to construct the control limits, we generate N(= 1, 000, 000)

samples of size n from Np(0, Ip). For each sample, compute the eigenvalues of the sample

covariance matrix St and then the LRT statistics TI and TD. Then, for given αI (αD), the
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control limit is the 100(1-αI) (100(1-αD)) percentile of the N simulated values of TI (TD).

For the case of unknown Σ0, the control limits can be obtained in the same way. The only

difference is that we need to generate a historical data set to compute the sample covariance

matrix S0 in addition to St and find the eigenvalues of StS
−1
0 . Furthermore, αI and αD (α′I

and α′D), satisfying α = αI + αD (=α′I + α′D), are chosen by a search algorithm.

3.2.4 Unequal-Tail-Probability Control Limits

As mentioned before, in the univariate case, a chart with equal-tail-probability limits for

detecting changes in dispersion is ARL-biased. Extending to the multivariate case, consider

p = 2 and using αI=αD=α/2, the equal-tail probability, for the proposed combined chart

for detecting increases and decreases in dispersion. The out-of-control ARL (denoted by

ARL1) values, for variance changes in covariance matrix, are presented in Table 3.1 and

Figure 3.1. Since some of these values are greater than 370, this demonstrates that using

equal-tail probabilities for the proposed chart also leads to an ARL-biased procedure in

the multivariate case. Hence, we suggest using unequal tail probabilities to construct the

control limits of the proposed combined control chart, i.e., αI 6= αD (α′I 6= α′D). But how

to split α between αI and αD (α′I and α′D) is a question. We conduct a simulation study

and find that the power of the one-sided chart based on (2.2.5) ((2.2.9)) for monitoring

decreases in dispersion is worse than that of the one-sided chart based on (2.4.12) ((2.4.13))

for monitoring increases in dispersion. Therefore, to achieve the ARL-unbiasedness, it is

necessary to set

αI < α/2 and αD = α− αI (α′I < α/2 and α′D = α− α′I). (3.2.2)

Although there might be plenty of such the combinations of (αI,αD) ((α′I,α
′
D)), in this

study, we just consider these five following combinations of (αI,αD) and (α′I,α
′
D) for p = 2

and α = 0.0027. For n = 5, consider (αI,αD)=(0.000515,0.002185), (0.000415,0.002285),

(0.000395,0.002305), (0.000375,0.002325), and (0.000275,0.002425). These five combinations
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of (αI,αD) are also considered for the combinations of (α′I,α
′
D) for m = 25, 50. Also, for

n = 10, consider (αI,αD)= (0.000715,0.001985), (0.000635,0.002065), (0.000615, 0.002085),

(0.000595,0.002105), and (0.000515,0.002185). These corresponding combinations chosen for

their ARL1 values are smaller than the two-sided Modified-LRT control chart described in

Subsection 2.4.1 for all cases tested. We obtain the control limits for each of (αI,αD) ((α′I,α
′
D))

as described in the previous subsection. For each control chart, we consider N=200,000, the

number of simulated values of TI (TD, T ′
I , T ′

D) in each simulation, to get one control limit

and repeat the procedure b(=100) times to get b control limits. Then the average of these b

control limits is taken as the final control limit and the sample standard deviation divided

by
√

b is the standard error of the final control limit. Table 3.2 gives the control limits and

the corresponding standard error (in parentheses) for considered (αI,αD) ((α′I,α
′
D)).

3.3 A Comparative Study

In this section, we compare our proposed chart, which combines two one-sided LRT-based

control charts, with the existing control charts based on the two-sided test (3.1.1) for both

cases of known and unknown Σ0 in terms of the out-of-control ARL. The existing two-

sided-tested-based control charts considered in this chapter are the two-sided, the two-sided

Modified-LRT, and the TB-decomposed control charts described in the previous subsections

2.4.1-2.4.2.

The LHM-G control chart described in Subsection 2.4.3 is not considered in this compar-

ative study. Yen and Shiau (2008) and Chapter 2 together showed by simulation studies that

the ARL performance of the two-sided Modified-LRT control chart and the LHM-G control

chart, either for detecting increases or for detecting decreases in dispersion, are very close

with the former slightly better. Hence, we do not include the LHM-G-chart in comparison.
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3.3.1 Comparisons

In this subsection, we compare the performances of the proposed procedure with the

existing techniques described in Chapter 2 and the performance is evaluated in terms of

ARL with an empirical study.

Yen and Shiau (2008) (Chapter 2) defined that the covariance matrix has been “increased”

(“decreased”) from Σ0 to Σ, i.e., Σ − Σ0 (Σ0 − Σ) is positive semidefinite and Σ 6= Σ0.

As shown in Yen and Shiau (2008) (Chapter 2), the distributions of TI and TD (T ′
I and T ′

D)

are independent of Σ0. Thus, as shown previously, we can assume that Σ0 = Ip without

loss of generality, when simulating the distributions of TI and TD (T ′
I and T ′

D). For easy to

discuss, we consider p = 2. As in Chapter 2, to create out-of-control scenarios, express Σ as[
∆1 ρ

√
∆1∆2

ρ
√

∆1∆2 ∆2

]
, i = 1, 2.

In our comparative study, setting α = 0.0027 which results in ARL0 = 370, we consider

the following cases: p = 2; n = 5, 10 for known Σ0; m = 25, 50 and n = 5 for unknown Σ0.

The in-control covariance matrix is Σ0 = Ip and the out-of-control covariance matrix is Σ.

The following three scenarios for Σ are considered:

(1) ∆1 = ∆2 = c and ρ = 0 (that is, Σ = cΣ0), for c=1.25,1.35,1.5,1.75,2,2.25,2.5,2.75,3

for increases and 0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1 for decreases.

(2) ∆1 6= ∆2 and ρ = 0. for the following 8 combinations: (∆1, ∆2) = (1.25,1), (1.75,1),

(2.25,1), (2.75,1), (1.25,1.75), (1.75,2.25), (2.75,1.25), (2.25,2.75) for increases and

(0.8,1), (0.6,1), (0.4,1), (0.2,1), (0.8,0.6), (0.6,0.4), (0.4,0.2), (0.2,0.8) for decreases.

(3) For ρ 6= 0, under condition (2.4.11), we choose |ρ| =0.2 and 0.4 for the following 8

combinations: (∆1, ∆2) =(1.75,1.75), (1.75,2.25), (2.25,2.25), (2.25,2.75) for increases

and (0.6,0.6), (0.6,0.4), (0.4,0.4), (0.4,0.2) for decreases. Note that these 8 combinations

are selected from scenarios (1) and (2) so that we can study the effect of ρ on ARL

performance.
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In the simulation study, we take N = 200, 000 and b = 100 to obtain the ARL estimate

along with its standard error for each scenario. When Σ0 is known, for α = 0.0027, two-

sided LRT, and two-sided Modified-LRT control limits obtained are respectively 22.68151 and

17.67692 for n = 5; 17.53596 and 15.45388 for n = 10. In particular, the control limits of the

proposed combined chart for five combinations of (αI,αD) considered are given in Table 3.2 for

n = 5, 10. It is found that, with the afore-mentioned control limits obtained from empirical

study, ARL0 ≈ 370 with standard error
(√

1−0.0027
Nb·0.00273

)
around 1.591667. Moreover, for both

n = 5, 10, the control limit based on TB-decomposed control chart is χ2
3(0.9973)=14.15625.

Tables 3.3 and 3.4 give the estimates of ARL1 and their standard errors (in parentheses) of the

two one-sided combined-LRT, two-sided LRT, two-sided Modified-LRT, and TB-decomposed

control charts for the scenarios (1)-(3) described above. The following results are observed:

(i) For the two one-sided combined control chart, considering the five combinations (αI,αD),

the larger the αI is (especially for αI=0.000515 (n = 5) and 0.000715 (n = 10)), the

smaller the ARL1 value for detecting dispersion increases is and also the larger the

ARL1 value for detecting dispersion decreases is. Similarly, the larger the αD is (espe-

cially for αD=0.002425 (n = 5) and 0.002185 (n = 10)), the smaller the ARL1 value

for detecting dispersion decreases is and also the larger the ARL1 value for detecting

dispersion increases is. Regardless of whether the dispersion increases or decreases, the

proposed combined control chart is ARL-unbiased for the five combinations (αI,αD)

and for all cases tested. It outperforms, for all cases tested, the two-sided Modified-

LRT control chart, which is also ARL-unbiased. It is interesting to note that the

TB-decomposed control chart performs the worst when detecting dispersion decreases

but performs the best for most of the cases tested when detecting dispersion increases.

On the other hand, the two-sided LRT control chart performs the worst when detecting

dispersion increases but performs the best for most of the cases tested when detecting

dispersion decreases. This may link to the ARL-biasedness or unbiasedness of the
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control chart. An ARL-biased chart usually performs poorly compared to an ARL-

unbiased chart. Furthermore, consider the ARL1 performance for all cases tested, we

suggest setting αI=0.000415, 0.000395, 0.000375 for n = 5, and 0.000635, 0.000615,

0.000695 for n = 10 or other αI around these values for the proposed combined chart

to have a more satisfactory performance than the existing two-sided control charts.

Figures 3.2-3.5, in the original and logarithm scale for ∆i = c, show the ARL curves

of the combined chart for αI=0.000515, 0.000395, 0.000275 for n = 5, and 0.000715,

0.000615, 0.000515 for n = 10 and the existing control charts for the cases tested in

scenario (1). Through these Figures, it is easier to comprehend what we have discussed

here.

(ii) Given c, the ARL1 for n = 10 is smaller than that for n = 5. On the other hand,

for fixed n, ARL1 is smaller when c (> 1) is larger or c (< 1) is smaller. For all the

combinations of ∆1 and ∆2 in scenarios (1)-(3), the ARL1 for n = 10 is smaller than

that for n = 5. For fixed n, ρ, and one of ∆1 and ∆2, say ∆2, the ARL1 decreases when

∆1 (> 1) increases or ∆1 (< 1) decreases. These results are all expected. For the effect

of ρ, we first observe that, by (2.4.11), the eigenvalues of Σ−Σ0 or Σ0−Σ depend on ρ

through ρ2, hence the sign of ρ does not play any role in ARL1 performance as seen in

our simulation study. The ARL1 decreases when |ρ| increases from 0 to 0.4. This means

that the ability of the proposed chart detecting a decrease in dispersion gets better when

the correlation (positive or negative) between the two quality characteristics becomes

stronger.

For the case of unknown Σ0, two-sided LRT and two-sided Modified-LRT control limits

obtained respectively are 22.58894 and 53.27833 for m = 25; 22.66328 and 58.79951 for

m = 50. Similarly, the control limits for the combined chart for the five combinations of

(α′I,α
′
D) considered for m = 25, 50 are given in Table 3.2. The ARL1 values along with their

standard errors are given in Tables 3.4-3.5. And Figures 3.6-3.9 show the ARL curves of
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the two one-sided combined chart for α′I=0.000515, 0.000395, 0.000275 (m = 25, 50) and

the existing control charts for the cases tested in scenario (1). Similar observations as those

discussed earlier for the case of known Σ0 can also be made here.

3.3.2 Discussion

The two one-sided combined control charts are based on the two one-sided hypotheses

(2.1.1) and (2.1.2) respectively, while the existing two-sided control charts in this chapter

are all based on the two-sided hypothesis (3.1.1). In this subsection, we briefly discuss the

alternative hypotheses of (3.1.1), (2.1.1), and (2.1.2). It is easy to show that the union of

the sets of the alternative hypotheses of (2.1.1) and (2.1.2) is not equal to the set of the

alternative hypothesis of (3.1.1), that is,

{H1: Σ ≥ Σ0 and Σ 6= Σ0} ∪ {H1: Σ ≤ Σ0 and Σ 6= Σ0} 6= {H1: Σ 6= Σ0}. (3.3.1)

The former set is smaller than the latter one because there are many Σ−Σ0 that are neither

positive semidefinite nor negative semidefinite. The combined control chart is not designed

for all possible dispersion changes if the out-of-control scenario considered is outside of the

alternative hypotheses of (2.1.1) and (2.1.2), the proposed combined chart might not give a

better performance. Nevertheless, the combined control chart with unequal-tail-probability

control limits has a better performance than the existing control charts based on the two-

sided hypotheses (3.1.1) for all cases tested for dispersion shifts in Subsection 3.3.1 for

alternative hypothesis of (2.1.1) and (2.1.2),

However, if the two-sided LRT and TB-decomposed control charts are used to monitor

all possible dispersion changes, that is, Σ 6= Σ0, the former is ARL-biased for detecting

dispersion increases and the latter is ARL-biased for detecting dispersion decreases. The two-

sided modified control chart based on the alternative hypothesis Σ 6= Σ0 is ARL-unbiased for

detecting dispersion increases or decreases. In general, when detecting dispersion increases

or decreases and the change range of ρ satisfying (2.4.11), our proposed combined chart can
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give a satisfactory performance than the existing two-sided charts considered in this study.

3.4 Example

In this section, the two real-life examples given respectively in Yen and Shiau (2008)

and Chapter 2 are used to illustrate the application of the proposed combined control chart.

Moreover, two simulated examples are presented to demonstrate the detecting power of

the combined control chart and the existing two-sided control charts when the dispersion

increases or decreases.

3.4.1 Two real examples

The first example is related to a metal layer process for the semiconductor elements of

a wafer and the data were given in Yen and Shiau (2008). The two quality characteris-

tics monitored are “after-develop-inspection-critical-dimension (ADICD)” and “after-etch-

inspection-critical-dimension (AEICD)”. The two critical-dimension are measured at five

points on each wafer size after the develop-action and etch-action, respectively. Let X1 and

X2 be the averages of the five ADICD and AEICD measurements on a wafer, respectively.

Let X= (X1, X2). Five such X samples from five wafers are considered as a subgroup of

samples with size 5. The first example describes an application in which process dispersion

is increased. For this example, 50 sets of random samples, each of size 5, were taken from the

original process. The sample mean ¯̄X and sample covariance matrix S0, calculated by (2.2.6),

for the first example are respectively

(
0.79966
0.85744

)
and

(
3.70395× 10−4 1.38183× 10−4

1.38183× 10−4 4.95859× 10−4

)
.

For p = 2, m = 50, n = 5, and α = 0.0027, the two-sided LRT and two-sided Modified-LRT

control limits are 22.66328 and 58.79951, respectively. The control limits of the proposed

combined chart for (α′I,α
′
D)=(0.000395,0.002305) are 11.7444 and 22.7055. Moreover, 25 sets

of on-line samples, each of size 5, are monitored by using these control limits. Figure 3.10

shows these control charts for the first example.
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The second example is the example described in Chapter 2, which illustrates a case

process dispersion is decreased. The second example is describes a decreased case. Similarly,

we also took 50 sets of random samples, each of size 5, from the original process. The

sample mean ¯̄X and sample covariance matrix S0 for the second example are respectively(
1.98920
6.14052

)
and

(
0.84260 0.54071
0.54071 5.44242

)
. The control limits of the control charts under study

are the same as described in the first example. Moreover, 21 additional sets for the second

example are also monitored by using the above control limits. Figure 3.11 shows these control

charts for the second example.

From Figures 3.10 and 3.11, regardless of whether the dispersion increases or decreases,

we observe that the detecting power of the proposed combined chart is indeed a bit weaker

than that of the one-sided chart but still better than that of the two-sided modified-LRT

chart. The detecting power of the two-sided control chart is the worst for detecting dispersion

increases, but is as well as the proposed combined chart for detecting dispersion decreases.

Moreover, we also observe one thing interesting for the proposed combined chart that, for the

same sample, the larger the value of T ′
I is, the smaller the corresponding value of T ′

D is. And

hence the proposed combined chart, in detecting dispersion decreases in the first example

and in detecting dispersion increases in the second example, does not detect any. For the

second example, it is also found that the T ′
I values by (2.4.13) for the proposed combined

chart are mostly close to 0 since most of the eigenvalues, βi’s, from the data are less than 1.

These two examples demonstrate that the out-of-control conditions are successfully picked

up by the right individual control chart in the combined scheme. This demonstrates that

the proposed combined control chart is more powerful than the two-sided control charts.

3.4.2 Simulated examples for second example

Consider the second example in the previous section. Take the in-control distribu-

tion as Np(
¯̄X,S0) where ¯̄X and S0 are from the second example. In order to study
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the effectiveness of the proposed combined chart, we generate 100 subgroups of samples,

each of size 5, in which the first ten subgroups and the 51st to 60th subgroups are from

the in-control process Np(µ0,Σ0), the 11th to 50th subgroups are from Np(
¯̄X,Σ1), and

the 61st to 100th subgroups are from Np(
¯̄X,Σ2) with Σ1 ≥ Σ0 and Σ2 ≤ Σ0. Let

Σ1=

[ √
∆1 0

0
√

∆2

]
S0

[ √
∆1 0

0
√

∆2

]
and Σ2=




√
∆′

1 0

0
√

∆′
2


S0




√
∆′

1 0

0
√

∆′
2


, where

∆1 and ∆2 are greater than 1 and ∆′
1, and ∆′

2 are less than 1. Two scenarios are con-

sidered for Σ1 and Σ2 with (i)(∆1, ∆2) = (1.75, 2.25) and (∆′
1, ∆

′
2) = (0.2, 0.4) and (ii)

(∆1, ∆2) = (1.75, 1.75) and (∆′
1, ∆

′
2) = (0.4, 0.4).

The results of the proposed combined, two-sided, and two-sided Modified-LRT control

charts of scenario (i) and (ii) are, respectively, presented in Figures 3.12-3.13. From Figure

3.12, we first observe that all three charts pick none in the two in-control zones. The

“increase-chart” of the combined chart picks five out-of-control samples in the increase-zone

and none in the decrease-zone. The “decrease-chart” picks three in the decrease-zone and

none in the increase-zone. Since the two-sided chart is strong on detecting decreases and

weak on increases, it picks three from the increase-zone (same as the combined chart) and

none from the decrease-zone. Since two-sided modified control chart is unbiased, it picks

three in the increase-zone and two from the decrease-zone, not as many as that for the

combined chart. This demonstrates that the combined chart has a stronger detecting power

than the two-sided modified chart. Moreover, similar results are observed for the scenario

(ii) presented in Figure 3.13. The figures also demonstrate that the first out-of-control region

is easier to detect than the second out-of-control region and scenario (i) is easier to detect

than scenario (ii) because of the larger shift size, which is expected.

3.5 Discussion

In this chapter, we propose a combined control chart constructed by combining the two

one-sided likelihood-ratio-test-based control charts that are specifically designed for detecting
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dispersion increases and decreases respectively for multivariate processes. The proposed

combined chart is in essence a multivariate extension of the two-sided unequal tail test

for univariate variance. Both cases when the in-control covariance matrix Σ0 is known or

unknown are considered. It is shown that the control limits do not depend on µ0 and

Σ0 and can be constructed with unequal tail probabilities to achieve ARL-unbiased. The

simulation study demonstrates that the proposed combined control chart outperforms the

existing control charts based on the two-sided tests of (3.1.1) in terms of the ARL, when the

process dispersion is indeed increases or decreases.
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Figure 3.1: The ARL curves of the proposed combined chart for equal tail probability

(αI=αD=0.00135) when p = 2 and Σ0 is known or unknown.
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Figure 3.2: The ARL curves of the control charts under study for (αI,αD) in the original

scale when p = 2 and Σ0 is known (n = 5).
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Figure 3.3: The ARL curves of the control charts under study for (αI,αD) in the logarithm

scale when p = 2 and Σ0 is known (n = 5).
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Figure 3.4: The ARL curves of the control charts under study for (αI,αD) in the original

scale when p = 2 and Σ0 is known (n = 10).
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Figure 3.5: The ARL curves of the control charts under study for (αI,αD) in the logarithm

scale for c when p = 2 and Σ0 is known (n = 10).
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Figure 3.6: The ARL curves of the control charts under study for (αI,αD) in the original

scale for c when p = 2 and Σ0 is unknown (m = 25,n = 5).

68



log(0.1) log(0.2) log(0.5) log(0.8) 0 log(1.25) log(2) log(3)
0

200

400

600

∆1=∆2=c

A
R

L

log
10

 scale for (α
I
,α

D
)=(.000515,.002185) for Σ

0
 unknown (m=25)

 

 

combined−one−sided
two−sided
modified

log(0.1) log(0.2) log(0.5) log(0.8) 0 log(1.25) log(2) log(3)
0

200

400

600

∆1=∆2=c

A
R

L

log
10

 scale for (α
I
,α

D
)=(.000395,.002305) for Σ

0
 unknown (m=25)

 

 

combined−one−sided
two−sided
modified

log(0.1) log(0.2) log(0.5) log(0.8) 0 log(1.25) log(2) log(3)
0

200

400

600

∆1=∆2=c

A
R

L

log
10

 scale for (α
I
,α

D
)=(.000275,.002425) for Σ

0
 unknown (m=25)

 

 

combined−one−sided
two−sided
modified

Figure 3.7: The ARL curves of the control charts under study for (αI,αD) in the logarithm

scale for c when p = 2 and Σ0 is unknown (m = 25,n = 5).
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Figure 3.8: The ARL curves of the control charts under study for (αI,αD) in the original

scale for c, when p = 2 and Σ0 is unknown (m = 50,n = 5).
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Figure 3.9: TThe ARL curves of the control charts under study for (αI,αD) in the logarithm

scale for c when p = 2 and Σ0 is unknown (m = 50,n = 5).
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Figure 3.10: The combined, two-sided, and two-sided Modified-LRT control charts on 25
new samples of the first example.
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Figure 3.11: The combined, two-sided, and two-sided Modified-LRT control charts on 21
new samples of the second example.
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Figure 3.12: The combined, two-sided, and two-sided Modified-LRT control charts for sce-
nario (i) of the hypothetical example.
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Figure 3.13: The combined, two-sided, and two-sided Modified-LRT control charts for sce-
nario (ii) of the hypothetical example.
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TABLES

Table 3.1 ARL1 and their standard errors (in parentheses) of the two one-sided combined

control charts with the equal tail probability (αI=αD=0.00135).

∆1 ∆2

Σ0 known (p = 2) Σ0 unknown (p = 2, n = 5)

n = 5 n = 10 m = 25 m = 50

1.25 1.25 105.839 (.24232) 69.4879 (.12859) 118.236 (.28626) 112.116 (.26427)
1.35 1.35 65.6866 (.11813) 37.3194 (.05029) 74.8315 (.14378) 70.0771 (.13024)
1.5 1.5 35.3531 (.04633) 17.5094 (.01591) 41.0454 (.05808) 38.0502 (.05179)
1.75 1.75 16.0562 (.01393) 7.14902 (.00396) 18.8476 (.01780) 17.4070 (.01577)
2 2 9.09603 (.00579) 3.94574 (.00151) 10.6591 (.00741) 9.82699 (.00653)
2.25 2.25 5.96982 (.00298) 2.63968 (.00076) 6.92311 (.00377) 6.41319 (.00334)
2.5 2.5 4.33605 (.00177) 2.00210 (.00045) 4.96734 (.00221) 4.63533 (.00198)
2.75 2.75 3.38186 (.00117) 1.64956 (.00030) 3.83278 (.00144) 3.59575 (.00130)
3 3 2.78195 (.00083) 1.43883 (.00021) 3.11680 (.00101) 2.94284 (.00092)
0.9 0.9 467.716 (2.2594) 396.432 (1.7628) 455.135 (2.1688) 459.950 (2.2033)
0.8 0.8 444.000 (2.0896) 255.252 (.91009) 436.348 (2.0358) 436.243 (2.0351)
0.7 0.7 344.394 (1.4270) 138.152 (.36178) 345.847 (1.4361) 345.698 (1.4352)
0.6 0.6 245.809 (.86000) 66.5321 (.12043) 248.124 (.87219) 246.096 (.86151)
0.5 0.5 160.730 (.45423) 28.8944 (.03412) 163.281 (.46511) 161.632 (.45807)
0.4 0.4 94.6172 (.20471) 11.2477 (.00805) 96.7717 (.21176) 95.0810 (.20622)
0.3 0.3 47.4876 (.07240) 4.02466 (.00157) 48.8658 (.07560) 48.1095 (.07384)
0.2 0.2 18.3683 (.01712) 1.53430 (.00025) 18.8980 (.01788) 18.6323 (.01749)
0.1 0.1 4.31953 (.00176) 1.00434 (.00001) 4.45286 (.00185) 4.38605 (.00180)

Table 3.2 The control limits and their standard errors (in parentheses) for five

combinations of (αI,αD) when p = 2 and Σ0 is known or unknown.

αI αD .000515 .002185 .000415 .002285 .000395 .002305 .000375 .002325 .000275 .002425
CL for Σ0 known

(n=5)

11.0242 22.9694
(.00825,.00760)

11.4214 22.8159
(.00888,.00736)

11.5120 22.7870
(.00895,.00724)

11.6090 22.7574
(.00909,.00717)

12.1762 22.6138
(.01146,.00707)

CL for Σ0 un-

known (m=25)

11.4782 22.8063
(.00911,.00763)

11.8849 22.6530
(.01047,.00731)

11.9749 22.6227
(.01070,.00723)

12.0712 22.5936
(.01109,.00712)

12.6561 22.4485
(.012592,.00715)

CL for Σ0 un-

known (m=50)

11.2603 22.8869
(.00877,.00810)

11.6547 22.7351
(.00967,.00806)

11.7444 22.7055
(.00971,.00805)

11.8378 22.6771
(.00974,.00806)

12.4128 22.5327
(.011138,.00793)

αI .000715 .001985 .000635 .002065 .000615 .002085 .000595 .002105 .000515 .002185
CL for Σ0 known

(n=10)

11.3660 17.6482
(.00679,.00546)

11.5879 17.5438
(.00697,.00537)

11.6478 17.5187
(.00714,.00535)

11.7108 17.493
(.00724,.00542)

11.9770 17.3956
(.00797,.00501)
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Table 3.3 ARL1 and their standard errors (in parentheses) of the combined and the

two-sided control charts when Σ0 is known and p = 2, n = 5.

n = 5 combined chart two-sided chart

∆1 ∆2

αI .000515 .000415 .000395 .000375 .000275 Two-sided Modified- TB-decomp

αD .002185 .002285 .002305 .002325 .002425 LRT chart LRT chart chart

[ρ = 0]
1.25 1.25 182.427 203.422 208.390 213.792 245.670 444.612 273.774 115.093

(.54945) (.64716) (.67105) (.69735) (.85927) (2.0940) (1.0111) (.27489)

1.35 1.35 116.011 131.017 134.632 138.466 163.251 426.376 207.989 73.0108
(.27820) (.33405) (.34801) (.36302) (.46498) (1.9664) (.66911) (.13854)

1.5 1.5 60.6654 68.4594 70.3712 72.4871 85.7688 361.089 128.347 39.8668
(.10478) (.12573) (.13106) (.13704) (.17658) (1.5322) (.32387) (.05558)

1.75 1.75 25.4883 28.3380 29.0164 29.7647 34.5769 208.336 57.1628 18.1600
(.02820) (.03313) (.03434) (.03570) (.04480) (.67079) (.09579) (.01682)

2 2 13.3973 14.6453 14.9445 15.2717 17.3485 105.350 28.5795 10.1459
(.01055) (.01210) (.01248) (.01290) (.01569) (.24064) (.03356) (.00686)

2.25 2.25 8.30019 8.53714 9.02943 9.27666 10.6090 55.5172 16.4173 6.57604
(.00501) (.00524) (.00572) (.00597) (.00735) (.09166) (.01441) (.00347)

2.5 2.5 5.74057 5.87977 6.16803 6.31514 7.08263 31.7536 10.5236 4.70923
(.00279) (.00290) (.00314) (.00326) (.00391) (.03938) (.00726) (.00203)

2.75 2.75 4.31196 4.55855 4.61730 4.68115 5.07374 19.9077 7.38124 3.63466
(.00175) (.00192) (.00196) (.00201) (.00229) (.01936) (.00417) (.00132)

3 3 3.43157 3.60228 3.64242 3.68653 3.95505 13.4558 5.52709 2.95963
(.00120) (.00130) (.00132) (.00135) (.00152) (.01062) (.00263) (.00093)

0.9 0.9 347.554 337.405 335.616 333.511 323.881 313.745 353.070 495.872
(1.4468) (1.3838) (1.3728) (1.3599) (1.3014) (1.2407) (1.4814) (2.4666)

0.8 0.8 286.393 274.959 272.769 270.519 259.642 255.060 310.039 535.705
(1.0819) (1.0177) (1.0055) (.99306) (.93371) (.90906) (1.2187) (2.7699)

0.7 0.7 217.002 207.723 206.130 204.459 195.982 195.731 252.963 473.350
(.71315) (.66783) (.66015) (.65212) (.61193) (.61075) (.89786) (2.3004)

0.6 0.6 154.820 147.997 146.793 145.605 139.847 141.401 191.037 365.430
(.42936) (.40123) (.39633) (.39152) (.36848) (.37465) (.58887) (1.5599)

0.5 0.5 101.368 97.1628 96.3721 95.5804 91.8113 93.2975 130.250 245.405
(.22708) (.21305) (.21045) (.20785) (.19564) (.20042) (.33111) (.85787)

0.4 0.4 60.1249 57.6616 57.2145 56.7611 54.5995 55.5833 79.0986 142.800
(.10338) (.09705) (.09592) (.09478) (.08938) (.09182) (.15631) (.38023)

0.3 0.3 30.9166 29.7078 29.4825 29.2566 28.1810 28.6862 41.1490 69.3633
(.03781) (.03559) (.03518) (.03478) (.03285) (.03375) (.05830) (.12824)

0.2 0.2 12.3451 11.9033 11.8211 11.7371 11.3442 11.5274 16.3257 25.1002
(.00930) (.00879) (.00870) (.00860) (.00816) (.00836) (.01429) (.02755)

0.1 0.1 3.19401 3.10859 3.09301 3.07707 3.00166 3.03688 3.99371 5.28138
(.00106) (.00101) (.00100) (.00099) (.00095) (.00097) (.00155) (.00244)

1 1 370.117 370.233 370.727 370.700 370.837 369.898 370.501 370.693
(1.5901) (1.5908) (1.5939) (1.5938) (1.5947) (1.5886) (1.5925) (1.5938)
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Table 3.3 (continuted) ARL1 and their standard errors (in parentheses) of the combined

and the two-sided control charts when Σ0 is known and p = 2, n = 5.

n = 5 combined chart two-sided chart

∆1 ∆2

αI .000515 .000415 .000395 .000375 .000275 Two-sided Modified- TB-decomp

αD .002185 .002285 .002305 .002325 .002425 LRT chart LRT chart chart

[ρ = 0]

1.25 1 269.847 288.679 292.864 297.486 323.478 407.598 317.541 206.849
(.98936) (1.0949) (1.1188) (1.1454) (1.2989) (1.8378) (1.2633) (.66361)

1.75 1 66.3940 74.0113 75.8098 77.7820 90.5563 270.128 112.686 48.8971
(.12006) (.14141) (.14662) (.15240) (.19162) (.99091) (.26629) (.07567)

2.25 1 22.7755 24.9236 25.4409 25.9992 29.5393 109.515 39.5475 18.1628
(.02376) (.02726) (.02812) (.02907) (.03529) (.25509) (.05490) (.01683)

2.75 1 11.2772 12.1208 12.3222 12.5417 13.8990 46.4183 18.3754 9.49832
(.00808) (.00904) (.00927) (.00953) (.01116) (.06995) (.01713) (.00619)

1.25 1.75 52.2713 58.5448 60.0815 61.7412 72.4315 293.798 104.098 32.2161
(.08369) (.09931) (.10326) (.10760) (.13689) (1.1241) (.23635) (.04025)

1.75 2.25 12.9404 14.1077 14.3900 14.6988 16.6359 93.7726 26.8216 9.58347
(.01000) (.01142) (.01177) (.01216) (.01471) (.20196) (.03048) (.00628)

2.25 2.75 5.69492 6.07014 6.15910 6.25599 6.85672 30.4234 10.3371 4.62303
(.00276) (.00306) (.00313) (.00321) (.00371) (.03690) (.00706) (.00197)

2.75 1.25 10.7817 11.0454 11.1395 12.2696 12.5781 48.2621 17.8314 8.61868
(.00754) (.00783) (.00793) (.00921) (.00957) (.07419) (.01636) (.00532)

[ρ = 0.2]

1.75 1.75 22.1800 24.4308 24.9756 25.5726 29.3464 151.037 45.5483 17.0671
(.02282) (.02644) (.02735) (.02835) (.03494) (.41368) (.06798) (.01530)

1.75 2.25 11.9014 12.9049 13.1473 13.4113 15.0608 72.9049 23.1441 9.26786
(.00879) (.00996) (.01025) (.01056) (.01263) (.13824) (.02435) (.00596)

2.25 2.25 7.83989 8.41990 8.55829 8.70950 9.64438 44.4463 14.7104 6.43987
(.00458) (.00513) (.00526) (.00541) (.00634) (.06551) (.01218) (.00336)

2.25 2.75 5.49399 5.83908 5.92113 6.00971 6.55506 25.8864 9.58968 4.57673
(.00260) (.00287) (.00294) (.00301) (.00345) (.02888) (.00628) (.00194)

[ρ = 0.4]

1.75 1.75 16.2703 17.6750 18.0106 18.3719 20.6587 77.2699 28.1743 14.3516
(.01422) (.01614) (.01661) (.01712) (.02048) (.15089) (.03284) (.01173)

1.75 2.25 9.69349 10.3984 10.5669 10.7508 11.8847 42.4239 16.4006 8.38560
(.00639) (.00713) (.00731) (.00751) (.00877) (.06106) (.01439) (.00510)

2.25 2.25 6.75567 7.18696 7.28901 7.40011 8.08238 27.6544 11.2275 6.03661
(.00362) (.00400) (.00409) (.00419) (.00481) (.03193) (.00803) (.00303)

2.25 2.75 5.18476 5.27819 5.31128 5.70572 5.81142 17.9707 7.90921 4.41903
(.00237) (.00244) (.00247) (.00277) (.00285) (.01655) (.00465) (.00183)
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Table 3.3 (continuted) ARL1 and their standard errors (in parentheses) of the combined

and the two-sided control charts when Σ0 is known and p = 2, n = 5.

n = 5 combined chart two-sided chart

∆1 ∆2

αI .000515 .000415 .000395 .000375 .000275 Two-sided Modified- TB-decomp

αD .002185 .002285 .002305 .002325 .002425 LRT chart LRT chart chart

[ρ = 0]

0.8 1 339.173 330.087 328.526 326.947 318.497 308.718 341.507 400.986
(1.3949) (1.3390) (1.3295) (1.3199) (1.2690) (1.2109) (1.4091) (1.7932)

0.6 1 252.691 243.739 242.286 240.662 232.504 226.116 263.286 313.716
(.89641) (.84914) (.84155) (.83309) (.79103) (.75861) (.95346) (1.2405)

0.4 1 155.491 149.553 148.423 147.243 141.941 138.060 165.710 185.099
(.43216) (.40759) (.40297) (.39816) (.37680) (.36142) (.47555) (.56159)

0.2 1 64.1978 61.6052 61.1174 60.6404 58.3473 56.6815 68.9822 67.5459
(.11412) (.10724) (.10596) (.10472) (.09880) (.09458) (.12718) (.12321)

0.8 0.6 211.506 202.298 200.706 199.017 190.934 190.309 244.445 478.538
(.68618) (.64180) (.63422) (.62622) (.58840) (.58551) (.85284) (2.3383)

0.6 0.4 95.8447 91.7705 91.0365 90.2845 86.6889 88.0406 122.245 236.041
(.20872) (.19551) (.19316) (.19076) (.17944) (.18367) (.30099) (.80918)

0.4 0.2 26.4296 25.3954 25.2060 25.0166 24.1059 24.5286 34.9046 60.3489
(.02980) (.02805) (.02773) (.02741) (.02591) (.02660) (.04545) (.10396)

0.2 0.8 51.5425 50.9160 50.7174 48.7413 48.3682 48.5092 64.3588 81.0461
(.08194) (.08044) (.07996) (.07531) (.07444) (.07476) (.11455) (.16214)

[ρ = 0.2]

0.6 0.6 145.378 139.029 137.895 136.797 131.286 132.330 177.552 353.989
(.39060) (.36524) (.36077) (.35646) (.33508) (.33910) (.52753) (1.4872)

0.6 0.4 89.9337 86.1954 85.5180 84.8162 81.4684 82.6078 114.030 228.686
(.18964) (.17790) (.17580) (.17363) (.16341) (.16687) (.27108) (.77160)

0.4 0.4 56.7609 54.4676 54.0523 53.6075 51.5534 52.4787 74.3677 138.276
(.09478) (.08906) (.08803) (.08694) (.08196) (.08419) (.14244) (.36227)

0.4 0.2 25.0526 24.0846 23.9109 23.7274 22.8649 23.2634 33.0781 58.4811
(.02747) (.02588) (.02559) (.02529) (.02391) (.02454) (.04189) (.09914)

[ρ = 0.4]

0.6 0.6 118.665 113.662 112.769 111.829 107.365 107.054 139.789 316.416
(.28783) (.26977) (.26659) (.26325) (.24760) (.24652) (.36824) (1.2566)

0.6 0.4 74.1372 71.1023 70.5440 69.9567 67.2527 67.8900 92.4313 206.264
(.14177) (.13312) (.13155) (.12990) (.12240) (.12416) (.19763) (.66079)

0.4 0.4 47.3060 45.3854 45.0403 44.6784 43.0012 43.7086 61.3450 123.548
(.07198) (.06761) (.06684) (.06603) (.06232) (.06387) (.10656) (.30582)

0.4 0.2 21.0468 20.2362 20.0880 19.9395 19.2246 19.5465 27.5379 52.7095
(.02107) (.01985) (.01962) (.01940) (.01835) (.01882) (.03172) (.08475)
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Table 3.4 ARL1 and their standard errors (in parentheses) of the combined and the

two-sided control charts when Σ0 is known and p = 2, n = 10.

n = 10 combined chart two-sided chart

∆1 ∆2

αI .000715 .000635 .000615 .000595 .000515 Two-sided Modified- TB-decomp

αD .001985 .002065 .002085 .002105 .002185 LRT chart LRT chart chart

[ρ = 0]
1.25 1.25 105.209 113.404 115.722 118.205 129.266 335.402 160.786 81.2546

(.24015) (.26885) (.27716) (.28615) (.32736) (1.37146) (.45447) (.16277)

1.35 1.35 55.0231 59.1732 60.3196 61.5572 67.1666 219.135 91.1760 44.4824
(.09043) (.10092) (.10388) (.10711) (.12217) (.72370) (.19360) (.06559)

1.5 1.5 24.5234 26.1133 26.5648 27.0406 29.1209 101.643 41.2840 20.8205
(.02660) (.02926) (.03003) (.03086) (.03453) (.22801) (.05859) (.02073)

1.75 1.75 9.20924 9.66587 9.80172 9.93430 10.5325 31.6083 14.4905 8.23782
(.00590) (.00636) (.00650) (.00664) (.00727) (.03910) (.01190) (.00496)

2 2 4.79554 4.97644 5.02645 5.08029 5.30837 13.0719 6.90898 4.40110
(.00209) (.00222) (.00226) (.00229) (.00246) (.01016) (.00376) (.00181)

2.25 2.25 3.06618 3.15531 3.18006 3.20617 3.31821 6.86255 4.09890 2.86838
(.00099) (.00104) (.00105) (.00106) (.00113) (.00372) (.00161) (.00088)

2.5 2.5 2.24655 2.29704 2.31093 2.32574 2.38851 4.27830 2.82483 2.13099
(.00056) (.00058) (.00059) (.00060) (.00063) (.00173) (.00085) (.00051)

2.75 2.75 1.80297 1.83423 1.84288 1.85200 1.89135 3.01917 2.16227 1.73099
(.00036) (.00037) (.00038) (.00038) (.00040) (.00096) (.00052) (.00033)

3 3 1.54194 1.56286 1.56861 1.57464 1.60058 2.33018 1.77936 1.49271
(.00025) (.00026) (.00026) (.00027) (.00028) (.00060) (.00035) (.00023)

0.9 0.9 294.014 285.343 283.274 281.314 274.190 265.305 321.807 449.549
(1.1254) (1.0759) (1.0642) (1.0532) (1.0134) (.96446) (1.2889) (2.1290)

0.8 0.8 178.674 172.282 171.724 170.227 165.160 165.899 221.080 362.207
(.53255) (.50417) (.50172) (.49516) (.47318) (.47636) (.73337) (1.5393)

0.7 0.7 97.1147 93.7383 92.9303 92.1540 89.0777 92.1222 129.160 219.474
(.21289) (.20185) (.19924) (.19674) (.18693) (.19664) (.32696) (.72538)

0.6 0.6 47.8917 46.3034 45.9410 45.5804 44.1263 46.0766 65.4834 111.350
(.07333) (.06969) (.06887) (.06805) (.06480) (.06917) (.11758) (.26155)

0.5 0.5 21.4046 20.7646 20.6149 20.4664 19.8653 20.6785 29.1854 48.0834
(.02162) (.02064) (.02042) (.02019) (.01929) (.02051) (.03465) (.07378)

0.4 0.4 8.66646 8.44613 8.39414 8.34225 8.14508 8.43772 11.5247 17.8969
(.00537) (.00515) (.00510) (.00505) (.00487) (.00515) (.00836) (.01645)

0.3 0.3 3.30745 3.24439 3.22941 3.21468 3.15809 3.24126 4.13852 5.83729
(.00112) (.00109) (.00108) (.00107) (.00104) (.00109) (.00164) (.00287)

0.2 0.2 1.39559 1.38317 1.38023 1.37732 1.36595 1.38217 1.56256 1.88200
(.00020) (.00019) (.00019) (.00019) (.00018) (.00019) (.00026) (.00040)

0.1 0.1 1.00212 1.00197 1.00193 1.00189 1.00174 1.00197 1.00497 1.01321
(.00001) (.00001) (.00001) (.00001) (.00001) (.00001) (.00002) (.00003)

1 1 370.076 370.055 370.343 369.365 370.028 369.174 369.365 370.892
(1.5898) (1.5896) (1.5915) (1.5852) (1.5895) (1.5840) (1.5852) (1.5950)
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Table 3.4 (continuted) ARL1 and their standard errors (in parentheses) of the combined

and the two-sided control charts when Σ0 is known and p = 2, n = 10.

n = 10 combined chart two-sided chart

∆1 ∆2

αI .000715 .000635 .000615 .000595 .000515 Two-sided Modified- TB-decomp

αD .001985 .002065 .002085 .002105 .002185 LRT chart LRT chart chart

[ρ = 0]

1.25 1 198.961 211.195 214.484 218.012 233.825 351.130 230.862 160.799
(.62596) (.68467) (.70075) (.71814) (.79779) (1.4692) (.78265) (.45452)

1.75 1 27.0185 28.6382 29.0923 29.5761 31.7195 71.0162 36.3381 23.4215
(.03082) (.03367) (.03448) (.03535) (.03931) (.13287) (.04830) (.02480)

2.25 1 8.23820 8.58353 8.67989 8.78198 9.22167 17.9978 10.6023 7.60635
(.00496) (.00529) (.00538) (.00548) (.00591) (.01659) (.00735) (.00437)

2.75 1 4.14600 4.27165 4.30609 4.34255 4.50061 7.57549 5.06239 3.94313
(.00164) (.00173) (.00175) (.00178) (.00188) (.00434) (.00228) (.00151)

1.25 1.75 20.4036 21.6194 21.9563 22.3140 23.9191 69.5681 31.7445 16.4998
(.02010) (.02195) (.02248) (.02304) (.02561) (.12881) (.03936) (.01453)

1.75 2.25 4.64911 4.81889 4.86590 4.91602 5.13046 12.0845 6.59164 4.21806
(.00199) (.00211) (.00214) (.00218) (.00233) (.00900) (.00349) (.00169)

2.25 2.75 2.23557 2.28515 2.29877 2.31323 2.37566 4.21104 2.80315 2.11340
(.00056) (.00058) (.00059) (.00059) (.00062) (.00169) (.00084) (.00050)

2.75 1.25 3.77392 3.88611 3.91677 3.94973 4.09223 7.54359 4.85401 3.64604
(.00141) (.00158) (.00150) (.00152) (.00161) (.00431) (.00213) (.00133)

[ρ = 0.2]

1.75 1.75 8.02191 8.38021 8.47991 8.58753 9.05147 23.0817 11.8257 7.62386
(.00475) (.00509) (.00519) (.00529) (.00574) (.02425) (.00870) (.00439)

1.75 2.25 4.32733 4.47424 4.51484 4.55788 4.74279 10.1944 5.93403 4.07143
(.00177) (.00186) (.00189) (.00192) (.00205) (.00691) (.00295) (.00160)

2.25 2.25 2.94260 3.02277 3.04487 3.06829 3.17050 6.13899 3.84906 2.82340
(.00092) (.00096) (.00097) (.00099) (.00104) (.00311) (.00145) (.00085)

2.25 2.75 2.19997 2.23491 2.24767 2.26117 2.31848 3.94749 2.70873 2.10082
(.00056) (.00054) (.00056) (.00057) (.00060) (.00152) (.00079) (.00049)

[ρ = 0.4]

1.75 1.75 5.87187 6.08734 6.14681 6.21045 6.48241 12.2542 7.53406 6.03458
(.00307) (.00290) (.00312) (.00317) (.00339) (.00919) (.00431) (.00303)

1.75 2.25 3.60654 3.70965 3.73789 3.76781 3.89789 6.84123 4.53419 3.61577
(.00137) (.00130) (.00138) (.00140) (.00148) (.00370) (.00191) (.00131)

2.25 2.25 2.62804 2.68862 2.70521 2.72282 2.79960 4.65980 3.24360 2.65407
(.00078) (.00075) (.00079) (.00080) (.00084) (.00199) (.00109) (.00076)

2.25 2.75 2.05332 2.09106 2.10139 2.11234 2.15975 3.31618 2.44877 2.04582
(.00048) (.00047) (.00049) (.00050) (.00052) (.00113) (.00066) (.00047)
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Table 3.4 (continuted) ARL1 and their standard errors (in parentheses) of the combined

and the two-sided control charts when Σ0 is known and p = 2, n = 10.

n = 10 combined chart two-sided chart

∆1 ∆2

αI .000715 .000635 .000615 .000595 .000515 Two-sided Modified- TB-decomp

αD .001985 .002065 .002085 .002105 .002185 LRT chart LRT chart chart

[ρ = 0]

0.8 1 273.538 265.827 264.016 262.412 254.130 242.757 284.139 333.934
(1.0098) (.96731) (.95743) (.94871) (.90409) (.84401) (1.0691) (1.3625)

0.6 1 132.423 128.083 127.139 126.135 122.724 116.120 142.207 168.913
(.33946) (.32286) (.31929) (.31551) (.30276) (.27859) (.37786) (.48943)

0.4 1 43.5446 42.1234 41.7933 41.4533 40.2210 38.2751 47.0963 53.7468
(.06351) (.06040) (.05969) (.05895) (.05632) (.05225) (.07150) (.08728)

0.2 1 7.27234 7.07771 7.03223 6.98670 6.81005 6.54454 7.74979 8.34102
(.00407) (.00390) (.00386) (.00382) (.00367) (.00345) (.00450) (.00505)

0.8 0.6 89.2351 86.1638 85.4672 84.7537 81.6257 83.8086 115.485 203.845
(.18743) (.17780) (.17564) (.17344) (.16389) (.17053) (.27630) (.64918)

0.6 0.4 18.7702 18.2198 18.0888 17.9601 17.4446 18.1194 25.2685 42.6998
(.01769) (.01691) (.01672) (.01654) (.01582) (.01676) (.02783) (.06166)

0.4 0.2 2.67239 2.62582 2.61479 2.60387 2.56413 2.62463 3.26293 4.60380
(.00077) (.00075) (.00074) (.00074) (.00072) (.00075) (.00110) (.00195)

0.2 0.8 5.93490 5.78753 5.75277 5.71763 5.58357 5.66841 7.10218 8.54148
(.00295) (.00283) (.00280) (.00278) (.00267) (.00274) (.00392) (.00525)

[ρ = 0.2]

0.6 0.6 41.1430 39.8038 39.4928 39.1850 38.0150 39.4933 55.1601 102.277
(.05829) (.05544) (.05479) (.05414) (.05172) (.05479) (.09077) (.23015)

0.6 0.4 16.5463 16.0612 15.9483 15.8380 15.4047 15.9709 22.0159 39.9115
(.01459) (.01394) (.01379) (.01364) (.01307) (.01382) (.02257) (.05567)

0.4 0.4 7.79599 7.59940 7.55307 7.50742 7.33827 7.59217 10.2691 16.8506
(.00454) (.00437) (.00432) (.00428) (.00413) (.00436) (.00699) (.01500)

0.4 0.2 2.49762 2.45554 2.44546 2.43557 2.39656 2.45186 3.01971 4.44298
(.00068) (.00066) (.00066) (.00065) (.00063) (.00066) (.00096) (.00184)

[ρ = 0.4]

0.6 0.6 25.8062 25.0026 24.8133 24.6240 23.8554 24.1704 32.0291 72.9145
(.02874) (.02739) (.02708) (.02676) (.02550) (.02602) (.03989) (.13826)

0.6 0.4 11.0973 10.7890 10.7167 10.6444 10.3733 10.6836 14.1897 30.7822
(.00789) (.00755) (.00747) (.00739) (.00710) (.00743) (.01152) (.03756)

0.4 0.4 5.59687 5.46460 5.43325 5.40232 5.28963 5.45465 7.15180 13.5648
(.00268) (.00258) (.00256) (.00253) (.00245) (.00257) (.00397) (.01075)

0.4 0.2 2.02996 2.00005 1.99295 1.98583 1.95885 1.99766 2.38692 3.87459
(.00046) (.00045) (.00044) (.00044) (.00043) (.00045) (.00063) (.00147)
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Table 3.5 ARL1 and their standard errors (in parentheses) of the combined and the

two-sided control charts when Σ0 is unknown and p = 2, m = 25, n = 5.

m = 25 combined chart two-sided chart

∆1 ∆2

αI .000515 .000415 .000395 .000375 .000275 Two-sided Modified-

αD .002185 .002285 .002305 .002325 .002425 LRT chart LRT chart

[ρ = 0]
1.25 1.25 200.499 222.591 227.622 233.106 266.628 439.396 281.980

(.63324) (.74091) (.76621) (.79411) (.97169) (2.0572) (1.0569)

1.35 1.35 133.020 150.210 154.264 158.725 187.163 429.941 222.474
(.34176) (.41028) (.42704) (.44574) (.57102) (1.9911) (.74033)

1.5 1.5 72.7614 82.3635 84.6887 87.2201 104.005 375.523 145.211
(.13783) (.16612) (.17324) (.18109) (.23603) (1.6250) (.38993)

1.75 1.75 31.0075 34.7489 35.6274 36.6065 43.0258 236.908 68.4088
(.03798) (.04514) (.04688) (.04884) (.06237) (.81365) (.12559)

2 2 16.3170 17.9813 18.3734 18.8022 21.6389 130.931 35.1455
(.01428) (.01657) (.01712) (.01774) (.02198) (.33372) (.04592)

2.25 2.25 9.99249 10.8705 11.0738 11.2974 12.7661 71.9735 20.3119
(.00670) (.00764) (.00786) (.00811) (.00979) (.13558) (.01996)

2.5 2.5 6.82658 7.34211 7.46218 7.59337 8.44271 41.7899 12.9767
(.00368) (.00413) (.00424) (.00436) (.00515) (.05968) (.01004)

2.75 2.75 5.05063 5.38297 5.45996 5.54412 6.08316 26.2249 8.99630
(.00227) (.00252) (.00258) (.00264) (.00307) (.02945) (.00569)

3 3 3.96910 4.19808 4.25079 4.30795 4.67427 17.6264 6.66151
(.00153) (.00168) (.00171) (.00175) (.00200) (.01607) (.00354)

0.9 0.9 346.963 336.984 334.986 332.696 323.515 316.822 354.736
(1.4431) (1.3812) (1.3689) (1.3549) (1.2991) (1.2590) (1.4919)

0.8 0.8 287.501 275.505 273.153 271.065 260.739 259.245 314.041
(1.0882) (1.0207) (1.0076) (.99608) (.93964) (.93156) (1.2424)

0.7 0.7 218.105 208.712 206.962 205.153 196.870 199.994 257.314
(.71860) (.67261) (.66416) (.65545) (.61610) (.63084) (.92116)

0.6 0.6 154.902 148.312 147.037 145.752 139.821 143.974 193.470
(.42970) (.40251) (.39732) (.39212) (.36837) (.38494) (.60018)

0.5 0.5 102.866 98.5222 97.6968 96.8800 93.0527 96.4325 133.752
(.23215) (.21756) (.21482) (.21212) (.19963) (.21065) (.34459)

0.4 0.4 61.5152 58.9564 58.4563 58.0065 55.7891 57.8865 82.0116
(.10700) (.10036) (.09908) (.09793) (.09234) (.09763) (.16506)

0.3 0.3 31.5413 30.3098 30.0758 29.8473 28.7406 29.8083 42.6108
(.03898) (.03669) (.03626) (.03585) (.03385) (.03578) (.06146)

0.2 0.2 12.6829 12.2296 12.1438 12.0597 11.6513 12.0464 17.0133
(.00969) (.00916) (.00906) (.00897) (.00850) (.00895) (.01522)

0.1 0.1 3.27715 3.18968 3.17270 3.15667 3.07807 3.15405 4.14050
(.00111) (.00106) (.00105) (.00104) (.00099) (.00104) (.00164)

1 1 370.727 371.175 371.264 371.195 371.243 372.252 370.268
(1.5940) (1.5969) (1.5974) (1.5970) (1.5973) (1.6038) (1.5910)
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Table 3.5 (continuted) ARL1 and their standard errors (in parentheses) of the combined

and the two-sided control charts when Σ0 is unknown and p = 2, m = 25, n = 5.

m = 25 combined chart two-sided chart

∆1 ∆2

αI .000515 .000415 .000395 .000375 .000275 Two-sided Modified-

αD .002185 .002285 .002305 .002325 .002425 LRT chart LRT chart

[ρ = 0]

1.25 1 284.079 302.133 306.157 310.429 333.868 403.405 320.431
(1.0688) (1.1724) (1.1959) (1.2210) (1.3621) (1.8095) (1.2806)

1.75 1 80.0894 89.7215 91.9841 94.4952 110.547 286.402 128.348
(.15926) (.18897) (.19619) (.20431) (.25872) (1.08190) (.32387)

2.25 1 27.9277 30.8116 31.4929 32.2341 37.1230 129.328 47.6161
(.03241) (.03762) (.03889) (.04028) (.04989) (.32760) (.07270)

2.75 1 13.6857 14.8421 15.1082 15.4029 17.3047 58.2318 22.4305
(.01090) (.01235) (.01269) (.01307) (.01562) (.09851) (.02322)

1.25 1.75 62.8243 70.8752 72.7866 74.8503 88.5763 313.770 119.810
(.11046) (.13248) (.13790) (.14383) (.18535) (1.24082) (.29201)

1.75 2.25 15.7444 17.3026 17.6732 18.0764 20.7448 117.160 33.0484
(.01352) (.01562) (.01614) (.01670) (.02061) (.28235) (.04183)

2.25 2.75 6.75602 7.26380 7.38047 7.50821 8.33781 39.9575 12.7054
(.00362) (.00407) (.00417) (.00428) (.00505) (.05577) (.00972)

2.75 1.25 12.3292 13.3748 13.6197 13.8861 15.6135 61.4383 21.9094
(.00928) (.01052) (.01082) (.01115) (.01335) (.10680) (.02240)

[ρ = 0.2]

1.75 1.75 27.1138 30.1417 30.8498 31.6375 36.7901 177.888 55.2789
(.03098) (.03638) (.03769) (.03916) (.04921) (.52903) (.09107)

1.75 2.25 14.4603 15.8180 16.1345 16.4835 18.7616 92.1056 28.5232
(.01186) (.01362) (.01404) (.01450) (.01768) (.19658) (.03346)

2.25 2.25 9.41033 10.1926 10.3735 10.5710 11.8650 57.8854 18.1660
(.00610) (.00691) (.00710) (.00731) (.00875) (.09762) (.01683)

2.25 2.75 6.50558 6.97235 7.07953 7.19664 7.95403 34.0574 11.7639
(.00341) (.00381) (.00390) (.00401) (.00469) (.04379) (.00863)

[ρ = 0.4]

1.75 1.75 19.8762 21.7790 22.2223 22.7040 25.8709 94.8222 34.2368
(.01931) (.02220) (.02289) (.02365) (.02885) (.20538) (.04414)

1.75 2.25 12.4651 12.7890 12.9015 14.3655 14.7313 54.2985 20.1510
(.00944) (.00982) (.00995) (.01174) (.01221) (.08864) (.01972)

2.25 2.25 8.50375 8.69962 8.76775 9.64686 9.86456 35.7937 13.7297
(.00521) (.00540) (.00546) (.00634) (.00657) (.04721) (.01095)

2.25 2.75 5.84587 6.21665 6.30251 6.39501 6.99025 23.4306 9.60358
(.00288) (.00317) (.00325) (.00332) (.00383) (.02481) (.00630)
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Table 3.5 (continuted) ARL1 and their standard errors (in parentheses) of the combined

and the two-sided control charts when Σ0 is unknown and p = 2, m = 25, n = 5.

m = 25 combined chart two-sided chart

∆1 ∆2

αI .000515 .000415 .000395 .000375 .000275 Two-sided Modified-

αD .002185 .002285 .002305 .002325 .002425 LRT chart LRT chart

[ρ = 0]

0.8 1 336.757 327.402 325.600 323.892 315.244 309.210 339.386
(1.3798) (1.3226) (1.3117) (1.3014) (1.2496) (1.2138) (1.3960)

0.6 1 252.873 243.950 242.140 240.359 232.461 228.828 266.383
(.89739) (.85025) (.84079) (.83151) (.79081) (.77232) (.97035)

0.4 1 156.583 150.491 149.324 148.178 142.680 140.735 168.175
(.43673) (.41144) (.40665) (.40197) (.37975) (.37200) (.48622)

0.2 1 64.5503 61.9510 61.4347 60.9583 58.6429 57.7277 69.9864
(.11506) (.10815) (.10679) (.10555) (.09956) (.09722) (.12998)

0.8 0.6 210.844 202.143 200.451 198.835 190.951 193.147 246.024
(.68296) (.64105) (.63301) (.62536) (.58847) (.59867) (.86112)

0.6 0.4 96.8092 92.7584 91.9819 91.2396 87.6524 90.6738 125.196
(.21189) (.19868) (.19618) (.19381) (.18245) (.19200) (.31198)

0.4 0.2 26.9682 25.9164 25.7182 25.5251 24.5888 25.4884 36.1412
(.03073) (.02893) (.02859) (.02827) (.02670) (.02820) (.04791)

0.2 0.8 53.9347 51.7114 51.2838 50.8881 48.9078 49.8988 65.8365
(.08775) (.08234) (.08132) (.08037) (.07569) (.07802) (.11854)

[ρ = 0.2]

0.6 0.6 145.558 139.371 138.249 137.117 131.617 134.935 179.567
(.39133) (.36659) (.36216) (.35771) (.33635) (.34919) (.53655)

0.6 0.4 91.5101 87.7093 86.9890 86.2683 82.8370 85.5857 117.224
(.19467) (.18263) (.18037) (.17813) (.16757) (.17601) (.28258)

0.4 0.4 58.1791 55.7922 55.3400 54.9019 52.7828 54.7642 77.3416
(.09837) (.09235) (.09122) (.09013) (.08493) (.08979) (.15111)

0.4 0.2 25.5653 24.5813 24.3894 24.2103 23.3178 24.1731 34.1936
(.02833) (.02669) (.02638) (.02608) (.02463) (.02602) (.04405)

[ρ = 0.4]

0.6 0.6 118.665 113.662 112.743 111.861 107.399 108.957 141.525
(.28783) (.26977) (.26649) (.26336) (.24772) (.25314) (.37514)

0.6 0.4 75.1611 72.0163 71.3924 70.8200 67.9766 69.9328 94.7024
(.14473) (.13570) (.13394) (.13232) (.12440) (.12983) (.20498)

0.4 0.4 48.1467 46.1807 45.8005 45.4351 43.6725 45.2577 63.3346
(.07392) (.06941) (.06855) (.06772) (.06379) (.06732) (.11181)

0.4 0.2 20.7759 20.5384 20.4606 19.7248 19.5790 20.2724 28.4625
(.02066) (.02030) (.02018) (.01909) (.01887) (.01990) (.03335)
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Table 3.6 ARL1 and their standard errors (in parentheses) of the combined and the

two-sided control charts when Σ0 is unknown and p = 2, m = 50, n = 5.

m = 50 combined chart two-sided chart

∆1 ∆2

αI .000515 .000415 .000395 .000375 .000275 Two-sided Modified-

αD .002185 .002285 .002305 .002325 .002425 LRT chart LRT chart

[ρ = 0]
1.25 1.25 191.885 213.172 217.855 223.072 256.417 443.321 279.572

(.59281) (.69432) (.71736) (.74332) (.91634) (2.0848) (1.0434)

1.35 1.35 124.714 140.451 144.250 148.355 175.283 435.303 217.540
(.31018) (.37087) (.38605) (.40269) (.51743) (2.0285) (.71580)

1.5 1.5 66.5779 75.1241 77.1900 79.3878 94.4118 369.891 136.712
(.12056) (.14463) (.15066) (.15717) (.20404) (1.5886) (.35612)

1.75 1.75 28.1902 31.3760 32.1508 32.9747 38.5342 225.385 62.7544
(.03287) (.03867) (.04012) (.04169) (.05279) (.75493) (.11027)

2 2 14.8217 16.2408 16.5785 16.9406 19.3620 118.166 31.7730
(.01232) (.01418) (.01463) (.01512) (.01855) (.28601) (.03941)

2.25 2.25 9.10594 9.37756 9.93657 10.2127 11.7978 63.6343 18.2903
(.00580) (.00607) (.00664) (.00693) (.00867) (.11261) (.01701)

2.5 2.5 6.26270 6.70090 6.80442 6.91518 7.63516 36.6982 11.7054
(.00321) (.00358) (.00367) (.00376) (.00440) (.04903) (.00856)

2.75 2.75 4.67360 4.95547 5.02233 5.09270 5.55313 23.00390 8.16346
(.00200) (.00220) (.00225) (.00230) (.00265) (.02413) (.00489)

3 3 3.69135 3.88586 3.93135 3.97969 4.29254 15.5088 6.07394
(.00135) (.00148) (.00151) (.00154) (.00174) (.01321) (.00306)

0.9 0.9 347.826 338.306 336.225 334.236 324.259 317.450 354.202
(1.4485) (1.3893) (1.3765) (1.3643) (1.3036) (1.2627) (1.4885)

0.8 0.8 284.321 272.740 270.482 268.428 258.371 257.122 310.704
(1.0701) (1.0053) (.99286) (.98156) (.92685) (.92013) (1.2227)

0.7 0.7 214.767 205.749 204.102 202.476 194.416 197.338 253.415
(.70214) (.65831) (.65042) (.64265) (.60459) (.61830) (.90027)

0.6 0.6 155.110 148.569 147.314 146.095 140.183 144.116 192.924
(.43057) (.40356) (.39845) (.39350) (.36980) (.38552) (.59763)

0.5 0.5 102.476 98.2391 97.4189 96.6599 92.8311 95.9702 132.515
(.23083) (.21662) (.21390) (.21140) (.19892) (.20913) (.33981)

0.4 0.4 60.9355 58.4934 58.0205 57.5654 55.3099 57.3087 80.9415
(.10549) (.09917) (.09797) (.09681) (.09114) (.09616) (.16182)

0.3 0.3 31.2162 30.0031 29.7743 29.5561 28.4740 29.4511 41.9432
(.03837) (.03613) (.03571) (.03532) (.03337) (.03513) (.06001)

0.2 0.2 12.5058 12.0617 11.9776 11.8959 11.4981 11.8566 16.6807
(.00949) (.00897) (.00887) (.00878) (.00833) (.00874) (.01477)

0.1 0.1 3.23682 3.15152 3.13511 3.11970 3.04252 3.11219 4.07814
(.00108) (.00103) (.00102) (.00102) (.00097) (.00101) (.00160)

1 1 371.140 371.175 371.230 371.264 371.195 371.278 371.243
(1.5966) (1.5969) (1.5972) (1.5974) (1.5969) (1.5975) (1.5973)
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Table 3.6 (continuted) ARL1 and their standard errors (in parentheses) of the combined

and the two-sided control charts when Σ0 is unknown and p = 2, m = 50, n = 5.

m = 25 combined chart two-sided chart

∆1 ∆2

αI .000515 .000415 .000395 .000375 .000275 Two-sided Modified-

αD .002185 .002285 .002305 .002325 .002425 LRT chart LRT chart

[ρ = 0]

1.25 1 277.158 295.849 299.437 303.767 328.240 405.293 318.258
(1.0299) (1.1359) (1.1567) (1.1819) (1.3277) (1.8222) (1.2676)

1.75 1 73.3280 81.8046 83.7910 86.0026 100.294 281.369 120.923
(.13945) (.16443) (.17048) (.17730) (.22347) (1.05348) (.29610)

2.25 1 25.2745 27.7197 28.3086 28.9397 33.0475 119.985 43.4631
(.02784) (.03204) (.03308) (.03421) (.04183) (.29266) (.06333)

2.75 1 12.4522 13.4257 13.6568 13.9011 15.5133 52.6348 20.3831
(.00942) (.01058) (.01086) (.01116) (.01322) (.08457) (.02007)

1.25 1.75 57.2764 64.1894 65.8762 67.7025 79.7324 305.087 112.012
(.09608) (.11410) (.11865) (.12364) (.15820) (1.1896) (.26390)

1.75 2.25 14.2761 15.6065 15.9270 16.2633 18.5268 106.390 29.8108
(.01163) (.01334) (.01376) (.01421) (.01734) (.24422) (.03578)

2.25 2.75 6.20664 6.63506 6.73701 6.84511 7.55161 35.1280 11.4778
(.00317) (.00352) (.00361) (.00370) (.00432) (.04589) (.00831)

2.75 1.25 11.2331 12.1185 12.3292 12.5519 14.0170 55.0549 19.8609
(.00804) (.00904) (.00928) (.00954) (.01131) (.09051) (.01929)

[ρ = 0.2]

1.75 1.75 24.6422 27.2082 27.8341 28.5040 32.9069 165.061 50.4163
(.02679) (.03115) (.03224) (.03343) (.04156) (.47275) (.07925)

1.75 2.25 13.1347 14.2879 14.5658 14.8592 16.7860 83.1107 25.7950
(.01023) (.01165) (.01200) (.01237) (.01491) (.16840) (.02872)

2.25 2.25 8.59901 9.25769 9.41647 9.58298 10.6802 51.0732 16.3612
(.00530) (.00595) (.00611) (.00628) (.00743) (.08081) (.01434)

2.25 2.75 5.97932 6.37322 6.46699 6.56532 7.20754 29.9202 10.6341
(.00298) (.00330) (.00338) (.00346) (.00402) (.03598) (.00738)

[ρ = 0.4]

1.75 1.75 18.0225 19.6303 20.0160 20.4234 23.1171 86.6559 31.1987
(.01663) (.01895) (.01952) (.02013) (.02431) (.17933) (.03834)

1.75 2.25 11.2814 11.5589 11.6541 12.8700 13.1932 48.3187 18.1926
(.00809) (.00840) (.00851) (.00991) (.01030) (.07432) (.01687)

2.25 2.25 7.36170 7.85470 7.97130 8.09509 8.89838 31.7279 12.4124
(.00415) (.00460) (.00471) (.00482) (.00559) (.03933) (.00938)

2.25 2.75 5.39056 5.70325 5.77640 5.85366 6.35850 20.6197 8.72164
(.00253) (.00277) (.00282) (.00288) (.00329) (.02042) (.00542)
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Table 3.6 (continuted) ARL1 and their standard errors (in parentheses) of the combined

and the two-sided control charts when Σ0 is unknown and p = 2, m = 50, n = 5.

m = 25 combined chart two-sided chart

∆1 ∆2

αI .000515 .000415 .000395 .000375 .000275 Two-sided Modified-

αD .002185 .002285 .002305 .002325 .002425 LRT chart LRT chart

[ρ = 0]

0.8 1 335.818 327.070 325.272 323.803 315.070 309.645 339.368
(1.3740) (1.3206) (1.3097) (1.3009) (1.2485) (1.2164) (1.3959)

0.6 1 252.153 243.007 241.394 239.802 231.946 228.652 265.143
(.89355) (.84532) (.83690) (.82862) (.78818) (.77143) (.96357)

0.4 1 156.785 150.848 149.651 148.575 142.990 141.156 168.370
(.43758) (.41290) (.40799) (.40359) (.38099) (.37367) (.48707)

0.2 1 64.3318 61.7692 61.2882 60.8223 58.5175 57.6449 69.6282
(.11448) (.10767) (.10641) (.10519) (.09924) (.09701) (.12898)

0.8 0.6 208.705 200.200 198.622 197.007 189.138 191.518 243.873
(.67258) (.63182) (.62435) (.61674) (.58010) (.59110) (.84984)

0.6 0.4 96.6660 92.6866 91.9088 91.1569 87.5507 90.4049 124.563
(.21142) (.19845) (.19595) (.19354) (.18213) (.19114) (.30961)

0.4 0.2 26.7261 25.7049 25.5070 25.3212 24.3906 25.2238 35.6460
(.03031) (.02857) (.02824) (.02792) (.02638) (.02776) (.04692)

0.2 0.8 53.5835 51.3757 50.9585 50.5575 48.5995 49.5200 65.2633
(.08688) (.08154) (.08054) (.07958) (.07498) (.07713) (.11699)

[ρ = 0.2]

0.6 0.6 144.985 138.871 137.707 136.630 131.160 134.355 178.597
(.38902) (.36461) (.36003) (.35580) (.33460) (.34693) (.53220)

0.6 0.4 90.6438 86.8236 86.1319 85.4387 82.0466 84.6095 115.692
(.19190) (.17986) (.17770) (.17555) (.16516) (.17299) (.27705)

0.4 0.4 57.4389 55.1326 54.6920 54.2881 52.2017 54.0254 75.9250
(.09649) (.09070) (.08961) (.08861) (.08352) (.08797) (.14695)

0.4 0.2 25.2759 24.3102 24.1246 23.9475 23.0814 23.8541 33.6628
(.02785) (.02625) (.02594) (.02565) (.02425) (.02550) (.04302)

[ρ = 0.4]

0.6 0.6 118.970 114.091 113.103 112.243 107.843 109.311 141.239
(.28894) (.27130) (.26777) (.26472) (.24926) (.25438) (.37400)

0.6 0.4 74.5590 71.4429 70.8564 70.2943 67.5185 69.3373 93.7106
(.14299) (.13408) (.13242) (.13084) (.12313) (.12817) (.20176)

0.4 0.4 48.1467 46.1807 45.8005 45.4351 43.6725 45.2577 63.3346
(.07392) (.06941) (.06855) (.06772) (.06379) (.06732) (.11181)

0.4 0.2 20.6114 20.3837 20.3060 19.5704 19.4368 20.0780 28.0969
(.02041) (.02007) (.01995) (.01886) (.01866) (.01961) (.03270)
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Chapter 4

Methods for Identifying Influential
Univariate Variables in Multivariate
Process Control

4.1 Background

To test the hypothesis about the mean vector of a multivariate normal process (pop-

ulation), Hotelling (1947) proposed a T 2statistic, which has received increasing attention

in the area of SPC. Consider a process with pquality characteristics (variables) in X =

(X1, . . . , Xp)
′, which are assumed to jointly follow a multivariate normal distribution with

unknown mean vector µ and covariance matrix Σ (denoted by X ∼ Np(µ, Σ)). The pro-

cess is said to be in-control in mean (or simply in-control) at a given time if the hypothesis

H0 : µ = µ0 can not be rejected based on a random sample taken from the process at that

time, where µ0 ≡ (µ01, . . . , µ0p)
′ is a constant vector representing the in-control mean. On

the other hand, µ can shift (drift) to a value other than µ0 at an unknown time, and the

main purpose of SPC is to detect this shift as soon as possible.

Since in SPC practice, at least initially (in Phase I), we are concerned with the stability

of the mean vector (not the capability of the process), µ0 is typically not specified so we need

some independent reference (training) samples, say X
(R)
i = (X

(R)
i1 , . . . , X

(R)
ip )′, i = 1, . . . , N ,

from an in-control process to estimate the unspecified in-control mean and the unknown
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covariance matrix by X̄ =
N

Σ
i=1

X
(R)
i /N and S =

N

Σ
i=1

(X
(R)
i − X̄(R))(X

(R)
i − X̄(R))′/(N − 1),

respectively. Now, to monitor the process mean at time t, we take an observation Xt =

(Xt1, . . . , Xtp)
′ from the process. Then the following statistic is commonly used (cf. Anderson

(2003) and Hotelling (1947)):

T 2 =
N

N + 1
(Xt − X̄)′S−1(Xt − X̄). (4.1.1)

Note that the T 2 statistic in (4.1.1) is slightly different from that of Hotelling (1947). The

latter assumes µ0 is known and all (training and current) data are assumed to have the same

mean vector µ. The Hotelling’s T 2 is the likelihood-ratio test statistic for testing H0 and,

if µ0 = 0, it is the uniformly most powerful, invariant test (under scalar transformation)

among all tests of population (process) mean vector that are based on sample mean vector

and sample covariance matrix (Anderson, 2003, p. 192). Hence we expect the test statistic

in (4.1.1) will perform well under the current SPC setting.

One drawback of a T 2statistic, however, is it does not provide direct information as to

which individual variable(s) may be responsible for the out of control condition (rejection of

H0) when an out-of-control condition is signaled (by a significant T 2 value). An approach to

overcoming this difficulty is to use a system of individual, univariate Shewart X̄charts (by

testing the individual univariate means separately) based on the Bonforrni inequality. This

approach, however, ignores the covariance structure and may give an actual overall type-I

risk much smaller than the “desirable” risk level α. In SPC terminology, this means that

the actual in-control average run length (ARL) can be much larger than the intended value,

making the out-of-control ARL smaller than necessary. There are many other techniques

and they will be discussed in detail in Section 4.2 when we conduct a literature review.

In this chapter we will propose a method for identifying a variable or a group of variables

that is mostly likely to be responsible for the out-of-control condition when H0 : µ = µ0

is rejected because of a significant T 2 value. Our method will compute the conditional
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likelihood that an individual mean (or a group of means) is out-of-control, given H0 : µ = µ0

is rejected. By ranking these likelihoods, we will identify the mean that is mostly likely to

be out-of-control. We use the words “most likely” because T 2 is an aggregate statistic and

hence a significant T 2 value does not necessarily imply any out-of-control individual means.

Our method, which is a diagnostic tool, is different from most of the existing methods

such as Mason, Tracy, and Young (1995), because their methods did not assume the rejection

of H0 : µ = µ0 as given and this is why their critical values for their statistics are all based

on certain central (instead of noncentral) distributions. That is, these methods basically

assume that all the other individual means are in-control when they are testing a particular

univariate mean. Nevertheless, our method should be considered as a complementary tool,

not a substitution, to the existing methods.

This chapter is organized as follows. Section 4.2 gives a brief review of the current

literature. We describe our methods in detail in Section 4.3, while Section 4.4 provides an

alternative derivation of the distributions of the components in the decomposition of the

overall T 2 statistic that we gave in the previous section. And, in Section 4, we also give a

note for the T 2 decomposition method of Mason, Tracy, and Young (1995). We illustrate

our methods in Section 4.5 using examples taken from earlier literatures and show that

our method may produce results different from others. Section 4.6 gives a more extensive

numerical study and provides some comparisons with the existing methods. Concluding

remarks are given in Section 4.7.
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4.2 Literature Review

Univariate control charts are often used for monitoring individual process parameters.

For example, one may monitor mean shifts with anX̄chart and variation change with an R

chart, as both procedures are capable of detecting deviations from the historical baseline.

When a univariate control chart gives an out-of-control signal, one can easily determine the

problem and give a solution for that variable. In a multivariate control chart the problem

is more complicated because the aggregate statistic is related to the measurements of p

correlated variables. In this section, we review several methods for detecting which of the p

variables is out of control when the aggregate statistic gives an overall out-of-control signal.

4.2.1 Univariate Control Charts based on Bonferroni Inequality

Checking p univariate control charts separately gives us the first evidence as to which of

the p variables is responsible for an out-of-control signal. Alt (1985) proposed the following

control limits based on the Bonferroni inequality: UCL = µi + z1−α/(2p)σi/
√

n and LCL =

µi − z1−α/(2p)σi/
√

n, for the ith variable. Experience shows that the actual overall Type-I

risk is much smaller than the intended value of α.

Hayter and Tsui (1994) improved the Bonferroni-type control limits by giving a procedure

for constructing exact simultaneous control limits for each of the variable means so that the

procedure will maintain a desired value of α. The control procedure operates as follows. For

a known variance-covariance matrix Σ and a pre-determined Type I risk, α, one will first

evaluate the critical point CR,α, where R is the correlation matrix generated from Σ. Then,

given any observation x = (x1, . . . , xp)
′, one constructs confidence intervals (xi−σiCR,α, xi+

σiCR,α) for each of the p variables. The process is considered to be in-control as long as each

of these confidence intervals contains the respective standard value µ0i; otherwise, the process

is considered to be out-of-control. The variable or variables whose confidence intervals do not

contain µ0i, are identified as responsible for the out-of-control signal. That is, this procedure
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signals when M = max
1≤i≤p

|xi − µ0i|/σi > CR,α.

4.2.2 Methods Based on T 2 Decomposition

To improve on the interpretability of T 2, some methodologies are based on decompositions

of T 2, as follows.

4.2.2.1 Roy’s Step-Down Procedure

The step-down reasoning for solving multivariate hypothesis-testing problems was for-

mally initiated by Roy and Bargmann (1958) in the context of testing multiple independence.

Roy (1958) extended it to the problem of testing a multivariate general linear hypothesis,

which includes Hotelling’s problem as a special case. The step-down solutions assume an

a priori ordering of the variables and involve a sequence of tests of significance. The step-

down procedure proposed by Roy (1958) for the MANOVA problem, when applied to test

H0 : µ = 0, consists of a sequence of tests based on statistics

Fi =
T 2

i − T 2
i−1

1 + T 2
i−1/(n− 1)

, i = 1, 2, . . . , p,

where T 2
0 = 0, and T 2

i denotes Hotelling’s T 2 statistic for testing (µ1, . . . , µi)
′ = 0 for the first

i variables, and is also called the unconditional T 2. The null hypothesis H0 is rejected when a

component test in the sequence shows significance. It is well-known (Roy, Gnanadesikan, and

Srivastava (1971), p. 473) that under H0, the Fi’s are independently distributed according

to F distribution with degrees of freedom 1 and n− i. Consequently the size α of the overall

procedure is related to the levels αi of the component tests by 1−α =
p

Π
i=1

(1−αi). Subbaiah

and Mudholkar (1978) studied the power functions of the two methods, namely, Hotelling’s

T 2 and Roy’s step-down procedure.

In the setting of a multivariate control chart, Fi would be the charting statistic and this

procedure can be considered as an alternative to the regular T 2 chart, not only as supplement.
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4.2.2.2 Murphy’s Out-of-Control Variable Selection Method

Murphy (1987) proposed a procedure for selecting out-of-control variables and provided

an interpretation of T 2 values, assuming that the covariance matrix is known. Murphy’s

method is based on a discriminant analysis. Given that a particular x̄∗ signals an out-of-

control condition on a T 2chart, i.e., T 2(x̄∗) > K, one partitions x̄∗ as x̄∗ = (x̄(1)∗, x̄(2)∗)

where x̄(1)∗ contains the p1 subset of the pvariables, which are suspected to have caused the

signal, and x̄(2)∗ contains the remaining p2 variables (p1 + p2 = p).

Define the full squared Mahalanobis distance of x̄∗ from the in-control mean as T 2
p =

T 2(x̄∗) = n(x̄∗ − µ0)
′Σ−1(x̄∗ − µ0) and the corresponding distance for the p1 subset: T 2

p1 =

T 2(x̄∗(1)) = n(x̄∗(1)−µ
(1)
0 )′Σ−1

11 (x̄∗(1)−µ
(1)
0 ). Also define the expected full squared distance as

∆2
p = n(µ − µ0)

′Σ−1(µ − µ0) and the expected reduced squared distance as ∆2
p1 = n(µ(1) −

µ
(1)
0 )′Σ−1(µ(1)−µ

(1)
0 ). Then, to test H0 : ∆2

p−∆2
p1 = 0, which is equivalent to testing that the

p1 subset discriminates just as well as the full set of pvariables, the difference D = T 2
p − T 2

p1

can be used as a test statistic. If D is large and then we reject the hypothesis that the p1

subset had caused the signal. To determine the critical value, it is proved that, under the

null hypothesis, D follows a Chi-square distribution with p2 degrees of freedom.

4.2.2.3 Doganaksoy, Faltin and Tucker’s Out-of-Control Variable Selection Method

Doganaksoy, Faltin, and Tucker (1991) proposed ranking the punivariate t statistics and

computing the probability P of accepting the hypothesis. If the P value for any variable is

less than the Bonferroni’s risk, α’/p, we may conclude that the mean of that variable has

changed. This method is based on use of the p unconditional T 2 terms. The diagnostic

approach is triggered by an out-of-control signal from a T 2-Chart.

4.2.2.4 Interpretation Algorithm of Timm

Timm (1996) proposed a step-down procedure of using Finite Intersections Tests (FIT )

for the case where the variance-covariance matrix Σ is assumed known. It also assumes that
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there is an a priori ordering among the means of the p variables and it sequentially tests

subsets using this ordering to determine the sequence. Timm (1996) stated that when shifts

occur for some subset of variables, the optimal procedure is to utilize a finite intersection

test.

A process is in-control if hypotheses Hi : µi = µ0i, i = 1, 2, . . . , p, or equivalently the

intersection of the Hi’s, H0 :
p∩

i=1
Hi, is true, where µi is the mean of the ith variable. To test

H0, one can use the FIT procedure. To construct a FIT of H0, one defines a likelihood ratio

test statistic for each elementary hypothesis Hi and determine the joint distribution of the

test statistics. Let the test statistics be defined as

z2
i =

(xi − µ0i)
2

σii

, i = 1, 2, . . . , p.

Krishnaiah and Rao (1961) show that the joint distribution of z2
1 , z

2
2 , . . . , z

2
p follows a

noncentral p-dimensional χ2 distribution with 1 degree of freedom. Consider that the

known variance-covariance matrix Σ = σ2Ω, where Ω = (ρij) is the correlation matrix

of the accompanying multivariate normal. Note that χ2
p(1, Ω; 1 − α) is the 1 − α per-

centage value of the p-dimensional χ2 distribution with 1 degree of freedom and the ac-

companying correlation matrix, Ω. A multivariate quality control process is in-control if

z2
i < χ2

p(1, Ω; 1− α), where P (z2
i < χ2

p(1, Ω; 1− α), i = 1, 2, . . . , p|H0) = 1− α. The process

is out-of-control if max
1≤i≤p

z2
i > χ2

p(1, Ω; 1 − α), where P (max
1≤i≤p

z2
i < χ2

p(1, Ω; 1 − α)|H0) = α.

Since a non-central p-dimensional χ2 distribution with 1 degree of freedom is a special case

of the multivariate t distribution with infinite degrees of freedom, the process may alterna-

tively be judged as out-of-control if P (max
1≤i≤p

|Ti| = |xi − µ0i|
/√

σii > T 2
p,1−α) = α. Hence,

P (|Ti| ≤ T 2
p,1−α, i = 1, 2, . . . , p|H0) = 1− α.

The 1− α level simultaneous confidence sets are easily established for each variable

xi − T 2
p,1−α

√
σii ≤ µi ≤ xi + T 2

p,1−α

√
σii.

The process is said to be out-of-control if at least one confidence interval does not contain
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its in-control mean. Timm (1996) also gave a step down FIT procedure for the case that

the variance-covariance matrix Σ is unknown.

4.2.2.5 Mason, Tracy and Young’s (MTY) Decomposition Method

Mason, Tracy, and Young (1995, 1996, 1997) presented an approach in which the Hotelling’s

T 2 statistic is decomposed into p orthogonal components. One form of the MTY decompo-

sition can be expressed as (Rencher (1993))

T 2 = T 2
1 + T 2

2.1 + T 2
3.1,2 + · · ·+ T 2

p.1,2,...,p−1 = T 2
1 +

p−1

Σ
j=1

T 2
j·1, 2,..., j−1.

The first term T 2
1 is an unconditional Hotelling’s T 2 for the first variable of the observation

vectorx. The rest are referred as conditional terms. The ordering of the p components is

not unique and there are p! possibilities of decompositions of T 2. Each ordering generates

the same overall T 2 value, but provides a distinct partitioning of T 2 into p orthogonal,

conditional terms. If we exclude duplications, there are p× 2p−1 distinct components among

the p × p! possible terms that should be evaluated for the potential contribution of the p

variables to signal.

An unconditional term has a same statistic of a univariate Shewhart control chat. It

calculates the squared standardized deviation of the observed value from the in-control mean

value for the jth variable. A signal will occur if this value is too far away from the in-control

mean. The p unconditional, univariate T 2 terms based on squaring a univariate t statistic

can be computed and then compared to the appropriate F distribution. Specifically, under

the hypothesis H0 : µj = µ0j, T 2
j will follow an F distribution which can be used to determine

the upper control limit; i.e.,

T 2
j =

n

n + 1

(xj − x̄j)
2

s2
j

∼ F1, n−1, j = 1, . . . , p. (4.2.1)

where x̄j and sj are respectively the mean and standard deviation of variableXj, obtained

from the training data.
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The jth conditional term T 2
j·1, ..., j−1 is a standardized observation for thejthvariable ad-

justed by estimates of the mean and variance from the conditional distribution associated

with xj·1, ..., j−1. The most important function of the conditional term is that it determines

whether the jth variable is consistent with the relationship pattern with other variables

established from historical in-control data.

The general form of the conditional terms is given as

T 2
j·1, ..., j−1 =

n

n + 1

(xj − x̄j·1, ..., j−1)
2

s2
j·1, ..., j−1

, j = 2, . . . , p (4.2.2)

where

x̄j·1, ..., j−1 = x̄j + b′j(X
(j−1) − X̄(j−1))

and X(j−1) is the vector containing the first j − 1 variables, x̄j is the sample mean of

thejth variable, bj is a (j−1)-dimensional vector estimating the regression coefficients of the

jth variable regressed on the first (j − 1) variables. In addition, it can be shown that the

numerator of Fi, the statistic based on Roy’s step down procedure, is a conditional T 2 value:

T 2
i − T 2

i−1 = T 2
i·1, 2, ..., i−1.

Consequently, the T 2
j·1,...,j−1 value is the squared deviation of the value onjthvariable from

the conditional in-control mean, which is the mean of the conditional distribution of Xj given

the values of X1,X2, . . . , Xj−1. The exact distribution is

T 2
j·1,...,j−1 ∼

(n− 1)

(n− k − 1)
F1, n−k−1, where k = j − 1. (4.2.3)

Thus, this statistic can also be used to determine whether the jth variable is consistent

with the relationship pattern with other variables established from the historical in-control

data in the training data set. Moreover, the distances Di = T 2 − T 2
i can be computed and

compared to the F distribution.
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T 2
j·1,2,...,j−1 can be re-expressed as (Mason, Tracy, and Young (1997)),

T 2
j·1,2,...,j−1 =

(xj − x̄j·1,2,...,j−1)
2

s2
j(1−R2

j·1,2,...,j−1)
.

The numerator is the squared residual between the observed and the predicted value from

regressing xj on the variables x1, . . . , xj−1. R2
j·1,...,j−1 is the squared multiple correlation

coefficient between xj and x1, . . . , xj−1. From the above equation, it is noted that the

conditional T 2 will become large if xj is significantly far from what is predicted value, unless

the R2
j.1,2,...,j−1 is close to 1.

The following is a sequential computational scheme that has the potential of further

reducing the computations to a reasonable number when the overall T 2 signals, as proposed

by Mason, Tracy, and Young (1997).

Step 0: Conduct a T 2 test with a specified nominal confidence level α. If an out-of-control

condition is signaled then continue with the step 1; otherwise move to the next period.

Step 1: Compute the individual T 2 statistic for every component of the X vector. Remove

variables whose observations produce a significant T 2
i . The observations on these vari-

ables are out of individual control and it is not necessary to check how they relate to

the other observed variables. With significant variables removed we have a reduced set

of variables. Check the subvector of the remaining k variables for a signal. If you do

not receive one, we have located the source of the problem.

Step 2: (Optional) Examine the correlation structure of the reduced set of variables. Remove

any variable having a very weak correlation (0.3 or less) with all the other variables.

The contribution of a variable that falls in this category is measured by the T 2
i com-

ponent.

Step 3: If a signal remains in the subvector of k variables not deleted, compute all T 2
i·j terms.

Remove from the study all pairs of variables, (Xi, Xj), that have a significant T 2
i·j
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term. This indicates that something is wrong with the bivariate relationship. When

this occurs it will further reduce the set of variables under consideration. Examine all

removed variables for the cause of the signal. Compute the T 2 terms for the remaining

subvector. If no signal is present, the source of the problem is with the bivariate

relationships and those variables were out of individual control.

Step 4: If the subvector of the remaining variables still contains a signal, compute all T 2
i·j,k

terms. Remove any triple, (Xi, Xj, Xk), of variables that show significant results and

check the remaining subvector for a signal.

Step 5: Continue computing the higher order terms in this fashion until there are no variables

left in the reduced set. The worst case situation is that all unique terms will have to

be computed.

Generally, the T 2 statistic associated with an observation from a multivariate problem

is a function of the residuals taken from a set of linear regressions among the various pro-

cess variables. These residuals are contained in the conditional T 2 terms of the orthogonal

decomposition of the statistic. Mason and Young (1999) showed that a large residual in one

of these fitted models can be due to incorrect model specification. By improving the model

specification at the time when the historical data set is constructed, it may be possible to

increase the sensitivity of the T 2 statistic to signal detection. Also, they showed that the

resulting regression residuals can be used to improve the sensitivity of the T 2 statistic to

small but consistent process shifts, using plots that are similar to cause-selecting charts.

The productivity of an industrial processing unit often depends on equipment that

changes over time. These changes may not be stable, and, in many cases, may appear

to occur in stages. Although changes in the process levels within each stage may appear

insignificant, they can be substantial when monitored across the various stages. Standard

process control procedures do not perform well in the presence of these step-like changes,
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especially when the observations from stage to stage are correlated. Mason, Tracy, and

Young (1996) present an alternative control procedure for monitoring a process under these

conditions, which is based on a double decomposition of Hotelling’s T 2 statistic.

4.2.3 Methods Based on Principal Components

Another diagnostic approach is based on principal components analysis (PCA) method.

The most noticeable advantages of PCA is it can provide the most important principal

directions of variability in data and its ability to transform the original set of correlated

variables into a new set of uncorrelated variables. These principal components are linear

combinations of the original variables and thus the dimensionality can often be reduced. Once

a PCA model is constructed based on an in-control historical data set, the original variables

are considered simultaneously and the relation between variables are also captured. A new

observation can be detected as out-of-control if it significantly deviates from the (in-control)

PCA model. The principal components do not provide an overall measure of departure of the

multivariate data from the norms. It can be difficult to assign a meaningful interpretation

to these principal components.

Jackson (1991) recommended using the PCA for improving on the interpretation of T 2.

When given an out-of-control signal in a T 2 control chart, the most common practice is

to use the first k most significant principal components for further investigation. The basic

assumption is that the first k principal components can be physically interpreted, and named.

Consequently, if the T 2 chart gives an out-of-control signal and, for example, the second

principal component chart also gives an out-of-control signal, then from the interpretation

of this component, a direction to the variables which are suspect to be out-of-control can

be figured. The problem is that the principal components do not always have a physical

interpretation.

Kourti and MacGregor (1996) provided a different approach based on PCA and par-
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tial least squares. The T 2 statistic is expressed in terms of normalized principal components

scores of the multinormal variables. When an out-of-control signal occurs, contribution plots

(Wasterhuis, Gurden, and Smilde (2000)) can be constructed for the normalized scores with

high values to find the variables responsible for the signal. A contribution plot indicates

how each variable involved in the calculation of that score contributes to it. The computa-

tion of variable contributions showed that principal components can actually have physical

interpretation. This approach is particularly applicable to large ill-conditioned data sets.

Maravelakis, Bersimis, Panaretos, and Psarakis (2002) proposed a new method based on

PCA to identify the variable or variables that are responsible when an out-of-control signal

in the χ2 control chart. Theoretical control limits were derived and a detailed investigation

of the properties and the limitations of the new method were given. They considered two

different cases– one where the covariance matrix has only positive correlations and the second

with both positive and negative correlations–and also provided their algorithms. Further-

more, a graphical technique which can be applied in some of these limiting situations was

provided.

4.2.4 Hawkins’s Regression-Adjustment Method

Hawkins (1991, 1993) discussed the multivariate quality control based on regression-

adjusted variables for individual variables to help identify the single variable that is re-

sponsible for a shift in mean. It is a method that uses the vector of scaled residuals from

the regression of each variable on all others. The purpose of this technique is to make

the controls more effective than those based on individual variables. He defined a set of

regression-adjusted variables, Z, and its ith element Zi, which is the residual when Xi is

regressed on all other components of X . Apart from their good performance characteristics,

each Zi has the desirable property of being on the same scale asXi. He proposed to chart

a CUSUM statistic using data onZi. Hence, pseparate cumulative Z-charts can be used to
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monitor the individual means. The ith chart tests whether the variable i conforms to its

in-control conditional distribution given the other variables. His test statistic involved the

p-adjusted values, which can be shown to be related to the statistics presented in Mason,

Tracy, and Young (1995) decomposition. This method is capable of separating shifts in the

mean from shifts in the covariance structure and makes signal identification a less involved

task. Hawkins pointed out that his method is suited mainly for cases in which only one or

two of the quality variables may shift out of control at any time.

4.2.5 The Cause-Selection Chart and The Minimax Control Chart

The cause-selecting chart (CSC ), proposed by Zhang (1980, 1984, 1992), is a different

approach to solving the problem of interpreting an out-of-control signal in the T 2chart. The

idea of the CSC is similar to the regression control chart of Mandel (1969) in terms of

charting a variable after the observations have been adjusted for the effect of an outside

covariate. This idea has also been used by Hawkins (1991, 1993). Wade and Woodall (1993)

proposed a modification of the CSC chart to investigate the relationship between cause-

selection control and the multivariate T 2 chart for the diagnostic purpose. A CSC charting

the outputs adjusted by the effect of input can effectively distinguish between incoming

quality problems and operation problems in the current stage. The construction of a CSC

involves a two-step procedure based on a simple linear regression model. Once the CSC is

set up, it can be used to indicate whether the current process stage is out of control. The

cause-selecting value measures the specific quality at the current process step. As a result,

an out-of-control signal on the CSC indicates that the current process step is out of control.

Sepulveda (1996) developed the Minimax control chart that can give evidence about

which variable cause the out-of-control signal. The Minimax control chart was again dis-

cussed in Sepulveda and Nachlas (1997) and is similar to the charts proposed by Hater and

Tsui (1994) and Timm (1996). The basic idea of the Minimax control chart was based
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on monitoring the maximum standardized sample mean (Z[p]) and the minimum standard-

ized sample mean (Z[1]) of samples, taken from a multivariate process, to determine if the

process should be considered in control or out of control. It is assumed that the data are

normally distributed and that the variance-covariance matrix is known and constant over

time. Therefore, by monitoring the maximum and the minimum standardized sample mean,

an out-of-control signal is directly connected with the corresponding out-of-control variable.

Sepuldveda and Nachlas (1997) also discussed the statistical properties and the ARL perfor-

mance of the Minimax control chart.

4.2.6 Dummy Variable Multiple Regression and Neural Network

Kalagonda and Kulkarni (2003) proposed a diagnostic procedure called ‘D-technique,’

using the dummy variable multiple regression equation. Use of this technique leads to the

identification of the causes such as the mean shift and/or relationship shift. Also, their

proposed method can indicate the direction of the shift, that is, whether the mean is increased

or decreased.

Aparisi, Avendano, and Sanz(2006) presented a method, using a neural network approach,

for indicating which variable or group of variables had caused the problem when an out-of-

control signal occurs. They evaluated the effectiveness of the proposed approach in terms

of the correct classification percentage of the variables (shift, no shift) and compared their

results with those obtained using the MTY decomposition approach. They showed that the

results obtained using the neural network method are in general better than those obtained

using the decomposition approach.

4.2.7 Graphical Techniques

There are various statistical approaches for identifying the out-of-control variables. An

important adjunct to the statistical procedures is a suitable graphical scheme that can display

the basic features of the data.
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Iglewicz and Hoaglin (1987) used different techniques of displaying boxplots to signal

out-of-control situation due to shift in mean/variance and presence of an outlier.

The multivariate profile (MP) chart proposed by Fuchs and Benjamini (1994) is probably

one of the best ways for simultaneously displaying univariate and multivariate SPC infor-

mation. It can simultaneously control a process and interpret an out-of-control signal. An

MP chart is a plot of the standardized values of the p process variables using a bar graph

with the reference level represented by a T 2statistic. Specifically, every bar graph represents

summaries of data for an individual variable, and the location of the bar graph on the plot

is used for providing global information about the group of observations. Each group is

displayed by one symbol and this symbol of the profile plot enables the user to get a clear

view of the size and sign of each variable from its reference value. Therefore, the MP chart

can be used to identify easily the cause of a shift because all the individual variables are

displayed in a common scale within a group. However, one major disadvantage in using the

MP chart is that when p increases, say more than seven, it becomes cumbersome to plot.

For the purpose for reducing dimensionality, Fuchs and Benjamini suggested the MP chart

for the principal components in higher dimensional SPC’s.

Sparks, Adolphson, and Phatak (1997) proposed a graphical method for monitoring mul-

tivariate process data based on the Gabriel biplot. In contrast to existing methods that

are based on some form of dimension reduction, they use reduction to two dimensions for

displaying the state of statistical control. This approach can detect changes in location, vari-

ation, and correlation structure accurately and yet display a large amount of information

concisely. They illustrated the use of the biplot on an example of industrial data.

Atienza, Tang, and Ang (1998) proposed a graphical procedure for simultaneously mon-

itoring univariate and multivariate process information. The proposed chart, called the

multivariate boxplot-T 2 control chart (MBTCC), displays both types of process information

using a modified boxplot. It is particularly useful when the monitoring process involves a
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large number of variables. The MBTCC is not meant to replace the statistical procedures

of isolating variables affected by an out-of-control signal in multivariate control charting. It

acts as a diagnostic tool for assessing the nature of an out-of-control situation.

However, these graphical methods have several drawbacks including that their operation

is tedious and cumbersome due to their graphical nature. The main problem is that this

type of approach requires the user to interpret the results. This means that it is a complex

task to measure their effectiveness in an objective manner.
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4.3 The Proposed Method Based On Likelihood Prin-

ciple

In this section we will propose a new method for identifying a variable or a group of

variables that are most likely to be responsible for an out-of-control signal indicated by a

significant T 2 value when testing H0 : µ = µ0.

4.3.1 Variables Likely Responsible for an Overall Out-of-control
Condition

First note that sample mean X̄ from the training samples followsNp(µ0, (1/N)Σ) and

sample covariance S independently follows a p-dimensional Wishart distribution with degrees

of freedom N − 1 and covariance matrix 1
N−1

Σ (write S ∼ Wp(N − 1, 1
N−1

Σ)). Then, from

Anderson (2003), N−p
p

T 2

N−1
follows a noncentral Fp,N−p,λ distribution with noncentrality λ =

N
N+1

(µ − µ0)
′Σ−1(µ − µ0), which becomes central (λ = 0) underH0 : µ = µ0. A process is

out of control (i.e., if H0 is false) if λ is greater than zero. The hypothesis H0 : µ = µ0 is

rejected if the observed T 2 is greater than (N−1)p
N−p

Fp,N−p,0(α), where Fp,N−p,0(α) is the (1−α)

percentile of Fp,N−p,0.

We now partition the mean vector into k subvectors as µ = (µ(1)′ , µ(2)′ , ..., µ(k)′)′, where

µ(j) is a pj-dimensional subvector of pj individual means and
∑k

j=1 pj = p. Let the given

vector µ0 be partitioned similarly, then the null hypothesis can be written as H0 : ∩k
j=1(Hj0 :

µ(j) = µ
(j)
0 ). In some cases, the mean vector can shift to a certain known value (e.g., by one

or two standard deviations). So, we will consider the following two cases - one with (Case

(A)) and the other without (Case (B)) a specified alternative hypothesis:

(A). Ha : ∩k
j=1(Hja : µ(j)

a − µ
(j)
0 = µ∗(j)a − µ

(j)
0 ), where µa = (µ(1)′

a , . . . , µ(k)′
a )′ is the true

shifted mean vector and µ∗a = (µ∗(1)′
a , . . . , µ∗(k)′

a )′ is a specified vector;

(B). Ha : not H0, or equivalently, Ha : ∪k
j=1(Hja : µ(j) 6= µ

(j)
0 ).
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For case (A), the direction and magnitude of the shift in the jth subvector of the mean is

denoted by ∆j = µ(j)
a −µ

(j)
0 and that we would like to detect is denoted by ∆∗

j = µ∗(j)a −µ
(j)
0 .

Assume at time t , the observed T 2 in (4.1.1), from the current sample Xt = (Xt1, . . . , Xtp)
′,

had signaled an overall out-of-control condition, i.e., H0 is rejected because the observed

T 2 = t2 > (N−1)p
N−p

Fp,N−p,0(α). For simplicity, let’s write t20(α) ≡ (N−1)p
N−p

Fp,N−p,0(α). For case

(A), the question is: Which alternative hypothesis,Hja : µ(j) = µ(j)
a is mostly likely to be

true, given H0 is rejected. Our method is based on the likelihood principle and will consider

the dependence structure among the variables through T 2. We will calculate the conditional

(maximum) likelihood, `j(Hja|Ha), of Hja for each j in Case (A) and `′j(Hj0|Ha) in Case

(B). By ranking these likelihood values, one can identify which variables are most likely to

be responsible for the out-of-control condition.

The conditional maximum likelihood of Hja is calculated as follows:

`j(Hja|Ha) = Max
µ(j)∈Hja

fµ(j)(X
(j)
t = x

(j)
t |T 2 = t2 > t20(α)), (4.3.1)

where fµ(j)(X
(j)
t = x

(j)
t |T 2 = t2 > t20(α)) is the conditional pdf of X

(j)
t at x

(j)
t . For Case (A)

where Hja is a simple alternative, (4.3.1) reduces to

`j(Hja|Ha) = f
µ

(j)
a

(X
(j)
t = x

(j)
t |T 2 = t2 > t20(α)), j = 1, · · · , k. (4.3.2)

Then, we will identify the subvector with the largest `− value as the most likely mean to be

responsible for the overall out-of-control condition.

For Case (B), our question becomes: Which Hj0 is the least likely to be true, given H0

is rejected. The conditional likelihood of Hj0 is similar to that for Case (A) and can be

calculated as (since Hj0 is simple)

`′j(Hj0|Ha) = f
µ

(j)
0

(X
(j)
t = x

(j)
t |T 2 = t2 > t20(α)) (4.3.3)

In this case, we will identify the subvector with the smallest `′-value will as a potentially

problematic subvector.
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4.3.2 Calculations of the Conditional Likelihood Functions

To calculate the condition pdf’s in (4.3.2) and (4.3.3), we will consider only `1(H10|Ha)

and `′1(H1a|Ha) for the first subvectorX
(1)
t (i.e., j =1) because conditional likelihoods for the

other subvectors can be computed similarly by rearranging and renaming the variables inXt.

Now partitionXt, X̄, and S as

Xt = (X
(1)′
t , X

(2)′
t )′, X̄ = (X̄(1)′ , X̄(2)′)′ , and S =

[
S11 S12

S21 S22

]
, (4.3.4)

where X
(1)
t and X̄(1) are p1 × 1 vectors and X

(2)
t and X̄(2) are q1 × 1 vectors containing the

remaining elements in Xt and X̄, respectively, so q1 = p − p1. Similarly, µ, µ0, and Σ are

partitioned as follows:

µ = (µ(1)′ , µ(2)′)′, µ0 = (µ
(1)′
0 , µ

(2)′
0 )′, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (4.3.5)

Define the partial (i.e., conditional) covariance matrices:

Σ22.1 = Σ22 − Σ21Σ
−1
11 Σ12 , and S22.1 = S22 − S21S

−1
11 S12. (4.3.6)

To compute fµ(1)(X
(1)
t = x

(1)
t |T 2 = t2 > t20(α)) in (4.3.2), first we see that T 2 can be

decomposed as

T 2 =
N

N + 1
(Xt − X̄)′S−1(Xt − X̄)

=
N

N + 1
· (X(1)

t − X̄(1))′S−1
11 (X

(1)
t − X̄(1))

+
N

N + 1
[(X

(2)
t − X̄(2))− S21S

−1
11 (X

(1)
t − X̄(1))]′S−1

22.1[(X
(2)
t − X̄(2))− S21S

−1
11 (X

(1)
t − X̄(1))]

= T 2
1 + T 2

2 , say (4.3.7)

Theorem 3.3. (Proof in Appendix B.1)

(i). T 2
1 follows a noncentral (N−1)p1

N−p1
Fp1,N−p1,λ1distribution with noncentrality

λ1 =
N

N + 1
(µ(1) − µ

(1)
0 )′Σ−1

11 (µ(1) − µ
(1)
0 ). (4.3.8)
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(ii). The conditional distribution of T
2(∗)
2 ≡ T 2

2

(1+T 2
1 /(N−1))

, given T 2
1 = t21 = N

N+1
(x

(1)
t −

x̄(1))′s−1
11 (x

(1)
t − x̄(1)) is a noncentral (N−1)q1

N−p
Fq1,N−p,λ2 distribution with noncentrality

λ2 =
N

N + 1

[(µ(2) − µ
(2)
0 )− Σ21Σ

−1
11 (µ(1) − µ

(1)
0 )]′Σ−1

22.1[(µ
(2) − µ

(2)
0 )− Σ21Σ

−1
11 (µ(1) − µ

(1)
0 )]

(1 + t21/(N − 1))

=
λ− λ1

(1 + t21/(N − 1))
. (4.3.9)

Note that the unconditional distribution of T 2
2 can be obtained from (i) and (ii) as

∫
t21>0

fT 2
2 |T 2

1
(t|t21)fT 2

1
(t21)dt21.

Now from (i) and (ii) above, for anyµ = (µ′(1), µ′(2))′, the conditional distribution of

T 2 given(X
(1)
t , X̄(1), S11) = (x

(1)
t , x̄(1), s11), is (1 +

t21
N−1

) (N−1)q1

N−p
Fq1,N−p,λ2 + t21, which depends

on (x
(1)
t , x̄(1), s11)but through t21 = N

N+1
(x

(1)
t − x̄(1))′s−1

11 (x
(1)
t − x̄(1)). From the fact that

the distribution of X
(1)
t , X̄(1), and S11 are independently Np1(µ

(1), Σ11), Np1(µ
(1)

0 , Σ11

N
), and

Wp1(N − 1, Σ11

N−1
), respectively, the conditional pdf of X

(1)
t , given T 2 = t2 > t20(α) (i.e.,H0 is

rejected), is

fµ(1)(X
(1)
t = x

(1)
t |t2) =

f
(X

(1)
t ,T 2)

(x
(1)
t , t2)

fT 2(t2)

=
1

fT 2(t2)

∫

s11>0

∫

x̄(1)

f
(X

(1)
t ,T 2)|(X̄(1),S11)

(x
(1)
t , t2|x̄(1), s11)fX̄(1)(x̄(1))fS11(s11)dx̄(1)ds11

=
f

X
(1)
t

(x
(1)
t )

fT 2(t2)
·

∫

s11>0

∫

x̄(1)

f
T 2|(X(1)

t ,X̄(1),S11)
(t2|x(1)

t , x̄(1), s11) · fX̄(1)(x̄(1)) · fS11(s11)dx̄(1)ds11.

Note that f
T 2|(X(1)

t ,X̄(1),S11)
(t2|x(1)

t , x̄(1), s11)= 0 if t21 ≡ N
N−1

(x
(1)
t − x̄(1))′s−1

11 (x
(1)
t − x̄(1)) > t2.

Furthermore, this conditional distribution is the conditional distribution of T 2 ≡ T 2
1 + T 2

2

or t21 + T 2
2 , and, from the proof of Theorem 1, it depends on x

(1)
t , x̄(1), s11 but through t21.

Simple transformation give

f
T 2|(X(1)

t ,X̄(1),S11)
(t2|x(1)

t , x̄(1), s11) = f
T 2
2 |(X

(1)
t ,X̄(1),S11)

(t2 − t21|x(1)
t , x̄(1), s11)

= f
T

2(∗)
2 |(X(1)

t ,X̄(1),S11)
(

t2 − t21
(1 + t21/(N − 1))

|x(1)
t , x̄(1), s11)

1

(1 + t21/(N − 1))
,
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where the conditional distribution of T
2(∗)
2 , given T 2

1 = t21, can be found in Theorem 1 (ii).

So we have

fµ(1)(X
(1)
t = x

(1)
t |t2) =

f
X

(1)
t

(x
(1)
t )

fT 2(t2)

∫

s11>0

∫

x̄(1)

f
T

2(∗)
2 |(X(1)

t ,X̄(1),S11)
(

t2 − t21
(1 + t21/(N − 1))

|x(1)
t , x̄(1), s11)

× 1

(1 + t21/(N − 1))
fX̄(1)(x̄(1))fS11(s11)dx̄(1)ds11

=
f

X
(1)
t

(x
(1)
t )

fT 2(t2)
E(X̄(1),S11)

(
f

T
2(∗)
2 |(X(1)

t ,X̄(1),S11)
(

t2 − t21
(1 + t21/(N − 1))

|x(1)
t , x̄(1), s11)

1

(1 + t21/(N − 1))

)
.

(4.3.10)

Note that inside the expectation in (4.3.10) x
(1)
t is fixed while X̄(1) and S11 are random

such that t21 = N
N+1

(x
(1)
t − X̄(1))′S−1

11 (x
(1)
t − X̄(1)) and t21 ≤ t2. To simplify the computation,

the expectation in (4.3.10) can be approximated as follows (proof in Appendix B.2).

E(X̄(1),S11)

(
f

T
2(∗)
2 |(X(1)

t ,X̄(1),S11)
(

t2 − t21
(1 + t21/(N − 1))

|x(1)
t , x̄(1), s11) · 1

(1 + t21/(N − 1))

)

= ∫ ∫
s11>0,x̄(1),t21≤t2

fasymp(t
2, t21|x(1)

t , x̄(1), s11)·fX̄(1)(x̄(1))·fS11(s11)dx̄(1)ds11

= ∫ ∫
s11>0,x̄(1),t21≤t2

(
(

1

N
)0f (0)

asymp + (
1

N
)f (1)

asymp + (
1

N
)2f (2)

asymp + O3(
1

N
)
)
·fX̄(1)(x̄(1))·fS11(s11)dx̄(1)ds11,

(4.3.11)

where

fasymp(t
2, t21|x(1)

t , x̄(1), s11) = (
1

N
)0f (0)

asymp + (
1

N
)f (1)

asymp + (
1

N
)2f (2)

asymp + O3(
1

N
),

f (0)
asymp = e−

(λ−λ1)

2
+

t21−t2

2


 ∞

Σ
β=0

(t2 − t21)
q1
2
−1+β

Γ( q1

2
+ β)β!

·
(

λ− λ1

2

)β

2−(
q1
2

+β)


 ,

f (1)
asymp = e−

(λ−λ1)

2
+

t21−t2

2
∞
Σ

β=0

(t2 − t21)
q1
2
−1+β

Γ( q1

2
+ β)β!

·
(

λ− λ1

2

)β

2−(
q1
2

+β) × (
(λ− λ1)t

2
1

2

−(1− t21)(1− t21 − 2p)

4
+

(1− t2)(1− t2 − 2p1)

4
+

q1

2
(
q1

2
− p− 1)− (t2 + t21 + p1 − β)β),

and f (2)
asymp is defined in Appendix B.2.

We provide the following interpretation for our results. In addition to the usual inter-

pretation of a likelihood function, it can be considered as a measure of the consistency of
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the observed data to the value(s) – assumed or estimated – of the population parameter(s).

Note that `′1 in (4.3.3) for H10 : µ(1) = µ
(1)
0 can be obtained by letting µ(1) = µ

(1)
0 in (4.3.10).

The first likelihood (pdf) on the right side of (4.3.10) shows the conditional likelihood of

observing x
(1)
t for X

(1)
t if H10 : µ(1) = µ

(1)
0 is true; i.e., how consistent this observation is with

the hypothesized mean µ(1) = µ
(1)
0 of X

(1)
t . If this likelihood is small, then the hypothesis

H10 : µ(1) = µ
(1)
0 is likely to be false. Secondly, note from (4.3.10) that the conditional like-

lihood inside the expectation on the right side of (4.3.10) depends on λ2. So from Theorem

1, the conditional likelihood function in (4.3.10) shows, after removing the direct effect t21

of the first subvector from t2, how well t2 − t21, as an observed value for T 2
2 , explains (or, is

consistent with) the estimated noncentrality λ2 = λ if H0 is true. Again if this is small, we

tend to believe thatH10 : µ(1) = µ
(1)
0 is false. Therefore, if `′1 is small, then H10 : µ(1) = µ

(1)
0

is likely to be false. The interpretation for `1 is similar.

4.3.3 The Computation Procedure for Case (A) and Case (B)

When an observed overall T 2 is significant, the following is a sequential computational

procedure for both Cases (A) and (B). Note that when computing fµ(1)(X
(1)
t = x

(1)
t |t2) on

the left side of (4.3.9), we need to compute fT 2(t2), f
X

(1)
t

(x
(1)
t ), and

E(X̄(1),S11)

(
f

T
2(∗)
2 |T 2

1
(

t2 − t21
(1 + t21/(N − 1))

|t21) ·
1

(1 + t21/(N − 1))

)

, for all combinations of the p1 component of Xt, where p1 < p. λ and λ1 are the parameters

in (4.3.9), which need to be estimated. Letλ̂ and λ̂1 be the estimates.

Procedure 1: (For Case (A))

Step 1: For a given observation Xt, which is from the current process at time t, and the usual

sample mean vector X̄ and the sample covariance matrixS, which are obtained from

the reference sample, Xi = (Xi1, . . . , Xip)
′, i = 1, . . . , N , from the in-control process

(or Historical Data Set (HDS)), compute the T 2 value. If an out-of-control condition is
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signaled at a significant level α, then go to Step 2; otherwise move to the next sampling

period t + 1.

Step 2: Consider p1 = 1 and computing three functions in (4.3.10) for every component of Xt.

The parameters in fT 2(t2) and f
T

2(∗)
2 |T 2

1
(

t2−t21
(1+t21/(N−1))

|t21)of (4.3.10) are λ and λ−λ1

(1+t21/(N−1))
,

respectively. Computing both of densities with the estimated noncentrality parameters

λ̂ = N
N+1

(µa − X̄)′S−1(µa − X̄) and λ̂1 = N
N+1

(µ(1)
a − X̄(1))′S−1

11 (µ(1)
a − X̄(1)). Note

that X
(1)
t ∼ Np1(µ

(1)
a , s11) when computing f

X
(1)
t

(x
(1)
t ). Then using numerical method

to compute E(X̄(1),S11)

(
f

T
2(∗)
2 |T 2

1
(

t2−t21
(1+t21/(N−1))

|t21) · 1
(1+t21/(N−1))

)
from the fact that X̄(1) ∼

Np1(x̄
(1), s11) and S11 ∼ Wp1(N − 1, s11

N−1
).

Step 3: Based on results of Step 2, the variable corresponding to the largest value is most likely

source of the out-f-control condition.

Step 4: When considering the correlation between variables, we can repeat Step 2 and Step3 for

p1 ≥ 2. Note that in Step 3, the set of variables with the largest ` value is most likely

the problematic variables.

Procedure 2: (For Case (B))

Step 1: Same as Step 1 for Case (A).

Step 2: It is similar to Step 2 for Case (A). Consider p1 = 1 and computing three functions of

(4.3.9) for every component of Xt. The parameters in fT 2(t2) and f
T

2(∗)
2 |T 2

1
(

t2−t21
(1+t21/(N−1))

|t21)of
(4.3.9) are λ and λ−λ1

(1+t21/(N−1))
, respectively. Compute both densities with the noncen-

trality parameter estimates λ̂ = N
N+1

(Xt − X̄)′S−1(Xt − X̄) and λ̂1 = N
N+1

(X
(1)
t −

X̄(1))′S−1
11 (X

(1)
t − X̄(1)) for case (B). Use the fact that X

(1)
t ∼ Np1(x̄

(1), s11) when com-

puting f
X

(1)
t

(x
(1)
t ). Then obtain E(X̄(1),S11)

(
f

T
2(∗)
2 |T 2

1
(

t2−t21
(1+t21/(N−1))

|t21) · 1
(1+t21/(N−1))

)
know-

ing X̄(1) ∼ Np1(x̄
(1), s11) and S11 ∼ Wp1(N − 1, s11

N−1
).
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Step 3: Rank the `′j values obtained from Step 2. The variable corresponding to the smallest

value is most likely the problematic variable.

Step 4: When considering the correlation between variables, we can repeat Step 2 and Step 3

but with p1 ≥ 2 variables in the first vector.
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4.4 The Alternative of The Distribution of T 2 Based

On The Multivariate t Distribution

In this section we introduce multivariate t distribution to obtain the distribution of T 2

in (4.3.7).

4.4.1 Definition of Multivariate t Distribution

A p-dimensional random vector T = (T1, . . . , Tp)
′ is said to have the p-variate t distri-

bution with degrees of freedom ν, mean vector η, and correlation matrix R (denoted by

tp(ν, η, R)) if its joint probability density function (pdf) is given by (Kotz (2004))

f(T ) =
Γ(ν+p

2
)

(πν)
p
2 Γ(ν

2
)
|R|− 1

2 (1 +
1

ν
(T − η)′R−1(T − η))−

ν+p
2 . (4.4.1)

The degrees of freedom parameter ν is also referred to as the shape parameter because

the peakedness of (4.4.1) may be diminished, preserved, or increased by varying ν. The

distribution is said to be central if η = 0; otherwise, it is said to be noncentral. It is also

known that T ∼ tp(ν, η, R) has the representation T = (Φ− 1
2 )′Y + η, where Φ = Φ

1
2 (Φ

1
2 )′ ∼

Wp(ν + p− 1, R−1) and Y ∼ Np(0, νIp) are independent.

4.4.2 Quadratic Forms

If T has the p-variate t distribution with degrees of freedom ν, mean vector η, and

correlation matrix R, then T ′R−1T
p

has the noncentral F distribution with degrees of freedom

p and ν and noncentrality parameter η′R−1η
p

. See Hsu (1990) for a special case of this result.

When η = 0, the distribution is a central F .

4.4.3 Representation and Partition of T

Again, recall that Xt, X̄, and S independently follow Np(µ, Σ), Np(µ0,
Σ
N

), and Wp(N −

1, Σ
N−1

), respectively. With the partitions in (4.3.4) and (4.3.5), let S
1
2 =


 S

1
2
11 0

S21S
− 1

2
11 S

1
2
22.1


,
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where S
1
2 S

1
2

′
= S. Then the inverse of S

1
2 is (S−

1
2 )′ =


 (S

− 1
2

11 )′ 0

−(S
− 1

2
22.1)

′S21S
−1
11 (S

− 1
2

22.1)
′


, where

(S−
1
2 )(S−

1
2 )′ = S−1. Let

T = (S−
1
2 )′




√
N

N + 1

(
Xt − X̄

)

. (4.4.2)

Then

T =

√
N

N + 1


 (S

− 1
2

11 )′ 0

−(S
− 1

2
22.1)

′S21S
−1
11 (S

− 1
2

22.1)
′




(
X

(1)
t − X̄(1)

X
(2)
t − X̄(2)

)

=




√
N

N+1
(S

− 1
2

11 )′(X(1)
t − X̄(1))

√
N

N+1
(S

− 1
2

22.1)
′
(
(X

(2)
t − X̄(2))− S21S

−1
11 (X

(1)
t − X̄(1))

)


 =

(
T1

T2

)
,

where

T1 =

√
N

N + 1
(S

− 1
2

11 )′(X(1)
t − X̄(1))

T2 =

√
N

N + 1
(S

− 1
2

22.1)
′ ((X

(2)
t − X̄(2))− S21S

−1
11 (X

(1)
t − X̄(2))

)
(4.4.3)

is a partition of T with dimensions p1 and q1. Hence,

T ′T =

√
N

N + 1
(Xt − X̄)′(S−

1
2 )(S−

1
2 )′

√
N

N + 1
(Xt − X̄)

=
N

N + 1
(Xt − X̄)′S−1(Xt − X̄)

is the same as T 2 in (4.3.1). Similarly, we can get T ′
1T1 = N

N+1
(X

(1)
t −X̄(1))′S−1

11 (X
(1)
t −X̄(1)) =

T 2
1 and T ′

2T2 = N
N+1

[(X
(2)
t − X̄(2))−S21S

−1
11 (X

(1)
t − X̄(1))]′S−1

22.1[(X
(2)
t − X̄(2))−S21S

−1
11 (X

(1)
t −

X̄(1))] = T 2
2

4.4.4 Distribution of T

The density of the distribution of T in (4.4.2) (proof in Appendix B.3) is given by

fT (T ) =
π−

p
2 · Γ(N

2
)

Γ(N−p
2

)
(N − 1)−

p
2 (1 + (N − 1)−1T ′T )−

N
2 · IT (µ− µ0, T ), (4.4.4)

where

IT (µ− µ0, T ) = etr{−1

2

N

N + 1
(µ− µ0)

′Σ−1(µ− µ0)} · Γp(
N

2
)−1·
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×
∫

U>0
|U |N−1−p

2 etr{−U +

√
2N

N + 1
(Σ− 1

2 )′(µ− µ0)T
′(TT ′ + (N − 1)Ip)

− 1
2 U

1
2

′
dU.

Hence, if H0 : µ = µ0 is true, then IT (0, T ) = 1 and (4.4.4) becomes

fT (T ) =
Γ(N

2
)|(N − 1)Ip|−

1
2

π
p
2 Γ(N−p

2
)

(1 +
T ′T )

N − 1
)−

N
2 . (4.4.5)

Furthermore, if we make a simple transformation T ∗ =
√

N − pT , then T ∗ is a p-variate t

distribution with degrees of freedom N − p, mean vector 0, and correlation matrix (N − 1)Ip

(denoted by tp(N − p, 0, (N − 1)Ip)) with the density given by

f(T ∗) =
Γ(N

2
)|(N − 1)Ip|−

1
2

(π(N − p))
p
2 Γ(N−p

2
)
(1 +

1

N − p

T ∗′T ∗

N − 1
)−

N
2 . (4.4.6)

Hence, using the result in subsection 4.4.2, T ∗
′
(N−1)−1T ∗

p
= T ′T

N−1
N−p

p
= T 2

N−1
N−p

p
has the central

F distribution with degrees of freedom p and N−p; i.e., from the multivariate t distribution,

we can also obtain the distribution of Hotelling’ T 2 when H0 : µ = µ0 is true.

Furthermore, when µ− µ0 = 0, we can obtain the marginal distributions of T1 and T2 in

(4.4.3) as (proof in Appendix B.4)

fT1(T1) =
π−

p1
2 · Γ(N

2
)

Γ(N−p1

2
)

(N − 1)−
p1
2 (1 + (N − 1)−1T ′

1T1)
−N

2 ,

and

fT2(T2) =
π−

q1
2 Γ(N−p+q1

2
)

Γ(N−p
2

)
(N − 1)−

q1
2 (1 + (N − 1)−1T ′

2T2)
−N−p+q1

2 , (4.4.7)

respectively. Similarly, if we transform from T1 and T2 to T ∗
1 =

√
N − p1T1 and T ∗

2 =

√
N − pT2, respectively, we can obtain T ∗

1 ∼ tp1(N − p1, 0, (N − 1)Ip1) and T ∗
2 ∼ tq1(N −

p, 0, (N−1)Iq1). Again, using the result in subsection 4.4.2, we have
T ∗
′

1 (N−1)−1T ∗1
p1

=
T ′1T1

N−1
N−p1

p1
=

T 2
1

N−1
N−p1

p1
and

T ∗
′

2 (N−1)−1T ∗2
q1

=
T
′
2T2

N−1
N−p
q1

=
T 2
2

N−1
N−p
q1

have the central F distribution with degrees

of freedom p1 and N − p1 and q1 and N − p, respectively. That is, when µ− µ0 = 0,

T 2
1 ∼

p1(N − 1)

N − p1

Fp1,N−p1 and T 2
2 ∼

q1(N − 1)

N − p
Fq1,N−p. (4.4.8)

Moreover, from (4.4.4) and (4.4.7), it is found that fT (T ) 6= fT1(T1) · fT2(T2) and hence we

know that neither T1 and T2 nor T 2
1 and T 2

2 are independent since T 2
1 = T ′

1T1 and T 2
2 = T ′

2T2

are respectively the function of T1 and T2.
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4.4.5 A Note on MTY Decomposition

In the MTY decomposition, Mason, Tracy, and Young (1995, 1997) (or Manson and

Young (1999, 2002)) obtain the unconditional T 2 value, individual T 2
j for j = 1, . . . , p, (see

equation (4.2.1)), and the conditional T 2
j·1,...,j−1 values (see (4.2.2) and (4.2.3)). By using the

result of (4.4.8), we also can prove the distributions of T 2
j and T 2

j·1,...,j−1. First, under the

null hypothesis, from (4.4.8),

T 2
j ∼ F1,N−1 when p1 = 1 and q1 = p− 1 , and

T 2
j·1,...,j−1 ∼

(N − 1)

N − (k + 1)
F1,N−(k+1) when p1 = k and q1 = 1. (4.4.9)

In addition, from previous subsection, we also know that T 2
j and T 2

j·1,...,j−1 are not inde-

pendent.

When an out-of-control signal occurs in a T 2 chart, it means that the mean is shifted,

that is, H0 : µ = µ0 is rejected, and the Hotelling T 2 follows a non-central F distribution.

According to MTY decomposition method, a large value for the unconditional univariate T 2

term, T 2
j , in the decomposition indicates that the associated variable is outside its univariate

control limits. Significant conditional T 2 terms in the decomposition imply that something

is wrong with the relationship between a group of the original variables relative to that

displayed in the historical sample.

Notice that, under assuming the Σ is unknown, then under Hj0 : µj = µj0, the null distri-

bution of the test statistic T 2
j·1,...,j−1 is an independent central or a non-central (N−1)

N−(k+1)
F1,N−(k+1)

distribution, depending on whether λ = 0 or not (i.e., depending on whether the means of

X1, ..., Xj−1 have changed or not). If a mean has not changed, let µj = µj0; but once a

mean is declared to have changed, the corresponding sample mean is used to estimate the

population mean when calculating the noncentrality λ for checking the remaining variables.

It should be pointed out that their distributional result in (4.2.3) is questionable. Firstly,

since the family of F -distributions is not infinitely divisible, the F -distributed T 2 (ignoring
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all adjusting constants) can not be decomposed into a sum of independent, identical, and

F -distributed components. Secondly, unless the means of all variables X1, ..., Xj had not

changed, T 2
j·1,...,j−1does not have a central distribution (see (4.4.9)).

4.5 Examples

From our earlier discussions in Section 4.3, we consider two cases. In Case (A) the

individual alternative hypothesis is assumed to be

Hja : ∆j = µ(j)
a − µ

(j)
0 .

Here j = 1, . . . , k and k = Cp
p1

, while in Case (B) no alternative is specified. To illustrate

the proposed method, we consider three examples for Case (B) from the literatures and one

simulated example for Case (A). In this section, the conditional likelihood is obtained from

the procedure given in subsection 4.3.3.

4.5.1 Example 1 for Case (B)

The first example uses the data from Hawkins (1991), which was in turn based on data

from Flury and Riedwyl (1988, p151) on five dimensions of switch drums:X1 is the inside

diameter of a drum, and X2, X3, X4, X5 are the distances from the head to the edges of four

sectors cut in the drum. Table 4.1 gives the original data of Flury and Riedwyl. Hawkins

(1991) treated the sample mean and covariance matrix as the in-control mean and covariance

matrix, respectively, in order to simulate in-control and out-of-control data in his study. We

will follow the same assumption and assume the in-control mean and the correlation matrix

(from Table 4.1) as

µ0 = (17.960,10.3, 13.76, 11.08, 8.26)′ (4.5.1)

R0 =




1 0.1388 0.3496 0.0829 0.2652
0.1388 1 0.7324 0.9130 0.6932
0.3496 0.7324 1 0.6824 0.8214
0.0829 0.9130 0.6824 1 0.7640
0.2652 0.6932 0.8214 0.7640 1




, (4.5.2)
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with the standard deviations(1.8622,1.7053, 1.7090, 1.8718, 2.2114), respectively. To simulate

the training in-control as well as out-of-control data, the first 35 observations in Table 4.2

are sampled from N5(µ0, Σ0) and the remaining 15 observations were taken after adding an

upward shift of 0.25 and 0.5 standard deviations to the mean of X5 and X1, respectively,

with no changes to the other process parameters. The sample mean and covariance matrix

based on the first 35 in-control observations in Table 4.2 are respectively (in our notation)

X̄ = (17.6289, 10.3365, 13.6189, 11.1776, 8.2437)′ (4.5.3)

and

S =




2.7355 0.5193 1.3496 0.80294 1.4865
0.5193 2.4673 1.6465 2.5275 2.0266
1.3496 1.6465 2.2259 1.9026 2.4228
0.8029 2.5275 1.9026 3.4201 2.9601
1.4865 2.0266 2.4228 2.9601 4.5689




. (4.5.4)

A T 2chart, using (4.3.1), at a significant level α = 0.05 is constructed for each of

the observations 36-50. The chart indicates an out-of-control signal for the observation

48, namely, Xt(48) = (13.065, 11.625, 14.923,12.589, 12.446)′, with a T 2 value of 22.2447 >

(5(35− 1)/(35− 5)) F5,35−5(0.95) = 14.3568. So, according to Hawkins, the mean vector

of Xt(48) is said to have changed with α = 0.05. Note that all correlations are positive

and the five variables seem to form two groups, X1 and (X2, X3, X4, X5), because X1 is

weakly correlated with the others and the correlations amongX2, X3, X4, X5 are likely to

be significant. It could imply that, if one of four variables,X2, X3, X4, X5, has a relatively

extreme value, the other variables will tend to have a relatively extreme value (in the same

direction) as well. And if X1 has a relatively extreme value, the values of the other variables

may not be influenced. The dependence structure of (X1,X2, X3, X4, X5) is a key point that

can affect us in determining which variable or which set of variables had shifted in mean.

Using our method, we consider p1 = 1 to see which individual variable is most likely

to have a shift in mean and p1 = 2 to see which two are most likely to have shifts in

mean together. Hence, k values corresponding p1 = 1 and 2 are 5 and 10, respectively.
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Now, assuming no alternative is given (i.e., Case (B)), Table 4.3 gives the conditional

likelihood,`′j(Hj0|Ha)that the jth (j = 1, 2, . . . , 5) variable is in-control given that the

overall process mean vector is out-of-control (with T 2=22.2447), for Xt(48) with p1 = 1 and

2. The ranking of the variables, from the smallest to the largest `′j(Hj0|Ha) value for p1 = 1,

is: X1,X5,X4,X2, andX3. It can be observed that the likelihood value of X1 is about 0.1419

times that of X5 and also less than 0.0199 times those of other variables. This means H10

is the least likely to be true. Furthermore, from the distance between Xt(48) and X̄ of

(−2.7594σ1,0.8203σ2,0.8741σ3,0.7632σ4,1.966σ5), X1 has the largest absolute distance and

X5 is the next one. Hence, we can say that X1 is the most likely variable to have a shift in

mean, and X5 might be the next one to have a shift in mean.

When considering two variables at a time (i.e., p1 = 2), the likelihood values for all 10

combinations are also given in Table 4.3. The two variables corresponding to the smallest

conditional likelihood is (X1,X5). It is interesting to note that these two variable have largest

distances from their respective in-control means (−2.7594σ1 and 1.966σ5), but with different

directions. We consider this possible because their correlation of ρ15 = 0.2652 is rather weak.

Furthermore, the likelihood value of X1and X5 is less than 0.0588 times that of (X1,X3),

0.0021 times that of (X1,X4), 0.0014 times that of (X1,X2), 10−4 times that of others. This

means H(1,5)0 : (µ1, µ5)
′ = (µ10, µ50)

′ is the least likely to be true and then we can make a

reasonable conclusion that (X1,X5) are the potentially problematic variables. Both Hawkins

(1991) and Mason, Tracy, and Young (1995) gave the same conclusion.

4.5.2 Example 2 for Case (B)

The second example is about testing of ballistic missiles taken from Jackson (1980),

where four related thrust measurements (p =4) were obtained from each round tested. There

are two different thrust measurements, say A and B, obtained from each strain gauge and

there are two gauges attached to each round fired. Then, there are four correlated thrust
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measurements for each test firing (a measurement using Gauge #1 Method A, Gauge #1

Method B, Gauge #2 Method A, Gauge #2 Method B). The reference mean vector based

on 40 training observations is given by X̄= (0, 0, 0, 0)′, and the variances are σ2
1=102.74,

σ2
2=142.74, σ2

3 = 84.57, and σ2
4 = 99.06, respectively, with correlation matrix given by

ρ =




1 0.732 0.719 0.536
0.732 1 0.788 0.673
0.719 0.788 1 0.758
0.536 0.673 0.758 1


 .

Now, a new individual observation is Xt= (15, 10, 20, -5)′. From (4.3.1), the observed

T 2 = 15.921 is larger than the corresponding critical value (4(40− 1)/(40− 4)) F4,40−4(0.95) =

11.412, so the mean vector of Xis said to have changed at α = 0.05. Note that all corre-

lations are positive and likely to be significant. As before, with no alternative hypothesis

given, Table 4.4 gives the `′j(Hj0|Ha) values for each variable, given T 2=15.921, forp1 = 1and

2. Therefore, the ranking of the variables with the smallest to the largest `′j(Hj0|Ha) value

for p1 = 1 is: X3,X1,X2, and X4. The conditional likelihood value of X3 is about 0.2582

times that of X1 and also less than 0.15 times those of other variables. This means H30

is the least likely to be true. The ranking is consistent with the one given in Doganaksoy,

Faltin, and Tucker (1991). The variable X3 is most likely to have a shift in mean and the

next variable will be X1 and (X3,X1) are the variables for Method A. When we consider two

variables at a time (i.e., p1 = 2), the two variables with the smallest conditional likelihood

value is (X3,X4), which are the variables for second gauge. The likelihood value for (X3,X4)

is less than 0.004 times those of other pairs of two variables. Thus, from above results, we

can make two reasonable conclusion that Method A is potentially problematic in terms of

method, and Gauge #2 is potentially problematic in terms of gauge, which is consistent with

the conclusion of Jackson’s (1980) based on principal component analysis.
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4.5.3 Example 3 for Case (B)

The third example is given in Mason and Young (2002, p. 150). This example is used

to illustrate MTY decomposition method for the interpretation of out-of-control signal. The

three dimensional in-control history data set (HDS) is represented by 23 observations, and

the in-control mean vector is X̄ = (525.435,513.435, 539.913)′ and the standard variances

are σ2
1=41.075, σ2

2=4.984, σ2
3=12.173, with the correlation matrix given by




1 0.205 0.725
0.205 1 0.629
0.725 0.629 1


 .

The T 2 value computed from (4.3.1) for a new observation vector X(t) = (533, 514, 528)′ is

76.636, which is larger than the T 2 critical value of 3(23− 1)/(23− 3)·F3,23−3(0.95) = 10.225,

at α = 0.05. Hence, the observation produces a signal. As before in Example 1, assume

no alternative is given, the `′j(Hj0|Ha) values for X(t) given T 2=22.2447 when p1 = 1 are:

3.0948× 10−2, 1.7439× 10−1, and 2.9209× 10−4 for variables 1 through 3. The `′j(Hj0|Ha)

values when p1 = 2 are: 5.6995× 10−3, 8.71× 10−12, and 4.6472× 10−7 for the combination

of two variables (1,2), (1,3), and (2,3), respectively. Variable 3 has the smallest `′ when

p1 = 1 and we can see that `′ of variable 3 is very close to `′ of variable 1 due to a very

strong correlation between them. The least `′ when p1 = 2 is the combination of variable 1

and variable 3. Thus, we can make a reasonable conclusion that variable 3 is the potentially

problematic variable and the next will be variable 1. This conclusion is also consistent with

those of Mason and Young (2002).

4.5.4 A Simulated Study for Case (A)

When an out-of-control signal is triggered in a T 2 chart, we want to know if the mean

vector has shifted from µ0 to a vector µa in a specific direction, say µ∗a. Hence, we have Case

(A) with the following alternative hypothesis

Ha = ∩k
j=1(Hja : ∆j ≡ µ(j)

a − µ
(j)
0 = ∆∗

j ≡ µ∗(j)a − µ
(j)
0 ),
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where µa = (µ(1)′
a , . . . , µ(k)′

a )′, µ∗a = (µ∗(1)′
a , . . . , µ∗(k)′

a )′, and ∆∗
j ’s are to be specified by the

user. Since µa and hence ∆ are unknown, choosing ∆∗
j ’s is a difficult task.

To illustrate our method, we again use the data generated following the method of

Hawkins (1991) as described in subsection 4.5.1, where the in-control process is assumed

to followN5(µ0, Σ0) with the in-control µ0 and Σ0 given in (4.5.1) and (4.5.2), respectively.

The reference data still contain the first 35 observations in Table 4.2, with the sample mean

and covariance matrix given in (4.5.3) and (4.5.4), respectively. Next, we randomly gen-

erated a sample,Xt, from N5(µa, Σ0) to produce an out-of-control T 2 with a value greater

than the corresponding critical value of 5(35− 1)/(35− 5) · F5,35−5(0.95)= 14.3568. For

example, assume the true mean µa = µ0 + (2.5σ1, 0, 0, 0, 0)′ after the shift, and let Xt=

(23.19104, 10.53652, 13.89620, 11.01731, 9.57183)’ be a random sample fromN5(µa, Σ0),

with its T 2-value = 17.99087 > 14.3568, the critical T 2-value. Hence, an out-of-control

signal occurs. Now, assume the direction of mean shift under the alternative hypothesis is

consistent with the actual direction of shift (i.e., ∆∗ = ∆ = (2.5σ1, 0, 0, 0, 0)′) and is given

by Ha = ∩k
j=1(Hja : ∆j = ∆∗

j), where k = Cp
p1

. For p1 = 1, the `j(Hja|Ha)-values, given

T 2=17.99087 (> 14.3568) , are: 0.31519, 0.25097, 0.26626, 0.21544, and 0.15556 for Vari-

ables 1 to 5, respectively. Ranking these `j(Hja|Ha)- values in a descending order shows

H1a : ∆1 = 2.5σ1 is the most likely to be true. In contrast, if, for the same observationXt

given above, we specify the shifted direction as Ha:µ
∗
a = µ0 + (0, 2.5σ2, 0, 0, 0)′, the indi-

vidual `j(Hja|Ha)-values for Variables 1 through 5 are 0.00011, 0.03088, 0.31536, 0.25647,

and 0.17074 . The ranking of the five variables according to their `j(Hja|Ha)- values is

X3,X4,X5,X2, and X1, and this means H1a : ∆1= 0 is the least likely to be true. That is,

the given observation, generated from µa = µ0 + (2.5σ1, 0, 0, 0, 0), is inconsistent with the

current hypothesized direction µa under Ha for variables X1 and X2.

Thus, we conduct a more detailed simulation study under the various types of true

shifts, µa = µ0 + ∆, and hypothesized shifts, µ∗a = µ0 + ∆∗, to demonstrate the proposed
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method and also show that the hypothesized shifts can be effectively detected especially

when ∆ = ∆∗. We simulated 500 out-of-control data points, Xt for t = 1, . . . , 500, from

N5(µ0 + ∆, Σ0), all with a significant T 2 value. But our hypothesized shift under Hais ∆∗.

First, let Dσ = diag(σ1, σ2, σ3, σ4, σ5), then, for example, (2.5, 2.5, 2.5, 2.5, 2.5) · Dσ =

(2.5σ1, 2.5σ2, 2.5σ3, 2.5σ4, 2.5σ5). We consider the following four scenarios for ∆ and ∆∗:

(1). ∆′ = (2.5, 0, 0, 0, 0)·Dσ with ∆∗′ = (2.5, 0, 0, 0, 0)·Dσ, (0, 2.5, 0, 0, 0)·Dσ, (2.5, 0, 0, 2.5, 0)·
Dσ, and (2.5, 2.5, 2.5, 2.5, 2.5) ·Dσ, respectively.

(2). ∆
′
= (2.5, 0, 0, 0, 2.5)·Dσ with ∆∗′ = (2.5, 0, 0, 0, 2.5)·Dσ, (0, 0, 0,2.5, 0)·Dσ, (2.5, 2.5, 0, 0, 0)·

Dσ, (2.5, 0, 2.5, 0, 2.5) ·Dσ, and (2.5, 2.5, 2.5, 2.5, 2.5) ·Dσ, respectively.

(3). ∆′ = (0, 2.5, 0, 2.5, 0)·Dσ with ∆∗′ = (0, 2.5, 0, 2.5, 0)·Dσ, (2.5, 0, 0, 0, 0)·Dσ, (2.5, 0, 0, 2.5,0)·
Dσ, (0, 2.5, 0, 2.5, 2.5) ·Dσ, and (2.5, 2.5, 2.5,2.5, 2.5) ·Dσ, respectively.

(4). ∆′ = (0, 0, 2.5, 0, 2.5)·Dσ with ∆∗′ = (0, 0, 2.5, 0, 2.5)·Dσ, (0, 0, 0, 2.5, 0)·Dσ, (2.5, 0, 2.5, 0, 0)·
Dσ, (2.5, 0, 2.5, 0, 2.5) ·Dσ, and (2.5, 2.5, 2.5, 2.5, 2.5) ·Dσ, respectively.

Scenario (1) above assumes only one variable (Variable 1 in this case) has shifted in

mean, while the other three assume shifts in two means. Based on our proposed method, we

rank the variables by their `j(Hja|Ha)-values. For each scenario Tables 4.5 - 4.8 gives the

number of times (out of 500) each `j-value (for Hja) was ranked first and second. It also

gives the number of times (out of 500) that, for each pair of two variables (i.e., p1 = 2), its

`(j1,j2)-value was ranked first and second, under each hypothesized alternative with ∆∗. For

example, for p1 = 1 in Scenario (1) (simulated under ∆ = (2.5σ1, 0, 0, 0, 0)), our method first

indicates that H1a : ∆1 = 2.5σ is likely to be true in 330 of the 500 simulation runs. When

the hypothesized ∆∗ = (2.5, 2.5, 2.5, 2.5, 2.5) · Dσ (all five variables shifted simultaneously

with the same relative magnitude), among all individual Hja’s, the simulation study first

picks H1a : ∆1 = 2.5σ1 as most likely in 470 of the 500 simulation runs , while the number
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of times other Hja : ∆j = 2.5σj, j = 2, 3, 4, 5, were picked are fairly small. This evidence

only shows that the mean shifted to 2.5σ1 in X1 is most likely to be true. Hja : ∆j = 2.5σj,

forj = 2, 3, 4, 5, were not selected often because their true ∆j = 0. When the hypothesized

∆∗ = (0, 2.5σ2, 0, 0, 0), the simulation (under ∆ = (2.5σ1, 0, 0, 0, 0)) first (second) picks

H3a : ∆3 = 0 in 252 (106) of 500 simulations, which is appropriate because ∆3 = 0. Same

discussion is true for H4a : ∆4 = 0 and H5a : ∆5 = 0, respectively, as they were ranked first

and second in 321 (= 142 + 179) simulation runs for H4a and 224 (= 45 + 179) forH5a. The

number of times of being ranked first or second for H1a and H2a are relative small, which

means H1a : ∆1 = 0 and H2a: ∆2 = 2.5σ2 were not likely and this is appropriate because

the observations were simulated with ∆1 = 2.5 σ1 and ∆2 = 0.

Let’s look at Scenario (2) in more detail. When ∆∗ indicates that the mean for all

variables had shifted with the same magnitude, for example ∆∗ = (2.5, 2.5, 2.5,2.5, 2.5) ·Dσ,

then H1a : ∆1 = 2.5σ1 and H5a : ∆5 = 2.5σ5 receive the high frequencies (292 and 178

of being ranked first and second for H1a, and 196 and 290 for H5a); but the numbers of

times the simulation picked other Hja: ∆j = 2.5σj, j = 2, 3, 4, are all relatively small.

This is quite reasonable since ∆j = 0, forj = 2, 3, 4. Furthermore, when p1 = 2, among

all H(j1,j2)a : (µj1,a, µj2,a)
′ = (µj10, µj20)

′ + (∆∗
j1

, ∆∗
j2

)′, the simulation first picks H(1,5)a :

(∆1, ∆5)
′ = (2.5σ1, 2.5σ5)

′ to be most likely in 451 of 500 simulation runs. The results show

that our method can accurately identify the most likely hypothesis because we assumed

(∆1, ∆5)
′ = (2.5σ1, 2.5σ5)

′ in this scenario. Also in Scenario (2), when the hypothesized

∆∗ = (0, 0, 0, 2.5σ4, 0),H2a : ∆2 = 0 received 184 and 223 out of 500 for the first and second

rankings, and H3a : ∆3 = 0 received 236 and 185. Again, it is reasonable. If considering

two variables at a time (p1 = 2), the simulation first picks H(2,3)a : (∆2, ∆3)
′ = (0, 0)′ to be

likely in 433 of 500 simulation runs. This is also reasonable because ∆2 = ∆3 = 0. Other

alternative hypotheses for pairs of two variables were not selected with high frequencies, but

appropriately, since ∆1 = 2.5σ1, ∆4 = 0 and ∆5 = 2.5σ5. When ∆∗ = (2.5σ1, 2.5σ2, 0, 0, 0),
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H3a : ∆3 = 0 and H(3,4)a : (∆3, ∆4)
′ = (0, 0)′ are respectively identified with high frequencies

(with 198 and 203, respectively) for p1 = 1 and p1 = 2. This is quite reasonable because

∆3 = ∆4 = 0. Furthermore, H1a : ∆1 = 2.5σ1 and H4a : ∆4 = 0 for p1 = 1, and H(1,3)a :

(∆1, ∆3)
′ = (2.5σ1, 0)′ and H(1,4)a : (∆1, ∆4)

′ = (0, 0)′ for p1 = 2 are also likely identified.

One possible explanation as to why H3a had the highest individual frequency is because its

standard deviation is the smallest. For H(3,4)a, it may be because X3 and X4 have high

correlation (ρ34 = 0.6824) . When the hypothesized ∆∗ = (2.5σ1, 0, 2.5σ3, 0, 2.5σ5), H1a :

∆1 = 2.5σ1 is the most identified for p1 = 1 because ∆1 = 2.5σ1 is assumed when generating

the data. In addition, H2a : ∆2 = 0, H4a : ∆4 = 0, and H5a : ∆5 = 2.5σ5 are also likely

identified, also appropriately since ∆2 = ∆4 = 0 and ∆5 = 2.5σ5 were assumed. Furthermore,

H(2,4)a : (∆2, ∆4)
′ = (0, 0)′ is identified with the highest frequency, also appropriately since

∆2 = ∆4 = 0. H(1,2)a : (∆1, ∆2)
′ = (2.5σ1, 0)′ and H(4,5)a : (∆4, ∆5)

′ = (0, 2.5σ5)
′ are

also likely identified. Finally, when ∆∗ = (2.5σ1, 0, 0, 0, 2.5σ5) is specified as equal to the

true shift ∆, the most likelyHja and H(j1,j2)aare all correctly identified: H1a : ∆1 = 2.5σ1

and H(2,4)a : (∆2, ∆4)
′ = (0, 0)′ are respectively identified whenp1 = 1 and p1 = 2. This

result is accurate because ∆1 = 2.5σ1 and ∆2 = ∆4 = 0. Moreover, H(2,4)a was identified

with high frequencies mainly because their correlation is very high (ρ24 = 0.9130) so the

hypothesis H(2,4),a is basically about consistency (between the true and the hypothesized

mean) of one variable instead of 2 variables in other alternative hypotheses. Furthermore,

H2a : ∆2 = 0 and H3a : ∆3 = 0 for p1 = 1, and H(2,3)a : (∆2, ∆3) = (0, 0) and H(3,5)a :

(∆3, ∆5) = (0, 2.5σ5) for p1 = 2 are also likely identified. In this case, simulated data on

five variables should be consistent with the most likely Hja’s and H(j1,j2)a’s. However, H5a :

∆5 = 2.5σ5 and H(1,5)a : (∆1, ∆5)
′ = (2.5σ1, 2.5σ5)

′ received the lowest frequencies mainly

because the standard deviation for X5 is the largest and X1 and X5 have low correlation

(ρ15 = 0.2652), resulting in the data as least reliable for X5 and that we are dealing with

two rather uncorrelated variables simultaneously. The results for Scenarios (3) and (4) can
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be similarly interpreted as in Scenario (2).

To sum up, the above results show that we can give a good detection of out-of-control

individual variables when the individual alternative is consistent with the individual true

shift. Results of other cases within each scenario indicate that, when considering Case (A),

we were actually assessing the consistency between hypothesized shifts and the true shifts

through the data we collected. The interpretation of the results in Case (A) is somewhat

different from that for the Case (B) where no alternative hypotheses with known directions

for the shifts were specified. In this subsection, we only studied the proposed method for

positive mean shifts; but we also did a simulation study for negative mean shifts and obtained

similar conclusions. Furthermore, we also did the extreme case with independent variables

and found the mean shifts can be more precisely identified by the proposed method.

4.6 Comparisons with Results of Other Methods

Mason, Tracy, and Young (1995) present a decomposition of the overall T 2 statistic to

help interpret multivariate control charts. Their procedure is illustrated in Section 4.2 (also

see Mason and Young (2002)) and their decomposition is called the MTY decomposition. It,

along with the regression adjustment method of Hawkins (1991, 1993), are popular techniques

for interpretation out-of-control signal in a T 2 chart. In this section, we will compare our

proposed method with the MTY and Hawkins’ method using the same examples of Flury

and Riedwyl (1988) and Jackson (1980), both were discussed in Section 4.5.

4.6.1 Example of Flury and Riedwyl

Flury and Riedwyl (1988, p. 151) gave 50 switch drums data (see Table 4.1). We will treat

these data the“reference sample”and their summary statistics are given in (4.5.1). They also

gave two observations and one of them is out-of-control in the T 2 chart. This observation

is X= (13, 9, 12, 12, 7)′ and its observed T 2= 15.17188, which is greater than the critical
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value 5(50− 1)/(50− 5)F5,50−5(0.95)= 13.18691, at α = 0.05.

For the MTY decomposition method, the unconditional individual T 2 value, T 2
j for j =

1, . . . , 5, for the five variables of X are 6.95528, 0.56973, 1.03973, 0.23684, and 0.31828,

respectively. From their result in (4.2.1) that T 2
j ∼ F1,50−1, only the unconditional univariate

T 2 value of X1 is greater that the corresponding critical value of F1,50−1(0.95)= 4.038 at

α = 0.05. Next, since the T 2 value of the subvector (9, 12, 12, 7)′ of X is 11.20225, which

is greater than the critical value 4(50− 1)/(50− 4)F4,50−4(0.95)= 10.96763 at α = 0.05, we

only need to compute the conditional T 2 terms, T 2
i.j, for Variables 2 to 5. These values are

given in Table 4.9 Since T 2
i.j ∼ (50− 1)/(50− 1− 1)F1,50−1−1 (see (4.2.3)), then only two

conditional terms, namely T 2
2.4 and T 2

4.2, are greater than the corresponding critical value

(50− 1)/(50− 2)F1,50−2= 4.127. And the decomposition will be stopped according to their

proposed procedure (see subsection 4.2.2) because the T 2 value of (12, 7)′ is 1.2696, which is

less than the critical value of2(50− 1)/(50− 2)F2,50−2(0.95)= 6.514 at α = 0.05. Thus, only

X1, X2, and X4 are singled out based on the MTY decomposition method.

For the regression adjustment method, Hawkins (1991) proposed a Z-statistic with Z =

[diag(Σ−1)]−1/2Σ−1(X − µ0). The jth element, Zj, of Z is the residual when Xj is regressed

on all other components of X. However, the assumption that other variables are in-control

is a strong one, since we do not know whether that is true or not. We can modify Hawkins’

method to allow the situation when this assumption is not satisfied, as follows. In fact, if X

follows N(µ, Σ), Z follows

N([diag(Σ−1)]−1/2Σ−1(µ− µ0), [diag(Σ−1)]−1/2Σ−1[diag(Σ−1)]−1/2)

such that Var(Zj) = l for all j. So, if a variable is not in control, its new population mean

can be estimated by the sample mean when calculating the mean vector of Z. Let mj be

the jth element of the mean vector of Z assuming µj = µj0, then the test statistic for

testing Hj0 : µj = µj0 is (Zj −mj)
2, which follows χ2(1). Of course, mj depends on whether

other variables are in control or not. This approximately true if the reference sample mean
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and covariance matrix in (4.5.1) obtained from a large sample are used to replaceµ0 and Σ.

The transformed Z for the observation X is (-2.0122, -2.66797, 0.73474, 2.8089, -1.10562)’.

Because mj =0 for j =1, . . .,5 and, under Hj0 : µj = µj0, Zj are observations from χ2(1).

Also, Z2
1 , Z2

2 , and Z2
4 are greater than the critical value χ2(1, 0.95)= 3.841 at α = 0.05, we

can conclude that X1, X2, and X4 are out-of-control based on the regression adjustment

method.

Now, assume no alternative is given in terms of our method, the conditional `′j(Hj0|Ha)

values of X, given T 2= 15.17188 when p1 = 1, p1 = 2, and p1 = 3, are given in Table

4.10 Therefore, the ranking of five variables from the smallest to the largest according to

their `′j(Hj0|Ha) values for p1 = 1 is: X1,X3,X5,X2, and X4. We observe that the likelihood

value of X1 is less than 0.025 times that of those of other variables and also the differences

among the four likelihood values of the remaining variables are not far from 10−2. This

means H10 is the least likely to be true. It can also be observed that the component-wise

distance between X and X̄, −2.6635σ1, −0.7623σ2, −1.0298σ3, 0.4915σ4, −0.5698σ5, X1 has

the largest absolute distance and X3 second. Also, the correlation ρ13 = 0.3496 is the largest

among the correlations with X1. Hence, it is reasonable to say that X1 is the most likely

variable to have a shift in mean, and X3 might be the next one to have a shift in mean.

When considering two variables at a time, the likelihood values for all 10 combinations

are given in Table 4.10 and the two variables with the least conditional joint likelihood are

(X1,X4) and (X2,X4) , and their values are close. It can be observed that, among all distances

of five variables from the estimated in-control means, X1 has the largest value in the negative

direction, (−2.6635σ1), and X4 has the largest value in the positive direction, (0.4915σ4),

but is correlation ρ14 = 0.0829 is the smallest among the correlations with X1. Moreover,

the distance of X2 is in the negative direction, (−0.7623σ2), but the distance of X4 is in

the positive direction. It seems a contradiction since ρ24 = 0.913 is a very strong positive

correlation. Although these two pairs include the variableX4, the deviation in of X1 seems
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to be large enough to make the conditional joint likelihood value of (X1,X4) the smallest.

Furthermore, when considering three variables at a time (i.e.,p1 = 3), the likelihood values

for all 10 combinations are also given in Table 4.10 and the three variables corresponding to

the smallest likelihood are (X1,X2,X4). From above explanation for the results whenp1 = 2,

it seems reasonable to conclude that Variables (X1,X2,X4) have shifts in mean when p1 = 3.

4.6.2 Example of Jackson

Jackson’s example is illustrated in subsection 4.5.2. Recall that, a new individual obser-

vation is X = (15, 10, 20, -5)′ with a T 2 value at 15.92142, which is larger than the critical

value 11.412 with α = 0.05.

For MTY decomposition method, the unconditional individual T 2 value, T 2
j for j =

1, . . . , 4, for five variables of X are 2.13658, 0.68349, 4.61445, and 0.24622, respectively.

Hence, only the unconditional T 2 value of X3 is greater that the critical value F1,40−1(0.95)=

4.091 with α = 0.05. Since the T 2? value of (15, 10, -5)′ is 4.625, which is less than the critical

value 3(40− 1)/(40− 3)F3,40−3(0.95)= 9.03998 with α = 0.05, then the decomposition will

be stopped according to their proposed procedure. Thus, only X3 is singled out in terms of

MTY decomposition method.

For the regression adjustment method of Hawkins (1991), the transformed Z is (0.14569,

-0.80709, 3.40281, -3.05744)′. Since mj =0 for j=1,. . .,5 and, under Hj0 : µj = µj0, Z2
j ,

j = 1, . . . , 5, are 0.02123, 0.65139, 11.57911, and 9.34796, respectively. Hence Z2
3 and Z2

4 are

greater than the critical value χ2(1, 0.95)= 3.84146 with α = 0.05. It can be concluded that

Variables X3 and X4 are out-of-control from the regression adjustment method.

Our result for this example is illustrated in subsection 4.5.2. Recall that X3 is the most

likely to be a problematic variable for p1 = 1 and X1 might be the next one. When p1 = 2,

(X3, X4) is a set of two variables to be the most likely to have a shift in mean.
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4.7 Discussion

Multivariate statistical process control is an important application area of statistics,

where Hotelling’s T 2 is a popular statistic for monitoring the mean vector of a multivariate

variable. But it has some drawbacks and the major one is that it does not directly detect the

significant individual variable(s) when the aggregated T 2 statistic indicates that the process

mean vector had changed.

There have been researches to deal with this major drawback of Hetelling’s T 2 statistic,

for example, Mason, Tracy, and Young (1995), Hawkins (1993), Murphy (1987), Doganaksoy,

Faltin, and Tucker (1991), and so on. In this chapter, we propose a method, which is based

on the likelihood principle and can determine the likelihood as to which variable or a set of

variables that is most likely to have caused a shifted in the mean vector for the case with

unknown population covariance. Several examples are used to illustrate the effectiveness of

the proposed method. A possible further extension of the current chapter is to consider the

case where subgroups contain more than one observation.
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TABLES

Table 4.1 The Data of Switch Drums from Flury and Riedwyl (1988)

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

1 20 8 13 9 7 18 19 10 13 11 7 35 16 10 15 11 8
2 20 12 17 12 11 19 17 9 13 9 6 36 18 6 12 8 6
3 15 7 9 7 2 20 19 11 15 11 9 37 19 14 16 16 13
4 16 12 14 13 8 21 17 8 13 9 7 38 17 12 16 13 12
5 20 12 16 13 9 22 17 11 14 11 8 39 18 13 16 14 12
6 16 10 15 10 8 23 18 7 13 8 7 40 17 8 13 10 10
7 16 10 12 10 5 24 19 11 15 11 9 41 15 8 11 10 8
8 20 11 15 11 8 25 16 9 11 9 6 42 22 9 13 9 8
9 18 10 14 12 9 26 15 11 16 12 9 43 18 10 13 12 9
10 19 11 14 11 7 27 17 10 16 11 11 44 17 13 15 14 12
11 21 7 11 7 4 28 20 9 12 10 7 45 16 10 12 10 8
12 17 10 12 10 6 29 18 13 15 14 10 46 20 12 17 12 12
13 19 10 14 10 8 30 20 12 15 14 10 47 20 11 15 12 11
14 18 12 14 12 7 31 16 10 12 10 6 48 19 11 14 11 8
15 15 10 12 12 7 32 20 11 15 13 9 49 20 11 14 12 11
16 14 10 12 11 6 33 17 11 13 12 7 50 18 11 14 12 10
17 21 10 14 10 7 34 18 11 13 13 8

Table 4.2 Simulated Data of Switch Drums from Hawkins (1991)

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

1 17.265 11.788 15.101 13.903 10.465 26 18.325 7.0040 12.773 8.1360 5.3260
2 17.384 6.9960 11.552 7.2530 6.6410 27 17.652 9.9300 13.904 9.7470 6.1050
3 16.517 10.277 11.724 13.013 9.1110 28 16.615 11.221 14.151 12.629 10.601
4 14.997 10.682 12.087 11.457 6.3200 29 14.606 8.5420 11.834 9.5870 5.7900
5 17.633 9.3480 12.672 10.475 5.4810 30 19.074 9.5500 13.044 11.688 9.4500
6 16.041 11.320 13.957 11.474 8.1760 31 22.449 10.093 16.306 11.806 11.239
7 15.339 10.384 12.313 9.4010 7.2520 32 18.401 11.856 13.608 10.832 7.7090
8 17.144 12.254 14.931 13.715 11.135 33 18.556 12.174 14.111 11.965 9.0740
9 20.351 10.028 14.271 11.124 8.9940 34 17.727 10.740 13.100 11.012 8.4290
10 19.586 11.083 15.019 12.126 9.4410 35 19.141 10.033 13.524 10.800 8.3830
11 20.153 13.100 16.231 13.628 8.7800 36 17.554 9.1320 11.563 10.554 6.5930
12 18.044 9.6990 11.807 11.655 7.5130 37 19.564 10.784 14.200 11.909 10.681
13 17.041 9.7480 13.576 9.3330 7.3160 38 20.985 10.191 15.129 11.301 9.0870
14 17.671 13.223 15.937 15.119 12.129 39 20.745 10.781 14.403 9.4690 7.4510
15 16.306 9.1400 13.239 10.982 8.9000 40 15.395 7.7940 10.602 8.8260 5.9330
16 15.977 9.9040 12.822 9.9100 7.1900 41 16.014 7.9280 11.872 7.1970 6.6490
17 18.517 11.401 16.883 13.162 12.861 42 15.220 12.697 15.201 13.891 10.849
18 16.591 12.875 14.542 13.787 7.9310 43 19.978 11.101 13.687 11.554 8.2840
19 17.576 10.686 13.072 11.257 5.9330 44 20.886 9.5780 13.724 10.914 11.075
20 17.225 8.9430 13.033 9.0880 6.1760 45 16.323 8.7110 12.084 8.5340 5.7150
21 19.234 11.575 15.192 11.809 11.418 46 16.120 10.997 14.497 12.918 11.921
22 19.379 10.421 13.095 11.898 7.8810 47 17.037 8.3620 13.290 10.097 9.4840
23 16.009 7.4780 10.291 7.2070 3.1600 48 13.065 11.625 14.923 12.589 12.446
24 15.944 10.086 14.438 10.652 6.9160 49 16.188 9.1400 13.284 10.991 9.1260
25 16.541 8.1970 12.520 9.5860 9.3040 50 22.047 10.824 14.796 10.872 9.2640
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Table 4.3 Conditional Likelihood, `′j(Hj0|Ha), for Example 1 with p1=1,2

`′j(Hj0|Ha) for p1=1
X1 X2 X3 X4 X5

3.2946×10−3 1.8504×10−1 1.8549×10−1 1.6491×10−1 2.3213×10−2

`′j(Hj0|Ha) for p1 = 2
(X1, X2) (X1, X3) (X1, X4) (X1, X5 ) (X2, X3)

2.8832×10−4 6.8438×10−6 1.8899×10−4 4.0213×10−7 6.5961×10−2

(X2, X4 ) (X2, X5) (X3, X4 ) (X3, X5 ) (X4, X5 )
8.3798×10−2 7.0577×10−3 7.0577×10−2 6.1045×10−3 4.2361×10−3

Table 4.4 Conditional Likelihood, `′j(Hj0|Ha), for Example 2 with p1= 1,2

`′j(Hj0|Ha) for p1=1
X1 X2 X3 X4

1.2731×10−2 2.4014×10−2 3.2872×10−3 3.6412×10−2

`′j(Hj0|Ha) for p1 = 2
(X1, X2) (X1, X3) (X1, X4) (X2, X3)

6.1306×10−4 2.0351×10−4 1.7315×10−4 5.8331×10−5

(X2, X4 ) (X3, X4 )
4.5075×10−4 2.2421×10−7

Table 4.5 The Results of Example 1 for Scenario (1) of Case (A)

Scenario (1) (p1 = 1) Number of Times Ranked First Number of Times Ranked Second

∆′ (2.5,0,0,0,0)·Dσ X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

∆∗′
(2.5,0,0,0,0) ·Dσ 330 84 67 14 5 50 131 187 89 43
(0,2.5,0,0,0)·Dσ 7 54 252 142 45 7 29 106 179 179
(2.5,0,0,2.5,0)·Dσ 91 136 193 50 30 59 184 104 26 127
(2.5,2.5,2.5,2.5,2.5)·Dσ 470 8 21 1 0 10 109 66 150 165
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Table 4.6 The Results of Example 1 for Scenario (2) of Case (A)

Scenario (1) (p1 = 1) Number of Times Ranked First Number of Times Ranked Second

∆′ (2.5,0,0,0,2.5)·Dσ X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

∆∗′

(2.5,0,0,0,2.5)·Dσ 188 103 166 29 14 93 133 111 107 56
(0,0,0,2.5,0)·Dσ 16 184 236 38 26 26 223 185 31 35
(2.5,2.5,0,0,0)·Dσ 166 49 198 77 10 143 26 127 171 33
(2.5,0,2.5,0,2.5)·Dσ 248 155 11 36 50 75 156 15 160 94
(2.5,2.5,2.5,2.5,2.5)·Dσ 292 4 4 4 196 178 13 3 16 290
Scenario (2) (p1 = 2) Number of Times Ranked First

∆′ (2.5,0,0,0,2.5)·Dσ X1,X2 X1,X3 X1,X4 X1,X5 X2,X3 X2,X4 X2,X5 X3,X4 X3,X5 X4,X5

∆∗′

(2.5,0,0,0,2.5)·Dσ 15 46 9 5 57 232 6 16 85 29
(0,0,0,2.5,0)·Dσ 11 8 1 23 433 0 9 13 2 0
(2.5,2.5,0,0,0)·Dσ 34 143 81 31 5 0 0 203 1 2
(2.5,0,2.5,0,2.5)·Dσ 21 16 15 27 0 326 17 0 0 78
(2.5,2.5,2.5,2.5,2.5)·Dσ 0 4 1 451 1 31 3 3 0 6
Scenario (2) (p1 = 2) Number of Times Ranked Second

∆′ (2.5,0,0,0,2.5)·Dσ X1,X2 X1,X3 X1,X4 X1,X5 X2,X3 X2,X4 X2,X5 X3,X4 X3,X5 X4,X5

∆∗′

(2.5,0,0,0,2.5)·Dσ 41 62 21 10 116 66 28 27 79 50
(0,0,0,2.5,0)·Dσ 105 66 5 60 36 4 78 97 49 0
(2.5,2.5,0,0,0)·Dσ 27 185 116 36 10 0 0 122 4 0
(2.5,0,2.5,0,2.5)·Dσ 105 2 42 44 1 81 69 1 0 155
(2.5,2.5,2.5,2.5,2.5)·Dσ 36 92 170 15 2 98 33 10 10 34
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Table 4.7 The Results of Example 1 for Scenario (3) of Case (A)

Scenario (1) (p1 = 1) Number of Times Ranked First Number of Times Ranked Second

∆′ (0,2.5,0,2.5,0)·Dσ X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

∆∗′

(0,2.5,0,2.5,0)·Dσ 130 228 76 60 6 64 94 160 136 46
(2.5,0,0,0,0)·Dσ 18 25 343 16 98 12 22 98 30 338
(2.5,0,0,2.5,0)·Dσ 60 18 248 116 58 36 19 102 99 244
(0,2.5,0,2.5,2.5)·Dσ 125 183 132 35 25 101 100 132 145 22
(2.5,2.5,2.5,2.5,2.5)·Dσ 11 317 18 147 7 6 153 7 318 16
Scenario (3) (p1 = 2) Number of Times Ranked First

∆′ (2.5,0,0,0,2.5)·Dσ X1,X2 X1,X3 X1,X4 X1,X5 X2,X3 X2,X4 X2,X5 X3,X4 X3,X5 X4,X5

∆∗′

(0,2.5,0,2.5,0)·Dσ 3 5 3 5 235 140 2 35 10 62
(2.5,0,0,0,0)·Dσ 0 5 0 5 0 59 0 5 426 0
(2.5,0,0,2.5,0)·Dσ 5 9 6 8 0 0 1 98 282 91
(0,2.5,0,2.5,2.5)·Dσ 4 30 17 25 124 233 0 66 0 1
(2.5,2.5,2.5,2.5,2.5)·Dσ 1 0 2 0 0 479 3 0 15 0
Scenario (3) (p1 = 2) Number of Times Ranked Second

∆′ (2.5,0,0,0,2.5)·Dσ X1,X2 X1,X3 X1,X4 X1,X5 X2,X3 X2,X4 X2,X5 X3,X4 X3,X5 X4,X5

∆∗′

(0,2.5,0,2.5,0)·Dσ 16 15 8 8 100 162 23 48 17 103
(2.5,0,0,0,0)·Dσ 1 13 0 65 4 275 34 51 56 1
(2.5,0,0,2.5,0)·Dσ 3 38 14 11 0 1 4 189 118 122
(0,2.5,0,2.5,2.5)·Dσ 82 70 19 10 156 103 1 56 0 3
(2.5,2.5,2.5,2.5,2.5)·Dσ 103 1 109 0 8 16 133 15 112 3
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Table 4.8 The Results of Example 1 for Scenario (4) of Case (A)

Scenario (1) (p1 = 1) Number of Times Ranked First Number of Times Ranked Second

∆′ (0,0,2.5,0,2.5)·Dσ X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

∆∗′

(0,0,2.5,0,2.5)·Dσ 124 88 258 20 10 94 157 91 82 76
(0,0,0,2.5,0)·Dσ 205 247 21 20 7 230 155 30 55 30
(2.5,0,2.5,0,0)·Dσ 10 110 311 46 23 13 229 90 161 7
(2.5,0,2.5,0,2.5)·Dσ 8 78 332 32 50 6 241 56 100 97
(2.5,2.5,2.5,2.5,2.5)·Dσ 7 2 372 0 119 8 3 114 3 372
Scenario (4) (p1 = 2) Number of Times Ranked First

∆′ (2.5,0,0,0,2.5)·Dσ X1,X2 X1,X3 X1,X4 X1,X5 X2,X3 X2,X4 X2,X5 X3,X4 X3,X5 X4,X5

∆∗′

(0,0,2.5,0,2.5)·Dσ 0 25 0 17 203 129 3 70 27 26
(0,0,0,2.5,0)·Dσ 368 13 56 13 2 0 4 0 44 0
(2.5,0,2.5,0,0)·Dσ 1 4 1 1 239 157 0 97 0 0
(2.5,0,2.5,0,2.5)·Dσ 0 1 0 2 254 90 9 85 22 37
(2.5,2.5,2.5,2.5,2.5)·Dσ 1 4 0 2 0 6 0 5 482 0
Scenario (4) (p1 = 2) Number of Times Ranked Second

∆′ (2.5,0,0,0,2.5)·Dσ X1,X2 X1,X3 X1,X4 X1,X5 X2,X3 X2,X4 X2,X5 X3,X4 X3,X5 X4,X5

∆∗′

(0,0,2.5,0,2.5)·Dσ 7 50 6 15 102 110 18 81 59 52
(0,0,0,2.5,0)·Dσ 89 41 201 84 5 0 18 0 62 0
(2.5,0,2.5,0,0)·Dσ 6 6 2 0 198 136 1 150 0 1
(2.5,0,2.5,0,2.5)·Dσ 0 2 0 0 105 89 15 154 70 65
(2.5,2.5,2.5,2.5,2.5)·Dσ 0 169 0 17 18 135 16 127 10 8
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Table 4.9 The Conditional T 2
i.j Values in MTY Decompositions for Flury and Riedwyl’s

data

T 2
i.j

T 2
3.2 T 2

2.3 T 2
4.2 T 2

2.4 T 2
5.2 T 2

2.5

0.4701 1.364×10−4 8.3046 8.6375 3.222×10−3 0.2547
T 2

4.3 T 2
3.4 T 2

5.3 T 2
3.5 T 2

5.4 T 2
4.5

2.6164 3.4193 0.2299 0.9513 2.1044 2.023

Table 4.10 Conditional Likelihood, `′j(Hj0|Ha) for Flury and Riedwyl’ data

`′j(Hj0|Ha) for p1=1
X1 X2 X3 X4 X5

3.1534×10−3 1.8052×10−2 1.3859×10−2 1.9752×10−2 1.5991×10−2

`′j(Hj0|Ha) for p1 = 2
(X1, X2) (X1, X3) (X1, X4) (X1, X5 ) (X2, X3)

7.7808×10−4 9.2096×10−4 5.5605×10−4 6.7946×10−4 5.0332×10−2

(X2, X4 ) (X2, X5) (X3, X4) (X3, X5) (X4, X5)
5.5643×10−4 4.7339×10−2 9.5774×10−3 4.0861×10−2 1.8103×10−2

`′j(Hj0|Ha) for p1 = 3
(X1, X2, X3) (X1, X2, X4) (X1, X2, X5) (X1, X3, X4) (X1, X3, X5)
3.2131×10−4 4.2031×10−6 1.9207×10−5 1.4404×10−4 3.0768×10−4

(X1, X2, X3) (X1, X4, X5) (X2, X3, X4) (X2, X3, X5) (X3, X4, X5)
1.4629×10−4 1.4665×10−4 1.4991×10−2 3.9315×10−5 3.5339×10−3
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Chapter 5

Summary, Conclusions, and Future
Work

In this dissertation, we have presented and studied three subjects for monitoring multi-

variate process control.

In Chapter 2, we have proposed and studied a control chart based on the one-sided likeli-

hood ratio test that is specifically designed for detecting dispersion decreases for multivariate

processes. Both cases when the in-control covariance matrix Σ0 is known or unknown are

considered and, for each case, the LRT statistic is derived. A comparative simulation study

is conducted and shows that the proposed control chart indeed outperforms the existing two-

sided-tests-based control charts in terms of the average run length, when process dispersion

decreases. The applicability and effectiveness of the proposed control chart are demonstrated

through a real example and two simulated examples.

In Chapter 3, we have proposed and studied a combined control chart constructed by

combining the two one-sided likelihood-ratio-test-based control charts that are specifically

designed for detecting dispersion increases and decreases respectively for multivariate pro-

cesses. The chart for the increases part was proposed by Yen and Shiau (2008) and the

decrease part is proposed in Chapter 2 and they are in essence a multivariate extension of

the two-sided unequal tail test of univariate variance. Both cases when the in-control covari-

ance matrix Σ0 is known or unknown are considered. It was shown that the control limit
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does not depend on µ0 and Σ0. Two real examples and two simulated examples are used to

illustrate the applicability and effectiveness of our proposed combined chart.

The proposed control chart in Chapter 2 is Shewhart-type. It is well known that EWMA

and CUSUM charts are more sensitive to small changes. An EWMA extension of the pro-

posed chart will be reported in a follow-up paper. Furthermore, for another research issue,

we also can conduct researches in the same line as that proposed in Yen and Shiau (2008)

and in Chapter 2 but now dealing with individual observations instead of subgroups. The

difficultly comes from the fact that we cannot obtain an estimator of the covariance matrix

Σ from a single observation vector. Note that with a subgroup of size n, for the sample co-

variance matrix to be positive definite with probability one, we need n > p (Dykstra, 1970).

A common remedy for this is to borrow some strength from neighbors. More specifically,

we can use the EWMA approach to obtain an estimate for the covariance matrix at time

t > p. One can develop new LRT-like control charts respectively for monitoring (i) only

increase, (ii) only decrease, and (iii) either directions in process dispersion by first using the

EWMA approach to obtain estimators for the covariance matrix and then following similar

approaches as we did in Yen and Shiau (2008), in Chapter 2, and in Chapter 3 for the

subgroup case. Both cases when the in-control covariance matrix Σ0 is known or unknown

can be considered. Therefore, this future work would cover more situations and have wider

range for applications. The EWMA approach gives a legitimate estimator for the covariance

matrix but causes a troublesome side-effect that the monitoring statistics are correlated at

nearby time points, which makes computing ARL and finding the appropriate control limit

a lot more difficult. It needs to find some better methods to speed up computation.

In chapter 4 of this dissertation, Multivariate SPC is an important application area

of statistics, where Hotelling’s T 2 is a popular statistic for monitoring the mean vector

of a multivariate variable. But it has some drawbacks and the major one is that it does

not directly detect the significant individual variable(s) when the aggregated T 2 statistic
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indicates that the process mean vector had changed.

When an out-of-control signal is given by a T 2 chart, we propose a method, which is

based on the likelihood principle and can determine the likelihood as to which variable or a

set of variables that is most likely to have caused a shift in the mean vector for the case of

unknown population covariance. Our proposed method computes the conditional likelihood

that an individual mean (or a group of means) is out of control, given H0 : µ = µ0 is rejected

because of a significant T 2 value. By ranking these likelihoods, we can identify the mean that

is mostly likely to be out-of-control. Several examples are used to illustrate the effectiveness

of the proposed method.

Our method, which is a diagnostic tool, is different from most of the existing methods

such as that in Mason, Tracy, and Young (1995), because their methods do not assume the

rejection of H0 : µ = µ0 as given and this is why their critical values for their statistics are

all based on certain central (instead of noncentral) distributions. That is, these methods

basically assume that all the other individual means are in control when they are testing

a particular univariate mean. Nevertheless, our method should be considered as a comple-

mentary tool, not a substitute, to the existing methods. Furthermore, a possible further

extension of the current method is to consider the case where subgroups contain more than

one observation.

Another slated issue is that of determining which parameters of the covariance matrix

have actually changed when a control chart detects an out-of-control signal. Such a task is

more complicated than that of the multivariate process mean due to the complexity of the

covariance matrix. Unlike the case of the process mean with p parameters, there are a total

of p(p + 1)/2 parameters in the covariance matrix that could possibly change and trigger

an out-of-control signal. It is of eminent importance to be able to further pinpoint which of

these parameters are out of control. Therefore, developing a diagnostic technique could be

a potential future research topic as well.
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Appendix A

A.1 Proof of Theorem 2.1

The likelihood function of n observations, X t1, · · · ,X tn, is

L(µ, Σ) = (2π)−
pn
2 |Σ|−n

2 exp

{
−1

2

n

Σ
j=1

(X tj − µ)′Σ−1(X tj − µ)

}
. (A.1.1)

Recall that Θ = Σ0−Σ. To maximize L(µ, Θ), we first note that µ̂ ≡ X̄ t is the MLE of µ.

Since Σ0 is known, rewrite the log likelihood function of (A.1.1) concentrated with respect

to µ̂ as

`(µ̂, Θ) = −pn

2
log 2π − n

2
log |Σ0 −Θ| − n

2
tr

[
St(Σ0 −Θ)−1

]
. (A.1.2)

Since Θ is symmetric and positive semidefinite, from Theorem 4.14 of Schott (2005), there ex-

ists a nonsingular matrix Γ such that Θ = ΓDςΓ
′ and Σ0 = ΓΓ′, where Dς = diag(ς1, · · · , ςp)

with ς1 ≥ · · · ≥ ςk > ςk+1 = · · · = ςp = 0 being the roots of |Θ− ςΣ0| = 0, by the

assumptions that Σ0 is positive definite and rank(Θ) = k. Let Dδ = diag(δ1, · · · , δp)

with δi > 0, i = 1, · · · , p, be the roots of |Σ− δΣ0| = 0. Then Dδ = Ip − Dς with

δi = 1 − ςi, i = 1, · · · , p and 0 < δ1 ≤ · · · ≤ δk < δk+1 = · · · = δp = 1. Hence,

|Σ0 −Θ| = |ΓΓ′ − ΓDςΓ
′| = |ΓDδΓ

′| = |Σ0||Dδ|. Thus log |Σ0 −Θ| = log |Σ0|+ log |Dδ|.
Similarly, there exists a nonsingular matrix Z such that St = ZDdZ

′ and Σ0 = ZZ ′,

where Dd = diag(d1, · · · , dp) with d1 ≥ · · · ≥ dp being the roots of |St − dΣ0| = 0. Then

tr[St(Σ0 −Θ)−1] = tr[(Γ−1Z)Dd(Γ
−1Z)′D−1

δ ]. Substituting these results into (A.1.2), we
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have the following log likelihood function concentrated with respect to µ̂ = X̄ t:

`(Dδ,Γ) = −pn

2
log 2π − n

2
log |Σ0| − n

2
log |Dδ| − n

2
tr

[
(Γ−1Z)Dd(Γ

−1Z)′D−1
δ

]
. (A.1.3)

Since ΓΓ′ = ZZ ′, we have Ip = Γ−1ZZ ′Γ′−1 = (Γ−1Z)(Γ−1Z)′. Thus Γ−1Z is an or-

thogonal matrix. By the theorem of Von Neumann (1937) (see Appendix C), we obtain

that min
Γ−1Z

{
tr[(Γ−1Z)Dd(Γ

−1Z)′D−1
δ ]

}
= tr[DdD

−1
δ ] and a minimizing value of Γ−1Z is Ip.

Therefore, by choosing Γ = Z, maximizing `(Dδ,Γ) in (A.1.3) is reduced to maximizing

`(Dδ) = −pn

2
log 2π − n

2
log |Σ0| − n

2
log |Dδ| − n

2
tr

[
DdD

−1
δ

]

= −pn

2
log 2π − n

2
log |Σ0| − n

2

p

Σ
i=1
{log δi +

di

δi

} (A.1.4)

with respect to δ1, · · · , δp. Note that, for fixed di, log δi + di

δi
reaches its minimum at δi = di.

Thus the maximum of (A.1.4) with respect to δ1 · · · δp over the region 0 < δ1 ≤ · · · ≤ δk <

δk+1 = · · · = δp = 1 occurs at

δi = di , if 0 < di < 1
δi = 1 , if di ≥ 1

} for i = 1, · · · , k,

δi = 1 , for i = k + 1, · · · , p.

Let p∗ be the number of 0 < di < 1 and k∗ = min (k, p∗). Then δi = di, i = 1, · · · , k∗,
and δi = 1, i = k∗ + 1, · · · , p.

Let q∗ = p− k∗. Note that the maximum of (A.1.1) depends only on {di, i = 1, · · · , k∗}
for given k. To simplify notation, denote max

µ, Σ
{L(µ,Σ)} for given k by L∗(k∗). Thus, after

some simple algebra, the maximum likelihood function of (A.1.1) can be rewritten as

L∗(k∗) = (2π)−
pn
2 e−

pn
2 |Σ0|−

n
2

k∗

Π
i=1

d
−n

2
i

p

Π
i=k∗+1

exp
[
−n

2
(di − 1)

]
.

It is trivial to show that L∗(k∗) is nondecreasing in k∗. Let k∗0 = min(k0, p
∗) and

k∗1 = min(k1, p
∗). We finally obtain that the LRT statistic for testing (2.2.1) is

max
H∗

0

L∗(k∗)

max
H∗

1

L∗(k∗)
=

L∗(k∗0)
L∗(k∗1)

=





k∗1
Π

i=k∗0+1
{di exp [−(di − 1)]}n

2 , for k∗0 < k∗1

1 , for k∗0 = k∗1

.
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A.2 Proof of Theorem 2.2

When µ0 and Σ0 are unknown, the likelihood function of all observations, X11, · · · , Xmn,

X t1, · · · ,X tn, is

L(µ0, Σ0, µ, Σ) = (2π)−
pmn

2 |Σ0|−
mn
2 exp

[
−1

2
tr(AΣ0

−1)− mn

2
( ¯̄X − µ0)

′Σ0
−1( ¯̄X − µ0)

]

×(2π)−
pn
2 |Σ|−n

2 exp
{
−1

2
tr(BΣ−1)− n

2
(X̄ t − µ)′Σ−1(X̄ t − µ)

}
.

Thus, the log likelihood function is

`(µ0, Σ0, µ, Σ) = −p(mn + n)

2
log 2π − mn

2
log |Σ0| − n

2
log |Σ| − mn

2
tr(S0Σ

−1
0 )

−n

2
tr(StΣ

−1)− mn

2
( ¯̄X − µ0)

′Σ−1
0 ( ¯̄X − µ0)−

n

2
(X̄ t − µ)′Σ−1(X̄ t − µ) . (A.2.1)

We let Dδ = diag(δ1, · · · , δp) with 0 < δ1 ≤ · · · ≤ δk < δk+1 = · · · = δp = 1 being the

roots of |Σ− δΣ0| = 0. Again, by Theorem 4.14 of Schott (2005), there exists a nonsingular

matrix Φ such that Σ = ΦDδΦ
′ and Σ0 = ΦΦ′. Recall that St = Y DβY ′ and S0 = Y Y ′.

So, (A.2.1) becomes

`(µ0, µ, Dδ, Φ) = −1

2
{p(mn + n) log 2π + mn log |ΦΦ′|+ n log |ΦDδΦ

′|

+mntr[Y Y ′(ΦΦ′)−1] + ntr[Y DβY ′(ΦDδΦ
′)−1]

}

−mn

2
( ¯̄X − µ0)

′Σ−1
0 ( ¯̄X − µ0)−

n

2
(X̄ t − µ)′Σ−1(X̄ t − µ) . (A.2.2)

To maximize `(µ0, µ, Dδ, Φ), we first note that µ̂0 = ¯̄X and µ̂ = X̄ t are the MLEs of µ0

and µ, respectively. Also,

tr[Y Y ′(ΦΦ′)−1] = tr[Φ−1Y Y ′Φ′−1] = tr[(Φ−1Y D
1
2
β )D−1

β (Φ−1Y D
1
2
β )′],

tr[Y DβY ′(ΦDδΦ
′)−1] = tr[D−1

δ (Φ−1Y D
1
2
β )(Φ−1Y D

1
2
β )′].

By substituting the above results into (A.2.2), the log likelihood function concentrated with

respect to µ̂0 = ¯̄X and µ̂ = X̄ t is

`(Dδ,Φ) = −1

2
{p(mn + n) log 2π + 2mn log |Φ|+ 2n log |Φ|+ n log |Dδ|
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+mntr{(Φ−1Y D
1
2
β )D−1

β (Φ−1DD
1
2
β )′}+ ntr{D−1

δ (Φ−1Y D
1
2
β )(Φ−1Y D

1
2
β )′}}. (A.2.3)

Next, we want to find Dδ and Φ that maximize (A.2.3). By Singular Value Decomposi-

tion, there exist orthogonal matrices U and V and a diagonal matrix Dr = diag(r1, · · · , rp)

such that

Φ−1Y D
1
2
β = UDrV . (A.2.4)

By substituting (A.2.4) into (A.2.3), (A.2.3) becomes

`(Dδ,Dr,U ,V ) = −1

2
{p(mn + n) log 2π + 2mn log |Φ|+ 2n log |Φ| + n log |Dδ|

+mn tr[(UDrV )D−1
β (UDrV )′] + n tr[D−1

δ (UDrV )(UDrV )′]
}

= −p(mn + n) log 2π

2
− mn + n

2
log |Dβ| − (mn + n) log |Y |+ mn + n

2
log |Dr|2

−n

2
log |Dδ| − mn

2
tr[D2

rV D−1
β V ′]− n

2
tr[D−1

δ UD2
rU

′]}. (A.2.5)

In order to maximize (A.2.5), we first fix the diagonal matrices Dδ and D2
r and find the

U and V that maximize `(Dδ,D
2
r,U ,V ). Again, by the theorem of Von Neuman (1937),

we have min
V
{tr[D2

rV D−1
β V ′]} = tr[D2

rD
−1
β ] and min

U
{tr[D−1

δ UD2
rU

′]} = tr[D−1
δ D2

r], and

U = V = I are one of the minimizers. With U = I and V = I, the concentrated likelihood

function becomes

`(Dδ,Dr) = C +
mn + n

2
log |Dr|2 − n

2
log |Dδ| − mn

2
tr[D2

rD
−1
β ]− n

2
tr[D−1

δ D2
r]

= C +
1

2

p

Σ
i=1

[
(mn + n) log r2

i − n log δi −mn
r2
i

βi

− n
r2
i

δi

]

= C +
1

2

p

Σ
i=1

[
(mn + n) log r2

i − (
mn

βi

+
n

δi

)r2
i − n log δi

]
, (A.2.6)

where C = −p(mn+n) log 2π
2

− mn+n
2

log |Dβ| − (mn + n) log |Y |.
Note that {ri}p

i=1 depends on {δi}p
i=1. For fixed δi, i = 1, 2, · · · , p, it can be easily shown

that the maximum of (A.2.6) occurs at r2
i = (mn + n)(mn

βi
+ n

δi
)−1. Then the concentrated
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likelihood function becomes

`(Dδ) = C − 1

2

p

Σ
i=1

[
n log δi + (mn + n) log(

mn

βi

+
n

δi

) + (mn + n)− (mn + n) log(mn + n)

]
.

(A.2.7)

It is then obvious that the maximum of (A.2.7) with respect to δ1, · · · , δp over the region

0 < δ1 ≤ · · · ≤ δk < δk+1 = · · · = δp = 1 occurs at

δi = βi , if 0 < βi < 1
δi = 1 , if βi ≥ 1

} for i = 1, · · · , k,

δi = 1 , for i = k + 1, · · · , p.
Let p? be the number of 0 < βi < 1 and k? = min (k, p?). Then δi = βi, i = 1, · · · , k?,

and δi = 1, i = k? + 1, · · · , p.

Let q? = p− k?. Then the maximum of (A.2.7) is

C − (mn + n)p

2
− (q?)(mn + n) log(mn + n)

2
+

(mn + n)

2

p

Σ
i=1

log βi

−n

2

k?

Σ
i=1

log βi − (mn + n)

2

p

Σ
i=k?+1

log(nβi + mn).

Denote this by `(k?) and the corresponding maximum likelihood function by L∗(k?). Then

L∗(k?) = C∗(mn + n)−
q?(mn+n)

2
k?

Π
i=1

β
−n

2
i

p

Π
i=k?+1

(nβi + mn)−
mn+n

2 ,

where C∗ = (2π)−
(mn+n)p

2 e−
(mn+n)p

2 |Y |−(mn+n).

It is trivial to show that L∗(k?) is nondecreasing in k?. Let k?
0 = min(k0, p

?) and

k?
1 = min(k1, p

?). Then the LRT statistic for testing (2.2.1) is

max
H∗

0

L∗(k?)

max
H∗

1

L∗(k?)
=

L∗(k?
0)

L∗(k?
1)

=





k?
1

Π
i=k?

0+1

[
βw

i

(wβi+1−w)

]mn+n
2 , if k?

0 < k?
1

1 , if k?
0 = k?

1

,

where w = 1
m+1

.

A.3 A Theorem of Von Neumann(1937)

Theorem C.1 (Von Neumann) For Q orthogonal and Ds and Dt diagonal (s1 ≥ · · · ≥
sp > 0, t1 ≥ · · · ≥ tp > 0),

min
Q

tr(D−1
s QDtQ

′) = tr(D−1
s Dt)
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and a minimizing value of Q is Q = I.
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Appendix B

B.1 Distributions of T 2
1 and T 2

2 |{T 2
1 = t21}

From the partition of S in (4.3.4) we have (Srivastava and Khatri (1979, p. 8))

S−1 =

(
S−1

11 + S−1
11 S12S

−1
22.1S21S

−1
11 −S−1

11 S12S
−1
22.1

−S−1
22.1S21S

−1
11 S−1

22.1

)
.

Then, T 2 can be written as

T 2 =
N

N + 1
(Xt−X̄)′S−1(Xt−X̄)

=
N

N + 1

(
X

(1)
t − X̄(1)

X
(2)
t − X̄(2)

)′ [
S−1

11 + S−1
11 S12S

−1
22.1S21S

−1
11 −S−1

11 S12S
−1
22.1

−S−1
22.1S21S

−1
11 S−1

22.1

] (
X

(1)
t − X̄(1)

X
(2)
t − X̄(2)

)

=
N

N + 1
(X

(1)
t − X̄(1))′S−1

11 (X
(1)
t − X̄(1))

+
N

N + 1
[(X

(2)
t − X̄(2))− S21S

−1
11 (X

(1)
t − X̄(1))]′S−1

22.1[(X
(2)
t − X̄(2))− S21S

−1
11 (X

(1)
t − X̄(1))]

= T 2
1 + T 2

2 , say

where

T 2
1 =

N

N + 1
(X

(1)
t − X̄(1))′S−1

11 (X
(1)
t − X̄(1)),

and

T 2
2 =

N

N + 1
[(X

(2)
t − X̄(2))−S21S

−1
11 (X

(1)
t − X̄(1))]′S−1

22.1[(X
(2)
t − X̄(2))−S21S

−1
11 (X

(1)
t − X̄(1))].

Then, from Anderson (2003, p 143), T 2
1 follows (N−1)p1

N−p1
Fp1,N−p1,λ1with noncentrality

λ1 =
N

N + 1
(µ(1) − µ

(1)
0 )′Σ−1

11 (µ(1) − µ
(1)
0 ).
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Next we will find the distribution of T 2
2 |{T 2

1 = t21}. First, since (Theorem 3.3.9 of

Gupta and Nagar (2000, p. 94))

S21|{S11 = s11} ∼ Nq1,p1(Σ21Σ
−1
11 s11,

1

N − 1
Σ22.1 ⊗ s11)

we have

S21S
−1
11 (X

(1)
t − X̄(1))|

{
(X

(1)
t , X̄(1), S11) = (x

(1)
t , x̄(1), s11)

}

∼ Nq1(Σ21Σ
−1
11 s11s

−1
11 (x

(1)
t − x̄(1)),

Σ22.1

N − 1

N + 1

N
t21), (B.1.1)

with t21 = N
N+1

(x
(1)
t − x̄(1))′s−1

11 (x
(1)
t − x̄(1)). Furthermore, sinceXt,X̄, andS are independent,

from (B.1.1) and the fact that X
(2)
t − X̄(2)|

{
(X

(1)
t , X̄(1)) = (x

(1)
t , x̄(1))

}
∼ Nq1(µ

(2) − µ
(2)
0 −

Σ21Σ
−1
11 (x

(1)
t − x̄(1) − (µ(1) − µ

(1)
0 )), N+1

N
Σ22.1) we have

(X
(2)
t − X̄(2))− S21S

−1
11 (X

(1)
t − X̄(1))|

{
(X

(1)
t , X̄(1), S11) = (x

(1)
t , x̄(1), s11)

}

∼ Nq1(µ
(2) − µ

(2)
0 − Σ21Σ

−1
11 (µ(1) − µ

(1)
0 ),

N + 1

N
(1 +

t21
N − 1

)Σ22.1). (B.1.2)

From (B.1.2) and the fact that S22.1 ∼ Wq1(N − p1 − 1, 1
N−1

Σ22.1) and is independent

of (S21, S11), then, from Anderson (2003, p. 143), the conditional distribution of T
2(∗)
2 ≡

T 2
2

(1+t21/(N−1))
, given (X

(1)
t , X̄(1), S11) = (x

(1)
t , x̄(1), s11), is a noncentral (N−1)q1

(N−1−p1)−q1+1
Fq1,N−p,λ2 =

(N−1)q1

N−p
Fq1,N−p,λ2 distribution with noncentrality

λ2 =
N

N + 1

[(µ(2) − µ
(2)
0 )− Σ21Σ

−1
11 (µ(1) − µ

(1)
0 )]′Σ−1

22.1[(µ
(2) − µ

(2)
0 )− Σ21Σ

−1
11 (µ(1) − µ

(1)
0 )]

(1 + t21/(N − 1))

=
λ− λ1

(1 + t21/(N − 1))
. (B.1.3)

Since this conditional distribution depends on (x
(1)
t , x̄(1), s11) but through t21, it is also the

conditional of T 2
2 , given t21, so we obtain the results in Theorem 1.

B.2 Approximation of Expectation in (4.3.10)

If F ∼ Fv1,v2,τ , then its p.d.f is p(f) =
∞
Σ

β=0

e−
τ
2 ( τ

2
)β

B(
v2
2

,
v1
2

+β)·β!
(v1

v2
)

v1
2

+β( v2

v2+v1f
)

v1+v2
2

+βf
v1
2
−1+β,

and from Theorem 1(ii) that
(N−p)T

2(∗)
2

(N−1)q1
∼ Fq1,N−p,λ2, we have

f
T

2(∗)
2 |(X(1)

t ,X̄(1),S11)
(

t2 − t21
(1 + t21/(N − 1))

|x(1)
t , x̄(1), s11)
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=
∞
Σ

β=0

e−
λ2
2 (λ2

2
)β

B(N−p
2

, q1

2
+ β) · β!

(
q1

N − p
)

q1
2

+β




N − p

N − p + q1
(N−p)(t2−t21)

q1(N−1)(1+t21/(N−1))




q1+N−p

2
+β

×(
(N − p)(t2 − t21)

q1(N − 1)(1 + t21/(N − 1))
)

q1
2
−1+β · (N − p)

(N − 1)q1

=
∞
Σ

β=0

e−
λ2
2 (λ2

2
)β( q1

N−p
)

q1
2

+β(N−p
q1

)
q1
2

+β

(N − 1)B(N−p
2

, q1

2
+ β) · β!

(1 +
(t2 − t21)

(N − 1)(1 + t21/(N − 1))
)−(

q1+N−p

2
+β)

×(
(t2 − t21)

(N − 1)(1 + t21/(N − 1))
)

q1
2
−1+β

=
∞
Σ

β=0

e−
λ2
2 (λ2

2
)β

(N − 1)B(N−p
2

, q1

2
+ β) · β!

(1 +
(t2 − t21)

(N − 1)(1 + t21/(N − 1))
)−(

N−p1
2

+β)

×(
(t2 − t21)

(N − 1)(1 + t21/(N − 1))
)

q1
2
−1+β

=
e−

1
2
λ2

(N − 1)

∞
Σ

β=0

(λ2

2
)β

[
t2−t21

(N−1)(1+t21/(N−1))

] q1
2
−1+β

B(N−p
2

, q1

2
+ β)β!

[
1 +

t2−t21
(N−1)(1+t21/(N−1))

]N−p1
2

+β

Let gq1,N−p(t
2
1) = f

T
2(∗)
2 |(X(1)

t ,X̄(1),S11)
(

t2−t21
(1+t21/(N−1))

|x(1)
t , x̄(1), s11) · 1

(1+t21/(N−1))
, then

gq1,N−p(t
2
1) =

e−
1
2
λ2

(N − 1)

∞
Σ

β=0

(λ2

2
)β

[
t2−t21

(N−1)(1+t21/(N−1))

] q1
2
−1+β

B(N−p
2

, q1

2
+ β)β!

[
1 +

t2−t21
(N−1)(1+t21/(N−1))

]N−p1
2

+β
· 1

(1 + t21/(N − 1))

=
e
− 1

2

(N−1)(λ−λ1)

(N−1+t2
1
)

(N − 1)

∞
Σ

β=0

(1
2

(N−1)(λ−λ1)
(N−1+t21)

)β
[

t2−t21
N−1+t21

] q1
2
−1+β

B(N−p
2

, q1

2
+ β)β!

[
N−1+t2

N−1+t21

]N−p1
2

+β
· N − 1

(N − 1) + t21

= e
− 1

2

(N−1)(λ−λ1)

((N−1)+t2
1
)
∞
Σ

β=0

( (N−1)(λ−λ1)
2

)β

(N − 1 + t2)
N−p1

2
+βB(N−p

2
, q1

2
+ β)β!

(t2 − t21)
q1
2
−1+β

(N − 1 + t21)
−N−p

2
+β

= e
− 1

2

(N−1)(λ−λ1)

(N−1+t2
1
)

(N − 1 + t21)
N
2

(N − 1 + t2)
N
2

∞
Σ

β=0

( (N−1)(λ−λ1)
2

)β(t2 − t21)
q1
2
−1+β

B(N−p
2

, q1

2
+ β)β!

(N − 1 + t21)
−p
2
−β

(N − 1 + t2)
−p1

2
+β

(B.2.1)

Next, we will find the asymptotic expansion for (B.2.1). First, we give the following Lemma:

Lemma 1 If g(x) =
m

Σ
k=1

αkx
−k (1 ≤ m ≤ ∞), then exp (g(x)) =

∞
Σ

j=0
βj(m)x−j, where

β′js satisfy the following recursive relation:

β0(m) = 1, βj(m) =
1

j

min(k,m)

Σ
k=0

kαkβj−k(m)x−j, j = 1, 2, ...
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Proof. Note g′(x) = (−k)
m

Σ
k=1

αkx
−(k+1), so

d

dx
(exp (g(x))) =

d

dx
(
∞
Σ

j=0
βj(m)x−j),

or g′(x) exp (g(x)) =
∞
Σ

j=0
(−j)βj(m)x−(j+1), or

(
∞
Σ

j=0

m

Σ
k=1

kαkβj(m)x−(j+k+1)

)
=

∞
Σ

j=0
jβj(m)x−(j+1).

By comparing the powers, we prove the lemma with, for example, β0(m) = 1,β1(m) = α1,

β2(m) = 2α2 + α2
1,β3(m) = 3α3 + 4α1α2 + α3

1.

The following is the asymptotic expansion for log of gamma function (Barnes (1988,

p64) or Anderson (2003, p318)):

log Γ(x + h) = log
√

2π + (x + h− 1

2
) log(x)− x− m

Σ
r=1

(−1)r Br+1(h)

r(r + 1)xr
+ Rm+1(x), (B.2.2)

where Rm+1(x) = O(x−(m+1)) as |x| → ∞ (i.e.,
∣∣∣Rm+1(x)

x−(m+1)

∣∣∣ is bounded as |x| → ∞), and Br(h)

is the Bernoulli polynomial of degree r and order unity defined by rehτ

eτ−1
=

m

Σ
r=0

τr

r!
Br(h). The

first three polynomial are (B0(h) = 1)

B1(h) = h− 1

2
, B2(h) = h2 − h +

1

6
, B3(h) = h3 − 3

2
h2 +

1

2
h. (B.2.3)

Now, 1

B(N−p
2

,
q1
2

+β)
=

Γ(N−p
2

+
q1
2

+β)

Γ(N−p
2

)Γ(
q1
2

+β)
and from (B.2.2):

log
(
Γ(

N

2
+ h)

)
= log

√
2π+(

N

2
+h−1

2
) log(

N

2
)−N

2
− m

Σ
r=1

(−1)r

r(r + 1)
Br+1(h)(

N

2
)−r+Rm+1(N),

(B.2.4)

where Rm+1(N) = O(N−(m+1)), we can twice apply the result in (B.2.4) to obtain

log
(
Γ(

N

2
+

q1 − p

2
+ β)

)

= log
√

2π+(
N

2
+

q1 − p

2
+β− 1

2
) log(

N

2
)−N

2
− m

Σ
r=1

(−2)r

r(r + 1)
Br+1(

q1 − p

2
+β)(

1

N
)r+Rm+1(N),

(B.2.5)
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and

log
(
Γ(

N

2
+
−p

2
)
)

= log
√

2π + (
N

2
− p

2
− 1

2
) log(

N

2
)− N

2
− m

Σ
r=1

(−2)r

r(r + 1)
Br+1(

−p

2
)(

1

N
)r + Rm+1(N). (B.2.6)

Hence,

log

(
Γ(N

2
− p

2
+ q1

2
+ β)

Γ(N
2
− p

2
)

)

= (
q1

2
+ β) log(

N

2
) +

m

Σ
r=1

(−2)r

r(r + 1)

(
Br+1(

−p

2
)−Br+1(

q1 − p

2
+ β)

)
(

1

N
)r + Rm+1(N).

Appling Lemma B.1 and we can obtain

Γ(N
2
− p

2
+ q1

2
+ β)

Γ(N
2
− p

2
)

= (
N

2
)(

q1
2

+β) · exp
(

m

Σ
r=1

αr(
1

N
)r + Rm+1(N)

)
,

= (
N

2
)(

q1
2

+β) ·
(

m

Σ
j=0

βj(m)(
1

N
)j + Om+1(

1

N
)

)
, (B.2.7)

where αr = αr(p, q1, β) = (−2)r

r(r+1)

(
Br+1(

−p
2

)−Br+1(
q1−p

2
+ β)

)
and βj(m) = βj(m; p, q1, β).

We can use the result in (B.2.3) toβj(m) and the first three terms are

β0(m) = 1,

β1(m) = α1 =
(−2)

(1 + 1)

(
B2(

−p

2
)−B2(

q1 − p

2
+ β)

)

= −
[(

(
−p

2
)2 − (

−p

2
) +

1

6

)
−

(
(
q1 − p

2
+ β)2 − (

q1 − p

2
+ β) +

1

6

)]

= (
q1

2
+ β)(

q1

2
− p + β − 1),

β2(m) = 2α2 + α2
1,

where

α2 =
(−2)2

2(2 + 1)

(
B3(

−p

2
)−B3(

q1 − p

2
+ β)

)

=
2

3

[(
(
−p

2
)3 − 3

2
(
−p

2
)2 +

1

2
(
−p

2
)
)
−

(
(
q1 − p

2
+ β)3 − 3

2
(
q1 − p

2
+ β)2 +

1

2
(
q1 − p

2
+ β)

)]
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=
2

3

[
−(

q1

2
+ β)

(
(
−p

2
)2 + (

−p

2
)(

q1 − p

2
+ β) + (

q1 − p

2
+ β)2

)
+

3

2
(
q1

2
+ β)(

q1

2
− p + β)− 1

2
(
q1

2
+ β)

]

= (
q1

2
+ β)

[
−2

3

(
p2

4
+ (

q1 − p

2
+ β)(

q1

2
− p + β)

)
+ (

q1

2
− p + β)− 1

3

]

= (
q1

2
+ β)

(
1

3
(
q1

2
− p + β)(3− q1 + p− 2β)− p2

6
− 1

3

)
.

So, from (B.2.7), we can obtain

1

B(N−p
2

, q1

2
+ β)

=
1

Γ( q1

2
+ β)

· (N
2

)(
q1
2

+β) ·
(

m

Σ
j=0

βj(m)(
1

N
)j + Om+1(

1

N
)

)
(B.2.8)

Next, to find the asymptotic expansion for (1− a
N

)bN in 1
N

, first we note

log
(
(1− a

N
)bN

)
= (bN) log(1− a

N
).

Let x = a
N

, so we are dealing with log(1 − x). A Taylor series expansion for log(1 − x)at

x0 = 0 is log(1− x) = − ∞
Σ

k=1
( 1

k
)xk. Hence,

log
(
(1− a

N
)bN

)
= (bN)

(
− ∞

Σ
k=1

(
1

k
)(

a

N
)k

)
= −(bN)

(
∞
Σ

k=1
(
ak

k
)(

1

N
)k

)

=
∞
Σ

j=0
(
−baj+1

j + 1
)(

1

N
)j = −ba +

∞
Σ

j=1
(
−baj+1

j + 1
)(

1

N
)j.

Applying Lemma B.1 and finally,

(1− a

N
)bN = e−ba

∞
Σ

j=0
β̃j(m; a, b)(

1

N
)j = e−ba

(
m

Σ
j=0

β̃j(m; a, b)(
1

N
)j + Om+1(

1

N
)

)
, (B.2.9)

where β̃0(m; a, b) = 1, β̃1(m; a, b) = (−ba1+1

1+1
) = −ba2

2
, and β̃2(m; a, b) = 2(−ba2+1

2+1
) + (−ba2

2
)2

= −2ba3

3
+ b2a4

4
.

For (B.2.1), we will twice apply the result of (B.2.9):

1

(N − 1 + t2)
N
2

= (N−1+t2)−
N
2 = N−N

2 (1−1− t2

N
)−

N
2 = N−N

2 e
1−t2

2
∞
Σ

j=0
β̃j(m; 1−t2,−1

2
)(

1

N
)j

= N−N
2 e

1−t2

2

(
m

Σ
j=0

β̃j(m; 1− t2,−1

2
)(

1

N
)j + Om+1(

1

N
)

)
, (B.2.10)
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where β̃0(m; 1− t2,−1
2
) = 1, β̃1(m; 1− t2,−1

2
) = (1−t2)2

4
, β̃2(m; 1− t2,−1

2
) = (1−t2)3

3
+ (1−t2)4

16
,

and

(N − 1 + t21)
N
2 = N

N
2 (1− 1− t21

N
)

N
2 = N

N
2 e−

1−t21
2

∞
Σ

j=0

˜̃βj(m; 1− t21,
1

2
)(

1

N
)j

= N
N
2 e−

1−t21
2

(
m

Σ
j=0

˜̃βj(m; 1− t21,
1

2
)(

1

N
)j + Om+1(

1

N
)

)
, (B.2.11)

with ˜̃β0(m; 1− t21,
1
2
) = 1,˜̃β1(m; 1− t21,

1
2
) =

−(1−t21)2

4
, and ˜̃β2(m; 1− t21,

1
2
) =

−(1−t21)3

3
+

(1−t21)4

16
.

Hence, from (B.2.8), (B.2.10), and (B.2.11), we can rewrite (B.2.1) as

e
− 1

2

(N−1)(λ−λ1)

(N−1+t2
1
)

∞
Σ

β=0

( (N−1)(λ−λ1)
2

)β(t2 − t21)
q1
2
−1+β

Γ( q1

2
+ β)β!

(N − 1 + t21)
−p
2
−β

(N − 1 + t2)
−p1

2
+β

× (
N

2
)(

q1
2

+β) ·
(

m

Σ
j=0

βj(m; p, q1, β)(
1

N
)j + Om+1(

1

N
)

)
e

t21−t2

2

× N−N
2

(
m

Σ
j=0

β̃j(m; 1− t2,−1

2
)(

1

N
)j + Om+1(

1

N
)

)

× N
N
2

(
m

Σ
j=0

˜̃βj(m; 1− t21,
1

2
)(

1

N
)j + Om+1(

1

N
)

)
. (B.2.12)

At the moment, one can check that the powers of N in the last expansion is β + (p1

2
− β) +

(−p
2
− β) + ( q1

2
+ β) + (−N

2
) + N

2
= p1+q1

2
− p

2
= 0, as expected.

That means, the last term in the equation (B.2.1) is independent of N after we group

the powers of N .

Now,

(
(N − 1)(λ− λ1)

2

)β

=

(
λ− λ1

2

)β

Nβ(1− 1

N
)β

=

(
λ− λ1

2

)β

Nβ
β

Σ
k=0

Cβ
k (− 1

N
)k, (B.2.13)

and we apply Lemma B.1 and obtain

(N − 1 + t2)
p1
2
−β = N

p1
2
−β(1− 1− t2

N
)

p1
2
−β

= N
p1
2
−β

(
m

Σ
j=0

˜̃̃
βj(m; t2, p1, β)(

1

N
)j + Om+1(

1

N
)

)
(B.2.14)
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(g(N) = (p1

2
− β) log(1 − 1−t2

N
) = (p1

2
− β)

(
− ∞

Σ
k=1

( 1
k
)(1−t2

N
)k

)
=

∞
Σ

k=1

(−(1−t2)k

k
(p1

2
− β)

)
( 1

N
)k)

where
˜̃̃
β0(m; t2, p1, β) = 1,

˜̃̃
β1(m; t2, p1, β) = −(1 − t2)(p1

2
− β), and

˜̃̃
β2(m; t2, p1, β) =

2−(1−t2)2

2
(p1

2
− β) + (−(1− t2)(p1

2
− β))2 = (1− t2)2(p1

2
− β)(p1

2
− β − 1).

And

(N − 1 + t21)
−p
2
−β = N

−p
2
−β(1− 1− t21

N
)
−p
2
−β

= N
−p
2
−β

(
m

Σ
j=0

˜̃̃
β̃j(m; t21, p, β)(

1

N
)j + Om+1(

1

N
)

)
(B.2.15)

(g(N) = (−p
2
− β) log(1 − 1−t21

N
) = (−p

2
− β)

(
− ∞

Σ
k=1

( 1
k
)(

1−t21
N

)k

)
=

∞
Σ

k=1

(
(1−t21)k

k
(p

2
+ β)

)
( 1

N
)k)

where
˜̃̃
β̃0(m; t21, p1, β) = 1,

˜̃̃
β̃1(m; t21, p1, β) = (1− t21)(

p
2
+β), and

˜̃̃
β̃2(m; t21, p, β) = 2

(1−t21)2

2
(p

2
+

β) +((1− t21)(
p
2

+ β))2 = (1− t21)
2(p

2
+ β)(p

2
+ β + 1)

Finally, substituting (B.2.13), (B.2.14), and (B.2.15) into (B.2.12) and then (B.2.1) be-

comes

e
− 1

2

(N−1)(λ−λ1)

(N−1+t2
1
)

∞
Σ

β=0

(t2 − t21)
q1
2
−1+β

Γ( q1

2
+ β)β!

· e
t21−t2

2 ·
(

λ− λ1

2

)β

·Nβ

(
β

Σ
k=0

Cβ
k (− 1

N
)k

)

×(
N

2
)(

q1
2

+β) ·
(

m

Σ
j=0

βj(m; p, q1, β)(
1

N
)j + Om+1(

1

N
)

)

×N−N
2

(
m

Σ
j=0

β̃j(m; 1− t2,−1

2
)(

1

N
)j + Om+1(

1

N
)

)

×N
N
2

(
m

Σ
j=0

˜̃βj(m; 1− t21,
1

2
)(

1

N
)j + Om+1(

1

N
)

)

×N
p1
2
−β

(
m

Σ
j=0

˜̃̃
βj(m; t2, p1, β)(

1

N
)j + Om+1(

1

N
)

)

×N
−p
2
−β

(
m

Σ
j=0

˜̃̃
β̃j(m; t21, p, β)(

1

N
)j + Om+1(

1

N
)

)
(B.2.16)

where there terms in the power of N are canceled.

Last, the only thing is the first factor in (B.2.1), namely, e
− 1

2

(N−1)(λ−λ1)

(N−1+t2
1
) . Now,

−1

2

(N − 1)(λ− λ1)

N − 1 + t21
= −(λ− λ1)

2
(N − 1)(N − 1 + t21)

−1

153



= −(λ− λ1)

2
(1− 1

N
)(1− 1− t21

N
)−1 = −(λ− λ1)

2
(1− 1

N
)


 ∞

Σ
j=0

(
1− t21

N

)j



= −(λ− λ1)

2


 ∞

Σ
j=0

(
1− t21

N

)j

 +

(λ− λ1)

2
(

1

N
)


 ∞

Σ
j=0

(
1− t21

N

)j



=
∞
Σ

j=0

(
−(λ− λ1)(1− t21)

j

2

) (
1

N

)j

+
∞
Σ

j=0

(
(λ− λ1)(1− t21)

j

2

) (
1

N

)j+1

= −(λ− λ1)

2
− ∞

Σ
j=1

(λ− λ1)(1− t21)
j

2

(
1

N

)j

+
∞
Σ

j=1

(
(λ− λ1)(1− t21)

j−1

2

) (
1

N

)j

= −(λ− λ1)

2
+

∞
Σ

j=1

(
(λ− λ1)(1− t21)

j−1

2
− (λ− λ1)(1− t21)

j

2

) (
1

N

)j

= −(λ− λ1)

2
+

∞
Σ

j=1

(λ− λ1)(1− t21)
j−1(1− (1− t21))

2

(
1

N

)j

= −(λ− λ1)

2
+

∞
Σ

j=1

(λ− λ1)t
2
1(1− t21)

j−1

2

(
1

N

)j

(B.2.17)

Hence, from (B.2.17) and Lemma B.1,

e
− 1

2

(N−1)(λ−λ1)

N−1+t2
1 = e−

(λ−λ1)

2 · e
∞
Σ

j=1

(λ−λ1)t21(1−t21)j−1

2 ( 1
N )

j

= e−
(λ−λ1)

2 ·
(

m

Σ
j=0

β∗j (m; t21, λ, λ1)(
1

N
)j + Om+1(

1

N
)

)
, (B.2.18)

where β∗0(m; t21, λ, λ1) = 1, β∗1(m; t21, λ, λ1) =
(λ−λ1)t21(1−t21)1−1

2
=

(λ−λ1)t21
2

and β∗2(m; t21, λ, λ1)

= 2
(λ−λ1)t21(1−t21)2−1

2
+

(
(λ−λ1)t21

2

)2
=

(λ−λ1)t21(1−t21)

2
+

(
(λ−λ1)t21

2

)2

Finally, from (B.2.16) and (B.2.18), we can obtain

(B.2.1)= e−
(λ−λ1)

2 ·
(

m

Σ
j=0

β∗j (m; t21, λ, λ1)(
1
N

)j + Om+1(
1
N

)

)
·

× ∞
Σ

β=0

(t2 − t21)
q1
2
−1+β

Γ( q1

2
+ β)β!

· e
t21−t2

2 ·
(

λ− λ1

2

)β

·Nβ

(
β

Σ
k=0

Cβ
k (− 1

N
)k

)

×(
N

2
)(

q1
2

+β) ·
(

m

Σ
j=0

βj(m; p, q1, β)(
1

N
)j + Om+1(

1

N
)

)

×N−N
2

(
m

Σ
j=0

β̃j(m; 1− t2,−1

2
)(

1

N
)j + Om+1(

1

N
)

)

×N
N
2

(
m

Σ
j=0

˜̃βj(m; 1− t21,
1

2
)(

1

N
)j + Om+1(

1

N
)

)
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×N
p1
2
−β

(
m

Σ
j=0

˜̃̃
βj(m; t2, p1, β)(

1

N
)j + Om+1(

1

N
)

)

×N
−p
2
−β

(
m

Σ
j=0

˜̃̃
β̃j(m; t21, p, β)(

1

N
)j + Om+1(

1

N
)

)

= e−
(λ−λ1)

2 ·
(

m

Σ
j=0

β∗j (m; t21, λ, λ1)(
1

N
)j + Om+1(

1

N
)

)

× ∞
Σ

β=0
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(t2 − t21)

q1
2
−1+β

Γ( q1

2
+ β)β!

· e
t21−t2

2 ·
(

λ− λ1

2

)β (
β

Σ
k=0

Cβ
k (− 1

N
)k

)

×2−(
q1
2

+β) ·
(

m

Σ
j=0

βj(m; p, q1, β)(
1

N
)j + Om+1(

1

N
)

)

×
(

m

Σ
j=0

β̃j(m; 1− t2,−1

2
)(

1

N
)j + Om+1(

1

N
)

)

×
(

m

Σ
j=0

˜̃βj(m; 1− t21,
1

2
)(

1

N
)j + Om+1(

1

N
)

)

×
(

m

Σ
j=0

˜̃̃
βj(m; t2, p1, β)(

1

N
)j + Om+1(

1

N
)

)

×
(

m

Σ
j=0

˜̃̃
β̃j(m; t21, p, β)(

1

N
)j + Om+1(

1

N
)
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(B.2.19)

In (B.2.19) we may group terms with the same powers of ( 1
N

), and take only the first 3

terms (at most), that is, in ( 1
N

)0, ( 1
N

)1, ( 1
N

)2. Hence, (B.2.19) becomes

fasymp(t
2, t21|x(1)

t , x̄(1), s11) = (
1

N
)0f (0)

asymp + (
1

N
)f (1)

asymp + (
1

N
)2f (2)

asymp + O3(
1

N
) (B.2.20)

where

f (0)
asymp = e−

(λ−λ1)

2
+

t21−t2

2


 ∞

Σ
β=0

(t2 − t21)
q1
2
−1+β

Γ( q1

2
+ β)β!

·
(

λ− λ1

2

)β

2−(
q1
2

+β)


 , (B.2.21)

f (1)
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2
+

t21−t2

2
∞
Σ

β=0
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q1
2
−1+β

Γ( q1

2
+ β)β!

·
(

λ− λ1

2

)β

2−(
q1
2

+β)

×
(
β∗1(m; t21, λ, λ1)− Cβ

1 + β1(m) + β̃1(m; 1− t2,−1

2
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1

2
)

+
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˜̃̃
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)
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+

t21−t2

2
∞
Σ
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2
−1+β
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2
+ β)β!

·
(
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×
(
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2
1

2
− β + (

q1

2
+ β)(

q1

2
− p + β − 1) +

(1− t2)2

4
− (1− t21)

2

4

−(1− t2)(
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2
− β) + (1− t21)(

p

2
+ β)

)
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2
+
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2
∞
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(
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(
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2
1
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2
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(B.2.22)
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2
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1
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)
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)
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+
˜̃̃
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(B.2.23)

Finally, we integrate (B.2.20) with respect to X̄(1) and S11,so the expectation in (4.3.10)

is

∫ ∫
s11>0,x̄(1),t21≤t2

fasymp(t
2, t21|x(1)

t , x̄(1), s11) · fX̄(1)(x̄(1)) · fS11(s11)dx̄(1)ds11

= ∫ ∫
s11>0,x̄(1),t21≤t2

(
(

1

N
)0f (0)

asymp + (
1

N
)f (1)

asymp + (
1

N
)2f (2)

asymp + O3(
1

N
)
)
·fX̄(1)(x̄(1))·fS11(s11)dx̄(1)ds11

(B.2.24)

so the proof is completed.

B.3 Distribution of T in (4.4.2)

Let Σ
1
2 =


 Σ

1
2
11 0

Σ21Σ
− 1

2
11 Σ

1
2
22.1


, where Σ

1
2 Σ

1
2

′
= Σ. Then the inverse of Σ

1
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2 )′ =


 (Σ

− 1
2

11 )′ 0
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− 1

2
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′Σ21Σ
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,

where (Σ− 1
2 )(Σ− 1

2 )′ = Σ−1. And let Z = (Σ− 1
2 )′

[√
N

N+1

(
Xt − X̄

)]
and S∗ = (Σ− 1

2 )′SΣ− 1
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2 )′S
1
2

) (
(Σ− 1

2 )′S
1
2
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2 (S∗

1
2 )′, where S∗

1
2 = (Σ− 1

2 )′S
1
2 and (S∗−

1
2 )′ = (S−

1
2 )′Σ

1
2 .

Then Z ∼ Np(µ
(Z), (Σ− 1

2 )′Σ(Σ− 1
2 ) = Ip), where µ∗ =

√
N

N+1
(Σ− 1

2 )′(µ − µ0), and S∗ ∼
Wp(N − 1, (N − 1)−1Σ− 1

2 ΣΣ′− 1
2 = (N − 1)−1Ip) are independent. The joint density of Z and

S∗is

fZ,S∗(Z, S∗) = fZ(Z) · fS∗(S
∗)

= (2π)−
p
2 exp(−1
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N − 1

2
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2

| Ip
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2 etr(−1

2
(N − 1)S∗).
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Transforming T = (S∗−1/2)′Z, with J(Z → T ) = |S∗|1/2, andZ = S∗1/2T , we obtain the

joint density of T and S∗ as

fT,S∗(T, S∗) = fZ,S∗(S
∗ 1

2 T, S∗) · J(Z → T ) = fZ(S∗
1
2 T ) · fS∗(S

∗) · |S∗|1/2

= (2π)−
p
2 exp(−1

2
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1
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1
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2
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2 | Ip
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2
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2
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2
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2
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′
µ∗}·

|S∗|N−1−p
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2
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∗ + µ∗(S∗
1
2 T )′}. (B.3.1)

To find the marginal density of T , we integrate (C.1) with respect to S∗. Let U = 1
2
(TT ′ +

(N−1)Ip)
1
2

′
S∗(TT ′+(N−1)Ip)

1
2 , then J(S∗ → T ) = |TT ′+(N−1)Ip|− p+1

2 (see, for example,

Gupta and Nagar (2000), p. 13), S∗ = 2(TT ′ + (N − 1)Ip)
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(B.3.2)

Substituting (C.2) into (C.1) and using multivariate gamma function (Gupta and Nagar

(2000), p. 19), Γp(a) = π−
p(p−1)

4

p

Π
i=1

Γ(a− i−1
2

), where Re(a) > 1
2
(p− 1), we obtain
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× 2
Np
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where
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Thus, ifµ−µ0 = 0, then IT (0, T ) = Γp(
N
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2 ·

etr{−U}dU = Γp(
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2
) is a multivariate gamma function, and we obtain the central case.

Hence we complete the proof.

B.4 Marginal Distribution of T1 and T2 in (4.4.3)

First, recall that T1 =
√

N
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− 1

2
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are partitions of T with dimensions p1 and q1, respectively. When µ− µ0 = 0, from (4.4.5),

we have
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where fT1(T1) is the marginal density of T1 and fT2|T1(T2|T1) is the conditional density of T2

given T1. Similarly, by simply interchanging T1 and T2, we can obtain

fT (T ) = fT2(T2) · fT1|T2(T1|T2), (B.4.2)
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