Contents

中文摘要	i
English Abstract	iv
誌謝	vii
Table of Contents	viii
List of Tables	xi
List of Figures	xii
Chapter 1 Introduction	1
Chapter 2 Background	9
2.1 Boundary-Based Methods	9
2.1.1 Chain Code	10
2.1.2 Signature	11
2.2 Region-Based Methods	12
2.2.1 Quadtree decomposition	12
2.2.2 Polygon approximation	13
2.3 Transform-Based Methods	13
2.4 Multi-resolution-Based Methods	14
2.4.1 Gaussian pyramid and Laplacian pyramid decompositions	15
2.4.2 Wavelet-based methods	16
2.5 Fractal-Based Methods	17
2.6 Recent Works	18

Chapter 3 Verge Point Extraction and Image Surface Reconstruction	23
3.1 Extracting Verge Points on One-Dimensional Profiles	23
3.2. Extracting Verge Points on Image Surfaces	28
3.2.1. Verge Points Extraction Based on Principal Curvature	28
3.2.2. Quantitative Comparisons between Matrix M and Hessian H	32
3.2.3. Curvature Threshold Determination	45
3.3. Image Surface Reconstruction	48
3.3.1. Surface Reconstruction for Gray-Scale Images	48
3.3.2. Surface Reconstruction for Color Images	57
Chapter 4 Data Structures Based on Verge Point Representation	61
4.1. Verge Curves Linking	61
4.2. B-spline Curve Approximation	63
4.3. Image Compression Based on Verge Point Representation	71
4.3.1. Data Arrangement for the Proposed Image Codec	73
4.3.2. Quantizers Selections	75
4.3.2.1. Curvature Quantizer Q _k	75
4.3.2.2. Shape Qunatizer Q _d	77
4.3.2.3. Intensity Qunatizer Q _i	79
4.3.3. Entropy Coding	80
4.4. Scalable Image Transmission	87
4.4.1 SNR scalability	87
4.4.2 Spatial Scalability	91
4.4.3 Shape Scalability	94

4.5 Interactive Image Transmission	95
Chapter 5 Image Features Detection and Image Surface Manipulation	. 98
5.1. Image Features Detection	98
5.1.1. Point Detection	99
5.1.2. Line Edge Detection	. 101
5.1.3. Step Edge Detection	. 103
5.1.4. Corner Detection	109
5.1.5. Homogeneous Region Detection	112
5.2. Image Surface Manipulation	. 116
5.2.1. Problem Formulation	. 117
5.2.2. Editing Images in Intensity Domain	120
5.2.3. Editing Images in Shape Domain	. 130
Chapter 6 Conclusions	. 133
Bibliography	. 137
Appendix	. 143
Publication	. 147
簡歷	. 149

List of Tables

Table 3.1 SNR comparisons between A and H. 44
Table 3.2 (Test images: Lena, Fruit, Peppers.)
Table 4.1 The number of required verge points and the MSE under different Tk's.
Table 4.2 Relation between allowed shape distortion Ad and required control points
Table 4.3. Code words for body control points
Table 4.4. (a) Experimental results. (b) Resource consumption. 85
Table 4.5. Average required execution time and corresponding bitstream size 85

List of Figures

Fig. 1.1. Illustration of image surface
Fig. 1.2 Concept of the proposed method in one-D profile
Fig. 1.3 Overview of the proposed image representation scheme
Fig. 2.1. Illustration of 4-connected grid and 8-connected grid10
Fig. 2.2. Examples of chain code. (a) Digital boundary. (b) 4-connected chain code. (c) 8-connected chain code
Fig. 2.3. An example of signature representation for objects with different shapes.
Fig. 2.4. Concept of quadtree. (a) Partitioned image. (b) Quadtree representation.
Fig. 2.5. Examples of transform-based methods. (a) Original image. (b) DFT transform. (c) DCT transform
Fig. 2.6. Example of Gaussian pyramid and Laplacian pyramid15
Fig. 2.7. Architecture of image decomposition and reconstruction using Laplacian pyramid
Fig. 2.8. An example of wavelet decomposition with a 3-layer hierarchy 17
Fig. 2.9 Feature extraction by dilation gradient and erosion gradient

Fig. 3.3. Image surface emulation using a rubber cloth and pipes. (a) Synthetic image.

Fig. 3.9. (a) Reconstructed image using direct linear interpolation. (b)~(f)Reconstructed images in the first few iterations of the iterative linear interpolation. (g)Final result using iterative linear interpolation. (h) The difference image between

Fig. 3.10. (a) Original image. (b) Extracted verge points. (c) Reconstructed image. 54

Fig. 3.11. (a) Comparison of reconstructed images. The intensity values at the verge points are quantized into 2, 4, 8, 16, 32, 64, 128, and 256 levels, respectively (from upper-left to lower-right). (b) The PSNR value of these reconstructed images... 56

Fig. 4.1 (a) Original image. (b) Eigenvectors $\Lambda_2(x, y)$ around Lena's shoulder. 63

Fig. 4.5. (a) Number of verge points versus the threshold of curve length. (b) PSNR of the reconstructed images versus the threshold of curve length (using verge-curve representation). (c) Number of control points versus the threshold of curve length. (d)

PSNR of the reconstructed image versus the threshold of curve length (using B-spline control-point representation).(e) Ratio of the total pixel number over the number of verge points. (f) Ratio of the total pixel number over the number of control points.

70

Fig. 4.6. Block diagram of JPEG encoder71
Fig. 4.7. Block diagram of the proposed image codec73
Fig. 4.8. Data structure for the storage of verge curves74
Fig. 4.9 Basic data structure for B-spline representation74
Fig. 4.10. (a) Original image. (b) Extracted verge points with $T_k=3$. (c) Extracted verge points with $T_k=6$. (d) Extracted verge points with $T_k=9$
Fig. 4.11. Estimated rate-distortion curve of the image "peppers"77
Fig. 4.12. (a) Allowed position distortion $A_d = 1$. (b) Allowed position distortion $A_d = 3$.
Fig. 4.13. Adaptive Q _i determination for the image "peppers"
Fig. 4.14. (a) Two-level sequential scan. (b) Statistics of run length. (c) Statistics of position x. (d) Statistics of position y
Fig. 4.15 (a) Approximated B-spline curves where curves with positive and negative

Fig. 4.16. Illustrations of two different compression algorithms. (a) Reconstructed image using the proposed method; compression rate=31.12, PSNR=28.67. (b) Reconstructed image using JPEG compression, compression rate=31.08, PSNR=30.65.

Fig. 4.17. (a) The relation between storage requirement and PSNR for different Tk's,

Fig. 4.18. Progressive image reconstruction. (a) Using "top-layer" verge curves only; totally 8219 verge points. (b) Using "top-layer" and "middle-layer" verge curves; totally 11523 verge points. (c) Using all verge curves; totally 15926 verge points.

Fig. 4.24. Examples of shape scalability. (a) S1. (b) S1+S2. (c) S1+S2+S3. 95

Fig. 5.7 Edge strength determination......105

Fig. 5.21 (a) Original image. (b) Enhanced color image by enhancing the L

Fig. 5.22. Verge points extracted from Fig. 5.18(a) with length threshold = 50 pixels.

Fig. 5.28. Illustrations of image manipulations using verge points. (a) Image editing by changing the gray level of a region at the lower-right corner. (b) Image editing by changing the shape of mouth and the shape of a region at the lower-right corner. 132