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摘要 

我們使用一個方法去探討玻色-愛因斯坦凝聚態在光晶格中靠近零色散點

附近的行為。玻色-愛因斯坦凝聚態可由一維的 Gross-Pitaevski 方程式來描述其

動力學行為，並且可以應用等效質量法將之以非線性薛丁格方程來描述。當考

慮零色散點附近的行為時即第二階色散效應趨近於零,必須考慮第三階的色散

效應。此時玻色-愛因斯坦凝聚態將由廣義的非線性薛丁格方程來描述，我們利

用由逆散射法之非線性薛丁格方程的解在小振幅的限制下找出一個假設解解出

廣義的非線性薛丁格方程(即考慮第三階色散效應)之進似解析解，我們得到一

個可以存在大部份區域之暗孤子以及在一個特殊區域時暗孤子將轉成光孤粒子

的解,即所謂的在背景上的孤立子。此外，我們利用直接的模擬數數值解來觀察

其解析解的存在性。同時,在數值解我們可以觀察到當在較大的振幅時將產生一

個輻射衰退的效應,此效應被認為是由於第三階色散的影響。 
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Abstract  

We demonstrate a method to analytically study the effective-mass method of 

Bose-Einstein Condensates (BEC) in optical lattices near the zero dispersion (Z-D) 

point where the effect of the second-order dispersion is zero. We use one 

dimensional Gross-Pitaevskii (G-P) equation describes the dynamic behavior of 

BEC to the optical lattices. By using effective-mass theory to our system in the 

neighborhood of the Z-D point we need to consider the third-order dispersion term 

to our equation. That is, our system is described by the generalized NLS equation. 

We take the dark-soliton solution form of the NLS equation solved by inverse 

scattering method in the small amplitude limit as an assumed solution to substitute 

into our equation. We obtain dark solitons solution may exist near the Z-D point and 

we also show a region near the Z-D point where a special solitary wave form, the 

so-called soliton on the constant background, may be observed. We use directly 

numerical simulations of the full generalized NLS equation which includes the 

third-order dispersion term to observe that the existence of the new solitary wave 

form. Numerical computation also shows that a radiation emission exits near the 

Z-D point in the larger amplitude, which is regarded as the effect of three-order 

dispersion  

ii
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Chapter 1  Introduction 

1-1  Preface 

The basic idea of Bose-Einstein condensation (BEC) dates back to 1925 when A. 

Einstein devoted to the statistical description of the quanta of light and predicted the 

occurrence of a phase transition in a gas of non-interacting atoms on the basis of a 

paper by Indian physicist S.N. Bose (1924). This phase transition is associated with 

the condensation of atoms in the state of lowest energy and is the consequence of 

quantum statistical effects. For a long time this predictions had no practical 

confirmation until the experimental cooling technique had been advanced to the lower 

temperature [1]. 

     

Bose-Einstein condensation was observed in a remarkable series of experiments 

since 1995 on the vapors of rubidium (Anderson et al., 1995) and sodium (Davis et al., 

1995) in which the atom were confined in magnetic traps and cooled down to the 

extremely low temperature, of the order of fractions of micro-kelvins. The first 

evidence for condensation emerged from time-of-flight measurement. The atoms were 

left to expand by switching off the confining trap and then imaged with optical 

methods [2]. Afterward, the successful experimental achievement to BEC had grown 

more fast as if a blast in the recent 10 years. 

     

At low enough temperature the condensate evolution is described sufficiently 

well by the Gross-Pitaevskii (G-P) equation [2], which is originally three dimensional 

(3D) but in the case of a cigar-shaped trap potential it is reducible to a 1D nonlinear 

Schrödinger (NLS). Its validity is based on the condition that s-wave scattering length 
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be much smaller than the average distance between atoms and that number of atoms 

in the condensate be much larger than 1 . Under this condition , our system which is 

BEC in optical lattices can be simplified as the nonlinear Schrödinger equation with 

periodic potentials. As the numerous experiments of BEC had been observed , many 

physical properties of BEC might be predicted and investigated to understand the 

fabulous phenomenon of BEC advanced . For example : first experimentally loading 

BECs in optical lattices [3] , subsequently lattice effect has attracted considerable 

attention, Bloch oscillations [4], superfliud and dissipative dynamics[5] , dispersion[6] 

and Landau-Zener tunneling[7] and so on  

 

BEC in optical lattices are affected by the structures of optical lattices.  The 

BEC spectrum has an associated band structure .If the atomic density is high, BEC 

behaves nonlinearly. As the nonlinear term exactly compensates for dispersion term, 

solitons occur. The properties of the atoms are characterized by the depth and period 

of this optically induced potential. If the potentials happen to be deep enough, and 

only consider the first band, these self-localized states are known as discrete solitons 

simply because they can be described by the tight-binding approximation. As for the 

relatively shallow potentials, when the eigenvalue is located in the gap between two 

successive bands, these self-localized states are known as gap solitons[8] and are 

described by coupled mode approximation which we only consider two successive 

bands in the lowest two bands[9].  
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1-2  Motivation 

The gap solitons of atoms has been observed experimentally in the BEC with the 

repulsive atom-atom interaction [10] to show that effective-mass analysis does allow 

us to describe the behavior of BEC. With the effective mass analysis of BEC in 

optical lattices one can obtain a 1D nonlinear Schrödinger (NLS) equation deduced 

from the G-P equation without the need for full-scale numerical calculations. In this 

thesis the periodic potentials ,which are optical lattices, are assumed to be relatively 

shallow potential which can be correctly described by the coupled mode theory. It’s 

well known that the atoms confined to infinite periodic potential behave as if it 

possessing an effective mass which is substantially different from its true mass, and 

may even be taken a negative mass [11]. Our interest is near the regimes of the 

turning point of the band structure, which the so-called Zero dispersion point in the 

optical fiber, that the effective-mass approaches infinity and the coefficient of 

second-order dispersion term is almost zero. One can assume that one has to include 

the third-order dispersion to the equation which nonlinear Schrödinger equation 

becomes the generalized nonlinear Schrödinger equation. Nonlinear Schrödinger 

equation is studied thoroughly and exactly solved by the inverse scattering method, 

contrary to the exactly analytical solutions of the generalized nonlinear Schrödinger 

equation are not available, and the equation is non-integrable by inverse scattering 

method. In this thesis we mainly study the properties of this equation solved by an 

assumed solution based on the exact solution of nonlinear Schrödinger equation 

solved by inverse scattering method in the small amplitude limit to predict the 

possible behaviors of the atoms in the optical lattices. As for the numerical 

simulations, we deal with the full generalized nonlinear Schrödinger equation which 

includes the third-order dispersion term to give some confirmation about our analysis 
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due to our analytic solution which is an lowest-order approximated solution solve by 

perturbation method . 

 

 

1-3  Organization of the Thesis 

This Thesis is organized as follows.  Chapter 2 gives a brief review about the 

effective-mass analysis of BEC in optical lattices to derive the equation which we are 

interested from G-P equation. Then, we describe our method in detail to analytically 

solve the generalized nonlinear Schrödinger equation. In the chapter 3 we look for 

some numerical evidence to give our analysis some confirmation and observe some 

possible behaviors of BEC in the optical lattices near the zero-dispersion point by 

numerical simulation. Then, in the chapter 4, the last chapter, we briefly conclude our 

results that we obtain from both theoretical and numerical analysis.  
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Chapter 2  Theory and methodology 

    G-P equation is the main theoretical tool for investigating non-uniform dilute 

Bose gases at low temperature that it can well approximately describe the dynamic 

behavior of BEC. With the effective-mass analysis of BEC in optical lattices and 

assuming the optical lattices are shallow periodic potential one can simplify the G-P 

equation to a much simply equation which is the nonlinear Schrödinger equation in 

one dimension . The use of this approach has been confirmed by the BEC experiment 

of gap soliton [10]. In this thesis we discuss the regimes near the zero-dispersion point 

where the nonlinear Schrödinger equation has to be included the third-order 

dispersion term which we usually ignore it. The generalized nonlinear Schrödinger 

equation has no exactly analytic solution at present. We demonstrate an method to 

approximately analyze the properties of the atoms near the zero-dispersion point that 

the method bases on an exactly analytic solution of NLS equation in a small 

amplitude limit by inverse scattering method as an assumed solution to substitute into 

the generalized non-linear Schrödinger equation. 

 

 

2-1  Bose-Einstein condensates in optical lattices 

The dynamics of a Bose-Einstein condensate in an optical lattice can be 

described by the Gross-Pitaevskii (GP) equation [2],                                           

 

2
22( , ) ( ) ( ) ( , )

2 sa
ti V x U g

t m
ψ

⎡ ⎤∂Ψ −
= ∇ + + + Ψ⎢ ⎥

∂ ⎢ ⎥⎣ ⎦

r r== tr           (2.1) 
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where  is Planck’s constant,  is the mass of the atoms,  is the 

nonlinear coefficient, and 

= m 24 /
sa sg aπ= = m

sa  is the s-wave scattering length.  

 is a one-dimensional periodic potential produced by the 

interference of laser beams, where 

2( ) sin ( / )oV x E x Lπ=

L  is the lattice constant and  is the potential 

depth.  

oE

2 2 2 2 21( ) ( )
2

r xU m x y zω ω⊥⎡= + +⎣
⎤
⎦  is an optical trapping potential with 

frequencies  xω  and ω⊥ . The trap is elongated along the x direction because of the 

high confinement in the y-z plane (i.e. xω ω⊥� ).  Therefore, we assume the wave 

function as ( ; ) ( , ) ( , )r t a y z x tψΨ = , where the two-dimensional harmonic 

oscillator problem,

( , )a y z

2 2 2 2 2( / 2 ) ( / 2)( )m a m y z aω a⊥ ⊥− ∇ + + = Ω= = ⊥ . By applying the 

transformation exp( )i tψ ψ ⊥→ − Ω and integrating Eq.(2.1) with respect to y, z.    

then a one-dimensional G-P equation is derived as 

 

2 2
22

2
( , ) sin ( ) ( , )

2 2
sa

o
gx ti E x

t m Lx
ψ π ψ ψ

⎡ ⎤∂ − ∂
= + +⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

== x t .      (2.2) 

 

by rescaling , , , and / oT t T= /( / 2)X x L= 1/ 2
1/ Lψ ϕ= 0/o oV E ε= , and choosing 

, 2 / 4oT mL= = 2
1 / 2sL a mLω⊥= = , and . Here, we had dropped the 

trap of z-axis. Then, an effective one-dimensional G-P equation with dimensionless is 

derived as 

2
0 4 / mLε = = 2

2
22

2
( , ) 1 sin ( , )

2 2o
X Ti V X
T X

ϕ π σ ϕ ϕ
⎡ ⎤∂ − ∂ ⎛ ⎞= + +⎢ ⎥⎜ ⎟∂ ⎝ ⎠∂⎢ ⎥⎣ ⎦

X T ,       (2.3) 

 

where ( )ssgn aσ = , Eq.(2.3) is a time-dependent nonlinear Schrödinger equation 

with a periodic potential. If σ  is positive (negative), atoms are in repulsive 
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(attractive) interaction. 

 

2N ϕ dX
∞

−∞
= ∫ ,                          (2.4)   

 

which means the conservation of the number N of atoms in the condensate. 

 

 

2-1-1  Effective-mass method in Bose-Einstein condensates 

Effective mass method is a well-known in solid state physics for studying dynamics 

of an electron in semiconductor.  The two systems between electrons in 

semiconductor and BEC in optical lattices are analogue that we can introduce the 

effective mass theory to study BEC in optical lattices [12]. Expanding the condensates 

wave function ( , )X Tϕ on the complete set of Bloch function ( )n Xκφ , which 

( ) ( ),
,

( , ) ( , ) expn n n
n

X T A X T X iE Tκ κ
κ

ϕ φ= ∑ κ− . It is motivated that the 

Bloch functions can capture the rapid oscillation of the condensates wave function, 

then the slow essential motion of the condensate will be described by the slowly 

varying envelope function .To construct the localized state we assume that the 

matter wave field is characterized by a central wave vector 

nA κ

0κ  corresponding to the 

mean velocity of the condensate. We expand ( , )X Tϕ  as  

 

( )
0 0,( , ) ( , ) ( ) expn n n

n
X T f X T X iEκ κ κϕ φ= −∑ T        (2.5) 

 
We introduce the fourier expansion of the envelope function as 
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( )0

0
( , ) ( ) i X

n nf X T A T e dκ κ
κ κ κ−= ∫    

From eq.(2.5) , we have 
 

( )
0 ,( , ) ( ) ( ) expn n n

n
X T A T X iE T dκ κ κ 0

ϕ χ κ= −∑ ∫        (2.6) 

 

Where 
( )0

0
( ) ( ) ( )i X i X

n n nX e X eκ κ κ
κ κχ φ−= = Xκφ   

and 
0

2
( ) 1n X dXκφ =∫  

 
Inserting eq.(2.6) into eq.(2.3) and applying effective-mass method , at last 

performing an inverse Fourier transform from  back to ( )nA Tκ 0
( , )nf X Tκ .    

Then, we obtain  
 

0

0 0

0

2
33 2

0 * 3

( , )( )1( ) ( , ) ( , )
62

nn
n g n n

f X Tpv p p g f X T f X T i
Tm

κ
κ κ

κ

ε κ
ε κ σ

κ

∧
∧ ∧

⎡ ⎤
∂⎢ ⎥∂

+ + + + =⎢ ⎥ ∂∂⎢ ⎥
⎣ ⎦

       

                                                                (2.7) 
                                                                

where 
0

( )n
gv

κ

ε κ
κ

∂
=

∂ , 
0

2

* 2
( )1 n

m κ

ε κ
κ

∂
=

∂
,  and 0

4
( )ng Xκφ=∫ dX  

replacing p
∧

 by its configuration space representation i
X
∂

−
∂

 to eq.(2.7) 

 

0 0 0 0

0 0

2 3
2

0* 2 3
1 ( , ) ( )

2
n n n n

g n
f f f f

i iv i g f X T f f
T X m X X
κ κ κ κ

0n n nκ κ κη σ ε κ
∂ ∂ ∂ ∂

+ =− + + +
∂ ∂ ∂ ∂

 

                                                                 (2.8) 
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where 
0

3

3
( )1

6
n

κ

ε κ
η

κ
∂

=
∂  , and ( )ssgn aσ = . When 1σ = −  , the nonlinear 

term is attractive interaction. On the contrary, as 1σ = , the nonlinear term is repulsive 
interaction. 

 

 

2-1-2  Band Structure of BEC in optical lattices 

To study BEC in optical lattices which is a series of periodic potentials we are to 

look for the past fundamental theory based on the solid state physics. With the help of 

the solid state physics we can describe the atomic matter waves in E-k band structure 

which is the similar manner that we study the properties of electron under linear 

Schrödinger equation. To find the band structure we assume that the linear part of Eq. 

(2.3) has stationary solutions of the form ( , ) ( ) exp( )X T X iETϕ ν= − . we thus obtain 

the following eigen-value problem 

 

2
2

2
1( ) sin ( )

2 2o
XE X V X

X
π⎡ ⎤− ∂ ⎛ ⎞Ψ = + Ψ⎢ ⎜ ⎟
⎝ ⎠∂⎢ ⎥⎣ ⎦

⎥               (2.9) 

 

Eq. (2.5) has periodic solutions which are known as Floquet-Bloch (FB) modes [9].  

By using plane-wave methods, the periodic potential can be expanded as 

 

               ( )2sin ( / 2)
2 4

i X i Xo o
o

V VV X e eπ ππ −= − +                (2.10) 

 

And the Bloch functions can be expressed as , ,( ) ( ) im X
n k n k m

m
u X u X a b e π= + =∑                 
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So we expand      

 

( )( , ) i k m X
m

m
X k b e π+Ψ =∑                           (2.11) 

 

and satisfy orthonormality. Substituting Eq. (2.11) into Eq. (2.10) , we have 

 

            ( )( )2
1 12 0

2 2
o o

o m m m
V VE V k m b b bπ − +− − + + + =             (2.12) 

 

This method can be accurate as long as we consider the number of plane wave 

expansion large enough. We assume the potential is relatively shallow, and the bands 

between the first and the second band can be accurately described by keeping only 

two terms of the expansion, i.e. 0, 1m = −  ,which we assume the coupling of two band. 

Eq. (2.11) is rewritten as 

 

              1( , ) ikX ikX i X
oX k b e b e e πφ −

−= +                    (2.13) 

 

Then, we obtain the following coupled equations 

 

( )

2

1

2

1 1

2 2 4

2 2 2

o o
o o

o o
o

V VkE b b b

kV VE b b
π

−

b− −

⎧⎛ ⎞− = −⎪⎜ ⎟⎪⎝ ⎠
⎨

−⎛ ⎞⎪ − = − +⎜ ⎟⎪⎝ ⎠⎩

            (2.14) 

 

which is a system of linear equations, 
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( )

2

0
2 1

2 2 4 0

2 2 2

o o

o o

V VkE b
bkV VE

π −

⎡ ⎤
− −⎢ ⎥ ⎛ ⎞⎢ ⎥ =⎜ ⎟⎢ ⎥ ⎝ ⎠−⎢ ⎥− −

⎢ ⎥⎣ ⎦

           (2.15) 

 

With the ortho-normal condition of the Bloch functions we obtain  

 

( ) ( )
1

2 2 2
0 1

1
2x dx b b−

−

Ψ = +∫ 1=                 (2.16) 

 

By solving the system of linear equations Eq.(2.15) E-k band structure of 

one-dimensional BEC in optical lattices is then derived as 

 

              
2 2 22 2 ( ( ) )( )

2 4 4
oo k k VV k kE

ππ − − ++ −
= + ±

2
         (2.17) 

 

where the wave-vector  is k 2 k 2π π− ≤ ≤  in the first Brillouin zone. Substituting 

the solution of the lowest band which that we choose the minus sign in Eq. (2.18) into 

the system of linear equations Eq.(2.15) , we obtain a set of nontrivial solution that it 

is essentially important in computing the coefficient g , but here instead of directly 

solving the system of linear equations we make use of the orthonormal condition to 

deduce the coefficient g . So we obtain         

 

0

4 2 4
0

1( ) 2 4
2ng X dX bκφ= = −∫ 0b+            (2.18)  
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where ( ) ( ) ( )
1

2 22 2 2 2 2 2
0 0 0 02 2 2b V V k k k Vπ π π π π π

−
⎡ ⎤= + − − − − +⎢ ⎥⎣ ⎦

 , with the 

determination of specific  and  we can obtain the coefficient of nonlinear 

interaction

k 0V

g from . As for the other coefficients, they also has been decided once we 

determine the specific  and , they are described as follows : k 0V
0

( )
gv

κ

ε κ
κ

∂
=

∂ , 

0

2

* 2
( )1 n

m κ

ε κ
κ

∂
=

∂
 , 0( )nε κ .   
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2-2  The method for solving generalized NLS equation  

In the following, we will use a method for solving the generalized NLS equation in 

question which has been demonstrated by Kivshar in the optical fiber [12] , [13]  that 

the equation of optical fiber has the analogue with the equation of BEC in question, 

and it had been investigated for several decades in the optical fiber. This method is 

based on the solution, of dark soliton case, of NLS equation solving by inverse 

scattering method in the small density regime that we assume a similar solution form 

to substitute it into the generalized NLS equation we are interesting. Then, by 

applying the technique of nonlinear analysis we can obtain a connection between the 

nonlinear Schrödinger and the Korteweg-de Vries (Kdv) equations. Since we can 

solve Kdv equation by directly integrating, we can obtain the solution of the NLS 

equation with the third-order dispersion term in the small amplitude regime.            

   

 

2-2-1  The solution of NLS equation in the small density regime 

Since the nonlinear Schrödinger equation with the third-order dispersion is not 

non-integrable by inverse scattering method, but the nonlinear Schrödinger equation 

is. So, in retrospect, we make use of the result of nonlinear Schrödinger equation 

solving by inverse scattering method in the small density regime to generate an 

assumed solution .The nonlinear Schrödinger equation is 

                     

2
2 2u ui u

t x
α∂ ∂

− + =
∂ ∂

0u                      (2.19) 

The exactly analytic solution of this equation has been solved by the inverse 
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scattering method [14]. In the case 0α > (positive group velocity regime) it has 

stable soliton solutions in the form of localized dark pulses propagating on a 

modulated stable background 0u u= = constant. The one-soiton dark pulse solved by 

inverse scattering method has the form 

 

( ) ( ) ( )
( ) (

2
2

0 0

exp
,

1 exp
i Z

u x t u iu t
Z

λ ν− +
=

+
)exp 2             (2.20) 

 

where ( )2
0 02 2Z u x x u tν λ α α= − −  ,  21 vλ = −                     

ν  is the soliton parameter , , and 20 ν< <1 0x  is an initial phase . At 0λ = , the 

solution, eq. (2.20), describes the so-called fundamental dark soliton  

 

( ) ( ) ( )2
0 0 0, tanh exp 2u x t u u x x iu tα⎡ ⎤= −⎣ ⎦ 0             (2.21) 

 

, and for 2 1ν � it corresponds to the so-called gray (small-amplitude) dark solitons  

 

( ) ( ) ( )2 2 2
0 0 0

1, sec 2 exp 2
2

u x t u u h Z iu t i x tν φ⎡ ⎤ ,⎡ ⎤= − +⎣ ⎦⎢ ⎥⎣ ⎦
      (2.22) 

 

( ) ( ), 2 1 expx tφ ν=− + Z                               (2.23) 

 

where  ( )2
0 0 02 2Z u x x u tν α ν⎡= − −⎣ ∓ α⎤

⎦   ,                      (2.24) 

 

We can find out in Eq 2.24 possessing two signs of which propagate in opposite 

directions. 
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2-2-2 The solution of generalized NLS equation in the small 

amplitude regime 

Now we return to our interesting system of BEC in the optical lattices near the 

zero dispersion point which is described by the generalized NLS equation eq.(0.1). 

 

0 0 0 0

0 0

2 3
2

0* 2 3
1 ( , ) ( )

2
n n n n

g n
f f f f

i iv i g f X T f
T X m X X
κ κ κ κ

n nκ κη σ ε κ
∂ ∂ ∂ ∂

+ =− + + +
∂ ∂ ∂ ∂

 

 

For simplicity to analyze the result, we use the transform ( ) ,gx X v T t T= − =−  

and rescale
02 n

g f Fκ = to simplified again the equation to a dimensionless 

generalized NLS equation . as a result, we obtain  

 

2 3
2

02 2 k
F F Fi F F i
t x x

α ζ∂ ∂ ∂
− + = −

∂ ∂ ∂ 3 e F            (2.25) 

 

where *
1 1
2 2 m

α β= = , 0 ( )k ne 0ε κ=  , and ζ η= − . Here, we only discuss 

the case , σ  is positive. 

In order to obtain the solution in the neighborhood of the Z-D point for the 

normal-dispersion regime, 0α >  in Eq. (2.25), we look for a solution in the form of 

small-density excitations of the stable background which is similarly assumed as eq. 

(2.22): 

           ( ) ( ) ( )2
0 0, , exp 2 ,F x t u a x t iu t i x tφ⎡ ⎤= + +⎡ ⎤⎣ ⎦ ⎣ ⎦              (2.26) 

[cf. Eq. (2.22)] . Substituting Eq. (2.26) into Eq. (2.25) , we may obtain for the 
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small-amplitude case where  is the amplitude of the stable background far from 

the dark soliton amplitude , two equations : 

0u

0a u�

 

           

( ) ( )

( ) ( )
( )

0 0

2 2
0 0 0 0

0 0

2 ( 3 )

4 6

                          3 3

t xx x x xx xxx x xx

x x tt t

tt t t tt ttt k

a u a a a u

u u a a a u u a

u a

α φ α φ φ ζ φ φ

φ φ α α φ

ζ α φ αφ φ ε

− − + = −⎧
⎪
⎪
⎨

− + + − −⎪
⎪ = + + −⎩

　　　　　

 

where the above two equations are Eq.(2.27a) and Eq.(2.27b). 

 

The main approach of this method is to use the new (“slowly”) variables: 

 

             ( )x Ctτ ε= −  , 
3 tε=y                    (2.28a,b) 

 

ε  being an arbitrary small parameter connected with the soliton amplitude ν , and 

by substituting Eqs.(2.28a,b) into Eq.(2.27a) and Eq.(2.27b) we obtain  

 

2 2 3
3 2 2 3

0 02 2 3

22
3 2 3 2

0 0 02

2
3

2

2 3

4 6

3

a a a a aC u a u
y

au C u a Ca a u u a
y y

a

τ

2

2

2
0

φ φ φε ε α ε ε α α ζε
τ τ τ τ τ τ

φ φ φ φ φε ε ε α ε ε α ε
τ τ τ

ζε
τ

∂

∂

⎛ ⎞ ⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + − − + = −⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞− + − + + − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∂
=

∂
　　　　　　　　　　　　　　　　

φ
τ

τ

⎞
⎟
⎠

2 2

0 02 23 k
a u e aφ φ φ

τ τ τ τ

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪ ⎛ ⎞∂ ∂ ∂ ∂

− + −⎪ ⎜ ⎟∂ ∂ ∂ ∂⎪ ⎝ ⎠⎩

 

 

where the above two equations are Eq.(2.29a,b) . 
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Then, we present the wave amplitude ( ),a zτ  and the phase ( ), zφ τ  in the form of 

the asymptotic series in the same small parameterε : 

 

            , 2 4
0 1a a aε ε= + +" 3

0 1φ εφ ε φ= + +"              (2.30a,b) 

 

substituting Eqs. (2.30a,b) into Eq.(2.29a,b) we obtain four equations by only 

considering the fisrt two term of asymptotic series : 

 

2
3 0 0

0 2

22
5 0 0 0 01 1

0 02 2

3 2
0 0 0

03 2

2

: 0. (2.31 )

: 2

                                             ( 3 ). (2.31 )

:

aC u

a aaC u a
y

a u b

Cu

φε α
τ τ

φ φφε α α α
τ τ τ τ τ

φ φζ
τ τ τ

ε

∂ ∂
+ =

∂ ∂
⎛ ⎞ ∂ ∂ ∂ ∂∂ ∂
− − + − −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂
= −

∂ ∂ ∂

""""""""""""""""""""

""""""""

a

( )

( )

20
0 0 0 0

22
2 0 0 0 01

0 0 0 1 0 0 02

3
2 0

0 0 0 3

4 0. (2.31 )

: 4 +

6 (2.31 )

k

k

u e a c

aaCu u e a u Ca u
y

u a u d

φ
τ

φ φ φε α
τ τ τ

φζ
τ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

∂⎪ + − =⎪ ∂
⎪

∂ ∂ ∂ ∂∂ ⎛ ⎞⎛ ⎞⎪ − − − − + −⎜ ⎟ ⎜ ⎟⎪ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪
∂⎪ − =⎪ ∂⎩

"""""""""""""""""

"""""""""""""

４ 　

　　　　　　　　　 

α
τ

 

 

(2.31a) and (2.31c) lead to a relation that ( ) ( )
2

20 0
0 0 022.31 4 0k

ac Cu u eφ
τ τ

∂ ∂∂
τ

= + − =
∂ ∂ ∂

 . 

Substituting it into (2.31a)  ⇒ ( )2 20
0 04 k

aC u eα 0 0a
τ τ

∂ ∂
− − =

∂ ∂
 . The relation is  

 

( )2 2
0 04 kC u eα= −                          (2.32) 

 

Here we rewrite the form of Eq.(2.32) as  
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2 2
04C u αγ=                              (2.33) 

 

where 0
2
0

1
4

ke
u

γ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 and 02C u αγ= ±  . The parameter C is the limit velocity (in 

the x space) of linear waves propagating on the background and the sign of velocity C 

means the wave propagating in the background has the opposite direction .We replace 

Eq(2.33) back to (2.31c) , obtaining 

 

0
0

0

C a
u

φ
τ α

∂
= −

∂
                            (2.34) 

 

and substitute it into Eq.(23.1b) that we can rewrite (23.1b) as following 

 

32 2
0 0 01 1

0 02 3
0 0

3 3a a aa CC u a a
y u u

φ ζα ζ 0
02

aC
τ τ τ τ α

⎛ ⎞ ∂ ∂ ∂∂ ∂
+ = + − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ τ

∂
∂

         (2.35) 

 

then , (2.31 )d
τ
∂
∂

  

 
2 3 222

0 0 0 0 01 1
0 0 02 3 2

2 4
0 0 0 0

0 0 0 02 42 12

a aaC Cu u C Ca
y

au u a u

φ φ φφ α
α τ τ τ τ τ τ τ

φ φ φα ζ
τ τ τ τ

⎛ ⎞ ∂ ∂ ∂ ∂ ∂∂ ∂
+ − − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂ ∂ 0+ + =
∂ ∂ ∂ ∂

　　　　　　　　　　　　  

     (2.36)               

 

where 
2 2

0 0 0 0 0
0 02 2aC Ca uφ φ φ φα

τ τ τ τ τ
∂ ∂ ∂ ∂ ∂

2 0+ +
∂ ∂ ∂ ∂ ∂

　 =  by replacing the Eq. (2.34), and by 

rearranging Eq(2.36) it become as 
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3 32
0 0 01 1

0 0 0 0 0 02 3
0 0

12 0a a aaC CC u u a u a u
y u u

φα α ζ
α τ τ α τ τ α τ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂ ∂ ∂∂ ∂ ∂ − −
+ − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

3

C
=  

At last, we substitute Eq. (2.35) into above equation. Then, we obtain the famous 

equation, the Korteweg-de Vries (Kdv) equation. 

 

( )
3

20 0
0 02 32 12 1 2a aCC u a C

y
ζα γ α ζ
α τ τ

∂ ∂⎛ ⎞ 0 0a∂
+ + + − + =⎜ ⎟∂ ∂⎝ ⎠ ∂

      (2.37) 

 

Eq. (2.37) at  that the equation coincides with the Ref.[12] after redefining 

each parameter of Eq. (2.37). The sign of the velocity C depends on the propagation 

direction so we have two different equations (for 

0 0ke =

sgn 1C = ±  ) . 

 

Here we solve Kdv equation by directly integrating and rewrite it as dimention-less 

form, again for simplicity. Assuming Dyθ τ= + ,                     

 

          
3

0 0
1 2 0 3 32 12a a aS S a S

θ θ θ
∂ ∂ ∂

+ −
∂ ∂ ∂

0 0=                  (2.38) 

 

where 

( )

1

2 0 2

2
3

1

2

S CD
CS u

S C

ζα γ
α

α ζ

⎧ =
⎪
⎪ ⎛= + +⎨ ⎜

⎝ ⎠⎪
⎪ = +⎩

⎞
⎟                        

 

Eq. (2.38) integrate with respect toθ  , and we have 
2

2 0
1 0 2 0 3 122 6 aS a S a S A

θ
∂

+ − =
∂

 

where  is a constant , but we ask as 1A θ →±∞  , 
2

0 0
0 2, , ,... 0a aa

θ θ
∂ ∂

=
∂ ∂

. ∴ 1A  is 

both zero . then, multiplying 0a
θ

∂
∂

 and integrating it again the Kdv equation become   

 - 19 -



2
2 3 0

1 0 2 0 3 2
12
2

aS a S a S A
θ

∂⎛ ⎞+ − =⎜ ⎟∂⎝ ⎠
 where  is constant and also zero . We rearrange it 

as  

2A

( )30
2 0 1 0

3

1 4 2a S a S a
Sθ

∂
= +

∂
2  , so we can obtain  

 

                     
( )

3 0

0 2 0 14 2

S da

a S a S
θ =

+∫                        (2.39) 

 

Here , we use 12 tandx ax b
bx ax b b

− ⎛ ⎞+
= ⎜⎜ −+ − ⎝ ⎠

∫ ⎟⎟  , then 

 

13 2 0

1 1

4 22 tan
2 2
S S a

S S
θ − ⎛ ⎞+
= ⎜⎜− −⎝ ⎠

1S
⎟⎟                (2.40) 

 
by inversing Eq. (2.40) 

2 21 1 1 1
0

2 3 2 3

2 21 1tan 1 tanh 1
2 2 2 2
S S S Sa i
S S S S

θ θ
⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞

= − + = −⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎤
⎥
⎥⎦

  

Expanding hyperbolic tangent function by exponential form, we obtain 

 

1 1

3 3

21 1
0 2

2 22 2

24 sech
2 2S S

S S

S Sa
S S

e e
θ θ

1

3

S
S

θ
−

⎛ ⎞−−
= = ⎜⎜⎛ ⎞ ⎝ ⎠

⎜ ⎟+
⎜ ⎟
⎝ ⎠

⎟⎟                (2.41) 

     

∴    ( )
(2

0 22
0

1 2sech
2 22 1

CD CDa D
Cu C

α τ
α ζα γ ζ

)y
⎡ ⎤−

= +⎢ ⎥+⎡ ⎤+ + ⎣ ⎦⎣ ⎦
         (2.42) 
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where 

( )

2 2
0

0
2
0

3

4

1
4

,

k

C u

e
u

x Ct y t

αγ

γ

τ ε ε

⎧ =
⎪

⎛ ⎞⎪ = −⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ = − =⎩

 

and 

0
0

C a d
u 0φ τ

α
= − ∫                                     (2.43) 

So  

( ) 2 2
0 0 0, exp 2F x t u a iu t i 0ε εφ⎡ ⎤ ⎡= + +⎣ ⎦ ⎣ ⎤⎦            (2.44) 

 

Comparison of Eq.(2.44) at ζ =0 , and 0 0ke =  with Eq.(2.22) and (2.23) leads to a 

relation between the perturbation scale ε  and the soliton parameter ν  , 0uχε ν=    

where χ  is an amplitude parameter of the Kdv equation , and 
2

2
3 1
2 2

0

2 CD
u

α ζ χ
α γ

+
=  

 

( )
( ) ( )

2 2 2
2 2

0 2
0

2 2sech 2
1

C
a C

Cu C

α ζ χ χ χτ α ζ
αα γ ζ α

− +
y

⎧ ⎫⎡ ⎤⎪ ⎪= + +⎨ ⎬⎢ ⎥⎡ ⎤+ + ⎪ ⎪⎣ ⎦⎩ ⎭⎣ ⎦
       (2.45) 

 

We define ( )2 1
C

α γ
δ

ζ
+

=  and substituting 02C uρ αγ=  where ( )sgn Cρ =  into 

δ  we have 

3
1 12
2 2

02 u
αδ γ γ
ζ

−⎛ ⎞
= +⎜

⎝ ⎠
⎟                      (2.46) 

 

( )
( ) ( ) ( )

2
2

0
0

2 1
sech

1
a

u
χ δ ρ γ

γ δ ρ
− + +⎡ ⎤⎣ ⎦=

+ +
Z                   (2.47) 
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where 
( ) ( )

22 2 1
1

Z yχ ζχτ δ ρ
αρ γα

γ
⎧ ⎫⎪ ⎪= + + +⎡ ⎤⎨ ⎬⎣ ⎦+⎪ ⎪⎩ ⎭

 

and 

               
1 1
2 2

0 2 a d0φ ρα γ τ= − ∫                         (2.48) 

 

( )
( )( ) ( )

1
2

0
0

2 2 1
    tanh

1
Z

u
ραγ χ δ ρ γ

φ
γ δ ρ
+ +⎡ ⎤⎣ ⎦∴ =

+ +
                (2.49) 

 

Then, we obtain the lowest order solution of Eq. (2.25) .     

 

( ) ( )
( )( ) ( )

2 2
2 2

0 0
0

2 1
, sech ex

1
F x t u Z iu t i

u
ε χ δ ρ γ

0p 2 εφ
γ δ ρ

⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎡ ⎤= − +⎢ ⎥ ⎣ ⎦+ +⎢ ⎥⎣ ⎦
                   

(2.50) 

 

where 

( )

( )

( ) ( )

0
2
0

0

3
1 12
2 2

0

3

2

1
4

2  , where sgn

2

,

2 2 1
1

ke
u

C u C

u

X Ct y t

z y

γ

ρ αγ ρ

αδ γ γ
ζ

τ ε ε

χ ζχτ δ ρ
αρ γα

−

⎧ ⎛ ⎞
= −⎪ ⎜ ⎟
⎝ ⎠⎪

⎪ = =⎪
⎪

⎛ ⎞⎪⎪ = +⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ = − =⎪
⎪

γ
⎧ ⎫⎪ ⎪⎪ = + + +⎡ ⎤⎨ ⎬⎣ ⎦+⎪ ⎪ ⎪⎩ ⎭⎪⎩

 

 

Now we substitute the transformation ( )   ,   gx X v T t T= − =−  and the rescaling 

02 n
g f Fκ =  , ζ η= −  back to Eq(2.49) to obtain the solution of BEC in the 
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optical lattice near the zero point dispersion .  

 

( ) ( )

( )
( )( ) ( )

0

2 2
2 2

0 0
0

2, ,

2 1
                sech exp -2

1

n gf X T F X v T T
g

u Z
u

κ

ε χ δ ρ γ
0iu T iεφ

γ δ ρ

= − −

⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎡ ⎤= − +⎢ ⎥ ⎣ ⎦+ +⎢ ⎥⎣ ⎦

                                                                (2.51) 

where 

( )

( )

( ) ( )

0
2
0

0

3
1 12
2 2

0

3

2

1
4

2  , where sgn   

2

,

2 2 1
1

k

g

e
u

C u C

u

X v T CT y T

z y

γ

ρ αγ ρ

αδ γ γ
η

τ ε ε

χ ζχτ δ ρ
αρ γα

−

⎧ ⎛ ⎞
= −⎪ ⎜ ⎟
⎝ ⎠⎪

⎪ = =⎪
⎪

⎛ ⎞⎪⎪ = +⎨ ⎜ ⎟− ⎝ ⎠⎪
⎪ = − + = −⎪
⎪ ⎧ ⎫⎪ ⎪⎪ = + + +⎡ ⎤⎨ ⎬⎣ ⎦⎪ +⎪ ⎪⎩ ⎭⎪⎩

γ

 

 

By simple analysis observation we obtain the result that the nonlinear 

Schrödinger equation with the third-order dispersion ,which describe the behaviors of 

BEC in the optical fiber near the zero dispersion point , have the dark soliton solution 

in the small amplitude limit in the most regions , but in a special region of 

0
2
0

1 4
2

ke
u

δ< < −  where 

3 1 1
2 2 2

0
2

0 0 0

1 1
2 4 4

k ke e
u u u

αδ
ζ

−

0
2

⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥= − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 here we assume 

-1ρ =  and 0ζ η= − >  ,we also ask that 0
2
0

1
2

ke
u

< . We can obtain a type of bright 

soliton solution which the bright soliton propagate in the modulated background of 

BEC density, the so-called anti-dark soliton , because the soliton changes the sign of 

its density . The existence of  makes the region of anti-dark soliton smaller and 

slows down the velocity of soliton propagating on the modulated background. So far 

0ke
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we have demonstrated that BEC in the optical lattices near the zero-dispersion point 

in the small density regime possesses the soliton solution in the small amplitude limit. 

However , since the generalized NLS equation is non-integrable by inverse scattering 

method , so we can not make sure that as time evolution of BEC, the dynamic of 

BEC , whether the soliton solution actually exists . Therefore, in order to confirm the 

soliton solution actually exists we have to numerically simulate the equation directly, 

and it was presented in the following chapter .      
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Chapter 3  Numerical simulation  

In the second chapter we use a small-density approximation to solve the 

generalized NLS equation obtaining the soliton solution. Since this approximation is 

based on the solution of NLS equation solving by inverse scattering method and the 

perturbation method , so we have to directly solve it by numerical simulation to 

confirm our result actually exist the stable soliton solution. Moreover, we use the 

numerical simulation to discuss the behaviors of BEC in the optical lattice near the 

zero dispersion point.    

 

 

3-1 Numerical method 

Our numerical method is the most common and direct method , finite difference 

method, in the numerical analysis that we represent the derivatives by their finite 

difference approximations [15] .Here we use the forward-difference approximation 

with respect to time. At first we expand a function by Tylor’s series in powers of k 

with respect to t: 

 

( ) ( ) ( ) ( ) ( ) ( )2 3 (3) 4 (4)

2! 3! 4!
h f t h f t h f t

f t k f t hf t
′′

′+ = + + + + +" .       (3.1) 

  

Thus we obtain  

( ) ( ) ( ) ( )f x k f x
f x

h
+ −

′ = O k+                       (3.2) 
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where h is assumed small enough , but finite , for the approximation of accuracy and 

( )O k  indicate that the error in this approximation to the first derivatives is of order 

k.         

 

As for the space, we use the central-difference approximation to the first 

derivative with respect to space x. From Tylor’s expansion we have 

 

( ) ( ) ( ) ( ) ( ) ( )2 3 (3) 4 (4)

2! 3! 4!
h f x h f x h f x

f x h f x hf x
′′

′+ = + + + + +"    (3.3) 

and 

( ) ( ) ( ) ( ) ( ) ( )2 3 (3) 4 (4)

2! 3! 4!
h f x h f x h f x

f x h f x hf x
′′

′− = − + − + +"     (3.4) 

 

By subtracting the second expansion from the first and keeping only the lowest-order 

term we obtain  

               ( ) ( ) ( ) ( )2
2

f x h f x h
f x

h
+ − −

′ = O h+                    (3.5) 

 

Where the error of Eq. (3.5) is of order  . 2h

  

For the second derivative ( )f x′′  we add both Eq. (3.3) and Eq.(3.4) producing 

the finite difference formula  

 

( ) ( ) ( ) ( ) ( 4
2

2f x h f x f x h )f x O
h

+ − + −
′′ = h+               (3.6) 

 

The last derivative we need is the third derivative ( )f x′′′  where we expand  the 
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functions ( )2f x h+  and ( )2f x h−  in Tyalor’s series by adding both expansion 

with the help of the expansion of ( )f x h+  and ( )2f x h− . We obtain 

 

( ) ( ) ( ) ( ) ( ) ( )4
3

2 2 2 2

2

f x h f x h f x h f x h
f x O

h

+ − + + − − −
′′′ = + h     (3.7) 

 

For the simplicity we rewrite the above approximation of derivative in a more 

simplified form by a notation which is fairly standard in the numerical literature and 

now consider the function ϕ  as the partial derivative with respect to space x and 

time t ,that is , ( ),x tϕ ϕ= .    

 

, 1 ,

2
i j i jf f

t h
ϕ + −∂
≈

∂
                              (3.8) 

 

1, 1,

2
i j i jf f

x h
ϕ + −−∂
≈

∂
                            (3.9) 

 

2
1, , 1,

2 2
2i j i j i jf f f

x h
ϕ + − +∂
≈

∂
−                      (3.10) 

 

3
2, 1, 1, 2,

3 3
2 2

2
i j i j i j i jf f f f

x h
ϕ + + − −− + −∂
≈

∂
            (3.11) 

 

Where x ih=  and t  that the x-t plane has been subdivided into rectangular 

grid with each rectangle having interval length of gird h and k , where h and k will be 

taken to be small , that is ,

ik=

( ) ,, i jx ih t jkϕ ϕ= = = ≡ϕ  where i , j = 0,1,2, …. The 
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above differences of derivative are all we need in numerical simulation.    

 

 

3-1-1  Numerical simulation of the generalized NLS method  

    In order to confirm the soliton solution we obtained before we now begin by 

Eq.(2.25) , 
2 3

2
02 2 k

F F Fi F F i
t x x

α ζ∂ ∂ ∂
− + = −

∂ ∂ ∂ 3 e F

)

, to directly simulate 

the full generalized NLS equation using the finite difference method . We first assume 

the complex wave function  can be separated ( ,F x t ( ) ( ) (, ,F x t a x t ib x t= + ),  . so 

Eq. (2.25) can be reformed as two equations which is real and imaginary parts of 

Eq(2.25).  

 

( )

( )

2 3
2 2

02 3

2 3
2 2

02 3

2

2

k

k

b
t

a
t

a ba b a e
x x

b aa b b e b
x x

α ζ

α ζ

∂

∂

∂

∂

⎧ ∂ ∂
+ − + = +⎪ ∂ ∂⎪⎪

⎨
⎪ ∂ ∂⎪ − + + = −
⎪ ∂ ∂⎩

a

 

 

Where the above both equations are Eq. (3.12) and Eq. (3.13) . 

  

With the help of finite difference method we obtain the discrete equations of  

Eq.(3.12) and Eq.(3.13) . The most direct idea for obtaining the confirmation of our 

result is to substitute our solution back to the original dominated equation, that is , Eq. 

(2.25) . Though we back to Eq.(2.50) which is the solution of Eq. (2.25). By reducing 

it in a more simplified form that we set 
0u

εχµ
α

=  where µ  could be regarded as a 
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ratio of height about the amplitude of soliton. So we obtain the initial condition, at 

time t = 0, for numerical simulation.     

 

( )
( )

( ) ( )

2 2 0
2
0 2

0 0
0
2
0

4
2

, 0 1 ech exp[ ]
2

4

k

k

e
u

F x u S Z i Z
e
u

α µ δ ρ
φ

δ ρ

⎡ ⎤⎡ ⎤⎛ ⎞
+ −⎢ ⎥⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦= −⎢ ⎥⎛ ⎞
⎢ ⎥− +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                

(3.14) 

 

( )

( )

( )

3
02
2
0

0 1 1
2 2

0 0
2 2
0 0

2 4
2

    tanh

1 1
4 4

k

k k

e
u

Z Z
e e
u u

ρα µ δ ρ
φ

ε δ
−

⎡ ⎤⎛ ⎞
+ −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦=
⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥− + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

ρ

         (3.15) 

 

where 

( )

0

0

3 1 1
2 2

0 0
2 2

0 0 0

0

1 1
2 4 4

2  , where sgn

k k

u
Z u x

e e
u u u

C u C

εχµ
α
µ

αδ
ζ

ρ αγ ρ

−

⎧ =⎪
⎪

=⎪
⎪⎪

2
⎡ ⎤⎨ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎪ = − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎪

⎪ = =⎪⎩

 

 

Now we use Eq.(3.14) and Eq. (3.15) for numerical simulation of the generalized 

NLS equation at 1α =  ,  , and 0 1u = 0 1ke =  as initial condition . According to the 

analytic predictions, the anti-dark soliton may exists in the region of 

0
2
0

1 4
2

ke
u

δ< < −  , and the essential condition ( )sgn 1Cρ = = −  , so that we put 

0.5ζ =  ( i.e., 

1 1
2 2

0
2
0 0

1 1
4 4

k ke e
u u

δ 0
2

−
⎛ ⎞ ⎛ ⎞

= − + −⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

⎟ ) . The sign of C presents the velocity of 
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linear wave propagating on the modulated background wave. Here we have to take a 

finite-extent Gaussian-like wave in the form of initial condition as a background wave 

in order to satisfy the essential condition of dark soliton, which the dark soliton 

propagates on a modulated stable background wave.  

                     

  ( )
8

0 *( ,0) ,0 exp[ ]xF x F x
T
−

=                   (3.16)            

 

where  is sufficiently large.  *T

 

For comparison we also present the case of 0ζ =  where the third-order 

dispersion term is absent, and in this case the initial anti-dark soliton decays very fast 

as a dispersive wave packet. The both case are presented in the following figures. 
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   Fig. 1. The time evolution with the arbitrary coefficients where 0.3µ =      
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In the above figure we have the propagation of the anti-dark soliton at 0.3µ =  . The 

anti-dark soliton stably propagates on the background wave and this figure has 

confirmed the existence of our result that the generalized nonlinear Schrödinger 

equation possesses the soliton solution in the small amplitude regime which is 

perfectly consistent with our theoretical analysis. It’s perfect to fit with our theoretical 

analysis.    
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       Fig. 2. The time evolution with the arbitrary coefficients where 0.3µ = ,          

but the third-order dispersion term is absent.     

 

In the Fig. 2 the third-order dispersion is absent that this figure is used to compare 

with Fig 1. It’s obviously that the solution of soliton we obtain only exists when we 

take into account the third order-dispersion term. Otherwise, the initial soliton wave 

packet will be dispersive rapidly as if a dispersive wave-packet. Therefore , we have 

confirmed our result by directly numerical simulation .     

 

 - 31 -



In this case with the same conditions as we choose the value of µ  enough 

small , one can see the propagation of the anti-dark soliton steady , but in the larger 

µ  we will see an emission of radiation that is regarded as the effect of the third-order 

dispersion and had been studied in the optical fiber[16]. Now we discuss an 

instructive analysis to help us clearly understand the affection of the third-order 

dispersion term, even though it may don’t really exist any physical meaning. By 

erasing the background of the anti-dark soliton we just had discussed that we will take 

the form of bright soliton as an initial condition to substitute into our numerical 

simulation. The result is obviously to understand the affection of the third-order 

dispersion term in the following figure. In the figure 3 we clearly see the initial soliton 

form reshapes itself with an emission of continue radiation in a side. As for the figure 

4 the wave is rapidly dispersive. 
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Fig. 3. The time evolution of a special initial profile which subtracts the background  

from the initial profile of fig. 1 with the same conditions 
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Fig. 4. The time evolution of a special initial profile which subtracts the background  

from the initial profile of fig. 2 with the same conditions. 

 

As we change the ratio ofµ  , the radiation will be more rapid and clearly observed. 

See the figure 5 where 0.5µ = . 

     

-100

- 50

0

50

100

x

0.2
0.4

0.6
0.8

1
t

0

0.01

0.02

0.03

0.04

100

- 50

0

50
x

 

         Fig. 5. The initial conditions is same with fig. 1 where 0.5µ =   
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3-2  Numerical simulation of BEC in optical lattice near the zero 

dispersion point    

 

Now we bring the actual coefficients of BEC in the optical lattice near the Z-D 

point into our numerical simulation to find out the behaviors of BEC near the Z-D 

point , but here we don’t bring the transformation back due to we just discuss the 

qualitative behaviors only , and the inverse time only changes the direction of 

progation. First, we go back to the equation of band structure of the lowest first two 

band Eq.(2.17) which is obtained by two band approximation. Here, we only discuss 

the equation of the lowest band to determine the coefficients we need for numerical 

simulation. In following figures we draw out the band structure of each coefficient 

with respect to k where  and show all diagrams in a figure for simplified 

clarification and comparison.       

1.9oV =
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Fig. 6. The derivatives of band structure with respect to k  
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In the figure 6 the solid line, 0( )ε κ  , represents the band structure of the lowest first 

band , E-k diagram , the long dash line describes the group velocity of BEC in the 

optical lattice , 
0

( )
gv

κ

ε κ
κ

∂
=

∂ , and the dot line is the coefficients of the 

second-order dispersion term , 
0

2

2
1 ( )
2

κ

ε κα
κ

∂
=

∂
. At last the short dash line is the 

coefficients of the third-order dispersion term,
0

3

3
1 ( )
6

κ

ε κζ
κ

∂
=

∂
.(see section 2-1-2). 
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       Fig. 7. Second and the third derivatives of band structure with              

respect to k in comparison with nonlinear coefficient  
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Fig. 8. The plot of effective mass with respect to k         

 

We also compare the second-order and third-order dispersion terms with the 

non-linear coefficient in the figure 7 and describe the second-order dispersion term in 

term of the effective mass with respect to k in the figure 8. 

 

It is obviously to find out in the figure 6 that the third-order dispersion term are 

zero in the both sides where one is band edge , and the other is the point where k is 

zero. Therefore we actually have to take into account to keep the term of third-order 

dispersion term , which is described by the generalized NLS equation, when the value 

k of BEC in the optical lattice approaches the zero dispersion point where this point 

represents the second-order dispersion are zero. The sign of third-order dispersion is 

always negative coefficient so that the rescaling we had made before,ζ η= − , will not 

change the formation of soliton we predict in the chapter 2 with the variance of 

propagation direction of soliton. The second-order dispersion is separated as two parts 

which are negative and positive regions where one is the so-called normal dispersion, 

 - 36 -



and the other is the so-called anomalous dispersion in the optical fiber. Now we 

choose the same initial conditions, but here we use the coefficients of BEC in the 

optical lattices where the height of potential is 1.9 near the zero dispersion point to 

simulate the behaviors of BEC. 
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Fig. 9. The time evolution of anti-dark soliton where k=0.8 and 0.3µ =   

 

In figure 9 here the value of k is 0.8 and 1.6δ ≈  that we obtain an anti-dark soliton 

propagating in the small amplitude regime where 0.3µ = . As we change the ratio of 

µ  , again we may obviously observe the confirmation of our result . We also plot the 

figure 10 with the same value of k, but a larger µ  where 0.5µ =  that the 

propagation of soliton accompanies an emission of continue radiation. 
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Fig. 10. The time evolution of anti-dark solliton where k = 0.8 and 0.5µ = .  
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               Fig. 11. The plot of δ  with respect to k 
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In the figure 11 we plot 

3
1 12
2 2

02 u
αδ γ γ
η

−⎛ ⎞
= ⎜− ⎝ ⎠

+ ⎟  with respect to k that we predict the 

existence of anti-dark soliton in the regions of 0
2
0

1 4
2

ke
u

δ< < −  and the sign of C is 

negative, -1ρ = . 

 

Again we use the instructive analysis that we erase the background in the 

examples of figure 9 and 10 to directly understand the result we observe. The 

condition of the following two figures is as same as the figure 9 and 10, respectively. 

By the help of this direct observation we see the existence of anti-dark soliton of BEC 

in the optical lattice near the zero dispersion point in the small amplitude limit and an 

emission of radiation.     
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  Fig. 12. The time evolution of a special initial profile which subtracts the background 

from the initial profile of fig. 6 with the same condition.   
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Fig. 13. The time evolution of a special initial profile which subtracts the background  
from the initial profile of fig. 7 with the same condition. 

 

Now we use ( )2exp -0.1x  as the initial condition to observe the effect of radiation in 

the anomalous dispersion region where we choose k = 1.2. 
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Fig. 14. Choosing a Gaussian initial profile to plot the time evolution of BEC  

in the anomalous regime.  
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The result is same as before that the effect of third-order dispersion will cause a 

emission of radiation, and it is asymmetrically emit because it only results in a side. 

As for which side will result an emission of radiation that it is determined by the sign 

of the third-order dispersion term.   
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Chapter 4  Conclusion and perspective  

 

4-1  Conclusion  

 

    In this thesis, we apply the effective mass theory to study the dynamics of 

Bose-Einstein Condensates in the optical lattice near the zero dispersion point with 

the repulsive interaction that we demonstrate a dark soliton solution exists in the small 

density limit by the perturbation method which is an approximately analytic solution . 

We also find out a special type of bright soliton where the bright soliton propagate on 

a background existing in the left region of zero-dispersion point where the sign of the 

second-order dispersion is positive with the repulsive interaction in the small 

amplitude limit. With the help of directly numerical simulation the analytic result was 

confirmed reasonably. Meanwhile, we observe an emission of the radiation in the 

larger density that we assume the emission of radiation is resulted from the effect of 

the third-order dispersion coefficient by the direct observation of numerical 

simulation. In the future work we can consider to analyze the instability of the soliton 

solution and to have a discussion about the emission of radiation by theoretical 

analysis in this description of BEC. We also will work on the quantitative calculation 

to understand the behaviors of BEC more clearly.            
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