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ABSTRACT

The Advanced Audio Coding (AAC) is a recent, high performance and sophisticated
audio coder specified by the ISO/IEC MPEG Standard Committee. Because the design of
encoder in AAC standard is non-normative, the coding performance is greatly influenced by
the design of the coding modules (tools) in.an AAC encoder. One critical element contributing
to a good AAC encoder is a properly designed rate-distortion (R-D) control algorithm. This
and itsrelated issues will be the focus of this dissertation.

One well-known R-D control algorithmdesigned for AAC is the trellis-based algorithm.
It performs the trellis search through entire frame for finding proper coding parameters. It can
achieve a praiseworthy performance, but their computational complexity is extremely high.
The first contribution of this dissertation is the design of two types of low complexity and
high performance rate-distortion control algorithms, which are Cascaded Trellis-Based (CTB)
algorithm and Enhanced BFOS (EBFOS) algorithm. In the first type of the proposed
algorithms, CTB, we efficiently reduce the computational burden of the trellis-based
algorithms by splitting the heavy calculation stage in the trellis-based approach into two
consecutive steps with much less computation. In addition, the complexity is further reduced
by decreasing significantly the number of candidates in the trellis search. In the second type

of proposed agorithms, EBFOS, instead of performing the trellis search through the entire



frame, we allocate the bits to the most needed band step by step. In this approach, we consider
both the “bit-use efficiency” at band-level and the inter-band dependency of the coding
process in AAC. Simulation results show that the coding performance of the proposed two
types of rate-distortion control algorithms is significantly better than that of the AAC
Verification Model and is close to that of the original high-cost trellis-based algorithms.
Roughly, the proposed algorithms require less than 1/140 complexity in computation when it
is compared to the original trellis-based algorithms.

Despite the success of current audio coding techniques, little effort has been made to
reduce the inter-channel redundancy inherent in multichannel audio compression. The second
contribution of this dissertation isto develop an efficient algorithm for removing inter-channel
redundancy in perceptual audio coding. In our approach, the perceptualy weighted
inter-channel prediction is appliedito the Modified Discrete Cosine Transform (MDCT)
coefficients. Based on this basic-structure, two-types of inter-channel predictor are proposed,
the time-signal based predictor -and the-spectral-coefficient based predictor. Similar to the
existing INT-DCT based approach, ‘no-extra perceptual masking control is needed for our
approach; in the meanwhile, no audio quality degradation will be induced by our method. The
bit rate reduction of our method is about 10% or higher than that of the INT-DCT based

approach for most typical audio sequences.
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Chapter 1
| ntroduction

In the early 1980’'s, CD (Compact Disk) was developed. This new device induced a big
revolution in audio industry — the storage media changes from tapes to CD, which also
implies that the digital audio gradually replaces the analog audio. Moreover, to meet the
demand of efficient transmission and storage of digital audio for diversified multimedia
applications, many high-efficient audio coding schemes have been developed, such as
MPEG-1/2/4 audio coding standards and Dolby AC-3 [1]. The MPEG-4 Advanced Audio
Coding (AAC) is one of the most recent-generation audio coders specified by the ISO/IEC
MPEG standards committee [2]. The core part of the MPEG-4 AAC is based on the
MPEG-2 AAC technology. The MPEG-4 AAC features a number of additional coding tools
and coder configurations comparing to MPEG-2 AAC [3][4]. Consequently, the MPEG-4
AAC is a very efficient audio compression-algorithm aiming at a wide variety of different
applications, such as internet, wireless, and digital broadcast arenas.

Two important issues of modern digital audio compression algorithms are a proper
design of rate-distortion (R-D) control algorithm and an efficient design of inter-channel
redundancy removal algorithm for multichannel audio signals. The first contribution of this
dissertation is the design of two types of low complexity and high performance rate-distortion
control algorithms, which are Cascaded Trellis-Based algorithm and Enhanced BFOS
algorithm. The second contribution of this dissertation is to develop an efficient algorithm for

removing inter-channel redundancy in perceptual audio coding.

1.1 Rate-Distortion Control

One critical element contributing to a good audio encoder is the rate-distortion (R-D) control

process (or called bit allocation process) in the iteration loops. The rate-distortion control



process in AAC is to determine two critical parameters, the values of scale factor (SF) and
Huffman codebook (HCB), for each band so as to optimize the selected criterion under the
given bit rate constraint. Because encoding these coding parametersis inter-band dependent in
AAC, the proper choice of their values to maximize the coding performance becomes a
difficult problem. Two-loop search (TLS) [5] is a commonly known R-D control algorithm,
which is also used in the MPEG-4 AAC Verification Model (VM) [6]. VM s the encoder
software developed by the MPEG committee to verify the coding syntax. However, as pointed
out by [7] and [8], the poor choice of coding parameters in the TLS agorithm is one
shortcoming of the current MPEG-4 AAC VM and, therefore, its compression efficiency is
lower than expected particularly at low rates.

The generalized BFOS algorithm is an efficient bit allocation algorithm for subband
coding and provides good performance while the'inter-band dependency of coding process is
ignored [9][10]. The research in [11] also!shows that the generalized BFOS algorithm is a

near optimal bit allocation scheme for-MPEG-1 Layer 1/ Layer T audio coding. However,

our research shows that the generalized BFOS algorithm becomes less efficient for MPEG-4
AAC in which the inter-band dependency of coding process exists.

Two trellis-based high performance R-D control algorithms for AAC are proposed by
[7][8]. One distinct feature of these R-D control algorithms, as comparing to TLS, is that both
bit rate and distortion are controlled simultaneously and the inter-band relationship of coding
parameters, SF and HCB, is also counted in choosing their values. These R-D control
algorithms are formulated as Viterbi search through the trellis diagram [12][13] to find the
optimal coding parameters and, therefore, are caled trellis-based optimization. As discussed
in [8], the subjective quality of the trellis-based optimization scheme is significantly better
than that of TLS. However, its computational complexity is extremely high and thus it is not

suitable for practical applications, such as real-time encoding with power constraint.



Therefore, it is very desirable to achieve asimilar performance at a much lower complexity.

In this dissertation, two types of low complexity and high performance rate-distortion
control algorithms are proposed for MPEG-4 AAC. In the first type of algorithms, two kinds
of techniques are introduced to speed up the trellis-based optimization procedure. In the first
kind of fast algorithms, we break the combined SF and HCB parameter selection stage into
two sequential steps and thus call it cascaded trellis-based optimization. In the second kind of
fast algorithms, by observing the audio signal characteristics and statistics we develop a few
rules that can reduce dggnificantly the number of candidates in the trellis. These two
techniques are fairly independent. Together, the overall computational complexity is
dramatically reduced while the coding performance degradation is small.

In the second type of proposed algorithms, instead of performing the trellis search
through entire frame, we allocate the bits to the proper band step by step. In this approach, we
both consider the “bit-use efficiency” at band-level and the inter-band dependency of coding
process in AAC. The “bit-use efficiency” -here means the distortion improvement due to
receiving bits. The basic idea behind this.approachris “ give bits to the band with the maximum
NMR gain per bit” or “retrieve bits from the band with the maximum bits per NMR loss’,
which is similar to the basic concept of generalized BFOS algorithm. Otherwise, a fast
version of this bit allocation scheme is also proposed for reducing calculations while the

coding performance degradation is small.

1.2 Redundancy Inherent in Multichannel Audio

Despite the success of AC-3 and AAC, not much effort has been made to reduce the
inter-channel redundancy inherent in multichannel audio. The only technique used in AC-3 or
AAC is called "Joint Stereo Coding", which consists of Intensity/Coupling and Mid/Side
(M/S) stereo coding. Intensity/Coupling is adopted based on the psychoacoustic evidence that

the perception of high-frequency sound component (above approximately 2kHz) mainly relies



on the energy-time envelopes. Instead of encoding the original signals, the M/S stereo coding
encodes the sun (middle) and the difference (side) of the signals of a channel-pair. However,
this may cause audio quality degradation if a proper perceptual masking control for the sum
and difference signalsis not in place.

In addition to M/S technique, several other algorithms, such as the Karhunen-Loeve
Transform (KLT) based approach [14] and the Integer-to-Integer Discrete Cosine Transform
(INT-DCT) based approach [15], have been suggested for removing inter-channel redundancy.
As shown in Fig. 1.1, in the KLT based approach, KLT is applied to the “un-quantized”
MDCT coefficients of multiple channels. However, as discussed in [15], how to derive proper
perceptual masking thresholds for the KLT-transformed signals is a challenge yet to be solved.
Without appropriate perceptua model in the transform domain, this approach may result in
uncontrolled degradation in audio quality. In contrast, the INT-DCT based approach conducts
a lossless transformation on the ‘“quantized” MDCT coefficients of multiple channels.
Because the quantized MDCT coefficients-can-then-be perfectly reconstructed, there is no
quality loss in using the INT-DCT based. approach but its ability in removing redundancy is
relatively low.

In order to achieve a higher efficiency in removing the inter-channel redundancy and, in
the meanwhile, to maintain good audio quality, an efficient inter-channel prediction algorithm
is proposed in this paper. Different from the M/S stereo coding or the KLT based approach,
our approach does not propagate the quantization noise from one channel to other channel.
Therefore, no extra perceptua masking control is needed. Similar to the INT-DCT based
approach, no audio quality degradation will be induced by our method. Moreover, the bit rate
reduction performance of our new approach is 10% better than that of the INT-DCT based

approach on the average.
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Fig. 1.1: Simplified block diagram of (@) KLT based approach. (b) INT-DCT based approach.

1.3 Outline of the Dissertation

The organization of this dissertation is as follows. In Chapter 2, we introduce the brief history
of MPEG Audio and describe the main feature in MPEG-4 AAC. The proposed first type of
R-D control algorithms, cascaded trellis-based scheme, and its variations are described in
Chapter 3. In Chapter 4, we describe.the propesed second type of R-D control algorithms and
its fast version. The proposed: efficient| interchannel prediction scheme for removing
inter-channel redundancy is described in.Chapter 5. Finally, all main results achieved in this

dissertation are summarized in Chapter. 6.



Chapter 2
Advanced Audio Coding

In this chapter, we will briefly describe the history of MPEG Audio and MPEG-2/MPEG-4
AAC standards. Moreover, we will describe the main features in MPEG-4 AAC system,

which are mainly based on MPEG-4 AAC Version 1 [2].

2.1 Brief History of MPEG Audio

The standardization body M oving Picture Expert Group (MPEG) was established in 1988 to
specify digital video and audio coding schemes. MPEG provided the first digital audio
compression standard, MPEG-1 audio layers I, Il and Ill, which was adapted by the
International Organization for Standards and the International Electrotechnical Commission
(ISONEC) a the end of 1992 [16].-MPEG-1-audio coding system only supports
single-channel or two-channel cading with'sampling rate at 32, 44.1, and 48 kHz.

Following the first phase of'its standardization efforts, MPEG-1 audio standard was
complemented by MPEG-2 audio in 1994 [17], which provided a backward compatible (BC)
multichannel coding and extensions to lower sampling rates. The basic coding technology in
MPEG-2 BC is the same as that in MPEG-1 audio. For Layers| and |1, the time to frequency
mapping is implemented by a 512-tap polyphase quadrature mirror filter (PQMF) with 32
channels [18]. The masking thresholds are computed by Psychoacoutsc Model 1 with a
512-point FFT. The quantization is performed by block companding groups. For increasing
the frequency resolution and coding efficiency, Layer Il employs a hybrid filter bank
composed by the PQMF followed by a modified cosine transform (MDCT) [19]. The masking
thresholds are computed by Psychoacoutsic Model 2 with a 1024-point FFT. The quantization
is performed by employing non-uniform quantization followed by Huffman coding. The

performance and implementation complexity rises as the layer number goes up. Layer Il is



widely used for Digital Audio Broadcast (DAB) in Europe, audio in Video Compact Disc
(VCD), and broadcast delivery systems. Layer |1l has become the most popular standard for
transmission and storage of compressed audio for both internet (World Wide Web, WWW)
and consumer electronics (such as handheld media applications).

For better coding efficiency for multichannel coding, MPEG began standardization
activities for a non-backward compatible (with MPEG-1) audio coding system. As aresult of
this effort, the 1S13818-7 MPEG-2 Non-backward Compatible/Advanced Audio Coding
(NBC/AAC) agorithm was finalized in 1997 April [20]. The coding efficiency of MPEG-2
AAC isgreatly improved and only needs data rates 384 kbps for five full bandwidth channels
with transparent quality. In parallel, the MPEG-4 standardization activities had been started in
1994/1995. Verson 1 of the MPEG-4 audio standard was adopted in December of 1998.
MPEG-4 audio encompasses more:functionality. than just perceptua coding. It contains an
integrated family of algorithms-with wide ranging -provisions for scaleable, object-based
speech and audio coding. Relative to itspredecessors; the distinguishing features of MPEG-4
are extensive scalability, object-based representations, user interactivity manipulation, and a
comprehensive set of coding tools. Very low bit rates can be achieved by using the structured
representations for synthetic speech and music. For higher bit rates and “natural audio”
speech and music, the standard provides integrated coding tools. The coding tools are
specified in terms of MPEG-4 “profiles’ which essentially recommend tool sets for a given
level of functionality and complexity. Version 2 of the MPEG-4 audio [21], which is fully
backward compatible to Version 1, was technically frozen in December 1999. Version 2
contains various extensions to Version 1, such as Error Robustness, Low-Delay AAC
(AAC-LD), Bit Slice Arithmetic Coding (BSAC) for fine grain bit rate scalability and
Harmonic and Individual Lines plus Noise (HILN) in stand alone mode as well as in

combination with the parametric speech coding scheme HXVC.



2.2 Overview of MPEG-2/M PEG-4 AAC

MPEG-2 AAC development officially started from 1994 and was finalized in 1997. The goal
of MPEG-2 AAC development is a new powerful state-of-the-art multichannel coder without
compatibility constraints. Like most digital audio coding schemes, MPEG-2 AAC algorithm
compresses audio signals by removing the redundancy between samples and the irrelevancy
within audio signals. Removing the redundancy between samples is accomplished by
time-frequency analysis. Making use of the acoustic masking properties (perceptual model) of
human hearing system to remove unperceivable signal parts (irrelevancy removal). MPEG-2
AAC combines the coding efficiencies of a high-resolution filter bank, backward-adaptive
prediction, joint stereo coding, and Huffman coding with a flexible coding architecture to
permit application-specific functionality. Because of the high performance of the MPEG-2
AAC, it was adopted as the core of the MPEG-4 General Audio (GA) Standard.

MPEG-4 GA is built based on the core kernel provided by MPEG-2 AAC, which is
extended by several additional coding toolsand coder configurations. Therefore, MPEG-4 GA
is usually called MPEG-4 AAC. These additional coding tools are the Perceptual Noise
Substitution (PNS), the Long-Term Prediction (LTP) and the Transform-domain Weighted
Interleave Vector Quantization (TwinVQ). The PNS and LTP tools are available to enhance
the coding performance for the noise-like and tonal signals. The TwinVQ tool is a special
coder kernel to cover extremely low bit rates.

In order to allow the tradeoff between quality and complexity, MPEG-2 AAC system
offers three profiles: the Main Profile, the Low Complexity (LC) Profile, and the Scalable
Sampling Rate (SSR) Profile. Each profile contains a subset of a single toolset, with the tools
among it to compose the coder. Similarly, the profiles in MPEG-4 mean subsets of toolset but
with more toolsets supported. That is to say, a profile may not be another level of

implementation, but may be another toolset. One should note that, once the implementation



level is defined, the corresponding complexity will be known.

MPEG-4 AAC takes the word ‘tool’ to represent a specific function, and the combination
of tools constructs the entire coding. There are two tools belong to quantization in MPEG-4
GA - one is quantization for conventional AAC; the other is interleaved vector quantization.
With these two quantization tools, MPEG-4 GA can be divided into two parts of coding
schemes — AAC and TwinVQ. We are focus on MPEG-4 AAC in our dissertation. Fig. 2.1
gives an overview of the MPEG-4 AAC encoder and the detail of each tool is described in the

following subsections.



Input time signal
|

+

+

Psychoaustic
Model

S

—

Gain
Control
Filterbank [
| Spectral] Processing |
TNS IS -
Long Term |
Prediction
Intensity/ |
Coupling
Bitstream |
Prediction [—F— Formatter
PNS ——
M/S ——

Rate-Distortion
Control
Process

+

Quantizer

18

Noiseless

Coding

L—

Scale Factor |

T

Legend

Data —)
Control —

Codec
Audio
Stream

Fig. 2.1: MPEG-4 AAC Encoder Block Diagram. [2]
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2.3 Psychoaustic M odel

Most current audio coders achieve compression by exploiting the fact that "irrelevant” signal
is not detectable by human ear. Thus, psychoacoustics plays an important role in reducing the
bit rate in audio coding. Psychoacoustic model is basically based on the critical band and
acoustic masking principle of the human ear/brain aural perception system. The irrelevant
information is identified during signal analysis incorporating with several acoustic masking
principles, such as the absolute threshold of hearing, simultaneous masking and temporal
masking. In this section, we will first illustrate the critical band and acoustic masking
principle of the human aural perception system. Then we will introduce an example of

psychoacoustic model in MPEG-4 AAC, of coursg, it is not normative.

2.3.1 Critical Band

In the physic measurement of sound, the unit of.the frequency is hertz (Hz). Nonetheless the
actual unit of frequency represented in inner ear is.another nonlinear frequency scale. In
psychoaustics, the unit to represent the frequency of‘a signal is ‘bark’. This unit comes from
the critical band phenomenon of human ear. Generally, hearing system of human is composed
of several sensors, with each sensor detecting the signals in different frequency range. These
sensors can be model as several overlapping bandpass filters. These bandpass filters, which
are also called critical bands, are successive arranged about 2 ~ 22k Hz with different central
frequency and bandwidth. Table 2.1 lists the frequency range of critical bands. One can easily
find that the bandwidths of critical bands are not the same.

The critical band concept strongly influences the masking effect. Phenomenon shows
that, if atone and noise are within the same critical band, the masking effect will occur, even
if they do not intersect. Moreover, within the same critical band, the threshold of masking
effect will be almost the same. Otherwise, the masking effect also exists outside the critical

band because of the spreading effect. However, the influence would greatly decay according

1



to the distance.

Critical band concept greatly influences the computation of perceptual model, since it is
the actual sound representation of inner ear. In the computation of perceptual model, the
frequency domain signals should be transformed to bark domain first. After that, all the other

calculations would be performed in bark domain.

Table 2.1: Critical bands bandwidth. [1]

Band No. Central Bandwidth Band No. Central Bandwidth
Freg. (Hz2) (H2) Freg. (H2) (H2)

1 50 0~ 100 14 2150 2000 ~ 2320
2 150 100 ~ 200 15 2500 2320 ~ 2700
3 250 200 ~ 300 16 2900 2700 ~ 3150
4 350 300 ~ 400 17 3400 3150 ~ 3700
5 450 400 ~ 510 18 4000 3700 ~ 4400
6 570 510~ 630 19 4800 4400 ~ 5300
7 700 630 ~ 770 20 5800 5300 ~ 6400
8 840 770 ~920 21 7000 6400 ~ 7700
9 10000 920~ 1080 22 8500 7700 ~ 9500
10 1175 1080 ~1270 23 10500 9500 ~ 12000
11 1370 1270~ 1480 24 13500 12000 ~ 15500
12 1600 1480 ~1720 25 19500 15500 ~
13 1850 1720 ~"2000

2.3.2 Acoustic Masking Principle

Acoustic masking is an important characteristic of human ear for compression and there are
three major masking principles, absolute threshold of hearing, simultaneous masking and
temporal masking.

Absolute threshold of hearing, also called threshold in quiet, is the threshold that a signal
is just perceivable. In other words, a signal is inaudible if the power density of it is less than
the threshold. The unit of absolute threshold is SPL (sound pressure level), which is the unit
that how large a sound is. An example of the curve of threshold in quiet is shown in Fig. 2.2.

The masking phenomenon is that one signal (called maskee) is masked by another signal

(called masker). If the masking effect works in frequency domain, it is called simultaneous
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masking. If the masking effect works in time domain, it is called temporal masking. A typical
example of simultaneous masking is shown in Fig. 2.2. When a signal (masker) is present at a
particular frequency, you cannot perceive the signal (maskee) at nearby frequencies that are
aufficiently low in intensity. For the temporal masking, if the intensity of asignal at atimeis
larger than that a neighboring time, it may mask the signals near it. There are two categories
of temporal masking according to whether the masking effect is prior or posterior to the
masker at time domain. The masking effect prior to the masker time is called pre-masking; in
other case, the masking effect posterior to the masker time is called post-masking. Fig. 2.3
shows an example of temporal masking.

By exploiting the masking effects, we can remove the inaudible signals to reduce the
signals that is necessary to be encoded. This concept is also extended to the idea of
“maximum allowable energy level” for coding distertion. This idea means that we can neglect
the quantization error if this error. is lower than the absolute threshold or the masking
threshold. Therefore, we could have:the chance of' transparent coding even if we perform

guantization in Encoder.
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Fig. 2.2: Simultaneous masking effect. The masker at 300 Hz masks the 150 Hz signal.
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Fig. 2.4: Block diagram of atypical Psychoacoustic Model. [2]

2.3.3 Psychoacoustic Model in MPEG-4 AAC

Fig. 2.4 shows the block diagram of psychoacoustic model. Frequency domain transformation
is essential since representation of signal in inner ear bases on frequency domain. Because the
masking effects of noise-like and noise-like signals are much different, the detection of

noise-like signal or tone-like signal is performed at second procedure. According to these two
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sorts of masking effect, the initial masking threshold is calculated. Perceptual entropy
calculated from initial masking threshold decides which window is suitable. It aso can be
applied to quantization tool to control the number of bits used in this frame. After deciding the
widow type, we calculate the actual masking threshold by corresponding window type. Note
that, the transition window between long/short windows is necessary for smooth coding, so a

procedure is essential to detect if the transition window is needed.

2.4 Filterbank

A fundamental component in AAC is the conversion of time-domain signals into frequency
representation (spectral coefficients) and is done by a forward modified discrete cosine
transform (MDCT) in the encoder. Its reverse process, inverse modified discrete cosine
transform (IMDCT), is done in the decoder. Moreover, the MDCT and IMDCT employ a
technique called time domain aliasing cancellation (TDAC) [19].

For reducing the boundary effect, each block of input samples is overlapped by 50% with
the preceding block and the following block. The overlapped analysis and overlap-add

synthesis processes are illustrated in Fig. 2.5.

Frame & Frame k+1Frame k+2
L M | M | M |

| M ——»[MDCT ] M|
| M | »[MDCT [ M ]
(a)
[ M »[IMDCT |- M7\ |

[ M »[IMDCT }——»] l\+/le

Frame k+1

(b)

Fig. 2.5: Overlapping phenomenon of (a) MDCT and (b) IMDCT. [1]
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2.5 Temporal Noise Shaping (TNS)

The handling of transient and pitched signals is a major challenge in the perceptua audio
coders. Thisis mainly due to the problem of maintaining the masking effect in the reproduced
audio signals. While coding the transient signals, a so-called pre-echo problem may occur
because of the temporal mismatch between masking threshold and quantization noise.
Although the quantization noise that stretches out the entire window is small compared to the
abrupt signal region, it is much larger than quiet or nearly quiet signal region. Fig. 2.6
illustrates this phenomenon.

In AAC, the TNS tool is designed to solve this problem by controlling the temporal
shape of the quantization noise within each window of the transform. Basically, the TNS
technique is based on two main considerations, 1.Consideration of the time/frequency duality
and 2.Shaping of quantization noise spectra-by-means of open-loop predictive coding [8]. In
addition to pre-echo protection,=TNS permits for ‘a better encoding of pitch-based signals,

such as speech.
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Fig. 2.6: Pre-echo example. [1]
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2.6 Prediction/Long Term Prediction (LTP)

Prediction is used to further remove the redundancy especially for more or less stationary
signals. The backward adaptive predictors are adopted so that no additional side information
is required. A second order backward adaptive lattice structure predictor is used and the
predictor parameters are adapted to the current signal statistics, using an LMS-based
adaptation algorithm.

Long term prediction is a well-known technique from speech coding and has been used
to exploit the long-term correlation in the speech signals. It is adopted as a new tool in
MPEG-4 AAC to improve the coding efficiency. LTP exploits time redundancy between the
current and the preceding frame (backward prediction). First, the quantized spectral
coefficients of the preceding frame are mapped (using IMDCT) into the time signals and are
matched to the current time signalsto get the best prediction parameters, delay and gain. Then,
the predicted time signals are constructed and mapped-into the spectral representations (using
MDCT). Finally, the predicted coefficients and the current coefficients are subtracted from
each other to get the residual coefficients. The encoding process of LTP is shown in Fig. 2.7.
LTP tool provides considerable coding gain for stationary harmonic signals as well as some
non-harmonic tonal signals. Besides, because the complexity of LTP tool is much lower

compared to Prediction tool, LTP replaces Prediction tool in MPEG-4 AAC.
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Fig. 2.7: Block diagram of the encoding process of LTP. [2]
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2.7 Joint Stereo Coding

AAC joint stereo coding reduces the needed bit rate for stereo or multichannel signals more
efficiently than separate coding of several channels. There are two different joint stereo
coding approaches in AAC: M/S (middle/side) stereo coding and I ntensity/Coupling.

Instead of encoding the original signals, the M/S stereo coding encodes the sun (middle)
and the difference (side) of the signals of a channel-pair. If the left and right signals are highly
correlated (as is usually true), coding the M/S signals will require less bits than coding the
original signals. Intensity/Coupling tool exploits the fact that the perception of high-frequency
sound component mainly relies not on each sample but on the analysis of energy-time
envelopes. Thus for certain types of signals, only a single set of spectrum coefficients which
is shared among several audio channels need to be transmitted with virtually no loss in audio
quality. The original energy envelopes of,the.coded channels are preserved approximately

such that each channel signals can be reconstructed with its original level after decoding.

2.8 Perceptual Noise Substation (PNS)

Conventional coding method encodes the audio without separating the tone-like and
noise-like signals. However, it is inefficient to encode noise-like signal in such way. The PNS
tool in MPEG-4 AAC gives a very compact representation of noise-like signals. In this way,
the PNS tool further increases the compression efficiency for some types of input signals
since only a flag and the energy information is coded and transmitted. In the encoder, the
noise-like components of the input signals are detected. If the coefficients are detected as
noise-like signals, then the coefficients will not be quantized and entropy coded as usual.
Instead, only a noise substitution flag and the tota power of the noise-like signals are coded
and transmitted. In the decoder, the pseudo noise with desired total power is inserted for the

substituted spectrum coefficients.
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2.9 Rate-Distortion Control Process

Motivated by the human auditory system, the spectral coefficients are grouped into a number
of bands, called scale factor bands (SFB). The spectral coefficients in one SFB are quantized
by a non-uniform quantizer. The non-uniform quantizer in AAC is formulated in (2.1). The
common_scalefactor is the common quantizer step size information for all the SFB. The
gquantizer step size which determines the quantization distortion (noise-to-masking ratio,
NMR) is controlled by the parameter, Scale Factor (SF). Note that, the parameter, Scae
Factor, here and in the following discussions is equal to (scal efactor—common_scalefactor) in

(2.1).

3x(saclefactor—common _scalefactar)
X _q=int| (abs(mdct _Iine)% X2 16 +0.4054 (2.1)

The quantized coefficients:in_one band are-then entropy-coded by one of the twelve
pre-designed Huffman CodeBooks (HCBS). Each SFB' can have its own quantization step size
and HCB. In addition, the indices of.Sks and HCBS have to be coded and transmitted as side
information. In AAC, the SFs are differentially coded relative to the previous SF and then
Huffman coded using a pre-designed codebook [2]. Taking Fig. 2.8 as example, instead of
encoding the SF value of the 2nd SFB, 65, the difference between the 2nd SFB and the 1st
SFB, 5, is coded. The indices of HCBs are coded by run-length codes[22]. A run-length code
in AAC is 9 bits long, which is composed of a 4-bits codebook index and a 5-bits run index.
For example, as shown in Fig. 2.8, the 3rd HCB is used from the 1st SFB to the 10th SFB;
therefore, these 10 HCB indices (same value) are coded together by one run-length code, in
which the codebook index is 3 and run index is 10. It is obvious that the differential and
run-length coding induce the inter-band dependency in coding process. The R-D

controller, our focus in this paper, is to determine two critical parameters, the values of SF
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and HCB, for each SFB so as to optimize the selected criterion under the given bit rate
congtraint. In the following discussions, if the context is clear, the abbreviation “SF” is also

referred to the value of SF and “HCB” is also referred to the index of HCB.

SFB 1 2 10 11 12 30 31
SF | 60 65 68 73 65 61 ]55(

HCB| 3 B 511

o ﬁ%—%&é]} <”> <|> ............

4-bits codebook index 5 -bits run index

Fig. 2.8: An example of values of SF and HCB.

A typical rate-distortion (R-D) control process in the MPEG audio encoder has two
nested iteration loops, the outer iteration loop and the inner iteration loop. Thus, it is often
called the two-loop search (TLS). The outer-iteration loop is the distortion control loop that
handles the distortion associated with eachrband. Theinner iteration loop, also called the rate
control loop, adjusts coding bitsto fit thetarget bit budget for a frame. The flowcharts of the

outer loop and the inner loop specified.in AAC are shown in Fig. 2.9.
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Chapter 3
Cascaded Trellis-Based Rate-Distortion
Control Algorithm

In this chapter, we describe the proposed first type of R-D control algorithms, called cascaded
trellis-based (CTB) scheme. The proposed CTB agorithm and its variations are described in
Section 3.1. The proposed fast trellis search schemes are described in Section 3.2. The
complexity analysis of the proposed R-D control algorithms and the simulation results with

quality evaluation are summarized in Section 3.3.

3.1 Cascaded TrellisBased Optimization Scheme

We start with the problem formulation. of the R-D control algorithm for AAC in Section 3.1.1.
The trellis-based (TB) procedures for SF optimization and HCB optimization in the CTB
scheme are described in Sections 3.1.2-and 3.1.3, respectively. One key element in the
trellis-based optimization process'on. SF, so-called “pseudo HCB”, is explained in Section
3.1.4. Findly, the procedure of the complete CTB optimization scheme is summarized in

Section 3.1.5.

3.1.1 Problem Formulation
For the perceptual audio coders, noise-to-masking ratio (NMR) is the most widely used

objective measure in the R-D control module for modeling the subjective perceptual distortion.
Based on NMR, there are two commonly used criteria for R-D optimization, the average
noise-to-mask ratio (ANMR) and the maximum noise-to-mask ratio (MNMR) [23]. In AAC,
the differential coding of SFs and the run-length coding of HCBs introduce inter-band
dependence in parameter selection. In order to take into account the inter-band dependence in

encoding SFs and HCBs, we need to consider all their possible combinations for all SFBs and
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examine the bits and distortion produced by each combination. If such inter-band dependence
does not exist, we can decide SF and HCB for each SFB separately and add all bands together
to find the global optimal solution.

Mathematically, the R-D optimization problems for minimizing ANMR and MNMR

under a given bit rate constraint are formulated by (3.1) and (3.2), respectively.

minimize Y w.d; subject to (st) Y (b +D(s —s_;)+R(h_,h))<PB (3.1)
minimize (max; w;d; ) subject to (st) > (b +D(s —s_;)+ R(h_,h))<PB (3.2

where i isthe SFB index, w; is the inverse of the masking threshold, and d; is the quantization
distortion, the mean squared quantization errors. In (3.1), i wid; is the sum of NMR over al
SFBs in a frame and in (3.2), max; wi@di.is the maximum NMR in a frame. The parameter
values of SF and HCB for the ith®SFB are-denoted by s and h;, respectively. Symbol D() isa
function of SF, representing the number of.bits produced by differential coding of SF. Symbol
R() is a function of HCB, representing‘the number.of bits produced by run-length coding of
HCB. The returned function values in both cases are numbers of bits to encode the arguments.
Parameter b; is the number of bits for coding the quantized spectral coefficients (QSCs) and
the parameter PB is the prescribed bit rate for an audio frame.

To solve (3.1) and (3.2), the straight-forward joint optimization of SF and HCB for all
SFBs is exorbitantly complex. For one frame in AAC, the number of SF values is 60, the
number of HCB indices is 12, and there are 49 SFBs in total. Therefore, to find the optimal
solution of all combinations, the complexity of brute force search is O((60-12)*%). In [7][8], a
dynamic programming approach, called joint trellisbased (JTB) scheme in this paper, is
proposed to find the optimal SF and HCB for all SFBs jointly at a reduced complexity. As
shown in [7][8], the problem of minimizing ANMR in (3.1) can be reformulated as

minimizing the unconstrained cost functions, Canmr, With the Lagrangian multiplier A:
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CanmRr :ZWidi +4-(b +D(s —s_y) + R(h_1,h)) (3.3

Likewise, the problem of minimizing MNMR in (3.2) can be reformulated as minimizing the

cost functions, Cynmr, Under the constraint: wid; < A, Vi, for acertain value of A.

Cyunmr = Zb. +D(f; = fiy)+ R(h_y,h) (3.4)

The research in [7][8] shows that the problem of minimizing Canmr and Cunmr Can be
efficiently solved by the Viterbi search through the trellis, in which we compute only the legal
transitions from the previous state to the current state [12][13]. Although, the search
complexity of JTB scheme [8], O((60-12)%49), is much lower than that of brute force search,
it is still extremely high for practical applications.

As shown in Fig. 3.1, a simplification of the JTB scheme is to search for the SF and the
HCB values in two consecutive steps without gotng through all possible combinations. [deally,
the order of complexity of our CTB scheme goes down to O((60%+12%)-49). However, because
these two steps are strongly correlated, we need to design the cascaded algorithm with special

treatment on this issue to reduce performance degradation. This is the main point of this

section.

B TB optimization on SF

optimization -
on |:> — Optlmal SF
SF and HCB TB optimization on HCB
v I

Optimal SF and HCB Optimal HCB
JTB scheme CTB scheme

Fig. 3.1: Joint trellis-based scheme vs. cascaded trellis-based scheme.

3.1.2 Trdlis-Based Optimization on SF

In this sub-section, the procedures of trellis-based optimization on SF aiming at two criterions,

ANMR and MNMR, are described.
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1) Trellis-Based Procedure for ANMR Minimization:

The problem of minimizing ANMR in the JTB scheme is formulated as minimizing the
unconstrained cost functions, Canmr, in (3.3). However, to break the combined one step into
two consecutive steps in our CTB scheme, this problem is reformulated as minimizing two

unconstrained cost functions, Cs= anmr @nd Ciicg, as follows.

Csr ANMR :Z\Nidi +A4-(b +D(s —s.1)) (3.5)

Chice =Zh +R(h_1,h) (3.6)

The minimization of Csr anmr 1S described in this sub-section, and the minimization of
Chics Will be described in Section 3.1.3. Because Cg= anmr @nd Crcg @re minimized in two
separate steps, the global optimality of. Canugr-is not guaranteed although the computation is
significantly reduced. Our contributiony described hereafter is to develop techniques that
would come close to the global aptimality.

Similar to the approach in the JTB“scheme, the goal of finding proper SFs that minimize
Cs= anmr Can be achieved by looking for the optimal path through the trellis. Each stage in the
trellis corresponds to an SFB and there are N_SFB stages in total. However, different from
JTB, each state at the ith stage in our scheme only represents an SF candidate for the ith SFB.
In other words, a the ith stage, if a path passes through the mth state, it means that the mth SF
candidate is used to encode the ith SFB.

For a given value of A, the Viterbi search procedure for finding a proper set of SFs that
minimize Cg anmr IS outlined below. We denote Yy, as the kth state a the ith stage and
denote Cy; as the minimum accumulative-partial cost ending at Y;. The state-transition codt,
Tii-1-ki, from Y1 to Yy is A-D(si— S,-1), where ; is the SF value associated with the stae

Yk’i .
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1) Initialize all the states and start trellis search from the first stage. Cxo =0, Vkand i =1.

2) For each state a the ith stage, find the best path from the previous stage by examining all
the states a the (i-1)th stage leading to the current state. The best path ending at Yy is the
one that has the minimum accumulative-partial Cy;. That is, we look for the minimum

value of Cy;, VKk;
Cyi =min{C;; +(wdy; +A-b; +T i1, )} (3.7)

3) Check theindex, i. Ifi <N_SFB, seti =i+1and goto sep 2.

2) Trellis-Based Procedure for MNMR Minimization:

The problem of minimizing MNMR in the JTB scheme is formulated as minimizing the
cost functions, Cunmg, in (3.4). In.eur CTB scheme, this problem is reformulated as the
minimization of two cost functions, Csr mnvr 101(3.8).and Crics in (3.6), under the constraint:

wid;, < A, Vi, for a certain value of A.
Csr MNMR = Zh +D(s -s.1) (3.8)

Similar to the trellis-based ANMR optimization on selecting SF described above, an “ SF
trellis’ is constructed for minimizing Csr mnvr. FOr a given value of A, the Viterbi search
procedure for finding proper SFs that minimize Csr mnvr IS outlined below. The
state-transition cost, Ty .1k, 1S D(Si— Sii-1)-

1) Initialize. Cxo =0, Vkand i =1.

2) For the ith stage, only the particular state, which the NMR (widk;) associated with is less
than or equal to A, is valid for trellis search. Therefore, before staring the trellis search, we
must find the valid states for the ith stage, Yk, Vk.

3) For each valid state a the ith stage, find the best path from the previous stage by
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examining all the valid states in the (i-1)th stage leading to the current state. That is, we

compute and find the Cy; such that;
Coi =min {C iy + (O +T i)} (3.9

4) Ifi<N_SFB, seti =i+1and goto step 2.

After completing the forward “search and expansion” step through the trellis, the optimal
path in the trellis can be extracted by tracing backward from the state with minimum Cyn_srs
a the last stage. Consequently, the optimal SFs for all SFBs that minimize Css mnmr (Or
Csr anmr) are determined.

As described in [7][8], to a band below the masking threshold, any values of SF can be
assigned. Therefore, its associated state inthetrellis is split into two consecutive states. At the
first state, the spectral coefficients are quantized using the assigned valid SF, and at the

second state, al quantized values of spectral coefficients are set to zero.

3.1.3 Trellis-Based Optimization.en'HCB

The HCB optimization is performed under the assumption that the SF (value) for each SFB
has already been decided. In our CTB scheme, SF is determined by the trellis-based
optimization on SF described in Section 3.1.2. With a determined SF, QSCs for each SFB are
fixed and thus the b; term in the cost function Ccg (see (3.6)) depends only on the selection

of HCB. Therefore, Cycg can be restated as (3.10).
Chice = Z Hy, (a) +R(h g, hy) (3.10)
|
where g; (vector) contains the QSCs for the ith SFB and symbol H;, () is a function of QSCs,
representing the number of bits produced by Huffman-coding of QSCs using the hth HCB.

The goal of the optimization procedure here is to find the HCBs for all SFBs that minimize

the cost function Cycg and this can be achieved again by finding the optimal path through the
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trellis with states now being HCB.

An “HCB trellis’ is thus constructed for searching for the minimum Cycg. Each state a
the ith sage represents an HCB candidate for the ith SFB. The gate-transition cost, Tn-1-mi,
from Y1 to Y is R(hni-1, hmi), where hy,; is the HCB associated with the state Y.
According to the run-length coding rule in AAC, R(hnj.1, hm;) is defined by (3.11). In other

words, no extrabits are transmitted if the same HCBs are used in two neighboring SFBs.

0, if n=m

R(hy1 i) = { (3.11)

9, otherwise

The Viterbi search procedure for finding proper HCBs that minimize Cycg is outlined
below.
1) Initialize. Cp =0, Vmandi =1.
2) For each state a the ith stage, find therbest-path from the previous stage by examining all
the states a the (i-1)th stageleading to the current-state. That is, we find the best Y, by

computing and find the Cy,; such thet
Cm,i =min n{ Cn,i—l + (H P (q| ) +Tn,i—1—>m,i )} (312)

where g; isthe vector of the QSCs in the stagei.

3) Ifi<N_SFB, seti =i+l and goto step 2.

Similar to the trellissbased optimization on SF, after completing the forward
search/expansion step through the trellis, the optimal path in the trellis can be extracted by
tracing backward from the minimum Cyn_srg State at the last stage. Then, the optimal HCBs

for all SFBsthat minimize Cycg are determined.
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3.1.4 Pseudo HCB for SF Optimization
1) Motivation for Pseudo HCB:

We firgt look at the MNMR minimization case. The key problem in splitting (3.4) into
(3.8) and (3.6) is to choose the correct (optimal) value of by; in (3.8). In (3.8), the widk; or
D(si— S,-1) term is unique for a given state or ate transition in the SF trellis. However, the
value of by depends not only on s associated with the state in the SF trellis; it also depends
on the choice of HCB. In the JTB scheme, SF and HCB are chosen simultaneously. Therefore,
for each candidate value of SF, all possible by; values, corresponding to 12 candidate HCBS,
are evaluated. In other words, the chosen value of by; for each state Yy in the trellis for JTB
optimization scheme is optimal [7][8]. But in our sequential optimization scheme, the value of
by; for the state Yi; in (3.8) is estimated based upon the available information. The estimated
value of by, may not be the optimal value ‘and this may further induce an incorrect

(non-optimal) selection in SF optimization. For example, two candidate paths in the SF trellis,

A and B, are shown in (3.13). Path Aistbetterithan path B because C§& vinur <C& mnmr
where  C& ywwr @0 Cg ynur @€ the Cesewnwr values of path A and path B,

respectively. Note that f},A and BiB in (3.13) are the estimated values of b; for path A and

path B. If the decision on SF is made at this point, path A is chosen. Now, let us go one step
further. Based on the selected SF sets of path A and path B, we can find their optimal HCBS,
h* and h;® respectively, according to the HCB optimization procedure described in Section

3.1.3. Then, their actua bits information b and b®, for pah A and path B, respectively, is
obtained. Finally, the total costs Ci\yr @d Coywg fOr two candidate paths are shown in

(3.14). The result in (3.14) indicates that path B is actualy better than path A when the bits
information is correct. With a wrong estimate on b, our CTB agorithm would pick up path A

for SFsand thus it fails to find the overall optimal path B.
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CSAF_MNMR = ZE%A + D(ﬁA - ﬁA—l) < CSBF_MNMR = ZE%B + D(SB - 38—1) (3.13)

CI\A/INMR = z (buA + D(QA —1) + R(h|A1’ huA ) >
(3.14)

Crinmr = Z(bB +D(s - s°1) + R(hP1,h?))

Clearly, with a more accurate estimate on by;, we can select better SFs. For this aim, the
concept of “pseudo HCB” is proposed for the trellis-based optimization on SF. The preceding
discussions on choosing HCB can be applied to the ANMR minimization case.

2) Design of Pseudo HCB:

When the trellis-based optimization on SF is performed in the pseudo HCB mode, a

pseudo HCB with anindex set h,; needs to be constructed for the state Yy; to produce by; in

(3.5) and (3.8). It can be congtructed in several'ways. For example, h/; may contain only

one of the 12 candidate HCBs or several codebooks. 1n order to improve the accuracy of the

estimated values of by; and h/ ;5 we analyze;the data collected from the JTB optimization

scheme.

For a given value of A, using the JTB scheme, we can find a set of optimal parameters,

Sot» Nopt. and by that minimizes the cost function, Canur in (3.3) or Cunwir in (3.4).

For comparison purposes, we also construct a reference set of QSC hits, bI®, in the

following way. For the ith SFB, b7®. is the minimum number of bits for encoding qOlotl

mln |

and is determined by ernT,nB, =min{H m(qOlot )}, where qOlot . isthe QSCs quantized by using

bJTB

mini isthe

Opt, . In other words, without considering the bits for coding the HCB indices,

lowest bits number produced by any of the 12 HCBs applied to the QSCs. Because the coded
bits for HCB indices, R(hi.1, hi), are also included in the overall optimization procedure, when

comparing coding bits for QSCs only, bggtB is higher than or equal to b;®.
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By collecting the statistics from the simulations on ten audio sequences, the histogram of

the differences between b® and b’™®, denoted by Ab, is shown in Fig. 3.2. We observe

opt min 1
that over 91% of Ab is less than 3 for both ANMR and MNMR criterions. In general, we can

choose the HCB that produces the minimum QSC bits, b'®.

min

7016942, o = MNMR
= I [IT0 ANMR
o 65U A
N
S5 13,67 o
12,035
£ — — 9.97
5h 10 - — 9.35
g — B E 150 519
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N

Fig. 3.2:_Histogram on Ab.

After examining this characteristics of bjgtB, we derive arule in determining h,; and

by;. For the state Yy;, hy; is the‘indexset of HCB that satisfies the proposed rule in (3.15);

namely,

hei =11 Hpo (@) S min o {H (@ )} + 6 ,ne {0, 15 } (3.15)

The ming{ Hm(0k;)} term is the minimum number of bits for coding gx; without considering
the coding bits for HCB indices and ¢ is an offset parameter. For example, if Hi(qki) and
Ha(qk;) are both smaller than or equal to miny{Hm(aki)}+d then h; equals to {1,3}.
Although (3.5) and (3.8) do not include the bits number for coding HCB indices, it is found
from experiments that including this term leads to a better estimate of SF. Therefore, we

expand (3.5) to approximate (3.3) and expand (3.8) to approximate (3.4) with additional terms.

Based on the above observation, by; is rewritten as:
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Jear- RN ) (3.16)

b = ((Zneh;’i H, (O, ))/

h

where « is a weight for including R, (h'i_;,hy;) into b and |hy;| is the number of

elements in hy;. The symbol R, is the run-length coding function performed on the pseudo

HCB and is defined below.

0, if (hjiynh)=g

| (3.17)
9, otherwise

Rv (hl\{i—l’ hl\</,i ) :{

Note that the R,() function is essentially the R() function in (3.11). However, because h,; and

h'i., areindex sets of HCB, the intersection isused in (3.17).

After having derived (3.15) and (3.16), we still need to determine the proper values for ¢
and o The values of dand o can be determined by examining the difference between the JTB

scheme and the CTB scheme at -different values of d and o and the results are shown in Fig.
3.3 and Fig. 3.4. Note that Cjiair- and Cinr @€ the Canmr (in (3.3)) derived using the
JTB scheme and CTB scheme, respectively.Ciigur ad Cynmr @€ the Cunmr (in (3.4))
derived using the JTB scheme and CTB scheme, respectively. We find that for a wide range
of dvalues, we can achieve a pretty good performancewhen R, (h'i_;,h¢;) isincluded in by;

(> 0). As Fig. 3.3 and Fig. 3.4 indicate, the case that =1 and o=0.5 gives the best results.

Hence, we choose 1 for o and 0.5 for «in our implementation.
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3.1.5 Cascaded Trellis-Based Optimization Procedure
The major steps in our CTB scheme have been described in detail in Sections 3.1.2 to 3.1.4.

The flowchart of the complete CTB optimization scheme is summarized in Fig. 3.5. Passing

produces hqy, a set of optimal HCB. Based on this set of hopt, Sopt IS @ new set of optimal SF
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derived at the end of the third step. Note that the same trellis-based optimization on SF is used
in steps 1 and 3, but they are derived using different HCB modes. In step 1, the pseudo-HCB
mode is used and in step 3 the fixed-HCB mode is used. The pseudo-HCB mode has been
described in Section 3.1.3. For the fixed-HCB mode, an index set of fixed HCBs,
h = [ h ... W\ ], is pre-chosen and used in the trellis-based SF optimization
procedure. For all the states at the ith stage in the SF trellis in Section 3.1.2, the QSCs, g, are
entropy-coded using the hth HCB; therefore, the value of by in (3.5) and (3.8) is correctly

calculated by b, ; =H K (dx;) . VK. Inthis flowchart, h* is derived from step 2 and is the final

hopt inour CTB scheme.

The 4-step procedure in Fig. 3.5 is called two-iteration mode, because the optimization
process on SF is done twice. The second optimization step on SF (step 3) can recover some
inadequate SF values determined.in steprdrowing to the incorrect HCB used in the pseudo
HCB model. The CTB optimization can be further simplified, in which step 3 is omitted to
save computation. This is called one-iteration-made. Clearly, there is a trade-off between
complexity and coding performance.

y initialize %
->|Step 1:Pseudo-HCB mode TB optimization on SFl

sopt
|Step 2: TB optimization on HCB |
hopt ¢

|Step 3: Fixed-HCB mode TB optimization on SF |
SUPt ( solpt)

Step 4:meet bit rate constraint?

Fig. 3.5: Flowchart of the cascaded trellis-based optimization scheme.



3.2 Fast Trellis Search Algorithm

As described in the previous section, the basic structure of our CTB algorithm (or JTB
algorithm) is trellis search. If we can reduce the complexity of trellis search, we speed up the
entire process. In this section, we propose fast algorithms aiming at reducing the trellis search
complexity. The complexity of the trellis-based optimization scheme depends on the
searching range (number of states) of each stage in the trellis. Hence, reducing the candidate

states at each stage is an effective way in reducing the overall computational complexity.

3.2.1 Fast Search Algorithm for HCB Optimization
In AAC, SFs are differentially coded and HCBs are coded by run-length coding. Run-length

coding can be viewed as a special case of differential coding; therefore, the procedure of
trellis-based optimization on HCB is similar:to that on SF. However, the output of run-length
coding has only two possible values; either 0 or 9 as shown in (3.11). As shown in Fig. 3.6(a),
in order to find the optimal path ending a Y, al the HCB candidates at the (i-1)th stage
have to be taken into consideration.”In AAC, there are 12 pre-designed HCBs; thus, the
searching complexity for finding all the optimal paths ending at the ith stage is 12x12.

The number on the directional branch in Fig. 3.6 is the state-transition cost. Except for
the path Ymj.1—Ymj, the state-transition costs of the other 11 paths ending at Y, are all
identical (equal to 9). Therefore, in calculating Cr,; in (3.12), among these 11 paths, the path
with the least C,i.1 will result in the smallest Cp,i. Based on this property, a fast search
algorithm is proposed, which is divided into two steps.

1) Among the 12 candidate states at the (i-1)th stage, the state with the minimum cost, Cpinj-1,
is chosen and treated as the pseudo thirteenth state, Ymini-1, ahd Criinj-1 = ming{ Cyi-1} .

2) As shown in Fig. 3.6(b), when finding the optimal path ending at Yr,;, we only have to
consider two paths, path (Ymj1—Ymi) and path (Ymini-i—Ymi). The rest of this revised

searching procedure is the same as that in Section 3.1.3.
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The searching complexity (in terms of branch metric calculation) of this fast algorithm is
approximately 12+2x12, which is about 1/4 of the complexity of the full search algorithm.
The firgt “12” term is needed for determining Y min-1. Note that the performance (accuracy) of
this fast search algorithm is the same as that of the full search algorithm. Therefore, this fast

search algorithm can be used by both CTB and JTB optimization schemes without any

©, 0 BH®O
..0.. & ;“
<j> ) ©) Q

Fig. 3.6: Trellis representation of the HCB transition.

performance loss.

(a) Full search'mode and (b) Fast search mode

3.2.2 Fast Search Algorithm for 'SF Optimization (MNMR)
In the trellis-based optimization on SF, each state in the trellis represents an SF candidate.

Searching over alarger set of SF candidates can result in better performance, but at the cost of
higher searching complexity. In general, the number of states (sn) for all the stages in the
trellis are the same and the searching complexity for each stage transition in this uniform
trellisis snx sn.

In this section, we propose two non-uniform (adaptive) trellis search algorithms for SF
optimization under MNMR criterion, in which the number of state for each stage in the trellis
can vary to reduce the overall searching complexity. The first one is called “Global minimum
(reference) SF-restricted Non-uniform trellis’, or “GMNU” in short, and the second one is

called “Local minimum (reference) SF-restricted Non-uniform trellis’, or “LMNU”. In both
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cases, a reference SF is firgt identified and then the number of candidates is reduced against
this reference. Note that al SFs at the ith stage in the trellis are sorted and indexed in

ascending order.

First of all, we define the reference SF, siref , for the ith SFB as the largest SF among all

the valid states a the ith stage. Note that siref is the upper bound of SF candidate at the ith

stage, which means that the SF values of all the other valid states at the ith stage are less than

siref . In the GMNU algorithm, we define the integer index of the “global minimum”

(reference) SF, sihi,, as the minimum reference SF value of all the scale factor bands; that

is, Sgwin =Min | {s{¥}. Then, we restrict the SF candidates at the ith stage in the range of

[s5hin—& S 1. Namely, we only use the SF values between s and sZ),, — . Thus, the

number of state at the ith stage, SN, equalSto(S'® — sy, +1+6).

In the LMNU algorithm, we define the integer index of the pth-order “local minimum”

(reference) SF at the ith stage, s[?fMin,i S Sﬁmn,i = min {sgef}. Essentially, instead of all

i—p<j<i+p
the bands, we only look at alocal neighborhood of the current stage. Then, we restrict the SF

candidates at the ith stage in the range of [ sﬁ,lm’i —£ 5/ ]. Therefore, the number of states for

the ith stage, sn ,,;, equals to (s —s[?me’i +1+¢). In both cases, ¢ is the parameter that

controls the search range. In the simulations in Section 3.3, the value of ¢ is set to 1 and the
1th-order (p=1) local minimum reference SF is used in the LMNU algorithm.

We firgt explain our motivation behind the fast GMNU algorithm. As shown in (3.8) in
Section 3.1.2, The cost function Cse mnvr Can be divided into two parts, the differentially
coded bits of SF values, XiD(s—s-1), and the QSC coded bits, Zib. In general, a larger value of

SF will result in a smaller value of QSC and thus fewer coded QSC bits. If we set the SF
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value of the ith SFB to siref , Vi, we achieve the globally minimal XZib but this rule leads to a

larger  ZiD(s—S-1). On the other hand, if we set the SF values of all SFBs to s, , we

achieve the globally minimal X;D(s—s-1) because the differential SF values are all zero, but

this rule leads to a larger Xib. Therefore, a good guess is that the optimal SF value that
minimizes Csr unmr likely falls in the range of [sg?me,s{ef ]. Although exceptions could

exist, our guess by far dominates. The satistics show that the probability of occurrence of
exceptions is less than 0.5% and the average increased value on Csr unmr due to exceptions is
less than 1 bit.

The idea behind the LMNU algorithm is similar. However, we only look at the local Zib
and XiD(s—s.1) values in this case. Therefore, the LMNU algorithm requires an even lower
computation but it leads to a higher-distortion. Note that, GMNU and LMNU algorithms also
can be used by both CTB and JT B optimization schemes.

As for the trellis-based ANMR optimization on SF, the cost function Cs= anmr depends
not only on Xb and XiD(s—s-1) but: dso.on-XZwd. Therefore, the GMNU or LMNU fast

search algorithm cannot be applied.

3.3 Simulation Results

In this section, we will evaluate the computational complexity and the coded audio quality of

our proposed algorithms. Four types of R-D control algorithms are simulated and compared as

described below.

1) The TLS algorithm in MPEG-4 AAC VM (VM-TLYS).

2) The JTB optimization schemes aiming at minimizing ANMR and MNMR, abbreviated as
JITB-ANMR and JTB-MNMR respectively, proposed in [7][8].

3) The CTB optimization schemes aiming at minimizing ANMR and MNMR, abbreviated as

CTB-ANMR and CTB-MNMR respectively, described in Section 3.1.
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4) The CTB-MNMR (or JTB-MNMR) incorporating GMNU, LMNU and the fast search
algorithm for HCB optimization (FSHCB) described in Section 3.2.
To focus only on the R-D performance, all the optional tools in AAC, such as TNS and
M/S stereo coding, are not used in our simulations. Ten two-channel audio sequences with a
sampling rate at 44.1 kHz are tested. Two of them are extracted from MPEG SQAM [6], and

the rest are from EBU [24].

3.3.1 Complexity Analysis

The complexity analysis for the aforementioned several R-D control algorithms is
summarized in Table 3.1. The “Computation” column is the number of branch metrics in
calculating one-stage transition in the trellis. For the convenience of comparison, the
JTB-ANMR or JTB-MNMR is chosen to be the reference (ratio=1) and all the other schemes
arerated based on this reference. Also shown.in.Table 3.1 is the storage requirement. Again, it
is measured in the number of branch metrics.

We can find from Table 3.1 that the CTB-ANMR and CTB-MNMR schemes are
approximately (142/n) times faster than the JTB-ANMR and JTB-MNMR schemes, in which
n equalsto 1 or 2. Moreover, the storage requirement for the trellis search in the CTB-ANMR
and CTB-MNMR schemes is much smaller than that in the JTB-ANMR and JTB-MNMR
scheme.

For the JTB scheme, the fast HCB search algorithm can be adopted to reduce the

ave

complexity down to 1/4. Note that sng-and sn®

im In Table 3.1 are the average number of

states in the GMNU and LMNU algorithms and are calculated by using (3.18) and (3.19),

respectively.
N B /12
SNGm = (Zizf (SNGmj—1 * Nom; )/ N _SFB)l (3.18)

/2
SN = &iN:_lSFB (SN mjiz1 " SNimj )/N _SFB)l (3.19)
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ave

The simulation data show that atypical sng isapproximately 12 and sn®® isaround

5. Hence, the GMNU algorithm can reduce the complexity to (12/60)* =1/25 and the LMNU

algorithm can reduce the complexity to (5/60)? =1/144.

Table 3.1: Complexity Analysis for JTB, CTB and Fast Search Algorithms.

Scheme Computation Ratio Storage

JTB-ANMR (JTB-MNMR) (60x2)* x12° 1 120x12
CTB-ANMR (CTB-MNMR) nx(60x2)* +12° n/142 120

JTB-MNMR + GMNU +FSHCB | (sn@®y2)?x 36 ~1/(25x4) 120%x12

JTB-MNMR + LMNU + FSHCB | (gn®°x2)2x 36 ~1/(144x4) | 120x12
CTB-MNMR + GMNU + FSHCB | ny(sn°x2)? +36 /3600 120
CTB-MNMR +LMNU +FSHCB | nx(sn?®ex2)2+36 | (n+0.4)/20736 120

3% nequalsto 1 or 2. n= 1. .0one-iteration mode. n = 2: two-iteration mode.

3.3.2 Objective Quality
The rate-distortion curves of these bit.allocation schemes are displayed in Fig. 3.7 and Fig.

3.8. Two major distortion metrics, ANMR.and MNMR, are in use. We can find that the
performance of the CTB scheme is similar to that of the JTB scheme. The ANMR
performance loss is less than 0.2dB for the one-iteration CTB-ANMR and less than 0.1dB for
the two-iteration CTB-ANMR (the lowest three curves in Fig. 3.7). The MNMR performance
loss is less than 0.1dB for both one- and two-iteration CTB-MNMR (the lowest three curves
in Fig. 3.8). All of them are much better than the VM-TLS (the top line).

The differences of performance between the fast SF search algorithms and the full search
(original) algorithm for the CTB-MNMR scheme are shown in Fig. 3.9 and Fig. 3.10. Note
that the original CTB-MNMR scheme uses the uniform trellis with the state number sn=60 in
SF optimization. In addition to the two non-uniform trellis fast algorithms, GMNU and

LMNU, for comparison purpose, we create two uniformtrellis with smaller numbers of states,
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namely, sn=5 and sn=12, which approximately equal to the values of sng: and sn®® in

Section 3.3.1. There is nearly no performance loss for the GMNU algorithm (ANMR or
MNMR Difference = 0). The penalty on LMNU is small but exists. The advantage of the

non-uniform algorithms over the uniform algorithms at about the same complexity is clearly

shown in Fig. 3.9 and Fig. 3.10.

—6— VM-TLS
6 —m— one-iteration CTB-MNMR
—o— two-1teration CTB-MNMR
H —v— JTB-MNMR
—+— one-iteration CTB-ANMR
2 —e— two-1teration CTB-ANMR
04 —v— JTB-ANMR
S
o
=4
< -6
-8
-101
-12 T T T T T T L)
32 48 64 80 96 112 128

Total Bit Rate (kbps)

Fig. 3.7: ANMR rate-distortion,comparison for VM-TLS, JTB and CTB.

—&— VM-TLS_
10+ —m— onec-iteration CTB-MNMR
—o— two-iteration CTB-MNMR
8 —v— JTB-MNMR
64 —— one-iteration CTB-ANMR
—e— two-iteration CTB-ANMR
44 —Vv— JTB-ANMR
S 2]
X (-
% 0
= -21
4]
64
-8
32 48 64 80 96 12 128

Total Bit Rate (kbps)

Fig. 3.8: MNMR rate-distortion comparison for VM-TLS, JTB and CTB.
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Fig. 3.9: ANMR differences between the full and fast SF search algorithms for CTB-MNMR.
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Fig. 3.10: MNMR differences between the full and fast SF search algorithms for CTB-MNMR.

3.3.3 Subjective Quality
Listening test by human ears is the traditional way to subjectively evaluate the audio quality

and is also the most recognized subjective quality measure. However, such subjective test is
expensive, time consuming, and difficult to reproduce. As described in Section 6.2 in [8], the
subjective quality (mean opinion score, MOS) of the JTB-ANMR (or JTB-MNMR) scheme is
significantly better than that of the VM-TLS. MOS is derived from the ITU (International

Telecommunications Union) 5-grade absolute category rating (ACR) scheme [25]. Moreover,
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the informal listening tests on the aforementioned schemes show that it is hard to tell the
difference between JTB and various CTB schemes. In addition, a “smulated” subjective
measure, Objective Difference Grade (ODG), is used in audio quality evaluation. ODG is
generated by a procedure designed to be comparable to the Subjective Difference Grade (SDG)
judged by human ears. It is calculated based on the difference between the quality rating of
the “reference” signal and the “test” signal. The ODG has a range of [-4, O], in which -4
stands for very significant difference and O stands for imperceptible difference between the
reference and the test signal [26][27].

The ODG results for various R-D control schemes discussed in this paper are shown in
Fig. 3.11, in which the reference signal is the original audio sequence. According to the
collected test data (Fig. 3.11), the difference between JTB and CTB schemes is quite small.

The ODG results, comparing against the full search CTB-MNMR scheme, are shown in
Fig. 3.12. Note that the reference signal here is.the coded audio sequence produced by the full
search CTB-MNMR scheme. We can-find-that. there is almost no difference between the
GMNU algorithm and the full search CEB-MNMR particularly at mid to high bit rates. Again
the performance of the non-uniform trellis algorithms is better than that of the uniform trellis

algorithms with the same computational complexity.
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Fig. 3.12: ODG of various fast SF search algorithms for CTB-MNMR.



Chapter 4
Enhanced BFOS Bit Allocation Algorithm

How to make use of the bits more efficiently is always the key issue in perceptual audio
coding. The traditional bit allocation strategies, “allocate bits to the band with the largest
NMR” or “dlocate bits to the bands of which the distortion is larger than the masking
threshold” [23][28], do not necessarily provide the best bit-use efficiency. The “bit-use
efficiency” here means the distortion improvement due to receiving bits.

The previously proposed generalized BFOS algorithm is an efficient bit allocation
algorithm for classified vector quatization or subband coding [9][10]. The research in [11]
also shows that the generalized BFOS algorithm is a near optimal bit allocation scheme for

MPEG-1 Layer I/ Layer T audio coding. However, our research shows that the generalized

BFOS bit allocation algorithm:becomes less efficient for MPEG-4 AAC in which the
inter-band dependency of coding‘processexists:

In this chapter, we describe the propesed second type of R-D control agorithms, the
Enhanced BFOS (EBFOS) bit allocation algorithm. We first describe briefly the generalized
BFOS bit allocation algorithm in Section 4.1. The bit allocation procedure of our EBFOS
scheme for AAC and its fast version are described in Section 4.2. For comparison, we also
propose an approach to integrate the generalized BFOS bit allocation algorithm in AAC in
Section 4.3. Finally, the complexity analysis and the simulation results are presented in

Section 4.4.

4.1 Generalized BFOS Algorithm
As illustrated in [10], the generalized Breiman, Friedman, Olshen, and Stone (BFOS)
algorithm is an extension of an algorithm for optimal pruning in tree-structured classification

and regression to coding [29]. For a source coding application, it finds a sequence of nested
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subtrees of a given tree-gructured coder. Bit allocation of the audio coder using the
generalized BFOS algorithmis first suggested in [11].
As described in [10][11], the BFOS algorithm allocates the bits based on the “Marginal

Returns’ provide by each allocation. The marginal return, MR, is defined as (4.1) [11].

_AD

MR=—
AR

(4.1)

AD and AR in (4.1) are the changes of distortion and bit rate, respectively. For a subband
coding application, we restate the basic idea of the generalized BFOS bit allocation algorithm
as “allocate bits to the band with the maximum distortion decrease per bit” or “de-allocate bits
from the band with the minimum distortion increase per bit”. However, as described in
[10][11], the analytic procedure of “distortion decrease per bit” or “distortion increase per bit”
is inter-band independent in the generalized BFOS hit allocation algorithm. This may result in
less efficient bit allocation for the coder in which the inter-band dependence of coding process

exists, such asAAC.

4.2 Enhanced BFOS Bit Allocation Algorithm for
AAC (EBFOYS)

In the proposed second type of R-D control algorithms, instead of performing the trellis
search through entire frame, we alocate the bits to the proper band step by step. If the
inter-band dependency of coding process does not exist, the bit allocation problem can be
efficiently solved by the generalized BFOS algorithm. However, as described in Section 2.9,
the differential and run-length coding induce the inter-band dependency in coding process of
AAC.

Similar to the generalized BFOS hit allocation algorithm, the basic idea behind our bit

allocation scheme is “allocate bits to the band with the maximum NMR gain per bit” or
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“retrieve bits from the band with the maximum bits per NMR loss’. However, in our approach,
we also consider the inter-band dependency of coding process. Therefore, our bit alocation
approach is called Enhanced BFOS algorithm. “NMR gain per bit” (NGPB) means the gain in
NMR by allocating one bit and is formulated by (4.2). “bits per NMR loss’ (BPNL) is the
number bits we save if we give away one unit of NMR and is formulated by (4.3). In (4.2) and
(4.3), NMR and bits are the original NMR value and bit numbers, respectively. NMRyey, IS
the new NMR value after allocating new bit numbers, bits,e.. In principle, our proposed
scheme tries to reduce the total NMR of all bands. Hence, it has a performance close to the

algorithm that minimizes the averaged NMR criterion.

NMR Gain / bit = (NMR, — NMR,,) /(bits, o,, — bits,¢ ) (4.2)

bits/ NMR Loss =(Bits}g+— bits,,,) ((NMR ., - NMR ;) (4.3)

4.2.1 Bit Allocation Procedure of fEBFOS Scheme
As illustrated in Section 2.9, in AAC,-NMR-in-each band is controlled by the SF value. In

general, larger SF value (referring to larger. step size of the quantizer) will result in larger
NMR value in each band. After been quantized, the quantized spectral coefficients (in each
band) are entropy-coded by a proper choice of HCB. In addition, the indices of SFsand HCBs
for all the bands are coded using differential and run-length codes respectively. The total
coding bits, TB, for a frame can be expressed as (4.4). The values of SF and HCB for the ith
SFB are denoted by s and h;, respectively. Symbol D() and R() represent the number of bits
produced by differential coding and run-length coding, respectively. Parameter b is the
number of bits for coding the quantized spectral coefficients and parameter B; is the total

coding bits for the ith SFB.

TB=Y B =Y (b +D(s —s,)+R(h_y.h)) (4.4)
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Fig. 4.1: EBFOS hit allocation scheme.

The block diagram of the EBFOS bit allocation scheme is shown in Fig. 4.1. Each step in Fig.

4.1 is elaborated below.

1. Initialization. This step is tosinitialize the reference NMR for each band, NMR¢;, & the
start-up of Maximum NGPB/:BPNL analysis: Then, we can determine the reference SF for
each band, se;,and calculate the values of reference total coding bits for a frame, TB,
based on the adopted reference NMR value. In general, larger NMR.«; value (at the
start-up) will result in smaller TBs value at the start-up. There seems to be no
theoretically optimal choice for these values. In our implementation, we set the reference
NMR to 1 (0 dB) for all the bands, NMRi=1, Vi. In other words, we are targeting at
perceptually lossless coding at the beginning of processing a frame.

2. Local Maximum NGPB/BPNL analysis. This step isto find the local maximum NGPB and
BPNL values for all bands. We can determine the local maximum NGPB and BPNL of the
ith SFB, denoted by NGPB_ ; and BPNL, ;, by computing:

NGPB, , =
max{(NMRref,i — NMRay;i ) /(TBrew — TByg )} VSnewi 1 (Srefi =) < Shewi < Sref

ew, i

(4.5
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and

BPNL, =
max{ (TBre = TBpew)((NMR i — NMR ,i)} V'Snewi + Sref i < Snewj < (Sref i + 1) (4.6)
Snew,i

TBrew and NMR,eyi are the new value of total coding bits for a frame and new value of
distortion for the ith SFB respectively, when the corresponding SF value of the ith SFB is
changed from Sef; t0 Swewi. The local optimal SF value of the ith SFB, sy, is the SF value
associated with the local maximum NGPB or BPNL. The n; in (4.5) (or (4.6)) determines
the candidate number of sy, Which is approximate to 12 on the average from the
statistics of coded data
Note that, in performing the local maximum NGPB or BPNL analysis for the ith SFB,
only the SF value of the ith SFB is.changed. from S t0 Shewi. The SF values of the other
SFBs are kept unchanged (S =S, Vi 5 J#)-

3. Global Maximum NGPB/BPNL analysis. We first find the global maximum NGPB and

BPNL value, NGPBg and BPNLg, for a frame by ‘computing:

NGPB; = max;{NGPB, ;} Vi,1<i<49 (4.7)
BPNLg = max; {BPNL ;| Vi, 1<i<49 (4.8)

The global optimal SFB, sfbg, isthe SFB that has NGPBg (or BPNLg). Then we set the SF
value only of the sfbs-th SFB to the local optimal SF value of the sfbs-th SFB.
4. Update NMR; (as well as s.f;) of the sfbg-th SFB and TB,«. Go to step 2 if the bit budget

constraint is not met.

In order to handle the inter-band dependency of coding process, we use TB instead of B;
for NGPB/BPNL analysis. Otherwise, the SF value change of the sfbs-th SFB in step 3 will

influences the local maximum NGPB/BPNL analyses of the other SFBs in step 2. Therefore,
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we have to performing the local maximum NGPB/BPNL analyses for all the bands for each
iteration.

As mentioned in step 2 of the preceding procedure, after changing the SF value from S;
tO Shewi, We need to calculate TBpew and NMRyeyi. The value of NMReyi depends only on the
value of Senj. However, (4.4) indicates that the value of TByey depends not only on the value
of Swewi; it @so depends on the choice of HCB. In our bit alocation scheme, we adopt the
trellis-based optimization algorithm for HCB decision proposed in Section 3.1.3.

In general, either the Maximum NGPB analysis or the Maximum BPNL analysis (but not
both) has to be performed for each iteration. The Maximum NGPB analysis is used for
spending the bit budget (when the bit budget is positive) and the Maximum BPNL analysis is

used for recovering the bit budget (when the bit budget is negative).

4.2.2 Fast Algorithm for-EBFOS . Scheme
The complexity of our EBFOS-scheme highly depends on the times that the NGPB/BPNL

calculation in step 2 of the bit allecation pracedure (in Section 4.2.1) is performed. Taking the
local maximum NGPB analysis as example, we need to perform n; times NGPB calculation
for locating the local maximum NGPB of the ith SFB. Hence, the total number of calculations

for finding the global maximum NGPB is zi n .

It is obvious that the most effective way for reducing computations is to reduce the
number of NGPB/BPNL calculations. From the statistics of the local optimal parameters, Sopt,
and NGPB_; (or BPNL_ ;) collected from the coded data, we find some interesting properties

whish are summarized in Table 4.1.

In Table 4.1, i is the SFB index and mis the index of SF adjustment iteration. sfbl' is
the global optimal SFB of the mth SF adjustment iteration and S= {sfbg‘ —-1,sfhy +1}, the set
of two SFBs. The first statistic in Table 4.1 is the probability that s differs from s

opt, i opt, i
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and is denoted asP. (sOlotl # Sopt.i) » Where g is the local optimal SF value of ith SFB for
the mth SF adjustment iteration. We can find that P_g (S0 Opt, # Sopt,i) F€2Ches to 28.72%

which is approximate 18 times of P ). The other datistic, taking the

(Susbe)( Optl Optl
Maximum NGPB analysis as example, is the average value of normalized differences between
NGPB[; and NGPBT', AD. (NGPB;,NGPB[}'), where NGPB[, is the local
maximum NGPB value of ith SFB for the mth SF adjustment iteration.

AD. (NGPB[";, NGPB["f 1) isformulated in (4.9), where M is 2 for C= (i € S) and is (49-3)

for C = (ie (Susfbg)). We can find that, AD. (NGPB/";,NGPB["{") is typically

i (Sustbg))

quite small, but  AD ;_s(NGPB[", ,NGPB"") ismuch larger.

abs(NGPB["* — NGPB/
AD. (NGPBL,,NGPB['*{l)zixZ ( — L) (4.9)
LM NGPB[™

It is clearly that the differences of*local maximum NGPB/BPNL analyses between each
SF adjustment iteration mainly centralize a the SFB belong to S Using these properties, we
can drastically reduce the number of iterations in determining sfbg and NGPBg (or BPNLG).

We only need to peform the local maximum NGPB/BPNL analysis on three SFBs
(SFB= {sfb{;n —1,sfhg, sfhd' +1}) after the first SF adjustment iteration. This is the fast version

of our EBFOS algorithm.

Table 4.1: Statistics of the local optimal parameters in maximum NGPB/BPNL analysis.

Condition (C) ieS i¢ (SushD)
P (st 20 ) 28.72% 1.60%
AD. (NGPB[",, NGPB["™* 0.7428 0.0211
or
AD¢ (BPNLY;,BPNLT" )
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4.3 Generalized BFOS Bit Allocation Algorithm for
AAC

The generalized BFOS algorithm is an efficient bit allocation algorithm for subband coding.
For the purpose of analyses and comparisons, we propose an approach to integrate the
generalized BFOS hit allocation algorithm in AAC in this section based on the concepts
described in [10] and [11]. The bit allocation procedure of the generalized BFOS scheme for
AAC is similar to that of the EBFOS scheme (see Fig. 4.1). Each step in the generalized

BFOS scheme for AAC is elaborated below.

1. Initialization. The same to the initialization step in Section 4.2.1, we set the reference
NMR to 1 (0 dB) for al the bands..Then,.we determine the s«; value and calculate the
value of reference total coding bits-for each band, B.; based on the adopted reference
NMR value, NMR¢=1, Vi.

2. Local Maximum NGPB/BPNL:_ analyss. Differing from the EBFOS scheme, the local
maximum NGPB and BPNL of the ith SFB for the BFOS scheme are determine by the

formula (4.10) and (4.11) respectively.

NGPB, ; =
max{(NMRef,i ~ NMRiey,;) /(Brewi — Bref,i)} VSuewi » (Sreri =N ) < Snewi < et i (4.10)
and
BPNL, ; =
(4.12)

max{(Bref,i — Braw )/(NMR o, — NMRref,i)} VSnew,i + Sref i < Shewi S (Srer i T1)

Snew,i

Brewi @and NMR,ey; are the new values of total coding bit and distortion for the ith SFB
respectively, when the corresponding SF value of the ith SFB is changed from S tO Shew;.

The local optimal SF value of the ith SFB, sy, is the SF value associated with the local
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maximum NGPB or BPNL.

3. Global Maximum NGPB/BPNL analysis. The same to the step 3 in Section 4.2.1, we first
find the NGPBg (or BPNLg ) for a frame by the formula (4.7) (or (4.8)) and determine
sfbs . Then we set the SF value only of the sfbs-th SFB to the local optimal SF value of
the sfbs-th SFB.

4. Update NMR; (aswell as S.;) and By Of the sthe-th SFB. Go to step 2 if the bit budget

constraint is not met.

In the generalized BFOS hit allocation scheme here, we also adopt the trellis-based
optimization algorithm for HCB decision. However, differing from the EBFOS scheme, we
only perform the local maximum NGPB/BPNL analysis for the sfbs-th SFB.

As described in [10], the generalized BFOS bit allocation scheme can be performed with
and without convexity assumption, \When the-generalized BFOS scheme is performed with
convexity assumption, n; in (4.10) (or(4.11))-is equa to 1. When the generalized BFOS
scheme is performed without convexity.assumption, n; is approximate to 14 on the average

from the statistics of coded data.

4.4 Simulation Results

In this section, we evaluate the computational complexity and the coded audio quality in our

experiments. Four types of bit allocation algorithms are simulated and compared as described

below using the MPEG-4 AAC Verification Model (VM) asthe test platform.

(1) The TLS algorithm in MPEG-4 AAC VM (VM-TLYS).

(2) The BFOS algorithm for AAC with convexity assumption, BFOS-C, and without
convexity assumption, BFOS-NC, which are described in Section 4.3.

(3) The trellis-based algorithm aiming at minimizing average NMR, JTB-ANMR, and aiming

at minimizing maximum NMR, JTB-MNMR, which are described in[7] and [8].
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(4) The EBFOS scheme and its fast version, which are described in Section 4.2.

In order to focus only on the bit allocation performance, all the optional tools in AAC,
such as TNS and M/S stereo coding, are not used in our ssimulations. Ten two-channel audio
sequences with a sampling rate at 44.1 kHz are tested. Two of them are extracted from MPEG

SQAM [6], and the rest are from EBU [24].

4.4.1 Complexity Analysis

The complexity analysis for the aforementioned several bit allocation algorithms is
summarized in Table 4.2. The “Computation” column is the average number of NGPB (or
BPNL) calculation for a frame. The values in “Computation” column are derived from the
statistics collected from the simulations on audio sequences. For the convenience of
comparison, the BFOS-NC scheme is chosen to be the reference (ratio=1) and all the other

schemes are rated based on this reference.

Table 4.2: Complexity Analysis of EBFOS scheme and generalized BFOS scheme

Scheme Computation Ratio
BFOS-C 119 0.27
BFOS-NC 444 1
Fast EBFOS 1145 2.58
EBFOS 11848 26.68

The experimental data indicate that the computation of fast EBFOS scheme is
approximately 2.6 times higher than that of the BFOS-NC scheme. Moreover, the fast EBFOS

scheme is approximately 10 times faster than that of the EBFOS scheme.

4.4.2 Objective Quality

The rate-distortion curves of the aforementioned bit allocation schemes are shown in Fig. 4.2

and Fig. 4.3. Two common objective quality measurements, average NMR (ANMR) and



maximum NMR (MNMR) are adopted in the objective performance comparison.
The research in [11] shows that the BFOS-C scheme is a near optimal bit allocation

scheme for MPEG-1 Layer 1/ Layer T audio coding, but the simulation results show that the

BFOS-C scheme becomes less efficiency for AAC. The performance of the BFOS-NC
scheme is much better than that of the BFOS-C scheme which means that the convex
assumption is not suitable for AAC. Otherwise, both the ANMR and MNMR performances of
the BFOS-NC scheme are approximately 1dB worse than that of the JTB-ANMR scheme.
Clearly, the performances of the EBFOS scheme are much better than that of VM-TLS
and better than that of the BFOS-NC scheme. If we look a the ANMR plot (Fig. 4.2), the
performance of the EBFOS scheme is slightly worse than that of JTB-ANMR but they are
very close. It is somewhat better than the JTB-MNMR scheme since the latter is not
optimized for the ANMR criterion. If we look a-the MNMR plot (Fig. 4.3), the EBFOS
scheme is somewhat worse than JTB-MNMR but- it5is slightly better than the JTB-ANMR
scheme. As stated earlier, the EBFOS schemerisraiming at reducing the overall NMR, which
pretty much leads to minimizing ANMR:-As for the fast version, there is almost no loss of

performance (less than 0.06dB loss) in adopting the fast algorithm for EBFOS.

4.4.3 Subjective Quality

The informal listening tests on the aforementioned schemes show that it is hard to tell the
difference between JTB-ANMR and the EBFOS scheme. In addition, a“simulated” subjective
measure, Objective Difference Grade (ODG), is used in audio quality evaluation.

The ODG results of the aforementioned bit allocation schemes are shown in Fig. 4.4, in
which the reference signal is the original audio sequence. Interestingly, JTB-ANMR is the
best algorithm judged by ODG. According to the collected test data (Fig. 4.4), the EBFOS
scheme is better than that of the BFOS-NC and BFOS-C schemes. Moreover, the difference

between the EBFOS and the JTB-ANMR schemes is rather small.
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Chapter 5 Perceptually Weighted
| nter-Channd Prediction

Despite the success of current audio coding techniques, not much effort has been made to
reduce the inter-channel redundancy inherent in multichannel audio. In order to achieve a
higher efficiency in removing the inter-channel redundancy and, in the meanwhile, to
maintain good audio quality, an efficient inter-channel prediction algorithm, called
perceptually weighted inter-channel prediction, is described in this chapter.

We firgt give a brief review of linear prediction technique in Section 5.1. The proposed
perceptual-weight inter-channel prediction scheme is described in Sections 5.2. The

experiments and simulation results are summarized in Section 5.3.

5.1 Linear Prediction

Linear prediction technique is an effective tool in speech coding and lossless audio coding
and thus is commonly used in those coders [30]: However, as mentioned in [31], there has
been a long debate whether or not the inter-channel linear prediction in time domain can
further increase the compression rate of the multichannel audio coder. Theoretically, the coder
should achieve a higher compression rate by coding the prediction residual signals rather than
the original signals. However, the research in [31] shows that the whitening effect of the
prediction filter would increase the bit count in high frequency regions. Thus, the
inter-channel prediction in time domain is often not applicable to general multichannel
perceptua audio coder.

Although “time domain” linear prediction may not be effective in removing
inter-channel redundancy in perceptual audio coder, the “transform domain” linear prediction
techniques may offer some coding advantage. An efficient inter-channel redundancy removal

algorithm based on the “transform domain” linear prediction is developed in this paper and is
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described in the following sections. Note that the “time domain” linear prediction here refers
to performing linear prediction in the time domain (as shown in Fig. 5.1(a)) and the
“transform domain” linear prediction here refers to producing prediction residuals in the
transform domain (as shown in Fig. 5.1(b)).

Spectral

Linear |Residual coefficients | Quantizer
. T/F ) .
' '| Prediction / /Coding i

Spectral (a)

T/F coeﬁicient; Lipegr Residual Quant.izer N
Prediction /Coding

(b)

sppudig i

Fig. 5.1: Block diagram of (@) “time domain” linear prediction, and (b) “transform domain”

linear prediction

5.2 Perceptually Weighted nter-Channel Prediction
(PW-ICP)

Our inter-channel redundancy removal algorithm uses the linear prediction in the transform
domain. It is in a way similar to the ‘operation of the Long Term Prediction (LTP) tool in
MPEG-4 AAC [2]. However, different from LTP, the predicted signals are constructed from
the quantized data of the other channel rather than the intra-channel data. The general
structure of a perceptual audio coder with inter-channel prediction is shownin Fig. 5.2.
The“T/F’ and “F/T” modulesin Fig. 5.2 arethe “Time to Frequency Transform” and the
“Freguency to Time Transform” operations, respectively. The time-domain audio signals, x(i),
are first converted to their frequency-domain representation (spectral coefficients), X(K), by
the “T/F’ operation. Motivated by the human auditory system, these spectral coefficients are
grouped into a number of bands and then they are fed into the “Inter-Channel Prediction”
module. The “Psychoacoustic Model” module calculates the perceptual masking threshold,

which serves as the base for controlling the “Quantize/Coding” module. The highlighted
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(enclosed) region in Fig. 5.2 is the virtual decoder, which reconstructs all the necessary

quantized data for prediction purpose, such as quantized spectral coefficients, X(k), and
guantized time signals, X(i). In the encoding process, the optimal inter-channel predictor is
first derived from the data. Then, we calculate the prediction signals, X(k), and the

associated prediction residuals, R(k). Finally, the prediction residuals are quantized and
transmitted with side information, which may contain the predictor control (on/off)

information and predictor parameters.

[ o T T ]
I Prediction ‘X(I) F/T . . :
: Buffer 44)(( )I
|
|
|

I

Synthesis :
Virnal Decoder || %09 ____ TR0 !| £
] o
Q) ‘X(k) Inter-Channel | X®)| Quantize/ R ‘5
Prediction Coding Z
%
Psychoacoustic =
model Side Info---'

Fig. 5.2: Block diagram of perceptual audio coder with inter-channel prediction

5.2.1 Inter-Channel Predictor
One major step in any linear prediction based coding scheme is calculating the prediction

signals. In this paper, two types of inter-channel predictor are proposed, the Time-Signal
based predictor (TSP) and the Spectral-Coefficient based predictor (SCP). These two types of
predictors are incorporated into the MPEG AAC system to perform inter-channel prediction
and they are described in the following sub-sections.

1) Time-Signal Based Predictor (TSP):

In the Time-Signal based predictor, the time-domain estimates are first constructed and

then transferred to their spectral representation. The block diagram of the Time-Signal based
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predictor is shown in Fig. 5.3.
X (k) R. (k)

XE7(K)
MDCT

Fig. 5.3: Block diagram of Time-Signal based predictor

The time-domain estimates, X?7(i), and their spectral coefficient representations,

X P27 (k) , for the c-th channel are constructed by an (m+1)-tap predictor as shown in formula

(5.1).

>

NgE]

FPTANIR LI -
(i) 0,6" X,(i-7-1),i=0,L2N=1 51)

X£F=MDCT(X£7), K¢ =[XPH(0). X7 (N=1], X7 =[X2*(0)..X¢"(N ~1]

The notation “MDCT()” represents the Modified Discrete Cosine Transformin AACand N is

1024. The predictor coefficients B° are determined by minimizing the mean square error,

Ele2(i)]= E[(xc(i)— el ))1 i=0,..2N-1 (5.2)

2) Spectral-Coefficient Based Predictor (SCP):
In the Spectral-Coefficient based predictor, the prediction operation is performed on the
gpectral coefficients. The block diagram of the Spectral-Coefficient based predictor is shown

inFig. 5.4.
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Fig. 5.4: Block diagram of Spectral-Coefficient based predictor

The spectral coefficient estimates, X/7(k), for the c-th channel are constructed by an

(n1)-tap predictor as shown in formula (5.3).

(5.3)
X5 =[%,(0-7 <) X (Nm e )., X5 =[X57(0)..... X5 (N -1)]

Different from 5™, the predictor coefficients of the Spectral-Coefficient based predictor of

the c-th channel, 5=, are determined by minimizing the perceptually weighted mean square

error, E[ef (sb)- PW., (sb)J :

E[e2(sb)- PW,(sb))= E{[z(

k=wg,

xc(k>—xf'f<k))2jpwc<sb>} 5

, Wwhere b is the band index and wsy, is the first coefficient index of the sb-th band. PW,(sb) in
(5.4) is the perceptual weight for the sb-th band (of the c-th channel) and is equal to the

inverse of the masking threshold derived from the psychoacoustic model.

In (5.1) and (5.3), the p-th channel quantized signals, X,(i—z~1) or )?,T' (k), include

a time delay, 7, when used in estimation. The selections of parameters, 7 and p, are to be

discussed in Section 5.2.2.
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5.2.2 Minimum Perceptually Weighted Prediction Error Analysis

The maximum correlation analysis between the original time signals, x.(i), and the prediction,

X:(i), over the entire frame as shown in formula (5.5) is a commonly used method for

determining 7 and p. This method may be suitable for encoding the time signals, such as
gpeech and lossless audio coders. But we found a better index in transform domain as
described below, which would result in a higher coding efficiency for the perceptual audio
coders.
(po0) =g 66 ) x.0) /S %701 55
We are motivated by the following observations. First, the critical operations in
perceptual audio coding, such as Quantization/Entropy-Coding, are performed on the spectral
coefficients. To establish a direct link. between these operations and the optimization index, it
seems to be more appropriate to-conduct the correlation analysis on the spectral coefficients.
Second, in atypical perceptual audio“coder-(such.as MPEG audio), the spectral coefficients
are grouped into a number of bands. The spectral coefficients belonging to the same band are
guantized and entropy-coded using the same parameter set. Different bands can have different
guantizers and/or entropy coding codebooks. Therefore, we expect a higher de-correlation
performance by conducting the correlation analysis for each band separately. Third, in general,
the number of bits for coding the spectral coefficients in a band depends not only on the
magnitude of spectral coefficients; it also depends on the perceptual masking threshold of that
band. Therefore, the perceptual masking threshold should be incorporated in the analysis.
Base on the preceding observations, we design a new optimization index, called minimum
perceptually weighted prediction error, to determine zand p as shown in (5.6). The prediction

error in each band is first calculated and then summed up with perceptual weights.
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(p.7)=arg mm(z([%f1(xc<k>—x‘f"f'<k>)2j-vac<sb)ﬁ (56)

P sb i\ k=wy,

, Where sh, wy,, and PW,(sb) are defined in (5.4).
Simulations and comparison between the traditional maximum correlation method and
our proposed minimum perceptually weighted prediction error method will be given in

Section 5.3.1.

5.2.3 Predictor Order

In the previous sub-sections, we have described some of the important parameters of the
predictors (in (5.1) and (5.3)), such as ", ¥, rand p. In this section, another critical
parameter, the predictor order, will be discussed. In analyzing the impact of the predictor
order on the aforementioned two types of predictors, two test audio sequences, TAS1 and

TAS2, are tested. As shown in the foltowing discussions in this section, these two sequences

show clearly different characteristics when‘the predictor order varies.

8.0
(TSP : TAS2)
£ 7.5

7.0+

6.5
(SCP:TAS2) o

6.0+
5.5
(TSP : TAS1)

Overall Prediction Gain (dB) : PG,

5.0-
4.5 V/V’//V///v
4.0
e —
35{0 o—
1 5 10 15

Predictor Order

Fig. 5.5: Overall prediction gain vs. predictor order

In general, increasing the predictor order would decrease the overall energy of the



prediction residuals, and thus leads to an increase in prediction gain as shown by the
simulation results in Fig. 5.5. The prediction gain here is defined as the ratio of the original
signal energy (power) to the prediction residual energy [31]. The overall prediction gain,

PGirame, IS thus defined by (5.7).
N-1 , /N R 2
PG gane = X (Xe(K)F | 3 (X0~ X2 () (57)

, where N is the length of a frame and is equal to 1024 in AAC.

It is often believed that a smaller residual energy or, equivalently, alarger prediction gain
would often leads to a smaller bit rate in coding the prediction residuals. Therefore, a
high-order predictor (order>10) is commonly adopted in speech and lossless audio coders. As
shown in Fig. 5.5, the high-order predictor is expected to have higher bit rate reduction and
the performance of TSP is expected to be better than that of SCP. However, the following
analyses show that the coding bit rate is also affected by the spectra distribution of residuals,
especially for the subband audio-coders. Therefore, we re-examine the prediction gain band
by band. The prediction gain of a band, PGpand, 1S defined by (5.8) and the simulation results

for different predictor order are shown in Fig. 5.6 and Fig. 5.8.

W1 —1 Wepyg —1 ~
(@)= S (0P 5 - Xe 0 9

Fig. 5.6 shows that a high-order TSP often increases the energy in the higher frequency
bands although the low frequency energy and the total energy are reduced. Because the energy
of high-frequency bands is much lower, if we look at the coding gain, the prediction gain
increase at low frequency of the high-order predictor is small but the prediction gain loss at
high frequency is rather large. Therefore, as shown in Fig. 5.7, the bit rate reduction of a
high-order TSP is less than that of a low-order TSP in the higher frequency bands. As a

consequence, the 1-Tap TSP performs better for sequence TASL. For TAS2, Fig. 5.8 and Fig.
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5.9 show that the performance (bit rate reduction) is obviously improved due to the order of
TSP increase from 1 to 5. The experiments in the above show that (a) PGpang IS better
correlated to the coding bit rates, and (b) low-order TSPs can at times perform better than the
high-order TSPs. Thus, an adaptive-order TSP may be more appropriate for coding purpose.

We also show the coding gain and bit rate reduction of SCP in Fig. 5.6 to Fig. 5.9. We
find that athough PGsrame Of SCP is less than that of TSP, the SCP has better efficiency in
terms of PGpang a higher frequency bands. Therefore, SCP overall produces a better
performance. In addition, different prediction orders of SCP seem to produce similar bit rate
reduction performance as long as the order is not too small.

From the analyses described above, we find that, the choice of predictor order has a
strong impact on the bit rate reduction performance. More simulations and analyses on the

predictor order for the TSP and SCP.will be further-discussed in Section 5.3.2.
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5.2.4 Perceptual Masking Control

As mentioned earlier in the Introduction section, some inter-channel redundancy removal
algorithms, such as M/S coding and KLT based approach, require extra perceptual masking
checking on the (M/S or KLT) “transformed” coefficients. However, there is no simple
perceptual model isthese transformed domains. In this section, we will show that our PW-1CP
scheme does not require extra perceptual masking checking.

After determining the optimal time delay, 7, and the optimal predictive channel index, p,
we can compute the prediction of spectral coefficient, Xé”(k). The residual spectral

coefficients, R.(k), are calculated by (5.9), and the quantized spectral coefficient, X_(k),

can then be constructed using (5.10).
R (k)= X . (K) - X2 (K) (5.9)
X (K) = X 2% (K)+ R, (K) (5.10)

, Where ﬁc(k) is the quantized résidual spectral coefficient. Using these notations, the total

guantization noise of the original spectral coefficients for the sb-th band in the c-th channel,

eXg, ¢, can be derived as shown in (5.11).

Wep1—1 ~ 2 Wep1—1 ~ ~ 2
Xoe= 3 (X=X ()] = 3 (Xo()-XE () -R.(K)
k=wg, k=wg, (5. 11)
WSb-\‘-l_l — 2
= 2 (R.()-R.(k)) =eRy,

, Wwhere eRy . isthe total quantization noise of the residual spectral coefficients for the sb-th
band on the c-th channel. Therefore, if we can control the quality of eRy, ., it is equivalent to
control eXy, .. In other words, the perceptual masking thresholds derived for the original

spectral coefficients, X, (k) , can be directly used on the residual spectral coefficients, R_(k).
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Consequently, no extra perceptual masking checking is needed.

5.2.5 Coding of Predictor Parameters

In order to reconstruct the coded signals at the decoder, the predictor parameters are coded
and transmitted as side information sent to the decoder. The numbers of bit for coding the

predictor parameters are shown in Table 5.1. The time delay, 7, is restricted to the range 0 to

1023 and is represented by a 10-bit index. Each predictor coefficient, S™or f~, is quantized

by a 4-bit non-uniform quantizer. In addition, a 6-bit switch flag is needed to indicate the
numbers of band that the PW-ICP is in use. For example, if switch flag equal to 40, the
PW-ICP is in use for the first 40 bands. If the adaptive predictor order scheme is in use, an
extra 2~3-bits index is needed. The value of p represents the reference channel used in
prediction. When p equals to zero, PWAICR.is not in use and thus the other predictor

parameters are not transmitted. Note that (m+1) is the predictor taps.

Table 5.1: Sideinformation bits for/inter-channel predictor

Parameter Bits’Channel
reference channel (p) 1-2
switch flag 6
time delay (7) 10
coefficient (5™, %) 4 x (m+1)
Order 2~3

5.3 Simulation Results

To analyze the characteristics of the proposed inter-channel predictors and to evaluate the
performance of our inter-channel redundancy removal algorithms, we implement and compare
several algorithms using the MPEG AAC asthe test platform. A number of two-channel audio

sequences with sampling rate 44.1kHz and five-channel surround audio sequences with
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sampling rate 48kHz are used in simulations. The two-channel audio sequences are extracted
from MPEG SQAM [6], EBU [24] and downloaded from a few audio quality testing websites.
The five-channel surround audio sequences are extracted from the 5.1-channel DTS audio

streams of several DVDs.

5.3.1 Comparison on Methods of Determining zand p

1) Bit Rate Reduction Performance:

In Section 5.2.2, we propose a new error index, called minimum perceptually weighted
prediction error (PWPErn), for determining 7 and p. In this section, we conduct a few
simulations on the PWPEi» method and the traditional correlation method, Corrax, defined
in (5.5). The 1-Tap SCP described in Section 5.2.1 is adopted. The bit rate reduction
performance of 15 two-channel audio sequences is shown in Table 5.2. The notation “Fixed 7"
in Table 5.2 means that the time delay; ;;0f the predictor is fixed to a specific value and in the
following experiments, the value is typically zero. We find that the performance (bit rate
reduction) of PWPE, method on'the averageis around 5% better than that of Corrmax method.
In general, the performance of Corrmax method is worse than that of the fixed 7 mode (7=0).
When examining the PWPE, method with fixed or adaptive = modes, we can find that, a
good estimate of 7 can provide significant improvement on certain audio sequences, such as
the last three audio sequences (shaded) in Table 5.2. Another interesting phenomenon is that,
for a lot of audio sequences, the fixed 7 mode (7=0) produces a performance similar to the
adaptive 7 mode (PWPEn,). But for the last 3 sequences, the bit reduction of using PWPEni,
is significantly higher than the other two schemes. The computation complexity of the fixed =
mode is much lower than that of the adaptive 7 mode. Therefore, there is a trade-off

between complexity and performance.
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Table 5.2: Bit rate reduction (%) of Fixed 7 (7=0), Corrmx and PWPEi,

Audio Sequence | Fixed 7(7=0) | Adaptive 7 (Corrms) | Adaptive 7(PWPEn)
1. vocal 18 0.69 4.42
2. speech 18.15 1111 18.22
3.pop 1 6.89 3.34 75
4. pop 2 6.39 0.72 6.44
5. guitar 7.52 4.23 7.53
6. tune 10.98 8.46 11.58
7. pop_3 6.38 2.68 6.39
8.rock 1 6.09 8.35 9.06
9. pop_4 11.60 9.29 11.95
10. castanet 6.7 6.5 7.62
11. pop 5 23.6 3.89 23.6
12. pop_6 16.54 11.97 16.53
13. pop_7 9.08 8.54 15.98
14. rock 2 2.55 11.19 15.26
15. pop_8 12.31 10.34 20.92

2) Fast Algorithm for PWPE i Analysis.

As described in Section 5.2.2, the proposed PWPE;» method needs to test all possible
delay parameters on the spectral coefficients, >A(f"f' (k). For each candidate pair (p’,7’), a

transform operation is thus required and the number of all candidates of 7’ is 1024 in our
PW-ICP algorithm. It results in a huge number of calculations. In this section, a fast algorithm
for the PWPE, analysis in AAC is proposed by reducing the number of transform operations
needed. The transform operation in AAC is the Modified Discrete Cosine Transform (MDCT)
as defined in (5.12). In addition, for calculation purpose, we introduce another transform,

called Modified Discrete Sine Transform (MDST), asin (5.13).

2N-1

X[k]=2- > ¥i]-cos(ng - (k+0.5)- (i +1ny)), k=0,..,N-1
i=0
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X[k] = 2- 2Nz_lx[i]-sjn(nO -(k+05)-(i+n)), k=0,.,N-1 (5.13)
i=0

where N isthe length of aframe, X[i] isthe time sample, ny = (2rt/2N) and n; = (N +1)/2.
The MDCT and MDST coefficients with delay 7’ are denoted as X “[k] and X*[k] and

are defined by (5.14) and (5.15).

2N-1

X7k =2 > i —7]-cos(ng - (k+0.5)- (i + 1)) (5.14)
i=0
2N-1

X7Kl=2- Y Ki—77]-sn(ng - (k+0.5) (i + 1)) (5.15)

i=0
Then, the MDCT coefficient with delay (z’+1) is obtained from mostly combinations of

X7[k] and X7[k] asshown in (5.16).

2N-1

X7k =2 3 i — (¢ +1)] icos(ng - (K+0:5) (i +n,))
i=0

=2-X-7"-1-cos(n, - (k + 0.5):n, )+ 2-2%_:2x[i’—z'”_|-cos(n0 -(k+0.5)-(i"+n, +1))
i’=0
2N-2

= A[K]+cos(ny - (k+0.5))x2- > i"—7"]-cos(n, - (k+0.5) - (i"+ ny)) (5.16)
i’=0

—sin(n, - (k+0.5))><2-ZI\IZ_:ZX[i'—T']-sin(n0 -(k+0.5)- (i’ +n,))

i’=0

= A[K] +cos(ng - (k +0.5)) x (X “[K] - B,[K])—sin(ng - (k + 0.5)) x (X * K] - B,[K])

, Where i'=i-1,
A[K]=2-X{-7"-1]-cos(n, - (k+0.5)-n;),
B,[k] =—2-X{2N —-1-17"]- cos(n, - (k+ 0.5) - (2N -1+ n,)),
B,[k] =—2-X[2N -1-7"]-sin(n, - (k+0.5)- (2N —1+n,)).
Similarly, the MDST coefficient with delay (7 '+1) can be obtained from mostly

combinationsof X7[k] and X7[k] asshownin (5.17).

73



XTk] = 2- 2%flx[i —(7'+12)]-sn(ny - (k+0.5) - (i + n,))
i=0
=2--7'-1-sin(ny - (k+0.5)-n;)+2- 2fzx[i’—r’] -sn(ny - (k+0.5)-(i"+n, +1) (5.17)

i'=0

= A[K] +sin(ng - (k+0.5))x (X 7 [K] = By[k])+ cos(n, - (k + 0.5))x (X [K] - B,[K])

, Where A [k]=2-X{—7"-1]-sn(n, - (k+0.5)-n;).
As shown from (5.14) to (5.17), we only need to perform one full MDCT transform (in

(5.14)) and one full MDST transform (in (5.15)) at the beginning of PWPE,, analysis for a
given o/. Then, X “*[k] and X “**[k] can be simply derived from X7[k] and X*[k] witha
few additional multiplication and addition. Therefore, by using this fast algorithm, the

complexity of PWPE, analysis can be drastically reduced.

5.3.2 Analysison Predictor:Order.of I nter-Channel Predictor

In Section 5.2.3, we have discussed some characteristics of predictor order for the TSP and
SCP . In this section, more simulations are conducted. The average bit rate reduction difference
between the tested predictor (teste) and the 1-Tap TSP (reference) of 45 two-channel and 20
five-channel audio sequences are shown in Fig. 5.10. Note that, the side information bits for
coding the predictor coefficients, B™ or =, are included. The first data point on the
horizontal axisin Fig. 5.10 is marked as the “ Adaptive Case”, in which the predictor order can
vary from one frame to the other. This may be most sophisticated case we can imagine.

We can find from Fig. 5.10 that, the Adaptive-Tap predictor has the best performance (bit
rate reduction) for both TSP and SCP schemes. Taking two-channel audio sequences for
example, the performance of the Adaptive-Tap SCP is around 4.5% better than that of 1-Tap
TSP. For designing a Fixed-Tap predictor, we can find that, a low-order (around 1-Tap) TSP
works better for the subband audio coders. For the SCP, the order that is less than or equal to

5 is adequate. The performance downfall of the SCP at high orders (> 10-Tap) is mostly due
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to the increase of side information bits.

Overall, the performance of SCP is better than that of TSP. However, the complexity of
SCP is also higher than that of TSP. As shown in Fig. 5.3 and Fig. 5.4, an (m+1)-Tap SCP
need (m+1)-times MDCT operations, but an (m+1)-Tap TSP needs only one MDCT operation.
Moreover, the complexity of an Adaptive-Tap predictor is higher than that of a Fixed-Tap
predictor. So, when we considering the predictor order factor, there is a trade-off between

complexity and performance too.
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Fig. 5.10: Average bit rate reduction vs. predictor order

5.3.3 Analysis on Various Inter-Channel Redundancy Removal

Algorithm

Finally, we come to compare the performance of the overall inter-channel algorithms. Two
types of inter-channel redundancy removal algorithms are tested and compared as described
below.

(1) The perceptually weighted inter-channel prediction (PW-ICP) algorithm described in

Section 5.2.
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(2) TheINT-DCT based approach described in [15].

Fifteen two-channel audio sequences and fifteen five-channel sequences are tested. The
bit rate reduction performance of our PW-1CP algorithm and the INT-DCT based algorithm
are shown in Table 5.3 and Table 5.4. We find that the performance (bit rate reduction) of our
PW-ICP algorithm on the average is around 10% better than that of INT-DCT based
algorithm for the audio sequences that show 5% or more bit rate reduction than the
separate-channel coding. In the other cases (lower than 5% bit rate reduction), our agorithm

is as good as (if not better than) the INT-DCT based approach. Furthermore, the performance

of SCP onthe average is around 2% better than that of TSP.

Table 5.3: Bit rate reduction (%) of PW-ICP and INT-DCT for two-channel audio sequences.

Audio Sequence | INT-DCT | PW-ICP (1-Tap TSP) | PW-ICP (5-Tap SCP)
1.vocal 0.83 3.35 3.7
2.orchestra 131 2.86 2.57
3.rock_1 1.54 12.42 14.81
4.castanet 3.0 7.17 11.67
5.pop_1 3.35 8.59 8.72
6.rock_2 3.80 4.78 20.42
7.pop_2 5.44 15.08 16.54
8.pop_3 5.67 6.79 13.33
9.pop_4 7.78 14.37 14.9
10.pop_5 8.99 15.42 18.32
11.Speech 9.30 16.42 26.16
12.rock_3 11.85 17.82 20.93
13.quitar 15.37 26.99 28.23
14.pop_6 15.93 17.34 23.04
15.pop_7 25.48 42.97 39.8
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Table 5.4: Bit rate reduction (%) of PW-ICP and INT-DCT for five-channel audio sequences.

Audio Sequence | INT-DCT | PW-ICP (1-Tap TSP) | PW-ICP (5-Tap SCP)
1.pop_1 0.29 4.10 6.59
2.Jazz 0.45 2.75 2.92
3.sym. 0.44 4.17 4.88
4.sym. 1.06 5.47 5.94
5.movie 1 1.47 4.87 7.93
6.movie 2 1.71 6.11 8.59
7V&0O 1 1.8 7.84 7.75
8.orchestra 18 6.02 6.60
9.V&O 2 2.2 9.40 10.25
10.pop_2 3.35 11.77 13.20
11.game 4.54 14.28 14.69
12.V&0 3 6.05 15.18 16.15
13.movie 3 7.98 19.07 18.81
14.speech 10.71 31.45 29.93
15.pop_3 12.24 32:36 32.87
V&O' : Vocal & Orchestra
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Chapter 6 Conclusions

The main contributions of this dissertation are summarized as follows:
@ Cascaded Trellis-Based Rate-Distortion Control Algorithm (CTB)

The cascaded trellis-based (CTB) optimization scheme is a low complexity and high
performance R-D control algorithm for the MPEG-4 AAC coder. It is basically a fast
algorithm of the previous joint trellis-based (JTB) scheme. The optimization procedure
for finding coding parameters, SF and HCB, in the CTB scheme is partitioned into two
sequential steps with carefully inserted steps. It thus has the advantage of a much reduced
computation. The proposed CTB scheme is approximately 71 to 142 times faster than the
JTB scheme. Simulation results show that both the objective and subjective quality of the
proposed CTB scheme is close to.that of the JTB scheme.

In addition, we also propese a lossless fast “search algorithm for the trellis-based
optimization on HCB, which provides roughly -a 4-times speed-up. Furthermore, two
non-uniform search algorithms for trellis-based MNMR optimization on SF, so-called
GMNU and LMNU, are proposed for reducing the candidates in trellis search.
Simulation results indicate that another factor of 25 speed-up can be achieved using
GMNU with negligible audio quality loss. These two fast search algorithms can be
applied to both the CTB scheme and the JTB scheme.

® Enhanced BFOS Bit Allocation Algorithm for AAC (EBFOS)

EBFOS is an efficient bit alocation algorithm for MPEG-4 AAC. Instead of performing
the heavy trellis search through entire frame, the bits are allocated to the most needed
band step by step in the EBFOS scheme. It thus has the advantages of low complexity
and higher flexibility. The performance of the EBFOS scheme is better than that of
VM-TLS and the generalized BFOS algorithms. Moreover, the EBFOS scheme has a

performance close to the trellis-search based algorithm (optimized for the average NMR,
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JITB-ANMR). For reducing calculations, a fast algorithm is also introduced for the
EBFOS scheme. The fast version can reduce the complexity to 1/10. Simulation result
shows that there is almost no loss of performance (less than 0.06dB) in adopting the fast

algorithm for the EBFOS scheme.

® Per ceptually Weighted I nter-Channel Prediction (PW-1CP)

PW-ICP is an efficient inter-channel redundancy removal algorithm. Different from the
M/S stereo coding or the KLT-based approach, the PW-ICP scheme does not propagate
the quantization noise from one channel to other channel. Therefore, no extra perceptual
masking control is needed. Moreover, similar to the INT-DCT based approach, no audio
quality degradation is induced by our method. In our PW-1CP algorithm, two types of
predictors, TSP and SCP, are introduced. Also presented in this dissertation are
simulations and detailed discussions_on how to determine the parameters of the
predictors. We find that the performance of our new index, PWPEn, is better than that of
traditional correlation methad,. Corrma-Forra chosen predictor order, the predictor with
adaptive order can achieve the best: performance for al kinds of audio signals. (Larger
order predictors are often not preferred.) As for the predictor with fixed order, in general,
the order around 1 is appropriate for TSP and the order less than or equal to 5 works best
for SCP.

To evaluate the performance of our PW-ICP algorithms, the INT-DCT based approach is
also implemented and compared. We have tested this scheme on a number of
two-channel and five-channel audio sequences. Based on the simulation results, we find
that the bit rate reduction performance of our new method on the average is about 10%
better than that of the well-known INT-DCT based approach for the audio sequences that

show 5% or more bit rate reduction than the separate-channel coding.
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