Appendix A

Given a two-D curve α parameterized in arc length s , the unit vector T and curvature κ of α are define as

$$
\begin{equation*}
\frac{d \alpha}{d s} \equiv T, \tag{A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \alpha}{d s^{2}} \equiv \kappa N \tag{A.2}
\end{equation*}
$$

where N indicates the unit normal vector.

Since

$$
\begin{equation*}
\frac{d \alpha}{d s} \cdot \frac{d \alpha}{d s}=1 \tag{A.3}
\end{equation*}
$$

by differentiate (A.3) we have

$$
\begin{equation*}
\frac{d \alpha}{d s} \cdot \frac{d^{2} \alpha}{d s^{2}}=0 \tag{A.4}
\end{equation*}
$$

Therefore, T and N are orthonormal vectors.
If α is parameterized in any parameter, that is $\alpha(t)=\left[\begin{array}{ll}x(t) & y(t)\end{array}\right], \frac{d \alpha}{d s}$ and $\frac{d^{2} \alpha}{d s^{2}}$ can be expressed as

$$
\begin{equation*}
\frac{d \alpha}{d t}=\frac{d \alpha}{d s} \frac{d s}{d t}=\left|\frac{d \alpha}{d t}\right| T, \tag{A.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \alpha}{d t^{2}}=\frac{d\left|\frac{d \alpha}{d t}\right|}{d t} T+\left|\frac{\mid \alpha \alpha}{d t}\right| \frac{d T}{d s} \frac{d s}{d t}=\frac{d\left|\frac{d \alpha}{d t}\right|}{d t} T+\kappa\left|\frac{d \alpha}{d t}\right|^{2} N \tag{A.6}
\end{equation*}
$$

The cross product of $\frac{d \alpha}{d s}$ and $\frac{d^{2} \alpha}{d s^{2}}$ can be expressed as

$$
\begin{equation*}
\frac{d \alpha}{d t} \times \frac{d^{2} \alpha}{d t^{2}}=0+\kappa\left|\frac{d \alpha}{d t}\right|^{3} T \times N \tag{A.7}
\end{equation*}
$$

Using (A.7), we can calculate κ as

$$
\begin{equation*}
\kappa=\frac{\left|\frac{d \alpha}{d t} \times \frac{d^{2} \alpha}{d t^{2}}\right|}{\left|\frac{d \alpha}{d t}\right|^{3}}=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left(\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right)^{3 / 2}} . \tag{A.8}
\end{equation*}
$$

Appendix B

Given a point p on surface S, the tangent plane of p is indicated as $T(S)$. The curvature of p along different directions can be calculated using the first fundamental form and second fundamental form in differential geometry. Assume a curve α lies on S , that is

$$
\begin{equation*}
\alpha(s)=S(u(s), v(s)) . \tag{B.1}
\end{equation*}
$$

The unit tangent vector T can be obtained by

$$
\begin{equation*}
T=\frac{d \alpha(s)}{d s}=\frac{\partial S}{\partial u} \frac{d u}{d s}+\frac{\partial S}{\partial v} \frac{d v}{d s} . \tag{B.2}
\end{equation*}
$$

The first fundamental form in differential geometry is expressed as

$$
\begin{equation*}
I_{1} \equiv T \cdot T=\frac{d \alpha(s)}{d s} \cdot \frac{d \alpha(s)}{d s}=\left(\frac{\partial S}{\partial u}\right)^{2}\left(\frac{d u}{d s}\right)^{2}+2 \frac{\partial S}{\partial u} \frac{\partial S}{\partial v} \frac{d u}{d s} \frac{d v}{d s}+\left(\frac{\partial S}{\partial v}\right)^{2}\left(\frac{d v}{d s}\right)^{2} . \tag{B.3}
\end{equation*}
$$

The first fundamental form I_{1} measure length of curves, angles of tangent vector, and areas without referring back to the neighbor space R_{3} [39]. Let E, F, and G , express the coefficient of the quadric form,

$$
\begin{align*}
& E \equiv\left(\frac{\partial S}{\partial u}\right)^{2}, \tag{B.4}\\
& F \equiv \frac{\partial S}{\partial u} \frac{\partial S}{\partial v}, \tag{B.5}
\end{align*}
$$

\qquad
and

$$
\begin{equation*}
G \equiv\left(\frac{\partial S}{\partial v}\right)^{2} . \tag{B.6}
\end{equation*}
$$

The unit normal vector of α can be calculated by

$$
\begin{equation*}
N=\frac{\frac{\partial S}{\partial u} \times \frac{\partial S}{\partial v}}{\left|\frac{\partial S}{\partial u} \times \frac{\partial S}{\partial v}\right|} . \tag{B.7}
\end{equation*}
$$

The curvature of α along the surface normal direction, normal curvature κ_{n}, can be expressed as

$$
\begin{equation*}
\kappa_{n}=\frac{d^{2} \alpha(s)}{d s^{2}} \cdot N=\frac{d\left(\frac{d \alpha(s)}{d s} \cdot N\right)}{d s}-\frac{d \alpha(s)}{d s} \cdot \frac{d N}{d s} . \tag{B.8}
\end{equation*}
$$

Let $\frac{d N(s)}{d s}=d N\left(\frac{d \alpha}{d s}\right)=A T$. Now the normal curvature κ_{n} can be expressed as

$$
\begin{equation*}
\kappa_{n}=\frac{d(T \cdot N)}{d s}-\frac{d \alpha(s)}{d s} \cdot d N\left(\frac{d \alpha(s)}{d s}\right)=0-T \cdot d N(T)=-T \cdot A T \equiv I_{2}, \tag{B.9}
\end{equation*}
$$

where I_{2} is the second fundamental form. By using matrix A, the normal curvature along different directions can be obtained. The second fundamental can be expressed as

$$
\begin{align*}
& I_{2}=-\frac{d \alpha(s)}{d s} \cdot \frac{d N}{d s}=-\left(\frac{\partial S}{\partial u} \frac{d u}{d s}+\frac{\partial S}{\partial v} \frac{d v}{d s}\right) \cdot\left(\frac{\partial N}{\partial u} \frac{d u}{d s}+\frac{\partial N}{\partial v} \frac{d v}{d s}\right) \\
& =-\left\{\left(\frac{\partial S}{\partial u} \cdot \frac{\partial N}{\partial u}\right)\left(\frac{d u}{d s}\right)^{2}+2\left(\frac{\partial S}{\partial u} \cdot \frac{\partial N}{\partial v}\right) \frac{d u}{d s} \frac{d v}{d s}+\left(\frac{\partial S}{\partial v} \cdot \frac{\partial N}{\partial v}\right)\left(\frac{d v}{d s}\right)^{2}\right\} . \tag{B.10}\\
& =e\left(\frac{d u}{d s}\right)^{2}+2 f \frac{d u}{d s} \frac{d v}{d s}+g\left(\frac{d v}{d s}\right)^{2}
\end{align*}
$$

Since $d N\left(\frac{d \alpha}{d s}\right)$ can be expressed as

$$
\begin{align*}
& d N\left(\frac{d \alpha}{d s}\right)=A \frac{d \alpha}{d s}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial S}{\partial u} \frac{d u}{d s} \\
\frac{\partial S}{d v}
\end{array}\right]=\left(a_{11} \frac{\partial S}{\partial u}+a_{21} \frac{\partial S}{\partial v}\right) \frac{d u}{d s}+\left(a_{12} \frac{\partial S}{\partial u}+a_{22} \frac{\partial S}{\partial v}\right) \frac{d v}{d s}, \tag{B.11}\\
& =\frac{d N}{d s}=\frac{\partial N}{\partial u} \frac{d u}{d s}+\frac{\partial N}{\partial v} \frac{d v}{d s} \\
& \text { we have }
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial N}{\partial u}=\left(a_{11} \frac{\partial S}{\partial u}+a_{12} \frac{\partial S}{\partial v}\right) \tag{B.12}\\
& \frac{\partial N}{\partial v}=\left(a_{21} \frac{\partial S}{\partial u}+a_{22} \frac{\partial S}{\partial v}\right)
\end{align*} .
$$

By using (B.4-6) and (B.10-12), we have

$$
\begin{align*}
& -e=\frac{\partial S}{\partial u} \cdot \frac{\partial N}{\partial u}=a_{11} E+a_{22} F, \tag{B.13}\\
& -f=\frac{\partial S}{\partial u} \cdot \frac{\partial N}{\partial v}=a_{12} E+a_{22} F, \tag{B.14}\\
& -f=\frac{\partial S}{\partial v} \cdot \frac{\partial N}{\partial u}=a_{11} E+a_{21} F, \tag{B.15}
\end{align*}
$$

and

$$
\begin{equation*}
-g=\frac{\partial S}{\partial v} \cdot \frac{\partial N}{\partial v}=a_{12} F+a_{22} G . \tag{B.16}
\end{equation*}
$$

By rearranging the elements, we have

$$
-\left(\begin{array}{ll}
e & f \tag{B.17}\\
f & g
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right),
$$

and

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \tag{B.18}\\
a_{21} & a_{22}
\end{array}\right)=\frac{1}{E G-F^{2}}\left(\begin{array}{ll}
f F-e G & g F-f G \\
e F-f E & f F-g E
\end{array}\right) .
$$

