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In this paper, we consider the initial-boundary value problem of the one-dimensional linear
mixed wave equation ωtt − dωtx − c2ωxx = 0 (d ∈ R, c > 0) on an interval, where the boundary
condition at the left endpoint is linear, pumping energy into the system, while the boundary
condition at the right endpoint has odd-degree nonlinearity. This problem is said to be the
one-dimensional mixed wave system. The solution of the one-dimensional mixed wave system
corresponds to the iteration of an interval map h. Thus, the mixed wave system is said to be
chaotic if the interval map h is chaotic in the sense of Li–Yorke. In this paper, we show that the
mixed wave system is chaotic under some conditions.

Keywords : Chaotic vibrations; mixed wave system.

1. Introduction

In [Chen et al., 1998b; Chen et al., 2004; Huang &
Feng, 2006], the one-dimensional wave equation is
considered:

ωtt − ωxx = 0, 0 < x < 1, t > 0, (1)

with the boundary conditions


ωt(0, t) + ηωx(0, t) = 0, η > 0,
η �= 1, t > 0,

ωx(1, t) = αωt(1, t) − βω3
t (1, t),

α ∈ (0, 1], β > 0, t > 0,

(2)

and the initial conditions
ω(x, 0) = ϕ(x) ∈ C1([0, 1]),
ωt(x, 0) = ψ(x) ∈ C0([0, 1]).

(3)

The boundary condition at the left endpoint x = 0
is linear, pumping energy into the system since
η > 0 and the boundary condition at the right
endpoint x = 1 is a van der Pol condition which

is a well-known self-regulating mechanism in auto-
matic control. And in [Chen et al., 2002; Huang,
2003b], they consider the one-dimensional mixed
wave equation

ωxx − vωtx − ωtt = 0, v > 0,
0 < x < 1, t > 0, (4)

with the boundary conditions

ωx(0, t) = 0, t > 0, (5)

and
ωx(1, t) = αωt(1, t) − βω3

t (1, t),

α ∈
(

0,
v +

√
v2 + 4
2

]
, β > 0, t > 0, (6)

and the initial conditions
ω(x, 0) = ϕ(x) ∈ C1([0, 1]),
ωt(x, 0) = ψ(x) ∈ C0([0, 1]).

(7)

The boundary condition at the left endpoint x = 0
is the homogeneous Neumann condition and the
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boundary condition at the right endpoint x = 1
is the van der Pol condition.

In order to obtain more parameters, we consider
the one-dimensional mixed wave equation

ωtt − dωtx − c2ωxx = 0, d ∈ R,

c > 0, 0 < x < 1, t > 0, (8)

with the boundary conditions (c1 = (d +√
d2 + 4c2)/2 and c2 = (−d+

√
d2 + 4c2)/2)

ωt(0, t) + ηωx(0, t) = 0, η > 0, η �= c2, t > 0,
(9)

and
ωx(1, t) = αωt(1, t) − βω2m+1

t (1, t),

α ∈
(

0,
1
c1

]
, β > 0, m ∈ N, t > 0. (10)

And with the initial conditions
ω(x, 0) = ϕ(x) ∈ C1([0, 1]),

ωt(x, 0) = ψ(x) ∈ C0([0, 1]).
(11)

Consider the case d = 0 and c2 = 1
(i.e. c1 = c2 = 1) in Eq. (8), the equa-
tion is reduced to Eq. (1). In [Chen et al.,
1998b], they proved the 1D wave system
Eqs. (1)–(3) is chaotic when the parameter η enters
the region

[
(3
√

3 − 1 − α)/(3
√

3 + 1 + α), 1
) ∪(

1, (3
√

3 + 1 + α)/(3
√

3 − 1 − α)
]

for any given
α ∈ (0, 1], β > 0. In [Chen et al., 2004;
Huang & Feng, 2006], they characterized the
dynamical behavior in terms of the growth of the
total variation of the interval map. And they proved
that for any given α ∈ (0, 1], there exist four con-
stants η0, ηH , ηH and η0 with 0 < η0 < ηH <
1 < ηH < η0 < ∞ such that the total variation of
the interval map remains bounded, is unbounded,
is unbounded exponentially when the parameter
η belongs to (0, η0) ∪ (η0,∞), (η0, ηH) ∪ (ηH , η0)
and (ηH , 1) ∪ (1, ηH), respectively. In particular,
the last case corresponds to chaos in the 1D wave
system Eqs. (1)–(3). In this paper, we show the 1D
mixed wave system Eqs. (8)–(11) is chaotic when
the parameter η satisfies either

c2[ 2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]
2mc2(1 + αc2) + 2m

√
2m+ 1(2m+ 1)(c1 + c2)

≤ η < c2

or

c2 < η ≤ c2[2mc1(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)]
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2)

for any given parameters c1, c2, α, β, m satisfying the inequality
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2) > 0,

and when the parameter η satisfies either

c2[ 2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]
2mc2(1 + αc2) + 2m

√
2m+ 1(2m+ 1)(c1 + c2)

≤ η < c2 or η > c2

for any given parameters c1, c2, α, β, m satisfying
the inequality

2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2) ≤ 0.

Consider the case d = −v and c2 = 1 (i.e. c1 =
(−v +

√
v2 + 4)/2 and c2 = (v +

√
v2 + 4)/2) in

Eq. (8), the equation is reduced to Eq. (4). In [Chen
et al., 2002], they proved the 1D mixed wave sys-
tem Eqs. (4)–(7) is chaotic when the parameters
(v, α) enter a certain subregion of S = {(v, α) ∈
R

2 | 0 < v < ∞, 0 < α ≤ (v +
√
v2 + 4)/2}. In

[Huang, 2003b], they proved there exist three sub-
regions S0

1 , S1
1 and S2 of S such that the growth

of the total variation of the interval map remains
bounded, is unbounded, is unbounded exponentially
when the parameters (v, α) belong to S0

1 , S1
1 and S2,

respectively. In particular, the last case corresponds
to chaos in the 1D mixed wave system Eqs. (4)–(7).
In this paper, we consider the boundary condition
at the left endpoint is Eq. (9) which is different
from Eq. (5). We show the 1D mixed wave system
Eqs. (8)–(11) is chaotic for any given c1 ≤ 1/α if
the parameters η, c2, α, β, m satisfy

η > c2 and

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2) ≥ 0.

And the 1D mixed wave system Eqs. (8)–(11) is
chaotic for sufficiently small c1 if the parameters η,
c2, α, β, m satisfy some conditions or for sufficiently
large c1 if the parameters η, c2, α, β, m satisfy some
other conditions. Notice that the initial conditions
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in the system have some properties which we will
discuss later.

The general solution of Eq. (8) is

ω(x, t) = u(c1t+ x) + v(c2t− x), (12)

where u, v are arbitrary C2-function. Substituting
Eq. (12) into Eqs. (9) and (10) we have

v′(c2t) = −c1 + η

c2 − η
u′(c1t), t > 0,

and

β(c1u′(c1t+ 1) + c2v
′(c2t− 1))2m+1

+
(

1
c1

− α

)
(c1u′(c1t+ 1) + c2v

′(c2t− 1))

−
(

1 +
c2
c1

)
v′(c2t− 1) = 0, t > 0.

And by using the substitution

z(c1t) =



v′
(
c2
c1

(
c1t− c1

c2

))
, 0 ≤ t ≤ 1

c2
,

η + c1
η − c2

u′
(
c1t− c1

c2

)
, t >

1
c2
,

(13)

we have the difference equation

β

(
c1
η − c2
η + c1

z(τ + ∆) + c2z(τ)
)2m+1

+
(

1
c1

− α

)

×
(
c1
η − c2
η + c1

z(τ + ∆) + c2z(τ)
)

−
(

1 +
c2
c1

)
z(τ) = 0, (14)

where τ = c1t, ∆ = 1+(c1/c2). The initial condition
of Eq. (14) is

z(c1t) =




ψ(1 − c2t) − c1ϕ
′(1 − c2t)

c1 + c2
,

0 ≤ t ≤ 1
c2
.

η + c1
η − c2

ψ

(
c1t− c1

c2

)
+ c2ϕ

′
(
c1t− c1

c2

)
c1 + c2

,

1
c2
< t ≤ 1

c1
+

1
c2
.

(15)

Remark 1.1. In this paper, we assume that the ini-
tial values ϕ(0) and ψ(0) are chosen such that z(τ)

is continuous on [0, 1+(c1/c2)] and satisfy the com-
patibility condition

β

(
c1
η − c2
η + c1

z(∆) + c2z(0)
)2m+1

+
(

1
c1

− α

)

×
(
c1
η − c2
η + c1

z(∆) + c2z(0)
)
−
(
1 +

c2
c1

)
z(0) = 0.

Definition 1.2. In this paper, we denote the range
of z(τ) on [0,∆] to be the compact interval Λ, i.e.
Λ = z([0,∆]).

The dependence of z(τ + ∆) on z(τ) is given
implicitly by a function fλ. To see this we define

F (x, v) = βx2m+1 +
(

1
c1

− α

)
x−

(
1 +

c2
c1

)
v,

which is strictly increasing on x if v is to be fixed.
Hence, for each v0 there exists a function g(v0) = x0

such that F (g(v0), v0) = 0. Thus, we have

g(z(τ)) = c1
η − c2
η + c1

z(τ + ∆) + c2z(τ), τ > 0,

which implies that

z(τ + ∆) =
η + c1

c1 (η − c2)
(g(z(τ)) − c2z(τ)), τ > 0.

Therefore, we have the definition as below.

Definition 1.3. We denote fλ(z(τ)) = z(τ + ∆) to
be the function satisfying Eq. (14) for all τ ≥ 0,
where λ = (η, c1, c2, α, β,m).

Since

fλ(z(τ)) = z(τ + ∆) for all τ > 0,

we can use the map fλ and the interval Λ to gen-
erate z(τ) for all τ > 0. And the corresponding
solution of the mixed wave system Eqs. (8)–(11) is
calculated via the formulae

ω(x, t) =
∫ t+ x

c1
+ 1

c2

1
c2

c1
η − c2
η + c1

z(c1τ)dτ

+
∫ t− x

c2
+ 1

c2

0
c2z(c1τ)dτ.

Definition 1.4. The mixed wave system is said to
be chaotic if the interval map fλ is chaotic in the
sense of Li–Yorke.
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2. The Chaotic Region of the Mixed
Wave System

In this section, we want to show the chaotic region
of the mixed wave system Eqs. (8)–(11). First, we
consider the equation

H(x, y) = β

(
c1
η − c2
η + c1

y + c2x

)2m+1

+
(

1
c1

− α

)

×
(
c1
η − c2
η + c1

y + c2x

)
−
(

1 +
c2
c1

)
x = 0,

(16)

where η, c1, c2, β are positive (η �= c2), 0 < α ≤ 1/c1
and m ∈ N.

Definition 2.1. We denote that

vc =
c1

c1 + c2

[
1 + αc2

c2(2m+ 1)
+

1
c1

− α

]

× 2m

√
1 + αc2

(2m+ 1)βc2

in the following lemmas.

Lemma 2.2. Let y = h(x) be the unique function
which satisfies Eq. (16) where η, c1, c2, α, β, m are
to be fixed. Then the function h is odd and h has
local extrema at(

vc,
2m

2m+ 1
1 + αc2
c1 + c2

η + c1
η − c2

2m

√
1 + αc2

(2m+ 1)βc2

)

and(
−vc,− 2m

2m+ 1
1 + αc2
c1 + c2

η + c1
η − c2

2m

√
1 + αc2

(2m+ 1)βc2

)
.

Furthermore, the function h is strictly mono-
tonic on (−∞,−vc), (−vc, vc) and (vc,∞).

Proof. Since H(−x, h(−x)) = H(−x,−h(x)) = 0,
we can see h is odd. Then use

d

dx
H(x, y) = (2m+ 1)β

(
c1
η − c2
η + c1

y + c2x

)2m

×
(
c1
η − c2
η + c1

y′ + c2

)
+
(

1
c1

− α

)

×
(
c1
η − c2
η + c1

y′ + c2

)
−
(

1 +
c2
c1

)
= 0

and carry out the computations. We have the
results. �

Lemma 2.3. Suppose the parameters η, c1, c2, α,
β, m are to be fixed in Eq. (16). Then the function
h intersects the x-axis at the points(

− 1
c2

2m

√
1 + αc2
βc2

, 0
)
, (0, 0),

(
1
c2

2m

√
1 + αc2
βc2

, 0
)
.

Proof. Straightforward verification by computing

H(x, 0) = β(0 + c2x)2m+1 +
(

1
c1

− α

)
(0 + c2x)

−
(

1 +
c2
c1

)
x = 0,

we have x(βc2m+1
2 x2m −αc2 − 1) = 0 which implies

x = 0, ±(1/c2) 2m
√

(1 + αc2)/(βc2). �

Lemma 2.4. Suppose the parameters η, c1, c2, α,
β, m are to be fixed in Eq. (16). Then the function
h intersects the line y = x at the points(
− η + c1
η(c1 + c2)

2m

√
1 + αη

βη
,− η + c1

η(c1 + c2)
2m

√
1 + αη

βη

)
,

(0, 0),

and(
η + c1

η (c1 + c2)
2m

√
1 + αη

βη
,

η + c1
η (c1 + c2)

2m

√
1 + αη

βη

)
.

Proof. Straightforward verification by computing
H(x, x) = 0. �

Definition 2.5. We denote that

B =
η + c1

|2c1c2 + (c2 − c1)η|

× 2m

√
2η + 2αc1c2 + (c1 − c2) + αη (c2 − c1)

β[2c1c2 + (c2 − c1)η]

in the following lemmas.

Lemma 2.6. Suppose the parameters η, c1, c2, α,
β, m are to be fixed in Eq. (16) with

η > c2 and 2c1c2 + (c2 − c1)η �= 0.

Then the function h intersects the line y = −x at
the points

(−B,B), (0, 0), (B,−B),
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if (i) c1 ≤ c2 or if (ii) c1 > c2 and 2c1c2+(c2−c1)η >
0 or if (iii) c1 > c2 and 2c1c2 + (c2 − c1)η < 0 and
(2η + c1 − c2)/(2c1c2 + (c2 − c1)η) > −α.

Furthermore, if the parameters are not in these
three cases then the function h intersects the line
y = −x only at the point (0, 0).

Proof. Straightforward verification by computing
H(x,−x) = 0 and the three cases imply that

2η + 2αc1c2 + (c1 − c2) + αη (c2 − c1)
β[2c1c2 + (c2 − c1)η]

is positive. Otherwise, (2η + 2αc1c2 + (c1 − c2) +
αη(c2 − c1))/(β[2c1c2 + (c2 − c1)η]) is zero or
negative. �

Remark 2.7. It is easy to see the case when η > c2
and 2c1c2 +(c2 − c1)η = 0 that implies the function
h intersects the line y = −x only at the point (0, 0).

Lemma 2.8. Suppose the parameters η, c1, c2, α,
β, m are to be fixed in Eq. (16).

(i) If 0 < η < c2 and

M = − 2m
2m+ 1

1 + αc2
c1 + c2

η + c1
η − c2

2m

√
1 + αc2

(2m+ 1)βc2

≤ η + c1
η (c1 + c2)

2m

√
1 + αη

βη
,

then the iterates of every point in the set

U ≡
(
−∞,− η + c1

η (c1 + c2)

√
1 + αη

βη

)

∪
(

η + c1
η (c1 + c2)

√
1 + αη

βη
,∞
)

escape to ±∞, while those of any point in R\U
are attracted to the bounded invariant interval
I ≡ [−M,M ] of h.

(ii) If η > c2 and h intersects the line y = −x at
three points and

M =
2m

2m+ 1
1 + αc2
c1 + c2

η + c1
η − c2

2m

√
1 + αc2

(2m+ 1)βc2

≤ B,

then the iterates of every point in the set
U ≡ (−∞,−B) ∪ (B,∞) escape to ±∞, while
those of any point in R\U are attracted to the
bounded invariant interval I ≡ [−M,M ] of h.

(iii) If η > c2 and h intersects the line y = −x only
at (0, 0), then the iterates of every point in R

are attracted to the bounded invariant interval
I ≡ [−M,M ] of h where

M =
2m

2m+ 1
1 + αc2
c1 + c2

η + c1
η − c2

2m

√
1 + αc2

(2m+ 1)βc2
.

Proof. The results of (i) and (ii) follow easily from
the above lemmas and other piecewise monotonic
properties of h, as can be directly confirmed by
graphical analysis. We omit the details (see Figs. 1
and 2).

(iii) If η > c2 and h intersects the line
y = −x only at (0, 0), then |h(x)| < |x|
for all x ∈ (−∞,−(1/c2) 2m

√
(1 + αc2)/βc2) ∪

((1/c2) 2m
√

(1 + αc2)/βc2,∞). Thus, |hn(x)| is stric-
tly decreasing on (−∞,−(1/c2) 2m

√
(1 + αc2)/βc2)∪

((1/c2) 2m
√

(1 + αc2)/βc2,∞). Hence, the iterates
of every point in R are attracted to the boun-
ded invariant interval I ≡ [−M,M ] of h (see
Fig. 3). �

Lemma 2.9. Suppose the parameters η, c1, c2, α,
β, m are to be fixed in Eq. (16) and satisfy the
inequality

2m
2m+ 1

1 + αc2
c1 + c2

∣∣∣∣η + c1
η − c2

∣∣∣∣ 2m

√
1 + αc2

(2m+ 1)βc2

≥ 1
c2

2m

√
1 + αc2
βc2

, (17)

Fig. 1. M < b.
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Fig. 2. M < B.

then the interval map h is chaotic in the sense of
Li–Yorke if the domain of h contains the interval
[−(1/c2) 2m

√
(1 + αc2)/βc2, (1/c2) 2m

√
(1 + αc2)/βc2].

Proof

(i) If η > c2, then

h(vc) =
2m

2m+ 1
1 + αc2
c1 + c2

η + c1
η − c2

2m

√
1 + αc2

(2m+ 1)βc2

Fig. 3. The function h intersects the line y = −x only
at the point (0, 0).

is the local maximum. Since h is
strictly increasing on [0, vc] and h(vc) ≥
(1/c2) 2m

√
(1 + αc2)/βc2, there exists one

unique point p1 ∈ (0, vc] such that h(p1) =
(1/c2) 2m

√
(1 + αc2)/βc2. Similarly, there exists

one unique point p2 ∈ (0, p1) such that
h(p2) = p1. Hence, we have

0 = h3(p2) < p2 < h(p2) < h2(p2) (see Fig. 4).

Thus, h has points of all periods implying chaos
[Li & Yorke, 1975].

(ii) If 0 < η < c2, then

h(vc) =
2m

2m+ 1
1 + αc2
c1 + c2

η + c1
η − c2

2m

√
1 + αc2

(2m+ 1)βc2

is the local minimum and

h(−vc) = − 2m
2m+ 1

1 + αc2
c1 + c2

η + c1
η − c2

× 2m

√
1 + αc2

(2m+ 1)βc2

is the local maximum. Since h is strictly
decreasing on [−vc, vc] and h(vc) ≤
−(1/c2) 2m

√
(1 + αc2)/βc2, there exist one

unique point p1 ∈ (0, vc] such that h(p1) =
−(1/c2) 2m

√
(1 + αc2)/βc2. And since h is odd,

there exists one unique point p2 ∈ (−p1, 0)
such that h(p2) = p1. Similarly, there exists one
unique point p3 ∈ (0,−p2) such that h(p3) = p2

Fig. 4. p2 < p1.
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and then there exists one unique point p4 ∈
(−p3, 0) such that h(p4) = p3. Then there
exists one unique point p5 ∈ (0,−p4) such that
h(p5) = p4. Hence, we have

0 = h6(p5) < p5 < h2(p5) < h4(p5) (see Fig. 5).

Thus, g = h2 has points of all periods implying
chaos [Li & Yorke, 1975]. Therefore, h is chaotic
in the sense of Li–Yorke. �

Now we want to show the chaotic region of η
when c1, c2, α, β, m are to be fixed. There are two
different cases as follows.

Proposition 2.10. Suppose the parameters c1, c2,
α, β, m are to be fixed in Eq. (16) and satisfy the
inequality

2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2) > 0.

Fig. 5. p5 < p3 < p1.

Then the inequality (17 ) holds if and only if η satisfies either

0 <
c2[ 2m

√
2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]

2mc2(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)
≤ η < c2

or

c2 < η ≤ c2[2mc1(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)]
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2)
.

Proof

(i) If η > c2, then the inequality (17) is equivalent to

c2[2mc1(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)] ≥ η[ 2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2)].

And since
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2) > 0,

the inequality (17) is equivalent to

c2 < η ≤ c2[2mc1(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)]
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2)
.

(ii) If η < c2, then the inequality (17) is equivalent to

η[2mc2(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)] ≥ c2[
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)].

Furthermore, the inequality (17) is equivalent to

c2[ 2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]
2mc2(1 + αc2) + 2m

√
2m+ 1(2m+ 1)(c1 + c2)

≤ η < c2.

And since
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2) ≥ 2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc1

(
1 +

c2
c1

)
> 0,

we have
c2[ 2m

√
2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]

2mc2(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)
> 0.
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By (i) and (ii), the inequality (17) holds if and only if η satisfies either

0 <
c2[ 2m

√
2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]

2mc2(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)
≤ η < c2

or

c2 < η ≤ c2[2mc1(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)]
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2)
.

�
Proposition 2.11. Suppose the parameters c1, c2, α, β, m are to be fixed in Eq. (16) and satisfy the
inequality

2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2) ≤ 0.

Then the inequality (17 ) holds if and only if η satisfies either

η > c2 or 0 <
c2[ 2m

√
2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]

2mc2(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)
≤ η < c2.

Proof. If η > c2, then the inequality (17) is equivalent to

c2[2mc1(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)] ≥ η[ 2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2)].

Since
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2) ≤ 0,

we can conclude the inequality (17) always holds. Thus, the inequality (17) holds if and only if η satisfies
either

η > c2 or 0 <
c2[ 2m

√
2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]

2mc2(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)
≤ η < c2. �

Now we want to show the chaotic region of c1
when η, c2, α, β, m are to be fixed. There are three
cases as follows.

Proposition 2.12. Suppose the parameters η, c2, α,
β, m are to be fixed in Eq. (16) and satisfy the
inequality

η > c2 and

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2) ≥ 0,

then the inequality (17) holds for any c1 ≤ 1/α.

Proof. If η > c2, then the inequality (17) is equi-
valent to

c1[2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2)]

≥ c2[
2m
√

2m+ 1(2m+ 1)(η − c2)

− 2mη(1 + αc2)].

Since

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2) ≥ 0,

we have

2m
√

2m+ 1(2m+ 1)(η − c2) − 2mη(1 + αc2) < 0.

Thus, the inequality (17) holds for any c1 ≤
1/α. �

Proposition 2.13. Suppose the parameters η, c2, α,
β, m are to be fixed in Eq. (16) and satisfy the
inequality

η > c2 and

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2) < 0.

If

c2[ 2m
√

2m+ 1(2m+ 1)(η − c2) − 2mη(1 + αc2)]
2mc2(1 + αc2) − 2m

√
2m+ 1(2m+ 1)(η − c2)

> 0

and if c1 satisfies

c1 ≤ min
{

1
α
,
c2[ 2m

√
2m+ 1(2m+ 1) (η − c2) − 2mη(1 + αc2)]

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1) (η − c2)

}
,

then the inequality (17) holds.
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Proof. If η > c2, then the inequality (17) is equivalent to

c1[2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2)] ≥ c2[
2m
√

2m+ 1(2m+ 1)(η − c2) − 2mη(1 + αc2)].

Since

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2) < 0,

then the inequality (17) is equivalent to

c1 ≤ c2[ 2m
√

2m+ 1(2m+ 1)(η − c2) − 2mη(1 + αc2)]
2mc2(1 + αc2) − 2m

√
2m+ 1(2m+ 1)(η − c2)

.

And since
c2[ 2m

√
2m+ 1(2m+ 1)(η − c2) − 2mη(1 + αc2)]

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2)
> 0,

the inequality (17) holds if

c1 ≤ min
{

1
α
,
c2[ 2m

√
2m+ 1(2m+ 1)(η − c2) − 2mη(1 + αc2)]

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2)

}
.

�

Proposition 2.14. Suppose the parameters η, c2, α, β, m are to be fixed in Eq. (16) and satisfy the inequality

η < c2 and 2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(c2 − η) > 0.

Then the inequality (17) holds if c1 satisfies

c2[ 2m
√

2m+ 1(2m+ 1)(c2 − η) − 2mη(1 + αc2)]
2mc2(1 + αc2) − 2m

√
2m+ 1(2m+ 1)(c2 − η)

≤ c1 ≤ 1
α
.

Proof. If η < c2, then the inequality (17) is equivalent to

c1[2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(c2 − η)] ≥ c2[
2m
√

2m+ 1(2m+ 1)(c2 − η) − 2mη(1 + αc2)].

Since

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2) > 0,

then the inequality (17) is equivalent to

c1 ≥ c2[ 2m
√

2m+ 1(2m+ 1)(c2 − η) − 2mη(1 + αc2)]
2mc2(1 + αc2) − 2m

√
2m+ 1(2m+ 1)(c2 − η)

.

Thus, the inequality (17) holds if

c2[ 2m
√

2m+ 1(2m+ 1)(c2 − η) − 2mη(1 + αc2)]
2mc2(1 + αc2) − 2m

√
2m+ 1(2m+ 1)(c2 − η)

≤ c1 ≤ 1
α
. �

3. Main Results

Definition 3.1. We say the mixed wave system
Eqs. (8)–(11) has initial conditions of type I if
the initial conditions satisfy Remark (1.1) and the
union of the range of

F0(x) ≡ ψ(x) − c1ϕ
′(x)

c1 + c2

on [0, 1] and the range of

F1(x) ≡ η + c1
η − c2

ψ(x) + c2ϕ
′(x)

c1 + c2

on [0, 1] contains the interval I ≡ [−(1/c2)
2m
√

(1 + αc2)/βc2, (1/c2) 2m
√

(1 + αc2)/βc2], i.e. I ⊆
Λ (see Definition (1.2)).

Remark 3.2. In the following theorems, for
any given c and d we can compute that
c1 = (d +

√
d2 + 4c2)/2 and c2 = (−d +
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√
d2 + 4c2)/2. Conversely, for any given c1 and c2

we can compute that d = c1 − c2 and c =
√
c1c2.

Theorem 3.3. Suppose the parameters c, d, α,
β, m are to be fixed in the mixed wave system

Eqs. (8)–(11) and satisfy the inequality

2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2) > 0.

If the mixed wave system has initial conditions of
type I and if η satisfies either

0 <
c2[ 2m

√
2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]

2mc2(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)
≤ η < c2

or

c2 < η ≤ c2[2mc1(1 + αc2) + 2m
√

2m+ 1(2m+ 1)(c1 + c2)]
2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2)
,

then the mixed wave system is chaotic.

Proof. The result follows easily from Lemma 2.9
and Proposition 2.10. �

Example 3.4. Consider the wave system Eqs.
(1)–(3)


ωtt − ωxx = 0, 0 < x < 1, t > 0.
ωt(0, t) + ηωx(0, t) = 0, η > 0, η �= 1, t > 0.
ωx(1, t) = αωt(1, t) − βω3

t (1, t),
α ∈ (0, 1], β > 0, t > 0.

ω(x, 0) = ϕ(x) ∈ C1([0, 1]),
ωt(x, 0) = ψ(x) ∈ C0([0, 1]).

Suppose the parameters α, β are to be fixed and the
wave system has initial conditions of type I, where

I =
[
−
√

1 + α

β
,

√
1 + α

β

]
.

If η satisfies either

1 < η ≤ 3
√

3 + 1 + α

3
√

3 − 1 − α
or

3
√

3 − 1 − α

3
√

3 + 1 + α
≤ η < 1,

then the wave system is chaotic. In [Chen et al.,
1998b], they showed the same result as above.

Theorem 3.5. Suppose the parameters c, d, α, β,
m are to be fixed in the mixed wave system Eqs. (8)–
(11) and satisfy the inequality

2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc2(1 + αc2) ≤ 0.

If the mixed wave system has initial conditions of
type I and if η satisfies either

η > c2 or

c2[ 2m
√

2m+ 1(2m+ 1)(c1 + c2) − 2mc1(1 + αc2)]
2mc2(1 + αc2) + 2m

√
2m+ 1(2m+ 1)(c1 + c2)

≤ η < c2,

then the mixed wave system is chaotic.

Proof. The result follows easily from Lemma 2.9
and Proposition 2.11. �

Example 3.6. Consider the mixed wave system


ωtt + 2ωtx − 3ωxx = 0, 0 < x < 1, t > 0.

ωt(0, t) + ηωx(0, t) = 0, η > 0, η �= 3, t > 0.

ωx(1, t) = αωt(1, t) − βω3
t (1, t),

α ∈
[

2
√

3 − 1
3

, 1

]
, β > 0, t > 0.

ω(x, 0) = ϕ(x) ∈ C1([0, 1]),

ωt(x, 0) = ψ(x) ∈ C0([0, 1]).

Suppose the parameters α, β are to be fixed and
the system has initial conditions of type I, where

I =
[
−1

3

√
1 + 3α

3β
,
1
3

√
1 + 3α

3β

]
.

If η satisfies either

η > 3 or
6
√

3 − 1 − 3α
2
√

3 + 1 + 3α
≤ η < 3,

then the mixed wave system is chaotic.

Theorem 3.7. Suppose the parameters η, c2, α, β,
m are to be fixed in the mixed wave system Eqs. (8)–
(11) and satisfy the inequality

η > c2 and

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2) ≥ 0.

If the mixed wave system has initial conditions of
type I, then the mixed wave system is chaotic for
any c1 ≤ 1/α.

Proof. The result follows easily from Lemma 2.9
and Proposition 2.12. �
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Theorem 3.8. Suppose the parameters η, c2, α, β, m are to be fixed in the mixed wave system Eqs. (8)–(11)
and satisfy the inequality

η > c2 and 2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(η − c2) < 0.

If the mixed wave system has initial conditions of type I and if

c2[ 2m
√

2m+ 1(2m+ 1) (η − c2) − 2mη(1 + αc2)]
2mc2(1 + αc2) − 2m

√
2m+ 1(2m+ 1) (η − c2)

> 0,

then for any c1 satisfying

c1 ≤ min
{

1
α
,
c2[ 2m

√
2m+ 1(2m+ 1) (η − c2) − 2mη(1 + αc2)]

2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1) (η − c2)

}

the mixed wave system is chaotic.

Proof. The result follows easily from Lemma 2.9 and Proposition 2.13. �

Theorem 3.9. Suppose the parameters η, c2, α, β, m are to be fixed in the mixed wave system Eqs. (8)–(11)
and satisfy the inequality

η < c2 and 2mc2(1 + αc2) − 2m
√

2m+ 1(2m+ 1)(c2 − η) > 0.

If the mixed wave system has initial conditions of type I and for any c1 that satisfies

c2[ 2m
√

2m+ 1(2m+ 1)(c2 − η) − 2mη(1 + αc2)]
2mc2(1 + αc2) − 2m

√
2m+ 1(2m+ 1)(c2 − η)

≤ c1 ≤ 1
α
,

then the mixed wave system is chaotic.

Proof. The result follows easily from Lemma 2.9
and Proposition 2.14. �
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