圖 目 錄

圖(一)	液態鋰在溫度 463 K 及 1073 K 下之假位能	21
圖(二)	463 K 之假位能與參考文獻[11]中之假位能	22
圖(三)	假位能的三個組成成分示意圖	23
圖(四)	液態鋰在四個溫度下之徑向分佈函數	24
圖(五)	液態鋰在溫度 463 K 下之靜態結構因子	25
圖(六)	動態結構因子示意圖	26
圖(七)	463 K 下的靜態結構因子在低波向量區之比較	27
圖(八)	電腦模擬所採用的週期性邊界條件示意圖	28
圖(九)	463 K 之徑向分佈函數與參考文獻[11]中之徑向分佈函數	29
圖(十)	463 K 之靜態結構因子與參考文獻[1]中之實驗結果	30
圖(十一)	液態鋰在四個溫度下之歸一化速度相干函數	31
圖(十二)	k=1.2Å ⁻¹ 之歸一化中間散射函數	32
圖(十三)	選取參考文獻[1]中之十六組波向量的動態結構因子計算結果…	33
圖(十四)	三組理論計算的動態結構因子與實驗結果[1]	34
圖(十五)	k=1.02Å ⁻¹ 與2.5Å ⁻¹ 之動態結構因子與參考文獻[11]之結果	35
圖(十六)	動態結構因子的 IXS 實驗與模擬[19]以及我們計算結果	36
圖(十七)	溫度463K下之動態結構因子中的色散關係	37
圖(十八)	由 INM 分析所得到液態鋰在四個溫度下之態密度	38
圖(十九)	液態鋰在四個溫度下,二組不同維度之參與數	39
圖(二十)	液態鋰在四個溫度下,二組參與數之比值	40
圖(二十一)	液態鋰在四個溫度下之假位能與其二階微分	41

v