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Abstract

Two-machine flowshop scheduling to minimize makespan is one of the most well-known classical scheduling problems. Johnson’s rule
for solving this problem has been widely cited in the literature. We introduce in this paper the concept of composite job, which is an
artificially constructed job with processing times such that it will incur the same amount of idle time on the second machine as that
incurred by a chain of jobs in a given processing sequence. This concept due to Kurisu first appeared in 1976 to deal with the two-
machine flowshop scheduling problem involving precedence constraints among the jobs. We show that this concept can be applied to
reduce the computational time to solve some related scheduling problems. We also establish a link between solving the two-machine flow-
shop makespan minimization problem using Johnson’s rule and the relocation problem introduced by Kaplan. We present an intuitive
interpretation of Johnson’s rule in the context of the relocation problem.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Johnson’s seminal work on makespan minimization in a
two-machine flowshop (Johnson, 1954) is one of the pio-
neering papers in the scheduling literature. In the past half
a century, the flowshop model and its solution algorithms
have been included in most text books on operations man-
agement, especially in books on scheduling theory (Brucker,
2007; Pinedo, 2001). Numerous research papers have been
published on extensions of the flowshop model, and on
exploration of the computational complexity issues and
development of solution algorithms for variants of the flow-
shop model. The focus of this paper is not to develop new
models or algorithms, but to discuss the concept of ‘‘com-
posite job”, which was proposed by Kurisu (1976). While
the concept of composite job is very useful and has peda-
gogical value, it has not been widely applied in flowshop
scheduling. The second goal of this paper is to introduce
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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the relocation problem, which was first studied by Kaplan
(1986), and present an intuitive interpretation of Johnson’s
rule for solving the two-machine flowshop makespan mini-
mization problem in the context of the relocation problem.

The two-machine flowshop to minimize makespan can
be formally defined as follows. Let N ¼ fJ 1; J 2; . . . ; J ng
be a set of n jobs to be processed in a two-machine flow-
shop. Each job consists of two operations, which must be
processed on the first and second machine in that order,
respectively. The processing times of job J i on the two-
machines are denoted by pi and qi, respectively. The prob-
lem, denoted by the three-field notation F 2jjCmax (Graham
et al., 1979), is to find a schedule that completes all the jobs
in the shortest time, i.e., minimizing the makespan. It can
be shown that any schedule can be transformed into a sche-
dule in which the processing sequences on the two-
machines are identical without increasing the makespan.
Consequently, solution schedules are permutation
sequences, i.e., the two-machines have the same job
sequence. As a result, we use sequence, instead of schedule,
throughout this paper for simplicity of presentation.
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To solve the F 2jjCmax problem, Johnson (1954) gave a
decision rule, now popularly called Johnson’s rule: For

any two jobs J i; J j 2 N , if minfpi; qjg 6 minfqi; pjg, then

schedule job J i earlier than job J j. Based on this rule, a solu-
tion algorithm, known as Johnson’s algorithm, can be
designed, which has a time complexity of Oðn log nÞ. Differ-
ent forms of Johnson’s algorithm have been presented in
the literature. The following two forms are probably the
most commonly adopted:

� Form 1: Select the shortest processing time amongst all
the unscheduled operations. If the operation belongs to
machine one, then schedule the job of that operation in
the earliest open position; else schedule the job of that
operation in the last open position. Remove the job
from the job set. Repeat the process until all the jobs
are scheduled.
� Form 2: Partition the job set N into Nþ ¼ fJ ijpi 6

qi; J i 2 Ng and N� ¼ fJ ijpi > qi; J i 2 Ng. Schedule
the jobs in Nþ in non-decreasing order of pi, and sche-
dule the jobs in N� in non-increasing order of qi. Con-
catenate the two sequences.

Most operations management textbooks adopt Form 1
of the algorithm. It is clear that the time complexity of
Johnson’s algorithm is dominated by the sorting procedure
because we need to find an ordered list of the jobs or oper-
ations. Throughout this paper we call any algorithm John-

son’s algorithm that is based on Johnson’s rule, regardless
of the way in which it is presented, and denote by
J i �J J j if job J i precedes J j by Johnson’s rule.

The rest of this paper is organized into four sections. In
Section 2 we introduce the concept of composite job, fol-
lowed by an illustrative example. We also give examples
of applications of the concept of composite job. In Section
3 we discuss the relocation problem, which has been shown
to be equivalent to the two-machine flowshop scheduling
problem to minimize makespan. We present an intuitive
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Fig. 1. Formation of
interpretation of Johnson’s rule in the context of the relo-
cation problem. We conclude the paper and suggest some
directions for future research in Section 4.
2. Composite jobs

The makespan of a given job sequence for F 2jjCmax is
the sum of all machine-two processing times plus the sum
of all idle times incurred on the second machine. Therefore,
minimizing the makespan is equivalent to finding a job
sequence that minimizes the sum of idle times on the sec-
ond machine. In studying the two-machine flowshop sched-
uling problem with precedence constraints in chains among
the jobs, Kurisu (1976) introduced the concept of a chain
of jobs. That is, given a chain of jobs that will be processed
consecutively without interruption, Kurisu defined a com-
posite job as a job that will cause the same amount of idle
time as the sum of idle times incurred by the jobs following
the processing sequence defined by the chain. The reader is
referred to Kurisu (1976) for details of the proof. Kambu-
rowski (2000) established the definition of composite job
via considering flowshop scheduling with time lags.

For notational simplicity, consider the natural sequence
S ¼ ðJ 1; J 2; . . . ; J nÞ of the jobs. We can replace a chain or a
subsequence of jobs by a composite job. Construct com-
posite job J ½1:2� from jobs J 1 and J 2 by letting

p½1:2� ¼ p1 þmaxf0; p2 � q1g; and

q½1:2� ¼ maxf0; q1 � p2g þ q2:

It is easy to see that schedule S and schedule
S0 ¼ ðJ ½1:2�; J 3; . . . ; J nÞ have the same total idle time. With
J ½1:2� and J 3, we can similarly construct composite job
J ½1:3� by letting p½1:3� ¼ p½1:2� þmaxf0; p3 � q½1:2�g and
q½1:3� ¼ maxf0; q½1:2� � p3g þ q3. Following this line of rea-
soning, for any 1 < k 6 n, composite job J ½1:k� is recursively
defined by p½1:k� ¼ p½1:k�1� þmaxf0; pk � q½1:k�1�g and q½1:k� ¼
maxf0; q½1:ðk�1Þ� � pkg þ qk. Indeed, p½1:k� can be interpreted
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as the sum of machine-two idle times in the subsequence
ðJ 1; J 2; . . . ; J kÞ (see Fig. 1). As shown in Fig. 1, a sequence
of jobs has overlapping machine-one and machine-two
operations. The overlapping intervals can be removed
without changing the total idle time on machine-two. A
composite job is defined by trimming the overlapping inter-
vals. In the backward direction, composite job J ½k:n� can be
similarly defined for any k; 1 6 k < n. The computational
time of the above procedure for constructing composite
jobs is OðnÞ.

Consider the example shown in Fig. 2. The sum of idle
times of the optimal schedule is 6. The idle time of compos-
ite job J ½1:5� is 6, too. If we combine two composite jobs
‘‘J ½1:3� and J ½4:5�” or ‘‘J ½1:2� and J ½3:5�”, then we have the same
result.

The above procedure constructs composite jobs J ½1:k� and
J ½k:n� for 1 6 k 6 n in OðnÞ time. We can extend the proce-
dure to construct J ½i:j� for 1 6 i < j 6 n in the follow-
ing. Composite jobs J ½1:2�; J ½1:3�; . . . ; J ½1:n� are successively
determined in OðnÞ time. Similarly, J ½2:3�; J ½2:4�; . . . ; J ½2:n�;
J ½3:4�; . . . ; J ½3:n�; . . . ; J ½n�1:n� are successively determined. The
total running time is Oðn2Þ.

In the following we present some examples to demon-
strate applications of the concept of composite job. Birman
and Mosheiov (2004) studied a two-machine flowshop
scheduling problem, which is to determine the due date
and schedule the jobs so as to minimize the following
objective function: Zðq; dÞ ¼ maxfW Emax16j6N Ej; W T

max16j6N T j;W ddg, where Ej and T j are, respectively the
earliness and tardiness of job J j; W E, W T and W d are
respectively the unit penalty of earliness and tardiness,
and for setting the due date to be d. They proposed an
Oðn2 log nÞ algorithm that can optimally solve the problem.
The time complexity results from OðnÞ repetitions of putt-
ing a job in the first position and applying Johnson’s algo-
rithm for the remaining jobs. For each job J k and
Johnson’s sequence for the remaining n� 1 jobs, we can
compute the makespan of the sequence ðJ k; J 1; J 2; . . . ;
Fig. 2. An illustrative example of composite jobs.
J k�1; J kþ1; . . . ; J nÞ by considering job J k and two composite
jobs J ½1:k�1� and J ½kþ1:n�. This takes Oð1Þ time. Therefore, the
overall time complexity is reduced to Oðn log nÞ time.

The second example concerns the problems F 2jf jCmax

and F 2jljCmax, which were investigated by Saadani et al.
(2005). In the F 2jf jCmax problem, there is a proper subset
A � N of the jobs that cannot be scheduled in the first posi-
tion in a job sequence. The counterpart problem F 2jljCmax

has a subset B � N of the jobs that cannot be scheduled in
the last position in a job sequence. Both problems have
been shown to be solvable in Oðn2Þ time by first finding
Johnson’s sequence for the jobs in N, and then testing each
job in N n A (respectively, N n B) in the first (respectively,
last) position. Because the makespan of each sequence
can be calculated in OðnÞ time, the overall time complexity
is Oðn2Þ. To search for a simple rule, like Johnson’s rule,
Saadani et al. (2005) proposed four intuitive rules, and
gave counter examples of these rules. They also developed
several interesting but complicated properties for these two
problems. Here we do not provide a simple rule, but show
that the two problems can be solved in Oðn log nÞ time. As
in the due date assignment problem in the first example, we
select a job in N n A out of sequence S and schedule it first.
The total testing time is thus OðnÞ, which is dominated by
the Oðn log nÞ time required for constructing the initial
sequence S. An extended problem is F 2jf ; ljCmax, in which
the forbidden constraints are simultaneously applied to the
first and last positions. This problem is solvable in polyno-
mial time too, but requires Oðn3Þ time (Saadani et al.,
2005). To apply the concept of composite job, we construct
J ½i:j� for 1 6 i < j 6 n by a two-level nested loop. Assume
jobs J i 2 N n A and J j 2 N n B, i 6¼ j, are selected to be
positioned in the first and last positions. The makespan
of the test sequence can be calculated in constant time
using two regular jobs and three composite jobs:
J i; J ½1:i�1�; J ½iþ1:j�1�; J ½jþ1:n�; J j. To construct all the com-
posite jobs J ½i:j� requires Oðn2Þ time and the above testing
procedure takes Oðn2Þ time, too. Therefore, the overall
time complexity reduces from Oðn3Þ to Oðn2Þ.
3. Applications in proofs

To prove the correctness of Johnson’s rule, we usually
assume that in some optimal schedule there exist two con-

secutive jobs J i and J j such that J i �J J j and J j precedes J i.
Subject to this assumption, we then show that the make-
span of the schedule S0 obtained by swapping J i and J j is
no larger than that of the original schedule S. In some flow-
shop scheduling problems, we however need to establish
the validity of the job-interchange argument for two jobs
that are not necessarily scheduled in consecutive positions.
Consider as an example the following problem (Sekiguchi,
1983; Cheng et al., 2000). The jobs are categorized into
groups. When the processing of a job follows some job
from another group, a setup time depending on the group
to which the job belongs is required. In this problem
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setting, Sekiguchi (1983) showed that jobs from the same
group need to be sequenced by Johnson’s rule. To prove
this property, the job-interchange argument may not be
applied for two consecutive jobs in the assumed optimal
schedule because the two jobs may belong to different
groups. To make the jobs of a group follow the sequence
determined by Johnson’s rule, we may encounter the situa-
tion where two jobs from the same group are not scheduled
consecutively and they violate Johnson’s rule.

In the following we demonstrate the use of the concept
of composite job to show the correctness of Johnson’s rule
by considering two jobs that are not necessarily consecu-
tive. Assume J i �J J j and J j precedes J i in some optimal
schedule. Let ðJ j1

; J j2
; . . . ; J jk

Þ be the sequence of jobs
scheduled between J j and J i. We show that either moving
job J j forward to the position immediately following J i

or moving job J i backward to the position immediately
preceding J j will not increase the makespan. For conve-
nience in discussion, we partition the jobs in N into
Nþ ¼ fJ ijpi 6 qi; J i 2 Ng and N� ¼ fJ ijpi > qi; J i 2 Ng.
Jobs in N� (respectively, Nþ) are called negative (respec-
tively, non-negative). The meanings of the terms ‘‘negative”
and ‘‘non-negative” will be elaborated in the next section
on the relocation problem. Moreover, the following prop-
erty of the composite job will be used.

Property 1. Given job sequence ðJj; Jjþ1; . . . ; J iÞ, there are
the following inequalities: pj 6 p½j:i� and qi 6 q½j:i�.

To complete the proof of swapping two jobs that are not
necessarily consecutive, we consider the following three
cases:

Case 1: J j; J i 2 Nþ: Consider the composite job J~j formed
by the sequence ðJ j; J j1

; . . . ; J jk
Þ. If J~j is negative,

then we swap J~j and J i and come up with the
sequence ðJ i; J j; J j1

; . . . ; J jk
Þ, in which J i precedes

J j. On the other hand, if J~j is non-negative, then
by Property 1, p~j P pj P pi. Therefore, we can
also swap J~j and J i, and have the same sequence.

Case 2: J j; J i 2 N�: If the composite job J~i defined by
sequence ðJ j1

; . . . ; J jk
; J iÞ is non-negative, then we

can swap J~j and J j and come up with the sequence
ðJ j1

; . . . ; J jk
; J i; J jÞ, in which J i precedes J j. If J~i is

negative, then Property 1 implies qj 6 qi 6 q~i, and
we can swap J j and J~i.

Case 3: J j 2 N�; J i 2 Nþ: If the composite job defined by
ðJ j1

; . . . ; J jk
Þ is negative, then we swap J i and the

composite job, followed by swapping J i and J j.
The derived sequence is ðJ i; J j; J j1

; . . . ; J jk
Þ. If the

composite job is non-negative, then we swap J j

and the composite job, followed by swapping J j

and J i. The derived sequence isðJ j1
; . . . ; J jk

; J i; J jÞ.
Now, job J i precedes J j.

The reasoning used above can be slightly modified (or
simplified) to construct a proof of Form 2 of Johnson’s
algorithm.
4. Proof of Form 2 of Johnson’s algorithm

Let S be an optimal schedule different from the schedule
produced by Form 2 of Johnson’s algorithm. Let J i; J j be
the first pair of jobs in schedule S such that the relation
J i �J J j holds but J j precedes J i. Recall that
ðJ j1

; J j2
; . . . ; J jk

Þ is the sequence of jobs scheduled between
J j and J i. We show that eliminating the out-of-order jobs
between J i and J j will not increase the makespan. More-
over, we need to guarantee that no two jobs that are orig-
inally in order will become out of order. Similarly, we
consider the same three cases:

Case 1: J j; J i 2 Nþ: The analysis of the makespan is the
same as above. Because J j � J j0 for j1 6 j0 6 jk,
by transitivity, J i �J J j �J J j0 for j1 6 j0 6 jk.
More pairs of out-of-order jobs can possibly be
eliminated and no extra pair of jobs become out
of order.

Case 2: J j; J i 2 N�: The analysis of the makespan is the
same as above. Transforming the original sequence
ðJ j; J j1

; . . . ; J jk
; J iÞ into ðJ j1

; . . . ; J jk
; J i; J jÞ makes

jobs J i and J j in order without causing a new pair
of out-of-order jobs.

Case 3: J j 2 N�; J i 2 Nþ: The reasoning for the new subse-
quence ðJ i; J j; J j1

; . . . ; J jk
Þ (respectively, subse-

quence ðJ j1
; . . . ; J jk

; J i; J jÞ) is the same as that
used for proving Case 1 (respectively, Case 2).

Continuing the above swapping procedure, if necessary,
we will finally come up with a schedule as specified by
Johnson’s algorithm. The proof is completed.

5. The relocation problem

Alternative proofs of Johnson’s rule have been proposed
in the literature in order to simplify presentation, e.g., Kam-
burowski (1997). In this section we give a proof of John-
son’s rule in the context of the relocation problem, which
is a resource-constrained single-machine scheduling prob-
lem formulated and studied in connection with a redevelop-
ment project in Boston (Kaplan, 1986; Kaplan and Berman,
1988; PHRG, 1986). A pool of v0 units of a single-type of
resource is provided for processing the jobs. Job J i acquires
and consumes ai units of the resource from the pool for its
processing and returns bi units of the resource to the pool
upon its completion. A schedule or sequence is said to be
feasible if each job following the sequence can be success-
fully processed. The objective is to determine the minimum
initial resource level v0 that guarantees the existence of a
feasible schedule. Kaplan and Amir (1988) showed that
the relocation problem is equivalent to F 2jjCmax. The equiv-
alence is based upon the fact that given a job sequence the
sum of idle times on the second machine in F 2jjCmax is equal
to the required initial resource level guaranteeing the feasi-
bility of the processing sequence for the relocation problem.
For recent research developments on the relocation
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problem, the reader is referred to Kononov and Lin (2006,
submitted for publication).

If we consider the relocation problem from the perspec-
tive of investment planning, then we have the setting in
which n projects are required to be finished and each pro-
ject J i requires an investment of ai units of resources and
will provide a return of bi units of resources. To determine
a sequence to execute the projects so as to minimize the ini-
tial capital, we need to work out the whole plan as follows:
we execute the projects having non-negative profits bi � ai

first and arrange them in non-decreasing order of invest-
ments ai. The projects having negative profits follow and
are arranged in non-increasing order of returns bi. This set-
ting provides an intuitive interpretation of Form 2 of John-
son’s algorithm given in Section 1.

We apply the concept of composite job to the relocation
problem. Consider the subsequence of jobs
ðJ i; J iþ1; . . . ; J jÞ; 1 6 i < j 6 n. We make the following def-
inition for composite job J ½i:j�:

a½i:j� ¼ a½i:j�1� þmaxf0; aj � b½i:j�1�g;
b½i:j� ¼ maxf0; b½i:j�1� � ajg þ bj:

In the relocation problem, a job (project) J i in N� is called
negative because its contribution is bi � ai < 0. On the other
hand, non-negative jobs have non-negative contributions,
i.e., bi � ai P 0. Therefore, the processing of a negative
job reduces the resource level in the pool while the process-
ing of a positive job produces extra units of the resource.

Assume S is some optimal sequence and its resource
requirement is v0. Let J i and J j be two consecutive jobs
in S such that J i �J J j, but J j precedes J i. We consider
the following three cases to show that another schedule
that is feasible with respect to v0 can be obtained by swap-
ping J j and J i.

Case 1: J j; J i 2 Nþ: Because ai 6 aj and bi � ai P 0, swap-
ping the two jobs preserves the feasibility of the
sequence.

Case 2: J j 2 N�; J i 2 Nþ: Because J j is negative and J i is
non-negative with respect to the resource level at
the start of their processing, swapping the two jobs
preserves the feasibility of the sequence.

Case 3: J j; J i 2 N�: Let vt be the resource level before the
start of job J j in sequence S. Because J j is negative
and consumes the resource, the resource level
becomes vt � aj þ bj, which is no less than ai to
ensure the feasibility of job J i. After the swap, vt is
sufficient for J i. The remaining issue we need to
address is to ensure the feasibility of job J j

after the swap. Consider the following chain of
derivations:
ðvt � ai þ biÞ � aj P ðvt � ai þ bjÞ � aj

ðbecause bi P bjÞ ¼ ðvt � aj þ bjÞ � ai P 0:
Therefore, job J j can be processed after the swap.
6. Conclusion

In this paper, we introduced the concept of composite
job and the relocation problem, which were first proposed
in 1976 and 1986, respectively, but have not been widely
deployed or studied in the scheduling literature. We dem-
onstrated their potential application in reducing the com-
putational time required to solve related scheduling
problems or simplifying the presentation of solution algo-
rithms and their proofs. There is a considerable scope in
applying the concept of composite job in scheduling.
Studying the relocation problem with temporal constraints,
such as processing times, release dates and due dates, is a
worthwhile future research direction. From our experience,
theoretical challenges arise whenever temporal parameters
are involved in the relocation problem.
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