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Chapter 1  Introduction 

Enzymes play crucial role in the life of organisms.  Enzymes catalyze biochemical reac-

tions to make biological processes in a cell occur at significant rates.  Due to extreme 

specificity for their substrates, the set of enzymes made in a cell determine the biological 

pathways in that cell and form the life.  The activity of enzymes is greatly related to the 

optimal growth temperature of their source organisms.  Enzymes are used in chemical 

industry, especially pharmacy, for the specific catalysis.  In industrial applications, en-

zymes need to be active in high temperature environment.  However, the activity of en-

zymes is sensitive to temperature and most of enzymes are from mesophiles that crucially 

limit practical use of specific enzymes1,2.  The need of thermophilic enzymes leads a lot 

of study on the factors affecting the thermostability of proteins and the design of practical 

methods to make thermophilic proteins of the desired catalysis function.  On the other 

hand, life can be found in some extreme environment such as hot spring.  The thermo-

phile or hyperthermophile is living in 45 to 80°C or over 80°C3.  It is conjectured that 

the thermophile or hyperthermophile could be the first life-form on the earth.  Enzymes 

from these organisms are adapted to the hot environment.  Researchers are interested in 

the evolution of enzyme, protein thermostability mechanism, and what the temperature 

limitation of life is.  Through comparison between thermophilic proteins and their 

mesophilic homologues, biologist observed many features related to the thermostability 

of proteins.  However, no single outstanding feature account for the thermostability.  

Most of the commercial enzymes are straightforwardly derived from the native thermo-

philic gene from thermophilic organisms, or they mutate mesophilic genes according to 

homologous thermophilic genes3.  If there are no thermophilic genes or homologous 
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genes from thermopiles, researchers will make potential thermophilic ones by indirect 

random mutation methods (for example: DNA shuffling4).  It is very difficult to make 

quickly a useful enzyme by site-directed mutagenesis in practical uses. 

 

1.1 Research Status of Thermostability 

The features of thermophilic proteins are obviously interesting in either principium or 

application.  Protein thermal stabilization has been the focus of many experimental and 

theoretical research works5, but the molecular basis of thermal stability appears to be of 

diverse origin6.  Although thermophilic proteins and their mesophilic homologues share 

a high degree of similarity in both sequence and three-dimensional structure, thermo-

philic proteins are intrinsically more stable and active in high temperature than their 

mesophilic homologues7-10.  

There are many theories on protein thermostability.  Based on comparison between 

thermophilic and mesophilic proteins, thermal stability appears to arise from a variety of 

sequence and structure features like, for example, the presence of stronger electrostatic 

interactions like more charged residues or salt bridges on the surface3,11-13, more side 

chain-side chain hydrogen bonds14,15, dipole-dipole interactions or cation-π interactions 

10,16-21; higher degree of hydrophobic packing in the core regions3,11,12,14,22; increased 

packing density6,23; more disulfide bridges3,24, shorter loop structures25 or higher confor-

mational rigidity12; more secondary structural elements such as α-helix or β-sheet10; 

pronounced bias in amino acid composition on the exposed regions26-29. 

However, despite these many structure and sequence features, no single outstanding fea-

ture can adequately account for the thermal stabilization of proteins10,13,30-36.  This is 
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because net thermal stability may result from a multitude of weakly stabilizing interac-

tions, and different protein families may adopt different structural devices for stabiliza-

tion10,37-42.  Another difficult issue facing the structural analysis of thermal stability is 

the insufficient amount of structural data available for comprehensive comparison of dif-

ferent thermophilic proteins and their mesophilic homologues.  Therefore, even various 

mechanisms of thermostability were discussed in the literature, many authors pointed to 

only changes in amino acid composition as one of the clearest manifestations of thermal 

adaptation6,23,25,29,34,36,43. 

To overcome this difficulty, researchers constructed some tools or web servers for protein 

thermostability prediction recently44,45.  Most of them use machine learning method, in-

cluding SVM or neural networks, to predict experimental ΔΔG or ΔTm upon the stability 

change of single point mutation.  In these works, all of the training information, thermo-

stability experiment data on single point mutation of proteins, is retrieved from ProTherm 

database46, which was launched in 2002 for collecting protein thermostability experi-

mental data.  Several thermostability prediction works followed.  As Guerois R. et al. 

reported FOLDEF (for FOLD-X energy function)47 in 2002, they provided a quantitative 

estimation of the importance of the intra-protein atom interactions contributing to the sta-

bility of proteins and protein complexes.  In 2002, Gilis and Rooman also reported a 

tool PoPMuSiC for rational computer-aided design of single-site mutations48.  Moreover, 

Capriotti E. et al.49 and Bordner, A.J. et al.50, Hoppe C et al.51 in 2005, Cheng J et al. in 

200652, Parthiban V. et al.53,54 all work on predicting ΔΔG change of single point muta-

tions.  Magyar C. et al. reported SRide in 2005 for identifying stabilizing residues (SRs) 

in protein structure55 without information from ProTherm, but this server did not have 
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real experimental validation.  

 

1.2 Motivation 

All the thermostability prediction tools mentioned above, except the sequence version of 

I-Mutant 2.0 as to our best knowledge, require 3-D structures as input.  For most of pro-

teins without 3-D structure at a time, it is a practical need to have a thermostability pre-

diction method with sequences as the only input.  On the other hand, structure study is 

always in a case-by-case base and the amount of data with structure available from 

ProTherm is only about 1,000.  However, the number of combinations of amino acid 

single point mutation is already 380.  Obviously, using the data with structure from 

ProTherm only as the training set for a thermostability prediction is inadequate very 

much.  Therefore, besides ProTherm data, one desires to discover some other useful in-

formation for protein thermostability prediction.  There are far more sequences than 

structures available; in the meantime, due to the great progress of genome projects, there 

are sufficient thermophilic genomes sequenced.  It enables to elucidate the relationship 

between protein sequences and their thermostability, and then possibly apply to protein 

stabilization.  In this direction, we derive two thermostability prediction methods with 

sequence as the only input.  First, we develop an index, structural entropy, of secondary 

structure information content, eight secondary structure types defined by DSSP56, in a 

local sequence.  For a protein sequence, its structural entropy can be computed and used 

to identify residues involved in thermal stabilization of various protein families.  Our 

results show that the positions of the largest structural entropy difference between wild 

type and mutant usually coincide with the residues relevant to thermostability, and the 
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lower information content region means the more stable region in local sequence. 

Second, we develop a thermostability prediction method based on amino acid coupling 

patterns, which defined as two types of amino acid separated by one or more amino acids 

in a protein sequence.  Due to the fast accumulation of protein sequences, genome se-

quence-based analysis is valuable in the study of thermal adaptation of proteins.  The 

often-used sequence-based methods26,28,29,57-61 differentiate the amino acid compositions 

between thermophilic and mesophilic proteins, and show that thermophilic proteomes 

exhibit significant bias in their amino acid compositions.  However, amino acid compo-

sition analysis provides a useful but simplified picture of the relative importance of each 

individual amino acid type in the thermophilic proteins.  Such analysis overlooks the 

coupling effects between amino acid types on thermal stability of proteins.  We conduct 

a statistical analysis of frequencies of coupling patterns appear in mesophiles and ther-

mophiles and identify significant amino acid coupling sequence patterns in thermophilic 

proteins62.  Though no single outstanding coupling pattern can adequately account for 

protein thermostability, we can use a group of amino acid coupling patterns having strong 

statistical significance (p values < 10-7) to distinguish between thermophilic and meso-

philic proteins.  We found a good correlation between the optimal growth temperatures 

of the genomes and the occurrences of the coupling patterns (the correlation coefficient is 

0.89).  Furthermore, we can separate the thermophilic proteins from their mesophilic 

orthologs using the amino acid coupling patterns.  

. 
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Chapter 2  Major Features in Thermophilic Enzymes  

There are many features in thermophilic enzymes reported.  In this chapter we make a 

brief survey of these features.   

 

2.1 More Salt Bridges (Ion Pairs) 

Ionized residues play essential roles in modulating protein stability, folding and func-

tion63.  A single salt bridge is recommended 3 to 5 kcal/mol stabilized contribution in T4 

lysozyme case study64.  However, salt bridges are also a destabilized factor in viewpoint 

of desolvation contribution [ΔΔG(desolvation)]3.  Many researches report that there are 

more charged residues or salt bridges (also named ion pairs) on the surface of thermo-

philic enzymes3,11-13.  In 2000, Szilágyi et al. had a comprehensive comparison on pro-

tein structure of 64 mesophilic and 29 thermophilic or hyperthermophilic protein subunits 

in 25 protein families13.  Szilágyi et al. conclude the salt bridge is more often included 

in thermophilic or hyperthermophilic proteins than their mesophilic homologues.  

The glutamate dehydrogenase from Pyrococcus furiosus, a hyperthermophile (PfGDH) 

and Clostridium symbiosum, a mesophile, (CsGDH), of high sequence and structural 

similarity, is a typical good model for investigating the molecular basis of thermostabil-

ity65. The comparison of these two proteins shows that salt bridges result in huge differ-

ence in melting temperatures (about 60ﾟC) of PfGDH and CsGDH.  In Figure 1, the 

diagram of the monomers of PfGDH (the B chain of 1GTM) and CsGDH (the B chain of 

1HRD) are illustrated and the salt-bridge-forming residues are showed in ball-and-stick 

representation.  The side chain atoms of the positively charged residues (Arg, Lys, His) 

residues of blue are showed in blue, and the side chain atoms of the negatively charged 
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residues (Glu, Asp) are showed in red.  Cα atoms of the salt-bridge-forming residues are 

shown in black.  There are 29 salt bridges in a hyperthermophilic PfGDH monomer, and 

17 salt bridges in the corresponding mesophilic CsGDH monomer65,66.  The PfGDH 

monomer has more salt bridges near the active site than CsGDH monomer.  

Across the subunit, salt bridges form a large network in PfGDH (Figure 2).  There are 

24 residues, belonging to four different subunits, forming 18 salt bridges3,67.  These 

evidences suggest that salt bridges are an important feature for protein thermostability.  

In general, the salt bridge is an important feature of protein thermostability.  However, it 

is difficult to find suitable structure position for adding more salt bridges to improve pro-

tein thermostability.
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Figure 1. Glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus 

furiosus (chain B in 1GTM) (a) and mesophilic Gram-positive bacterium Clostridium 

symbiosum (chain B in 1HRD) (b) are shown with Ca trace representation in a subunit. 

Salt-bridge-forming residues are shown with ball-and-stick representation.  Active-site 

residues are shown with CPK representation, and the conserved active site Lys is shown 

in CPK red.  Other active-site residues are in green. Thermophilic glutamate dehydro-

genase has more salt bridges than the mesophilic glutamate dehydrogenase in the 

neighborhood of the active site.  Reprinted from ref 65.  
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Figure 2. The salt-bridge network in the hexameric Pyrococcus furiosus GDH is shown 

and considered that the salt-bridge network can stabilize the intersubunit interactions.  

Salt-bridge interactions are represented in dotted lines.  The two-fold axis of symmetry 

between the dimers is indicated by the # symbol.  Reprinted from reference 3. 
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2.2 Side Chain- Side Chain Hydrogen Bonds 

In a case of stability study on RNase T1, it is estimated that a single H bond contributes 

an average of 1.3 kcal/mol to the stabilization68.  By Tanner et al., an increased number 

of charged-neutral H-bonds is found in thermophilic GAPDH in comparison with its 

mesophilic homologue69, which suggests that charged residues form H-bonds in protein 

stabilization.  

The H-bond is defined by a distance cutoff in structures that less than 3 A° between the H 

donor and the H acceptor and by donor-hydrogen-acceptor angle below 90°. Since num-

bers of hyperthermophilic protein structures have not been refined to sufficiently high 

resolutions, it is not clear now to answer the role of H bonds in thermostability by struc-

ture analysis3.  

 

2.3 Dipole-Dipole Interactions or Cation-π Interactions 

Cation-π interactions have significant contribution in enhancing thermal stability, be-

cause an increased frequency of both exposed aromatic and positively charged residues in 

thermophiles10.  In cation-π interactions, aromatic rings of Phe, Tyr, and Trp are nonpo-

lar residue types and do not have a net permanent dipole moment.  However, they have 

quadrupole moments that are quite substantial in magnitude10.  The quadrupole is two 

opposing dipoles originating from either face of the ring. Cations (metal cations or cati-

onic side chains of Arg and Lys) interact with the center of the aromatic ring strongly and 

there is two fold than salt bridges21,70, because Phe, Tyr, and Trp are low desolvation en-

ergies and can easily be stabilized in hydrophobic environment21.  There are over 70% 

of all Arg side near aromatic side chains and 26% of all Trps are involved in energetically 
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significant cation-π interactions on the surface of proteins70.  

 

2.4 Higher Degree of Hydrophobic Packing in the Core Regions 

Hydrophobic interaction is a stabilization mechanism in hyperthermophilic proteins3. 

Each additional methyl group buried in protein folding contribute an average increase in 

stability of 1.3 (±0.5) kcal/mol71.  The estimation is based on cavity-creating mutations 

in which a large aliphatic residue was replaced with a smaller aliphatic residue.  In ho-

mologous protein comparison study, adenylate kinase from Methanococcus jannaschii 

(OGT: 85°C) has higher degree of hydrophobic packing in the core region than adenylate 

kinase from Methanococcus voltae (OGT: 35°C~40°C)72.  It had similar result in the 

comparison with 3-isopropylmalate dehydrogenase from Thermus thermophilus and E. 

coli 3-isopropylmalate dehydrogenase from Thermus thermophilus73.  According these 

reports, thermophilic enzymes appear to be of more hydrophobic interaction than meso-

philic homologues.  

 

2.5 Increased Packing Density 

There are some of hyperthermophilic proteins with better packing than mesophilic pro-

teins. Britton K. L. et al. reported that significantly more Ile in Pyrococcus furiosus  

(OGT: 100°C) GDH than in the mesophilic Clostridium symbiosum GDH and guess that 

the effort is due to Ile is more conformations and better fill various voids than Leu74.  

The thermophilic Methanobacterium fervidus histone is bulkier hydrophobic side chains 

in solvent-accessible cavity than mesophilic Methanobacterium formicicum histone75.  

Ala31Ile and Lys35Met mutations of the M. formicicum histone increased Tm by 11 and 

14°C, respectively, while Ile31Ala and Met35Lys mutations of the M. fervidus histone 
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decreased Tm by 4 and 17°C, respectively76. 

 

2.6 Disulfide Bridges  

Disulfide bridges are an entropic effect to stabilize proteins and decreasing the unfolded 

state entropy77.  The serine protease from Aquifex pyrophilus contains eight cysteines 

(none are present in subtilisin BPN’)78.  However, some paper report 100°C is the upper 

limit for the stability of proteins containing disulfide bridges79, because disulfide bridges 

is suspected to be destructed at high temperature.  

 

2.7 Shorter Loop Structures or Higher Conformational Rigidity  

Loops and N and C termini unfold first during thermal denaturation.  It is reported that 

in hyperthermophilic proteins, loops are either shortened or better anchored to the rest 

(like N and C termini) of the protein3.  Loop shortening creates more ratio of secondary 

structure. Loop anchoring is stabilized by ion pairing, H-bonding, or hydrophobic inter-

actions.  For one example, the lactate dehydrogenase from Thermotoga maritima (OGT: 

80°C) has shorter loop structures than its mesophilic homologues80.  Another example is 

the C terminus of Aquifex pyrophilus superoxide dismutase is 10 or 11 residues longer 

than mesophilic superoxide dismutases, and C-terminal helix makes contacts with an-

other subunit11. 

 

2.8 More Secondary Structural Elements Such as α-Helix or β-Sheet 

In 2002, Chakravarty S. et al. reported a statistical result that there are more regular sec-

ondary structures in thermophilic than in mesophilic homologues, and the protein in 

thermophiles especially increase in helical content and decrease in loop content10.  In 
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thermophilic proteins, the ratio of residues in helical, strand, and loop regions are 38.5, 

17.9, and 43.6%; in mesophilic proteins, the ratio of residues in helical, strand, and loop 

regions are 36.9, 18.2, and 44.6%.  

 

2.9 Bias in Amino Acid Composition 

Amino acid composition has been thought to be correlated to thermostability.  In the 

early statistical analysis on amino acid compositions of mesophilic and thermophilic pro-

teins indicated the trend toward substitutions of amino acid such as Gly to Ala and Lys to 

Arg in mesophilic proteins to their thermophilic homologues3.  As more genome se-

quence data accumulated, the indication can be more reliable.  

In 2000, Cambillau C. et al. reported CvP-bias, a large difference between the propor-

tions of charged (Asp, Glu, Lys, Arg) versus polar (non-charged) (Asn, Gln, Ser, Thr) 

amino acids in comparison of 58 thermophilic and mesophilic proteins. CvP-bias is the 

most significant signature of the hyperthermophilic organisms proteomes (OGT >80 

°C)27.  In 2003, Karsten S. et al. re-analyzed CvP-bias on a wider data set of 9 thermo-

philes, 9 hyperthermophiles, and 53 mesophiles81. 

In 2001, Kreil D. P. et al. used hierarchical clustering and principal component analysis 

(PCA) to show an influence of underlying factors on the global amino acid composition 

which was based on the proteome of 6 thermophilic archaea, 2 thermophilic bacteria, 17 

mesophilic bacteria, and 2 eukaryotic species58.  They reported that the G + C content 

can not identify the thermophilic species while their global amino acid compositions can 

identify thermophilic species.  

  We analyze more genomes form TIGR database for higher statistic confidences.  

There were 89 prokaryotic genomes in TIGR database on 2002 Oct. 3, and at that time 
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we found 85 prokaryotic genomeswith optimal growth temperature (OGT) record.  The 

genomes are listed in Table 1 and the statistics is showed in Table 2.  We collect the 

open reading frame (ORF) of these genomes. In this set of data, the ORF protein se-

quence number is 251,836; the average sequence number of each genome is 2,830 

(251,836/89). The organisms are devided into two classes, mesophiles of OGT below 45ﾟ

C and thermophiles of OGT over 45ﾟC.  

Table 1. The prokaryotic genome in TIGR on 2002 Oct3. 
Domain Optimal growth temperature Species name 

Archaea 80 Sulfolobus tokodaii strain 7 

Archaea 30 Methanosarcina mazei Goe1 

Archaea 37 Halobacterium sp. NRC-1 

Archaea 98 Pyrococcus horikoshii shinkaj OT3 

Archaea 100 Pyrococcus furiosus DSM 3638 

Archaea 96 Pyrococcus abyssi GE5 

Archaea 100 Pyrobaculum aerophilum IM2 

Archaea 80-87 Sulfolobus solfataricus P2 

Archaea 59 Thermoplasma acidophilum DSM 1728 

Archaea 65-70 Methanobacterium thermoautotrophicum delta H 

Archaea 35 Methanosarcina acetivorans C2A 

Archaea >100 Methanopyrus kandleri AV19 

Archaea 95 Aeropyrum pernix K1 

Archaea 85 Methanococcus jannaschii DSM2661 

Archaea 60 Thermoplasma volcanium GSS1 

Archaea 67.5 Mesorhizobium loti MAFF303099 

Archaea 83 Archaeoglobus fulgidus DSM4304 

Bacteria 30 Lactococcus lactis subsp. lactis IL1403 

Bacteria 37 Helicobacter pylori J99 

Bacteria 37 Escherichia coli O157:H7 VT2-Sakai 

Bacteria 20-25 Listeria innocua CLIP 11262 
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Bacteria 37 Corynebacterium glutamicum ATCC 13032 

Bacteria 37 Helicobacter pylori 26695 

Bacteria 20-25 Listeria monocytogenes EGD-e 

Bacteria 35-37 Haemophilus influenzae KW20 

Bacteria 37 Fusobacterium nucleatum ATCC 25586 

Bacteria NA Magnetococcus MC-1 

Bacteria 37 Chlamydia muridarum strain Nigg 

Bacteria 25-28 Agrobacterium tumefaciens C58 Cereon 

Bacteria 25-28 Agrobacterium tumefaciens C58 UWash 

Bacteria 95 Aquifex aeolicus VF5 

Bacteria 40-55 Bacillus halodurans C-125 

Bacteria 37 Bacillus subtilis 168 

Bacteria 30 Borrelia burgdorferi B31 

Bacteria 37 Brucella melitensis 16M 

Bacteria NA Buchnera sp. APS 

Bacteria 37 Enterococcus faecalis V583 

Bacteria 30 Caulobacter crescentus CB15 

Bacteria 37 Escherichia coli O157:H7 EDL933 

Bacteria 37 Chlamydia pneumoniae AR39 

Bacteria 37 Chlamydia pneumoniae CWL029 

Bacteria 37 Chlamydia pneumoniae J138 

Bacteria 37 Chlamydia trachomatis serovar D 

Bacteria 20-35 Chlorobium tepidum TLS 

Bacteria 37 Clostridium perfringens 13 

Bacteria 37 Mycoplasma pulmonis UAB CTIP 

Bacteria 25-35 Deinococcus radiodurans R1 

Bacteria 37 Escherichia coli K12-MG1655 

Bacteria 42-45 Campylobacter jejuni NCTC 11168 

Bacteria 75 Thermoanaerobacter tengcongensis MB4(T) 

Bacteria 37 Mycoplasma genitalium G-37 

Bacteria 30-37 Staphylococcus aureus N315 
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Bacteria 37 Streptococcus agalactiae 2603V/R 

Bacteria 37 Streptococcus pneumoniae TIGR4 

Bacteria 37 Streptococcus pneumoniae R6 

Bacteria 37 Streptococcus pyogenes SF370 serotype M1 

Bacteria 37 Streptococcus pyogenes MGAS8232 

Bacteria 30-37 Staphylococcus aureus MW2 

Bacteria 26 Synechocystis sp. PCC6803 

Bacteria 30-37 Staphylococcus aureus COL 

Bacteria 80 Thermotoga maritima MSB8 

Bacteria 37 Treponema pallidum Nichols 

Bacteria 37 Ureaplasma urealyticum parvum biovar serovar 3 

Bacteria 37 Vibrio cholerae El Tor N16961 

Bacteria 35-37 Xanthomonas axonopodis pv. citri 306 

Bacteria 35-39 Xanthomonas campestris pv. campestris 

ATCC33913 

Bacteria 28 Xylella fastidiosa 9a5c 

Bacteria 28 Yersinia pestis CO92 

Bacteria 10-37 Streptomyces coelicolor A3(2) 

Bacteria 37 Pseudomonas aeruginosa PAO1 

Bacteria 37 Mycobacterium tuberculosis CDC1551 

Bacteria 37 Mycobacterium tuberculosis H37Rv (lab strain) 

Bacteria 36-38 Mycoplasma pneumoniae M129 

Bacteria NA Brucella suis 1330 

Bacteria 36-37 Neisseria meningitidis MC58 

Bacteria 36-37 Neisseria meningitidis serogroup A Z2491 

Bacteria 26 Nostoc sp. PCC 7120 

Bacteria 30-37 Staphylococcus aureus Mu50 

Bacteria 37 Porphyromonas gingivalis W83 

Bacteria 37 Mycobacterium leprae TN 

Bacteria 32 Ralstonia solanacearum GMI1000 

Bacteria 32-34 Rickettsia conorii Malish 7 
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Bacteria 35 Rickettsia prowazekii Madrid E 

Bacteria 37 Salmonella enterica serovar Typhi CT18 

Bacteria 37 Salmonella typhimurium LT2 SGSC1412 

Bacteria 30 Shewanella oneidensis MR-1 

Bacteria 26 Sinorhizobium meliloti 1021 

Bacteria 37 Pasteurella multocida PM70 

Viruses NA SIFV (Sulfolobus islandicus filamentous virus) 

 
Table 2. Prokaryotic genome data statistic 

 Recorded  Mesophiles Thermophiles and 

hyperthermophiles 

Unknown 

OGT 

Total 

Archaea 17 3 14 0 17 

Bacteria 68 63 5 3 71 

Viruse 0 0 0 1 1 

Total 85 66 19 4 89 

 

In Figure 3, the box plot indicates that the amino acid frequency distribution of whole 

genome ORFs.  The data for thermophiles and hyperthermophiles are in red, while that 

for mesophiles is in blue.  As shown in this plot, we can conclude that the frequency of 

Glu (E) and Val (V) are significant more in thermophiles and hyperthermophiles than in 

mesophiles and that of Gln (Q) and Thr (T) are significantly less.  The result is similar 

to that of Cambillau and Claverie27 and Kreil and Ouzounis58.  
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Figure 3. The box-plot represents the amino acid composition in high growth tempera-

ture genomes (red line, thermophiles and hyperthermophiles) and low growth tempera-

ture genomes (bleu line, mesophiles).  
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Chapter 3  Methods 

We develop two methods, sequence derived structural entropy (SDSE) and amino acid 

coupling patterns method, for thermostability prediction in sequence information.  In 

this chapter we introduce the details.   

 

3.1 Sequence Derived Structural Entropy (SDSE) 

The structural propensity of an amino acid segment x of length l is described by an 

n-component structural vector (p1, p2,… pn ) , where pi is the probability of the ith struc-

tural descriptor characterized by eight secondary structure types defined by DSSP56: 

β-bridges, extended β-sheet, 310-helix, α-helix, π-helix, bend, turn, and others.  The 

structural entropy of the segment is calculated by 

    lni i
i

S p p= −∑  ,                                              (1) 

where the summation is over the secondary structure types and pi is the occurrence 

probability of ith structural descriptor. For an amino acid segment of length l, the expected 

number of segments is 20l. If l is large, there may not be enough samples in the structure 

database to compute the occurrence probability of a particular structural descriptor.  In 

the present work, the computations of entropy were done for tetra-peptide segments for 

large variability in patterns and reasonable coverage.  Both the web-implemented pro-

gram and the compiled entropy library are available from http://SDSE.life.nctu.edu.tw/. 

We illustrate the computational procedure with an example: Given a sequence 

“…CRLPGTPEAICATYTGCII…,” imagine we are interested in computing the struc-
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tural entropy at the “I” position for this sequence. If l = 4, there are four sequence win-

dows covering this particular residue I, whose structural profile vectors are given by 

p4
PEAI, p3

EAIC , p2
AICA and p1

ICAT, respectively (see Figure 4).  We compute the average 

structural profile vector at I by 

( )PEAI EAIC AICA ICAT
4 3 2 1

1p p p p p
4

= + + +                        (2) 

This is equivalent to a weighted average over a seven residue window where the nearer 

neighboring residues are given more weight.  The structural entropy S at I for the query 

sequence is then computed by 

8

1

lnj j
j

S
=

= −∑π π  ,                                             (3) 

where jπ  is the jth component of p.  We built the library of structural profile using the 

SCOP-35 dataset82, which is the non-redundant subset comprised of sequences with 

pairwise sequence identities <35%. Using the SCOP-35 dataset can help avoid sampling 

bias due to homologue redundancy.  For sequence fragments with lengths 3, 4 and 5, the 

numbers of distinct patterns are 8 × 103, 1.6 × 105 and 3.2 × 106, respectively, and 

their coverage by SCOP-35 is 99%, 86% and 19%, respectively.  In this work, the 

structural profile library is built for tetra-peptides (l = 4) for the consideration of suffi-

cient sequence coverage and sequence patterns. For sequences of lower occurrence, we 

used the pseudocount method83 described before to estimate the occurrence probability.  

The complete flowchart for computing the structural entropy of a query sequence is 

shown schematically in Figure 5. 
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Figure 4. An example to compute the structural entropy of a particular residue ("I" in 

bold face) of a protein sequence.  If the length of the sequence window is l = 4, there are 

possible four sequence windows covering this particular residue "I": PEAI, EAIC, AIAC 

and ICAT.  The structural profile vectors of "I" for these sequence fragments are p4
PEAI, 

p3
EAIC , p2

AICA and p1
ICAT , respectively.  The structural entropy of "I" is computed using 

Eq. 2 and 3. 

. 
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Figure 5. The schematics of calculating the structural entropy profile of a query sequence. 

We built the tetra-peptide library together with their secondary structural elements from 

the SCOP-35 and DSSP databases.  We then built the library of structural profiles for all 

tetra-peptides.  For a query sequence, we can compute the structure entropy of each po-

sition from the structural profile library by averaging four successive sequence windows, 

indicated by four stacking thick lines. 
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3.2 Amino Acid Coupling Patterns 

The sequence coupling pattern is defined as any two types of amino acids separated by 

one or more amino acids.  We conduct a statistical analysis on the thermophilic and 

mesophilic microbial genomes to identify significant sequence-coupling patterns for 

thermostability.  

 

3.2.1 Coupling Patterns [XdZ] 

Let [ ]XdZ  denote the amino acid-coupling pattern of amino acids type X and Z that are 

separated by d amino acids.  Since the protein sequence is directional, the sign of d is 

determined by the relative positions of X and Z.  If X is closer to the N terminal side, d is 

defined to be positive, and if X is closer to the C terminal side, it is defined to be negative.  

Let ( )N XdZ  be the number of occurrences of the pattern [ ]XdZ .  We define the con-

ditional probability XdZR  as 

 ( )
( )XdZ

N XdZ
R

N Xd
=

⋅
,  (4) 

where ( ) ( )
Y

N Xd N XdY⋅ = ∑  and {20 types of amino acid}Y ∈ .  The coupling 

strength XdZC  between X and Z of the pattern [ ]XdZ  is given by  

 
( )
XdZ

XdZ
RC
P Z

= ,  (5) 
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where ( )P Z  is the probability of the occurrence of amino acid Y .  If 1XdZC ≥ , then X 

and Z are positively correlated with respect to the distance d, and if 1XdZC <  they are 

negatively correlated.  We use T
XdZR  and M

XdZR  to denote the means of XdZR  over 

thermophilic and mesophilic, respectively.  To compute the relative occurrence of 

[ ]XdZ  in thermophilic proteins, we define 

 
T
XdZ

XdZ M
XdZ

R
R

ρ = ,  (6) 

The ρ  value of pattern [ ]XdZ  gives a measure of its relative occurrence in thermo-

philes compared with mesophiles. If 1XdZρ > , [ ]XdZ  is increased in thermophilic pro-

teins, and if 1XdZρ < , it is decreased in mesophilic proteins.  We will refer to XdZρ  as 

the thermophilic coefficient, or simply the ρ  value of [ ]XdZ . 

To check the statistical significance of [ ]XdZ , we carry out the Wilcoxon rank-sum test 

on XdZR  and XdZC  between thermophilic and mesophilic genomes.  The Wilcoxon 

rank-sum test is a non-parametrical statistical test for two independent samples.  The 

resultant p-value is used to determine whether the null hypothesis is true.  For example, 

in the Wilcoxon rank-sum test, if p-value is less than 10–2, we have 99% confidence that 

the coupling patterns present in the thermophilic and mesophilic samples are significantly 

different.  We have studied 20 20 40 16,000× × =  amino acid-coupling patterns [ ]XdZ  

for X, Z over all 20 types of amino acid and 20 20d− ≤ ≤ .  When the separation greater 

than 20 amino acids, we find that ~ 1XdZC , indicating the correlation between amino ac-



 25

ids becomes insignificant when | | 20d ≥ .  The p-values of the Wilcoxon rank-sum test 

for XdZR  and XdZC  are called their ( )RS R  and ( )RS C  values, respectively.   

3.2.2 Thermophilic Dominant (Thermo) and Mesophilic Dominant (Meso) Patterns 

score T and M 

The Thermo and Meso pattern scores T and M of protein sequence are thermostability 

score calculated based on significant Thermo and Meso coupling patterns observed in the 

sequence. 

Let PT and PM denote the set of significant Thermo and Meso coupling patterns, respec-

tively. Let S denote a protein sequence under investigation, P(S) denote the set of cou-

pling patterns observed in sequence S and PT(S) denote the intersection of PT and P(S). 

PM(S) denote the intersection of PM and P(S).  Let k = 8,000 denote the number of amino 

acid coupling patterns [XdZ] for X, Z over all 20 types of amino acid and -10 ≤ d ≤ 10.  

The Thermo and Meso pattern scores T and M are defined as following   

( )100 | |
| ( ) | | |

T

T

k P S
T

P S P
× ×

=
×

,           (7) 

   ( )100 | |
| ( ) | | |

M

M

k P S
M

P S P
× ×

=
×

,           (8) 

 

3.2.3 Conditional Probability Score R 

The conditional probability score R of protein sequence is a thermostability score calcu-

lated based on significant coupling patterns under conditional probability observed in the 

sequence. 

Let PR denote the set of significant coupling patterns under conditional probability.  Let 
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S denote a protein sequence under investigation, P(S) denote the set of coupling patterns 

observed in sequence S and PR(S) denote the intersection of PR and P(S).  Then R is de-

fined as 

( )
log( / )

| ( ) | | |
R

T M
XdZ XdZ

XdZ P SR

kR R R
P S P ∈

= ×
× ∑ .        (9) 

The conditional probability profile of protein sequence is a vector of conditional prob-

ability score for each residue.  For residue i, the conditional probability score Ri is a 

thermostability score that calculated based on significant coupling patterns under condi-

tional probability observed in the residue. 

Pi(S) is the set of coupling patterns [Xdi] observed in the residue i, where X over all 20 

types of amino acid and -10 ≤ d ≤ 10.  ( )i
RP S is the intersection of PRand Pi(S).  Then Ri 

is defined as 

( )
( )

log
i
R

T M
i XdZ XdZ

XdZ P S

R R R
∈

= ∑ .           (10) 

 

3.2.4 Coupling Strength Score C 

The coupling strength score C of protein sequence is a thermostability score that calcu-

lated based on significant coupling patterns under coupling strength observed in the se-

quence. 

Let PC denote the set of significant coupling patterns under coupling strength.  Let S 

denote a protein sequence under investigation, P(S) denote the set of coupling patterns 

observed in sequence S and PC(S) denote the intersection of PC and P(S).  Then C is de-

fined as 
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 ( )
( )

log
| ( ) | | |

C

T M
XdZ XdZ

XdZ P SC

kC C C
P S P ∈

= ×
× ∑ ,        (11) 

The coupling strength profile of protein sequence is a vector of coupling strength score 

for each residue.  For residue i, the coupling strength score Ci is a thermostability score 

that calculated based on significant coupling patterns under coupling strength observed in 

the residue. 

Let Pi(S) be the set of coupling patterns [Xdi] observed in the residue i, where X over all 

20 types of amino acid and -10 ≤ d ≤ 10, and ( )i
CP S be the intersection of PCand Pi(S).  

Then Ci is defined as 

( )
( )

log
i

C

T M
i XdZ XdZ

XdZ P S

C C C
∈

= ∑ .          (12) 

 

3.2.5 Dominant Pattern Profile (T, M, T-M score) 

Let S  = (a1…….ai…….ak) denote a protein sequence of size n  under investigation. 

Let Pi(S) denote the set of sequence coupling patterns observed at residue ai , namely, 

{[ ( ) ] |1 }j ia i j a j i n− ≤ ≠ ≤ .  Let PiT (S) denote the intersection of PT  and Pi(S), and 

PiM (S)  denote the intersection of PM  and Pi(S) .  The thermo-score Ti  and 

meso-score Mi at residue ai  are defined as below.   

 Ti = PiT (S) ,                              (13) 

 Mi = PiM (S) .  (14) 
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The T M−  score at residue ai  is defined as i iT M− . The dominant pattern profile of 

this protein sequence is given as Ti, Mi, Ti − Mi, i =1,…,n .  

 

3.3 Optimal Growth Temperature Dependent Amino Acid Composition (OGTComp) 

For a protein sequence S = (a1..…..an), OGTComp, the optimal growth temperature predic-

tion formula based on amino acid composition, is a formula stated by Nakashima H. et 

al.57  We find that it is also useful in protein thermostability prediction.   

 

( ) 0.96, ( ) 0.85, ( ) 2.57, ( ) 1.77,
( ) 0.64, ( ) 0.63, ( ) 1.79, ( ) 2.60,
( ) 1.22, ( ) 1.26, ( ) 0.62, ( ) 1.27,
( ) 1.49, ( ) 3.51, ( ) 1.37, ( ) 0.83,

w Ala w Cys w Asp w Glu
w Phe w Gly w His w Ile
w Lys w Leu w Met w Asn
w Pro w Gln w Arg w Ser
w

= − = − = − =
= = = − =
= = = = −
= = − = = −

( ) 0.48, ( ) 2.10, ( ) 1.95 and ( ) 2.53Thr w Val w Trp w Tyr= − = = =

 

1

1( ) ( ) 100 0.45
n

comp i
i

OGT S w a
n =

= × +∑         (15) 

For a protein sequence S = (a1, a2, …, an), the amino acid composition profile C = (c1, 

c2, …, cn) are the vector of the calculated OGTComp of amino acid residue i. 

( ) ( )i comp i ic OGT a w a= =            (16)
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Chapter 4  Results and Discussion 

In this chapter we discuss the results in sequence derived structural entropy (SDSE) and 

amino acid coupling patterns method. 

 

4.1 Sequence Derived Structural Entropy (SDSE) 

To explore the relationship between the structural entropy profile and the protein thermal 

stability, we present three examples: methanococcal adenylate kinases and their chimeric 

constructs, 72,84 Ribonuclease HIs and their chimeric constructs,85 and holocytochrome 

c551 and its single/multipe amino acid mutants.14 

 

4.1.1 Case 1: Methanococcal Adenylate Kinases 

The methanococcal adenylate kinases (AKs) provide a good model system to study pro-

tein thermostabilization.72,84 The mesophilic Methanococcus voltae (AKvol) and the ex-

tremely thermophilic Methanococcus jannaschii (AKjan) share 61% sequence identity, 

but differ significantly in their thermal stability (their melting temperatures are 69 °C and 

103 °C, respectively).  The structure of AK is characterized by the CORE domains 

(residues 1-38, 86-134 and 145-192), the nucleoside monophosphate (NMP)-binding 

domain (residue 39-85) and the LID domain (residue 135-144).  Figure 6 shows the 

computed structural entropy profiles of AKjan (SAKjan) and AKvol (SAKvol) as well as 

their entropy difference ΔS = SAKjan – SAKvol. Most residues of the AKjan sequence 

are seen to have lower structural entropy than those of the AKvol sequence, especially in 

the CORE domains.  We observed that most of the residues (filled circles) involved in 

the thermal stabilization of AKs72,84 occur at or close to the ΔS minima.  Figure 7a-b 
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shows the colorimetric mapping of ΔS on the tertiary structure of AK (1KI9).72  The 

colour of the sphere in the figure represents the sign of ΔS (blue for negative ΔS and red 

for positive ΔS).  The size of the spheres indicates the magnitude of ΔS.  As seen in the 

figures, the large blue spheres (or the residues with large negative ΔS) are usually in close 

proximity to each other, especially in the N and C terminal regions.  These results are 

encouraging, since they indicate that our approach may provide a simple, straightforward 

means to identify the residues involved in thermal stabilization. 

 

 
Figure 6. The Structural entropy profiles of AKjan (SAKjan, blue line), AKvol (SAKvol, 

red line) and their entropy difference ΔS (black line).  Filled circles are the residues re-

lated to thermostabilization.72,84  The domains of AK are indicated by the lines above 

the x-axis. 
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Figure 7. The colorimetric mapping of ΔS between AKjan and AKvol on the tertiary 

structure of the methanococcal AK (1KI9)84.  The color and size of the sphere represent 

the sign (red for negative and blue for positive) and the magnitude of ΔS, respectively. 

Two views are shown (A and B), the latter is rotated by 180° from the first.  The figures 

were produced by RASMOL86.  
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4.1.2 Case 2: Ribonuclease HI 

Kimura et al.85 have constructed a variety of chimeric proteins of Escherichia coli Ribo-

nuclease HI (EI RNase HI) by substituting the corresponding R1-R9 regions from Ther-

mus thermophilus Rnase HI (TH RNase HI), an exceptionally thermal stable protein.  

Both enzymes share a 52% sequence identity. Experimental results87 show that the re-

placement of four regions (R4-R7) increases the melting temperatures from 52.0 °C to 

68.7 °C.  Figure 8 compares the structural entropy profiles of EI RNase HI and the chi-

meric R4-R7 protein.  The structural entropy profile of the chimeric protein also shows 

very large entropy reduction in the R5, R6 and R7 regions of the four substitution re-

gions. 

 

Figure 8. The Structural entropy profiles of RNase HI (red line), the R4-R7 mutant 

proteins (blue line) and their entropy difference ΔS (black line). The residues of R4, R5, 

R6 and R7 regions are shown in filled circles85.  
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4.1.3 Case 3: Holocytochrome c551 

Hasegawa et al. 14 have systematically substituted the amino acids of Pseudomonas 

aeruginosa cytochrome c551 (PA c551) based on the structure of thermophilic Hydro-

genobacter thermophilus cytochrome c552 (HT c552).  Using this approach, they suc-

ceeded in constructing several single and multiple amino acid mutants of increased ther-

mostability compared with that of PA c551.  Figure 9 compares the structural entropy 

profiles of PA c551 and the mutant proteins (F7A, V13M, F34Y, E43Y and V78I).  As 

shown in the figure, two mutations F7A and F34Y show the largest entropy reduction, 

which are consistent with the experiment that these two mutations result in the largest 

ΔTm of all single amino acid mutants.  Structural analysis shows that the FA7 mutation 

results in tighter hydrophobic packing and the F34Y mutation forms a new hydrogen 

bond between the hydroxyl group of the tyrosine residue and the guanidyl base of R47. 

 
Figure 9. The Structural entropy profiles of PA c551(red line) and its mutant proteins (blue 

line), and their entropy difference ΔS (black line).  The mutated residues are indicated 

by the filled circles. 14 
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4.1.4 The Relationship Between Structural Entropy and Thermal Stability 

Haney et al.72 constructed a number of chimeric proteins of varying melting temperatures 

from AKjan and AKvol.  These sequences share 68 % to 81% sequence identity and 

their melting points range from 69 °C to 103 °C (Table 3).  Figure 10a shows the plot of 

ΔTm versus α for these sequences, where ΔTm is the difference of the melting tempera-

tures between the particular sequence and the reference sequence (AKvol), and α is their 

difference of the average structural entropies per amino acid.  We observed an excellent 

linear relationship between them. Note that in the figure the slope of the line is negative, 

indicating that lower structural entropy is related to higher thermostability.  Figure 10b 

compares the observed melting temperatures with those computed form the linear model.  

 
Figure 10. (a) The ΔTm −α plots for AKjan, AKvol and their chimeric proteins. ΔTm is in 

°C and α in arbitrary unit.  The correlation between ΔTm and α is r = 0.909.  (b) Com-

parison of the calculated melting temperature computed from the linear model with the 

observed melting temperature. 
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Table 3. The melting temperatures of AKs and their chimeric constructs.  

Proteinsa Tm ( °C) 

AKvol 69.0 

J36V 73.0 

V160V 74.0 

JVJ 89.0 

V36J 98.0 

J160V 96.0 

VJV 82.5 

AKjan 103.0 

a The melting temperatures of AKvol, AKjan and their chimeric constructs.83  A 36 

residue N-terminal residue region (1-36) or a 32 residue C-terminal region (161-192) was 

swapped to produce chimeric proteins.  The notation J36V represents AKjan sequence 

through residue 36 followed by the remaining AKvol sequence.  For the double chimera 

like JVJ, it represents AKjan through residue 36, AKvol through 160, and AKjan residues 

161-192.  The similar logic applies for the nomenclature of the other chimeras. 



 36

 

If the entropy linear model is a general one, the structural entropy will provide a useful 

measure for the thermal stability.  To check this, we compiled a comprehensive dataset 

comprising 1,153 protein sequences with varying melting temperatures.  These se-

quences contain the following families include adenylate kinases,72 cytochrome c551,14 

RNase HI,88 staphylococcal nuclease89, alpha-amylase,87 arc repressor,90 rubredoxin 

variant (PFRD-XC4),91 and human fibroblast growth factor 192, ligase93, glutamate dehy-

drogenase43, alcohol dehydrogenase94, histone-like bacterial DNA-binding protein95 , Fyn 

SH3 domain96, cold-shock protein Bs-CspB97,98, malate dehydrogenase99, cytochrome 

P450100, WW domain101, bovine pancreatic trypsin inhibitor102,103 and phytase104 and 

other families from the ProTherm database46.  Each family contains highly homologous 

sequences: the wild-type proteins and its mutants (either single/multiple point mutations 

or chimeric constructs).  These sequences are listed in the supplementary material.  For 

each family, we computed the linear regression of ΔTm on α. From this linear model, we 

computed their melting temperatures.  Figure 11 compares the calculated and observed 

melting temperatures of the sequences of the dataset. The linear regression correlation 

coefficients between the calculated and observed melting temperatures are: r = 0.7209 

and the p-value = 0.143x10-3. 
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Figure 11. The calculated ΔTm versus the observed ΔTm for 1153 protein sequences.  

The calculated ΔTm is computed from the linear regression of ΔTm on α for each family. 

The linear regression correlation coefficients are: r = 0.7209 and the p-value = 

0.143x10-3. 
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On close examination of the results, we found that, for the sequences displaying the best 

linear relationship between α and ΔTm , the mutated residues are usually resulted in more 

hydrophobic packing72,89 or conformational rigidity.90,91,93,94  On the other hand, if the 

mutated residues are involving in electrostatic interactions, some case like rubredoxin91 

still shows relatively good linear relationship.  Experiment91 shows that the thermostabi-

lization of the mutant rubredoxin comes from a surface salt bridge involving the protein's 

backbone, which reduces the entropic cost.  But other case like the cold shock protein 

(Bs-CspB)97,98 shows little correlation between α and ΔTm.  The increased thermal sta-

bility of the mutant Bs-CspB is due to electrostatics network arising from the mutated 

surface residues.  The linear entropy model computed from sequences obviously cannot 

account for the long-range stabilization from such intricate structural features.  We no-

ticed that the linear entropy model may also not be applicable to some polymeric proteins 

like malate dehydrogenase99, whose stabilization comes from ionic interactions across the 

dimer-dimer interface.  

Though various interactions enhancing protein thermostability exhibit themselves as dif-

ferent structural features, our results show that the local structural entropy may be used as 

a generalized measure of the thermal stability.  Since structure conservation reflects the 

effects of both the intrinsically stable (context-independent) sequence patterns and the 

long-range generic contributions (context-dependent) from surrounding residues,105 the 

structural entropy provides a convenient structural measure of the thermal stability. 

Though the structure entropy profile by itself could be related to functional factors as 

well as structural factors, the structural entropy differences between mesophilic and 

thermophilic homologues will augment structural features involved in structural stabiliza-
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tion.  Our approach offers a straightforward way to compute the structural entropy di-

rectly from the query sequence and may be used as a useful tool to screen mutant candi-

dates for thermophilic sequences in a high throughput way. 

 

4.2 Amino Acid Coupling Patterns in Thermophilic Proteins 

We present some of temperature significant coupling patterns in detail, and the perform-

ance in differentiating between thermophilic proteins and their mesophilic orthologs.  

 

4.2.1 The ρ  Profiles of Amino Acid Coupling Patterns 

Using Eq. 6, we are able to construct the ρ  profile of the amino acid-coupling patterns. 

The ρ  profile is useful in providing a global picture of the relative occurrences of the 

coupling pattern in thermophiles compared with mesophiles.  An example of the ρ  

profile for [ ]xdC  is shown in Figure 12A, which shows the ρ  values together with 

( )RS R  and ( )RS C . Most [ ]xdC s have 1ρ <  and, hence, appear to be decreased in 

thermophiles.  These results are consistent with previous reports3,10,58 that the Cys com-

position is in generally decreased in thermophiles.  However, we note that there exist 

some statistical significant patterns with 1.4ρ >  (indicated by the arrow in Figure 12A).  

We zoom in this region in Figure 12B.  These patterns are mostly of the form [ ]CdC , 

some instances of which are [ 3 ]C C , [ 4 ]C C  and [ 7 ]C C . Rosato et al.24 previously re-

ported that that cysteine clustering is closely related to the growth temperature of the or-

ganism.  Structural analysis24 showed that the increased stability of the cysteine clusters 

is probably due to their involvement in coordination of metal ions such as zinc, iron or 

FeS groups, or in disulfide bonds.  This example shows that our approach is able to 
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identify and provide a detailed description of sequence features in thermophilic proteins 

than the conventional composition analysis.  In the following sections, we will discuss 

the ρ  profiles of coupling patterns of the general coupling pattern [ ]xdZ , where Z  

denotes the particular amino acid type and x  is any amino acid type.  

A 

 
Figure 12. (A) The ρ , ( )RS R  and ( )RS C  profiles of the amino acid-coupling pattern 

[ ]xdC .  The ρ  values are plotted in black (scale on the right), and the ( )RS R  and 

( )RS C  values in red and blue, respectively (logarithmic scale on the left).  The abscis-

B 
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sas are the amino acid coupling patterns [ ]xdC  sorted according to ascending ρ  val-

ues. The dotted line indicates the threshold 1ρ = .  The arrow indicates the region of the 

statistical significant patterns with 1.4ρ > .  (B) The zoom-in view of this region.  

 

4.2.2 The ρ  Profiles of [ ]xdZ   

Figure 13A-S show the ρ  profiles of the coupling patterns [ ]xdZ .  For clarity, we 

plot the ( )RS R , but not ( )RS C  values of each pattern.  

4.2.3 [ ]xdE  and [ ]xdV   

Figure 13A shows the ρ  profile of [ ]xdE .  The larger than unit ρ  values clearly in-

dicate that [ ]xdE  occurs more in thermophiles.  There is little surprise, since previous 

reports10,58 indicated that Glu content is usually higher in the thermophilic proteins.  

Specifically, the most statistically significant ( ( )RS C  and ( )RS R  <  10−5 ) patterns are 

[ ]KdE , [ ]RdE , [ ]EdE  and [ ]DdE . The structural implications of these coupling pat-

terns are clear: these patterns frequently occur in the helical conformations, and, espe-

cially, the first two patterns can easily form salt bridges within themselves.  It is re-

ported10 that both local salt bridges and helical conformations are significantly increased 

in thermophilic proteins, and that the proportions of charged pairs of RK, DE and EE 

tend to be higher in thermophiles.  Note that we derived similar results directly from 

sequences without the use of structural information.  
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The ρ  profile of [ ]xdV  (Figure 13B) is similar to that of [ ]xdE , though the nonpolar 

valine and the charged glutamate are completely different types of amino acids.  These 

are the coupling patterns [ ]DdV , [ ]KdV , [ ]NdV  and [ ]YdV  that are significantly in-

creased in thermophiles.  The structural implications of these patterns are not clear, 

though these patterns frequently occur in α-helices or β-sheets, and higher proportion of 

secondary structures is known to be an important contributor to increased thermal stabil-

ity.10  

 

4.2.4 [ ]xdP  and [ ]xdC   

The ρ  profile of [ ]xdP  is shown in Figure 13C, which is similar to that of [ ]xdC  

(Figure 12). Most instances of [ ]xdP  are increased in thermophiles ( 1ρ > ), though with 

relatively high p-values.  It is reported10 that the Pro composition is increased in ther-

mophilic proteins.  There exist a few statistical significant patterns with 1.4ρ >  (indi-

cated by the arrow in the figure), which are [ ]CdP  (see previous section) and [ ]PdP .  

We found from structural analysis that [ ]PdP s (or proline clusters) are often involved in 

the formation of polyproline II helix.  The helical conformation together with the re-

duced conformational entropy may contribute to protein stability.  

4.2.5 [ ]xdQ , [ ]xdT  and [ ]xdH   

The coupling patterns involving polar amino acids are usually decreased in thermophiles.  

It is reported3,26,58 that the Gln composition as well as other polar amino acids like Ser, 
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Gln, Asn, Thr and Cys are decreased in thermophiles.  A typical case [ ]xdQ  is shown 

in Figure 13D.  Specifically, the coupling patterns with p-values < 10-6 are [ ]EdQ , 

[ ]GdQ , [ ]RdQ  and [ ]QdQ .  The homo-amino acid coupling pair [ ]QdQ  presents a 

special case in sequence-coupling patterns.  Figure 14. shows the homo-amino acid 

coupling patterns for twenty amino acid types.  Only [ ]EdE , [ ]CdC  and [ ]PdP  show 

statistically significant instances that are increased in thermophilic proteins (see also the 

previous sections). 

Most instances of [ ]xdT  have 1ρ <  (Figure 13E).  We notice that the particular pat-

tern [(charged residue) ]dT  is significantly decreased in thermophiles. For example, 

[ 1 ]E T  has 0.68ρ = , -8( ) 3 10RC R = ×  and -5( ) 1 10RC C = × .  Though Glu is usually 

increased in thermophile, the coupling pattern [ 1 ]E T  is in fact decreased in thermo-

philes.  The ρ  profile of [ ]xdH  (Figure 13F) shows similar shape to that of [ ]xdT . 

Interestingly, we also observe that [(charged residue) ]dH  is also significantly decreased 

in thermophilic proteins.  

4.2.6 Other Coupling Patterns  

[ ]xdL  (Figure 13G) does not show any significant bias toward thermophiles.  However, 

a particular instance[ ]CdL  is decreased in thermophiles with statistical significance.  

Other patterns like [ ]xdM , [ ]xdF , [ ]xdW  and [ ]xdG  also show similar neutral ρ  

profiles (Figure 13H-K).  Figure 10M shows that [ ]xdI , unlike [ ]xdL , is increased in 

thermophiles.  For the patterns involving aromatic amino acids, [ ]xdF  and [ ]xdW  are 
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increased in thermophilic proteins (Figure 13I-J), but [ ]xdY  (Figure 13M) is increased.  

For patterns involving charged amino acids, [ ]xdE , [ ]xdK  and [ ]xdR  (Figure 13A, 

2N-O) are increased in thermophilic proteins, but, interestingly, [ ]xdD  (Figure 13P) is 

decreased. For patterns involving polar amino acids, [ ]xdS  and [ ]xdN  (Figure 13Q-R) 

are in general decreased in thermophilic proteins.  [ ]xdA  (Figure 13S) is similar to that 

of [ ]xdN  and is decreased in thermophiles, despite that alanine and asparagine are two 

different types of amino acids. 
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Figure 13A. 

 
 

Figure 13B. 
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Figure 13C. 

 
 

Figure 13D. 
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Figure 13E. 

 
 

Figure 13F. 
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Figure 13G. 

 
 

Figure 13H. 
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Figure 13I. 

 
 

Figure 13J. 
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Figure 13K. 

 
 

Figure 13L. 
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Figure 13M. 

 
 

Figure 13N. 
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Figure 13O. 

 
 

Figure 13P. 
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Figure 13Q. 

 
 

Figure 13R. 
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Figure 13S. 

 
Figure 13. The ρ  profiles of the amino acid-coupling patterns [ ]xdZ .  For clarity, we 

plot the RS(R) , but not RS(C) values of each pattern.  The ρ  values are plotted in 

black (scale on the right) and the RS(R) ( )RS R  values in red, respectively (logarithmic 

scale on the left).  The abscissas are the amino acid coupling patterns [ ]xdZ  sorted 

according to their ascending ρ  values.  The following amino acid-coupling patterns 

are shown: (A)[ ]xdE , (B)[ ]xdV , (C)[ ]xdP , (D) [ ]xdQ , (E) [ ]xdT , (F) [ ]xdH , (G) 

[ ]xdL , (H) [ ]xdM , (I) [ ]xdF , (J) [ ]xdW , (K) [ ]xdG , (L) [ ]xdI , (M) [ ]xdY , (N) 

[ ]xdK , (O) [ ]xdR , (P) [ ]xdD , (Q) [ ]xdS , (R) [ ]xdN  and (S) [ ]xdA . 
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Figure 14. The ρ  profiles of 20 homo-amino acid coupling patterns [ ]XdX . 

4.2.7 The Significant Amino Acid Coupling Patterns 

The net thermal stability of proteins usually results from a multitude of different coupling 

patterns, and no single outstanding sequence or structural feature can adequately account 

for thermophilic proteins.  We identify from the amino acid coupling pattern the most 

significant ones with P-values <10-7 for both ( )RS R  and ( )RS C .  We denote this set 

by Ω , which contains the following thermophilic amino acid coupling patterns: 

[ ( 2) ]C P− , [ 1 ]C P , [ 3 ]C C , [ 4 ]C C , [ 6 ]C C , [ 7 ]C C , [ ( 7) ]K E− , [ ( 4) ]K E− , [ 3 ]K E , 

[ 4 ]K E  and [ ( 4) ]H V− , and the following mesophilic amino acid coupling patterns: 

[ ( 4) ]C L− , [ ( 3) ]C L− , [ ( 2) ]C L− , [ 2 ]C L , [ 3 ]C L , [ ( 5) ]D T− , [ ( 4) ]D T− , [ ( 8) ]E T− , 

[ ( 4) ]E T− , [ 1 ]E Q , [ 3 ]E T , [ 4 ]E T , [ ( 3) ]G Q− , [ ( 4) ]K T− , [ 2 ]K T  and [ 3 ]K T . 

4.2.8 Identification of Thermophilic and Mesophilic Proteins Using the Amino Acid 

Coupling Patterns  

Most sequenced thermophilic genomes are archaea (as also reflected in our thermophile 
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data set – 12 archaea and 3 bacteria), and it is possible that some of amino acid coupling 

patterns between thermophilic and mesophilic proteins may be due to phylogenetic dif-

ferences instead of temperature adaptation.  We compute CΩ  for the set Ω  for both 

bacteria and archaea. Figure 15 shows the CΩ-OGT plot for both archaea and bacteria 

genomes.  The amino acid coupling patterns can clearly distinguish between thermo-

philes and mesophiles of both bacteria and archaea.  The results show that we can iden-

tify the amino acid coupling patterns that are indeed due to temperature adaptation.  

Furthermore, we observe a good linear correlation between CΩ and OGT (the correlation 

coefficient is 0.89).  This is encouraging, since the linear relationship is obtained with-

out adjustable parameters57.  
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Figure 15. The C OGTΩ −  plot of the thermophiles and mesophiles.  The circles rep-

resent bacterial genomes and the triangle the archaea genomes.  Thermophiles are col-

ored in red, and mesophiles in blue. 
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To distinguish thermophilic proteins and their mesophilic orthologs presents a much 

harder challenge, because these orthologs usually share higher degrees of sequence simi-

larity.  Define τ  and μ  as the occurrences of thermophilic and mesophilic amino 

acid patterns of the set Ω , respectively.  We compute τ  and μ  for both thermo-

philic and mesophilic orthologs of the following COG families106 – COG0003, COG0068, 

COG0121, COG0121, COG0156, COG0430 and COG1042.  The eukaryotic sequences 

are excluded in calculation.  The τ-μ  plot of these COG families is shown in Figure 

16, with each point (τ, μ)  representing one ortholog.  Thermophilic proteins are gen-

erally well separated from their mesophilic orthologs, with most thermophilic orthologs 

clustering in the lower right region of the τ-μ  region, while the mesophilic orthologs 

the upper left regions.  



 59

 

 

Figure 16. The τ-μ  plot of the COG families: COG0003 (red), COG0068 (orange), 

COG0121 (yellow), COG0156 (green), COG0430 (violet) and COG1042 (turquoise).  

The thermophilic proteins are shown in circles and the mesophilic orthologs in cross.  

The occurrences of the thermophilic and mesophilic amino acid coupling patterns are 

normalized by dividing the maximal occurrences of the corresponding patterns of each 

COG family.  
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4.2.9 GC Contents and the Amino Acid Coupling Patterns 

Though GC content is the dominant influence on the amino acid composition, it has been 

shown showed that GC pressure and thermophily are essentially independent of each 

other.58  We compute CΩ  for both bacteria and archaea. Figure 17 compares CΩ s and 

the corresponding GC contents of the genomes.  While CΩ  clearly distinguishes be-

tween thermophiles and mesophiles, both thermophiles and mesophiles scatter over a 

range of similar the GC contents.  

 

Figure 17. The C GCΩ −  content plot of the thermophiles and mesophiles.  
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4.3 Conclusion 

We have developed a sequence-based approach to identify the amino acid-coupling pat-

terns in thermophilic proteins.  This approach is especially useful when no 

three-dimensional structures are available.  The often-used composition analysis, ignor-

ing the coupling effects of the nearby amino acids, presents only a simplified picture of 

amino acid features related to the thermal stability of proteins.  Our approach provides a 

more detailed description of the relationship between coupling patterns and protein sta-

bility.  Using this approach, we are able to identity statistically significant coupling pat-

terns in thermophiles.  Our method together with structural analysis and amino acid 

composition analysis should be useful in elucidating the relationship between sequence 

features and protein stability. 
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Chapter 5  Protein Mutation Stability Change Prediction Based 

on Sequence Information 

In this chapter, we propose a prediction method using SVMs to predict the direction of 

the protein stability  changes ΔΔG based on the sequence coupling patterns62.  As 

previously described, we find that thermophiles and mesophiles have their own preferred 

sequence coupling patterns and that these sequence-coupling patterns are useful in dis-

tinguishing thermophilic and mesophilic sequences62.  For example, the se-

quence-coupling pattern EXXK, where X represents any amino acid type, is a preferred 

sequence-coupling patterns ( p-value < 10-8) in the thermophilic microbial genomes.  

We will refer to those coupling pattern preferred by thermophiles as the thermo-dominant 

patterns, and those preferred by mesophiles as the meso-dominant patterns.  Then fea-

tures are merged into the coupling composition for SVMs prediction.  Our result shows 

that the accuracy of prediction for stable mutation is significantly improved, although the 

data set is unbalanced.  

5.1 Methods and Implementation  

5.1.1 Data Sets 

The data set S2048 in Capriotti’s works107,108 is used.  S2048 includes 2048 single muta-

tions obtained from 64 different proteins with PDB ID.  The ∆∆G values of mutants 

have been experimentally detected and reported in ProTherm database46.  S2048 is 

available at http://gpcr2.biocomp.unibo.it/~emidio/Imutant2.0/ dbMut Seq.html. 

5.1.2 Support Vector Machines Predictor 
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The SVMs109 try to find the separating hyper-plane with the largest distance between two 

classes, measured along a line perpendicular to this hyper-plane.  However, data to be 

classified may not be linearly separable.  To overcome this difficulty, SVM nonlinearly 

transforms the original input space into a higher dimensional feature space by the 

so-called kernel functions.  When the training data are mapped into vectors in a higher 

dimensional space, it is possible that data can be linearly separated.  In the training 

process, only part of the data are used to construct the hyper-plane, hence avoiding the 

over-fitting problem usually plaguing other machine learning methods.  These data con-

structing the classifier are called support vectors.  Preliminary tests show that the radial 

basis function (RBF) kernel gives results better than other kernels110.  Therefore, we use 

the RBF kernel for all the experiments.  In this work, all SVM calculations are per-

formed by using LIBSVM111, a general library for support vector classification and re-

gression. 

 

5.1.3 Sequence Coding Schemes in SVMs 

The features considered in the SVMs for the mutants’ sign of ΔΔG include amino acid 

composition, dipeptide composition and coupling composition of the wide-type and mu-

tated protein sequences, as well as temperature and pH values, the experimental envi-

ronment features.  A vector for a mutant in the SVMs consists of the differences of 

compositions of the mutant and its wild-type sequence and the experimental environment 

features.  

5.1.3.1 The Amino Acid Composition  
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The amino acid composition of a protein consists of 20 components representing the oc-

currence frequencies of the 20 native amino acids in it.  

5.1.3.2 The Dipeptide Composition  

The dipeptide composition of a protein consists of 400 components representing the oc-

currence frequencies of the 400 dipeptides in it.   

5.1.3.3 The Coupling Composition 

A coupling pattern with amino acid type X and Z separated by d amino acids in a se-

quence is denoted by [XdZ]62.  Based on statistical analysis on a set of mesophilic and 

thermophilic genomes, identify a set of 734 thermo-dominant coupling patterns and a set 

of 961 meso-dominant coupling patterns are identified.  Let XT (XM  respectively) de-

note the thermo-dominant (meso-dominant, respectively) coupling patterns [XdZ], for all 

distance d and all type of amino acid Z. The thermo-coupling (meso-coupling, respec-

tively) composition of a protein consists of 20 components representing the occurrence 

frequencies of thermo-dominant (meso-dominant) coupling patterns of XT  (XM respec-

tively) for each native amino acid X in it.  The thermo-coupling composition and the 

meso-coupling composition are merged into a 40 dimensions coupling composition for 

the SVMs.   

5.1.3.4 Experimental Environment Features (Temperature, pH) 

As in the work of Capriotti et al.107,108, the experimental environment features tempera-
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ture and pH value in the ΔΔG detection are also considered.  

 

5.1.4 Scoring and Performance 

An important issue of optimizing SVMs is the assignment of model parameters, such as 

the penalty parameters and the kernel parameters of the RBF function.  We use a 20-fold 

cross-validation on different sets of parameters for the model selection 107,108.  In the 

cross-validation, the proteins of the same PDB ID are assigned to the same fold for 

proper non-redundancy.  The performance indices of the predictor is overall accuracy, 

Q2, the coverage of class s, Q(s), and the precision of class s, P(s), where s is + or – for 

the sign of ΔΔG and Matthews’ correlation coefficient, MCC.   

For a class s, let sT  and sF  be the number of correct and incorrect predictions for mu-

tants of ΔΔG sign s respectively.  Then the overall accuracy  

              %1002 ×
+++

+
= −+−+

−+

FFTT
TTQ .      (17) 

Matthews’s correlation coefficient 

   [ ] /MCC T T F F D+ − + −= × − × ,       (18) 

where 1/ 2[( ) ( ) ( ) ( )]D T F T F T F T F+ + + − − + − −= + × + × + × +  is a normalization factor.   

The coverage for class s is ~( ) /[ ]s s sQ s T T F= + , where ~s is + if s is – and vice versa.   

The precision for class s is ( ) /[ ]s s sP s T T F= + .  

 

5.2 Results and Discussion 

Because our prediction method is based only on sequence information, we compare with 
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the counterpart in I-Mutant2.0.  On the dataset S2048, our results show better MCC and 

better accuracy in stable mutants [Q(+)] than Capriotti’s work107,108.  As shown in Table 

4, MCC of our method is higher than that of Capriotti’s by 0.05, which means that the 

overall performance is significantly improved.  The performance is almost equal to 

MCC of Capriotti’s prediction method with structural method108.  In our approach, the 

best accuracy for stable mutants, Q(+) is 0.54.  It is 9% accuracy improvement to 

I-Mutant2.0, and means the stable mutant prediction in our method is significant im-

proved.  

We also predict the same data set (S2048) without temperature or pH values information 

in our work (In table 4).  The performance of prediction method without the 2 features 

drops drastically, which implies that the features temperature or pH values affect seri-

ously the performance of prediction.  However, that result is not available in any other 

publication of related works.  In real application, the optimal temperature and pH value 

for stable mutant prediction are not always available.  It would be more practical to have 

a prediction method for protein mutation stability change without temperature and pH 

value.   

We also built SVMs using the sequence features, amino acid composition (20 features) or 

dipeptide (400 features), and experimental environment features, temperature and pH (2 

features).  Based on the result shown in Table 4, amino acid composition is efficient in-

formation for predicting protein mutation stability change.  We can find the result of 

“AAC, T, pH“ is very similar to the result of “I-Mutant2.0-seq”.  It means the se-

quence-based features in I-Mutant2.0 just include the information of amino acid compo-
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sition, temperature and pH.  The best performance of these SVMs is with MCC about 

0.44 and Q2 about 0.78.  However, the accuracy of stable mutant prediction Q(+) are 

both smaller than 0.5.  It means the result without features of significant coupling pat-

terns is similar to the result of I-Mutant2.0.  Nevertheless, the features of dipeptide are 

also adding distinct efficiency while adding 20 times of features than amino acid compo-

sition.  The information of I-Mutant2.0-seq is just to add temperature and pH data in 

amino acid composition.  Only features of significant coupling patterns are more useful 

than amino acid composition information, and coupling composition can improve stable 

mutation prediction.  
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Table 4. The performance of I-Mutant2.0 and SVM predictors based different combina-

tions of features, coupling composition, amino acid composition, dipeptide composition, 

temperature and pH value.   

Prediction result 
Method Feature 

number Q2 P(+) P(-) Q(+) Q(-) MCC 

I-Mutant2.0-str 43 0.80 0.73 0.56 0.83 0.91 0.51 

I-Mutant2.0-seq 42 0.77 0.69 0.79 0.46 0.91 0.42 

CC, T, pH 42 0.79 0.69 0.82 0.54 0.90 0.47 

AAC, CC, T, pH 62 0.78 0.64 0.82 0.55 0.87 0.44 

CC 40 0.69 0.48 0.81 0.59 0.73 0.30 

CC, T 41 0.77 0.65 0.80 0.48 0.89 0.41 

CC, pH 41 0.77 0.68 0.79 0.43 0.91 0.4 

AAC, T, pH 22 0.78 0.69 0.81 0.48 0.91 0.44 

AAC, DC, T, pH 422 0.78 0.68 0.81 0.5 0.9 0.44 

CC: Coupling Composition,   AAC: Amino Acid Composition,   

DC: Dipeptide Composition,  T: Temperature 
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5.3 Conclusion 

In real protein engineering, the prediction ability of stable proteins is the most concerned.  

However, due to less stable mutation data for the training set, it is much difficult to pre-

dict stable mutants.  Our result shows that prediction method using SVM based on cou-

pling composition can make a significant improvement in Q(+). 

Our result supports that temperature or pH values information are of crucial role in 

prediction of the same data set (S2048).  However, it is difficult to find the protein op-

timal temperature and pH values in real application.  Therefore, we consider the diverse 

of temperature and pH values information with a lot of prediction hint.  Those informa-

tion are just for that related works arise the prediction rate but not useful.  We suggest if 

future related works will be more values of application, it should compare the same data 

set without temperature and pH values information.  
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Chapter 6  TheCUP: A Web Tool for Protein Thermostability  

At present, it is lack of practical tools in identifying possible mutation sites for enhancing 

thermostability enhancement.  As a result, experimentalists still rely on the strategy of 

random mutation to improve protein thermostability.  Here we present a tool that can 

suggest possible mutation sites for increasing protein thermostability based on thermal 

coupling sequence pattern of protein sequences.  The protein thermostability profiles 

using Thermal CoUpling Patterns (TheCUP) provides sequence level thermostability 

analysis based on essential thermostability coupling-pattern profiles.  These profiles can 

be used to identify potential mutation site for thermostability improvement.  TheCUP 

provides a rational approach to improve protein thermostability and should be comple-

mentary to the usual experimental approaches based on random mutations.  

We present a web server that will suggest potential mutation sites from protein sequences 

that will increase protein thermostability.  This web server, referred to as the protein 

thermostability profile using Thermal CoUpling Patterns (TheCUP), generates thermo-

stability profile based on the sequence coupling patterns62.  The sequence-coupling pat-

terns are defined as any two types of amino acids separated by one or more amino acids. 

Liang and co-workers62 have developed the statistical analysis approach to identify the 

sequence-coupling patterns from the thermophilic and mesophilic microbial genomes.  

They found that the thermophiles and mesophiles have their own preferred sequence 

coupling patterns and that these sequence-coupling patterns are useful in distinguishing 

thermophilic and mesophilic sequences62.  For example, the sequence-coupling pattern 
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EXXK, where X represents any amino acid type, is the preferred sequence-coupling pat-

tern ( p-value < 10-8) in the thermophilic microbial genomes.  We will refer to those 

coupling patterns preferred by thermophiles as the thermo-patterns, and those preferred 

by mesophiles as the meso-patterns.  Here, we derive the thermostability profiles from 

these sequence-coupling patterns to identify the locally stabilized regions of protein se-

quences.  

6.1 Methods and Implementation 

6.1.1 Thermostability Profile  

Thermostability profiles are defined in equations 13 and 14. The thermostability profile 

of this protein sequence is given as iT , iM , i iT M− , 1, ,i n= … .    

6.1.2 Input and Output Format 

The web page of the TheCUP web server is shown in Figure 18.  The users can either 

paste one sequence in the FASTA format or 2 sequences for the analysis of potential mu-

tation sites for thermostability improvement upload a structural file in the PDB format.  

If the user enters 1 sequence,  theCUP will return three thermostability profiles – the T  

profile, the M  profile and the T M−  profile (Figure 19).  The potential mutation 

sites, which appear at the local minima of the T M−  profile, are marked by ×  sign. If 

the user intends to compare 2 sequences, TheCUP will perform sequence alignment of 

these sequences and plot their thermostability profiles (Figure 20).  The user can com-

pare difference in local stability between these two sequences.  This feature will be par-

ticularly useful when the experimentalist intends to improve the thermostability of one 
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sequence based on other homologous sequence.  



 73

 

 
Figure 18. The web page of the theCUP web server.  The users can either paste one se-

quence in the FASTA format or 2 sequences for the analysis of potential mutation sites 

for thermostability improvement of the query sequence 
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Figure 19. TheCUP will return for the query sequence three thermostability profiles – T  

profile, M  profile and T M−  profile.  The potential mutation sites, which appear at 

the local minima of the T M−  profile, are marked by × sign. 
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Figure 20. If the user inputs 2 sequences, TheCUP will perform sequence alignment of 

these sequences and plot their thermostability profiles (one in black and another in blue).  

This function is particularly useful when the experimentalist intends to improve the 

thermostability of one sequences based on other homologous sequence. 
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6.2 Conclusion 

We have developed a web server called TheCUP to predict potential mutational sites for 

thermostability enhancement.  Based on the findings that thermophilic and mesophilic 

microbes prefer different types of sequence-coupling patterns, TheCUP generates the 

thermostability profiles of the query sequences.  The local minima of the T M−  pro-

files suggest local unstable regions and, hence, are the candidates for mutations that may 

help enhance protein thermostability.  We believe that TheCUP will become a useful 

tool in rationally designing thermal stable sequences and should be complementary to the 

usual experimental design based on random mutations. 
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Chapter 7  Conclusion and Future Works  

In recent years, many structure features of thermophilic enzymes are published in ex-

perimental evidences, but there are no single remarkable feature of protein thermostabil-

ity can be concluded.  Therefore, people have no obvious typical rule used for protein 

thermostability engineering to the present.  As no single remarkable feature of protein 

thermostability, we try to make an integration of numerical methods to generate a single 

pattern profile.  We have developed statistics based methods including sequence derived 

structural entropy (SDSE), and amino acid coupling patterns, to evaluate protein thermo-

stability.   

SDSE is a technique to compute structural entropy directly from protein sequences. We 

explored the possibility of using structural entropy to identify residues involved in ther-

mal stabilization of various protein families.  Examples include methanococcal adenylate 

kinase, Ribonuclease HI and holocytochrome c551.  Our results show that the positions 

of the largest structural entropy differences between wild type and mutant usually coin-

cide with the residues relevant to thermostability.  We also observed a good linear rela-

tionship between the average structural entropy and the melting temperatures for ade-

nylate kinase and its chimeric constructs.  To validate this linear relationship, we com-

piled a large dataset comprised of 1,153 sequences and found that most protein families 

still display similar linear relationships. Our results suggest that the multitude of interac-

tions involved in thermal stabilization may be generalized into the tendency of proteins to 

maintain local structural conservation. The linear relationship between structural entropy 

and protein thermostability should be useful in the study of protein thermal stabilization. 

Amino acid coupling pattern is defined as any 2 types of amino acids separated by 1 or 
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more amino acids. Using this approach, we also construct the ρ profiles for the coupling 

patterns. The ρ value gives a measure of the relative occurrence of a coupling pattern in 

thermophiles compared with mesophiles. We study the amino acid coupling sequence 

patterns for a data set comprising 74 mesophilic and 15 thermophilic genomes, and we 

found that thermophiles and mesophiles exhibit significant bias in their amino acid cou-

pling patterns. We showed that such bias is mainly due to temperature adaptation instead 

of species or GC content variations. Though no single outstanding coupling pattern can 

adequately account for protein thermostability, we can use a group of amino acid cou-

pling patterns having strong statistical significance (p values < 10-7) to distinguish be-

tween thermophilic and mesophilic proteins. We found a good correlation between the 

optimal growth temperatures of the genomes and the occurrences of the coupling patterns 

(the correlation coefficient is 0.89). Furthermore, we can separate the thermophilic pro-

teins from their mesophilic orthologs using the amino acid coupling patterns. These re-

sults may be useful in the study of the enhanced stability of proteins from thermo-

philes—especially when structural information is scarce. 

When we develop these methods to distinguish thermophilic and mesophilic proteins in 

sequence, it means people can use these methods for enzyme thermostability engineering 

when there is only sequence data.  Both SDSE and amino acid coupling patterns meth-

ods integrate the complex features and interpret the protein thermostability level in local 

sequence.  Furthermore, our developing can construct a possible strategy for thermosta-

bility protein engineering.  SDSE and coupling pattern profiles are easier to apply in any 

case of protein thermostability engineering.  

The prediction methods may make huge impact if real experimental confirm is available.  



 79

In the future, we will try to confirm the performance in real site-directed mutagenesis 

experiments.  We believe that can also verify the prediction accuracy directly. 

Furthermore, the training data set is unbalanced, because most of the mutation data re-

ported is success data.  There are lacks of fail (unstable) results that are also useful in 

proofing prediction.  The fail data is needed for balancing the training data set 

Moreover, we hope to do high-throughput experiment systematically to solve the basic 

problems, like the temperature limitation of enzyme, or integrating super stable essential 

genes in hyperthermophilic microbial, and creating new limitation of life……….maybe 

can create any incredible application.  In addition, the mystery of life origin maybe will 

be solved one day.  
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