
國立交通大學 
 

物理研究所 
 

碩 士 論 文 
 
 
 
 
 

半古典方法於自旋弛豫和自旋傳輸之應用 
 

Semiclassical Method Applied to 

Spin Relaxation and Spin Transport 
 
 
 

 

       研 究 生：蔡政展 

       指導教授：張正宏 教授 
 

 
 
 
 

中 華 民 國 九 十 五 年 七 月 

 



半古典方法於自旋弛豫和自旋傳輸之應用 

Semiclassical Method Applied to 

Spin Relaxation and Spin Transport 
 
 
 
 

研 究 生：蔡政展         Student： Jengjan Tsai 

指導教授：張正宏         Advisors：Cheng-Hung Chang 

 
 

國 立 交 通 大 學 
物 理 研 究 所 
碩 士 論 文 

 
 

A Thesis 

Submitted to Institute of Physics 

College of Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Physics 

 
July 2006 

 
Hsinchu, Taiwan, Republic of China 



 

 

 

ABSTRACT 

 

Semiclassical Method Applied to 

Spin Relaxation and Spin Transport 

 

Tsai, Jengjan 

 

自旋電子學（Spintronics）在近代物理中是如此活躍的一道學門，

其提供豐富的素材來探究此自然世界和提供推進下一個電子世代之發

展的舞臺。 

本文主要涉及在自旋電子學中極其重要的自旋弛豫（spin 

relaxation，SR）和自旋傳輸（spin transport，ST）之課題。 本文

以半古典方法（semiclassical method）來探討介觀系統（mesoscopic 

system）於自旋-迴旋交互作用（spin-orbit interaction）下的電子

自旋行為。 半古典方法之應用乃是此文的關鍵所在。 應用此方法我們

獲得許多有趣的結果,諸如：於各式的自旋-迴旋交互作用下的電子自旋

弛豫和自旋傳輸的範型（pattern）,我們分別探討此範型於自旋-迴旋

交互作用（即有效磁場， effective magnetic field ）之配置

（configuration）及其實際大小之作用下的情形；由自旋弛豫和自旋

 iii



傳輸之範型得到規則系統（regular system）和混沌系統（chaotic 

system）的本質性差異；有效磁場的方均根（root-mean-square，RMS）

和其配置之等值性（equivalence）；自旋弛豫時間（spin relaxation 

time，T1）和自旋去相時間（spin dephasing time，T2）於自旋弛豫

例子下之探討；Rashba 項（Rashba term）和 Dresselhause 一次項

（Dresselhause linear term）的等值性；自旋弛豫和自旋傳輸衰竭之

減緩（slow down）；自旋弛豫和自旋傳輸衰竭之遏止（stop）；自旋波

形編輯器（Spin Waveform Editor，SWE）等等。 

 iv



ABSTRACT

Semiclassical Method Applied to

Spin Relaxation and Spin Transport

Tsai, Jengjan

Spintronics the so much active research region in modern physics, o¤ers the

matter to explore the fundamental nature of the world and the possible application

in next electronic generation.

In this thesis we try to explore some aspects about spintronics, especially focus

on spin relaxation (SR) and spin transport (ST) in mesoscopic systems under the

spin-orbit coupling e¤ect in terms of modern semiclassicsl approach. The semi-

classical approach is the hinge of this thesis. Applying the semiclassical method in

spin relaxation and spin transport we obtain some interesting results, e.g. spin re-

laxation and spin transport patterns under nine (or ten) kinds of di¤erent e¤ective

magnetic �eld Beff which deduced from D�yakonov-Perel� spin-orbit interaction

mechanism (i.e. the Rashba term and Dresselhause term) treated from two kinds

of points of view �normalized and realistic mimic, intrinsic distinguishableness
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between regular and chaotic systems from the patterns of SR and ST, the equiva-

lence between root-mean-square (RMS) of Beff and Beff con�guration, revelation

of spin relaxation time T1 (often called longitudinal or spin-lattice time) and spin

dephasing time T2 (also called transverse or decoherence time) in spin relaxation,

equivalence between Rashba term case and Dresselhause linear term case in SR

and ST, slow down the spin relaxation and spin transport decay, creating cases of

never relaxed and decayable in spin relaxation case and spin transport case, spin

waveform editor (SWE), and so on.
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Introduction

It is so excited to touch and explore the natural world. Spintronics the so

much active research region in modern physics, o¤ers the matter to explore the

fundamental nature of the world and the possible application in next electronic

generation. In this thesis we try to explore some aspects about spintronics, espe-

cially focus on spin relaxation (SR) and spin transport (ST) in mesoscopic systems,

see Fig. 0.1, under the spin-orbit coupling e¤ect in terms of modern semiclassicsl

approach. Due to the �ush development in theoretical and experimental research

in spintronics, we strongly expect oncoming of experimental breakthrough to ver-

ify the so much theoretical prediction and advance the spintronics research. We

also hope that our research in the thesis could nudge spintronics towards a more

fulgent future.

The semiclassical approach is the hinge of our thesis. Applying the semiclassical

method in spin relaxation and spin transport we obtain some interesting results,

e.g. spin relaxation and spin transport patterns under nine (or ten) kinds of di¤er-

ent e¤ective magnetic �eld Beff which deduced from D�yakonov-Perel�spin-orbit

interaction mechanism (i.e. the Rashba term and Dresselhause term) treated from
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Figure 0.1. (a) Typical ballistic cavity coupled to reservoirs char-
acterized by chemical potential �1 and �2 for mesoscopic structure.
(b) Typical ballistic cavity for closed mesoscopic structure.

two kinds of points of view �normalized and realistic mimic, intrinsic distinguish-

ableness between regular and chaotic systems from the patterns of SR and ST,

the equivalence between root-mean-square (RMS) of Beff and Beff con�guration,

revelation of spin relaxation time T1 (often called longitudinal or spin-lattice time)

and spin dephasing time T2 (also called transverse or decoherence time) in spin re-

laxation, equivalence between Rashba term case and Dresselhause linear term case

in SR and ST, slow down the spin relaxation and spin transport decay, creating

cases of never relaxed and decayable in spin relaxation case and spin transport

case, spin waveform editor (SWE), and so on. Since the signi�cant role of semi-

classical method in this thesis, here we shortly talk about something relevant to it

and then we give an rough outline of this thesis to be as an introduction.

The mesoscopic regime is attained in small condensed matter systems at su¢ -

ciently low temperature for the electrons to propagate coherently across the sample

[1]. The phase coherence of the electron wave-function is broken by an inelastic
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event (coupling to an external environment, electron-phonon or electron-electron

scattering, etc.) over a distance L� larger than the size of the system a. In a more

precise language, we should not talk of electrons, which are strongly interacting,

but of Landau quasiparticles, which are the weakly interacting carriers (at low

energies and small temperature) moving in a self consistent �eld. The quasiparti-

cle lifetime gives the limitation on L� arising from electron-electron interactions.

Following the standard practice, we will refer to the carriers as electrons and we

will not distinguish between the electrostatically imposed external potential and

the self consistent �eld.

The view of a mesoscopic system as a single phase-coherent unit allow us to

deal with a one-particle problem, where the theoretical concepts of Quantum Chaos

are more simply applied. However, this simplistic approach does not describe the

physical reality completely since in real life L� is larger than a but never strictly

in�nite. The fact that Mesoscopic Physics is not such an ideal laboratory for

Quantum Chaos makes the richness of their relationship. Mesoscopic system are

extremely useful to study the interplay between quantum and classical mechanics.

Mesoscopic Physics was initially focused on disordered metals, where the clas-

sical motion of electrons is a random walk between the impurities. The phase-

coherence in the multiple scattering of electrons gives rise to corrections to the

classical (Drude) conductance. The small parameter is kF l , with kF = 2�=�F the
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Fermi wave-vector and l the elastic mean-free-path (i.e. the typical distance trav-

eled by the electron between successive collision with the impurities). Mesoscopic

disordered conductors are then characterized by �F � l� a� L�.

It is in a second generation of mesoscopic systems, semiconductor microstruc-

tures, that the connection with Quantum Chas has been more successfully devel-

oped. Extremely pure semiconductor (GaAs/AlGaAs) heterostructures make it

possible to create a two-dimensional electron gas (2DEG) by quantizing the mo-

tion perpendicular to the interphase. Given the crystalline perfection and the fact

that the dopants are away from the plane of the carriers, an electron can travel

a long distance before its initial momentum is randomized. This typical distance,

the transport mean-free-path lT , is generally larger than the elastic mean-free-path

(due to small-angle scattering [2]) and it can achieve values of 5� 15�m.

Various techniques have been developed to produce a lateral con�nement in the

2DEG and de�ne one-dimensional (quantum wire) and zero-dimensional (quantum

boxes or cavities) structure. Spatial resolutions of the order of a micro allow to

de�ne, at the level of the 2DEG, mesoscopic structures smaller than the elastic

mean-free-path, paving the way to the ballistic regime [3][4][5]. When a� lT the

classical motion of the two-dimensional electrons is given by the collisions with

the walls de�ning the cavity, with a very small drift due to the weak impurity

potential. In usual ballistic transport the disorder e¤ects are very small, and the

distinction between ballistic and clean regimes is often skipped.
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It is important to realize that the constraints arising from the measurement

limit the type of problems to study. We do not try to deal with microscopic systems

where the level spacing� can become larger than the temperature broadening kBT .

The fruitful connection between Quantum Chaos and Mesoscopic Physics has to be

established from the observables that are accessible in the laboratory. The physical

property of ballistic microstructures which is most easily measured is their electrical

resistance, and as a consequence, an important wealth of experimental results on

ballistic transport has been obtained in the last decade [6][7][8][9][10][11][12]. In

order to measure the electrical resistance we have to open the cavities, connecting

them to measuring devices that are necessarity macroscopic and can be thought

as electron reservoirs Fig. 0.1 (a).

Semiclassical approaches were essential at the advent of Quantum Mechanics

and have ever since remained a privileged tool for developing our intuition on new

problems and for performing analytical calculations as well [13]. The semiclas-

sical approximation in one-dimensional is referred in standard textbooks as the

WKB (Wentzel-Kramers-Brillouin) method and allows to obtain closed expres-

sions for eigenenergies and eigenfunctions. The extension to higher dimensions is

built from the Van Vleck approximation to the propagator, expressed as a sum

over classical trajectories, each of them associated with a weight given by a sta-

bility prefactor and a phase depending on the classical action. The consistent use

of the stationary-phase method whenever an integral has to be evaluated allows

us to link classical mechanics with other quantum protagonists, like the Green
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function, the density of states, matrix elements, scattering amplitudes, etc. the

dependence of the properties of a quantum system on the underlying clasical me-

chanics can then be established, and this is why the semiclassical approach is so

widely used in the studies of Quantum Chaos. For the usual densities of the 2DEG

(� 1012cm�2) [1] the Fermi wave-length are of the order of 40nm. The semiclassi-

cal approximation is therefore justi�ed in the study of mesoscopic ballistic cavities

since �F � a� lT � l�:

We note that the �rst generation of mesoscopic systems, the disordered metals,

have mainly been analyzed within diagrammatic perturbation theory. Since the

scattering centers of disorder metals (defects, impurities, interstitials, etc.) are

of atomic dimensions the single scattering events have to be treated quantum

mechanically. Therefore the semiclassical description of disordered system is mixed

one, built from a classical propagation between quantum scatterings. Assuming

that the classical single scattering events have a random outcome and invoking an

ensemble average, we are lead to a di¤usive motion of electrons. The situation is

then quite di¤erent from that of ballistic systems, were the classical trajectories

are completely determined by the geometry and the dynamics can be chaotic or

integrable depending on the shape of the cavity. Also, the notion of impurity

average, so crucial in disordered systems, is usually replaced in the ballistic regime

by averages over energy or over samples.

This thesis is organized as follows. It is divided by three parts. First part,

Concepts and Formulism, we talk about the minimal necessary relevant concepts
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and formulism to this thesis and deduce some expressions for understanding the

thesis. It includes Spintronics, Operation Environment, Spin, Spin-orbit Coupling,

Spin Dynamics, and Semiclassical Approach of spin transport and spin relaxation,

and so on. Second part, Simulation and Discussion, we present our simulation re-

sults and deduce some expressions relevant to the corresponsive topics. It is mainly

divided by three portions. First portion we discuss the Spin Relaxation. Here we

explore both the regular and chaotic systems and di¤erent collision (scattering)

situation under the e¤ect of Rashba and Dresselhause terms. We �nd some very

interesting and surprising results about the spin relaxation decay rate. We get

an expression which depicts satisfactory aspects for these spin relaxation rate and

so on. Second portion we focus on the Spin Transport, the regular systems and

chaotic systems under Rashba and Dresselhause (linear and/or cubic) terms e¤ect

are discussed. We also examine the equivalence between Rashba and Dresselhause

linear terms in spin transport and relaxation under some point of view and men-

tion a special case of the arrangement of Rashba and Dresselhause linear terms to

produce the never decay spin transport current and so forth. Final portion we pro-

pose and design a spintronic device �Spin Waveform Editor (SWE). This device

can be applied as a switch or/and as a resource for research and instruction usage.

Part 3, Conclusion and Outlook, we give a conclusion that talks about some defect

and leakage in our research, and the outlook which indicates something interesting

and hopeful respect in further research. Reference is lay in the �nal.



Part 1

Concepts and Formulism



CHAPTER 1

Spintronics

1.1. Foreword

Spintronics is a multidisciplinary �eld whose central theme is the active ma-

nipulation of spin degrees of freedom in solid-state systems. Here the term spin

stands for either the spin of a single electron or the average spin of an ensemble

of electrons, manifested by magnetization. The control of spin is then a control of

either the population and the phase of the spin of an ensemble of particles, or a

coherent spin manipulation of a single or a few-spin system. The goal of spintron-

ics is to understand the interaction between the particle spin and its solid-state

environments and to make useful devices using the acquired knowledge. Funda-

mental studies of spintronics include investigations of spin transport in electronic

materials, as well as of spin dynamics and spin relaxation. Typical questions that

are posed are (a) what is an e¤ective way to polarize a spin system? (b) how

long is the system able to remember its spin orientation? and (c) how can spin be

detected?

Now let us illustrate the generic spintronic scheme on a prototypical device,

the Datta-Das spin �eld-e¤ect transistor (SFET, [14]), depicted in Fig. 1.1. The

scheme shows the structure of the usual FET, with a drain, a source, a narrow

9
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Figure 1.1. Qualitative sketch of a Datta-Das spin �eld-e¤ect tran-
sistor (SFET) [14]. Larger black arrows indicate the spin polar-
ization in the ferromagnetic contact (FM) and the semiconducting
channel. Smaller black arrows indicate the e¤ective magnetic �eld
Beff (kx) in the semiconducting channel. A top gate is used to tune
the spin precession by appluing an electric " perpendicular to the
Qualitative sketch of a Datta-Das spin �eld-e¤ect transistor (SFET).

channel, and a gate for controlling the current. The gate either allows the current

to �ow (ON) or does not (OFF). The spin transistor is similar in that the result

is also a control of the charge current. The di¤erence, however, is in the physical

realization of the currenr control. In the Datta-Das SFET the source and the drain

are ferromagnets acting as the injection and detection of the electron spin. The

drain injects electrons with spins perpendicular to the transport direction. The

electrons are transported ballistical through the channel. When they arrive at the

drain, their spin is detected. In simpli�ed picture, the electron can enter the drain

(ON) if its spin points in the same direction as the spin of the drain. Otherwise it is

scattered away (OFF). The role of the gate is to generate an e¤ective magnetic �eld

as Figure 1.1 shown, arising from the spin-orbit coupling in the substrate material,
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from the con�nement geometry of the transport channel, and the electrostatic

potential of the gate. This e¤ective magnetic �eld causes the electrons spins to

precess. By modifying the voltage, one can cause the precession to lead to either

parallel or antiparallel (or anything between) electron spin at the drain, e¤ectively

controlling the current.

Well! Even though the name Spintronics is rather novel (the term was coined

by Wolf, S. A. in 1996, as a name for a DARPA initiative for novel magnetic ma-

terials and devices), contemporary research in spintronics relies closely on a long

tradition of results obtained in diverse areas of physics (e.g., magnetism, semicon-

ductor physics, superconductivity, optics, and mesoscopic physics) and establishes

new connections between its di¤erent sub�elds. Spintronics also bene�ts from a

large class of emerging materials, such as ferromagnetic semiconductors [15][16],

organic semiconductors [17], organic ferromagnets [18], high-temperature super-

conductors, and carbon nanotubes [19][20], which can bring novel functionalities

to the traditional devices. In one word, there is a continuing need for fundamental

studies before the potential of spintronic applications can be fully realized [21].

This is right part of the goal of this thesis.

1.2. Spin Relaxation and Spin Dephasing

Spin relaxation and spin dephasing are process that lead to spin equilibra-

tion and are thus of great important for spintronics. The fact that nonequilib-

rium electronic spin in metals and semiconductors lives relatively long (typically
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a nanosecond), allowing for spin-encoded information to travel macroscopic dis-

tances, is what makes spintronics a viable option for technology. After introducing

the concepts of spin relaxation and spin dephasing time respectively, which are

commonly called � s, we just brie�y talk about the major physical mechanisms re-

sponsible for spin equilibration in nonmagnetic electronic systems: Elliott-Yafet,

D�yakonov-Perel�, Bir-Aronov-Pikus, and hyper�ne interaction processes [21].

1.2.1. Spin Relaxation Time and Spin Dephasing Time

Spin relaxation and spin dephasing of a spin ensemble are traditionally de�ned

within the framework of the Block-Torry equations [22][23] for magnetization dy-

namics. For mobile electrons, spin relaxation time T1 (often called longitudinal or

spin-lattice time) and spin dephasing time T2 (also called transverse or decoher-

ence time) are de�ned via the equation for the spin precession, decay, and di¤usion

of electronic magnetization M in an applied magnatic �eld B(t) = B0ẑ + B1(t),

with a static longitudinal components B0 (conventionally in the z direction), and

frequently, a transverse oscillating part B1 perpendicular to z [23][24]:

(1.1)
@Mx

@t
= 
(M�B)x �

Mx

T2
+Dr2Mx,

(1.2)
@My

@t
= 
(M�B)y �

My

T2
+Dr2My,
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(1.3)
@Mz

@t
= 
(M�B)z �

Mz �M0
z

T1
+Dr2Mz,

Here 
 = �Bg=~ is the electron gyromagnetic ratio (�B is the Bohr magneton

and g is the electronic g factor), D is the di¤usion coe¢ cient (for simplicity we

assume an isotropic or a cubic solid with scalar D), and M0
z = �B0 is the thermal

equilibrium magnetization with � denoting the system�s static susceptibility. The

Bloch equations are phenomenological, describing quantitatively very well the dy-

namics of mobile electron spins (more properly, magnetization) in experiments such

as conduction-electron spin resonance and optical orientation. Although relaxation

and decoherence processes in a many-spin system are generally too complex to be

fully described by only two parameters, T1 and T2 are nevertheless an extremely

robust and convenient measure for quantifying such processes in many cases of in-

terest. To obtain microscopic expressions for spin relaxation and dephasing times,

one starts with a microscopic description of the spin system (typically using the

density-matrix approach), desires the magnetization dynamics, and compares it

with the Bloch equations to extract T1 and T2:

Time T1 is the time it takes for the longitudinal magnetization to reach equi-

librium. Equivalently, it is the time of thermal equilibration of the spin population

with the lattice. In T1 processes an energy has to be taken from the spin system,

usually by phonons, to the lattice. Time T2 is classically the time it takes for
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an ensemble of transverse electron spins, initially precessing in phase about the

longitudinal �eld, to lose their phase due to spatial and temporal �uctuations of

the precessing frequencies. For an ensemble of mobile electrons the measured T1

and T2 come about by averaging spin over the thermal distribution of electron

momenta. Motional (dynamical) narrowing is an inhibition of phase change by

random �uctuations. Consider a spin rotating with frequency !0. The spin phase

changes by �� = !0t over time t. If the spin is subject to a random force that

makes spin precession equally likely clockwise and anticlockwise, the average spin

phase does not change , but the root-mean-square phase change increases with

time as (< �2� >) 1=2 � (!0� c)(t=� c)
1=2, where � c is the correlation time of the

random force, or the average time of spin precession in one direction. This is valid

for rapid �uctuations, !0� c � 1. The phase relaxation time t� is de�ned as the

time over which the phase �uctuations reach unity: 1=t� = !20� c.

In isotyopic and cubic solids T1 = T2 if 
B0 � 1=� c, where � c is the so-

called correlation or interaction time: 1=� c is the rate of change of the e¤ective

dephasing magnetic �eld. Phase losses occur during time intervals of � c. If the

system is anisotropic, the equality T1 = T2 no longer holds, even in the case of full

motional narrowing of the spin-spin interactions and g-factor broadening. Using

simple qualitative analysis Yafey in 1963 showed that, while there is no general

relation between the two times, the inequality T2 6 2T1 holds, and that T2 changes

with the direction by at most a factor of 2. The equality of the two times is

very convenient for comparing experiment and theory, since measurements usually
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yield T2 , while theoretically it is often more convenient to calculate T1. In many

cases a single symbol � c is used for spin relaxation and dephasing (and called

indiscriminately either of these terms), if it does not matter what experimental

situation is involved, or if one is working at small magnetic �elds.

In our simulation I think that we mainly calculate (simulate) spin relaxation

time T1 (or called longitudinal or spin-lattice time), in Chapter 7 we also simulate

few illustrative cases which show the aspects of spin dephasing time T2 (or called

transverse or decoherence time), we �nd a reasonable explanation to reach the

consistency about the statement T2 6 2T1.

Experiments detecting spin relaxation and decoherence of conduction electrons

can be grouped into two broad categories: (a) those measuring spectral charac-

teristics of magnetization depolarization and (b) those measuring time or space

correlations of magnetization [21]. Well! Here we do not attempt to discuss the

aspects of experiments, so we stop discussing further more.

1.2.2. Mechanism of Spin Relaxation

Four mechanisms for spin relaxation of conduction electrons have been found rel-

evant for metals and semiconductors: the Elliott-Yafet, D�yakonov-Perel�, Bir-

Aronov-Pikus, and hyper�ne-interaction mechanisms. (Here we do not consider

magnetic scattering, that is, scattering due to an exchange interaction between

conduction electrons and magnetic impurities.) In the Elliott-Yafet mechanism

electron spins relax because the electron wave functions normally associated with
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a given spin have an admixture of the opposite-spin states, due to spin-orbit cou-

pling induced by ions. The D�yakonov-Perel�mechanism explains spin dephasing in

solids without a center of symmetry. Spin dephasing occurs because electrons feel

an e¤ective magnetic �eld, resulting from the lack of inversion symmetry and from

the spin-orbit interaction, which changes in random directions every time the elec-

tron scatters to a di¤erent momentum state. The Bir-Aronov-Pikus mechanism is

important for p-doped semiconductors, in which the electron-hole exchange inter-

action gives rise to �uctuating local magnetic �elds �ipping electron spins. Finally,

in semiconductor heterostructures (quantum wells and quantum dots and so on)

based on semiconductors with a nuclear magnetic moment, it is the hyper�ne inter-

action of the electron spins and nuclear moments which dominates spin dephasing

of localized or con�ned electron spins [21]. In this thesis, we mainly consider the

spin relaxation in two-demensional III-V semiconductor heterostructures due to

D�yakonov-Perel�mechanism, so we just exhibit the D�yakonov-Perel�Mechanism

a little more, and ignore to talk about other mechanisms more detailedly.

An e¢ cient mechanism of spin relaxation due to spin-orbit coupling in systems

lacking inversion symmetry was found by D�yakonov and Perel�in 1971. Without

inversion symmetry the momentum states of the spin-up and spin-down electrons

are not degenerate: Ek+ 6= Ek�. Kramer�s theorem still dictates that Ek+ =

E�k�. Most prominent examples of materials without inversion symmetry come

from groups III-V (such as GaAs) and II-VI (ZnSe, etc.) semiconductor, where

inversion symmetry is broken by the presence of two distinct atoms in the Bravais
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lattice. Elemental semiconductors like Si possess inversion symmetry in the bulk,

so the D�yakonov-Perel�mechanism does not apply to them. In heterostructures

the symmetry is broken by the presence of asymmetric con�ning potentials.

Spin splittings induced by inversion asymmetry can be described by introducing

an intrinsic k-dependent magnetic �eld Bi(k) around which electron spins precess

with larmor frequency 
(k) =e=m Bi(k). The intrinsic �eld derives from the

spin-orbit coupling in the band structure. The corresponding Hamiltonian term

describing the precession of electrons in the conduction band is

(1.4) H(k) =
1

2
~� �
(k)

where � are the Pauli matrices. Momentum-depedent spin precession described

by H, together with momentum scattering characterized by momentum relaxation

time � p, leads to spin dephasing. While the microscopic expression for 
(k) needs

to be obtained from the band structure, treating the e¤ects of inversion asymmetry

by introducing intrinsic precession helps to give a qualitative understanding of spin

dephasing. It is important to note, however, that the analogy with real Larmor

precession is not complete. An applied magnetic �eld induces a macroscopic spin

polarization and magnetization, while H of Eq. (1.4) produces an equal number

of spin-up and spin-down states.
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Two limiting cases can be considered: (a) � p
av > 1 and (b) � p
av 6 1,

where 
av is an average magnitude of the intrinsic larmor frequency 
(k) over

the actual momentum distribution. Case (a) corresponds to the situation in which

individual electron spins process a full cycle before being scattered to another

mementum state. The total spin in this regime initially dephases reversibly due to

the anisotropy in
(k). The spin dephasing rate, which depends on the distribution

of values of 
(k), is in general proportional to the �
 of the distribution: 1=� s �

�
. The spin is irreversibly lost after time � p, when randomizing scattering takes

place.

Case (b) is what is usually meant by the D�yakonov-Perel�mechanism. This

regime can be viewed from the point of view of individual electrons as a spin pre-

cession about �uctuating magnetic �elds, whose magnitude and direction change

randomly with the average time step of � p. The electron rotates about the intrinsic

�eld at an angle �� = 
av� p, before experiencing another �eld and starting to ro-

tate with a di¤erent speed and in a di¤erent direction. As a result, the spin phase

follows a random walk: after time t, which amounts to t=� p steps of the random

walk, the phase progresses by �(t) � ��
p
t=� p. De�ning � s at the time at which

�(t) = 1, the usual motional narrowing result is obtained: 1=� s � 
2av� p.

The faster the momentum relaxation, the slower the spin dephasing. The

di¤erence between cases (a) and (b) is that in case (a) the electron spins form

an ensemble that directly samples the distribution of 
(k), while in case (b) it is

the distribution of the sums of the intrinsic Larmor frequencies (the total phase
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of a spin after many steps consists of a sum of randomly selected frequencies

multiplied by � p), which, according to the central-limit theorem, has a signi�cantly

reduced variance. Both limits (a) and (b) and the transition between them have

been experimentally demonstrated in n-GaAs/AlGaAs quantum wells by observing

temporal spin oscillations over a large range of temperatures (and thus � p) [26].

1.3. Spin Transport

Maybe Transport will be not a simple topic for master graduate student. Under

di¤erent operation environment, the various transport aspects could be exhibited.

For example, comparing mean free path l with characteristic dimensions of the

system a, one can discriminate between di¤usive, l � a, quasi-ballistic, l > a,

and ballistic, l � a, transport. Such a classi�cation appears incomplete in the

situation where di¤erent dimensions of the sample are substantially di¤erent. If

phase coherence is taken into account, the scales L� and LT become important,

and the situation appears more rich and interesting. In our thesis we assume

the electron exhibits the ballistic transport, so here we don�t intend to show the

content of di¤usive transport, we just indicate the key point of ballistic transport,

that is a very powerful method in physics of small systems the so-called Landauer

approach.

The main principle of this approach is the assumption that the system in ques-

tion is coupled to large reservoirs where all inelastic processes take place. Con-

sequently, the transport through the systems can be formulated as a quantum
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mechanical scattering problem. Thus one can reduce the non-equilibrium trans-

port problem to a quantum mechanical one. Another important assumption is

that the system is connected to reservoirs by ideal quantum wires which behave as

waveguides for the electron waves. And we also give an very important assump-

tion for the transport topics, we assume that the charge transport is independent

(un-coupled) to spin transport which it is attached to the wave functions of charge

particle. This assumption o¤ers the base to consider the spin evolution indepen-

dently to the charge (electron) traveling. Our simulations are all established under

this such assumption. We should discuss this more detailedly in Chapter 6.



CHAPTER 2

Operation Environment

2.1. Two-dimensional Electron Gas (2DEG)

By dynamically two-dimensional we mean that the electrons or holes have quan-

tized energy levels for one spatial dimension, but are free to move in two spatial

dimensions. Thus the wave vector is a good quantum number for two dimensions,

but not for the third. These systems are not two-dimensional in a strict sense,

both because wave functions have a �nite spatial extent in the third dimension

and because electromagnetic �elds are not con�ned to a plane but spill out into

the third dimension. Theoretical predictions for idealized two-dimensional systems

must therefore be modi�ed before they can be compared with experiment.

Here we shall generally con�ne our discussion to systems for which parameters

can be varied in a given sample, usually by application of an electrical stress. Sys-

tems of this sort generally occur in what may broadly be called heterostructures.

The best known example are carriers con�ned to the vicinity of junctions between

insulators and semiconductors, between layers of di¤erent semiconductors, and

between vacuum and liquid helium. For most of these systems the carrier concen-

tration can be varied, so that a wealth of information can be obtained from one

21
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sample. They all have at least one well-de�ned interface which is usually sharp to

a nanometer or less.

The e¤ects of changes in surface conditions on the conductance of a semicon-

ductor sample have been studied for many years. Such measurements are usually

called �eld-e¤ect measurements because a major physical variables is the electric

�eld normal to the semiconductor surface. One important way to change the sur-

face condition, and therefore the surface electric �eld, is through the control of

gaseous ambients, see for example: Brattain, W. H.-Bardeen, J. cycle experiment

in 1953, and Mary, A. experiment in 1974. A disadvantage of the early mea-

surements was that the conductance of the entire sample was measured, and the

surface e¤ects were extracted by taking di¤erences or derivatives as the ambient

was changed. In conjuction with �eld-e¤ect measurements, theories for the depen-

dence of the mobility of carriers near the surface on the surface conditions were

developed and re�ned. Most of the early work was based on the phenomenological

notion of di¤use and specular re�ection at the surface, as �rst used by Fuchs, K.

in 1938 in studing transport in metal �lms. .

Investigation of space-charge layers on narrow-gap III-V semiconductors also

started in the mid-1960s. However, the di¢ culty of obtaining samples with good

quality has long prevented progress in this system. After many people e¤ort and

many years later, the development on heterostructure growth techniques made

it possible to fabricate high-quality-double heterostructures with ultrathin layers.

Two main methods of growth with very precise control of thickness, planarity,
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Figure 2.1. Conduction and valence band line-up at a junction be-
tween an n-type AlGaAs and intrinsic GaAs (a) before and (b) after
charge transfer has taken place. Note that this is a cross-section
view. Patterning is done on the surface (x-y plane) using litho-
graphic techniques [1].

compositions etc. were developed in the 1970s. A modern molecular-beam epitaxy

method became practically important for III-V heterostructure technology due �rst

of all to the pioneering work of Cho, A. in 1971. Metal-organic chemical-vaper

deposition originated from the early work of Manasevit, H. in 1968 and found

broad application in III-V heterostructure research after Dupuis, R. and Dapkus,

P. in 1977 reported the room-temperature injection of AlGaAs DH lasers which

had been grown by the metal-organic chemical-vaper deposition method. Here we

do not discuss the progress of the techniques development more forward, we turn

our attention to the formation aspects of 2DEG in GaAs-AlGaAs heterojunctions.

Recent work on mesoscopic conductors has largely been based on GaAs-AlGaAs

heterojunctions where a thin two-dimensional conducting layer is formed at the

interface between GaAs and AlGaAs. To understand why this layer is formed



24

consider the conduction and valence band line-up in the z-direction when �rst

bring the layers in contact Fig. 2.1 (a). The Fermi energy EF in the widegap

AlGaAs layer is higher than that in the narrowgap GaAs layer. Consequently

electrons spill over from the n-AlGaAs leaving behind positively charged donors.

This space charge gives rise to an electrostatic potential that causes the bands

to bend as shown. At equilibrium the Fermi energy is constant everywhere. The

electron density is sharply peaked near the GaAs-AlGaAs interface (where the

Fermi energy is inside the conduction band) forming a thin conducting layer which

is usually refered to as the two-dimensional electron gas Fig. 2.1 (b). The carrier

concentration in a 2DEG typically ranges from 2:0�1011=cm2 to 2:0�1012=cm2 and

can be depleted by applying a negative voltage to a metallic gate deposited on the

surface. The practical importance of this structure lies in its use as a �eld e¤ect

transistor which goes under a variety of names such as MODFET (Modulation

Doped Field E¤ect Transistor) or HEMT (High Electron Mobility Transistor).

Note that this structure is similar to standard silicon MOSFETs, where the

2DEG is formed in silicon instead of GaAs. The role of the wide-gap AlGaAs is

played by a thermally grown oxide layer (SiOx). Indeed much of the pioneering

work on the properties of two-dimensional conductors was performed using silicon

MOSFETs.

Except for the space-charge layers investigation in Si and narrow-gap III-

V semiconductors, there are many other systems to be investigated, like two-

dimensional electron crystal, InSb, InAs, InP, Hg1�xCdxTe systems and Ge, Te,
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PbTe, ZnO systems. And the investigated systems also include heterojunctions,

quantum wells, superlattices, thin �lm, and layer compounds, for example, GaSe

and related materials and TaSe2 and related materials, and graphite and inter-

calated graphite, and even for electron-hole system. And the electrons on liquid

helium also constitute a special kind of quasi-two-dimensional space-charge layer.

And the magnetic-�eld-induced surface states in metals also be consider in point

of view of inversion two-dimensional layer [1].

2.2. Proposed Sample Preparation

In this thesis, we explore mainly the spin relaxation in closed quantum sys-

tems and the spin transport in open quantum systems. Here we just mention

the minimal description to give a contour to understand our proposed sample for

exploring.

� Open quantum system

Figure 2.2 shows the layer structure of the inverted In0:53Ga0:47As/In0:52Al0:48As

modulation doped structure. The heterostructure proposed to be used in this

thesis was grown by molecular beam epitaxy (MBE) on a Fe-doped semi-insulating

(100) InP substrate. All InGaAs and InAlAs layers were lattice matched to InP.

The doping density of the 7-nm-thick In0:52Al0:48As carrier supply layer which is

underneath a 2DEG channel was 4:0� 1018cm�3. The 2DEG channel was formed

in an undoped In0:53Ga0:47As channel layer of 20-nm thickness. The channel layer

is separated by an undoped In0:52Al0:48As spacer layer of 6-nm thickness to reduce
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Figure 2.2. Schematic layer structure of an inverted
In0.53Ga0.47/In0.52Al0.48As heterostructure and pro�le of the
Datta-Das-like SFET.

ionized donor scattering. Then we can apply MBE technique to grow an about 300-

nm-thick Ga1�xMnxAs layer with x � 0:045. GaAs and (In, Ga) As layers were

grown at T � 540� 580oC, while the (Ga, Mn) As layer was grown at T � 250oC.

The 4:5% Mn concentration is determined from the lattice constant measured by

X-ray di¤raction, and is expected to yield Curie temperature Tc in the range of

40 � 90K with a hole concentration p � 1020cm�3. The easy axis of the (Ga,

Mn) As magnetization is in the plane of the sample, veri�ed by a superconducting

quantum interference device (SQUID) magnetometer. Then we may use electron

beam (EB) lithography, Lift o¤ technique and Ar sputter etching to shape the

desired 2DEG structure, for example, various sized mesoscopic rings, dots, and so

on [27], and reveal the electrical spin injection source and spin detection drain

electrodes. Next we grow about a 100-nm-thick SiO2 insulating layer which covers

the shaped 2DEG structure, �nally the gate electrode was made on the top of the



27

Figure 2.3. Schematic layer structure of an inverted
In0.53Ga0.47/In0.52Al0.48As heterostructure and pro�le of the
quantum dot for simulation.

source and drain and the SiO2 insulating layer [28]. Here we see a Datta-Das-like

spin �eld-e¤ect transistor (SFET) in Fig. 1.1 as described in Section Spintronics.

� Closed quantum system

For the closed Quantum system, the procedure of the prepararion of sample is

almost the same to the description of open quantum system, the only di¤erences

are we need not fabricate the source and drain electrodes, and we just imagine

that polarized electrons have existed before the simulation. Figure 2.3 shows the

layer structure and pro�le of one of the simulation sample.



CHAPTER 3

Spin

3.1. Lead-in

Spin is a fundamental property of all elementary particle [29]. In classical me-

chanics, a rigid object admits two kinds of angular momentum: orbital (L = r� p),

associated with the motion of the center of mass, and spin (S =I!), associated

with motion about the center of mass. We have an example, the earth has orbital

angular momentum attributable to its annual revolution around the sun, and spin

angular momentum coming from its daily rotation about the north-south axis. We

�nd that in the classical context this distinction is largely a matter of convenience,

for when you come right down to it, S is nothing but the sum total of the "or-

bital" angular momenta of all the rocks and dirt clods that go to make up the

earth, as they circle around the axis. But an analogous thing happens in quantum

mechanics, and here the distinction is absolutely fundamental. In addition to or-

bital angular momentum, associated (in the case of hydrogen) with the motion of

the electron around the nucleus (and described by the spherical harmonics), the

electron also carries another form of angular momentum, which has nothing to do

with motion in space (and which is not, therefore, described by any function of the

position variable r; �; �) but which is somewhat analogous to classical spin (and

28
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for which, therefore, we use the same word). It doesn�t pay to press this analogy

too far: The electron (as far as we know) is a structureless point particle, and its

spin angular mementum cannot be decomposed into orbital angular momenta of

constituent parts. Su¢ ce it to say that elementary particles carry intrinsic angular

momentum (S) in addition to their "extrinsic" angular momentum (L) [30].

We also could �nd one of contrary interpretations about spin described by

Ohanian, H. C. [31]. The point of view of Ohanian�s paper is stated below. The

lack of a concrete picture of the spin leaves a grierous gap in our understanging of

quantum mechanics. The prevailing acquiescence to this unsatisfactory situation

becomes all the more puzzling when one realizes that the means for �lling the gap

have been at hand since 1939, when Belinfante established that the spin could be

regarded as due to a circulating �ow of energy, or a momentum density, in the

electron wave �eld. He established that this picture of the spin is valid not only

for electrons, but also for photons, vector mesons, and gravitons �in all cases the

spin angular momentum is due to a circulating energy �ow in the �elds. Thus

contrary to the common prejudice, the spin of the electron has a close classical

analogy: It is an angular momentum of exactly the same kind as carried by the

�elds of a circularly polarized electromagnetic wave. Furthermore, according to a

result established by Gordon in 1928, the magnetic moment of the electron is due

to the circulating �ow of charge in the electron wave �eld. This means that neither

the spin nor the magnetic moment are internal properties of the electron �they

have nothing to do with the internal structure of the electron, but only with the
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structure of its wave �eld. Here one thing must be emphasized that, in contrast

to some other attempts at explaining the spin [32], the present explanation is

completely consistent with the standard interpretation of quantum mechanics.

The algebraic theory of spin is a carbon copy of the theory of orbital angular

mementum, beginning with the fundamental commutation relations [30]:

(3.1) [Sx; Sy] = i~Sz; [Sy; Sz] = i~Sx; [Sz; Sx] = i~Sy:

It follows that the eigenvectors of S2 and Sz satisfy

(3.2) S2 j smi = ~2s (s+ 1) j smi; Sz j smi = ~m j smi;

and

(3.3) S� j smi = ~
p
s(s+ 1)�m(m� 1) j s(m� 1i;

where S� � Sx � iSy. But here the eigenvectors are not spherical harmonics

(they�re not functions of � and � at all), and there is no a priori reason to exclude

the half-integer values of s and m:
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(3.4) s = 0;
1

2
; 1;
3

2
; :::; m = �s;�s+ 1; :::; s� 1; s:

It so happens that every elementary particle has a speci�c and immutable

value of s, which we call the spin of that particular species: pi mesons have spin 0;

electrons have spin 1=2; photons have spin 1; deltas have spin 3=2; gravitons have

spin 2; and so on. By contrast, the orbital angular momentum quantum number l

(for an electron in a hydrogen atom, say) can take on any (integer) value we please,

and will change from one to another when the system is perturbed. But s is �xed,

for any given particle, and this makes the theory of spin comparatively simple.

3.2. Spin 1/2

Here the most important case is s = 1=2, for this is the spin of the particles that

make up ordinary matter (protons, neutron, and electrons), as well as all quarks

and all leptons. Moreover, once we understand spin 1=2, it is a simple matter to

work out the formalism for any higher spin. There are just two eigenstates: j 1
2
1
2
i

(or denoted as j +i ), which we call spin up (informally, "), and j 1
2
(�1

2
)i (or

denoted as j �i ), which we call spin down (informally, #). Using these as basis

vectors, the general state of a spin-1=2 particle can be expressed as a two-element

column matrix (or spinor):
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(3.5) � =

0B@ a

b

1CA = a�+ + b��;

with

(3.6) �+ =

0B@ 1

0

1CA ; �� =

0B@ 0

1

1CA
representing spin up and for spin down.

Meanwhile, the spin operators become 2� 2 matrices, which we can work out

by noting their e¤ect on �+ and ��; Equation 3.2 says

(3.7) S2�+ =
3

4
~2�+; S2�� =

3

4
~2��; Sz�+ =

~
2
�+; Sz�� = �

~
2
��;

and Equation 3.3 gives

(3.8) S+�� = ~�+; S��+ = ~��; S+�+ = S��� = 0:

Now, S� = Sx � iSy, so
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(3.9) Sx =
1

2
(S+ + S�) and Sy =

1

2i
(S+ � S�),

and it follows that

(3.10) Sx�+ =
~
2
��; Sx�� =

~
2
�+; Sy�+ = �

~
2i
��; Sy�� =

~
2i
�+:

Thus

(3.11) S2 =
3

4
~2

0B@ 1 0

0 1

1CA ; S+ = ~

0B@ 0 1

0 0

1CA ; S� = ~

0B@ 0 0

1 0

1CA ;
while

(3.12) Sx =
~
2

0B@ 0 1

1 0

1CA ; Sy =
~
2

0B@ 0 �i

i 0

1CA ; Sz =
~
2

0B@ 1 0

0 �1

1CA :

It�s a little tidier to divide o¤ the factor of ~=2: S = (~=2)�, where

(3.13) �x =

0B@ 0 1

1 0

1CA ; �y =

0B@ 0 �i

i 0

1CA ; �z =

0B@ 1 0

0 �1

1CA :
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Figure 3.1. n is a unit vector lies in 3D real space.

These are the famous Pauli spin matrices. Notice that Sx, Sy, Sz and S2 are

all Hermitian (as they should be, since they represent observables). On the other

hand, S+ and S� are not hermitian �evidently they are not observable.

If we try to construct j S�n; +i where it is one of the eigenstates which measured

in the direction parallel to n , such that

(3.14) S � n j S � n; +i =
�
~
2

�
j S � n; +i

where n is the unit vector and characterized by the angle shown in the Figure

3.1.

By applying the eigenvalue and eigenstate idea and skill, we can get

(3.15) j S � n; +i = cos
�
�

2

�
j +i+ sin

�
�

2

�
ei� j �i
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Well! This equation can be used as the initial spinor input for calculation and

simulation in this thesis.

3.3. Electron in A Magnetic Field

A spinning charged particle constitutes a magnetic dipole. Its magnetic dipole

moment � is proportional to its spin angular momentum S:

(3.16) � = 
S;

the proportionality constant 
 is called the gyromagnetic ratio. (Classically,

the gyromagnetic ratio of a rigid objects is q=2m, where q is its charge and m is its

mass. For reasons that are fully explained only in relativistic quantum theory, the

gyromagnetic ratio of the electron is almost exactly twice the classical value [33].)

When a magnetic dipole is placed in a magnetic �eld B, it experiences a torque,

��B, which tends to line it up parallel to the �eld (just like a compass needle).

The energy associated with this torque is [33]

(3.17) H = �� �B;

so the Hamiltonian of a spinning changed particle, at least in a magnetic �eld

B (If the particle is allowed to move, there will also be kinetic energy to consider;
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Figure 3.2. Magnetic �eld sweeps around on a cone, at angular ve-
locity !, Eq. 3.19.

moreover, it will be subject to the Lorentz force (qv �B), which is not derivable

from a potential energy function and hence does not �t the Schrödinger equation

as we have formulated it so far. Anyhow, for the moment let�s just assume that

the particle is free to rotate, but otherwise stationary.), becomes

(3.18) H = �
B � S;

where S is the appropriate spin matrix (Eq. 3.12, in the case of spin 1=2).

Now let us see two cases which relevant to our thesis.

� Cses 1

Imagine an electron (charge �e, mass m) at rest at the origin in the presence

of a magnetic �eld whose magnitude (B0) is constant but whose direction sweeps

out a cone, of opening angle �, at constant angular velocity !, Fig. 3.2.

The magnetic �eld is
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(3.19) B(t) = B0 [sin�� cos(!t)i+ sin�� sin(!t)j+ cos�k] :

The Hamiltonian (Eq. 3.18) is

H(t) =
e

m
B � S(3.20)

=
e~B0
2m

[sin�� cos(!t)�x + sin�� sin(!t)�y + cos��z]

= �~!1
2

0B@ cos� e�i!t sin�

ei!t sin� � cos�

1CA
where

(3.21) !1 � �
eB0
m

:

The normalized eigenspinors of H(t) are

(3.22) �+(t) =

0B@ cos(�=2)

ei!t sin(�=2)

1CA
and
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(3.23) ��(t) =

0B@ sin(�=2)

�ei!t cos(�=2)

1CA ;
they represent spin up and spin down, respectively, along the instantaneous

direction of B(t). The corresponding eigenvalues are

(3.24) E� = �
~!1
2
:

Suppose the electron starts out with spin up, along B(0):

(3.25) �(0) =

0B@ cos(�=2)

sin(�=2)

1CA :

The exact solution to the time-dependent Schrödinger equation is

(3.26) �(t) =

0B@
h
cos(�t=2) + i (!1+!)

�
sin(�t=2)

i
cos(�=2)e�i!t=2h

cos(�t=2) + i (!1�!)
�

sin(�t=2)
i
sin(�=2)ei!t=2

1CA ;

where

(3.27) � =
q
!2 + !21 + 2!!1 cos�;
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or, writing it as a linear combination of �+ and ��;

�(t) =

�
cos(�t=2) + i

(!1 + ! cos�)

�
sin(�t=2)

�
e�i!t=2�+(t)(3.28)

+i
h!
�
sin� sin(�t=2)

i
e�i!t=2��(t):

Now if we assume an spin evolution operator Ss which with the relationship

(3.29) �(t) = Ss�(0);

then we �nd that Ss has the form

(3.30)

Ss =

0B@ e�i!t=2
�
cos (�t=2) + i!

�
sin (�t=2)

�
e�i!t=2

�
i!1
�
sin (�t=2) cot (�=2)

�
ei!t=2

�
i!1
�
sin (�t=2) tan (�=2)

�
ei!t=2

�
cos (�t=2)� i!

�
sin (�t=2)

�
1CA ;

we should see that the operator Ss is just the one Sp see Eq. 5.20 in view

of someone extreme situation (i.e. the trajectory of someone particle (electron)

exhibited as a smooth curve).

� Case 2
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An electron is at rest at the origin, in the presence of a magnetic �eld whose

magnitude (B0) is constant but whose direction rides around at constant angular

velocity ! on the lip of a case of opening angle � as Case 1, Fig. 3.2:

(3.31) B(t) = B0 [sin�� cos(!t)i+ sin�� sin(!t)j+ cos�k] ;

where it is the same to Eq. 3.19.

Then assuming the particle starts out with spin up (says in z direction), we

can �nd its exact solution to the time-dependent Schrödinger equation is

(3.32) �(t) =

0B@ [cos(�t=2) + i [(! + !1 cos�) =�] sin(�t=2)] e
�i!t=2

i [(!1 cos�) =�] sin(�t=2)e
i!t=2

1CA ;

where

(3.33) !1 � �
eB0
m

and

(3.34) � =
q
!2 + !21 + 2!!1 cos�;
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are also the same to Equations 3.21 and 3.27 [30].

As the Case 1, if we assume an spin evolution operator Ss which with the

relationship �(t) = Ss�(0); we could get the similar equation as Eq. 3.30.

3.4. Time Evolution and Spin Rotation

Suppose we have a physical system whose state ket at t0 is represented by

j �; t0i. At later times, we do not, in general, expect the system to remain in the

same state j �; t0i. Let us denote the ket corresponding to the state at some later

time by

(3.35) j �; t0; ti, t > t0:

The two kets are related by an operator which we call the time-evolution op-

erator U(t; t0);

(3.36) j �; t0; ti = U(t; t0) j �; t0i:

Due to the unitary requirement and the composition property and borrow from

classical mechanics idea that the Hamiltonian is the generator of time evolution

[34], we can �nd out the in�nitesimal time-evolution operator is written as
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(3.37) U(t0 + dt; t0) = 1�
iHdt

~
;

where H, the Hamiltonian operator, is assumed to be Hermitian, and then we

exploit the composition property of the time-revolution operator, we could get

(3.38) i~
@

@t
U( t; t0) = HU( t; t0):

This is the Schrödinger equation for the time-revolution operator. If the Hamil-

tonian operator is independent of time. By this we mean that even when the pa-

rameter t is changed; the H operator remains unchanged. The Hamiltonian for

a spin-magnetic moment interacting with a time-independent magnetic �eld is an

example of this.

In the Schrödinger picture the operators corresponding to observables like x,

py, and Sz are �xed in time, while state kets vary with time. By solving Eq. 3.38,

we get

(3.39) U(t; t0) = exp

�
�iH (t� t0)

~

�
:

In contrast, in the Heisenberg picture the operators corresponding to observ-

ables vary with time; the state kets are �xed, frozen so to speak, at what they
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were at to. It is convenient to set in U(t; t0) to zero for simplicity and work with

U(t), which is de�ned by [35]

(3.40) U(t; t0 = 0) � U(t) = exp

�
�iH (t)
~

�

Now let us talk about the spin rotation. Following the exploration, we think

that because rotations a¤ect physical systems, the state ket corresponding to a

rotated is expected to look di¤erent from the state ket corresponding to the original

unrotated system. Given a rotation operator R, characterized by a 3�3 orthogonal

matrix R, we associate an operator D (R) in the appropriate ket space such that

(3.41) j �iR = D (R) j �i

where j �iR and j �i stand for the kets of the rotated and original system,

respectively. Note that the 3 � 3 orthogonal matrix R acts on a column matrix

made up of the three components of a classical vector, while the operator D (R)

acts on state vectors in ket space. The matrix representation of D (R) depends

on the dimensionality N of the particular ket space in question. For N = 2,

appropriate for describing a spin 1=2 system with no other degree of freedom,

D (R) is represented by a 2 � 2 matrix; for a spin 1 system, the appropriate

representation is a 3� 3 unitary matrix, and so forth.
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Then following the generator concept for deducing translations and time evolu-

tion, and the implicated group properties of general rotations R and other neces-

sary skills. We get for spin 1=2 system with �nite rotations, if a rotation about the

direction characterized by a unit vector n by a �nite angle �, the rotation operator

D (n; �) can be written as

D (n; �) = exp

�
�iS � n�

~

�
(3.42)

_= exp

�
�i� � n�

2

�
:

Using

(3.43) (� � n)n = f
1

� � n

for n even

for n odd
;

we could write
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exp

�
�i� � n�

2

�
=

2641� (� � n)2
2!

0B@ �

2

1CA
2

+
(� � n)4

4!

0B@ �

2

1CA
4

� � � �

375(3.44)

�i

264(� � n)
0B@ �

2

1CA� (� � n)3
3!

0B@ �

2

1CA
3

+ � � �

375
= 1 cos

�
�

2

�
� i� � n sin

�
�

2

�
:

Explicitly, in 2� 2 form we have [35]

(3.45) exp

�
�i� � n�

2

�
=

0B@ cos
�
�
2

�
� inzsin

�
�
2

�
(�inx � ny) sin

�
�
2

�
(�inx + ny) sin

�
�
2

�
cos
�
�
2

�
+ inzsin

�
�
2

�
1CA :

3.5. Spin Precession Extension

Imagine an electron (chargr �e, mass m) ar rest at the origin, in the presence

of a uniform magnetic �eld, which points in the z-direction:

(3.46) B = Bk

The hamiltonian is
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H = �
B � S(3.47)

=
e

m
S �B = e

m
S�BnB =

e

m
BS � nB

= !SnB ;

where

(3.48) ! =
eB

m
;

it is called the Larmor Frequency [33].

The time-evolution operator based on this Hamiltonian is given by

U(t; 0) = exp

�
�iHt
~

�
(3.49)

= exp

�
�iSz!t
~

�
:

And consider a rotation by a �nite angle � about the z-axis. If the ket of a

sign 1=2 system (e.g. an electron) before rotation is given by j �i, due to Eq. 3.41

the ket after rotation is given by
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(3.50) j �iR = Dz (�) j �i

with

(3.51) Dz (�) = exp

�
�iSz�
~

�
:

Comparing Eq. 3.49 with Eq. 3.51, we see that the time-evolution operator

here is precisely the same as the rotation operator in Eq. 3.51 with � set equal to

!t. In this manner we see immediately why this Hamiltonian causes spin precession

[35].

Under our discussion in 2DEG systems, the electrons behave ballistically, that

is for each free moving path, it moves like a straight-line segment. Latter we will

discuss the spin dynamics for each straight-line segment, we will �ng that during

the electron movement in each straight-line segment, the magnitude and direction

of e¤ective magnetic �eld (Beff) is �xed. That is we could treat the electron

precession during the moving to be just like an electron at rest at the origin, in

the presence of a uniform magnetic �eld.



CHAPTER 4

Spin-orbit Coupling

4.1. Spin-orbit Coupling E¤ect

In atomic physics, spin-orbit (SO) interaction enters into the Hamiltonian from

a nonrelativistic approximation to the Direc equation [36]. This approach gives

rise to the Pauli SO term

(4.1) Hso = �
~

4m2
0c
2
� � p� (rV0)

where ~ is Plank�s constant, m0 is the mass of a free electron, c is the velocity

of light, p is the momentum operator, V0 is the Coulomb potential of the atomic

core, and � is the vector of Pauli spin matrices. It is well known that atomic

spectra are strongly a¤ected by SO coupling.

4.2. Spin-orbit Coupling in Solid-state Physics

In a crystalline solid, the motion of electrons is characterized by energy bands

En (k) with band index n and wave vector k. Here also, SO coupling has a very

48
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Figure 4.1. Qualitative sketch of the band structure of GaAs close
to the fundamental gap.

profound e¤ect on the energy band structure En (k). For example, in semiconduc-

tors such as GaAs, SO interaction gives rise to a splitting of the topmost valence

band,see Fig. 4.1.

In a tight-binding picture without spin, the electron states at the valence band

edge are p-like (orbital angular momentum l = 1). With SO coupling taken into

account, we obtain electronic states with total angular momentum j = 3=2 and

j = 1=2. These j = 3=2 and j = 1=2 states are split in energy by a gap �0, which

is referred to as the SO gap.

This example illustrates how the orbital motion of crystal electrons is a¤ected

by SO coupling. (We use the term "orbital motion" for Bloch electrons in order to

emphasize the close similarity we have here between atomic physics and solid-state

physics.) It is less obvious in what sense the spin degree of freedom is a¤ected by

the SO coupling in a solid. Here we shall analyze both questions for quasi-two-

dimensional semiconductors such as quantum wells (QWs) and heterostructures.
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It was �rst emphasized by Elliot [37] and by Dresselhause et al. [38] that

the Pauli SO coupling, Eq. 4.1 , may have important consequences for the one-

electron energy levels in bulk semiconductors. Subsequently, SO coupling e¤ects

in a bulk zinc blende structure were discussed in two classic papers by Parmenter

[39] and Dresselhause [40]. Unlike the diamond structure of Si and Ge, the zinc

blende structure does not have a center of inversion, so that we can have a spin

splitting of the electron and hole states at nonzero wave vectors k even for a

magnetic �eld B = 0. In the inversion-symmetric Si and Ge crystals we have, on

the other hand, a twofold degeneracy of the Bloch states for every wave vector k.

Clearly, the spin splitting of the Bloch states in the zinc blende structure must be

a consequence of SO coupling, because otherwise the spin degree of freedom of the

Bloch electrons would not know whether it was moving in an inversion-symmetric

diamond structure or an inversion-asymmetric zinc blende structure.

In the solid-state physics, it is a considerable task to analyze a microscopic

Schrödinger equation for the Bloch electrons in a lattice-periodic crystal potential.

(We note that in a solid (as in atomic physics) the dominant contribution to the

Pauli SO term, Eq. 4.1, stems from the motion in the bare Coulomb potential in

the innermost region of the atomic cores. In a pseudopotential approach the bare

Coulomb potential in the core region is replaced by a smooth pseudopotential.)

Often, band structure calculations for electron states in the vicinity of the funda-

mental gap are based on the k �p method and the envelope function approximation

(EFA). Here SO coupling enters solely in terms of matrix elements of the operator,
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Eq. 4.1, between bulk band-edge Bloch states, such as the SO gap �0 in Figure

4.1. These matrix elements provide a convenient parameterization of SO coupling

e¤ects in semiconductor structures.

4.3. Spin-orbit Coupling in Quasi-two-dimensional Systems

Quasi-two-dimensional (2D) semiconductor structures such as QWs and het-

erostructures are well suited for a systematic investigation of SO coupling e¤ects.

Increasing perfection in crystal growth techniques such as molecular-beam-epitaxy

(MBE) and metal-organic chemical vapor deposition (MOCVD) allows one to de-

sign and investigate tailor-made quantum structures. Moreover, the size quan-

tization in these systems gives rise to many completely new phenomena that do

not exist in three-dimensional semiconductors. We remark here that whenever we

talk about 2D systems, in fact we in mind quasi-2D systems with 2 �nite spatial

extension in the z direction, the growth direction of these system.

A detailed understanding of SO-related phenomena in 2D systems is important

both in fundamental research and in applications of 2D systems in electronic de-

vices. For instance, for many years it was accepted that no metallic phase could

exist in a disordered 2D carrier system. This was due to the scaling arguments of

Abrahams et al. and the support of subsequent experiments. In the past few years,

however, experiments on high-quality 2D systems have provided us with reason to

revisit the question of whether or not a metallic phase can exist in 2D system [41].

At present, these new �ndings are controversial. Following the observation that
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Space inversion symmetry: E+ (k) = E+ (�k) =) B = 0 spin degeneracy:
Time inversion symmetry: E+ (k) = E� (�k) E+ (k) = E� (k)
(Kramers degeneracy)
Table 4.1. B=0 spin degeneracy is due to the combined e¤ect of
inversion symmetry in space and time.

an in-plane magnetic �eld suppresses the metallic behavior, it was suggested by

Pudalov that the metallic behavior could be a consequence of SO coupling [42].

Using samples with tunable spin splitting, it could be shown that the metallic

behavior of the resistivity depends on the symmetry of the con�nement potential

and the resulting spin splitting of the valence band [43]. Datta and Das [14] have

proposed a new type of electronic device where the current modulation arises from

spin pression due to the SO coupling in a narrow-gap semiconductor, while magne-

tized contacts are used to preferentially inject and detect speci�c spin orientation.

Recently, extensive research aiming at the realization of such a device has been

under way [44].

4.4. Inversion-Asymmetry-Induced Spin Splitting

Spin degeneracy of electron and hole states in a semiconductor is the combined

e¤ect of inversion symmetry in space and time [45]. Both symmetry operations

change the wave vector k into �k, but time inversion also �ips the spin, so that

when we combine both we have a two fold degeneracy of the single-particle energies,

E+ (k) = E� (k) ; see Table 4.1.
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When the potential through which the carriers move is inversion-asymmetric,

however, the spin degeneracy is removed even in the absence of an external mag-

netic �eld B. We then obtain two branches of the energy dispersion, E+ (k) and

E� (k). In quasi-2D quantum wells (QWs) and dots (QDs), and heterostructures,

this spin splitting can be the consequence of a bulk inversion asymmetry (BIA)

of the underlying crystal (e.g., a zinc blende structure [40]), and of a structure

inversion asymmetry (SIA) of the con�nement potential [46]. A third contribution

to B = 0 spin splitting can be the low microscopic symmetry of the atoms at

an interface [47]. We emphasize that even in inversion-asymmetric systems with

B = 0 spin splitting we still have the Kramers degeneracy, see Table 4.1.

For a given wave vector k, we can always �nd a spin orientation axis S (k),

local in k space, such that we have spin-up and spin-down eigenstates with respect

to the axis S (k). But we do not call the branches E� (k) spin-up and spin-down,

because the direction of S varies as a function of k such that, when averaged

over all occupied states, the branches contain equal contributions of up and down

spinor components. This re�ects the fact that in nonmagnetic materials we have

a vanishing magnetic moment at B = 0. While we shall focus on the e¤ect of

B = 0 spin splitting on the energy E (k) and the spin degree of freedom, it has

been investigated in [48] how B = 0 spin splitting a¤ects also the orbital parts of

the wave function.
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4.5. B=0 Spin Splitting and Spin-Orbit Interaction

How can we visualize the fact that the electron spins are feeling the inversion

symmetry of the spatial environment? In the EFA the full wave function

(4.2) 	(r) =
P
�0;�0

 �0�0 (r)u�00 (r) j �0i

is the product of the quickly oscillating lattice-periodic part u�00 (r) of the

Bloch functions times a slowly varying envelop function  n (r). When we have

SIA spin splitting, the Bloch part feels the atomic �elds that enter into the Pauli

SO term,Eq. 4.1, and the envelope function feels the macroscopic environment, see

Figure 4.2. Therefore, we obtain SIA spin splitting only if we have both a macro-

scopic electric �eld and a microscopic electric �eld from the atomic cores. This

is consistent with the explicit expressions for SIA spin splitting derived in the R.

Winkler�s book [49], where the splitting is always proportional to the macroscopic

�eld times a prefactor that depends on the matrix elements ���0
��0 of the microscopic

SO interaction. BIA spin splitting is independent of any macroscopic electric �eld.

It depends only on the matrix elements ���0
��0 of the microscopic SO interaction.

Both SIA and BIA spin splitting disappear in the limit of vanishing bulk SO gaps

���0
��0 = 0 [49].

Several authors have suggested an intuitive picture for the B = 0 spin split-

ting, the electrons are moving with a velocity vk = ~kk=m� perpendicular to the
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Figure 4.2. Qualitative sketch of a wave function, Eq. 4.2, in the
envelope function approximation. The lower part shows the crystal
potential V0 (r). The upper part shows the slowly varying enve-
lope function  �� (r) that modulates the quickly oscillating lattice-
periodic part u�� (r) of the Bloch function.

macroscopic electric �eld " = (0; 0; "z). It was argued that in the electron�s rest

frame, " is Lorentz transformed into a magnetic �eld B, so that the B = 0 spin

splitting becomes a Zeeman splitting in the electron�s rest frame. However, this

magnetic �eld is given by B =
�
vk=c

2
�
"z (SI units) and for typical values of "z

and vk we have B � 2� 20� 10�7T , which would result in a spin splitting of the

order of 5� 10�9� 5� 10�5meV . On the other hand, the experimentally observed

spin splitting is of the order of 0:1� 10meV . It is clear from the discussion above

that this discrepancy is due to the fact that the idea of a Lorentz transformation

neglects the contribution of the atomic cores to the SO interaction felt by a Bloch

electron in a solid [49].
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Figure 4.3. Lowest-order spin orientation h�i of the eigenstates
j  �

�
kk
�
i in the presence of BIA. The circle shows h�i along con-

tours of constant energy for the upper branch E+ of the spin-split
dispersion. Here we don�t show h�i along contours of constant en-
ergy for the lower branch E� of the spin-split dispersion. Left plot
shows the madnitude of h�i (or Beff) along the direction of kk.

4.6. BIA Spin Splitting in Zinc Blende Semiconductors

Unlike Si and Ge, which have a diamond structure, the zinc blende structure

of III-V and II-VI compounds such as GaAs, InSb, and HgxCd1�xTe does not have

a center of inversion. (Strictly speaking, the diamond structure does not have a

center of inversion either.) Therefore, SO interaction gives rise to a spin splitting

of the bulk energy dispersion. This BIA spin splitting is well known from early

theoretical studies [40][51]. It has been observed experimentally by analyzing the

Shubnikov-de Haas e¤ect in uniaxially strained bulk InSb [52] and by detecting

the precession of the spin polarization of electrons photoexcited from a GaAs [110]

surface [53].
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For quasi-2D systems in a quantum well (QW) grown in the crystallographic

direction [001] the Dresselhause term becomes [54]

(4.3) HBIA = �
�
�xkx

�
k2y �



k2z
��
+ �yky

�

k2z
�
� k2x

��
;

with a material-speci�c coe¢ cient �. This equation can easily be diagonalized.

We obtain a spin splitting

(4.4) EBIA�
�
kk
�
= ��kk

s
hk2zi

2 +

�
1

4
k2k � hk2zi

�
k2k sin (2�)

2

(4.5) � ��


k2z
�
kk �O

�
k3k
�

We see here that in leading order of kk the Dresselhause term Eq. 4.3 gives

rise to a spin splitting independent of the direction of kk that is apparently very

similar to the Rashba spin splitting , Eq. 4.9. Nevertheless, the corresponding

wave functions are qualitatively di¤erent due to the di¤erent symmetries of the

terms, Eqs. 4.3 and 4.8. If we neglect the terms cubic in kk, the eigenfunctions in

the presence of Dresselhause spin splitting are
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(4.6) j  BIA�
�
kk
�
i = eikk�rk

2�
�kk (z)

1p
2
j

1

�e�i�
i

so that

(4.7)


�
�
kk
��
� = �

0BBBB@
cos (��)

sin (��)

0

1CCCCA :

The spin orientation Eq. 4.7 of the eigenfunctions Eq. 4.6 as a function of

the direction of the in-plane wave vector is indicated by arrows in Figure 4.3.

For the Rashba spin splitting we see in Figure 4.4 that if we moving clockwise

on a contour of constant energy E
�
kk
�
the spin vector is rotating in the same

direction, consistent with axial symmetry of the Rashba term. On the other hand,

Eq. 4.7 and Fig. 4.3 show that in the presence of BIA the spin vector is rotating

counterclockwise for a clockwise motion in kk space [55].

4.7. SIA Spin Splitting

In semiconductor quantum structures, the spin degeneracy can be lifted not

only because of a bulk inversion asymmetry of the underlying crystal structure,

but also because of a structure inversion asymmetry of the con�ning potential

V (r). This potential may contain a built-in or external potential, as well as the
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Figure 4.4. Lowest-order spin orientation h�i of the eigenstates
j  �

�
kk
�
i in the presence of SIA. The circle shows h�i along con-

tours of constant energy for the upper branch E+ of the spin-split
dispersion. Here we don�t show h�i along contours of constant en-
ergy for the lower branch E� of the spin-split dispersion. Left plot
shows the madnitude of h�i (or Beff) along the direction of kk.

e¤ective potential from the position-dependent band edges. Recent experiments

have shown that the SIA spin splitting can even be tuned continuously by means

of external gates [28].

Here to lowest order in the in-plane wave vector kk = (kx; ky; 0) the spin split-

ting is characterized by the Rashba Hamiltonian [46]

(4.8) HSIA = � (�xky � �ykx) ;

where �x and �y are Pauli spin matricies and � is a prefactor that depends on

the constituting materials and on the geometry of the quasi-2D system. If we use
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polar coordinates for the in-plane wave vector, kk = kk (cos�; sin�; 0), the spin

splitting is given by

(4.9) ESIA�
�
kk
�
= ��kk;

independent of the aangle �, and the eigenstates are

(4.10) j  SIA�
�
kk
�
i = eikk�rk

2�
�kk (z)

1p
2
j

1

�iei�
i;

where rk = (x; y; 0) and envelope function �kk (z). In Eq. 4.10 we have assumed

that the Rashba coe¢ cient � is positive. The spin orientation of the eigenstates

Eq. 4.10 is given by the expectation value of the vector � of Pauli spin matrices:

(4.11)


�
�
kk
��
� �



 �
�
kk
�
j�j �

�
kk
��

(4.12) =

0BBBB@
� sin�

� cos�

0

1CCCCA =

0BBBB@
� sin

�
�� �

2

�
� cos

�
�� �

2

�
0

1CCCCA :
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Note that Eqs. 4.11 and 4.12 are independent of the envelope function �kk (z)

and the magnitude kk of the in-plane wave vector. The spin orientation Eqs. 4.11

and 4.12 of the eigenfunctions 4.10 as a function of the direction of the in-plane

wave vector indicated by arrows in Figure 4.4 [49].



CHAPTER 5

Spin Dynamics

Figure 5.1. A quantum dot, shows an electron trajectory constituted
by straight-line segments l1; l2; :::; l8; which starts from point A and
end at point B:

Figure 5.2. A quantum ring, shows an electron trajectory consti-
tuted by straight-line segments l1; l2; :::; l6; which starts from point
A and end at point B:

62
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5.1. Preface

Now let us discuss the spin dynamics, that is how the spin precess in any one

of straight-line segments under the e¤ect of spin-orbit coupling interaction (SOI).

In principle, we should divide the statement into four parts, they are Rashba SOI

e¤ect, Dresselhause SOI e¤ect with only linear term considered, Dresselhause SOI

e¤ect with linear and cubic terms considered, and the combination of Rashba and

Dresselhause (includes linear and cubic terms) SOI e¤ect, but for constricting the

content of this thesis we just represent the part of the combination of Rashba and

Dresselhause (includes linear and cubic terms) SOI e¤ect as representation. For

the all four cases, at �rst, we assume an electron transmits in a 2DEG system

which it may be a quamtum well (or quantum dot), Fig. 5.1, or a quantum ring,

Fig. 5.2. We assume there is none of an external magnetic �eld and the energy

of the electron is conserved and the collisions of the electron with the boundary

is elastic. That is the magnitude of the wave vector kk is �xed, it implies the

velocity of the electron is also �xed under the period of action. We assume the

electron moves along the p trajectory and label each moving straight-line segment

as li, i = 1; 2; 3; � � �; N . We just focus on one of these straight-line segments, say

li, where its length is li and its vector is kk;i, or simply denoted by kk (and its

velocity is vk;i, or simply denoted by vk) which they are �xed in this segment.
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5.2. Rashba and Dresselhause SOI E¤ect

Now, let us discuss the combination case of both SIA and BIA spin splitting,

that is the combination case of Rashba SOI e¤ect and Dresselhause SOI e¤ect.

We want to �nd its spin orientation, i.e., the direction of the e¤ective magnetic

�eld Beff and spin evolution operator in one of the straight-line, say li, under

the presence of SIA and BIA spin splitting. For quasi-2D systems in a quantum

well (QW) grown in the crystallographic direction [001] and apply the external

electrical �eld, we have the total Hamiltonian

Hso = HSIA +HBIA(5.1)

= � (�xky � �ykx) + �
�
�xkx

�
k2y �



k2z
��
+ �yky

�

k2z
�
� k2x

��
=

�
�ky + �kx

�
k2y �



k2z
���

�x +
�
��kx + �ky

�

k2z
�
� k2x

��
�y

with � > 0 and a material-speci�c coe¢ cient �, and we assume � > 0:

Then by applying the Eq. 3.18 [50], we get

H (t) =
e

m
B � S(5.2)

=
e

m

~
2
(�xBx + �yBy + �zBz)

that is
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(5.3)�
�ky + �kx

�
k2y �



k2z
���

�x =
e

m

~
2
�xBx =) Bx =

2m

e~
�
�ky + �kx

�
k2y �



k2z
���

(5.4)�
��kx + �ky

�

k2z
�
� k2x

��
�y =

e

m

~
2
�yBy =) By =

2m

e~
�
��kx + �ky

�

k2z
�
� k2x

��

(5.5) 0 =
e

m

~
2
�zBz =) Bz = 0

Here we get the corresponding e¤ective magnetic �eld Beff = B .

Beff = BnB(5.6)

=
2m

e~

q �
�ky + �kx

�
k2y � hk2zi

��2
+ [��kx + �ky (hk2zi � k2x)]

2nB

=
2m

e~
kBnB

where

(5.7) kB �
q �

�ky + �kx
�
k2y � hk2zi

��2
+ [��kx + �ky (hk2zi � k2x)]

2;
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(5.8) kk =
q
k2x + k2y;

(5.9) B =
2m

e~
kB;

we �nd even �, hk2zi and kk (or vk) are �xed, B is not �xed. We note that

for Rashba SOI e¤ect case (or Dresselhause linear term SOI e¤ect case), we have

� = 0 (or � = 0) then we �nd that if � (or �) and kk or vk is �xed, then B in �xed.

And for Dresselhause (linear and cubic term) SOI e¤ect case, we �nd even �, hk2zi

and kk (or vk) are �xed, B is not �xed, we get the same situation as Rashba and

Dresselhause SOI e¤ect case discussed here.

And then according to the relationship between spin rotation operator and

time evolution operator as the discussion in Section Spin Precession Extension, we

have

(5.10) H (t) =
e

m
S�BnB =

e

m
BS � nB = !BSnB ; !B �

eB

m

we �nd that since B is not �xed, so !B is also not �xed.

We also have
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(5.11) U(t; 0) = exp

�
�iHt
~

�
= exp

�
�iSnB!Bt

~

�
= exp

�
�iSnB�
~

�
; � = !Bt

and from the knowledge of fundamental quantum physics, we obtain

(5.12) kk =
2�

�
; � =

h

p
=

h

mvk

so then we �nd the velocity of the electron in the straight-line segment,

(5.13) vk =
h

2�m
kk =

~
m
kk:

And then we obtain

(5.14) ti =
li
vk
;

and

(5.15) �i = !Bti =
eB

m

li
vk
=
eB

m

li
~
m
kk
=
eB

~
li
kk
;
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here vk is the velocity of the electron traveling in the straight-line segment,

and ti is the time spent by the electron traveling the whole segment, and �i is

the precession angle of the spin of the electron under the both SIA and BIA spin

splitting SOI e¤ect.

Well, for this case, we de�ne a length magnitude, Lso, which means the spin

precesses a round after the electron travels along such length. That is

(5.16) Lso = vkt�i=2�

where

(5.17) t�i=2� =
2�

!
;

so then by applying Eqs. 5.7, 5.9, 5.10, and 5.13, we get

Lso =
~2�
m

kk
kB

(5.18)

=
~2�
m

kkq �
�ky + �kx

�
k2y � hk2zi

��2
+ [��kx + �ky (hk2zi � k2x)]

2

Well! we also must note that in this case even �, hk2zi and kk (or vk) are �xed,

the Lso is not a constant. It depends on the direction of the wave vector kk.
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Finally, we could get the equivalent spin evolution operator, Spi, for this

straight-line segment by applying Eqs. 3.42, 3.44 and 3.45.

D (nB; �i) = exp

�
�iS � nB�i

~

�
(5.19)

_= exp

�
�i� � nB�i

2

�
= 1 cos

�
�i
2

�
� i� � nBsin

�
�i
2

�

=

0B@ cos
�
�i
2

�
� inBzsin

�
�i
2

� �
�inBx � nBy

�
sin
�
�i
2

�
�
�inBx + nBy

�
sin
�
�i
2

�
cos
�
�i
2

�
+ inBzsin

�
�i
2

�
1CA

� Sli :

where nB parallel to Beff;li and �i = 2� � (li=Lso) :We note that for the pure

Rashba SOI e¤ect (or the Dresselhause linear term SOI e¤ect case), as � (or �) is

determined, the length Lso is �xed, too. But for the Dresselhause (linear and cubic

term) SOI e¤ect case, we �nd that even �, hk2zi and kk (or vk) are �xed, the Lso is

not a constant. It depends on the direction of the wave vector kk.We also �nd that

if Lso is large, �i becomes smaller, since Lso is not a constant for the Dresselhause

(linear and cubic term) SOI e¤ect case and the Rashba and Dresselhause SOI

e¤ect case explored here, so in these cases the precession of the electron exhibits

much more oscillation compared to the the cases of pure Rashba SOI e¤ect and

Dresselhause linear term SOI e¤ect.
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5.3. Spin Evolution

Assume we have the same operation environment as the cases discussed in

last section. Then according to the discussion of previous section, for one of the

segments, we could get its corresponding spin-evolution operator Sli for segment

li, Eq. 5.19. And due to the composition property of time-evolution operator, we

could describe the spin evolution operator Sp along the p trajectory as:

(5.20) Sp = SlN � SlN�1 � ::: � Sl3 � Sl2 � Sl1

with

Sli = D (nB; �i)(5.21)

= exp

�
�iS � nB�i

~

�
_= exp

�
�i� � nB�i

2

�
= 1 cos

�
�i
2

�
� i� � nBsin

�
�i
2

�

=

0B@ cos
�
�i
2

�
� inBzsin

�
�i
2

� �
�inBx � nBy

�
sin
�
�i
2

�
�
�inBx + nBy

�
sin
�
�i
2

�
cos
�
�i
2

�
+ inBzsin

�
�i
2

�
1CA

where
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(5.22) �i = 2� �
�
li
Lso

�
;

and nB (or Beff;li) can be gained from Eq. 5.6.



CHAPTER 6

Semiclassical Approach

6.1. Chaotic Scattering

The study of a physical system from the viewpoint of Quantum Chaos usually

starts with its classical dynamics. In open systems, e.g., the quantum transport,

we must consider a classical scattering problem. Since the trajectory exit the

scattering region after a �nite amount of time in open systems, the concepts of

chaos which developed for closed systems, and related to the long-time properties

of the trajectories must be re-examined. Here, we don�t attempt to review the

�eld of Chaotic Scattering [56], but just roughly present the information needed

to understand the quantum properties of ballistic cavities, and o¤er an example

[57] to illustrate.

For a scattering problem, the transient chaos is characterized by the in�nite

set of trajectories that stay in the scattering region forever. The periodic unstable

orbits of the scattering region (the strange repeller) and their stable manifold (the

trajectories that converge to the previous ones in the in�nite-time limit) form

the set. Chaotic scattering is gained when the dynamics in the neighborhood of

the repeller is chaotic in the usual sense, and this set has a fractal dimension in

the space of classical trajectories. When an incoming particle enters the scattering

72
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region it approaches the strange repeller, bounces around close to this set for a while

and it is eventually ejected from the scattering region (if the initial conditions to

be trapped is lost). If we scan a set of scattering trajectories (say, we �x the initial

position y at the left entrance of the cavity of Fig. 0.1 (a) and we vary the initial

injection angle �) studing the time � that the particle spends in the interaction

region, then we could get a fractal curve for � (�). We �nd an interesting aspect,

the in�nitely trapped trajectories give the divergences of � (�) and determine its

self-similar structure. To determine if our scattering is chaotic, the study of � (�)

is a quick way. The rate at which particles escape from the scattering region (�)

results from a balance between the rate in which nearly trajectories diverge away

from the repeller (it could be characterized by its largest Lyapunov exponent �)

and the rate at which the chaotic escaping trajectories are folded back into the

scattering region (depending on the density of the repeller, that is measured by

its fractal dimension d). More precise speaking, if we start (or inject) particles

into the scattering region, the survival probability at time � will be p (�) = e��� ,

with � = � (1� d) [58]. We may interpret the escape rate as the inverse of the

typical time spend by the particle in the scattering region. Let us see the examples

[57] shown in Fig. 6.1, the length distribution (which in billiards is equivalent to

the length distribution) for a cavity with the shape of stadium, and verify the

exponential law (solid line), p (L) = e��clL (with �cl = &=v and v the constant

velocity of the scattering particles). We notice that the exponential law sets in

very fast, just after a length corresponding to a few bounces.
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Figure 6.1. Classicsl distribution of length for stadium (solid line)
and rectangular (dash line) billiards. In the stadium, the distribution
is close to exponential after a short transient region and are very
di¤erent from the distributions for the rectangle, which show the
power-law behavior characteristic of non-chaotic systems.

We don�t surprise the appearance of a single scale, since in chaotic scattering

the particle moves ergodically over the whole energy surface while in the scattering

region. We also can estimate the value of the escape rate from general arguments

of ergodicity in the case of chaotic cavities with small openings, where the typical

trajectory bounces aroung many times before it escapes [59]. Assuming that the

instantaneous distribution of trajectories is uniform on the energy surface, the

escape rate is simply given by � = F=A, where F is the �ux through the holes

(equal to the size of the holes time v=�, the factor of �comes from integration over

the departing angles), A is the area of the two-dimensional scattering domain. We

�nd that in the case of small holes this simple estimate reproduces remarkably

well the escape rates obtained from the numerical determination of the survival

probability using classical trajectories.
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The reason we talk about the escape rate is due to the fact that, the energy

scale of the conductance �uctuation is given by this classical quantity. In addition,

we also �nd that the conductance �uctuations as a function of magnetic �eld are

governed by the area distribution.

6.2. Scattering Approach to the Electric Conductance

According to the Landauer-Büttiker approach, in the phase-coherent regiom

the resistance is not an intensve resistivity of the type de�ned in standard con-

densed matter books [60], e.g., electron-phonon interaction, but arises from the

elastic scattering that electrons su¤er which traversing mesoscopic sample between

the measuring devices. We treat the measuring devices as macroscopic electron

reservoirs. They are characterized by an electrochemical potential � which does

not vary while giving and accepting electrons. The role of the reservoirs is impor-

tant as they render the total system in�nite, and the spectrum continuous. It is

only in the reservoirs that the randomization of electron phases is asumed to take

place.

Figure 0.1 shows the simplest experimental set up with two-probe measure-

ment, where the sample is attached between two reservoirs whose electrochemical

potentials di¤er by the value of the applied voltage V , which is supposed to be

very small (�1 � �2 = eV � �1).

The scattering description necessitates a set of asymptotic states. In this case

such a set is provided by the propagating channels of the leads connecting the
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sample with the reservoirs. The three key elements of ballistic transport are sample,

reservoirs and leads.

Assuming the leads to be disorder-free, with hard walls (of width W ) in the y-

direction and in�nite in the x-direction, their eigenstates with energy " are products

particle-in a box wave -function

(6.1) �a (y) =

r
2

W
sin
��ay
W

�
(a is an integer) in the transverse direction and plane-waves propagating in the

longitudinal direction, with wave-vectors ka such that " = ~2= (2m)
�
(a�=W )2 + k2a

�
.

The N transverse momenta which satisfy this relationship with k2a > 0 de�ne the

2N propagating channels of the leads with energy ". Then we �nd that the incom-

ing lead-state are

(6.2) �
(�)
1(2);";a (r) =

1

v
1=2
a

e�ikax�a (y) ; r = (x; y) ; a = 1; 2; :::; N

The normalization factor v1=2a = (m=~ka)1=2 is chosen in order to have a unit

of incoming �ux in each channel. The subindex 1 (2) corresponding to channels

propagating from the left (right) reservoir with longitudinal momenta ka (�ka),

and ka explicitly positive. The outgoing lead-state �
(+)
1(2);";a (r) are de�ned as in

Eq. 6:2, but with the � of the exponent inverted. The time order of outgoing
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and incoming lead-states is obtained by giving an in�nitesimal positive (negative)

imaginary part to ka.

Then we get the scattering states corresponding to an electron incoming from

lead 1 (2) with energy ", in the mode a are given, in the asymptotic regions, by

(6.3) 	
(+)
1;";a (r) = f

�
(�)
1;";a (r) +

P
b=1~N rba�

(+)
1;";b (r) ;P

b=1~N tba�
(+)
2;";b (r) ;

x < 0

x > 0
;

(6.4) 	
(+)
2;";a (r) = f

P
b=1~N t

0
ba�

(+)
1;";b (r) ;

�
(�)
2;";a (r) +

P
b=1~N r

0
ba�

(+)
2;";b (r) ;

x < 0

x > 0
:

The 2N � 2N scattering matrix S, relating incoming �ux and outgoing �ux,

can be written in terms of the N �N re�ection and transmission matrices r and

t (r
0
and t

0
) from the left (right) as

(6.5) S =

0B@ r t
0

t r
0

1CA :

From the current conservation, we �nd that the incoming �ux should be equal

to the outgoing �ux, and therefore S is unitary (SSy = I):In terms of the total

transmission (T =
P

a;b jtbaj
2) and the re�ection (R =

P
a;b jtbaj

2) coe¢ cients, the

unitarity condition is expressed as T+R = N . Also, unitarity dictates that T = T
0
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and R = R
0
. In the absence of magnetic �eld, time reversal invariance furthermore

dictates that S is symmetric
�
S = ST

�
. For the case of cavities with geometrical

symmetries (up-down or right-left) are described by scattering matrices with a

block structure [61].

The set {	(+)1(2);";a} constitutes an orthogonal (but not orthonormal) basis [62][63],

(6.6)
R
dr	

(+)�
l;";a (r)	

(+)

l0 ;"0 ;a0
(r) =

2�

va
�aa0� (ka � ka0 ) �u0

Using the spectral decomposition of the retarded Green function in this basis

and taking into account the analytical properties of the transmission amplitudes

in the complex k-plane, we can relate the Green function to the scattering ampli-

tudes. Or alternatively, the formal theory of scattering (Lippmann-Schinger) can

be adapted to wave-guides and obtain [64].

(6.7)

tba = i~ (vavb)1=2 exp
h
�i
�
kbx

0 � kax
�i R

S
x
0
dy

0R
Sx
dy��b

�
y
0
�
�a (y)G

�
r
0
; r;E

�
;

rba = ��ab exp
�
2ikbx

0
�

(6.8)

+i~ (vavb)1=2 exp
h
�i
�
kbx

0
+ kax

�i R
S
x
0
dy

0R
Sx
dy��b

�
y
0
�
�a (y)G

�
r
0
; r;E

�
;
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where the integration take place at the transverse cross sections Sx on the left

lead and Sx0 on the right (left) lead for the transmission (re�ection) amplitudes.

We then have that the physical observables are obtained from the transmission

and re�ection coe¢ cients (T = jtbaj2 and R = jtbaj2) between modes, which, by

current conservation, do not depend on the choice of the transverse cross sections.

And we will use this freedom to take Sx and Sx0 at the entrance and exit of

the cavity (or both at the entrance for Eq. 6.8), and we will omit the x and x
0

dependences henceforth.The above equations give us an intuitive interpretation

as a particle arriving at the cavity in mode a, propagating inside (through the

Green function), and exsiting in mode b is quite straightforward. Expressing the

scattering amplitudes in terms of Green function is extremely useful for analytical

and numerical computations. The diagrammatic perturbation theory, as well as

semiclassical expansions, are built on Green functions.

We have presented the scattering theory for samples connected to wave-guides

so far. Now, we reproduce the standard counting argument to relate conductance

with scattering [65][1]. At the beginning of this section, we assume that the left

reservoir has an electrochemical potential �1 slightly than the one of the right

reservoir (�1 � �2 = eV ). In the energy interval eV between �2 and �1 electrons

are injected into right-going states emerging from reservoir 1, but none are injected

into left-going states emerging from reservoir 2. Therefore, there is a net right-

going current proportional to the number of states in the interval �1 � �2, given

by
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(6.9) I = gspine
NP
a=1

va
dna
d"

eV
NP
b=1

Tba = gspin
e2

h

 
NP

a;b=1

Tba

!
V

N is the number of propagating channels at the energy �1, the factor gspin = 2

takes into account spin degeneracy,
P

b=1~N Tba is the probability for an electron

coming in the mode a to traverse the system, dna=d" quasi-one-dimensional den-

sity of states (which for noninteracting particles satis�es that dna=d" = 1=hva).

Then we �nd that the two-probe conductance is just proportional to the total

transmission coe¢ cient of the microstructure.

(6.10) g =
I

V
= gspin

e2

h
T = gspin

e2

h
Tr
�
tty
	

where

(6.11a) T =
NP

a;b=1

Tba =
NP

a;b=1

tbat
�
ba

Note that the magnetic �elds that we consider will always be very weak, and

therefore the zero-�eld formulation of the conductance that we presented is su¢ -

cient for our purposes.
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6.3. Semiclassical Transmission Amplitudes

The scattering formalism presented in the last section is the base for the semi-

classical theory of ballistic transport that we develop here. Our goal is to calculate

the conductance through a cavity (like one in Fig. 0.1) by using Eq. 6.10 and last

part within a semiclassical approach. The Green function is the Laplace transform

of the propagator. The Van Vleck expression, together with a stationary-phase

integration on the time variable, leads to the semiclassical approximation for the

Green function [13]

(6.12) G
�
r
0
; r;E

�
=

2�

(2�i~)(d+1)=2
P

S(r0 ;r)

p
Ds exp

�
i

~
Ss

�
r
0
; r;E

�
� i

�

2
�s

�
:

The sum is over classical trajectories S, with energy E, going between the

initial and �nal points r = (x; y) and r
0
=
�
x
0
; y

0�
. Ss =

R
Cs
p � dq is the action

integral along the path Cs. In the case of billiards without magnetic �eld Ss=~ =

kLs, where Ls is the trajectory length. The factor Ds describing the evolution of

the classical probability can be expressed as a determinant of second derivatives

of the action [13]. As the geometry shown in Fig. 0.1 (a), if we denote by �

and �
0
the incoming and outgoing angles of the trajectory with the x-axis, Ds =�

v
���cos �0��� =m��1 ����@�=@y0�

y

���. Here we include in the phase �s the Maslov index
counting the number of constant-energy conjugate points and the phase acquired
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at the bounces with the walls when those are giving by an in�nite potential (hard

wall). We will always take the spatial dimensionality d = 2 in our calculation.

In the case of hard-wall leads, the transverse wave-functions have the sinusoidal

form of Eq. 6.1. Using the semiclassical expression, Eq. 6.12, of the Green function

appeared in last section, we see that, for lrge integers a, integral over y will be

dominated by the stationary-phase contribution occurring for trajectories starting

at points y0 de�ned by

(6.13)
�
@s

@y

�
y0
= �py = �

�a~�
W

; �a = �a:

The dominant trajectories are those entering the cavity with the angles ��a such

that sin ��a = �a�=kW . Thus, the initial transverse momentum of the trajectories

equals the momentum of the transverse wave-function. As always in this type of

reasoning, we have assumed that we could interchange the order of the integration

and the sum over trajectories. Integrating the gaussian �uctuations we have

(6.14)

tba = i

r
vb
2W

R
dy

0
�b

�
y
0
� P

�a=�a

P
S(��a;y

0 )

sgn (�a)
p
Ds exp

�
i

~
Ss

�
y
0
; ��a;E

�
� i

�

2
�s

�

The reduced action is
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(6.15) S
�
y
0
; ��a;E

�
= S

�
y
0
; y0

�
��a; y

0
�
;E
�
+
~��a
W

y0

�
��a; y

0
�
:

The prefactor is now given by D = (v cos �
0
)�1
���@y=@y0�

�

��, and the new index
v (that we still call Maslov index) is increased by one if

�
@�=@y

0�
y0
is positive. At

this intermediate stage we have a mixed representation, with trajectories starting

with �xed angle (��a) and �nishing at points y
0. A new stationary-phase over y

0

calls for. Here we will assume that trajectories are isolated and we can perform

the y
0
integration by stationary phase. The �nal points y

0
0 are selected according

to

(6.16)
�
@s

@y0

�
�a

=

�
@s

@y0

�
y

= py0 = �
�b~�
W

; �b = �b

implying that the trajectories have an outgoing angle ��b such that sin ��b =

�b�=kW . Therefore the semiclassical expression for the transmission amplitude can

then be casted as [66]

(6.17) tba = �
p
2�i~
2W

P
�a=�a

P
�b=�b

P
S(�b;�a)

sgn
�
�a�b
�q

~Ds exp

�
i

~
~Ss
�
�b; �a;E

�
� i

�

2
~�s

�

The reduced action is
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(6.18) ~S
�
�b; �a;E

�
= S

�
y
0

0; y0;E
�
+
~��a
W

y0 �
~��b
W

y
0

0:

For billiards it can be written as ~S = ~k ~L, with ~L = L+ ky0 sin ��a� ky
0
0 sin ��b:

The prefactor is now given by

(6.19) ~Ds =
1

mv cos �
0

����� @y@�0
�
�

����
and the Maslov index is

(6.20) ~v = v +H

 �
@�

@y

�
y0

!
+H

  
@�

0

@y0

!
�

!
;

where H is the Heaviside step function.

The similar arguments can be used to write the semiclassical re�ection ampli-

tude in terms of trajectories leaving and returning to the cross section at the left

entrance with appropriate quantized angles. We note that there are two kinds of

trajectories contributing to G
�
y
0
; y;E

�
in the case of re�ected paths: those which

penetrate into the cavity and those which go directly from y to y
0
staying on the

cross section of the lead. It is only trajectories of the �rst kind which contribute

to the semiclassical re�ection amplitude, as trajectories of the second kind merely

cancel the �ba of Eq. 6.8.
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Here we notice that from the quantum point of view, since the Gutzwiller trace

formula must reproduce a deltd-function spectrum, it can be conditionally conver-

gent at most, while the quantum transmission amplitude is a smooth function of

the Fermi energy and so the semiclassical sum can be absolutely convergent . And

we also �nd that the simple prescription for the Maslov indices makes possible the

numerical evolution of the semiclassical transmission amplitude.

6.4. Spin Conductance

Following the point of view of scattering approach to the charge conductance

to study the spin dependent conductance [67], we de�ne

(6.21) g���
 =
e2

h

P
a;b

t��ba t
�
�

ba

where t��ba is the transmission amplitude of an electron at Fermi energy EF

propagating from the channel (or mode) a and the spin state � in the injector to

the channel (or mode) b and the spin state � in the collector, the same symbol-

ization to t�
ba . And t
��
ba is the �� element of the matrix tba which operates on spin

states. Then we have the usual spin independent electric conductance is simply

g = e2=h
P

a;b;�;�

���t��ba ���2.
If from the injector a spin oriented in the x axis is injected, and its orientation

turns to the y axis when the spin is collected at the collector, let gyx represent

this spin current passing through the loop. Then the matrix elements can then be

written as
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(6.22) gji =
e2

h

P
a;b

Tr
n
�itba�jt

y
ba

o
where �i are Pauli matrices with i = x; y; z. By measuring the polarization

of the emitted light [68][69][70], the spin orientation can be detected. In such

an experiment, the polarization matrix of the emitted photons can be derived if

we know gji. By applying the saddle point approximation to the path integral

representation of the transmission amplitude, the quasiclassical expression of g���


can then be obtained as

(6.23) g���
 =
e2

h

P
p;q

t0 (p) t
�
0 (q)S

��
p S�


�

q ;

where t0 (p) is the spin independent transmission amplitude for the pth classical

trajectory, S��p is the matrix element of the operator of evolution of spin state along

the pth trajectory, the same symbolization to S�
q . In Fig. 5.2, one such trajectory

is schematically plotted as the zigzap line. The explicit expression [66][57][71] of

t0 (p) is not needed for the present work, because we only need to know its general

statistical properties determined by the particle chaotic motions. The dependence

of the transmission on spin degrees of freedom is represented by the spin evolution

operator Sp along the p trajectory. From Eq. 5.1 Sp could be expressed as
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(6.24) Sp = Ts exp

�
� i
~
R
p
Hsodt

�

The symbol Ts means a Ts order such that the operators in the integrand in Eq.

6.24 are ordered along the path with the operator corresponding to the later part

of the path length operating �rst. We also �nd for di¤erent spin-orbit interaction

(SOI), the Sp can also be expressed as Eqs. 5.20 and 5.21.

In Equation 6.23 each quasiclassical amplitude t0 (s) contains a phase factor

exp(2�ils=�). Since the path lengths lp and lq of the trajectories in Eq. 6.23 are

much longer than the electron wavelength �, in the sum the terms with p 6= q

oscillate rapidlly even for a small variation of the particle energy, as well as for

a slight change of the loop shape and/or the con�guration of charged impurities.

On the other hand, the terms with p 6= q do not oscillate. If one is not interested

in mesoscopic �uctuations of the spin conductance, only the terms with p = q

need to be retained. Accordingly, from Eq. 6.23 we obtain the so averaged spin

conductance hg��i as

(6.25) hg��i =
e2

h

P
p

jt0 (p)j2Dp
��;
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where

(6.26) Dp
�� =



x�
��Syp ��S���Sp�� x�� ;

and where x� means the unit initial spinor with the spin state �, S� is the spin

operator for measure the spin state �.

For � means i, i = x; y; z, according to Eq. 6.22, we get the so averaged spin

conductance hgjii as

(6.27) hgjii =
e2

h

P
p

jt0 (p)j2Dp
ji;

where

(6.28) Dp
ji = Tr

�
�iSp�jS

y
p

	
:

The so averaged electric conductance is simply 2e2=h
P
p

jt0 (p)j2, and is spin

independent.

In the semiclassical approximation, the spin independent transmission rate

jt0 (p)j2 in Eqs. 6.25 and 6.27 is approached by the transmission ratio of the

classical trajectory ensemble, in which jt0 (p)j2 is described by [57][66]
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(6.29) jt0 (p)j2 = fp (y; �p) cos (�p) =N;

where N is the total number of the injected trajectories and fp (y; �p) = 1,

if the trajectory with initial conditions (y; �p) is transmitted and fp (y; �p) = 0

otherwise.

6.5. Spin Evolution

Now, let us give the calculation basis of the simulation for spin relaxation case.

The procedure of the deduction of the calculation formulae is almost similar to the

one of spin conductance as listed above. The calculation basis for the simulation

in spin relaxation case is deduced from equation

(6.30) P ic (t) =
P j (0)

2

R
Rij (r; r0; t) j� (r0 �R)j2 d2r0

here it is the expression of the semiconductor spin polarization. And

(6.31) Rij (r; r0; t) = Tr
�
�iU (t; r; r0)�jU y (t; r; r0)

	
where U (t; r; r0) could be represented as
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(6.32) U (t� t0; r; r0) = T exp

�
� i
~
R
p
Hsodt

�
,

it is the unitary matrix represents the spin dependence part of the Green�s

function, and Hso is the Hamiltonian of spin-orbit interaction under the e¤ect of

Rashba and Dresselhause term case, see Eq. 5.1, and T is time ordering operator,

reference Eq. 6.24. Equation 6.30 describes the spin evolution of a particle initially

distributed around the point R with the probability density j� (r0 �R)j2 : The

particle starts its classical motion from the point r0 with the momentum ~k at

time zero and arrives in the position r at time t.

We do not intend to deduce detailedly the expression 6.30, the detail deduction

procedure had been done by C.H. Chang et al [72], the basic idea about the

deduction is given the two component spinor eigenfunction 'n corresponding to

the nth quantized energy level En, and then by applying it we could get the time-

dependent wave packet

(6.33)  (r; t) =
P
n

Cn'n (r) e
�iEnt=~,

where
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(6.34) Cn =
R
'yn (r) (r) d

2r

and then in terms of  (r; t) the time dependent spin polarization could be

expressed as

(6.35) P (t) =
P
��

�R
�

 (r; t)��� � (r; t) d
2r.

Then by introducing the retarded and advanced Green�s function and their cor-

responding semiclassical approximation and using the saddle point approximation

in them, we get the desired Green�s function

(6.36) Gr (t� t0; r; r0) =
1

2�

P
p

p
J (r; r0)e

i
~S0(t�t

0;r;r0)U (t� t0; r; r0)

which it is a sum over all classical trajectories p, and J (r; r0) is the spin inde-

pendent monodromy and S0 (t� t0; r; r0) is the spin independent classical action,

U (t� t0; r; r0) is the spin dependent part of the Green�s function shown in Eq. 6.32.

And then by applying the Green�s function into Eq. 6.35 we obtain a semiclassical

expression for the spin polarization. Finally we proceed some simpli�ed procedure

in it, we get the �nal form, Eq. 6.30, which o¤ers the ingredient to deduce the

calculation basis of our simulation.
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In our simulation we are interested in the spin evolution averaged over an

ensemble of electrons with uniformly distributed coordinates R and random di-

rections of the initial momenta on the Fermi surface. So after averaged Eq. 6.30

over R and the angular coordinate �k of the momentum k, we obtain the simple

expression

(6.37) P ic (t) =
P j (0)

4�

R
Rij (r; r0; t) d2r0d�k:

Eq. 6.37 is the basic equation for our numerical simulations of the spin polar-

ization. We assume there are N particles initially with polarization in j direction

at time t = 0, which each particle owns its corresponding trajectory and the spin

should evolve as it travels along the trajectory as time goes by. Let Spj (t) be the

j component of the electron spin at time t for the pth trajectory. Then in our

simulation the integral in Eq. 6.37 could be replaced by the sum

(6.38) P ic (t) =
1

N

NP
p=1

Spj (t)

where the sum runs over N individual trajectories.

The content shown above is the calculation basis of numerical simulation, it

is deduced from the point of view of strict deduction of quantum mechanics and

mathematical skill of semiclassical approach, here we should present an alternative
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approach to view intuitively the spin polarization evolution to be the stop of Part

I.

Reference last section of this chapter, we have the starting point (i.e. the

Landauer-Büttiker approach) for the deduction of averaged spin conductance hgiji,

see Equations 6.21 and 6.25 �6.29 etc. These equations are appropriate for the

situation of open system. For closed system, we could imagine that both the

inlet and outlet are lay in the closed system (or we could say the both inlet and

outlet constitute the closed system itself), so for each electron at Fermi energy

EF propagating from the channel a and the spin state � in the injector (inlet)

to the channel b and spin state � in the collector (outlet) for the calculation of

spin conduction is just equivalent to one of electron of the ensemble with initial

spinor state � to evolve to the �nal spinor state � in terms of the spin evolution

operator Sp by traveling along the corresponding trajectory p. And for the electron

ensemble, the distribution of the initial traveling direction is uniform (random),

that is the weighting factor jt0 (p)j2 could be treated as 1=N ; so spin conduction

calculation of the ensemble in open system (i.e. right the spin polarization in closed

system) is just the average spin polarization of the ensemble electrons for someone

speci�c �nal spin polarization direction as Eq. 6.38 shown.



Part 2

Simulation and Discussion



CHAPTER 7

Spin Relaxation

As we mention in Part I, the key indicator in this thesis is that we treat the

electrons transport in the mesoscopic system (e.g., regular or chaotic quantum

systems, say circular quantum dot, quantum ring, etc.) as rigid balls travel in the

cavity it may collide with the impurities and the wall of the cavity, that is we have

a ballistic cavity since �F � a� lT � l�.

We note that for the spin relaxation simulation the main parameters are the

categories of operation systems (e.g., regular or chaotic systems), operation cases

(e.g., Rashba term case or Dresselhause term case or the combination of Rashba

and Dresselhause terms cases, with various wave vectors, here we denote them as

Figure 7.1. Con�guration of Beff for various k in real material.

95
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Figure 7.2. Five operation systems.

k1, k2, k3 and k4, shown in Fig. 7.1), Lso (which means the strength of e¤ective

magnetic �eld Beff), the initial spinor (i.e., the direction of initial polarization),

mean free path, lm, the size of operation system, and the number of acting particles,

and so on. In this chapter, we shall mainly talk about the following topics[73], (1)

the overview of spin relaxation in the regular systems (include (A) circular dot with

smooth boundary, Fig. 7.2, (B) triangular dot with smooth boundary, Fig. 7.2),

and in the chaotic systems (include (C) circular dot with rough boundary, Fig. 7.2,

(D) Sinai quantum dot, we create a triangle-like quantum dot but with a section

cut in one of its acute angles, Fig. 7.2, and (F) two-dimensional bulk-like cavity, see

Fig. 7.2, for this system we minik there are impurities existing in the cavity), (2)

the equivalence between Rashba term e¤ect and Dresselhause linear term e¤ect in

spin relaxation, (3) the equivalence between RMS of Beff and Beff con�guration,
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that is for di¤erent traveling segment-like trajectories, their corresponding Beff

which with various magnitude and direction, could be treated as they own the

same magnitude, i.e., the root-mean-square (RMS) value of the whole Beff , and

their corresponding direction is the same as the original individual Beff , (4) cases

of slow down spin relaxation and never relaxation of spin conductance, and so on.

7.1. Overview of Spin Relaxation Pattern (Beff Con�guration

Normalized Case)

At �rst let us see the overview of spin relaxation patterns for �ve di¤erent

systems (we roughly divide them into regular systems, Sys: = 1, the circular dot

with smooth boundary, Sys: = 2, the triangular dot, and chaotic systems, Sys: =

3, the circular dot with rough boundary, Sys: = 4, the Sinai billiard, and the more

chaotic system, Sys: = 5, two-dimensional bulk-like system, we must note that

in fact the system is a stochastic open system, but not closed system, the elastic

collision length l distributed according to the Poisson law Prob(l) = e�l=lm=lm,

where lm is the mean free path. This is just the system where the conventional

D�yakonov-perel�spin relaxation has to be observed), and under the action of nine

(or ten) di¤erent kinds of Beff con�gurations (we denote them as R case, Rashba

term case, D � k1 s D � k4 cases, Dresselhause linear and cubic terms cases, as

k (wave vector) varies from small to large, and D� k1 modi�ed case, it is just the

Dresselhause linear term case, and RD � k1 s RD � k4 cases, the combination

of Rashba term and Dresselhause linear and cubic terms cases, as k varies from
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small to large). In gererally, here we assume Lso = 2 (indicator of strength of Beff ,

we normalize the whole Beff con�gurations for nine operation cases, that is the

maximum of Beff denoted by Lso = 2), lm (mean free path) = 1, R (radius of

circular dot) = 1, and adjust the size of triangular dot and Sinai billiard in order

to get the all �ve systems with the same area, and we also assume about 1000

particles (electrons) to be operated initially, �nally we treat the polarization of

initial spinor orientated in z direction and the spin detection also orientated in z

direction, the situation is symboled by P zc .

Well! at �rst glance, what do we see in Fig. 7.3? We �nd the resembles between

the nine cases except for RD � k1 case, this phenomena seem to mean that the

dominated factor which causes the relaxation pattern is the operation system, not

operation cases. In general speaking, the regular system (black and red lines), after

quick drop of the magnitude of initial spinor, we set P zc (t = 0) = 1, they remain as

constant as time goes by. And the drop magnitudes for the two regular systems,

circular dot and triangular dot, depend on the operation cases. it�s a so magic thing

that we observe that in D�k2, RD�k1 cases, the spin conductance of circular dot

system drops more large than that of triangular dot system. Does it mean the Beff

con�guration has something deep implication with the shape of operation system?

For chaotic systems (green and blue lines), they exhibit relaxation aspects as time

goes by. But we note that the more sensitive to operation cases for Sys: = 3

(green line), since it behaves like more chaotic system (Sys: = 5) under the more

�uctuated operation cases (e.g. D� k2 s D� k4, RD� k2 s RD� k4). This is a
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Figure 7.3. Spin relaxation rate under the viewpoint of e¤ect of di-
rection of Beff in the �ve operation systems.

so interesting phenomenon worth studying advancedly. And we also note that the

almost same aspecte between R and D � k1 cases. Yes! it is true, R and D � k1

cases are equivalent, we should mention them in Sec. Equivalence between R and

D � k1 Modi�ed Cases below. We also �nd the most special case, RD � k1 case,

it seems to own the ability to retain the spin polarization regardless the operation

systems what they belong. Of course this is due to the special Beff con�guration

for this case, we also should discuss it more detailedly in Sections Relaxation Rate
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Figure 7.4. Sum up of nine operation cases into one under the view-
point of e¤ect of direction of Beff in the �ve operation systems.

Slow Down Case and Relaxation Rate Never Decay Case below. Finally we see

the very fast relaxation system, Sys: = 5, the more chaotic system consistutes a

particular category of systems. Since in basically it belongs to open system, it

owns its special relaxation pattern, we should talk about it latter.

Fig. 7.4 shows the sum up of nine di¤erent operation cases into one for di¤erent

systems. From the �gure we could obviously distinguish the e¤ect of systems. For

Sys: = 1, it dominates the relaxation pattern regardless the operation cases, but

for Sys: = 2, intrinsically it dominates the relaxation pattern, but the operation

cases could a¤ect the spin polarization drop signi�cantly. And for Sys: = 3, we

�nd the signi�cant role of operation cases, di¤erentBeff con�guration could causes

various relaxation pattern, we see that the more regular Beff con�guration, the
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Figure 7.5. The e¤ect of Lso in relaxation rate.

more slow down relaxation aspects appeared. Sys: = 4 shows the typical character

of chaotic system, it is less a¤ected by operation cases. Sys: = 5 also show the

dominated role of the system, we should talk about it more detailedly in Sec.

Equivalence between RMS of Beff and Beff Con�guration below.

Next let�s see what happened as we vary the Lso (that is we vary the corre-

spondent magnitude of Lso with the magnitude of the normalized maximal Beff).

It is obvious that the more larger Lso, the more less relaxation trend appeared,

Fig. 7.5.

We also get that if we vary the direction of polarization of initial spinor and

the direction of polarization of detection, the much di¤erent relaxation patterns

appeared. Fig. 7.6 shows the so much informations about the e¤ect of the direction
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Figure 7.6. The initial spinor input in +x and +y directions for R,
D � k1, RD � k1 and RD � k4 cases in all �ve operation systems.

of initial spinor input. We maybe retain the advanced research about it in other

thesis in future, so here we just indicate few astonishing aspects come from it. We

�nd that the equivalence between R and D � k1 cases in all �ve systems both

for the initial spinor input in +x and +y directions, it is not so surprised. The

surprised thing is that the much di¤erent relaxation patterns between di¤erent

kinds of categories of regular and chaotic systems, say circular-dot-like systems

(e.g. Sys: = 1 and Sys: = 3) and triangular-dot-like systems (e.g. Sys: = 2

and Sys: = 4), we �nd that the aspect of faster relaxation rate in circular-dot-like

systems than that of triangular-dot-like systems in R, D�k1, RD�k1 and RD�k4

cases and the aspect of reversed relaxation rate for the regular and chaotic cases
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of circular-dot-like systems compared with that of triangular-dot-like systems in

R, D � k1 and RD � k1 cases. And the so astonishing relaxation patterns in R,

D � k1 and RD � k1 cases in Sys: = 1, they show so quick drop and oscillated

aspects about the relaxation patterns. I think that the reason is due to since cases

of R, D � k1, RD � k1 exhibit more regular con�guration, they in�uence the

intrinsic character of regular and chaotic systems. And for R, D � k1, RD � k1

and RD � k4 cases in Sys: = 5 we also �nd a so much interesting phenomenon

which seems to relate to spin relaxation time T1 (often called longitudinal or spin-

lattice time, it seems to be the case of intial spinor input in +z direction) and

spin dephasing time T2 (also called transverse or decoherence time, it seems to

be the case of intial spinor input in +x and +y directions), look at these cases

and compare them with Fig. 7.9 in Sys: = 5; if we add the e¤ect of B0 (in our

simulation B0 = 0, the existence of B0 should slow down the relaxation rate in the

case of intial spinor input in +z direction in Sys: = 5) as described in subsection

Spin Relaxation Time and Spin Dephasing Time of chapter 1 we seem to able to

get the consistency about the statement T2 6 2T1. Well! we stop to discuss it

more, but we must note that it is not a simple thing to indicate the correlation

between the relaxation pattern and the various operation factors.

Before we end this section, we indicate an interesting thing, we �nd a similar

motional narrowing aspect for spin relaxation, we observe that as we reduce the

size of the system, the less relaxation aspect happened. The same phenomenon
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Figure 7.7. The e¤ects of lm (length of mean free path) and size of
system in relaxation rate.

also be observed as we change the length of the mean free path lm in Sys: = 5,

the more longer the lm, the less relaxation trend exhibited, see Fig. 7.7.

Fig. 7.7 also shows the e¤ect of number of particles (electrons) for simulation,

the much larger amount of particles, the relaxation curve exhibits less �uctuant

aspect.

7.2. Some Aspects of Spin Relaxation Patterns (Beff Con�guration in

Real Material)

Before we discuss the other interesting aspects about the relaxation patterns,

now let�s represent the case of spin relaxation in real material.

Fig. 7.1 shows the nine di¤erent operation cases in real material, here we

assume the strength of Beff of R case as the reference, that is it corresponds to
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Figure 7.8. Spin relaxation rate under the viewpoint of e¤ect of real
(calculated) aspect of Beff in the �ve operation systems.

Lso = 2, for the stronger Beff , the corresponding Lso is smaller, and reversely the

weaker Beff corresponds to larger Lso.

At �rst glance these relaxation patterns shown in Fig. 7.8 seem to exhibit less

correspondence. Compare with Fig. 7.3 and look at Fig. 7.1, for systems 1~4, we

�nd that since the Beff con�gurations are weaker in D� k1 and D� k2 cases, so

their spin relaxation patterns exhibit slow down aspect, but for D � k4, RD � k1

~RD � k4 cases, the more stronger Beff con�guration, the more quick relaxation
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Figure 7.9. Sum up of nine operation cases into one under the view-
point of e¤ect real (calculated) aspect of Beff in the �ve operation
systems.

patterns appeared. And for Sys: = 5, the variation of strength of Beff also plays

the same role as statement above. We should see the details latter.

Fig. 7.9 shows the sum up of nine di¤erent operation cases into one for di¤erent

systems. Compare with Fig. 7.4, we observe the similar trend between them. The

most di¤erence is the variation of Beff con�guration reduces the intrinsic chacter

of systems, especially for Sys: = 1 and Sys: = 4. these aspects imply that the

strenth of Beff con�guration owns the more powerful ability to a¤ect the relax-

ation pattern than the various Beff con�guration itself for some typical operation

systems. Another important thing should be noted is that in our simulation we

use unitless time parameter. In order to indicate the reasonableness about our
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simulation, we should convert the unitless time parameter into real unit. We �nd

that for chaotic system the spin relaxation time (up to zero) is about 20(ns), for

more chaotic system the relaxation time (up to zero) is estimated about 100(ps).

Well! they lie in the reasonable spin relaxation time which spans from several

pico-seconds to several micro-seconds [21].

7.3. Equivalence between R and D � k1 Modi�ed Cases

See Fig. 7.3 we �nd the spin relaxation patterns in Rashba term case (R case)

and Dresselhause linear and cubic terms case (D� k1 case) (here D� k1 modi�ed

case (Dresselhause linear term case) is almost the same as D�k1 case) are almost

the same. The reason is due to the con�guration of Beff for R case andD�k1 case

are almost the same except for the rotation trend, for R case if we view the wave

vector variation in counter-clock-wise (C.C.W.), the corresponding Beff rotates in

C.C.W. and they all have the same magnitude, and for D � k1 case if we view

the wave vector variation in C.C.W., we �nd the corresponding Beff rotates clock-

wise (C.W.) and they also own the same magnitude Fig. 8.24. We then �nd that

for the ensemble electrons which own di¤erent propagating direction individually,

the C.C.W. or C.W. rotation of Beff doesn�t matter at all about the ensemble

results of spin evolution, so we get the interesting result. We should discuss it

more detailedly in Chapter 8.
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Figure 7.10. Equivalence between RMS of Beff and Beff con�g-
uration in the relaxation under various operation cases in two-
dimensional bulk-like system.

7.4. Equivalence between RMS of Beff and Beff Con�guration

Reference Fig. 7.10 we �nd that in the two-dimensional bulk-like system the

spin relaxation patterns under the action of each operation cases are almost the

same as that under the action of their corresponding root-mean-square (RMS)

magnitude of the e¤ective magnetic �eld Beff . The reason is due to, for exam-

ple the RD � k3 case, in someone moment each particles in the two-dimensional
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bulk-like system own various propagating direction, and regardless of the corre-

sponding direction of Beff for someone speci�c propagating direction (i.e. the

con�guration of Beff), each particles su¤ered di¤erent degree of precession, we

assume the equivalence between the RMS of Beff and the Beff con�guration for

someone operation case is meant that we assume the e¤ect of the average of the

more �uctuated degree of precession for each particles in RD � k3 case is almost

the same as that of the average of the less �uctuated degree of precession for each

particles in the RMS of Beff of RD � k3 case. Then we obtain the funny result

and the mathematical representation is shown below

NP
n=1

P zn;someone�specific�operation�case(t)

N
(7.1)

�

NP
n=1

P zn;RMS�of�Beff�of�someone�specific�operation�case(t)

N

where N is the number of particles used in simulation, N � 1000 in our simu-

lation.

Look at the R case of this �gure, we also �nd the excellent �t between simu-

lation result and theoretical prediction of longitudinal DP relaxation, that is the

dash lines indicate the results of well-known expression for the longitudinal DP

relaxation PDP (t) = exp(�4tlm=L2so), the relevant discussion could be found in the

thesis of C.H. Chang et al. [72]
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Figure 7.11. Relaxation rate slow down case under speci�c operation
cases with speci�c initial spinors input in three di¤erent systems.

7.5. Relaxation Rate Slow Down Case

From the Beff con�guration, Fig. 7.1, we get a hint that if we assume someone

special initial polarization direction, maybe we could get something special results,

we should continue this talk in Chapter 8. Fig. 7.11 shows three systems, Sys: =

1; 3 and 5, each with two di¤erent initial spinors input, spinor pn :
= (cos(�=2=2);

sin(�=2=2) exp(i�=4)) and spinor pm :
= (cos(�=2=2); sin(�=2=2) exp(i3�=4)), acting

on RD�k1 and RD�k4 cases individually. From this �gure we observe the trend

that if the adequate match between initial spinor and operation case existence, we

could get the relaxation slow down aspects. The aspects is more astonishing in

systems 3 and 5 under the operation of RD � k1 case. In fact, we should �nd in
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Figure 7.12. Relaxation rate never decay case under speci�c opera-
tion cases with speci�c initial spinors input in three di¤erent sys-
tems.

next section and Chapter 8, the key role which causes such aspect is the operation

case, that is if we could create someone special spinor evolution behavior which

owns something special correlation with operation case, theoretically we could get

many various relaxation aspects (patterns) as we desire.

7.6. Relaxation Rate Never Decay Case

O.K. let us end this chapter by a never decay case in terms of practical ap-

plication. We will give the mathematical description in Chapter 8. Here we just

represent the simulation results. Fig. 7.12 shows a never relaxation (decay) case

as we create a special Beff con�guration, that is the combination of the same

strength of R case and D� k1 modi�ed case, the direction of Beff of such special

operation case always direct in the same direction (or in opposite direction). Then

if we input a corresponding initial spinor which parallels (or anti-parallels) to this
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direction, we get a never relaxation polarization output as the spinor evolution. In

fact it is the ideal goal which the engineers desire to create in spintronics in future.



CHAPTER 8

Spin Transport

Now let us see the simulation results of spin transport in following four kinds

of operation systems, and discuss some interesting phenomena revealed by them.

Here the operation conditions are similar to that of the previous chapter Spin

Relaxation, that is we have �F � a � lT � l�, where l� is the phase relaxation

length, lT is the transport mean-free-path, a is the size of the operation system,

�F is the Fermi wavelength, so that we can treat the transport cases in terms of

ballistic cavities viewpoint and then apply semiclassical approximation to solve

them as the statement in Chapter 6 of Part I.

Figure 8.1. Four kinds of operation systems for spin transport simulation.

113
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In our simulation the main purpose is to �nd out some signi�cant implication

of the simulation results (that is the simulation patterns) related to the main

simulation parameters. They are the operation systems[73] (here we divide them

into four kinds, Fig. 8.1, (a) and (b) are ring-like open systems, they belong to

regular system, the main di¤erence between them is the ratio of the radius of

inner circle and the radius of outer circle, for (a) we have ri : ro = 29=30 : 1,

for (b), ri : ro = 9=10 : 1, (c) and (d) are chaotic systems, the main di¤erence

between them is the ratio of the radius of inner circle and the half length of the

outer square, for (c) we have ri : ro = 9=10 : 1, (d) ri : ro = 8=10 : 1), the

operation cases (here as the conditions discussed in Chapter 8 Spin Relaxation,

we divide the operation cases into nine (or ten) kinds, they are Rashba term

case, Dresselhause term cases (they include linear and cubic terms) for di¤erent

magnitude of wave vector, and the combination of Rashba and Dresselhause terms

cases for di¤erent magnitude of wave vector, Fig. 7.1, and we also consider a special

case of operation case, which is the combination of Rashba term and Dresselhause

linear term, and the strength (or magnitude) of the e¤ective magnetic �eld for

both cases are the same), the initial spinor (mainly we vary the initial spinor from

expectation value in +x direction, expectation value in +y direction, expectation

value in +z direction to the expectation value in arbitrary direction), and the

scale of the operation cases (that is we divide this parameter into two situation,

one is we treat the maximal magnitude of the Beff for various operation cases

correspond to the same magnitude of a new parameter Lso which it means the
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degree of precession and we assume jBeff j / 1=Lso, the purpose of such treatment

is to o¤er the information of the e¤ect of the con�guration of Beff releted to the

simulation patterns, another is we treat the various operation cases as a whole, we

assume the magnitude of Beff in operation case, R case, as a reference, that is

we assume that it corresponds to a speci�c Lso value, and then depending on the

real situation of Beff for di¤erent operation cases, the di¤erent magnitude of Beff

corresponding to a scaled magnitude of Lso, we execute such simulation is try to

o¤er the information to see what happened about the e¤ect of real con�guration

of Beff for various operation case related to simulation patterns), and so forth.

In this chapter we mainly divide it into three parts, part one says the overview

of the simulation patterns, it talks about the characters and implication of the

simulation patterns for all operation parameters, etc., in part two we talk about

the equivalence of Rashba term case (i.e. R case) and Dresselhause linear case

(generally speaking, it is the D�k1 case), and in part three we represent a special

case, that is the combination of Rashba term and Dresselhause linear term case

which the strengths of the maximal Beff for the two cases are the same, we �nd a

never decay interesting phenomena in simulation pattern.

8.1. Overview of the Conductance Decay Patterns (Beff Con�guration

Normalized Case)

In principle the conductance pattern is governed by the following factors, sys-

tem categories, system size, Beff con�guration and the initial input of spinor, and
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Figure 8.2. Spin conductance hgxxi v.s. 1=Lso under the action of
normalized Beff in more narrow circular ring system.

so on. Figures 8.2, 8.3 and 8.4 show the conductance versus 1=Lso in circular ring

with inner radius Ri = 29=30, outer radius Ro = 1 and the width of both inlet and

outlet w = 0:1 for initial spinor (or polarization) in x, y and z direction under the

action of various Beff con�guration. Here we have normalized the maximum of

Beff to be 1 for various kinds of operation cases. In Fig. 8.2 we �nd the similarity

between R case and RD � k2 case, they show the hgxxi decays very fast to the

�x direction and then gradually comes back to someone minus hgxxi value, that is
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Figure 8.3. Spin conductance hgyyi v.s. 1=Lso under the action of
normalized Beff in more narrow circular ring system.

very interesting that the hgxxi seems not to approach zero even in the very large

strength of Beff , i.e. in large value of 1=Lso. We also �nd the similarity between

D � k2 and D � k4 cases, they show the oscillated decay to zero as 1=Lso goes

by. And we also �nd the slightly decay pattern in D � k3 and RD � k4 cases,

they don�t exhibit the suddenly deep decay behavior at the decay portion. We also

�nd the tendency of di¤erent oscillation decay period between RD� k2, RD� k3

and RD� k4 cases, and for the three cases they seem to exhibit the similar decay
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Figure 8.4. Spin conductance hgzzi v.s. 1=Lso under the action of
normalized Beff in more narrow circular ring system.

pattern. The most interesting decay pattern is D � k1 case and RD � k1 case,

in D � k1 case the decay pattern shows a very beautiful cone shape with almost

the same period of oscillation, the theoretical prediction has been done by A.G.

Mal�shukov et al. [67], and the simulation has been shown by C.H. Chang et

al. [72], the special regular behavior exhibits great applicability in future. For

the RD � k1 case, it shows a very special decay oscillation pattern. It seems to

exhibit a tendency similar to the pattern of D � k1 (or D � k4) case, but with
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an oscillation tendency attached in this decay pattern. In principle it shows a

deep implication that if we vary the initial spinor input, we could obtain the very

slowly decay pattern, or even creat a never decay pattern (we should discuss this

situation in below sections). Well! anyhow these various kinds of decay pattern

response the various Beff con�guration of di¤erent operation cases, see Fig. 7.1.

I think that the reason is very obvious, but it implies that we could creat various

conductance pattern as possibly as we could by create various Beff con�guration

for the possible application in future.

Now let�s focus on Fig. 8.3 and see what happened. At �rst glance we have

a strong impression about the similarity and strong correlation between the hgyyi

of R, D � k1, RD � k1 cases and hgxxi of R, D � k1, RD � k1 cases, Fig. 8.2.

The reason is due to the equivalence between pure Rashba term e¤ect and pure

Dresselhause linear term e¤ect, we should give a detailed explanation for them

in below section. We also �nd the similarity between R and RD � k2 cases, the

phenomena also be exhibited in Fig. 8.2, the reason is due to the similarity of Beff

con�guration of R and RD � k2 cases, Fig. 7.1. Besides we also �nd an obvious

di¤erence between hgyyi of RD�k1 case and hgxxi of RD�k1 case, it implies that

we can�t ignore the e¤ect of initial spinor input, and it also implies that someone

deep correlation between operation system, operation case (i.e. the con�guration

of Beff), and initial spinor input, and so on. For other operation cases they show

the similar decay pattern to that of Fig. 8.3.
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Next let�s see the pattern of Fig. 8.4. Well! it seems to exhibit a particular

decay pattern of its own. At �rst we �nd the similarity between R and D � k1

cases, it seems to tell us that something symmetry implication between the circular

ring operation system and R and D � k1 cases. And we �nd a very interesting

phenomena that for R, D�k1 s D�k4 and RD�k2 cases, they exhibit a residue

decay value, the �nal decay value hgyyi seems not to approach to be zero. It seems

to tell us that if the Beff con�guration exhibits an equial distribution with respect

to di¤erent k, the residue character exhibited. And if the Beff con�guration

owns an un-equal distrubution, like RD � k1, RD � k3 and RD � k4 cases, the

conductance should approach zero as 1=Lso goes by. Of course this suggestion is

happened under the circular ring system and the initial spinor in z direction, we

don�t see the tendency for the initial spinor input in x and y direction, see Figures

8.2 and 8.3.

Of course, for these all patterns shown in Figures 8.2, 8.3 and 8.4, the universal

conductance oscillation phenomenon is very obvious, it can be realized easily by

the point of view of the technique of the semiclassical approach analysis.

Now let us look at what happened as we vary the width of the circular ring.

The more details about the e¤ect of the size and the width of the circular ring

related to the oscillation pattern should be described in Chapter 10. Figures 8.5,

8.6 and 8.7 show the conductance pattern in circular ring which with the same

operation conditions except for Ri = 9=10 and Ro = 1. In Fig. 8.5 we �nd

almost the same decay feature to the corresponding case of the wider circular ring
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Figure 8.5. Spin conductance hgxxi v.s. 1=Lso under the action of
normalized Beff in less narrow circular ring system.

operation system, see Fig. 8.2, the main di¤erences are the conductance is larger

and the conductance oscillation is faster and more radical, so they show indented

oscillation feature. These features re�ect that as we increase the width of the ring,

more electrons can go through the outlet after they orbit several times of the ring,

and since the width is increased, the oscillation behaviors of the trajectories of the

electrons exhibit more radical aspects. Well! we also note a very interesting aspect
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Figure 8.6. Spin conductance hgyyi v.s. 1=Lso under the action of
normalized Beff in less narrow circular ring system.

in R case, the conductance hgxxi exhibits arc-like shape decrement as 1=Lso goes

by.

Next we �nd that Fig. 8.6 exhibits the same tendency to Fig. 8.3. The same

phenomenon also happens between Fig. 8.7 and Fig. 8.4. But wait a moment,

from Figures 8.3, 8.4 and Figures 8.6, 8.7, and even from Figures 8.2, 8.5, we �nd

the RD � k2 case seems to show a diminutive conduction pattern compared with

R case. From the Beff con�guration we could realize the phenomenon, since they
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Figure 8.7. Spin conductance hgzzi v.s. 1=Lso under the action of
normalized Beff in less narrow circular ring system.

exhibit the similar Beff con�guration, see Fig. 7.1, but I think it is interesting to

theorize these phenomena.

Now let us turn our focus to another operation system, Sinai billiard, to see

what happened about their conductance decay patterns. Here we explore two

di¤erent sizes of Sinai billiard, in Figures 8.8, 8.9, 8.10, and 8.11, 8.12, 8.13, the

Ri = 9=10 and Ro = 1, the widths of both inlet and outlet are 0:2, and in Figures

8.14, 8.15, 8.16 and 8.17, 8.18, 8.19, the Ri = 8=10 and Ro = 1, the widths of
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Figure 8.8. Spin conductance hgxxi v.s. 1=Lso under the action of
normalized Beff in more narrow Sinai billiard system.

both inlet and outlet are 0:2. Compare Fig. 8.8 with Fig. 8.2, Fig. 8.9 with

Fig. 8.3, Fig. 8.10 with Fig. 8.4, Fig. 8.14 with Fig. 8.5, Fig. 8.15 with Fig.

8.6, Fig. 8.16 with Fig. 8.7 each other, we �nd the almost the same tendency

between these paired patterns. The most striking aspect is in the D � k2 case,

we observe the appearance of most slow decay pattern. Reference to the Beff

con�guration, see Fig. 7.1 we could understand the aspect, the reason is due to

the Beff disappeared in some region of k, so the spin in these region doesn�t relax.
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Figure 8.9. Spin conductance hgyyi v.s. 1=Lso under the action of
normalized Beff in more narrow Sinai billiard system.

And we also �nd the particular decay aspects in R, D � k1 and RD � k1 cases,

they exhibit the most chiseled decay pattern. For R and D � k1 cases, they also

show the correlation implication between their own patterns, the reason is due to

the equivalence between R and D � k1 cases. For D � k1 case, the special Beff

con�guration causes the particular decay pattern. We will discuss that the special

Beff con�guration could create a never decay conductance aspect in the section

below. Figures 8.11, 8.12, 8.13 and 8.17, 8.18, 8.19 show the sum up aspects of the
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Figure 8.10. Spin conductance hgzzi v.s. 1=Lso under the action of
normalized Beff in more narrow Sinai billiard system.

conductance patterns for each di¤erent initial spinor input cases of the di¤erent size

of Sinai billiard. We could clearly see the special aspects for the D�k2 case (light

green line), it exhibits the most slow decay aspects, and the most clean up decay

pattern in R (black line), D�k1 (red line) and RD�k1 (purple line) cases. Finally

we observe that in Sinai billiard system, as 1=Lso goes by, the conductance decaies

to zero for all operation cases. It seems to imply that the particular aspects is

due to the operation system is chaotic system, we could see that the conductance
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Figure 8.11. Sum up of spin conductance hgxxi v.s. 1=Lso under the
action of nine kinds of normalized Beff in more narrow Sinai billiard
system.

Figure 8.12. Sum up of spin conductance hgyyi v.s. 1=Lso under the
action of nine kinds of normalized Beff in more narrow Sinai billiard
system.

decay doesn�t always approach zero for various operation cases in circular ring

system, since it belongs to regular system. We also �nd the same appearance for

spin relaxation simulation in last chapter.
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Figure 8.13. Sum up of spin conductance hgzzi v.s. 1=Lso under the
action of nine kinds of normalized Beff in more narrow Sinai billiard
system.

8.2. Some Aspects of Conductance Decay Patterns (Beff Con�guration

in Real Material)

In last section we talk about the decay patterns under the action of normal-

ized Beff con�guration, that is we treat the maximum of Beff as 1. The purpose

of such treatment is to try to o¤er the information about the e¤ect of Beff con-

�guration related to the decay pattern. Well! as the statement of last section

we found out many interesting phenomena. Here we want to see what happened

about the conductance decay pattern under the action of Beff con�guration in

real material (although it is also deduced from theoretical calculation). Fig. 7.1

shows the Beff con�guration in real material, the larger and bolder arrow means

the larger (stronger) Beff , so under di¤erent standpoint of these Beff (i.e. not to

be normalized aspect) the decay patterns may be re�ected something di¤erent and

interesting aspects.
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Figure 8.14. Spin conductance hgxxi v.s. 1=Lso under the action of
normalized Beff in less narrow Sinai billiard system.

Here we don�t intend to give an overview about the e¤ect of Beff con�guration

in real material, we just pick some representative operation cases to indicate the

e¤ect of Beff con�guration in real material. Fig. 8.20 indicates the obvious dif-

ference between the normalized Beff con�guration and Beff con�guration in real

material for D � k2 case in circular ring system with Ri = 29=30 , Ro = 1 and

widths of both inlet and outlet w = 0:1. As Fig. 7.1 shown, in D � k2 case the

maximum of Beff is smaller than one of Beff in R case (which the magnitude of
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Figure 8.15. Spin conductance hgyyi v.s. 1=Lso under the action of
normalized Beff in less narrow Sinai billiard system.

Beff is setted to be 1), so we obtain a slow down decay pattern, i.e. we obtain a

stretched-out and shifted toward right decay pattern (red line) as comparison with

the decay pattern of normalized Beff con�guration (black line). Fig. 8.21 shows a

reversed trend, since we �nd the maximum of Beff in RD�k4 case is much larger

than the one in R case, that is meant that the e¤ect of Beff is much stronger in

Beff con�guration in real material. So the decay pattern exhibits contracted and
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Figure 8.16. Spin conductance hgzzi v.s. 1=Lso under the action of
normalized Beff in less narrow Sinai billiard system.

shifted toward left decay aspects (red line) compared with the decay pattern of

normalized Beff con�guration (black line).

The same trend happened in Figures 8.22 and 8.23, for them we proceed the

simulation in Sinai billiard with Ri = 8=10 , Ro = 1 and widths of both inlet and

outlet w = 0:2 under D � k1 and RD � k4 cases. For D � k1 case we �nd out

the smaller magnitude of Beff than the one of Beff in R case from Fig. 7.1, so

we predict to obtain a slow down decay pattern as Fig. 8.22 shown. Note that for
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Figure 8.17. Sum up of spin conductance hgxxi v.s. 1=Lso under the
action of nine kinds of normalized Beff in less narrow Sinai billiard
system.

Figure 8.18. Sum up of spin conductance hgyyi v.s. 1=Lso under the
action of nine kinds of normalized Beff in less narrow Sinai billiard
system.

these two paired cases, the initial conductances don�t vary, the reason is obvious

since the variation of the magnitude of Beff doesn�t a¤ect the number of electrons

which leave o¤ the outlet, so we get the same conductance initial values.
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Figure 8.19. Sum up of spin conductance hgzzi v.s. 1=Lso under the
action of nine kinds of normalized Beff in less narrow Sinai billiard
system.

8.3. Equivalence between R and D � k1 Modi�ed Cases

Now let us talk about the very interesting topic, the equivalence between R

case and D�k1 modi�ed case (i.e. we just consider the linear term of Dresselhause

Hamiltonian).

See Fig. 8.24, we �nd out the result

(8.1) SR;x_y_zPn;R;x_y_z = SD;y_x_�zPn;D;y_x_�z = SD;x_y_zPn;D;x_y_z

where we set Pn;R;x_y_z as the initial spinor for Rashba term case (R case)

(8.2) Pn;R;x_y_z =

 
cos �

2

sin �
2
ei�

!
;
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Figure 8.20. Comparison between the normalizedBeff con�guration
and Beff con�guration in real material for D � k2 case in circular
ring system.

and the corresponding Pn;D;x_y_z as the initial spinor for Dresselhause linear

term case (D � k1 modi�ed case)

(8.3) Pn;D;x_y_z =

 
cos 1

2
(� � �)

sin 1
2
(� � �) ei(

�
2
��)

!
:

SR;x_y_z is the equivalent rotation operator for someone speci�c electron travels

half-tour of circular ring under the action of R case viewed in x_y_z coordinates
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Figure 8.21. Comparison between the normalizedBeff con�guration
and Beff con�guration in real material for RD� k4 case in circular
ring system.

system, and SD;x_y_z is the equivalent rotation operator for someone speci�c elec-

tron travels half-tour of circular ring under the action of D � k1 modi�ed case

viewed in x_y_z coordinates system. And SD;y_x_�z is the equivalent rotation

operator for someone speci�c electron travels half-tour of circular ring under the

action of D � k1 modi�ed case viewed in y_x_� z coordinates system, here we

�nd that SR;x_y_z is the same as SD;y_x_�z, reference Eq. 3.30. And Pn;D;y_x_�z

is the initial spinor viewed in y_x_� z coordinates system, it has the same form

as Pn;D;x_y_z which viewed in x_y_z coordinates system.
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Figure 8.22. Comparison between the normalizedBeff con�guration
and Beff con�guration in real material for D � k1 case in Sinai
billiard.

Then let us apply the above result to give two examples for illustration. See Fig.

8.25, the �rst example we proceeded is the circular ring system with Ri = 29=30 ,

Ro = 1 and widths of both inlet and outlet w = 0:1 in R case, the initial spinor

input is

(8.4) Pn;R;x_y_z =

 
cos 4:7�=12

2

sin 4:7�=12
2

ei3:83�=12

!
;
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Figure 8.23. Comparison between the normalizedBeff con�guration
and Beff con�guration in real material for RD � k4 case in Sinai
billiard.

and from the above discussion we should obtain the corresponding initial spinor

input in D � k1 modi�ed case as

(8.5)

Pn;D;x_y_z =

 
cos 1

2
(� � 4:7�=12)

sin 1
2
(� � 4:7�=12) ei(

�
2
�3:83�=12)

!
=

�
cos (7:3�=12=2)

sin (7:3�=12=2) ei2:17�=12

�
:

And then by applying Eq. 3.30 and look at Fig. 8.24, we �nd that
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Figure 8.24. Equivalence between R and D � k1 modi�ed cases.

(8.6) hgnxi = hgmyi ; hgnyi = hgmxi and hgnzi = �hgmzi ;

they coincide with the correlation relation which coordinates x (in R case)

corresponds to coordinates y (in D � k1 modi�ed case), coordinates y (in R case)

corresponds to coordinates x (in D � k1 modi�ed case), and coordinates z (in R

case) corresponds to coordinates �z (in D � k1 modi�ed case).

Finally let us see a very interesting thing that extends our understanding about

spin transport. Fig. 8.26 shows the spin decay pattern for Sinai billiard with

Ri = 9=10 , Ro = 1 and widths of both inlet and outlet w = 0:2, we �nd that the
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Figure 8.25. Example of equivalence between R and D�k1 modi�ed
cases in circular ring system.

correspondence relationship is also exactly appeared, i.e. we get the correct rela-

tionship hgnxi = hgmyi ; hgnyi = hgmxi and hgnzi = �hgmzi : Well! this operation

system is chaotic system, in principle we can�t get the equivalent rotation opera-

tors, that it SR;x_y_z, SD;y_x_�z and SD;x_y_z as Eq. 3.30 shown. In principle we

just could obtain the approximate equality relationship between hgnxi, hgnyi, hgnzi

and hgmyi, hgmxi, �hgmzi, but here we get the exact equality relationship! This

phenomenon means that SR;x_y_z, SD;y_x_�z and SD;x_y_z are the rotation oper-

ators for each individual segments of electrons�orbitals. Reference Fig. 8.24 we

could assert such guess is correct, since for someone segment the Beff;R for Rashba

term case in coordinates x_y_z is the same to Beff;D for Dresselhause linear term
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Figure 8.26. Example of equivalence between R and D�k1 modi�ed
cases in Sinai billiard system.

case in coordinates y_x_�z , so we could get the exactly same conductance decay

patterns as we remember the corresponding coordinates replacement relationship.

8.4. Slow Down Conductance Decay Pattern Case

In this section we turn slightly our viewpoint of academic research to the view-

point of application. By look at the Beff con�guration in Fig. 7.1 we �nd that

some con�gurations are more special, for example R, D � k1, RD � k1, RD � k4

and so on. (In fact all Beff con�gurations are special.) If we could create some-

one special man-made initial spinor input which interacts with these special Beff
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Figure 8.27. Example of slow down conductance decay pattern case
in RD � k1 and RD � k4 cases in circular ring system and Sinai
billiard.

con�gurations, in principle we could create many amazed decay patterns for ap-

plication. For example if we could create someone time vary spinor input which

corresponds to the variation ofBeff in someone form for each traveling trajectories,

in principle we could get any kinds of decay patterns (even though never decay

pattern, we would talk about the interesting case in next section) as possiblely

as we like. Here we present two funny cases which they exhibit slow down decay

patterns. Fig. 8.27 shows the circular ring system with Ri = 29=30 , Ro = 1 and

widths of both inlet and outlet w = 0:1, proceeded in RD � k1 case under the

initial spinor input (cos(�=2=2); sin(�=2=2) exp(i�=4)) and in RD� k4 case under

the initial spinor input (cos(�=2=2); sin(�=2=2) exp(i3�=4)). What the reasons for

such treatment is to o¤er the corresponding initial spinor input to the pattern of
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Beff con�guration and the maximum of jBeff j. We �nd the appearance of slow

down decay pattern compared with Figures 8.2, 8.3 and 8.4. We also proceed the

simulation in Sinai billiard with Ri = 9=10 , Ro = 1 and widths of both inlet and

outlet w = 0:2, as the proceeding listed above, we also �nd out the slow down

decay patterns compared with Figures 8.8, 8.9 and 8.10.

8.5. Never Decay Pattern Case

Finally we talk about a very interesting and ideal case. Go back to the content

of Section Rashba and Dresselhause SOI E¤ect, we �nd the Hamiltonian is

(8.7) Hso =
�
�ky + �kx

�
k2y �



k2z
���

�x +
�
��kx + �ky

�

k2z
�
� k2x

��
�y

and the corresponding Beff is

(8.8) Bx =
2m

e~
�
�ky + �kx

�
k2y �



k2z
���

(8.9) By =
2m

e~
�
��kx + �ky

�

k2z
�
� k2x

��

(8.10) Bz = 0
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If we neglect the k3 term in the Hamiltonian, we obtain

(8.11) Hso =
�
�ky + �kx

�
�


k2z
���

�x +
�
��kx + �ky



k2z
��
�y

that is we get the corresponding Beff as

(8.12) Bx =
2m

e~
�
�ky + �kx

�
�


k2z
���

(8.13) By =
2m

e~
�
��kx + �ky



k2z
��

(8.14) Bz = 0:

And then if we advancedly assume that

(8.15) � = �


k2z
�
;

we get that
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Figure 8.28. Examples of never decay spin conductance pattern case.

(8.16) Bx = By, Bz = 0:

This result means that the Beff is always lay in the same (or opposite) direc-

tion of k =
D

1p
2
; 1p

2
; 0
E
, regardless of the directions of each segments of electron

traveling trajectories. This peculiar aspect give us a hint, we project the initial

spinor input parallel (or anti-parallel) to this direction, we should obtain a response

of never decay pattern. This is true, Fig. 8.28 tells us the wonderful results, here

we proceed the simulation in circular ring and Sinai billiard system, with initial

spinor as
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(8.17) P0 =

�
cos(�=2=2)

sin(�=2=2) exp(i�=4)

�
;

and with the �nal polarization detection parallel to this initial spinor. This

result indicates a greatly possible ability of application, that is if we could create

something Beff con�guration like this, we could well control the spin evolution

behavior in future.



CHAPTER 9

Spin Waveform Editor (SWE)

Well! let us propose a funny device, Spin Waveform Editor (SWE) to end up

this thesis. For narrow width circular ring system under the action of Rashba term

case (R case), the spin conductance was derived analytically as [67][74].

Figure 9.1. Square waveform patterns.

146
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Figure 9.2. Design of Spin Waveform Editor (SWE) device 1.

Figure 9.3. Design of Spin Waveform Editor (SWE) device 2.

(9.1) hgyyi =
�g0�2 cos

�
�
q
1 + 4 (d=Lso)

2

�
�2 + 4 sin2

�
�
q
1 + 4 (d=Lso)

2

�
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(here we just present conductance hgyyi to give an example to be as an il-

lustration) where g0 is the spin independent conductance, d =
p
(R2i +R2o) =2 is

the averaged radius, � =
p
2Tw=� is determined by the mean escape time � and

the average duration Tw for one winding. We �nd that g0 could be determined

by Equations 6.27, 6.28 and 6.29 as represented in Section Spin Conductance of

Chapter 6, and we note that as we vary the width of the ring and the averaged ra-

dius d, we could control the magnitude of hgyyi and the oscillation period of hgyyi,

this aspect give us a hint to apply Fourier series to make any shape of waveform

output. That�s why we call such device as Spin Waveform Editor (SWE). Here we

just present an example, we try to make a square waveform output. The Fourier

series for square wave is

FN (x) =
NP
n=1

1

2n� 1 sin [(2n� 1)x](9.2)

=
1

1
sin (x) +

1

3
sin (3x) +

1

5
sin (5x) + � � �

by adjust the width of the ring and the averaged radius d, we could adjust

the magnitude of the coe¢ cients and the arguments for each terms, and then by

combining several circular ring systems and adequately shift these conductance

patterns relatively each other (by applying these adjusted resistors shown in Fig-

ures 9.2 and 9.3) we obtain the desired square wavwform pattern as shown in Fig.

9.1. And the corresponding devices design is shown in Figures 9.2 and 9.3. It�s a
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good idea to apply this device in practical industrial usage and instruction tool in

future.



Part 3

Conclusion and Outlook



CHAPTER 10

Conclusion and Outlook

Well! it�s so excited to touch the wonderful topics Spintronics, Spin Relaxation

and Spin Transport which try to reveal the mechanism and details of the interaction

between spin and micron (or submicron) structure. There are still many topics and

details worth and waitting for researching advancedly related to the contents of

this thesis, but here we just indicate three representative key points to be as the

conclusion and outlook of this thesis.

The �rst point is the e¤ectiveness and advantage of the usage of the semi-

classical approach. It is above suspicion about the advantage of the application

of semiclassical approach, the semiclassical approach o¤ers an intuitive viewpoint

and convenient handling about the behavior of submicron structure action, but I

think that the behavior of the action of submicron structure (e.g. spin relaxation

of electrons in real material, etc.) is so subtle and complicated, the questions of the

e¤ectiveness of such semiclassical treatment are raised. The connection and/or cor-

relation between classical mechanics viewpoint and quantum mechanics viewpoint

still waitting for exploring more advancedly.

The second point is the plenty aspects about the topics spin relaxation and spin

transport and so on. As the contents of this thesis we found that there are so many
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factors which could a¤ect the spin evolution of the traveling electrons. Well! such

aspects o¤er a so wonderful and plenty regiom to explore them more detailedly

and completely. I think there are many magic and unexpected unknowns will be

appeared as we touch such topics more advancedly. Basically speaking the reason

is due to the spin is so novel to our intuition and realization. So it is well above

suspicion the complexity of interaction between spin and environment. Finally let

us turn our focus from academic viewpoint to the point of view of application to

end up the thesis.

The last point about the conclusion and outlook of this thesis is the information

about the control the spin o¤ered from the thesis. Spintronics is so fascinating and

with great application potential in next generation electronic industry, whether or

not the success in application of spintronics maybe determine whether the improve-

ment of the civilness of mankind in future. I feel a little suspicious and cheerful

about the application potential in terms of the approach of spin control from the

research of the thesis. Let us give an example to illustrate the viewpoint of sus-

picion, in fact the simulation in our thesis is totally lay under the ideal situation,

and even in such ideal situation the wavevectors (velocities) of electrons exhibit

an adequately broad distribution aspect, reference Fig. 7.1, so we could expect

the spin relaxation rate is more fast when we proceed the operation (simulation)

under the action of combination of many operation cases, see Fig. 7.8 et al. If this

aspect is true, well! unfortunately the possibility of the application of spintronics,

especially for in terms of the spin control approach is lowered. About the part of
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cheer, the reason comes from that we �nd the enough long about the relaxation

time which exhibited from our thesis. From the point of view of the improvement

of modern industrial techniques, such long relaxation time owns the so great po-

tential in practical application. Anyhow there are existing many problems which

obstruct the advancement of the practical application in the point of view of spin

control, e.g. the injection of nonequilibrium electronic spin is still a big problem

nowadays and so on. However the experimental exploration and demonstration and

the theoretically fundamental research are still necessary hurry-scurry in future!

In one word nature is so novel and unexpected inspired by the nature exploration

history, at present we even could not realize what happened about and even predict

the position of an electron in next moment, who know what happened about the

nature in future!?
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