
 

 

Chapter 3 

Verge Point Extraction and Image 
Surface Reconstruction 

In the proposed image representation scheme, high curvature points on the image 

surfaces are adopted to represent an original image. In this chapter, the precise 

definition of verge point is introduced, and the procedures to obtain verge points are 

described in detail and analyzed comprehensively. In Chapter 3.1, we will introduce the 

procedure of extracting verge points on one-dimensional profiles. The procedure of 

extracting verge points on two-dimensional image surfaces are to be described in 

Chapter 3.2. Image surface reconstruction based on these extracted verge points is to be 

presented in Chapter 3.3 then.  

3.1 Extracting Verge Points on One-Dimensional 
Profiles 

As indicated in Chapter 1, we may imagine an intensity profile as an elastic string 

stretched by a few pulleys. Conceptually, these pulleys locate at highly curved places, 

and the radius of each pulley is inversely proportional to the local curvature of the 

profile. While the elastic string is stretched by pulleys, there exists stress between every 

adjacent pulley pair. Since the elastic string is fixed on both ends, we consider the stress 
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is large enough to resist gravity. Therefore, elastic string segments between two 

adjacent pulleys are considered to be straight line segments.  The locations and sizes of 

these pulleys, together with the endpoints of the string, offer enough information to 

describe the outline of the profile. To detect and estimate these pulley positions and 

pulley sizes, we first calculate the curvature κ of the profile. If the profile is expressed 

as y = f(x), its curvature can be calculated as 
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=κ , (3.1)  

where and (x)f ′  )(xf ′′  denote the first and second derivatives of f(x), respectively 

[39]. A brief introduction to the derivation of (3.1) is available in Appendix A.  

Then we calculate the local extremes (local maxima or local minima) of κ(x) since 

these pulleys are to be placed at highly curved places. Assume κ(x) reaches its local 

extremes at xex; that is, 0)( =
= exxxdx

xdκ . Then, Pe ≡ (xex, f(xex)) is chosen as the place 

where a pulley is tangentially placed on (or under) the profile, and the reciprocal of 

)( exxκ  is used to approximate the radius r of the pulley. Since Pe locates near the end 

points of the edges and smooth regions, we name Pe  as “verge  point” through this 

paper.  

At a verge point Pe, the first derivative (x)f ′  at xex can be used to estimate the 

tangential direction  at P
→

te e (see Fig. 3.1(a)). The pulley center can thus be located. 

Note that the sign of κ(x) at xex indicates how the pulley bends the string around Pe. For 

a positive κ(x), the pulley bends down the string to form a convex arc; while for a 

negative κ(x), the pulley bends up the string to form a concave arc. Consequently, to 
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describe a pulley, three parameters are needed: pulley center, pulley radius, and pulley 

sign.  

 
(a) 

 

 
 

Fig. 3.1. Concept of verge points. (a) Illustration of Pe and . (b) Reconstructed profile with 

correct pulley parameters.  (c) Reconstructed profile with the sign of the right pulley being 

incorrectly recorded. (d) Reconstructed profile with the position of the right pulley being 

incorrectly recorded. (e) Reconstructed profile with the radius of the right pulley being 

incorrectly recorded.

→

te
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With this pulley representation, the original profile can be easily reconstructed to a 

fairly accurate level. To achieve different degrees of resolutions, we can simply adjust 

the amount of pulleys accordingly: fewer pulleys for a lower resolution profile and 

more pulleys for a higher resolution profile. Moreover, any mistakenly placed pulley 

only changes the local shape of the profile.   

To derive a more compact form to represent pulleys, an intuitive analysis is 

illustrated in Fig. 3.1 (b)-(e) to evaluate the impact of these three parameters. In Fig. 

3.1(b), a profile reconstructed from two pulleys with opposite signs (a positive and a 

negative) is illustrated. Fig. 3.1(c)-(e) show the reconstructed profiles when one 

parameter of the right pulley is mistakenly recorded. It can be seen that both pulley sign 

and pulley position are crucial for profile representation, while the size of pulley is less 

critical for profile reconstruction as long as the position of the tangential point can be 

accurately located. Based on this observation, we may shrink pulleys down to their 

tangential points. In this thesis, these tangential points are called the “verge points” of 

the profile. With this reduction, the number of pulley parameters is reduced from three 

to two. Moreover, by shrinking the pulley to a unit circle (a point), the reconstruction 

process becomes much faster and easier. This is because we do not need to consider the 

reconstruction of the arc portion of the pulleys. The reconstruction of arc portion is 

time-consuming and complicated, especially for the two-dimensional case.  

Actually, the sign of verge point is no longer needed in profile reconstruction. 

However, for the sake of image analysis and image enhancement, we still preserve this 

sign information. By using this verge point representation, the data amount required to 

represent the original profile is greatly reduced. This suggests the compactness of verge 

point representation, and also implies the potential of image compression using verge 
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point representation. The compactness of the verge point representation will be 

investigated in Chapter 4. 

Once the major verge points of a profile are extracted, these points can be used to 

detect features, like edges. An edge on the profile is a place where the imaginary elastic 

string is heavily deformed. The edge strength can be defined as the deformation per unit 

length of the stretched string. In material mechanics, the deformation ∆L per unit length 

L is defined as strain. Assume the distance between two adjacent verge points is Wd and 

the intensity difference between these two verge points is Hd. Then, the strain between 

two verge points can be estimated by  

d

d

W
H ||

=ε . (3.2) 

Both the strain parameter and the contrast Hd can serve as a parameter to perform 

edge detection. This will be discussed further in Chapter 5.   

Besides feature detection, image enhancement and editing can be achieved based 

on verge points. For example, to perform edge enhancement, we can move closer these 

verge pairs with opposite signs, as shown in Fig. 3.2(b). To perform contrast 

enhancement, we can move upward the verge points with negative sign while move 

downward the verge points with positive sign, as shown in Fig. 3.2(c). By moving the 

positions of the verge points, the shape of the elastic string is changed thereafter. This 

allows us to perform feature editing. This issue about feature editing is to be explored in 

Chapter 5. 
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Fig. 3.2. Enhancement using verge points. (a) Original profile. (b) Edge enhancement. (c) 

Contrast enhancement. 

 

3.2. Extracting Verge Points on Image Surfaces 

3.2.1. Verge Points Extraction Based on Principal Curvature 

The concept of verge points can be easily extended to represent 2-D images. Similar 

to the concept of using pulleys to represent intensity profiles, we can imagine the image 

surface as a plastic cloth stretched by 3-D pipes. Fig. 3.3(a) presents a synthetic image 

and Fig. 3.3(b) shows its image surface. As shown in Fig. 3.3(c), by placing pipes at 

highly curved places, the stretched rubber cloth can emulate the image surface. In 

differential geometry, these highly curved places happen at the positions where at least 

one of the two principal curvatures has a large enough magnitude [39].  
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Fig. 3.3. Image surface emulation using a rubber cloth and pipes. (a) Synthetic image. (b) 

Corresponding image surface of (a). (c) Illustration of a rubber cloth stretched by pipes. 

 

In differential geometry, the second fundamental form is usually used to measure 

the curvature at a point p on a surface S along a specific tangent vector t
r

. This second 

fundamental form is defined as 

        〉−〈= ttNdtII pp

rrrr
),()( , (3.3) 

where pN
r

 denotes the unit normal vector at p and )(tNd p

rr
 denotes the differential 

of pN
r

 along t
r

 [39]. If a curve on the surface is formulated as ))(),(()( svsuSs =αr , 

which is a map from a 2-D domain to the surface, then the linear map ))(),(( svsu
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where the elements of matrix A can be obtained by using the first and second 

fundamental forms [39]. A brief introduction concerning the derivation of (3.4) is 

available in Appendix B. 

For a point p on a surface S, once the elements in matrix A are identified, the 

normal curvature along any direction on the tangential plane can be calculated. The two 

eigenvectors of matrix A indicate the directions along which the surface around p has 

the maximum normal curvature and minimum normal curvature, with their eigenvalues 

k1 and k2 indicating the normal curvature values. These two eigenvalues can be used to 

detect highly curved places on a surface.  

With the matrix A, Gaussian curvature K and mean curvature H, which are 

commonly used in differential geometry, can be calculated as  

           
)(

2
1
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2211 aaH

AK

+−=

=

. (3.5) 

It can be proved that the principal curvatures k1 and k2 can be easily computed 

from K and H as    
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. (3.6) 

For an image surface in the form of (x, y, f(x,y)), the directions of these two 

principal curvatures can be deduced by calculating the eigenvalues and eigenvectors of 

the following matrix [39]: 
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In this thesis, we denote  as the eigenvalue with the larger magnitude and 

denote as the corresponding eigenvector of . On the contrary,  is 

the eigenvalue with the smaller magnitude and  is the eigenvector for . 

),(1 yxk

),(1 yxΛ ),(1 yxk ),(2 yxk

),(2 yxΛ ),(2 yxk
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Here, fx and fy denote the first derivatives of f(x,y), while fxx, fyy and fxy denote the 

2nd-order derivatives. To suppress noise, we incorporate the Gaussian smoothing 

operation into these differentiation operators. That is, these derivatives are calculated as 

x
yxGyxf

x
yxGyxff x ∂

∂
∗=

∂
∗∂

≡
),(),()),(),(( ,

2

2

2

2 ),(),()),(),((
x

yxGyxf
x

yxGyxff xx ∂
∂

∗=
∂
∗∂

≡ , 

and so on. Here, G(x,y) denotes the Gaussian smoothing function  

)
22

( 2

2

2

2

exp
2

1),( yx

yx

yx
yxG σσ

σπσ

+−

=  and the symbol “*” denotes the convolution operation. In 

this thesis, we choose σx = σy = σm. A larger σm produces better noise suppression, but 

at the same time distorts the signal more; and vice versa. 

In practice, however, the calculation of principal curvatures based on (3.7) has a 

poor SNR performance. Fig. 3.4 illustrates such a phenomenon. Fig. 3.4(a) shows an 

image of step edge polluted by white Gaussian noise with , and Fig. 3.4(b) 

shows the traversal profile of Fig. 3.4(a). Fig. 3.4(c) shows the estimated

2=nσ

1 k  profile 

based on Matrix A. It appears that the curvature estimation is so noisy that the detection 

of verge points becomes extremely difficult. 

In our approach, as used by Jong in [38], the Hessian matrix H is used for the 

estimation of principal curvatures. The Hessian H ignores all the first-order terms in A 

and is expressed as 

           .  (3.8) ][
yyxy

xyxx

ff
ff

=H

Similarly, the eigenvalues of H are used as the estimation of principal curvatures. 

Fig. 3.4(d) shows the estimated 1̂ k  profile based on H. It can be seen that the use of H, 

instead of A, offers a much improved signal-to-noise ratio in estimating principal 

curvatures.  
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(a)                                                                  (b) 

 

(c)                                                                   (d) 

Fig. 3.4. Comparisons between A and H, in terms of SNR performance. (a) Step edge 

image polluted by white Gaussian noise with . (b) A transversal profile of (a). (c) 

Computed curvature profile based on Matrix A. (d) Computed curvature profile based on 

Hessian H.  

2=nσ

 

 

 

3.2.2. Quantitative Comparisons between Matrix M and Hessian 
H 

To give a quantitative description of the phenomenon on principal curvature 

estimation, we compare A and H in terms of their SNR performance. Assume the 

principal curvatures estimated from A and H are denoted as and , respectively. Due 

to image noise, there are fluctuations in the estimations of , , , , and . In 

k k̂ 

xf yf xxf xyf yyf
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this thesis, we denote these fluctuations as xf∆ , yf∆ , xxf∆ , xyf∆ , and . We first 

calculate the means and variances of these fluctuations. 

yyf∆

Assume we denote the signal part of an image as s(x,y) while the noise part as 

n(x,y). That is,  

        ),(),(),( yxnyxsyxf += . (3.9) 

The estimation of  can be expressed as  xf
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Assume the noise n(x,y) is additive white Gaussian noise with variance . Then, the 

mean and variance of  can be expressed as 
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In this thesis, we choose the scale parameters to be equal; that is, myx σσσ == . Hence, 

(3.12) can be expressed as  
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Similarly, the mean of , , yf∆ xxf∆ xyf∆ , and yyf∆  can be calculated to be 
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Equivalently, the variance of  is derived as yf∆
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On the other hand, the variance of  xyf∆  can be derived as 
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Then, without loss of generality, we discuss the case of a vertical step edge as 

shown in Fig. 3.4(a). This step edge is modeled as 
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After calculating all the derivatives, we have  
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 Hence, we have  
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    xxxxxx fsf ∆+= , (3.24)  

    , (3.25) xyxy ff ∆=

 and 

     .  (3.26) yyyy ff ∆=

Since the image surfaces around edge sections and smooth regions are different, 

we discuss the feature detections using matrix A and Hessian H for edge regions (Case 

I) and for smooth regions (Case II).  We first discuss noise interference in edge 

sections. 
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Case I: In the neighborhood of the edge. 

In the neighborhood of the edge,  and  do not vanish. In this case, we may 

approximate A and H as  

xs xxs
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The curvature estimate of H may be approximated as 
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   and  
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Thus, we have 
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On the other hand, we can deduce that  

    (3.36) ).()ˆ( xxfVarkVar ∆≈∆

 

Now let us discuss another case, which is about noise interference in smooth 

regions. 
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Case II: Over smooth regions. 

Around smooth regions, 0≈xxf  and 0≈xf . In this case, we have  
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 If and , then the curvature values estimated from A and H would 

be approximately the same. Therefore,
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Let 1̂k∆  and 2k̂∆ be the magnitudes of principal curvatures estimated from 
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Here, we define 
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and 
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After a long deduction, it can be proved that the pdf (probability distribution 

function) of  follows  q∆
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while the pdf of r∆  follows  
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After combining (3.38)-(3.42), we finally have  
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As indicated in the previous deduction, 
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Due to the existence of  in the denominator of , the peak value of  is usually 

much smaller than that of . On the other hand, due to image noise, there are 

fluctuations in the estimations of and . It is proved in the previous deduction that 
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around smooth regions. With 
peakpeak

k k̂ >> and )var()ˆ var( kk ∆≈∆ , the Hessian H 

does provide a better SNR performance than A.  

All these formulae have been further verified via computer simulations. Fig. 3.4(e) 

and (f) illustrate the computed 1 k  profile and 1̂ k  profile, together with the standard 

deviations of k∆  and k̂ ∆ , for this step image in Fig. 3.4(a). Fig. 3.4(e) shows 
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expected k  profile without noise interference (cyan) and the standard deviation of 

experimental and theoretical k∆  (pink and yellow), based on Matrix A. Fig. 3.4(f) 

shows expected k̂  profile without noise interference (red) and the experimental and 

theoretical standard deviation of k̂ ∆  (green and blue), based on Hessian H. In this 

simulation, 1=mσ . We can see from Fig. 3.5(a) and 3.5(b) that the produced noise 

variances using matrix A and Hessian H are similar, while the signal component using 

H is much higher than using A.  Experimental results with different parameters are 

shown in Fig. 3.6 and Fig. 3.7. These figures verify that the SNR performance of H is 

superior to that of A.  
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(a) 

 

(b) 

Fig. 3.5. (a) Expected k  profile without noise interference (cyan) and the standard deviation of 

k∆  (pink and yellow), based on Matrix A. (b) Expected k̂  profile without noise 

interference (red) and the standard deviation of k̂ ∆  (green and blue), based on Hessian H. 

(Remark: 1=mσ , 2=nσ  for this simulation).   
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(a) 

 

(b) 

Fig. 3.6. (a) Expected k  profile without noise interference (cyan) and the standard deviation of 

k∆  (pink and yellow), based on Matrix A. (b) Expected k̂  profile without noise 

interference (red) and the standard deviation of k̂ ∆  (green and blue), based on Hessian H. 

(Remark: 1=mσ , 3=nσ  for this simulation).    
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(a) 

 

(b) 

Fig. 3.7. (a) Expected k  profile without noise interference (cyan) and the standard deviation of 

k∆  (pink and yellow), based on Matrix A. (b) Expected k̂  profile without noise 

interference (red) and the standard deviation of k̂ ∆  (green and blue), based on Hessian H. 

(Remark: 2=mσ , 3=nσ  for this simulation).    
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To understand more about SNR comparisons between curvature matrix A and 

Hessian tensor H, we perform experiments using different parameters. The 

experimental results are shown in Table. 3.1, where  σm indicates the standard deviation 

of the Gaussian smoothing operator, σn indicates the standard deviation of AWGN 

noise, and h indicates the edge contrast. 

Table 3.1 SNR comparisons between A and H. 

Parameter Region SNR 

Hessian tensor H

SNR 

Matrix A 

Ratio 

SNR(H)/SNR(A)

Edge region 25.64 2.32 11.03 h=50,σm=1, σn=1 

Smooth region 41.30 4.51 9.14 

h=150,σm=1, σn=1 Edge region 76.94 4.09 18.18 

 Smooth region 123.95 2.52 49.00 

Edge region 128.24 7.53 17.01 h=250,σm=1, σn=1 

Smooth region 206.60 1.17 176.22 

Edge region 12.82 2.70 4.74 h=50,σm=1, σn=2 

Smooth region 20.65 2.25 9.14 

Edge region 38.47 1.50 25.61 h=150,σm=1, σn=2 

Smooth region 61.97 1.26 49.00 

Edge region 64.12 3.52 18.20 h=250,σm=1, σn=2 

Smooth region 103.30 0.58 176.22 

 

The previous discussion is based on the assumption that noise is additive white 

Gaussian noise. For color noise or non-Gaussian-distributed noise, the derivations for 

fluctuation mean and fluctuation variance are more complicated. However, we can still 

analyze the effects caused by noise based on the previous discussion. On the other hand, 

for impulse noise, such as salt-and-pepper noise, the interference influence is difficult 
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to analyze. In this case, it would be difficult to distinguish impulse noise from 

point-like signals. Nevertheless, we may use median filters to remove impulse noise 

beforehand, and then perform the previous analyses. 

In addition to Matrix A and Hessian H, there exist some other methods for 

curvature estimation. For example, in [40], a parameterized curvilinear model is used 

and curvatures are estimated by minimizing the residual energy measured along the 

model gradient. In [41], an n-dimensional estimator is proposed to estimate curvatures 

in images of higher dimensions. Hence, the curvature estimation method adopted in this 

thesis can be considered as an independent module and can be replaced by alternative 

curvature estimators.    

3.2.3. Curvature Threshold Determination  

To obtain the verge points of an image f(x,y), we check at each pixel the value of 

),(1̂ yxk . If ),(1̂ yxk  is a local maximum, that pixel is marked as a candidate of verge 

points. Due to image noise, plenty of candidates are actually false alarm and we need a 

threshold Tk to remove them. The use of a larger Tk suppresses more false alarms, but at 

the same time suppresses the detection of many image details. On the contrary, the use 

of a smaller Tk allows more tiny features to be detected, but at the same time creates 

more false alarms. In our approach, we choose this threshold based on the statistical 

distribution of false alarms. The detail is to be described as follows. 

Over smooth regions,  is presumed to be zero. Due to image noise,  

actually fluctuates around zero. Once 

),(1̂ yxk ),(1̂ yxk

),(1̂ yxk  exceeds Tk, a candidate of verge point is 

mistakenly detected. Based on the formulae deduced in Section 3.2.2, we have 
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 Here, m is to be determined by the user. A typical choice of m is 2 or 3.  

To estimate nσ , there exist several noise estimation methods in the literature 

[42]-[44]. There are three common used estimation methods.  

(a) Eliminate the structure is an image. Then used the filtered image to estimate noise. 

For example, Smoothen an image using an average or medium filter first, and subtract 

the smoothed image from the original image. 

(b) Use a noise distribution model.  

(c) Identify regions with less structures. Calculate the σn of these smooth regions.  

In [42], an image is assumed to contain Gaussian distributed noise and has sufficient 

background area. Under these assumptions, the fluctuations in the gradient components 

 and  follow the Gaussian distribution and are closely related to xf yf nσ . Moreover, 

the pdf (probability density function) for the magnitude of the gradient ( , ) follows 

a Rayleigh-like distribution. By detecting the peak of the Rayleigh pdf, the fluctuations 

of gradient components can be estimated and 

xf yf

nσ  can thus be deduced. In [43], the 

authors proposed a method to tessellate an image into blocks, and use the hierarchy of 

the tessellation to form a variance pyramid. Retaining the 4 smallest variances in each 

hierarchy, a variance sequence of estimate is calculated based on a slippage test to 

remove outliers. The variance of noise is obtained by detecting the place where the 

deviation sequence αd(l) become significant negative. The deviation sequence αd(l) is 

defined as 
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where βd(l) indicates the ration lower bound defined as  
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(a)                                             (b)                      

 

 (c) 

     

(d)                                                    (e)                                                           

Fig. 3.8. (a) Original image (256 by 256). (b)  calculated from H, with positive 

curvatures in red and negative curvatures in green. (c) Eigenvectors 

),(1̂ yxk

),(2 yxΛ  around Lena’s 

shoulder. (d) Extracted verge points. (e) Verge points represented in terms of intensity values. 
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In this paper, we implement both methods proposed in [42][43]. For the 256×256 

Lena image used in this thesis, nσ  is estimated to be 2.1 using [42] and 2.3 using [43]. 

Here, we set nσ to be the average; that is, nσ =2.2. If we choose mσ = 1, then the 

threshold is set to be Tk = 2.0 if m = 2, or Tk = 2.6 if m = 3. Fig. 3.8(a) shows a 256×256 

Lena image. Fig. 3.8(b) shows the  calculated from H, with positive values in 

red and negative values in green. Fig. 3.8(c) shows the directions of over the 

shoulder of Lena. Fig. 3.8(d) shows the extracted verge points after thresholding. Fig. 

3.8(e) shows the extracted verge points in term of their intensities. In this simulation, 

we choose 

),(1̂ yxk

),(2 yxΛ

mσ = 1 and Tk = 2.0. 

Besides the use of a global curvature threshold as aforementioned, the curvature 

threshold may also be determined adaptively. For areas with larger signal strength, the 

curvature threshold can be set to be a larger value to suppress more noise interference. 

On the contrary, for areas with weaker signal strength, the curvature threshold could be 

set to a smaller value to prevent excessive missing detection. To set threshold 

adaptively, the constant m used in (3.46) may be adjusted accordingly. Moreover, the 

area signal strength may be estimated at each pixel by checking the mean and standard 

deviation in the neighborhood of that pixel.  

3.3. Image Surface Reconstruction  

3.3.1. Surface Reconstruction for Gray-Scale Images 

After extracting verge curves, these linked curves can be imagined as 3-D pipes in 

the (x, y, f(x,y)) space. These 3-D pipes record the critical positions of the image 

surface, while the non-verge-curve parts of the image surface can be imagined as 

smooth patches stretched by these 3-D pipes. Assume the set of the positions of 
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extracted verge points is expressed as Ωv. To reconstruct the original image surface Sr 

based on Ωv, one needs to find a mapping function W which yields 

Sr=W(Ωv). (3.49) 

There may exist different mapping functions to interpolate the non-verge-curve parts of 

the image surface. In this thesis, we aim for a simple interpolation approach for the 

reconstruction of image surface based on these extracted verge points. Here, we 

reconstruct image surface based on the emulation of pipes and rubber cloth mentioned 

previously. For an element on the stretched cloth, the nearby surface would be 

influence by pipes which surround this element. Meanwhile, the influence on the given 

element from a neighboring pipe is inversely proportional to the distance between the 

element and the pipe. The interpolated intensity value at a target pixel may thus be 

computed as: 

        /1     where,
Iii

ii
i

r dw
w

w
I ==

∑
∑ . (3.50) 

In (3.49), Ir denotes the interpolated intensity value at the target pixel; Ii denotes 

the intensity value at pi, which is the nearest verge point searched along one of the four 

directions (up, down, left, and right) to estimate the influence of surrounding pipes; and 

wi’s denote the weightings that are inversely proportional to the distance between pi and 

the target pixel. In Fig. 3.9(a), we show the reconstructed image by linearly 

interpolating the intensity values of the verge points in Fig. 3.8(e) to fill in the 

non-verge-curve parts of the image. This linear interpolation is fast in computation but 

may generate a less smooth image.  

To achieve a smooth reconstruction, the iterative interpolation scheme proposed 

by Itoh is adopted [45]. With Itoh’s approach, the pixels next to these verge points are 

linearly interpolated first, using the same equation in (3.50). These newly interpolated 
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pixels are then used as reference pixels to interpolate their neighboring pixels. The 

same procedure continues until no further pixel needs to be processed. The 

interpolation results of the first few iterations are shown in Fig. 3.9(b)-(f), and the final 

result is shown in Fig. 3.9(g). Compared with the straightforward linear interpolation 

method, the iterative linear method offers smoother reconstruction and is less sensitive 

to the missing or adding of verge points. The difference between the original image and 

the iteratively reconstructed image is shown in Fig. 3.9(h). Most differences appear 

around edges or lines. Since human vision is less sensitive to high-frequency change 

(see the contrast sensitivity function plotted in Fig. 3.9(i)), these differences may have 

less impact on visual quality. Moreover, even though there is a large difference over the 

upper arm of Lena, the produced distortion is not visually apparent as long as the 

original image is not to be placed side by side with the reconstructed image. The image 

surface comparisons of different parts for the original image and the reconstructed 

image are shown in Fig. 3.9 (j)-(m). Another example of gray-scale image 

reconstruction is shown in Fig. 3.10.    

 

 

 

 

 

 

 

 50



 

 
(a) 

  
(b)                                   (c) 

   
(d)                                          (e)                                       (f)       

    
(g) (h) 
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(i) 

 
(j) 

 
(k) 
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(l) 

 
(m) 

Fig. 3.9. (a) Reconstructed image using direct linear interpolation. (b)~(f) Reconstructed 

images in the first few iterations of the iterative linear interpolation. (g) Final result using   

iterative linear interpolation. (h) The difference image between the original image and the 

reconstructed image in (g). (i) Contrast sensitivity function of human visual system. (j) 

Original image surface around shoulder. (k) Reconstructed image surface around shoulder. 

(l) Original image surface around hair. (m) Reconstructed image surface around hair. 
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(a)                                                    (b)  

 

 (c) 

Fig. 3.10. (a) Original image. (b) Extracted verge points. (c) Reconstructed image. 

Several methods, such as linear interpolation, bi-linear interpolation, and spline 

interpolation, have been widely used to perform image interpolation based on 

uniform-grid samplings. If the bi-linear interpolation, which can be written in the form 

of ax+by+cxy+d, is adopted to perform image reconstruction from verge points, we 

have to find 4 nearby verge points to calculate these four parameters. For a higher-order 

interpolation scheme, we need more verge points to find the associated parameters. 

Since verge points are irregularly distributed, it would become very difficult to perform 

these types of reconstruction schemes. In this thesis, we aim at a simple, low 

complexity way to interpolate non-verge points based on irregularly distributed verge 

points. Therefore, it seems the iterative linear interpolation is a reasonable and efficient 

way to produce smooth and low-complexity interpolation. 
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 Conceptually, even for the simple linear interpolation case, the selection of 

neighboring verge points for interpolation should depend on the direction of verge 

curve. A more accurate way is to perform the interpolation process along the direction 

perpendicular to the verge curve, that is, according to the orientation of the 

corresponding planar surface. However, this type of interpolation will be cumbersome 

and technically difficult. Fortunately, according to our observations, neighboring verge 

points with the same curvature sign tend to have similar intensity values. With the 

property, different selections of neighboring verge pairs have less impact over the 

quality of the reconstruction results. Moreover, with the use of the iterative scheme, the 

reconstruction quality becomes even less sensitive to the selection of verge pairs. 

Hence, in our approach, we simply choose the vertical direction and horizontal 

direction as the directions for the interpolation process.  

The required execution time for each process incorporated in the extraction of 

verge points and the reconstruction of image surface is listed in Table 3.2. 

 

Table 3.2  (Test images: Lena, Fruit, Peppers.) 

Execution Time 

Procedure 

Lena Fruit Peppers 

Derivatives calculation (fxx, fyy, fxy) 0.1s 0.1s 0.1s 

Eigen-values and eigen-vectors calculation 0.1s 0.1s 0.1s 

Noise distribution model 0.2s 0.2s 0.2s  

Curvature threshold
Smooth region identification 3.7s 3.4s 3.5s 

Direct linear interpolation 0.55s 0.48s 0.51s  

Reconstruction Iterative linear interpolation 0.83s 0.79s 0.80s 
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(a) 

 
(b) 

Fig. 3.11. (a) Comparison of reconstructed images. The intensity values at the verge points are 

quantized into 2, 4, 8, 16, 32, 64, 128, and 256 levels, respectively (from upper-left to 

lower-right). (b) The PSNR value of these reconstructed images. 

 

The intensity values of these verge points can be further quantized without 

producing significant impact on the quality of reconstructed images. In Fig. 3.11, we 

quantize the intensity values at these verge points into 2, 4, 8, 16, 32, 64, 128, and 256 

levels, respectively. The eight reconstructed images based on the quantized intensity 

values are shown in Fig. 3.11(a). The relation between the quantization level and PSNR 

of these reconstructed images are shown in Fig. 3.11(b). For an 8-bit gray-level image, 

Imax = 255. As shown in Fig. 3.11(b), it appears the PSNR remains steady if the 
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quantization levels are larger than 16. Moreover, even though the 2-level quantization 

produces a fairly poor PSNR, the reconstructed Lena image still offers a rich 

description of the original image. 

 
 

 

3.3.2. Surface Reconstruction for Color Images 

The concept of verge points is also applicable to color images. To extract verge 

points and verge curves from a color image, the original color image is first 

decomposed into three component images. Then, the image surface of each component 

image is processed separately. Oppositely, to reconstruct the original image from image 

verges, the image surface of each component image is reconstructed first and then all 

three reconstructed image surfaces are combined together to obtain the final color 

image.  

In this paper, we choose CIE L*a*b* as the color space to demonstrate the 

feasibility of color image reconstruction. In this color space, L* represents the 

achromatic component, while a* and b* represent the chromatic components. To 

convert a color image from RGB space to CIE L*a*b* space, we have

 

 
otherwise       

116
16+ t * 7.787 

0.008856 >for t                          t
= f(t)   where

) )
Zn
Zf( - )

Yn
Yf( (  200 = *b

) )
Yn
Yf( - )

Xn
Xf( (  500 = *a

otherwise            ) 
Yn
Y ( 903.3

0.008856 >
Yn
Yfor      16)

Y
Y116(

L*

3

3

0

⎪⎩

⎪
⎨

⎧

⎪
⎪
⎩

⎪⎪
⎨

⎧
−

=

. (3.51) 

 57



Here, 
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and (Xn, Yn, Zn) is the XYZ values of reference white [46]. Fig. 3.12(a) shows the 

original color image. This color image is decomposed into L*, a*, and b* component 

images first. Then, verge points are extracted for each component image. Fig. 3.12(b) 

shows the reconstructed color image using all the verge curves extracted from these 

three component images. It can be seen that a visually similar reconstruction of the 

original color image is achievable. Another example of color image reconstruction is 

shown in Fig. 3.13. 

    

(a)                                                                       (b)  

Fig. 3.12. (a) Original color image (256×256). (b) Reconstructed color image under CIE 

L*a*b* color space, using 16812 verge points for L*, 12537 verge points for a*, and 14416 

verge points for b*. 
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(a)     

  

(b) 

Fig. 3.13. (a) Original color image (256×256). (b) Reconstructed color image under CIE 

L*a*b* color space, using 15723 verge points for L*, 11435 verge points for a*, and 13429 

verge points for b*. 

Choosing L*a*b* color space benefits the verge point representation in two 

aspects. First, L*a*b* is a uniform color space. Therefore, we do not need to perform 

extra processing while determining the thresholds for color components. For example, 

in RGB color space, a MacAdam ellipsis in the G component is larger than that in R and 

B components. In this case, we may need different treatments on different chroma 

components to avoid unbalanced color difference. Second, L*a*b* separates 
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luminance from chroma. This separation helps us to deal with luminance component 

and chroma components separately. Since human vision is less sensitive to color 

change than luminance change, we may use less verge points for color components. An 

example is shown in Fig. 3.14. It can be seen that no apparent defects appear as we 

reduce the number of verge points for the a* component image and b* component 

image.  

  

Fig. 3.14. (a)  Reconstructed color image under CIE L*a*b* color space, using 34613 verge 

points for L*, 39961 verge points for a*, and 28452 verge points for b*. (b) Reconstructed color 

image under CIE L*a*b* color space, using 34613 verge points for L*, 28442 verge points for 

a*, and 19875 verge points for b*. 
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