
 

 

 

Chapter 2 

Background 

To find a more effective way to represent images, plenty of methods have been 

proposed in the literature [1]-[38]. We roughly classify some commonly used image 

representation schemes into boundary-based methods, region-based methods, 

transform-based methods, multiresolution-based methods, and fractal-based methods. 

These different approaches are to be briefly introduced in Section 2.1-2.5, 

respectively. In Section 2.6, some recent works concerning image representation are 

further mentioned. 

2.1 Boundary-Based Methods  
Boundary-based methods, like chain code and signature [3]-[8], have been 

proposed to describe an image in terms of object boundaries. The destinations of 

boundary-based representation schemes are to describe shapes of objects or to 

distinguish objects in different shapes. 

2.1.1 Chain Code 

Chain code is designed for permitting the encoding of arbitrary geometric 

configurations [1], [3]-[5]. An arbitrary curve is represented by a sequence of small 

vectors of unit length and a limited set of possible directions. On the digital grid, 

encoding is based on the fact that successive contour points are adjacent to each other. 
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Depending on whether the 4-connected (or the 8-connected) grid is employed, the 

chain code is defined as the digits 0~3 (or 0~7) being assigned to the 4 (or 8) 

neighboring grid points in a clockwise or counter-clockwise counter. An illustration 

of 4-connected grid and 8-connected grid is shown in Fig. 2.1. A chain is usually 

coded by the absolute image coordinates of the starting point followed by the relative 

coordinates of the remaining points with respect to their predecessors. An example of 

chain code representation is shown in Fig. 2.2, where the starting point is indicated as 

a blue circle. 

 

(a) (b) 

Fig. 2.1. Illustration of 4-connected grid and 8-connected grid 

 

(a)               (b)                (c) 

Fig. 2.2. Examples of chain code. (a) Digital boundary. (b) Chain code using4-connected grid. 
(c) Chain code using 8-connected grid. 
 
 

2.1.2 Signature 

In general, a signature is a 1-D function representing the 2-D boundary [1], 

[6]-[8]. Chain codes can also be considered as one form of signatures. A different 
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form of signature is to encode the radial distance from the centroid of the object as a 

function of angle. Objects with different shapes in a two-dimensional image, such as 

triangles and rectangles, can be characterized merely through their signatures. Fig. 2.3 

shows an example of signature representation for objects with different shapes. Even 

though the obtained signatures are rotationally variant and sensitive to scaling, it has 

the nice property that a scaled version of the same object produces a scaled version of 

the signature. In general, a signature can be normalized with respect to some other 

feature of the object, such as maximum radial distance, length of the longest axis, etc.  

 

Fig. 2.3. An example of signature representation for objects with different shapes. 
 

2.2 Region-Based Methods 

Region-based methods, like quadtree decomposition and polygonal 

approximation and [2], [9]-[16], have been proposed to describe an image in terms of 

smooth regions. In region-based methods, images are decomposed into smooth 

regions in predefined shapes. Then, data structures are designed to record the 

decomposed smooth regions. 
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2.2.1 Quadtree decomposition 

Quadtree is a hierarchical data structure used for image representation [9]-[11]. 

Based on successive subdivision of image array into four equal-size quadrants, 

quadtree structure can be used to represent an image. Each quadrant is then 

represented by a node in the tree. The root of the quadtree represents the entire stored 

image while each of its four children represents a one-fourth of the image. If a 

quadrant is not a homogeneous region, that quadrant is recursively partitioned into 

four sub-quadrants and that node is split into four grandchildren nodes, and so on. An 

example for quadtree decomposition is shown in Fig. 2.4, where an object is indicated 

in blue in Fig. 2.4(a). By quadtree decomposition, the object can be represented by 

node (3,4,6).   

 

(a) (b) 

Fig. 2.4 Concept of quadtree. (a) Partitioned image. (b) Quadtree representation. 

 

2.2.2 Polygon approximation 

For polygon approximation, smooth regions in an image are represented by a 

series of polygons or triangles [12][13]. Triangulation is a widely used form since it is 

more flexible to represent a given object by arbitrary triangular elements than by 
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quadrilateral elements. Different types of triangulation algorithms have been proposed. 

In [14], the authors adjust the position of mesh nodes to describe curved regions with 

more nodes while to describe smooth regions with fewer nodes. In [15], a mesh 

construction approach which gradually deforms a primitive model to fit the observed 

range data is presented. In [16], an image is decomposed using Delaunay triangulation 

algorithms. This algorithm may insert mesh points and complete a mesh structure 

based on a set of points formed by the boundary vertices of the input data.  

 

2.3 Transform-Based Methods 
Transform-based methods, like DCT (Discrete Cosine Transform) and DFT 

(Discrete Fourier Transform) [17]-[19], have been used to describe an image in terms 

of its transform coefficients. DFT uses Fourier orthogonal basis to transform an image 

from the spatial domain f(x,y) to the frequency domain Ff(u,v), based on the equation:  
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where L and W indicate the length and width of an image, respectively. On the 

other hand, DCT uses cosine orthogonal basis to transform an image from the spatial 

domain f(x,y) to the frequency domain Ff(s,t), based on the equation:  
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where C(ξ) is defined as 

C(ξ) =  
2

1     if ξ=0 (2.3) 

  = 0   otherwise.  
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In general, DCT has a better energy compaction capability than DFT. Examples of 

DFT and DCT transform are shown in Fig. 2.5(b) and (c). For natural images, the 

high-frequency components are often small enough to be neglected with little visible 

distortion. Moreover, the DCT transform has been widely adopted for international 

image/video compression standards, such as JPEG, MPEG-1, MPEG-2, and MPEG-4. 

 

 

(a)                   (b)                   (c)  

Fig. 2.5. Examples of transform-based methods. (a) Original image. (b) DFT transform. (c) 

DCT transform. 

 

 

2.4 Multi-resolution-Based Methods 

Multi-resolution methods, like Gaussian and Laplacian pyramid [20]-[22] and 

wavelet decomposition [23]-[26], have been proposed to describe an image in 

hierarchical forms. In multi-resolution methods, an original image is decomposed into 

multiple images in different resolution or scale. These decompositions are useful in 

plentiful applications, such as feature detection and image compression. 
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2.4.1 Gaussian pyramid and Laplacian pyramid decompositions 

For Gaussian pyramid construction, the original image I0 is repeatedly convolved 

with a Gaussian filter g and subsampled to create the reduced images I1, I2, etc. On the 

other hand, to obtain a Laplacian pyramid H, the r-th level Hr, which is a bandpassed 

image, is obtained by computing the difference of Ir and Ir∗g. The image Ir is then 

downsampled to form the next image hierarchy. An example of Gaussian pyramid and 

Laplacian pyramid is shown in Fig. 2.6. In [21], a Laplacian image pyramid is form to 

represent image. The decomposition (analysis) and reconstruction (synthesis) 

architecture is shown in Fig. 2.7. The decomposition process is formed in a 

reduce-and-subtract manner, while the reconstruction process is formed in an 

expand-and-sum manner.  

 

Fig. 2.6. Example of Gaussian pyramid and Laplacian pyramid. 
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Fig. 2.7. Architecture of image decomposition and reconstruction using Laplacian pyramid. 

 

2.4.2 Wavelet-based methods  

In [23], a mathematical model for wavelet multi-resolution signal decomposition 

is presented. A signal is decomposed into a coarser-scale component using a scaling 

function and a detail component using a wavelet function. The coarser scale 

component is further decomposed to form a wavelet representation. As compared with 

the Fourier basis functions used in Fourier transform, wavelets are localized in both 

frequency/scale domain and spatial domain, while Fourier basis functions are only 

localized in frequency domain but not in spatial domain [25]. Hence, small frequency 

changes in the Fourier transform will produce changes everywhere in the spatial 

domain. In wavelet transform, this localization may be useful in several applications. 

An example of wavelet decomposition with a 3-layer hierarchy is shown in Fig. 2.8(a) 

and (b). 
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(a) 

 

(b) 

Fig. 2.8. An example of wavelet decomposition with a 3-layer hierarchy (a) Coefficient 

notation. (b) Wavelet decomposition of a real image. 

 

2.5 Fractal-Based Methods 
A fractal is self-similar across different scales [27]-[30]. Fractal image 

representation is a technique to represent an image by a contractive transform on the 

vector space of images [27]. For this contractive transform, the fixed point is the 

original image. If a concise configuration that will reproduce the image is found, then 

we can store the configuration and produce a reconstructed output with a small 
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amount of information. Image decomposition and reconstruction can be done through 

iterative function system (IFS), which is a collection of transformations (including 

geometric and contrast/brightness manipulations) that yield the fixed point after an 

arbitrarily large number of iterations. For an IFS to converge to a fixed point, a 

contractivity condition must be satisfied. More specifically, each successive iteration 

of the transformations in an IFS must approach closer to the fixed point, where 

“closer” is defined by a metric on the vector space of images under consideration. In 

[29], Jacquin proposed partitioned IFS to reduce the calculation time. In [30], Barthel 

et al proposed a method applying the discrete cosine transform (DCT) to each range 

and domain block prior to the finding of the contraction mapping. 

 

2.6 Recent Works 
In recent years, new methods are still emerging, trying to offer new ways to 

effectively represent images. In [31], an image is represented in an edge-based 

approach by parametrically modeling relevant image surface variations. A Gaussian 

smoothed intensity edge model is used to fit several edge parameters, like contrast, 

width, and edge center. An approximation of the original image can be reconstructed 

under the framework of regularization theory. Furthermore, a multi-scale smooth 

model in the regularization is used to speed up image reconstruction. For storing the 

edge data, chain code technique modeled by a second order Markov chain is applied, 

and Huffman table is used to perform entropy coding. 

In [32], image is represented using irregular distributed samples in space. In this 

work, image surface is decomposed into N transversal layers along intensity axis, 

where N is specified by users to determine the required representation accuracy. Then, 

the irregular samples are chosen along contours with the spacing determined by the 
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contour density in the neighborhood. To reconstruct an original image surface, 

triangular mesh is used based on these irregular samples. 

In [33], an image is represented by multi-resolution decomposition and Gaussian 

Markov random field simultaneously. More specifically, an image is decomposed 

using multi-resolution decomposition to form a Gaussian pyramid or Laplacian 

pyramid, together with an estimated set of Gaussian Markov random field parameters. 

These parameters increase representation overhead slightly, but benefit the optimal 

estimation process for reconstruction under Bayesian statistical inference. 

In [34], the components obtained by multi-scale differential operators are used to 

represent images. The authors use B-spline functions to approximate the Gaussian 

function to provide efficient algorithms for multiscale kernel computation. Images are 

represented by these differential operators such as Canny operator-like wavelet and 

LoG-like wavelets. Moreover, multi-scale and multidirectional operators are proposed 

to represent texture image. The proposed representations provide geometric 

information for further applications like edge detection and image enhancement. 

In [35], multi-scale edges, accompanied with a suitable wavelet model, are used 

to decompose an image. The authors presented that mutliscale edges can be detected 

by local maxima using quadratic spline wavelet. The edges can be characterized by 

the evolution of wavelet maxima across scales. Image reconstruction is achieved via 

an iterative projection algorithm. A pipeline hardware architecture is also built to 

perform real time image reconstruction.  

In [36], a set of block pattern models that satisfy certain image variation 

constraints are used to represent images. In the proposed method, three block types, 

constant, oriented, and irregular, map to different features, like shades, edges, and 

textures, in an image. Constant blocks are identified based on just noticeable 
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difference (JND). Oriented blocks are identified using principal orientation basis. 

Irregular models are classified into mixed model, such as corners or curved lines, and 

texture model (without line-like features). Based on these blocks with parameters, 

image coding, image smoothing, and image zooming can be achieved.   

In [37], in which the concept of using high-curvature points to represent images is 

first proposed, Liu used two one-dimensional morphological operators, dilation 

gradient and erosion gradient, to detect high-curvature points on image surfaces. 

Given an intensity profile f(x) and a structure element b(x), dilation track d(s) and 

erosion track e(s) are defined as 

};)(|)()(max({))(()( bf DxDxsxbxsfsbfsd ∈∈−+−=⊕≡ , (2.4) 

and 

 };)(|)()(min({))(()( bf DxDxsxbxsfsbfse ∈∈+−+=−≡ . (2.5) 

where  ,  are the domains of f(x) and b(x). The dilation gradient and erosion 

gradient are expressed as  

fD bD

    Dilation gradient = d(s)-f(s)-r, (2.6) 

and 

    Erosion gradient = f(s)-e(s)-r, (2.7) 

where the radius r is subtracted from the gradient values for the purpose of 

normalization. Fig. 2.9 shows the dilation and erosion gradients of an image profile. 

The local maxima in dilation and erosion gradients indicate the places of 

high-curvature points. 
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(c) 

Fig. 2.9 Feature extraction by dilation gradient and erosion gradient. (a) Original profile. (b) 

Dilation gradient. (c) Erosion gradient. 

In [38], based on Liu’s work, Jong used the 2-dimentional operator 
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to detect high-curvature points on image surfaces. The eigenvectors of 

this matrix indicate the direction the principal curvatures and the eigenvalues are 

proportional to the value of the principal curvatures. Surfaces with large eigenvalues 

represent more curved surfaces. The positions of these high-curvature points can be 

extracted by detecting the places with large eigenvalues. In Jong’s work, the behavior 
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of the selected high curvature operator is not extensively discussed, and the curvature 

thresholds are determined manually. 

In this thesis, based on the prototypes developed in [37] and [38], we further 

derive a comprehensive and versatile representation framework. We have revisited the 

one-dimensional case using one-dimensional differential estimators, comprehensively 

reinvestigated the two-dimensional verge point detectors, developed the theoretic 

parts of these operators, and explored the selection of thresholds. In addition, we have 

developed frameworks for image compression, image feature detection, and image 

editing. These explorations will be presented in Chapter 3, Chapter 4, and Chapter 5. 
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