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Abstract

We demonstrate a method to analytically study the effective-mass method of
Bose-Einstein Condensates (BEC), inoptical lattices near the zero dispersion (Z-D)
point where the effect of.the second-order. dispersion is zero. We use one
dimensional Gross-Pitaevskil (G-P) equation describes the dynamic behavior of
BEC to the optical lattices: By .usingreffective-mass theory to our system in the
neighborhood of the Z-D point ‘we need to consider the third-order dispersion term
to our equation. That is, our system is described by the generalized NLS equation.
We take the dark-soliton solution form of the NLS equation solved by inverse
scattering method in the small amplitude limit as an assumed solution to substitute
into our equation. We obtain dark solitons solution may exist near the Z-D point and
we also show a region near the Z-D point where a special solitary wave form, the
so-called soliton on the constant background, may be observed. We use directly
numerical simulations of the full generalized NLS equation which includes the
third-order dispersion term to observe that the existence of the new solitary wave
form. Numerical computation also shows that a radiation emission exits near the
Z-D point in the larger amplitude, which is regarded as the effect of three-order

dispersion
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Chapter 1 Introduction

1-1 Preface

The basic idea of Bose-Einstein condensation (BEC) dates back to 1925 when A.
Einstein devoted to the statistical description of the quanta of light and predicted the
occurrence of a phase transition in a gas of non-interacting atoms on the basis of a
paper by Indian physicist S.N. Bose (1924). This phase transition is associated with
the condensation of atoms in the state of lowest energy and is the consequence of
quantum statistical effects. For a long time this predictions had no practical
confirmation until the experimental cooling technique had been advanced to the lower

temperature [1].

Bose-Einstein condensation-wasiolserved-in a remarkable series of experiments
since 1995 on the vapors of rubidium (Anderson et al., 1995) and sodium (Davis et al.,
1995) in which the atom were confined in magnetic traps and cooled down to the
extremely low temperature, of the order of fractions of micro-kelvins. The first
evidence for condensation emerged from time-of-flight measurement. The atoms were
left to expand by switching off the confining trap and then imaged with optical
methods [2]. Afterward, the successful experimental achievement to BEC had grown

more fast as if a blast in the recent 10 years.

At low enough temperature the condensate evolution is described sufficiently
well by the Gross-Pitaevskii (G-P) equation [2], which is originally three dimensional
(3D) but in the case of a cigar-shaped trap potential it is reducible to a 1D nonlinear

Schrodinger (NLS). Its validity is based on the condition that s-wave scattering length
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be much smaller than the average distance between atoms and that number of atoms
in the condensate be much larger than 1 . Under this condition , our system which is
BEC in optical lattices can be simplified as the nonlinear Schrédinger equation with
periodic potentials. As the numerous experiments of BEC had been observed , many
physical properties of BEC might be predicted and investigated to understand the
fabulous phenomenon of BEC advanced . For example : first experimentally loading
BECs in optical lattices [3] , subsequently lattice effect has attracted considerable
attention, Bloch oscillations [4], superfliud and dissipative dynamics[5] , dispersion[6]

and Landau-Zener tunneling[7] and so on

BEC in optical lattices are affected by the structures of optical lattices. The
BEC spectrum has an associated-band structure .If the atomic density is high, BEC
behaves nonlinearly. As the nonlinear term exactly compensates for dispersion term,
solitons occur. The properties of the atoms-are characterized by the depth and period
of this optically induced potential. It the patentials happen to be deep enough, and
only consider the first band, these self-localized states are known as discrete solitons
simply because they can be described by the tight-binding approximation. As for the
relatively shallow potentials, when the eigenvalue is located in the gap between two
successive bands, these self-localized states are known as gap solitons[8] and are
described by coupled mode approximation which we only consider two successive

bands in the lowest two bands[9].



1-2 Motivation

The gap solitons of atoms has been observed experimentally in the BEC with the
repulsive atom-atom interaction [10] to show that effective-mass analysis does allow
us to describe the behavior of BEC. With the effective mass analysis of BEC in
optical lattices one can obtain a 1D nonlinear Schroédinger (NLS) equation deduced
from the G-P equation without the need for full-scale numerical calculations. In this
thesis the periodic potentials ,which are optical lattices, are assumed to be relatively
shallow potential which can be correctly described by the coupled mode theory. It’s
well known that the atoms confined to infinite periodic potential behave as if it
possessing an effective mass which is substantially different from its true mass, and
may even be taken a negative mass [11]. Our interest is near the regimes of the
turning point of the band structure, which the so-called Zero dispersion point in the
optical fiber, that the effective-mass approaches “infinity and the coefficient of
second-order dispersion term is almast.zero..One can assume that one has to include
the third-order dispersion to the equation which nonlinear Schrddinger equation
becomes the generalized nonlinear Schrddinger equation. Nonlinear Schrodinger
equation is studied thoroughly and exactly solved by the inverse scattering method,
contrary to the exactly analytical solutions of the generalized nonlinear Schrodinger
equation are not available, and the equation is non-integrable by inverse scattering
method. In this thesis we mainly study the properties of this equation solved by an
assumed solution based on the exact solution of nonlinear Schrédinger equation
solved by inverse scattering method in the small amplitude limit to predict the
possible behaviors of the atoms in the optical lattices. As for the numerical
simulations, we deal with the full generalized nonlinear Schrodinger equation which

includes the third-order dispersion term to give some confirmation about our analysis
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due to our analytic solution which is an lowest-order approximated solution solve by

perturbation method .

1-3 Organization of the Thesis

This Thesis is organized as follows. Chapter 2 gives a brief review about the
effective-mass analysis of BEC in optical lattices to derive the equation which we are
interested from G-P equation. Then, we describe our method in detail to analytically
solve the generalized nonlinear Schrédinger equation. In the chapter 3 we look for
some numerical evidence to give our analysis some confirmation and observe some
possible behaviors of BEC in the optical lattices. near the zero-dispersion point by
numerical simulation. Then, in the.chapter 4,.the last-chapter, we briefly conclude our

results that we obtain from both-theoretical-and-numerical analysis.



Chapter 2 Theory and methodology

G-P equation is the main theoretical tool for investigating non-uniform dilute
Bose gases at low temperature that it can well approximately describe the dynamic
behavior of BEC. With the effective-mass analysis of BEC in optical lattices and
assuming the optical lattices are shallow periodic potential one can simplify the G-P
equation to a much simply equation which is the nonlinear Schroédinger equation in
one dimension . The use of this approach has been confirmed by the BEC experiment
of gap soliton [10]. In this thesis we discuss the regimes near the zero-dispersion point
where the nonlinear Schrédinger equation has to be included the third-order
dispersion term which we usually ignore it. The generalized nonlinear Schrodinger
equation has no exactly analytic solution at present. We demonstrate an method to
approximately analyze the properties of the atoms near the zero-dispersion point that
the method bases on an exactly analytic-solution of NLS equation in a small
amplitude limit by inverse scattering method.as an assumed solution to substitute into

the generalized non-linear Schrodinger equation.

2-1 Bose-Einstein condensates in optical lattices

The dynamics of a Bose-Einstein condensate in an optical lattice can be

described by the Gross-Pitaevskii (GP) equation [2],

32
ihalyétr't)z ;:n V24V () +U () + gq o |90 2.1)



where 7 is Planck’s constant, m is the mass of the atoms, gas:47rash2/m is the
nonlinear  coefficient, and ay is the s-wave scattering length.
V(x):Eosinz(nx/L) is a one-dimensional periodic potential produced by the
interference of laser beams, where L is the lattice constant and E, is the potential
depth. U(r)=%m[a)fx2+a)f(y2+zz)} is an optical trapping potential with

frequencies @, and ;. The trap is elongated along the x direction because of the
high confinement in the y-z plane (i.e.o, < @, ). Therefore, we assume the wave

function as W(r;t)=a(y,z)w(x,t), where a(y,z) the two-dimensional harmonic
oscillator problem, (-#% /2m)V3a+(me? /2)(y? +2%)a=hQ a. By applying the
transformation y — y exp(—i€2t) and  integrating Eq.(2.1) with respect to vy, z.

then a one-dimensional G-P equation is derived.as

TR 3
L Ov(xt) | A0

. 2D g9 2
" TN + E, sin (IX)+_W| w(x,1). (2.2)

aS
2

by rescalingT =t/T,, X =x/(L/2),y/:go/L%/2, and V,=E, /&y, and choosing

To=ml?/4n, L= |amL?/2n, and &y =4r*/mL2. Here, we had dropped the

trap of z-axis. Then, an effective one-dimensional G-P equation with dimensionless is

derived as

1 A2
i 00(X.T) _ —18—+vosin2[£x]+a|¢|2 o(X,T), (2.3)
oT 2
whereo = sgn(ag), EQ.(2.3) is a time-dependent nonlinear Schrddinger equation

with a periodic potential. If o is positive (negative), atoms are in repulsive
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(attractive) interaction.
N=["|ofdX, (2.4)

which means the conservation of the number N of atoms in the condensate.

2-1-1 Effective-mass method in Bose-Einstein condensates

Effective mass method is a well-known in solid state physics for studying dynamics
of an electron in semiconductor. _.The two systems between electrons in
semiconductor and BEC in optical lattices are analogue that we can introduce the

effective mass theory to study BEC in optical lattices 12]. Expanding the condensates

wave function ¢(X,T) on the. complete-‘set' of -“Bloch function ¢,.(X) , which

(X, T)= Z Ane (X, T)n,e (X )eXp(—iEn,KT). It is motivated that the

n,x

Bloch functions can capture the rapid oscillation of the condensates wave function,
then the slow essential motion of the condensate will be described by the slowly
varying envelope function A, .To construct the localized state we assume that the
matter wave field is characterized by a central wave vector x; corresponding to the

mean velocity of the condensate. We expand ¢(X,T) as
P(X,T) = foe (X, Ty, (X)exp(-iE,  T) (2.5)
n

We introduce the fourier expansion of the envelope function as



f (X.T) = [ Ay (T e

From eq.(2.5) , we have

P(XT) = 2 [ Ane (T) e, (X) exp(—iEp . T )dic (26)

Where Zni (X) = ei(K_KO)X¢m<(X) = eiKX ¢nz<o (X)

and H¢n,(0 (X )‘ZdX =1

Inserting eq.(2.6) into eq.(2.3) and applying effective-mass method , at last

performing an inverse Fourier transform from A, (T) backto f,. (X,T).

Then, we obtain

" b 150 z A (XT)
‘%’I(’@)_H/g pIZ‘n*—i_G ;23 }I%p""ﬁg‘fwg()(,‘lr){ ant.)(X,T)zl rv%al_
(2.7)
_Oan(®) 1 _ 0% (x) _
where g — gK : o ;(2’( ‘K and g_ﬂ%(x)‘ dX

AN
replacing p by its configuration space representation —iaix to eq.(2.7)

1 azfn,% 63fn,%

of
a +in 3
oX

Ty T _
g N * 2
X 2m X

2
09 f T o+ (80)

(2.8)



835n (x)
3 ,and o =sgn(ag).Wheno=-1 , the nonlinear

Ko

gt
where 6 oK

term is attractive interaction. On the contrary, aso =1, the nonlinear term is repulsive
interaction.

2-1-2 Band Structure of BEC in optical lattices

To study BEC in optical lattices which is a series of periodic potentials we are to
look for the past fundamental theory based on the solid state physics. With the help of
the solid state physics we can describe the atomic matter waves in E-k band structure
which is the similar manner that‘we study the properties of electron under linear
Schrodinger equation. To find the band structure we assume that the linear part of Eq.
(2.3) has stationary solutions of theform@(X,T) =v(X)exp(—iET). we thus obtain

the following eigen-value problem
ewx)=| 222 Ly sinZ(ﬂj w(X) 2.9)
2 ox2 ° 2 '

Eq. (2.5) has periodic solutions which are known as Floguet-Bloch (FB) modes [9].

By using plane-wave methods, the periodic potential can be expanded as

V, sin?(zX 12) J%—%(ei”x +e—i”X) (2.10)

And the Bloch functions can be expressed as Uy (X) =Up (X +a) = > by ™

m



So we expand

P(X k)= bpe'rmmX (2.11)
m

and satisfy orthonormality. Substituting Eq. (2.11) into Eq. (2.10) , we have
V V

(ZE—VO—(k+m7z)2)bm+?°bm_1+7°bm+1:0 (2.12)

This method can be accurate as long as we consider the number of plane wave
expansion large enough. We assume the potential is relatively shallow, and the bands
between the first and the second band can be accurately described by keeping only

two terms of the expansion, i.e. m = 0,=1|-,which. we-assume the coupling of two band.

Eq. (2.11) is rewritten as
#(X, k) =bye"™® +b_jeXe 17X (2.13)

Then, we obtain the following coupled equations

(2.14)

which is a system of linear equations,
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2 b
2 2 4 ( oJZO (2.15)
Vo
2

With the ortho-normal condition of the Bloch functions we obtain
t 2
I‘P(x) dx:2(b§+b_21)=1 (2.16)
-1

By solving the system of linear equations Eq.(2.15) E-k band structure of

one-dimensional BEC in optical lattices is then derived as

2 2\2 2
E:\%+k2+(i_ﬂ)2 RG o TR

(2.17)

where the wave-vector k is —z/2<k <x/2 in the first Brillouin zone. Substituting
the solution of the lowest band which that we choose the minus sign in Eg. (2.18) into
the system of linear equations Eq.(2.15) , we obtain a set of nontrivial solution that it

is essentially important in computing the coefficient g , but here instead of directly

solving the system of linear equations we make use of the orthonormal condition to

deduce the coefficient g . So we obtain

41
= [l ()] dX =2 ~2lbo]" +4bo" (2.18)
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-1
where bg=V02{V02+7z2(7r—2k)2—ﬂ(ﬂ—Zk)\/ﬂz(ﬂ—Zk)Z+V02} . with the

determination of specifick and V, we can obtain the coefficient of nonlinear

interaction g from . As for the other coefficients, they also has been decided once we

_ 0¢g(K)
determine the specific k and V;, they are described as follows : Vg - oK :
KO
1 625n (K‘)‘
m* aKz ) v én (KO) .

0

-12 -



2-2 The method for solving generalized NLS equation

In the following, we will use a method for solving the generalized NLS equation in
question which has been demonstrated by Kivshar in the optical fiber [12] , [13] that
the equation of optical fiber has the analogue with the equation of BEC in question,
and it had been investigated for several decades in the optical fiber. This method is
based on the solution, of dark soliton case, of NLS equation solving by inverse
scattering method in the small density regime that we assume a similar solution form
to substitute it into the generalized NLS equation we are interesting. Then, by
applying the technique of nonlinear analysis we can obtain a connection between the
nonlinear Schrodinger and the Korteweg-de Vries (Kdv) equations. Since we can
solve Kdv equation by directly integrating, we can obtain the solution of the NLS

equation with the third-order dispersion term in the small amplitude regime.

2-2-1 The solution of NLS equation in the small density regime

Since the nonlinear Schrodinger equation with the third-order dispersion is not
non-integrable by inverse scattering method, but the nonlinear Schrédinger equation
is. So, in retrospect, we make use of the result of nonlinear Schrédinger equation
solving by inverse scattering method in the small density regime to generate an

assumed solution .The nonlinear Schrédinger equation is

o

= aaxz+2‘u2‘u:0 (2.19)

The exactly analytic solution of this equation has been solved by the inverse

-13 -



scattering method [14]. In the case « >0 (positive group velocity regime) it has

stable soliton solutions in the form of localized dark pulses propagating on a

modulated stable background |u| = U, = constant. The one-soiton dark pulse solved by
inverse scattering method has the form

(Z—iv)2+exp(z)

u(xt) =t 1+exp(2)

exp(2iu§t) (2.20)

where Z:2vu2(x—x0—2/1\/5uot)/a . A=1-V2
v is the soliton parameter ,0<v*<1, and X, is an initial phase . AtA=0, the

solution, eq. (2.20), describes the so-called fundamental dark soliton
u(xt)=u, tanh[uo(x—xo)/\/a]exp(Ziugt) (2.21)

, and for v* < 1it corresponds to the so-called gray (small-amplitude) dark solitons

u(xt)= {uo —%uov2 sech? (Z/Z)}exp[Ziugt + i¢(x,t)] (2.22)
#(x.t)=—2v/(1+expZ) (2.23)
where Z =2vu0[x—x04—,u0\/5(2—v2)t}/\/; , (2.24)

We can find out in Eq 2.24 possessing two signs of which propagate in opposite

directions.
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2-2-2 The solution of generalized NLS equation in the small

amplitude regime

Now we return to our interesting system of BEC in the optical lattices near the

zero dispersion point which is described by the generalized NLS equation eq.(0.1).

of of & f o f
i vy — o = 12 o
ar X 2m" ax?

Ko

ax3

2
+0 fug, (4T +2n(k0) o

For simplicity to analyze the result, we use the transform X =( X —VgT) t=-T

and rescale 9 anO = F to simplified again.the equation to a dimensionless

2

generalized NLS equation . as a-result, we obtain

. OF  0°F Y, O°F
| -a +2|F " F =1 —-¢,F
o o AR e (2:29)
1 1 :
where o = ?,8 = el . = €,(x,) ,and ¢ =-n.Here, we only discuss
m

the case, o is positive.

In order to obtain the solution in the neighborhood of the Z-D point for the
normal-dispersion regime, « >0 in Eq. (2.25), we look for a solution in the form of
small-density excitations of the stable background which is similarly assumed as eq.
(2.22):

F(xt)=[u,+a(xt)]exp| 2iuit+ig(x.t)] (2.26)

[cf. Eq. (2.22)] . Substituting Eqg. (2.26) into Eq. (2.25) , we may obtain for the

-15-



small-amplitude case where u, is the amplitude of the stable background far from

the dark soliton amplitude a < u,, two equations :

(3 —auyd, ) - (28,4, +ad, ) = (B, —3ud )

Uy (¢, —4U,R) +ag, +aa, —ay (¢ ) —6uyd’
= é/(satt¢t +3¢ ¢tt +u0¢ttt) Eol

where the above two equations are Eq.(2.27a) and Eq.(2.27Db).

The main approach of this method is to use the new (“slowly”) variables:
r=c(x-Cl)y, y =%t (2.28a,h)

£ being an arbitrary small parameter ‘connected with the soliton amplitude v, and

by substituting Egs.(2.28a,b) into Eq.(2.27a) and Eq.(2.27b) we obtain

(4:8@% @ zézf]_gz(z g J 5 [83a A a¢a?¢j
or oy ot 82’82’ 82’ o 'orort

(—Cea—¢ +&° 200 —4y aj+g aza [—5Ca % +83aa—¢J—aU0€2 (8_(/5) —6u,a’
or oy o or oy or
:493( Faop 38a 82¢+u 82¢j Y|

ot or orort 'ort

where the above two equations are Eq.(2.29a,b) .
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Then, we present the wave amplitude a(z,z) and the phase ¢(z,z) in the form of

the asymptotic series in the same small parameter ¢ :

a:52a0+g4a1+--- L =y + %P+ (2.30a,b)

substituting Egs. (2.30a,b) into Eq.(2.29a,b) we obtain four equations by only

considering the fisrt two term of asymptotic series :

2
&g C?‘Fauogéo Y IR .--(2.31a)
T T
ol Fh) G, ik
ot ot | oy ot 01 or’
6 &
_g( 8¢0 a¢20) ceeeee+(2,310)
82CU0%+(4u02_ek0)%:O(231(:)
2
4. 08y (0 % Oty , Oth
€ '(_CUOE_(LMO _eko)aij'kuoa_cao o7 612 WO(E
63
_6uoa§:guoa_?.......................................(2_31d)
(2.31a) and (2.31c) lead to a relation that%(2.3lc):Cuoa—Zf¢2"+(4 eko)aaaf 0 .

Substituting it into (2.31a) = CZ%—a(%g —eko)aaioz 0 . The relation is
T T

C*=a(4u; -e,) (2.32)

Here we rewrite the form of Eq.(2.32) as

-17 -



C?=4ulay (2.33)

where 7/:[ —%) and C ==+2u,+/ay .The parameter C is the limit velocity (in
u

0

the x space) of linear waves propagating on the background and the sign of velocity C
means the wave propagating in the background has the opposite direction .We replace

Eq(2.33) back to (2.31c) , obtaining

%, __C a, (2.34)
or au,

and substitute it into Eq.(23.1b) that we can rewrite (23.1b) as following

2 2
c By gy, T | % [y 00 g0, XCT, Oa, (2.35)
or or oy u, Oor or*  a’u, ° or
0
then, —(2.31d)
ot
2 2 2 3
(S0, 74) 0 T T i 0 T
a 0t T oyor T T 0T (2.36)
2aoa¢°a¢°+12ua +§u 8¢°:
or 01°
2
where C 02 Oy +Ca, 04y +2au 8¢0 o oh =0 by replacing the Eq. (2.34), and by

or Ot or? °or or ot

rearranging Eq(2.36) it become as
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2 . 3 3
c Caiurauoagil —Uoi —Ca0 —aa;aSOJrlZuoaO@— +4u, L&y
a\ Ot ot oy or or au, 87

At last, we substitute Eq. (2.35) into above equation. Then, we obtain the famous

equation, the Korteweg-de Vries (Kdv) equation.

3

o C) o 0
2C%°+12au0 £1+ y+%jaoa—a;—(a2 +2(C) a;) =0 (37

Eq. (2.37) at e, =0 that the equation coincides with the Ref.[12] after redefining

each parameter of Eq. (2.37). The sign of the velocity C depends on the propagation

direction so we have two different equations (for sgnC =+1 ).

Here we solve Kdv equation by directly integrating and rewrite it as dimention-less

form, again for simplicity. Assuming @ =7+ Dy,

0a, da, 0°a
2S +12S,a - S > =0 2.38
‘30 SV IRIVE (2:38)
S, =CD
where Szzau0(1+y+£j
a
S, =(a’+24C)
2
Eq. (2.38) integrate with respect to# , and we have 2S,a, +6S,a> —S, 292 A
, da, 0°a, ,
where A isaconstant, butwe askas >+~ , a,,—,—>,...=0. .. A is

00 00"

both zero . then, multiplying % and integrating it again the Kdv equation become
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oa,

Slag + 28233 —%83 (%

2
j = A, where A, is constant and also zero . We rearrange it

day, |1 3 2 )
s — = \/8_3(482610 +2S,a7) , 50 we can obtain

J/S,da,
0= 2.39
Iam/(4szaO +28,) (2.39)

Here , we use J'

dx
= tan
xvax+Db «/5 -b

0=2 |- tanil, (2522025 (2.40)
-28, 25,
by inversing Eqg. (2.40)
a0=—i tan’ i1 ﬁe +1 _ o tanh? 1 &9 -1
2S, 2\ S, 2s, 21\'s,

Expanding hyperbolic tangent function by exponential form, we obtain

2 1[ ax+bj then

_S
% 2S

—S, sechz( %H} (2.41)

-4
2 =
2 ﬁg _ ﬁg 282 3
[e”“ +e Vs J

~CDa sec?| 1 [ 2CD
2, | o (1+7)+¢C| 2\ &?+2(C

= (z+ DY)} (2.42)
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where <y =( —%)
u0

and

C
au,

b, = — [a,dr (2.43)

So
F(xt)=|u,+&%a, [exp| 2iuit+isg, | (2.44)

Comparison of Eq.(2.44) at £ =0,and e, =0 with Eq.(2.22) and (2.23) leads to a

relation between the perturbation scale ¢ and the soliton parameter v , ye=wvu,

a’+2(C
T4
a?yiu,

where y isan amplitude parameter of the Kdveqguation ,and D =

N

C@Pr2C) S 2,
e, (O

2
We define 5:%;7) and substituting C =2pu,+/ay where p:sgn(C) into
o we have
3
a [, 2.46)
0= :
200, y iy (
2
-y | 0+2p(1+y
a, = [ ( )]sechz(z) (2.47)
U, (1+7)(5+p)
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_Z 28y
where Z_\/E{r+ap(l+y)[§+2p(l+7/)])’}

and
11
Py = —2pa27/2.[a0d2' (2.48)
1
2 2ylo+2p(1
_2par] 5+ 20( +7)]tanh(z) (2.49)
U, (1+7)(5+p)

Then, we obtain the lowest order solution of Eq. (2.25) .

~ &y’ [5+ 2p(1+7/)]
U, (1+7)(5+p)

F(xt)=|u, sech’ (Z) |exp| 2iugt +ieg, |

(2.50)

_[1_ 8o
’ ( 4usj

C =2puy+/ay , where p=sgn(C)
[

where 5—2@0(;/ +;/J

r:g(X—Ct),yzggt

z= \/% {r+ apz(i{;/) [6+2p(1+7)] y}

Now we substitute the transformation X Z(X —VgT) , t=—T and the rescaling

9 ¢

> i, =F |, {=-n back to Eq(2.49) to obtain the solution of BEC in the
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optical lattice near the zero point dispersion .

anO(X,T)z %F(X_VQT’_T)
2,2
uo—g X [5+2p(1+}/)]sech2(z) exp[-Ziu§T+ie¢O]

Uy (1+7)(+p)

(2.51)

_[1_ 8o
’ ( 4u§j

C =2puy+/ay , where p=sgn(C)

a2 (L 1
where {0 = (;/2+;/2j

r=6(X-v,T+CT),y=<¢T

z= fg{w a;é{y)[5+2p(l+7)] y}

By simple analysis observation we obtain the result that the nonlinear
Schrédinger equation with the third-order dispersion ,which describe the behaviors of
BEC in the optical fiber near the zero dispersion point , have the dark soliton solution

in the small amplitude limit in the most regions , but in a special region of

2 2 2
1<|5|< T where =% (1— ekO) +( —jﬂ] here we assume

2u? 24U, 4u} z
p=-1and {=-n>0 ,we also ask that%d. We can obtain a type of bright
l'IO

soliton solution which the bright soliton propagate in the modulated background of
BEC density, the so-called anti-dark soliton , because the soliton changes the sign of

its density . The existence of e, makes the region of anti-dark soliton smaller and

slows down the velocity of soliton propagating on the modulated background. So far
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we have demonstrated that BEC in the optical lattices near the zero-dispersion point
in the small density regime possesses the soliton solution in the small amplitude limit.
However , since the generalized NLS equation is non-integrable by inverse scattering
method , so we can not make sure that as time evolution of BEC, the dynamic of
BEC , whether the soliton solution actually exists . Therefore, in order to confirm the
soliton solution actually exists we have to numerically simulate the equation directly,

and it was presented in the following chapter .

=24 -



Chapter 3 Numerical simulation

In the second chapter we use a small-density approximation to solve the
generalized NLS equation obtaining the soliton solution. Since this approximation is
based on the solution of NLS equation solving by inverse scattering method and the
perturbation method , so we have to directly solve it by numerical simulation to
confirm our result actually exist the stable soliton solution. Moreover, we use the
numerical simulation to discuss the behaviors of BEC in the optical lattice near the

zero dispersion point.

3-1 Numerical method

Our numerical method is the:most common-and direct method , finite difference
method, in the numerical analysis that we represent the derivatives by their finite
difference approximations [15] .Here we use the forward-difference approximation
with respect to time. At first we expand a function by Tylor’s series in powers of k

with respect to t:

2¢n 3:(3) 4 ¢ (4)
LN (t)+h f (t)+h (1)

f(t+k)=f(t)+hf'(t) 21 3! 4!

Thus we obtain

F(x) = +0(K) (32)

-25-



where h is assumed small enough , but finite , for the approximation of accuracy and

@) (k) indicate that the error in this approximation to the first derivatives is of order

k.

As for the space, we use the central-difference approximation to the first

derivative with respect to space x. From Tylor’s expansion we have

2¢n 3¢(3) 4¢(4)
he f (x)+h f (x)+h (%)

f(x+h)=f(x)+hf'(x)+ ol 31 4!

e (33)

and

2cn 3:(3) 4¢(4)
+h f (x)_h f (x)+h £ (x)

f(x=h)= 1 (x)=hf’(x)+—; a3l 41

oo (3.4)

By subtracting the second expansion from the first and keeping only the lowest-order

term we obtain

v\ — 2
£'(x)= £ o(n?) (3.5)
Where the error of Eq. (3.5) is of order h? .

For the second derivative f”(x) we add both Eqg. (3.3) and Eq.(3.4) producing

the finite difference formula

£7(x) = f(x+h)—2fhgx)+f(x—h)+o(h4) (3.6)

The last derivative we need is the third derivative f”(x) where we expand the
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functions f(x+2h) and f(x—2h) in Tyalor’s series by adding both expansion

with the help of the expansion of f(x+h) and f(x—2h). We obtain

£7(x) = f (x+2h)-2f (x+h)2:132f (x—h)—f (x—2h)+o(h4) (37)

For the simplicity we rewrite the above approximation of derivative in a more
simplified form by a notation which is fairly standard in the numerical literature and

now consider the function ¢ as the partial derivative with respect to space x and

time t thatis, o =g(x,t).

% tign g, (3:8)
ot 2h

LN S R ) (3.9)
OX 2h

e i —2fij+fia (3.10)
ox? h?

Pp _fiaj=2finj+2fiaj—fia (3.11)

a3 2h3

Where x=ih and t=ik that the x-t plane has been subdivided into rectangular

grid with each rectangle having interval length of gird h and k , where h and k will be

taken to be small , that is ,p=¢(x=ih,t= jk)=¢; j where i , j = 0,1,2, .... The
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above differences of derivative are all we need in numerical simulation.

3-1-1 Numerical simulation of the generalized NLS method

In order to confirm the soliton solution we obtained before we now begin by

.OF  0°F 2 . _0°F
Eq.(2.25) , | ot - ox’ + 2|F| F= 'éyy_ekolz , to directly simulate

the full generalized NLS equation using the finite difference method . We first assume

the complex wave function F(x,t) can be separated F(x,t)=a(x,t)+ib(x,t) .so

Eq. (2.25) can be reformed as two equations which is real and imaginary parts of

Eq(2.25).

o o%a s LY o’

E'Fay—Z(a +b)a:§§+ekoa
@—aﬁ—%+2(a2+b2)b—g@—e b
ot ox2 o e

Where the above both equations are Eg. (3.12) and Eqg. (3.13) .

With the help of finite difference method we obtain the discrete equations of
Eq.(3.12) and Eq.(3.13) . The most direct idea for obtaining the confirmation of our
result is to substitute our solution back to the original dominated equation, that is , Eq.
(2.25) . Though we back to Eq.(2.50) which is the solution of Eq. (2.25). By reducing

it in a more simplified form that we set u =2 \where u could be regarded as a

au,
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ratio of height about the amplitude of soliton. So we obtain the initial condition, at

time t = 0, for numerical simulation.

alulls + 4_ek0
H P 2u§

(2_ jﬁozj(5+p)

H S ech?(Z)|explig, (Z )]

F(x,0)=u,|1-

0

(3.14)

3
Zpazy{5+p£4—ekozﬂ
2U,
¢o(z): 1 1
ekO 2 ekO 2
-5 +1-—5 o+
o[ () e

Z4
au,

tanh(Z) (3.15)

Z = Uy X

where g % —%
s=2|l1-20 | 4[1-Ze
24U, 4u? 4ut

C =2puy+/ay , where p=sgn(C)

Now we use Eq.(3.14) and Eq. (3.15) for numerical simulation of the generalized
NLS equationat =1 , u,=1 ,and e, =1 as initial condition . According to the

analytic predictions, the anti-dark soliton may exists in the region of

1<|s]< —% , and the essential condition p=sgn(C)=-1 , so that we put
u

0

0 0

1 1
2 2
¢=05 (ie, 5:[ —%} +[ —%) ) . The sign of C presents the velocity of
u u
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linear wave propagating on the modulated background wave. Here we have to take a
finite-extent Gaussian-like wave in the form of initial condition as a background wave
in order to satisfy the essential condition of dark soliton, which the dark soliton

propagates on a modulated stable background wave.

_X8

T

Fo(x,0) = F (x,0)exp[—-] (3.16)

where T~ is sufficiently large.

For comparison we also present the case of £ =0 where the third-order
dispersion term is absent, and in this case the initial anti-dark soliton decays very fast

as a dispersive wave packet. The.both casejare presented in the following figures.

Fig. 1. The time evolution with the arbitrary coefficients where x=0.3
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In the above figure we have the propagation of the anti-dark soliton at z=0.3 . The
anti-dark soliton stably propagates on the background wave and this figure has
confirmed the existence of our result that the generalized nonlinear Schrédinger
equation possesses the soliton solution in the small amplitude regime which is
perfectly consistent with our theoretical analysis. It’s perfect to fit with our theoretical

analysis.

Fig. 2. The time evolution with the arbitrary coefficients where = 0.3,

but the third-order dispersion term is absent.

In the Fig. 2 the third-order dispersion is absent that this figure is used to compare
with Fig 1. It’s obviously that the solution of soliton we obtain only exists when we
take into account the third order-dispersion term. Otherwise, the initial soliton wave
packet will be dispersive rapidly as if a dispersive wave-packet. Therefore , we have

confirmed our result by directly numerical simulation .
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In this case with the same conditions as we choose the value of x enough
small , one can see the propagation of the anti-dark soliton steady , but in the larger
u we will see an emission of radiation that is regarded as the effect of the third-order
dispersion and had been studied in the optical fiber[16]. Now we discuss an
instructive analysis to help us clearly understand the affection of the third-order
dispersion term, even though it may don’t really exist any physical meaning. By
erasing the background of the anti-dark soliton we just had discussed that we will take
the form of bright soliton as an initial condition to substitute into our numerical
simulation. The result is obviously to understand the affection of the third-order
dispersion term in the following figure. In the figure 3 we clearly see the initial soliton
form reshapes itself with an emission of continue radiation in a side. As for the figure

4 the wave is rapidly dispersive.

1
Y
A,a:_";v}"’
N0
0.004 e
. El 1 ""Yg.&ﬁ,"!"’
T
0.002 ii. Y
T
MR
[Ty

~180

N,
=
7

-50

100

Fig. 3. The time evolution of a special initial profile which subtracts the background
from the initial profile of fig. 1 with the same conditions
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100

Fig. 4. The time evolution of a special initial profile. which subtracts the background
from the initial profile of fig..2 with the same conditions.

As we change the ratio of z , the radiation will be more rapid and clearly observed.

See the figure 5 where £ =0.5.

0.04 ¢ t 0.8
. 06

0.03 ‘ ..-.{,Ay

0.02 | ] ]

0.01

~160

50

100

Fig. 5. The initial conditions is same with fig. 1 where x = 0.5
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3-2 Numerical simulation of BEC in optical lattice near the zero

dispersion point

Now we bring the actual coefficients of BEC in the optical lattice near the Z-D
point into our numerical simulation to find out the behaviors of BEC near the Z-D
point , but here we don’t bring the transformation back due to we just discuss the
qualitative behaviors only , and the inverse time only changes the direction of
progation. First, we go back to the equation of band structure of the lowest first two
band Eq.(2.17) which is obtained by two band approximation. Here, we only discuss
the equation of the lowest band to determine the coefficients we need for numerical
simulation. In following figures we draw out the band structure of each coefficient
with respect to k where V, =1.9.4and show all diagrams in a figure for simplified

clarification and comparison.

Fig. 6. The derivatives of band structure with respect to k
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In the figure 6 the solid line, 6(Ko) , represents the band structure of the lowest first

band , E-k diagram , the long dash line describes the group velocity of BEC in the

CEG
optical lattice |, Vg - P , and the dot line is the coefficients of the
K X,
1 6‘25(1()
second-order dispersion term , & :E Py . At last the short dash line is the
0
1 638(1()
coefficients of the third-order dispersion term, ¢ = 6—81(3 .(see section 2-1-2).
0
4
21
he® eoeoe e e o 0000090, .
‘ 77‘777‘777‘7”77”‘%00_‘. ‘ k
02 04 06 08 1 1214
—2} ST
_4 !

Fig. 7. Second and the third derivatives of band structure with
respect to k in comparison with nonlinear coefficient
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02 04 06 08 1 1.2

Fig. 8. The plot of effective mass with respect to k

We also compare the second-order and third-order dispersion terms with the
non-linear coefficient in the figure'7 and describe the'second-order dispersion term in

term of the effective mass with respect to k-in-the figure 8.

It is obviously to find out in the figure 6 that the third-order dispersion term are
zero in the both sides where one is band edge , and the other is the point where K is
zero. Therefore we actually have to take into account to keep the term of third-order
dispersion term , which is described by the generalized NLS equation, when the value
k of BEC in the optical lattice approaches the zero dispersion point where this point
represents the second-order dispersion are zero. The sign of third-order dispersion is
always negative coefficient so that the rescaling we had made before, ¢ = -7, will not
change the formation of soliton we predict in the chapter 2 with the variance of
propagation direction of soliton. The second-order dispersion is separated as two parts

which are negative and positive regions where one is the so-called normal dispersion,
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and the other is the so-called anomalous dispersion in the optical fiber. Now we
choose the same initial conditions, but here we use the coefficients of BEC in the
optical lattices where the height of potential is 1.9 near the zero dispersion point to

simulate the behaviors of BEC.

X 100

Fig. 9. The time evolution of anti-dark soliton where k=0.8 and « =0.3

In figure 9 here the value of k is 0.8 and 6 ~1.6 that we obtain an anti-dark soliton
propagating in the small amplitude regime where z =0.3. As we change the ratio of
u , again we may obviously observe the confirmation of our result . We also plot the

figure 10 with the same value of k, but a larger u# where 4 =0.5 that the

propagation of soliton accompanies an emission of continue radiation.
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X 100

Fig. 10. The time evolution of anti-dark solliton where k =0.8 and x« =0.5.

02 04 06 08 1 12 14

Fig. 11. The plot of ¢ with respect to k
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2 I
In the figure 11 we plot ¢ = 20! (y 2 +7/2] with respect to k that we predict the
—<74q

. . o . e . .
existence of anti-dark soliton in the regions of 1< |§| < —% and the sign of C is
u0

negative, p=-1.

Again we use the instructive analysis that we erase the background in the
examples of figure 9 and 10 to directly understand the result we observe. The
condition of the following two figures is as same as the figure 9 and 10, respectively.
By the help of this direct observation we see the existence of anti-dark soliton of BEC
in the optical lattice near the zero dispersion point in the small amplitude limit and an

emission of radiation.

0.003

0.002 |

D
0.001
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.
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100

Fig. 12. The time evolution of a special initial profile which subtracts the background

from the initial profile of fig. 6 with the same condition.
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Fig. 13. The time evolution of a special initial profile which subtracts the background
from the initial profile of fig. 7 with the same condition.

Now we use exp(-O.lxz) as the initial condition to observe the effect of radiation in

the anomalous dispersion region where we choose k = 1.2.
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Fig. 14. Choosing a Gaussian initial profile to plot the time evolution of BEC
in the anomalous regime.
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The result is same as before that the effect of third-order dispersion will cause a
emission of radiation, and it is asymmetrically emit because it only results in a side.
As for which side will result an emission of radiation that it is determined by the sign

of the third-order dispersion term.
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Chapter 4 Conclusion and perspective

4-1 Conclusion

In this thesis, we apply the effective mass theory to study the dynamics of
Bose-Einstein Condensates in the optical lattice near the zero dispersion point with
the repulsive interaction that we demonstrate a dark soliton solution exists in the small
density limit by the perturbation method which is an approximately analytic solution .
We also find out a special type of bright soliton where the bright soliton propagate on
a background existing in the left region of zero-dispersion point where the sign of the
second-order dispersion is positive with the repulsive interaction in the small
amplitude limit. With the help of directly numerical simulation the analytic result was
confirmed reasonably. Meanwhile, we observe an emission of the radiation in the
larger density that we assume the emission.of radiation is resulted from the effect of
the third-order dispersion coefficient by the direct observation of numerical
simulation. In the future work we can consider to analyze the instability of the soliton
solution and to have a discussion about the emission of radiation by theoretical
analysis in this description of BEC. We also will work on the quantitative calculation

to understand the behaviors of BEC more clearly.
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