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In this paper, we consider the initial-boundary value problem of the one-dimensional linear
mixed wave equation wy — dwig — CCway = 0 (d € R, ¢ > 0) on an interval, where the boundary
condition at the left endpoint is linear, pumping energy into the system, while the boundary
condition at the right endpoint has odd-degree nonlinearity. This problem is said to be the
one-dimensional mixed wave system. The solution of the one-dimensional mixed wave system
corresponds to the iteration of an interval map h. Thus, the mixed wave system is said to be
chaotic if the interval map h is chaotic in the sense of Li—Yorke. In this paper, we show that the
mixed wave system is chaotic under some conditions.
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1. Introduction

In [Chen et al., 1998b; Chen et al., 2004; Huang &
Feng, 2006], the one-dimensional wave equation is
considered:

Wy —wee =0, 0<z<1, t>0, (1)
with the boundary conditions
wi(0,t) + nw,(0,¢) =0, n >0,
n#£1, t>0, 2)
we(1,1) = aw(1,t) — Bwi(1,1),
ac (0,1, p>0, t>0,

and the initial conditions
w(,0) = () € C1([0,1]), "
wt(JU,O) = QZ}(:’U) € CO([07 1])
The boundary condition at the left endpoint = 0
is linear, pumping energy into the system since

n > 0 and the boundary condition at the right
endpoint x = 1 is a van der Pol condition which

579

is a well-known self-regulating mechanism in auto-
matic control. And in [Chen et al., 2002; Huang,
2003b], they consider the one-dimensional mixed
wave equation

Way — VWi — Wy = 0, v >0,
0<z<l, t>0, (4)
with the boundary conditions
wz(0,8) =0, t>0, (5)

and
we(1,t) = aw(1,t) — Bwi(1, 1),

( v+ Vv 44
Oée O’f

, [8>0, t>0,

(6)

and the initial conditions
w(x, 0) - (p(.’B) € Cl([ov 1])? (7)
wi(,0) = () € CO([0, 1]).
The boundary condition at the left endpoint = 0
is the homogeneous Neumann condition and the
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boundary condition at the right endpoint z = 1
is the van der Pol condition.

In order to obtain more parameters, we consider
the one-dimensional mixed wave equation

Wi — dwiy — Cwgy =0, deER,
c>0, 0<z<l1, ¢>0, (8)
with the boundary conditions (¢ = (d +

Vd? +4c¢2)/2 and ¢ = (—d + Vd? + 4¢?)/2)

wt(ovt)+nw$(0at) :Oa n>0a /'77&627 t> 07
(9)

and
wz(1,t) = aw(1,t) — ﬂwfm+1(1,t),

1
ae<0,—], >0, meN, t>0. (10)
1

And with the initial conditions
w(x, 0) = (P(x) € Cl([()’ 1])a (11)
wi(z,0) = Y(x) € C°([0,1]).

co[*/2m + 1(2m + 1) (c1 + ¢2) — 2mer (1 + acy)]

Consider the case d = 0 and ¢ = 1
(ie. @ = ¢ = 1) in Eq. (8), the equa-
tion is reduced to Eq. (1). In [Chen et al.,
1998b], they proved the 1D wave system
Egs. (1)—(3) is chaotic when the parameter 1 enters
the region [(3V3—-1-a)/(3V3+1+4a),1) U
(1,(3v3+1+a)/(3V3—1—a)] for any given
a € (0,1, B > 0. In [Chen et al., 2004,
Huang & Feng, 2006], they characterized the
dynamical behavior in terms of the growth of the
total variation of the interval map. And they proved
that for any given a € (0,1], there exist four con-
stants ng, ng, Mg and Ny with 0 < ng < ny <
1 < Tg < 7o < oo such that the total variation of
the interval map remains bounded, is unbounded,
is unbounded exponentially when the parameter
0 belongs to (0,10) U (70,50), (o, nar) U (77, 7o)
and (nm,1) U (1,7m), respectively. In particular,
the last case corresponds to chaos in the 1D wave
system Eqgs. (1)—(3). In this paper, we show the 1D
mixed wave system Eqs. (8)—(11) is chaotic when
the parameter 7 satisfies either

2mea(1+ aco) + */2m +12m + 1)(c1 +c2) —

or

<n<c

ca[2mer (14 acs) + */2m + 1(2m + 1)(c1 + ¢2)]

CQ<’I7§

22m + 1(2m 4+ 1)(c1 + ¢2) — 2mea(1 + acs)

for any given parameters c1, co, a, (3, m satisfying the inequality

2/2m 4+ 1(2m + 1)(e1 + e2) — 2mez(1 + acs) > 0,

and when the parameter 7 satisfies either

co[/2m + 1(2m + 1) (c1 + ¢2) — 2mer (1 + acy)]

2mea(1 4 ace) + *V/2m + 1(2m + 1)(c1 + ¢2)

for any given parameters ci, ¢z, «, 3, m satisfying
the inequality

R2m +1(2m + 1) (1 + ¢2) — 2mez(1 + acy) < 0.

Consider the case d = —v and ¢ = 1 (ie. ¢; =
(—v+Vv2+4)/2 and ¢ = (v+Vv?2+4)/2) in
Eq. (8), the equation is reduced to Eq. (4). In [Chen
et al., 2002], they proved the 1D mixed wave sys-
tem Egs. (4)-(7) is chaotic when the parameters
(v,a) enter a certain subregion of S = {(v,a) €
R2|0<wv<o00,0<ac<(v+vVv2+4)/2}. In
[Huang, 2003b], they proved there exist three sub-
regions S7, S and Sy of S such that the growth
of the total variation of the interval map remains
bounded, is unbounded, is unbounded exponentially
when the parameters (v, @) belong to S7, S{ and S,

<n<cy or m>c

|
respectively. In particular, the last case corresponds

to chaos in the 1D mixed wave system Eqs. (4)—(7).
In this paper, we consider the boundary condition
at the left endpoint is Eq. (9) which is different
from Eq. (5). We show the 1D mixed wave system
Egs. (8)—(11) is chaotic for any given ¢; < 1/« if
the parameters 1, co, «, 3, m satisfy

n>ce and

2meo(1+ acy) — */2m +1(2m + 1)(n — ¢2) > 0.

And the 1D mixed wave system Eqgs. (8)—(11) is
chaotic for sufficiently small ¢; if the parameters 7,
¢, a, B, m satisfy some conditions or for sufficiently
large c; if the parameters 7, co, «, 8, m satisfy some
other conditions. Notice that the initial conditions
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in the system have some properties which we will
discuss later.
The general solution of Eq. (8) is

w(z,t) = u(crt + x) +v(eat — x), (12)
where u, v are arbitrary C?-function. Substituting
Eq. (12) into Egs. (9) and (10) we have
C1 + nul(

v (cot) = —
(2t) C2—1

Clt), t >0,

and

B(eru (et + 1) + cov'(cat — 1))2’”+1

# (2 =) (et + 1)+ exfleat - 1)

&1

— <1+C—2) V' (cot —1) =0, t>0.
@l

And by using the substitution

we have the difference equation

o 2m+1
Ié] <clz+62z(T+A) +CQZ(T)) + (i —a>

C1

X (clz 1 Z z2(t+A) + CQZ(T))

- <1 + C—2> () =0, (14)

C1
where 7 = ¢1t, A = 14(c1/c2). The initial condition
of Eq. (14) is

((1 — cat) — 19/ (1 — cat)
1+ ¢

)

1
0<t< —.
c2

C1 ’ C1
cit—— | +c cit — —
?7+01¢<1 Cz) 2@(1 C2>

n—C2 1+ co

9

1 1 1
—<t<—+ —.
(6] C1 (6]

(15)

Remark 1.1. In this paper, we assume that the ini-
tial values ¢(0) and (0) are chosen such that z(7)
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is continuous on [0, 14 (¢ /c2)] and satisfy the com-
patibility condition

ﬂ(q” — 2+ cQz(0)>2mH + <i _ a)

n-+c C1
n—=C (&)
A 0)) -1+ — 0)=0.
x(cln+012( ) + caz( )> ( —i—cl)z( )

Definition 1.2. In this paper, we denote the range
of z(7) on [0, A] to be the compact interval A, i.e.
A = =([0, A)).

The dependence of z(7 + A) on z(7) is given
implicitly by a function fy. To see this we define

F(z,v) = Bz*™ 1 4 <i—a>x— <1+Z—2) v,

C1 1

which is strictly increasing on z if v is to be fixed.
Hence, for each vg there exists a function g(vg) =
such that F(g(vo),vo) = 0. Thus, we have

g(z(7)) = clz 1 ij(’l’ + A)+coz(1), T>0,
which implies that
2+ 8) = T (g(a(r) — ep2(r)), T >0
c1(n—ca)

Therefore, we have the definition as below.

Definition 1.3. We denote f)(2(7)) = z(7 + A) to
be the function satisfying Eq. (14) for all 7 > 0,
where A = (1, c1, ¢, a, 3, m).

Since

MHz(r) =2(r+A) forall 7 >0,

we can use the map f) and the interval A to gen-
erate z(7) for all 7 > 0. And the corresponding
solution of the mixed wave system Egs. (8)—(11) is
calculated via the formulae

th &+ n— c
w(z,t) = 1
Bl n+c

€2

z(ey)dr

1
t*%‘i’a
+ coz(cr7)dT.
0

Definition 1.4. The mixed wave system is said to
be chaotic if the interval map f) is chaotic in the
sense of Li—Yorke.
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2. The Chaotic Region of the Mixed
Wave System

In this section, we want to show the chaotic region
of the mixed wave system Eqgs. (8)—(11). First, we
consider the equation

S 2m+1 1
H(x,y)zﬁ(cl y—i—ch) + <——a)
n—+c C1

X (cln_02y+62x) — <1+C—2)x20,
n+c c1

(16)

where 1, ¢1, co, f are positive (n # ¢2), 0 < a < 1/¢;
and m € N.

Definition 2.1. We denote that

cl [ 14 acy 1 ]
Ve = — —
c1+c2

co(2m+1)

o 1+ acy
X -
(2m +1)Becy
in the following lemmas.

Lemma 2.2. Let y = h(x) be the unique function
which satisfies Eq. (16) where n, c1, c2, o, 3, m are
to be fixed. Then the function h is odd and h has
local extrema at

2m l+acoan+c,, 1+ acy
v
“om4lei+ean—co (2m + 1)Bcs
and
2m 1+ acon+cy ,, 1+ acy
—Ve, — .
T 2m4+le+Fean—cy (2m + 1)Bco

Furthermore, the function h is strictly mono-
tonic on (—oo, —v.), (—ve,ve) and (ve, 00).

Proof. Since H(—z,h(—x)) = H(—z,—h(z)) = 0,
we can see h is odd. Then use

d n—cs 2m
—H = (2 1
@) = et 09 (a2 4

X (cln_@y'—i-c?) — <1+C—2) =0
n-+c c1

and carry out the computations. We have the
results. W

Lemma 2.3. Suppose the parameters n, c1, co, «,
B, m are to be fixred in Eq. (16). Then the function
h intersects the x-axis at the points

1, [T+ ac )

—— % 50 ) 050 )
( C2 Bea 0.9
(i om 1 + ac 0)

o \ P )

Proof. Straightforward verification by computing

H(z,0) = B(0 4 cpz)?™ ! + <é — a> (0 + cox)

_<1+C_2)x: ,
&1

we have z(Bca™ 1 x?™ — acy — 1) = 0 which implies

z=0, £(1/c2) /(1 + ac2)/(Bcz). N

Lemma 2.4. Suppose the parameters n, ci, co, «,
B, m are to be fized in Eq. (16). Then the function
h intersects the line y = x at the points

<_ nta L, /l+ap  nta zm/1+0m)
n(c1 + c2) Bn 7 nler + co) pn )’

(07 0)7

and
< nte L. /l1+an n+a Qm/1+0m>
n(c1 + c2) By el +c2) pn )

Proof. Straightforward verification by computing
H(z,z)=0. W

Definition 2.5. We denote that
. n—+ci
|2c1¢ + (c2 — c1)n|

o 2m 2n + 2aciea + (c1 — ) + an(ca — ¢)
B[2cica + (ca — c1)n]

in the following lemmas.

Lemma 2.6. Suppose the parameters n, c1, co, «,
B, m are to be fized in Eq. (16) with

n>cy and 2cicy+ (cg —cp)n # 0.
Then the function h intersects the line y = —x at
the points
(_B?B)v (070)7 (B7_B)7
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if (1) ¢1 < g orif (ii) ¢1 > co and 2¢1c9+(ca—c1)n >
0 orif (ili) ¢1 > ¢o and 2c1c9 + (c2 — c1)n < 0 and
(2n+c1 — c2)/(2c100 + (c2 — c1)n) > —a.

Furthermore, if the parameters are not in these
three cases then the function h intersects the line
y = —x only at the point (0,0).

Proof. Straightforward verification by computing
H(z,—z) = 0 and the three cases imply that

2n + 2acica + (1 — ) + an(cg — ¢1)
B2cica + (c2 — c1)n)

is positive. Otherwise, (2n + 2acica + (1 — c2) +

an(ca — ¢1))/(B2c1ca + (ca —c1)n]) is zero or
negative. W

Remark 2.7. It is easy to see the case when n > co
and 2c¢1co + (¢2 — ¢1)n = 0 that implies the function
h intersects the line y = —z only at the point (0, 0).

Lemma 2.8. Suppose the parameters n, ¢y, co, «,
B, m are to be fived in Eq. (16).

(i) If0<n < cg and

M= 2m  l4+acoan+cy ,, 1+ acy
 2m4le+cean—c (2m + 1)fcs
c_nta [ ltan
~ n(c1+c2) Bn

then the iterates of every point in the set

T )

" on(atce)V o By
< n+c  [14+an >

U , 00
n(c1 + ¢2) £n

escape to 0o, while those of any point in R\U
are attracted to the bounded invariant interval
I =[-M,M] of h.

(ii) If n > co and h intersects the line y = —x at
three points and

M= 2m l+acan+c,, 1+ acy
S 2m4leiF+en—c (2m + 1)Bco

< B,

then the iterates of every point in the set
U= (—o00,—B)U(B,) escape to oo, while

those of any point in R\U are attracted to the
bounded invariant interval I = [—M, M| of h.

(iii) Ifn > co and h intersects the line y = —x only
at (0,0), then the iterates of every point in R
are attracted to the bounded invariant interval

I =[—-M,M)] of h where

M= 2m l+acen+c,, 1+ acy
S 2m4leden—c (2m +1)Bey”

Proof. The results of (i) and (ii) follow easily from
the above lemmas and other piecewise monotonic
properties of h, as can be directly confirmed by
graphical analysis. We omit the details (see Figs. 1
and 2).

(i) If » > co and h intersects the line
y = —x only at (0,0), then |h(x)] < ||
for all x € (—o0,—(1/c2) *V/ (1 + aca)/Pec2) U
((1/c2) *R/(1 + aea) /B, 00). Thus, |h™(x)| is stric-
tly decreasing on (—oo, —(1/¢2) /(1 + acq)/Pea)U
((1/c2) /(1 + aea)/ Bea, 00). Hence, the iterates
of every point in R are attracted to the boun-
ded invariant interval I = [-M,M] of h (see
Fig. 3). A

Lemma 2.9. Suppose the parameters n, ci, co, «,
B, m are to be fized in Eq. (16) and satisfy the
inequality

2m 1+acy |n+ec|,, 1+ acy
2m+1c1+co [n—co (2m + 1)Bec
> Lopit0e (17)
2 Beo
y y=x
(b,b)
1M
/\ x
a
Mt
-b,-b)

Fig. 1. M <b.
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y y=X
!
B
LY |
X
...... -M
i
y="X
Fig. 2. M < B.

then the interval map h is chaotic in the sense of
Li—Yorke if the domain of h contains the interval

[—(1/c2) 23/ + aca)/Bea, (1/c2) *%/(T + aca) ] Bea).

Proof

(i) If n > cg, then

h(ve) 2m l4+acon+cy 1+ acy
Ve) = '
¢ 2m+1c1+ca n—co (2m + 1)Bco
y y=x
! !
! i
a -------- 1
M
. X
-ai a
fomnnmnes -a
! i
| i
y=x
Fig. 3. The function A intersects the line y = —x only

at the point (0, 0).

is the local maximum. Since h s
strictly increasing on [0,v.] and h(v.) >

(1/c2) /(1 + aea)/Pca,  there exists one

unique point p; € (0,v.] such that h(p;) =

(1/c2) *R/ (1 + o /ﬂcz Similarly, there exists

one unique point ps € (0,p;) such that
h(p2) = p1. Hence, we have

0= h3(p2) < p2 < h(p2) < hg(pg) (see Fig. 4).

Thus, h has points of all periods implying chaos
[Li & Yorke, 1975].
If 0 < n < ¢y, then

2m

I1+acan+ey,, 1+ aco
2m+1c1+co n—co (2m + 1)fco

is the local minimum and

h(ve) =

h ) 2m 14+ acan+c1
—v —
¢ 2m+1c+eon—co
9 1+OZCQ
(2m +1)Bca

is the local maximum. Since h is strictly
decreasing on [—v.,v.] and h(v.) <

—(1/e2) /(1 4+ acg)/Beca, there exist one

unique point p; € (0,v.] such that h(p;) =

—(1/c2) /(1 + aco /502 And since h is odd,

there exists one unique point ps € (—pi, 0)
such that h(py) = p1. Similarly, there exists one
unique point ps € (0, —p2) such that h(ps) = p2

y y=X

Fig. 4. p2 < p1.
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and then there exists one unique point py € y y=X
(—p3,0) such that h(ps) = ps. Then there T

exists one unique point ps € (0, —p4) such that [ N\
h(ps) = p4. Hence, we have =

0=h%ps) < ps < h*(ps) < h*(ps) (see Fig. 5).

Thus, g = h? has points of all periods implying

chaos [Li & Yorke, 1975]. Therefore, h is chaotic

. . P4, P5

in the sense of Li-—Yorke. W ~ P1 x
Now we want to show the chaotic region of 7 P2 3

when c¢1, co, «, B, m are to be fixed. There are two
different cases as follows.

Proposition 2.10. Suppose the parameters cq, ca,
a, B, m are to be fized in Eq. (16) and satisfy the L
inequality : i

22m 4+ 1(2m + 1)(c1 + c2) — 2mea(1 + acy) > 0. L
| Fig. 5. ps < p3 < p1.

Then the inequality (17) holds if and only if n satisfies either
a[2m +1(2m + 1)(e1 + ¢2) — 2mer (1 + acs)]

0< <n<ec
2mea(1+ aco) + /2m +12m+1)(c1 +¢2) — e
or
ca[2mer (1 4+ acs) + 2/2m + 1(2m + 1) (e + ¢2)]
co<n< o .
V2m + 1(2m 4+ 1)(c1 + ¢2) — 2mea(1 4 acs)
Proof

(i) If n > ¢, then the inequality (17) is equivalent to
co[2mey (14 aco) + *V2m + 1(2m + 1)(c1 + ¢2)] > [ *V2m + 1(2m + 1)(c1 + ¢2) — 2mea(1 4 acs)].
And since
2m +1(2m + 1)(c1 + c2) — 2mea(1 + acz) > 0,
the inequality (17) is equivalent to

ca[2mer (14 aca) + 2¥/2m + 1(2m + 1)(c1 + c2)]
22m + 1(2m + 1)(c1 + c2) — 2mea(1 + ac)
(ii) If » < cg, then the inequality (17) is equivalent to
n2mea(1 4 acy) + *V2m + 1(2m + 1)(c1 + c2)] > c2[*V/2m + 1(2m + 1)(c1 + c2) — 2mer (1 + acs)].
Furthermore, the inequality (17) is equivalent to
ea[?2m + 1(2m + 1)(e1 + ¢2) — 2mer (1 + acs)]

o <<

<n<co.
2mea(1 + ace) + *2m +102m +1)(c1 +c2) e
And since
2m+12m + 1)(er + ) = 2mer(L+ acy) = *V2m +1(2m + 1)(e1 + c2) — 2mey (1 + C_2> >0,
C1
we have

ca[?V2m +1(2m + 1)(c1 + c2) — 2mer (1 + acy))]

> 0.
2meo (1 + ace) + */2m + 1(2m + 1)(c1 + ¢2)
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By (i) and (ii), the inequality (17) holds if and only if 7 satisfies either
co[*2m 4+ 1(2m + 1)(e1 + e2) — 2mer (1 + acs)]

0< <n<c
2mea(1 4+ aco) + *2m +102m+1)(e1 + ¢2)  — s
or
<< ca[2mer (14 acz) + 2m + 1(2m + 1)(e1 + ¢2)]
2

T ®2m A+ 1(2m 4 1) (1 + c2) — 2mea(1 + acy) ]

Proposition 2.11. Suppose the parameters cy, ca, o, 3, m are to be fized in Eq. (16) and satisfy the
inequality

2m +1(2m + 1) (e1 + c2) — 2mez(1 + acy) < 0.
Then the inequality (17) holds if and only if n satisfies either

[VImFI2m + (e + o) —2ma(l+ac)]
2mez (14 ac) + V2m+12m +1)(c1 + ¢2) .

n>cy or 0<

Proof. If n > ¢y, then the inequality (17) is equivalent to
cal2mer (14 acy) + *V2m +1(2m + 1)(c1 + ¢2)] > n[ *V2m + 1(2m + 1)(c1 + c2) — 2mea(1 + aco)].
Since
2m 4+ 1(2m +1)(c1 + c2) — 2mea(1 + acy) <0,

we can conclude the inequality (17) always holds. Thus, the inequality (17) holds if and only if 1 satisfies
either

[2R/2m 4+ 1(2m + 1)(c1 4 ¢2) — 2mer (1 + acy)]
2mea(1 4 ace) + */2m + 1(2m + 1)(c1 + ¢2)

n>cy or 0< <n<eca.

Now we want to show the chaotic region of ¢; |
when 7, co, a, 3, m are to be fixed. There are three Since

cases as follows.
2mea (1 + acg) — *V2m + 1(2m + 1)(n — cz) > 0,
Proposition 2.12. Suppose the parameters n, ca, «,

B, m are to be fived in Eq. (16) and satisfy the  Wwe have

) lit
inequality 2m +1(2m +1)(n — c2) — 2mn(1 + acz) < 0.
n>co and

2mes(1 + aca) — 22m ¥ 1(2m + 1)(5 — e2) > 0, 1T/hus, 1:16 inequality (17) holds for any c¢; <
a.
then the inequality (17) holds for any c; < 1/a.

Proposition 2.13. Suppose the parameters n, ca, «,

Proof. 1f 7 > co, then the inequality (17) is equi-
a7 B, m are to be fized in Eq. (16) and salisfy the

valent to . .
c12mea(1 4+ acy) — 2/ 2m+ 1(2m + 1)(n — )] inequality
2 ez *V/2m +1(2m +1)(n - 2) N>y and
—2mn(1 + acy)]. 2mea(1 + acy) — 2X/2m + 1(2m + 1)(n — ) < 0.
L If

a[2m +1(2m + 1)(n — ¢2) — 2mn(1 + acs)]
2mea (1 + acs) — *2m +1(2m + 1)(n — c2)

>0

and if c¢1 satisfies

1 e[*V2m 4+ 1(2m +1) (n — c2) — 2mn(1 + acy)]
c1 < minqg —, )
a’ 2mey(1+ acy) — R2m+1(2m +1) (1 — )

then the inequality (17) holds.
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Proof. 1If 1 > co, then the inequality (17) is equivalent to
c1[2mea(1 + ace) — *V2m + 1(2m + 1)(n — c2)] > co[*V2m + 1(2m + 1)(n — c2) — 2mn(1 + acs)].

Since

2mea(1 + acz) — /2m + 1(2m + 1)(n — ¢2) < 0,

then the inequality (17) is equivalent to

< [V2m +12m +1)(n — cp) — 2mn(1 + acy)]

2mea(1 + aco) — X/2m +1(2m + 1)(n — c2)

And since

a[2m 4+ 1(2m + 1)(n — ¢c2) — 2mn(1 + acs)]

2mea(1 4+ acg) — *2m+1(2m 4+ 1)(n — c2)

the inequality (17) holds if

>0,

c1 < min{—

L co[*/2m + 1(2m + 1)(n — c2) — 2mn(1 + acy)] }
@’ 2mey(1+ac) — R 2m+12m+1)(n—c) |~

Proposition 2.14. Suppose the parameters n, ca, o, 3, m are to be fized in Eq. (16) and satisfy the inequality

n<c
Then the inequality (17) holds if ¢1 satisfies

e[ 2/2m + 1(2m 4 1) (cg — 1) — 2mn(1 + acg)]

and  2mea(1 + acy) — */2m +1(2m + 1)(c2 — n) > 0.

2mea(1+ acg) — */2m + 1(2m + 1)(c2 — 1)

<c <

Q|

Proof. 1If 1 < cg, then the inequality (17) is equivalent to
c1[2mea(1 + acy) — *2m + 1(2m + 1)(ca — 1)) > co[*V2m + 1(2m + 1) (c2 — 1) — 2mn(1 + acs)].

Since

2mea(1 + acz) — /2m + 1(2m + 1)(n — ¢2) > 0,

then the inequality (17) is equivalent to

o a[W2m I I12m + 1) (e —n) —2mu(1 + acy)]
2mea(1 + aco) — X/2m +1(2m + 1)(ca — 1)

Thus, the inequality (17) holds if

a[/2m 4+ 1(2m + 1) (ca — n) — 2mn(1 4+ acs)]

2mea(1 4+ acg) — *2m+1(2m 4+ 1)(c2 — )

3. Main Results

Definition 3.1. We say the mixed wave system
Eqgs. (8)—(11) has initial conditions of type I if
the initial conditions satisfy Remark (1.1) and the
union of the range of

P(z) — a@'(z)

Fo (x) c1+ ¢

on [0,1] and the range of

<c <

Q|-
|

n+c (@) + ey (2)
n—C2 1+ ¢

Fi(z) =

on [0,1] contains the interval I = [—(1/c9)

1+ aea)/Bea, (1) ca) 2R/ (1 4+ acg)/Bea],ie. I C

A (see Definition (1.2)).

Remark 3.2.  In the following theorems, for
any given ¢ and d we can compute that

g = (d+ Vd*>+4¢%)/2 and ¢ = (—d +
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Vd? +4c¢?)/2. Conversely, for any given ¢; and ¢y
we can compute that d = ¢; — co and ¢ = /cico.

Theorem 3.3. Suppose the parameters c, d, «,
B, m are to be fized in the mizred wave systeml

0<

Egs. (8)—(11) and satisfy the inequality
22m + 1(2m + 1)(e1 + e2) — 2mez(1 + ac) > 0.

If the mized wave system has initial conditions of
type I and if n satisfies either

[ 2/2m 4+ 1(2m + 1) (c1 + ¢2) — 2mer (1 + acs)]

2mea(1 + acg) + */2m + 1(2m + 1) (1 + ¢2)

or

<n<cy

ca[2mer (1 4+ acs) + 2m +1(2m + 1) (e + ¢2)]

o <1<
then the mized wave system is chaotic.

Proof. The result follows easily from Lemma 2.9
and Proposition 2.10. W

Example 3.4. Consider the wave system FEqgs.
(1)-(3)

wi —wee =0, O0<ax<l, t>0.

w(0,t) + nw,(0,¢) =0, >0, n#1, t>0.

we(1,t) = aw(1,t) — Bwi(1,1),

€(0,1], pB>0, t>0.
w(@,0) = plx) € C1([0,1)),
wi(@,0) = ¥() € CO([0, 1).

Suppose the parameters «, § are to be fixed and the
wave system has initial conditions of type I, where

I—[ l1+a 1+a]
If n satisfies either
1 —-1-
1<7 L3VBHLta i/—g———3§n<17
3\/_—1—04 3V3+1+a

then the wave system is chaotic. In [Chen et al.,
1998b], they showed the same result as above.

Theorem 3.5. Suppose the parameters c, d, «a, (3,
m are to be fized in the mized wave system Eqs. (8)—
(11) and satisfy the inequality

2m + 1(2m + 1)(cy + ¢2) — 2mea(1 + acy) < 0.
If the mized wave system has initial conditions of
type I and if n satisfies either

n>cy or
co[*X/2m + 1(2m + 1) (c1 + ¢2) — 2mer (1 + acy)]
2mea(1 + ace) + *%/2m + 1(2m + 1)(c1 + ¢2)
<n<c,

then the mized wave system is chaotic.

2m + 1(2m + 1)(e1 + ¢2) — 2mea(1 + acs)

Proof. The result follows easily from Lemma 2.9
and Proposition 2.11. W

Example 3.6. Consider the mixed wave system

Wi + 2w — 3w =0, O0<ax <1, t>0.
w(0,t) + Nw,(0,t) =0, n>0, n#3, ¢t>0.
we(1,1) = aw(1,t) — Bwi(1, 1),
2v3—1
o€ [\/— ,1] 6>0, t>0.
w(z,0) = p(z) € CL([0,1]),
[ wil@,0) = ¥(z) € C°([0,1)).

Suppose the parameters «, (§ are to be fixed and
the system has initial conditions of type I, where

- 1¢1+&y1¢1+&1
_[_3 36 "3V 38 }

If 0 satisfies either

6v3—1— 3«
23+ 1+ 3«

then the mixed wave system is chaotic.

n>3 or <n<3,

Theorem 3.7. Suppose the parameters n, co, a, 3,
m are to be fized in the mized wave system Eqs. (8)—
(11) and satisfy the inequality

n>ce and

R2m +1(2m + 1)(n — c2) > 0.
If the mized wave system has initial conditions of

type I, then the mized wave system is chaotic for
any ¢ < 1/a.

2mea (1 + acg) —

Proof. The result follows easily from Lemma 2.9
and Proposition 2.12. N
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Theorem 3.8. Suppose the parameters n, ca, a, 3, m are to be fized in the mized wave system Eqs. (8)—(11)

and satisfy the inequality

n>c

and  2mca(1 + acy) —

2m +102m +1)(n — ¢e2) < 0.

If the mized wave system has initial conditions of type I and if

ca[2m 4+ 1(2m + 1) (n — ¢2) — 2mn(1 + acs)]

2mea (1 + ace) — */2m +1(2m + 1) (n — c2)

then for any cy satisfying

>0,

L co[*V2m +12m +1) (n — c2) — 2mn(1 + acy)]

< min{ —

the mized wave system is chaotic.

a’ 2mea(l + acy) —

2m 4+ 1(2m+ 1) (n — ¢2) }

Proof. The result follows easily from Lemma 2.9 and Proposition 2.13. H

Theorem 3.9. Suppose the parameters n, ca, a, 3, m are to be fized in the mized wave system Eqs. (8)—(11)

and satisfy the inequality

n<c

and  2mea(1 + acy) —

2m +12m +1)(ca —n) > 0.

If the mized wave system has initial conditions of type I and for any ci that satisfies

a[2m 4+ 12m + 1) (ca — n) — 2mn(1 4+ acs)] 1

2mea(1 4+ acg) — *2m +1(2m + 1)(c2 — 1)

then the mized wave system s chaotic.

Proof. The result follows easily from Lemma 2.9
and Proposition 2.14. N
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