
Appendix A 
 
Given a two-D curve α  parameterized in arc length s, the unit vector T and 
curvature κ  of α  are define as  
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where  indicates the unit normal vector. N
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by differentiate (A.3) we have  
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Therefore, T and N are orthonormal vectors. 
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The cross product of 
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Using (A.7), we can calculate κ  as 
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Appendix B 
 
Given a point p on surface S, the tangent plane of p is indicated as T(S). The curvature 
of p along different directions can be calculated using the first fundamental form and 
second fundamental form in differential geometry. Assume a curve α  lies on S, that 
is  
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The unit tangent vector T can be obtained by 
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The first fundamental form in differential geometry is expressed as 
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The first fundamental form I1 measure length of curves, angles of tangent vector, and 
areas without referring back to the neighbor space R3 [39]. Let E, F, and G, express the 
coefficient of the quadric form, 
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The unit normal vector of α  can be calculated by 
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The curvature of α  along the surface normal direction, normal curvature nκ , can be 
expressed as  
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Let AT
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ddN
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== )()( α . Now the normal curvature nκ  can be expressed as 
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where I2 is the second fundamental form. By using matrix A, the normal curvature 
along different directions can be obtained. The second fundamental can be expressed 
as  
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we have 
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By using (B.4-6) and (B.10-12), we have 
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By rearranging the elements, we have 
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and 
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