
J Optim Theory Appl (2009) 140: 213–231
DOI 10.1007/s10957-008-9444-9

Ordinal Optimization of G/G/1/K Polling Systems
with k-Limited Service Discipline

S.-C. Horng · S.-Y. Lin

Published online: 19 December 2008
© Springer Science+Business Media, LLC 2008

Abstract In this paper, we propose an ordinal optimization theory based algorithm
to solve the optimization problem of G/G/1/K polling system with k-limited service
discipline for a good enough solution using limited computation time. We assume that
the arrival rates do not deteriorate visibly within a very short period. Our approach
consists of two stages. In the first stage, we employ a typical genetic algorithm to se-
lect N = 1024 roughly good solutions from the huge discrete solution space � using
an offline trained artificial neural network as a surrogate model for fitness evaluation.
The second stage consists of several substages to select estimated good enough solu-
tions from the previous N , and the solution obtained in the last substage is the good
enough solution that we seek. Using numerous tests, we demonstrate: (i) the compu-
tational efficiency of our algorithm in the aspect that we can apply our algorithm in
real-time based on the arrival rate assumption; (ii) the superiority of the good enough
solution, which achieves drastic objective value reduction in comparison with other
existing service disciplines. We provide a performance analysis for our algorithm
based on the derived models. The results show that the good enough solution that we
obtained is among the best 3.31 × 10−6% in the solution space with probability 0.99.

Keywords Polling systems · k-Limited service disciplines · Stochastic simulation
optimization · Ordinal optimization · Performance analysis

Communicated by Y.C. Ho.

This research work was supported in part by the National Science Council of Taiwan, ROC, Grant
NSC95-2221-E-009-099-MY2.

S.-C. Horng
Department of Computer Science and Information Engineering, Chaoyang University of Technology,
Taichung, Taiwan, ROC
e-mail: schong@cyut.edu.tw

S.-Y. Lin (�)
Department of Electrical and Control Engineering, National Chiao Tung University, 1001 Ta Hsueh
Road, Hsinchu 300, Taiwan, ROC
e-mail: sylin@cc.nctu.edu.tw

mailto:schong@cyut.edu.tw
mailto:sylin@cc.nctu.edu.tw

214 J Optim Theory Appl (2009) 140: 213–231

1 Introduction

The polling system plays an important role in the modeling and analysis of computer
networks, communications, manufacturing systems, transportation systems, produc-
tion system and inventory systems [1]. This system is a multiqueue served by a single
cyclic server; its performance (for example, mean waiting time) is closely related with
the queuing and service disciplines. In most of the existing literature [2, 3], first-in-
first-out (FIFO) is usually employed as the queuing discipline. However, there are five
typical service disciplines: exhaustive, gated, limited, k-limited and time-limited. In
an exhaustive service discipline system, the server continues to serve all customers at
a queue until it empties. In a gated service discipline system, the server continuously
serves only those customers that are found at a queue when it is inspected [4]. In a
limited service discipline system, at most one customer is served at a queue in a cycle.
In a k-limited service discipline system, the server continues to serve k customers or
until the queue is empty, whichever comes first. In a time-limited service discipline
system [5], the server dwells certain amount of time at a queue even if it is empty,
which is obviously inefficient.

Numerous analysis techniques had been developed to evaluate the mean waiting
time of the M/M/1 polling system using exhaustive, gated, and limited service dis-
ciplines [6]. To relax the assumption on infinite buffer, Takagi also used exhaustive,
gated, and limited service disciplines to analyze the M/G/1/K polling system [7];
Jung and Un [8] used the buffer occupancy method and the vacation results to derive
the mean waiting time and blocking probabilities for the M/G/1/K polling system
using exhaustive service discipline. However, the exhaustive, gated, and limited ser-
vice disciplines are incapable of taking priority among queues to improve the system
performance; thus, Borst et al. proposed a k-limited service discipline in [9] to find
the optimal service limits in an M/G/l polling system. In general, the analysis of the
performance of a polling system using k-limited service discipline is very difficult.
Similar situation occurs to the time-limited service discipline, and the reason for its
intended inefficiency as indicated previously is for the sake of obtaining an analytical
result for the M/G/1 polling system.

From the above description, we see that the queuing theory based analytical results
concerning the performance of a polling system were obtained at the expense of some
restricting assumptions, for example the Poisson arrival process or infinite buffer and
the apparent inefficiency in time-limited service discipline. To accommodate a more
realistic G/G/1/K polling system, we need to formulate an optimization problem first,
then we can choose the most flexible and beneficial k-limited service discipline as the
decision variable to optimize, say, the mean waiting cost and the mean blocking cost
for the polling system. Such an approach is rarely used, because the formulated opti-
mization problem will be a stochastic simulation optimization problem with huge dis-
crete solution space, which is computationally intractable and force most researchers
to focus on obtaining queuing theory based analytical results with some restrictive
assumptions. In other words, such an approach will make sense only if we can solve
the formulated problem within a very short period that the arrival rates do not deterio-
rate visibly. Therefore, the purpose of this paper is to solve the optimization problem
of a G/G/1/K polling system with k-limited service discipline using limited computa-
tion time. To achieve our goal, we will propose an Ordinal Optimization (OO) theory

J Optim Theory Appl (2009) 140: 213–231 215

based approach to find a good enough k-limited service discipline for the G/G/1/K
polling system. A special case of the proposed method was presented in [10]. Fur-
thermore, we will provide a performance analysis based on the derived models for
the proposed method to quantify the global goodness of the obtained good enough
solution, which is not given in [10] and is one of the major contributions of this paper.

We organize our paper in the following manner. In Sect. 2, we will present the
formulation for minimizing the mean waiting cost and the mean blocking cost of a
G/G/1/K polling system. In Sect. 3, we will describe our OO theory based approach
for finding a good enough k-limited service discipline. In Sect. 4, we will test our
approach on the M/M/1/K, �/�/1/K, LN/LN/1/K, and W/W/1/K polling systems and
compare the results with those obtained by the other service disciplines. In Sect. 5, we
will present the performance analysis of our approach to justify the global goodness
of the obtained solution. Finally, we will draw a conclusion in Sect. 6.

2 System Model and Problem Formulation

2.1 G/G/1/K Polling Model

The G/G/1/K polling model considered here consists of a single cyclic server and
Q finite queues labeled by A1, . . . ,AQ as shown in Fig. 1. This model assumes the
following: (i) the probability distribution of the customer arrival process is general;
(ii) the arrival rates λ1, . . . , λQ may vary with time but do not deteriorate visibly
within a very short period, say two minutes; (iii) the probability distribution of the
service time is general with service rate μ, and the sequence of service times is i.i.d.;

Fig. 1 G/G/1/K polling model

216 J Optim Theory Appl (2009) 140: 213–231

for the sake of simplicity in explanation, we assume μ is constant throughout this
paper; (iv) each queue has finite buffer size K .

Remark 2.1 The assumption on the arrival rates described in (ii) is irrelevant to the
proposed method but has to do with the execution time, because the arrival rates are
assumed constant during the solution process.

We also assume that a customer completing the service will depart from the sys-
tem, and any customer being served but yet completed will not be interrupted by
any reason (non-preemptive). The switchover time incurred when the server switches
from Aq to Aq+1 is assumed to be of truncated normal distribution with parent
mean δq , parent variance σ 2

q , lower bound 0 and upper bound ∞ and is indepen-
dent of the arrival processes and the service times. The server continues traveling
even when the system is empty.

2.2 Problem Formulation

The service discipline considered in this paper is a k-limited service discipline, which
states that the server attends queue Aq,bq (≤ K) customers will be served or until the
queue becomes empty, whichever comes first. Therefore the decision variable space
of the k-limited service discipline is

� = {b = (b1, b2, . . . , bQ)T |1 ≤ bq ≤ K,

and bq is a positive integer for every q = 1, . . . ,Q}. (1)

We let λ = [λ1, . . . , λQ]T denote the vector of arrival rates. We define the wait-
ing time of a customer as the time length from arrival instant until the beginning of
service, and denote the random variable Wq(b,λ) as the waiting time of a customer
in Aq , which may vary with respect to b and λ. Then, E[Wq(b,λ)] represents the
mean waiting time of a customer in Aq for a given b and λ. We let τq denote the
waiting cost parameter of Aq (the cost imposed by having a customer wait for one

time unit), then 1
Q

∑Q
q=1 τqE[Wq(b,λ)] denotes the mean waiting cost of a customer

for the G/G/1/K polling system. As shown in Fig. 1, when a customer arrives while
the queue is full, we say that this customer is blocked (or lost). We denote the random
variable Pq(b,λ) as the blocking rate or the percentage of customers that are blocked
in Aq , which also vary with respect to b and λ. We denote ηq as the blocking cost
parameter of Aq (the cost imposed by the blocking rate, i.e. the blocking probabil-

ity of a customer), then 1
Q

∑Q
q=1 ηqE[Pq(b,λ)] denotes the mean blocking cost of a

customer for the G/G/1/K polling system. Therefore, the expected cost per customer
of the system can be stated as 1

Q

∑Q
q=1(τqE[Wq(b,λ)]+ηqE[Pq(b,λ)]), which will

serve as the objective function of our optimization problem. In [10], only the mean
waiting cost is considered.

J Optim Theory Appl (2009) 140: 213–231 217

Now, we can formulate the optimization problem of the G/G/1/K polling system
to find the best k-limited service discipline for a given λ as

min
b∈�

1

Q

Q∑

q=1

(τqE[Wq(b,λ)] + ηqE[Pq(b,λ)]). (2)

Apparently the optimization problem (2) is a stochastic simulation optimization
problem with huge discrete decision variable space � shown in (1); � is huge be-
cause if K = 20, then |�| = KQ or 2010 provided that Q = 10. However, to evaluate
the true objective value of a decision vector b ∈ � for a given λ, we need to per-
form a stochastic simulation of infinite length, i.e. infinite number of customers for
all queues. In fact, this is practically impossible. Therefore, we reformulate (2) as
follows:

min
b∈�

J (b,λ)

(

= 1

Q

Q∑

q=1

[

τq

(Lq∑

m=1

wm
q (b,λ)/Lq

)

+ ηq(pq(b,λ)/Lq)

])

, (3)

where Lq denotes the number of arrival customers, wm
q (b,λ) denotes the waiting time

of the mth customer, and pq(b,λ) denotes the number of blocked customers at queue

Aq , for q = 1, . . . ,Q. We let L = ∑Q
q=1 Lq denote the simulation length of (3). Thus,

sufficiently large L will make the objective value of (3), J (b,λ), sufficiently stable.
We let Ls = Q × 10000 represent the sufficiently large L, such that each queue has
10000 customers on the average. In the sequel, we define the exact model of (3) as
when the simulation length L = Ls . For the sake of simplicity in expression, we let
J (b,λ) denote the objective value of a decision vector b for a given λ computed by
exact model, i.e. L = Ls .

Remark 2.2 For all the polling models and the randomly generated arrival rates em-
ployed in Sect. 4, we found that the values of J (b,λ) for L > Q × 9800 vary within
3% range.

2.3 Problem Difficulty

Various heuristic techniques had been developed for solving the simulation optimiza-
tion problems [11–14]. Among them, genetic algorithm [GA, 15], simulated anneal-
ing [SA, 16], and the Tabu search [TS, 17] are frequently used in simulation op-
timization [18]. Despite the success of several applications of the above heuristic
methods [19], many technical hurdles and barriers to broader applications remain as
indicated in [20]. Chief among them is speed, because using a lengthy simulation to
evaluate the objective value of a discrete decision vector is computationally expen-
sive; also expensive is the search of the best solution, since the space of the discrete
decision variables is huge.

218 J Optim Theory Appl (2009) 140: 213–231

3 Solution Method Based on Ordinal Optimization (OO)

3.1 Two-Stage Approach

To cope with the computational complexity of (3), we will employ the OO theory
based goal softening strategy [21–23] to efficiently seek a good enough k-limited
service discipline with high probability instead of searching the best for sure to make
the obtained solution real-time applicable based on the arrival rate assumption given
in (ii) of Sect. 2.1.

Remark 3.1 No matter how fast the proposed algorithm could be, it is certainly not in-
stantaneous. However, as long as the execution time is short enough, say two minutes,
as posed in the assumption (ii) of Sect. 2.1, we can incorporate with the time series
forecasting strategy [24] to predict the arrival rate of two minutes later, which will
serve as the λ in (3). Due to the limitation on page length, we will not discuss the
details of the forecasting strategy in this paper.

Based on the observation that the performance order of the decision vectors is
likely preserved even evaluated by a surrogate model; the basic idea of the OO theory
is using a computationally easy surrogate-model to quickly evaluate the estimated
performance of a decision vector so as to select an estimated good enough subset
from the candidate solution set using limited computation time. If the size of the
decision variable space is huge, the reduction of the search space can be done in more
than one stage. Our OO theory based approach consists of two stages to solve (3) for
a good enough decision vector as outlined below.

The first stage is an exploration stage. In this stage, we will employ a typical Ge-
netic Algorithm (GA) to search through � using an off-line trained Artificial Neural
Network (ANN) as a surrogate model for fitness evaluation and select N (= 1024)

roughly good decision vectors. The second stage is an exploitation stage to find a
good enough solution from the N solutions obtained in Stage 1 with more refined
surrogate models. Suppose we use the exact model as defined at the end of Sect. 2.2
to evaluate all the N solutions, we can obtain the best solution in the N , however at
the cost of too much computation time, which is against our objective. Therefore, we
will divide the second stage into several substages. The surrogate models for estimat-
ing J (b,λ) of a decision vector b for the given λ employed in these substages are
stochastic simulations of various lengths ranging from very short (rough model) to
very long (exact model). The candidate solution set in each substage (or the estimated
good enough subset resulted from previous substage) will be reduced gradually. In
the last substage, we will use the exact model to evaluate all the decision vectors in
the most updated candidate solution set, and the one with smallest J (b,λ) is the good
enough decision vector that we seek. Therefore, the computational complexity can be
drastically decreased, because the size of the candidate solution set had been largely
reduced when the surrogate model is more refined. In the following, we will present
the details of the OO theory based two-stage approach.

J Optim Theory Appl (2009) 140: 213–231 219

3.2 Stage 1: Finding N Roughly Good Solutions from the Huge Discrete Decision
Variable Space �

Artificial Neural Network (ANN) Model. ANN is considered to be a universal func-
tion approximator [25] including the relationship between the input and output of
the discrete event simulated systems as presented in [26] and [27]. Thus, treating the
decision vector b ∈ � and the vector of arrival rates λ as input, we wish the out-
put of ANN could estimate J (b,λ). To construct such an ANN off-line, first of all,
we will select a representative subset of � by randomly picking B , say 500, deci-
sion vectors from � and randomly choose 	, say 1000, vectors of arrival rates λ’s
with each λq ranging from 0.1 to 5 customers/second. Then for each decision vec-
tor (b,λ), we will compute the corresponding output J (b,λ) using the exact model.
These collected B ×	 input-output pairs of ((b,λ), J (b,λ)) will be used to train the
ANN to adjust its arc weights. The accuracy of the ANN output is closely related to
the complicacy of its structure. In other words, there will be a tradeoff between the
accuracy and computation time for obtaining the ANN output on-line. Since what we
care here are the relative performance order of b’s for a given λ rather than the exact
objective value, and we need to use our result on-line, we can employ a simple three-
layer feedforward ANN structured with 2Q,4Q and 1 neurons in the input, hidden
and output layers, respectively. The activation functions of the neurons we employed
in the hidden and output layers are the hyperbolic tangent sigmoid and linear func-
tions, respectively, so as to save computation time. To speed up the convergence of
the back propagation training, we used the scaled conjugate gradient algorithm [28]
to train the ANN. Stopping criteria of the above training algorithms are when any
of the following two conditions occurs: (i) the sum of the mean squared errors of
the training problem is smaller than 10−5, or (ii) the number of epochs exceeds 500.
Once this ANN is trained, we can input any vector (b,λ) to obtain an estimation of
J (b,λ) from the output of the ANN; in this manner, we can avoid using a lengthy
stochastic simulation to compute J (b,λ) for a given (b,λ).

Genetic Algorithm (GA). By the aid of the above ANN model, we can efficiently
search N roughly good decision vectors from � using heuristic global searching tech-
niques. Since GA improves the population, a pool of chromosomes, from iteration to
iteration, it should best fit our needs. The chromosome in GA terminology represents
a decision vector b in our problem, and each decision vector b is encoded by a string
of 0s and 1s. We start from I , say 4000, randomly selected decision vectors from �

as our initial population. For the current vector of arrival rates λ, the fitness of each
decision vector b is set to be the reciprocal of the corresponding estimated J (b,λ)

based on the ANN. The members in the mating pool are selected from the population
using roulette wheel selection scheme, which selects chromosomes into the mating
pool with probabilities proportional to their fitness. We set the probability of select-
ing members in the mating pool to serve as parents for crossover to be pc . We use a
single point crossover scheme and assume the mutation probability to be pm. We stop
the GA when the number of generations exceeds 20. After the applied GA converges,
we rank the final I (= 4000) chromosomes based on their fitness values and pick the
top N (= 1024), which are the N roughly good decision vectors for the current λ that
we look for.

220 J Optim Theory Appl (2009) 140: 213–231

Remark 3.2 To overcome the inaccuracy of ANN, Yen et al. had proposed in [29]
an integrated simulated annealing and ordinal optimization approach, in which the
ANN surrogate model is iteratively refined during the solution process. Technically
this approach is sound but not suitable for our problem, because our ANN model need
be trained off-line for real-time consideration.

Remark 3.3 Generally speaking, the proposed GA associated with ANN fall into
the category of Iterative Ordinal Optimization (IOO) method [30], however, with a
flexibility in searching a good enough subset (pool of chromosomes) based on its own
searching logic.

3.3 Stage 2: Searching for the Good Enough Decision Vector via a Sequence
of Substages

In this stage, we will employ more refined surrogate models than the ANN to evaluate
the J (b,λ) of a decision vector b for the current λ. These refined surrogate models
are stochastic simulations with various length L.

We define a basic simulation length L0 = ∑Q
q=1 λqt0, where t0 denotes the ba-

sic time period for simulation; for example, if λq = 1 customer/second for all q ,
then setting t0 = 1 minute, we have L0 = 600 customers provided that Q = 10.
We set the simulation length of substage i, denoted by Li , to be Li =
Li−1 (or
Li =
iL0), i = 1,2, . . . , where the positive integer
 (≥ 2) denotes the parameter for
controlling the simulation length Li . We let N0 = N and set the size of the selected
estimated good enough subset in substage i to be Ni = Ni−1/
 (or Ni = N0/

i),
i = 1,2, We denote n
 as the total number of substages, and n
 is determined by
n
 = arg{minn

(L0

n
−1 ≤ Ls < L0

n
,1 < Nn
−1 ≤ 10)}, where Ls had been de-
fined at the end of Sect. 2.2. The above formula determines n
 to be the minimum of
the following: (i) the n
 such that simulation length L0

n
 exceeds the length of exact
model, Ls , and (ii) the size of the selected estimated good enough subset resulted in
substage n
 − 1 is small enough, i.e. 1 < Nn
−1 ≤ 10. Once n
 is determined, we
set Ln

= Ls , which imply that in the last substage (i.e. substage n
), the surrogate
model is in fact the exact model of (3), and the decision vector with smallest J (b,λ)

is the good enough decision vector that we seek. Suppose
 is very large such that
L1 =
L0 > Ls , then there will be only one substage, and each of the N decision
vectors will be evaluated by the exact model, which will consume too much com-
putation time even though the resulted decision vector is exactly the best among the
N as we have indicated in Sect. 3.1. Furthermore, if
 satisfies L1 =
L0 < Ls and
L2 =
2L0 > Ls , then there will be only two substages as that employed in [10].
Nonetheless, it is not easy to quantify the tradeoff between the computation time and
the goodness of the obtained good enough decision vector into an analytical formula.
In fact, what is the best
 is really problem dependent, because some problems may
care more on computation time and some others on the goodness of the obtained solu-
tion. Therefore, we will show the computation time and the goodness of the obtained
good enough solution of our problem for various
 in Sect. 4. Then we will quantify
the global goodness of the obtained good enough decision vector corresponding to
the most favorable
 by the proposed performance analysis in Sect. 5.

J Optim Theory Appl (2009) 140: 213–231 221

3.4 Algorithm Based on Ordinal Optimization (OO)

Now, our OO theory based two-stage approach to solve for a good enough decision
vector of (3) can be stated in the following algorithmic steps.

Offline Trained ANN: Randomly select B b’s from � and randomly choose 	 λ’s
with each λq ranging from 0.1 to 5 customers/second. Compute the corresponding
J (b,λ) for each (b,λ) using simulation length Ls . Train an ANN by adjusting its
vector of arc weights ω using the obtained B × 	 input-output pairs, i.e. the B × 	

pairs of ((b,λ), J (b,λ)). Let f (b,λ,ω) denote the functional output of the trained
ANN.

Step 1: Fix λ at the current vector of arrival rates. Randomly select I b’s from � as
the initial population. Apply a GA with the following setup: simple roulette-
wheel selection scheme, pc = 0.7, single-point crossover scheme and pm =
0.02 to these chromosomes by the aid of the efficient fitness-value evaluation
model, 1/f (b,λ,ω). After the GA evolves for 20 iterations, we rank all the
final I chromosomes based on their fitness values and select the best N.

(Note: the values of pc and pm employed here are very typical.)
Step 2: For i = 1 to n
 −1, use the stochastic simulation with simulation length Li =

iL0 to estimate the J (b,λ) of the candidate N/
i−1 b’s under current λ;
rank the candidate N/
i−1 b’s based on their estimated J (b,λ) and select
the best N/
i b’s as the candidate solution set for substage i + 1.

Step 3: Use the stochastic simulation with simulation length Ls to compute the
J (b,λ) of the candidate N/
n
−1 b’s. The b with the smallest J (b,λ) is
the good enough b for the k-limited service discipline under current λ.

4 Test Results and Comparisons

In this section, we will test the computational efficiency1 of our algorithm and com-
pare the obtained-solution quality with the other service disciplines using four vari-
ous models: M/M/1/K, �/�/1/K (� = Gamma), LN/LN/1/K (LN = lognormal), and
W/W/1/K (W = Weibull) [31]. In the meantime, we will also compare the computa-
tional time consumption and the quality of the obtained good enough solutions for
various
 in our algorithm. To do so, we design three tests. The first one is to show
the computational efficiency of our algorithm under a typical arrival rate. The second
one is to compare the performance achieved by our algorithm with those obtained by
other service disciplines under randomly generated arrival rates but with same cost
parameters for all queues. The third test is the same as Test 2, however the cost para-
meters are randomly generated. All the test results shown in this section are simulated
in a Pentium IV PC.

The common polling system parameters in the three tests are set as follows:
Q = 10, K = 20, μ = 50, δq = 1/30 and σq = 0.01 for q = 1, . . . ,Q. The specific

1Note that the other four service disciplines: exhaustive, gated, limited and time-limited are analytical and
do not consume any computation time.

222 J Optim Theory Appl (2009) 140: 213–231

Table 1 Good enough k-limited service discipline bg , obtained J (bg,λ), and CPU time consumed of the
algorithm with
 = 2, Test 1

Polling model k-Limited service discipline J (bg,λ) CPU time
(secs)b

g
1 b

g
2 b

g
3 b

g
4 b

g
5 b

g
6 b

g
7 b

g
8 b

g
9 b

g
10

M/M/1/K 8 7 8 8 9 7 8 9 9 8 17.07 109.35

�/�/1/K 10 9 9 10 8 9 8 8 10 9 13.85 113.85

LN/LN/1/K 10 11 10 12 10 11 10 11 12 10 34.12 118.17

W/W/1/K 9 9 10 11 10 9 11 9 11 10 62.57 112.43

parameters for individual polling model in the three tests are described below. For the
�/�/1/K polling model [31], the shape parameters in the interarrival time pdf, αAq

for q = 1, . . . ,Q, and the shape parameter in the service time pdf, αs , are all set to be
2. For the LN/LN/1/K polling model [31], the standard deviation in the interarrival
time pdf, δAq for q = 1, . . . ,Q, and the standard deviation of the service time pdf, δs ,
are all set to be 0.1. For the W/W/1/K polling model [31], the shape parameters in the
interarrival time pdf, βAq , for q = 1, . . . ,Q, and the shape parameter in the service
time pdf, βs , are all set to be 0.5.

The parameters in our algorithm for all tests are set as follows: B = 500 and 	 =
1000 in training the ANN off-line to obtain the vector of arc weights ω for the four
various models, I = 4000 and N = 1024 in Step 1, L0 = 540 and
 = 2,3,4,5,6 and
200 in Step 2, and Ls = 100,000 in Step 3.

In Test 1, we set the arrival rates λq , q = 1, . . . ,Q for all four polling models to
be 1 customer/second and set the cost parameters τq and ηq for q = 1, . . . ,Q to be 10.
Based on the above setup of parameters, the good enough k-limited service discipline,
denoted by bg = (b

g

1 , . . . , b
g
Q), and the corresponding J (bg,λ) obtained and the CPU

times consumed by our algorithm with
 = 2 for the four various model are shown in
Table 1. As can be observed, the consumed CPU times for these four models in this
test are all within 2 minutes, which is short enough that we can incorporate with the
time series forecasting technique to apply our algorithm in real-time as indicated in
Remark 3.1 of Sect. 3.1.

Remark 4.1 The system considered in Test 1 is a perfectly balance system, be-
cause the arrival rates λq and the cost parameters τq and ηq are the same for all
queues. Therefore, the optimal k-limited service discipline, b∗, should have b∗

1 =
b∗

2 = · · · = b∗
Q. Of course, the solution bg we obtained is not optimal, however, it is

good enough as can be observed from Table 1 that the values of b
g

1 , . . . , b
g
Q for each

test model are close to each other.

Due to page limitation, we omit the presentation of the obtained good enough
k-limited service discipline, J (bg,λ), and the consumed CPU time when
 =
3,4,5,6 and 200. However, interested readers may refer [32]. In general, smaller

 corresponds to less CPU time consumption. However, there is no guarantee that
larger
 will lead to smaller J (bg,λ). Nonetheless, for sufficiently large
 such as

 = 200, the corresponding J (bg,λ) is the least and CPU time consumption is the

J Optim Theory Appl (2009) 140: 213–231 223

Table 2 Comparison of the average objective values of the 20 cases for each polling model and each
service discipline, Test 2

Discipline M/M/1/K �/�/1/K LN/LN/1/K W/W/1/K

J̄ J̄−∗∗ 100% J̄ J̄−∗∗ 100% J̄ J̄−∗∗ 100% J̄ J̄−∗∗ 100%

Our algorithm
with
 = 2

40.55 0% 42.08 0% 89.94 0% 146.87 0%

Exhaustive 52.62 29.78% 60.58 43.98% 124.41 38.32% 204.40 39.17%

Gated 73.68 81.71% 85.79 103.89% 162.38 80.54% 227.71 55.04%

Limited 90.43 123.01% 139.21 230.82% 193.26 114.88% 261.55 78.08%

Time-limited 99.56 145.53% 119.44 183.85% 204.46 127.33% 297.79 102.76%

J̄ : average objective values of the 20 cases
∗: J̄ obtained by the algorithm with
 = 2

longest among all the tested
’s as we expect. Therefore, the choice of
 is really
problem dependent regarding how fast one intends to obtain the solution or how good
one cares about the obtained solution. In the considered problem, we prefer to choose

 = 2 for the sake of real-time application.

In Test 2, for each of the four test models, we randomly generate twenty cases
of arrival rates, such that the λq, q = 1, . . . ,Q in each case are randomly generated
using U[0.1, 5], where U[*, �] represents a uniform distribution random variable
ranging from * to �. In the meantime, we employ same cost parameters τq and ηq

for q = 1, . . . ,Q, as in Test 1. We apply our algorithm with
 = 2,3,4,5,6 and 200
to the 20 cases of various arrival rates of the four polling models. We also simulate the
polling system with the exhaustive, gated, limited, and time-limited (with the server
dwelling time on each queue of exponential distribution with mean 2.88 seconds)
disciplines to the four models. The resulted average objective values of the 20 cases
denoted by J̄ for each model and each discipline including our algorithm with
 = 2
are shown in Table 2. In this table, we also show the percentage of the reduction of
J̄ achieved by our algorithm with respect to the other service disciplines for each
polling model. The results show that the performance achieved by our algorithm with

 = 2 is much more superior.

Regarding the effects of various
 in this test, we obtain the same conclusion as in
Test 1, that is, for real-time application,
 = 2 is preferred. This conclusion on
 also
applies to Test 3.

In Test 3, we also generate 20 cases for each test model, such that each λq, q =
1, . . . ,Q is randomly generated using U[0.1,5] as in Test 2, and each of the cost
parameters τq and ηq, q = 1, . . . ,Q is also generated using U[10,200] in contrast
to using same cost parameters for all queues in Test 2. Applying our algorithm with

 = 2 as well as the other service disciplines to the new set of parameters, the resulted
average objective values of the 20 cases, also denoted by J̄ , for each model and each
discipline are shown in Table 3. Comparing the results shown in Tables 2 and 3, we
see that the percentage of the reduction of J̄ is larger when the cost parameters are
different for various queues, which demonstrates that the k-limited service discipline
can, indeed, take priority among queues to improve the system performance.

224 J Optim Theory Appl (2009) 140: 213–231

Table 3 Comparison of the average objective values of the 20 cases for each polling model and each
service discipline, Test 3

Discipline M/M/1/K �/�/1/K LN/LN/1/K W/W/1/K

J̄ J̄−∗∗ 100% J̄ J̄−∗∗ 100% J̄ J̄−∗∗ 100% J̄ J̄−∗∗ 100%

Our algorithm
with
 = 2

107.34 0% 94.92 0% 211.62 0% 388.79 0%

Exhaustive 146.68 36.65% 146.30 54.13% 311.44 47.17% 576.23 48.21%

Gated 195.69 82.31% 226.40 138.52% 393.42 85.91% 616.97 58.69%

Limited 283.41 164.03% 418.44 340.84% 535.76 153.17% 793.56 104.11%

Time-limited 312.75 191.36% 339.06 257.21% 568.14 168.47% 772.37 98.66%

J̄ : average objective values of the 20 cases
∗: J̄ obtained by the algorithm with
 = 2

To further demonstrate the merit of OO in the aspects of computational efficiency
and the obtained-solution quality, we also use GA associated with the exact model
alone to solve (3) for the M/M/1/K case in Test 1. The hardest part of using GA alone
to solve (3) is the time-consuming objective value evaluation using exact model for
each b, which is what OO intends to circumvent and uses a surrogate model, ANN,
instead. Due to the time consuming solution process, we terminate the execution of
GA associated with the exact model when it consumes 3 hours of CPU time, which
is more than 90 times of the CPU time consumed by our approach, and we find that
the objective value of their best so far solution (27.51) is still 61.2% more than the
objective value of the good enough solution we obtained.

5 Performance Analysis

Although our algorithm outperforms the other service disciplines as demonstrated
in Sect. 4, it should be interesting to know how good the solution we obtained is
among the search space �. Since the primitive candidate solution set considered in
our approach is the original solution space, we are facing a different situation from
that in [21]. Therefore, to quantify the global goodness of the obtained solution, we
need to develop a new performance analysis technique, however still based on the
concept presented in [21]. For real-time application consideration, our algorithm is
better with
 = 2 as indicated in Sect. 4, thus in the following analysis we set
 to be
this value.

The methodology for our performance evaluation is to simulate our algorithm
based on the Ordered Performance Curves (OPCs) [21], derived from the considered
problem, and the employed surrogate models. To proceed with the proposed perfor-
mance evaluation, we need to (i) analyze the probability distribution of the modeling
errors of the employed surrogate models, (ii) investigate the range of the OPCs of
the considered problem, and (iii) simulate our algorithm based on the OPCs and the
modeling errors. In the following, we will present the details of the analysis, and the
derived quantitative results are based on the M/M/1/K polling model with the same

J Optim Theory Appl (2009) 140: 213–231 225

setup of system parameters and algorithmic parameters as in Test 2 of Sect. 4, which
will be mentioned in the corresponding analysis.

5.1 Analysis of the ANN Modeling Errors

To analyze the probability distribution of the ANN modeling errors, we randomly
select � (= 200) decision vectors b’s from � and randomly select � (= 100) vec-
tors of arrival rates λ’s such that each λq , q = 1, . . . ,Q, is randomly selected using
U[0.1,5].

Let (b(i), λ(l)) denote the ith selected decision vector and the lth selected vector
of arrival rates. We first compute J (b(i), λ(l)) using the stochastic simulation with
simulation length Ls for the M/M/1/K polling model with the same setup of system
parameters as in Test 2, that are Q = 10, K = 20, μ = 50, δq = 1/30, σq = 0.01,

τq = 10 and ηq = 10 for q = 1, . . . ,Q. We rank the � × � (b(i), λ(l))’s based on
their corresponding J (b(i), λ(l))’s, such that the smaller the latter, the higher rank
the former. We label the � × � ordered (b(i), λ(l))’s by x1, . . . , x�×� in the sense
that x1 represents the top ranked (b(i), λ(l)) and plot the � ×� points of (xk, J (xk))

in Fig. 2 marked by the solid line. We input each xk into the ANN, constructed in
Test 2 for the M/M/1/K polling model, and let O(xk) denote the ANN output. We
also plot the � × � points of (xk,O(xk)) in Fig. 2 marked by “•”. Then, the ANN
modeling errors for each xk denoted by wk can be calculated by

wk = O(xk) − J (xk). (4)

Collecting the wk’s for all xk, k = 1, . . . ,� × �, we can use a histogram to repre-
sent the ANN modeling errors wk’s as shown in Fig. 3. In this figure, the horizontal
axis that represents the modeling error wk is partitioned into the intervals of equal
width, 8.33, and the height of a bar represents the number of xk whose corresponding
wk’s lie in the same interval. From Fig. 3, we see that the shape of the histogram is of
normal distribution, which leads us to assert the hypothesis that the ANN modeling

Fig. 2 J (xk) and O(xk) for the
� × � ordered input vectors xk

226 J Optim Theory Appl (2009) 140: 213–231

Fig. 3 Histogram of the ANN
modeling errors

errors is of a normal distribution with mean μw and variance σ 2
w computed by

μw =
�×�∑

k=1

wk

� × �
, (5)

σ 2
w =

�×�∑

k=1

(wk − μw)2

� × �
. (6)

How well the model fit the data? Several well-known test methods are available
to determine the goodness of fit of a distribution to a set of experimental data, and
we will employ the Anderson-Darling test [33] in this paper. We first compute μw =
−11.23 and σ 2

w = 1065.16 based on the � × � wk’s obtained by (4). The Anderson-
Darling test calculate the Critical Value (CV) and the test statistic AD based on the
significance level α, the total number of test data n, the assumed normal distribution
F0 with mean μw and variance σ 2

w , and the test data wk’s such that if AD < CV, then
the hypothesis is accepted. The formula for calculating CV and AD are given in (7)
and (8).

CV = C(α)/(1 + 0.75/n + 2.25/n2), (7)

AD = −n −
n∑

k=1

(2k − 1)

n
{lnF0(wk) + ln[1 − F0(wn+1−k)]}, (8)

where C(α) in (7) is a tabulated value of α such that C(α) = 0.631,0.752,0.873, and
1.035, for α = 0.1,0.05,0.025, and 0.01, respectively [34]. Setting α = 0.05, n =
� × �, we obtain CV = 0.752 and AD = 0.615, which implies that ANN modeling
errors can be modeled by a normal distribution with parameters (μw,σ 2

w) computed
by (5) and (6) using the data of wk’s obtained from (4).

5.2 Analysis of the Modeling Errors of the Surrogate Models in the Second Stage

The surrogate models of the n2 (note:
 = 2), which is set to be 8 as we did in Test 2,
substages in the second stage are almost the same except for the simulation length.

J Optim Theory Appl (2009) 140: 213–231 227

Therefore, we need only describe the analysis of the modeling errors for one substage,
say the first substage. Similar to the analysis process presented in Sect. 5.1, we adopt
the J (xk) of the �×� input vectors xk’s shown in Fig. 2 marked by the solid line. We
then use the stochastic simulation with simulation length L1 (= 2L0, where L0 = 540
as we used in Test 2) for the M/M/1/K polling model with the same setup of system
parameters as in Test 2, which had been indicated in Sect. 5.1, to estimate J (xk) for
the decision vector xk . We let Z(xk) denote the estimated J (xk) and let ek denote the
modeling error of the surrogate model on xk , then

ek = Zk(xk) − J (xk). (9)

Analyzing the histogram of the modeling error ek , k = 1, . . . ,� × � [32], we also
assume the modeling errors of the surrogate model in the first substage to be a normal
distribution with mean μe and variance σ 2

e computed by μe = ∑�×�
k=1

ek

�×�
= −7.81

and σ 2
e = ∑�×�

k=1
(ek−μe)

2

�×�
= 720.66 based on the data of ek’s obtained from (9). The

above probability distribution has passed the Anderson-Darling test at a significance
level α = 0.05 and sample size n = � × � [32]. Thus, the modeling errors of the
stochastic simulation with simulation length L1 is of normal distribution with μe =
−7.81 (note: |μe| < |μw|) and σ 2

e = 720.66 (< σ 2
w), which is indeed more refined

than the ANN model in the sense of smaller bias error and smaller variance. A similar
process can be carried out for substages 2,3, . . . , n2 − 1, and the parameters (μe, σ

2
e)

for the corresponding normal distribution are (−6.09,570.66), (−4.47,397.28),
(−3.34,216.46), (−2.47,128.65), (−1.63,69.79) and (−0.92,27.32), respectively.
We see that the mean and variance for the n2 substages become smaller and smaller
indicates that the surrogate models are refined substage by substage. Note that we use
the exact model (i.e. simulation length equals Ls) in substage n2.

Remark 5.1 The effects of the modeling errors of any individual stage or substage
have been completely reflected in the selected subset of candidate solutions. Thus,
the modeling errors of next stage or substage will apply to the previously selected
subset of candidate solutions and have nothing to do with the modeling errors of
previous stage or substage.

Remark 5.2 Instead of dividing the second stage into several substages, another
well-known selection rule in OO is the Optimal Computing Budget Allocation
(OCBA) [35], which automatically allocates the next unit of simulation budget among
the solution candidates. Under this selection rule, each solution candidate will experi-
ence different simulation length. Since the performance analysis is done afterwards,
i.e. the simulation length of each solution candidate is already known before per-
formance analysis, thus OCBA can be a good alternative for the present Stage 2
approach, and we can also analyze the corresponding performance.

5.3 Range of the Ordered Performance Curves (OPCs) of (3)

To evaluate the performance of all decision vectors in the decision variable space �,
we need to consider all possible conditions of the system, and the best way to de-
scribe the performance of the decision vectors under a given system condition such

228 J Optim Theory Appl (2009) 140: 213–231

Fig. 4 The range of OPCs of
(3)

as the arrival rates λ is using the ordered performance curve (OPC) [21]. To depict
the OPC range of the considered problem (3) under various system conditions, we
can proceed as follows. We adopt the randomly selected � decision vectors b’s, the
randomly generated � vectors of arrival rates λ’s, and the corresponding J (b,λ)’s
in the analysis of modeling errors. We let Jmax and Jmin denote the maximum and
minimum J (b,λ) among the � ×� J(b,λ)’s, respectively, and denote Ĵ (b, λ) as the
normalized J (b,λ) such that Ĵ (b, λ) = (J (b,λ) − Jmin)/(Jmax − Jmin). The values
of Ĵ (b, λ)’s range from 0 to 1. We order the � b’s for a given λ according to their
Ĵ (b, λ) as b[1], . . . , b[�] such that Ĵ (b[1], λ) ≤ Ĵ (b[2], λ) ≤ · · · ≤ Ĵ (b[�], λ). We also
normalize these ordered � b[i]’s as b̂[i] = i/�, i = 1, . . . ,� and plot the � pairs of
(b̂[i], Ĵ (b[i], λ)), i = 1, . . . ,� for a given λ to form an OPC. Thus, we can obtain �

OPCs as shown in Fig. 4. Each of the OPCs can be approximated by a two-parameter,
α and β , smooth curve B−1(z|α,β) = B(z| 1

α
, 1

β
), where B(z|·, ·) denotes the Incom-

plete Beta function of (·, ·).

5.4 Performance Evaluation of the Algorithm Based on OO Theory

Now we can simulate our algorithm based on the analyzed modeling errors of the
surrogate models employed in Stages 1 and 2 and the possible OPC range of the
considered problem.

We let �̂ = { 1
|�| ,

2
|�| , . . . ,1} denote the simulated ordered decision variable space

of �, where |�| denotes the cardinality of �, such that the kth-order decision vector
in �̂ is represented by k

|�| . Note that we do not really evaluate the performance of all

decision vectors in �. For notational simplicity, we use k̂ to denote k
|�| , i.e. we set

k̂ = k
|�| .

Our simulation procedures start from picking 20 OPCs which are uniformly dis-
tributed within the OPC range described in Fig. 4. We index the 20 OPCs by OPCn,
n = 1, . . . ,20. Each OPCn provides a profile of normalized objective values for �̂ .
Starting from OPCn with n = 1, we can approximate OPCn by a B−1(z|α,β) with

J Optim Theory Appl (2009) 140: 213–231 229

suitable α and β , say αn and βn. We let Ĵ (k̂) denote the simulated normalized ob-
jective value of k̂ for the given OPCn, then Ĵ (k̂) = B−1(k

|�| |αn,βn). To simulate the
off-line trained ANN and Step 1 of our algorithm for the given OPCn, we will sim-
ulate the normalized output of the ANN first. This can be done as follows. For each
k̂ in �̂, we perform the following three steps: (i) compute Ĵ (k̂) = B−1(k

|�| |αn,βn),

(ii) randomly generate the ANN modeling error w from the model derived in Sect. 5.1
and denote ŵ as the normalized error such that ŵ = w/Jmax, and (iii) add ŵ to Ĵ (k̂).
Thus ŵ + Ĵ (k̂) represents the simulated normalized ANN output and 1/(ŵ + Ĵ (k̂))

represents the simulated fitness of k̂. Note that all the |�| points in �̂ can be repre-
sented by strings of 0’s and 1’s. Thus to simulate Step 1 for �̂ with OPCn, we can
apply the same GA as in Step 1 of our algorithm with I = 4000,N = 1024 and the
above mentioned simulated fitness to select N roughly good k̂’s from �̂ .

To simulate Step 2, we need to perform similar simulation processes as that for
the off-line trained ANN and Step 1 for each substage in Stage 2 as follows. Starting
from i = 1, for each of the previously selected Ni−1 (note N0 = N) estimated good
enough k̂’s, whose Ĵ (k̂)’s are already computed in Step 1, we first randomly generate
the modeling error e based on substage i’s model derived in Sect. 5.2. We denote
ê as the normalized modeling error, such that ê = e/Jmax, and add ê to Ĵ (k̂). The
resulted ê+ Ĵ (k̂) is the simulated normalized objective value of k̂ based on the model
employed in substage i. Once ê + Ĵ (k̂) for all k̂ ∈ Ni−1 are obtained, we can pick the
best Ni = (Ni−1/2) k̂’s. Repeating the above process for substages i = 2,3, . . . , n2 −
1, then we will obtain the candidate solution set N7.

Now in the last substage, Step 3 of our algorithm, we employ the exact model,
i.e. there is no modeling error. Therefore, to simulate Step 3, we can pick the best k̂,
denote by k̂g , from all k̂ ∈ N7 based on the corresponding Ĵ (k̂)’s, which are already
computed in the simulated Step 1. k̂g is the simulated good enough decision vector of
our algorithm. The order of k̂g in �̂ can be easily told from its value, because k̂ = k

|�|
that is the k-th ordered decision variable in �̂ .

Treating the above simulation process as one realization of modeling errors
for OPCn, we simulate 10000 realizations of modeling errors for OPCn and
record the obtained k̂g for each realization. We order the obtained 10000 k̂g’s as

k̂
[1]
g , k̂

[2]
g , . . . , k̂

[10000]
g in the sense that

k
[1]
g

|�| ≤ k
[2]
g

|�| ≤ · · · ≤ k
[10000]
g

|�| , where
k
[j]
g

|�| is the

value of k̂
[j]
g . Setting kg(n) = k̂

[9900]
g , i.e. kg(n) = k

[9900]
g

|�| , we conclude that the ob-

tained simulated good enough solution k̂g is among the best kg(n) × 100% in �̂ with
probability 0.99 for the given OPCn.

We repeat the above process for n = 2, . . . ,20, and record kg(2), kg(3), . . . , kg(20).
We found that

k̄g = 1

20

20∑

n=1

kg(n) × 100% = 3.31 × 10−6%, (10)

√
√
√
√ 1

20

20∑

n=1

(
kg(n) − k̄g

)2 × 100% = 4.8 × 10−6%, (11)

230 J Optim Theory Appl (2009) 140: 213–231

which implies that the simulated good enough solution obtained by our algorithm is
among the best 3.31 × 10−6% in �̂ with probability 0.99 on the average and with
standard deviation 4.8 × 10−6%. The computation burden required to quantify the
global goodness of the obtained solution consists of three parts: (i) building the prob-
ability distribution of the modeling errors of all the surrogate models, (ii) finding
OPC range and (iii) simulating the proposed method. In total, it takes 95.93 seconds
of CPU times.

Remark 5.3 We have to admit that we are not able to investigate the true order of
the obtained solution in the real solution space �, because it is computationally in-
tractable to evaluate the objective values of all |�| (= 2010 in our tests) b’s. However,
the above quantitative result can be a good approximation, because our performance
analysis based on the derived models is trustworthy due to (i) the constructed prob-
ability distribution of modeling errors and the OPC range have solid foundation in
probability theory [33] and the OO theory [21–23], and (ii) we use exactly the same
simulation process as the proposed method to carry out the performance analysis.

6 Conclusions

In contrast to the queuing theory based analysis method imposing many restrictive as-
sumptions, we have developed a computationally efficient OO theory based algorithm
to solve the optimization problem of a G/G/1/K polling system for a good enough
k-limited service discipline. We have not only demonstrated that our algorithm out-
performs the other service disciplines but also provided a performance analysis on
the global goodness of the good enough solution we obtained. Furthermore, we can
incorporate with the time series forecasting strategy [24] to take care of the dynami-
cally varying arrival rates.

Acknowledgement Remark 5.2 is due to an anonymous reviewer.

References

1. Takagi, H.: Analysis and application of polling model. In: Haring, G., Lindemann, C., Reiser, M.
(eds.) Performance Evaluation: Origins and Directions. Lecture Notes in Computer Science, vol. 1769,
pp. 423–442. Springer, Berlin (2000)

2. Hirayama, T., Hong, S.J., Krunz, M.: A new approach to analysis of polling systems. Queueing Syst.
48(1–2), 135–158 (2004)

3. Winands, E.M.M., Adan, I.J.B.F., van Houtum, G.J.: Mean value analysis for polling systems. Queue-
ing Syst. 54(1), 35–44 (2006)

4. Eliazar, I.: Gated polling systems with levy inflow and inter-dependent switchover times: a dynamical-
systems approach. Queueing Syst. 49(1), 49–72 (2005)

5. Leung, K.K.: Cyclic-service systems with nonpreemptive, time-limited service. IEEE Trans. Com-
mun. 42(8), 2521–2524 (1994)

6. Vishnevskii, V.M., Semenova, O.V.: Mathematical methods to study the polling systems. Autom.
Remote Control 67(2), 173–220 (2006)

7. Takagi, H.: Analysis of finite capacity polling systems. Adv. Appl. Probab. 23, 373–387 (1991)
8. Jung, W.Y., Un, C.K.: Analysis of a finite-buffer polling system with exhaustive service based on

virtual buffering. IEEE Trans. Commun. 42(12), 3144–3149 (1994)

J Optim Theory Appl (2009) 140: 213–231 231

9. Borst, S.C., Boxma, O.J., Levy, H.: The use of service limits for efficient operation of multistation
single-medium communication systems. IEEE/ACM Trans. Netw. 3(5), 602–612 (1995)

10. Lin, S.-Y., Horng, S.-C.: Ordinal optimization approach to stochastic simulation optimization prob-
lems and applications. In: Proc. 15th IASTED Int. Conf. Appl. Simul. Model. Rhodes, Greece,
pp. 274–279 (2006)

11. Andradóttir, S.: Simulation optimization: integrated research and practice. INFORMS J. Comput.
14(3), 216–219 (2002)

12. Ólafsson, S., Kim, J.: Simulation optimization. In: Proc. 2002 Winter Simul. Conf. San Diego, CA,
pp. 79–84 (2002)

13. Gosavi, A.: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement
Learning. Kluwer Academic, Boston (2003)

14. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control.
Hoboken, Wiley-Interscience, New Jersy (2003)

15. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Hoboken, Wiley, New Jersy (2004)
16. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single and multiobjective opti-

mization. J. Oper. Res. Soc. 57(10), 1143–1160 (2006)
17. Hedar, A.R., Fukushima, M.: Tabu search directed by direct search methods for nonlinear global

optimization. Eur. J. Oper. Res. 170(2), 329–349 (2006)
18. Winker, P., Gilli, M.: Applications of optimization heuristics to estimation and modelling problems.

Comput. Stat. Data Anal. 47(2), 211–223 (2004)
19. Fu, M.C., Glover, F.W., April, J.: Simulation optimization: a review, new developments, and applica-

tions. In: Proc. 2005 Winter Simul. Conf., Orlando, FL, pp. 83–95 (2005)
20. Tekin, E., Sabuncuoglu, I.: Simulation optimization: a comprehensive review on theory and applica-

tions. IIE Trans. 36(11), 1067–1081 (2004)
21. Lau, T.W.E., Ho, Y.C.: Universal alignment probability and subset selection for ordinal optimization.

J. Optim. Theory Appl. 93(3), 455–489 (1997)
22. Ho, Y.C.: An explanation of ordinal optimization: Soft computing for hard problems. Inf. Sci. 113(3–

4), 169–192 (1999)
23. Ho, Y.C., Zhao, Q.C., Jia, Q.S.: Ordinal Optimization: Soft Optimization for Hard Problems. Springer,

New York (2007)
24. Palit, A.K., Popović, D.: Computational Intelligence in Time Series Forecasting Theory and Engi-

neering Applications. Springer, London (2005)
25. Hornik, K., Stinchcombe, M., White, H.: Multilayer fedforward networks are universal approxima-

tors. Neural Netw. 2(5), 359–366 (1989)
26. Fonseca, D.J., Navaresse, D.O., Moynihan, G.P.: Simulation metamodeling through artificial neural

networks. Eng. Appl. Artif. Intell. 16(3), 177–183 (2003)
27. Alam, F.M., McNaught, K.R., Ringrose, T.J.: A comparison of experimental designs in the develop-

ment of a neural network simulation metamodel. Simul. Oper. Res. 12(7–8), 559–578 (2004)
28. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4),

525–533 (1993)
29. Yen, C.H., Wong, D.S.H., Jang, S.S.: Solution of trim-loss problem by an integrated simulated an-

nealing and ordinal optimization approach. J. Intell. Manuf. 15(5), 701–709 (2004)
30. Deng, M., Ho, Y.C.: Iterative ordinal optimization and its applications. In: Proc. 36th IEEE Conf.

Decis. Contr., San Diego, CA, vol. 4, pp. 3562–3567 (1997)
31. Banks, J., Carson, J., Nelson, B.L., Nicol, D.: Discrete Event System Simulation, 4th edn. Prentice-

Hall, Upper Saddle River (2005)
32. Lin, S.-Y., Horng, S.-C.: Optimization of G/G/1/K polling systems with k-limited service discipline.

Technical Report ECE #01, Department of Electrical and Control Engineering, National Chiao Tung
University, Hsinchu, Taiwan, March (2008)

33. Yazici, B., Yolacan, S.: A comparison of various tests of normality. J. Stat. Comput. Simul. 77(2),
175–183 (2007)

34. D’Agostino, R.B., Stephens, M.A.: Goodness-of-Fit Techniques. Dekker, New York (1986). Table
4.7, 123

35. Chen, C.H., Lin, J.W., Cesan, E.Y., Chick, S.E.: Simulation budget allocation for further enhancing
the efficiency of ordinal optimization. Discret. Event Dyn. Syst. Theory Appl. 10(3), 251–270 (2000)

	Ordinal Optimization of G/G/1/K Polling Systems with k-Limited Service Discipline
	Abstract
	Introduction
	System Model and Problem Formulation
	G/G/1/K Polling Model
	Problem Formulation
	Problem Difficulty

	Solution Method Based on Ordinal Optimization (OO)
	Two-Stage Approach
	Stage 1: Finding N Roughly Good Solutions from the Huge Discrete Decision Variable Space Omega
	Stage 2: Searching for the Good Enough Decision Vector via a Sequence of Substages
	Algorithm Based on Ordinal Optimization (OO)

	Test Results and Comparisons
	Performance Analysis
	Analysis of the ANN Modeling Errors
	Analysis of the Modeling Errors of the Surrogate Models in the Second Stage
	Range of the Ordered Performance Curves (OPCs) of (3)
	Performance Evaluation of the Algorithm Based on OO Theory

	Conclusions
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

