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用於相依視訊訊編碼 
之影質控制策略 

 
研究生 : 黃國隆                指導教授 : 杭學鳴 博士 

 

國立交通大學 電子工程學系 電子研究所博士班 

摘 要       

傳統視訊位元率控制演算法通常追求影像失真總量最小化，然而往往付出影值大幅

度變動的代價，特別是在視訊內容較激烈且經常性場景變換時。為了減輕影值變動所帶

來的負面作用，許多演算法追求全部影值均等。如某些研究者指出，雖然現有演算法已

能產生影值均等的視訊，但是這些演算法經常無法精確地使用分配的位元來減少失真總

量。本論文嘗試一次達成三個目標。即平穩視訊品質、失真總量最小化、精準地使用位

元預算等。我們共提供三個演算法，針對兩種不同應用，定速率與變速率通道，來完成

這些目標。其中兩個演算法適用於定速率通道，如儲存應用；一個演算法適用於變速率

通道，如網際網路傳輸應用。 

第一個演算法使用籬柵圖(Trellis-Based)架構來達成具備一致性品質的視訊。我們第

一個貢獻是推導出，失真最小化問題與位元預算最小化問題的等效條件。第二，籬柵圖

狀態定義為失真量，方便於一致性品質控制。第三，只需在提出的演算法中調整一個參

數，一個介於，最小失真總量與固定品質的視訊解，可以被求得。第二個演算法結合拉

格蘭乘數（Lagrange Multiplier）、快速分支延展與最佳化程序。與第一個演算法比較，
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它的峰信雜比效能只有些微的降低，但是運算複雜度顯著地降低。模擬結果顯示，這兩

個演算法都只比 MPEG 所提 JM 位元率控制演算法的平均峰信雜比些微低。當與近期

發表的 MultiStage 與 LPF 演算法比較，我們所提演算法能夠較準確地使用分配位元預

算，且輸出最大的峰信雜比與很小的峰信雜比變動率。 

第三個演算法在變速率通道追求優雅的品質變動。我們取代一致性品質限制，換成

最大相鄰幀間影值變動限制。因為這個演算法在單獨 GOP 內運作，相鄰 GOP 品質控制

需求也需要被考量。每個 GOP 通道位元率被設定成給定的頻寬晃動模型。模擬結果顯

示，我們的峰信雜比曲線函數很平滑，且在每個 GOP 邊界並沒有品質突然掉落。我們

所提演算法也能夠準確地利用分配位元預算值。 

總結，我們發展出彈性的影值控制架構，提出三個演算法。這些解能滿足三個目標，

品質變動最小化、失真總量最小化、精準地使用位元預算。此外，附錄 A 呈現通道編碼

效能分析結果，未來可用於整合視訊與通道編碼研究。 
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ABSTRACT 

A conventional video rate control algorithm typically minimizes the total distortion at the 

cost of large temporal quality variation, especially for videos with high motion and frequent 

scene changes. To alleviate the negative effect of video quality variation, a few algorithms 

have been proposed to target on the constant quality across the entire sequence. As being 

pointed out by some researchers, although the existing proposals can produce constant-quality 

videos, they often fail to accurately utilize the available bits to minimize the global distortion. 

In this thesis, we would like to achieve three goals simultaneously. They are (1) producing 

smooth video quality (2) minimizing the total distortion, and (3) meeting the bit budget 

strictly. Three algorithms are proposed to accomplish this set of goals for two application 

scenarios: constant bitrate channels and variable bitrate channels. Two algorithms are 

designed for the constant bitrate channels, which may be used on the storage applications. 

And one algorithm is designed for the variable bitrate channels, which is needed for, say, 

Internet transmission applications. 

The first algorithm uses the trellis-based structure to achieve the consistent quality video. 

Our first contribution is to derive an equivalent condition between the distortion minimization 

problem and the budget minimization problem. Second, the trellis state (tree node) is defined 

in terms of distortion, which facilitates the consistent quality control. Third, by adjusting one 



key parameter in our algorithm, a solution in between the minimum total distortion and the 

constant quality criteria can be obtained. The second algorithm combines the Lagrange 

multipliers together with the proposed fast branch expansion process and optimization 

procedure. Compared to the first algorithm, its PSNR performance is degraded slightly but the 

computational complexity is significantly reduced. Simulation results show that our two 

algorithms produce a much smaller PSNR variation at a slight average PSNR loss as 

compared to the MPEG committee JM rate control. When they are compared to the recently 

published MultiStage and LPF algorithms, our proposed algorithms can meet the bit budget 

more accurately and produce the largest average PSNR at a small PSNR variation.  

The third algorithm aims at graceful quality variation for time-varying channels. We 

replace the consistent quality constraint in the second algorithm by a maximal inter-frame 

quality variation constraint. Because this algorithm operates on individual GOP’s, the quality 

variation across GOP boundaries has also to be considered. In our experiments, the channel 

bit rate for each GOP is set to follow the given bandwidth fluctuation pattern. Simulation 

results show that our PSNR curve has a smoother shape and has no sudden drop at the GOP 

boundaries. Also, the proposed algorithm meets the budget bits very accurately. 

In summary, we develop a flexible quality control framework that leads to 3 separate 

algorithms. They are nearly optimal solutions that achieve the triple goal: minimizing quality 

variation, minimizing global distortion, and satisfying the bit budget constraint. In addition, a 

channel coding study is presented in Appendix A for solving combined source-channel coding 

in the future.  

 iv



誌 謝       

能完成論文，首先要感謝杭學鳴老師多年來的悉心指導。杭老師不僅

在做研究上給予指導與鼓勵，同時也關心工作上所遇困難，尤其感謝杭老

師在論文發表過程，持續不斷的鼓勵與指導，讓我學到更多為人處事的道

理。 

感謝通訊電子與訊號處理實驗室諸位學長、同學、學弟妹的互相鼓勵、

研究討論，使我得以在相關知識上有所增長。尤其要謝謝峰誠、郁男這些

年來在研究及生活上的幫忙。也感謝每一位曾教導過我的老師與系上歷任

助理在行政事務上的協助，還有中科院長官們提名拔擢，讓我有此難得的

進修機會。 

最後，我要致上最深的感謝給我的父母、我的太太瑞鴛、我的孩子丞

廷與丞鈞，你們的支持是我最大的精神支柱，讓我能專心完成學業。願與

你們一同分享這份喜悅。 

 

                                 

 v



 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 ～ in memory of my father ～     

 vi



目 錄       

摘 要      .............................................................................................................................i 
ABSTRACT ..............................................................................................................................iii 
誌 謝      ............................................................................................................................v 
目 錄      ..........................................................................................................................vii 
List of Tables .............................................................................................................................ix 
List of Figures.............................................................................................................................x 
Chapter 1 Introduction................................................................................................................1 

1.1 Motivation and Discussed Topics.................................................................................1 
1.2 Organization of the Thesis............................................................................................3 
1.3 Contributions of the Thesis...........................................................................................4 

Chapter 2 Overview of Lossy Video Coding..............................................................................5 
2.1 Dependent and Independent Video Coding ..................................................................5 
2.2 Rate-Distortion bound and Optimality .........................................................................6 
2.3 Rate-Distortion Optimization Criteria ..........................................................................8 
2.4 Trellis Representation of the Tree Structure .................................................................9 
2.5 Rate-Distortion Optimization Techniques ..................................................................10 

2.5.1 Lagrange Multiplier.........................................................................................10 
2.5.2 Lagrange Relaxation........................................................................................ 11 
2.5.3 Dynamic Programming ...................................................................................12 

2.6 Joint Source-Channel Coding.....................................................................................13 
Chapter 3 Consistent Quality Control Algorithms ...................................................................14 

3.1 Problem Formulation and Distortion-Rate Function..................................................14 
3.1.1 Dependent MINAVE Bit Allocation Problem .................................................14 
3.1.2 Uniqueness of Distortion-Rate Function .........................................................16 

3.2 Consistent Quality Control Algorithm........................................................................17 
3.2.1 Trellis-Based Coding Scheme .........................................................................17 
3.2.2 Branch Expansion and Frame-level Bit Allocation .........................................19 
3.2.3 Fast Branch Expansion Process.......................................................................21 
3.2.4 Technique based on the Lagrange Multipliers.................................................22 

3.3 Simulation Results......................................................................................................25 
3.3.1 Performance Comparison with Constant QP and JM......................................26 
3.3.2 LCQC Performance Comparison with LPF and MultiStage Algorithms ........30 
3.3.3 Effects of Quality Variation Constraint on PSNR and Complexity.................34 
3.3.4 Effects of Cluster Size on PSNR and Complexity ..........................................37 

3.4 Summary.....................................................................................................................38 
Chapter 4 Graceful Quality Control Algorithm........................................................................40 

4.1 Graceful Quality Variation Problem ...........................................................................40 
4.2 Graceful Quality Control Algorithm...........................................................................41 
4.3 Simulation Results......................................................................................................43 

4.3.1 LGQC Performance Comparison with JM ......................................................44 
4.3.2 Effects of Quality Variation Constraint on PSNR and Complexity.................47 

4.4 Summary.....................................................................................................................50 
Chapter 5 Conclusions and Future Research Topics ................................................................52 
Appendix A Performance Analysis for Serially Concatenated FEC in IEEE802.16a over 

 vii



Wireless Channels ............................................................................................................54 
A.1 Introduction ...............................................................................................................54 
A.2 System Mode .............................................................................................................55 
A.3 Performance of Serially Concatenated FEC..............................................................57 

A.3.1 Union Upper Bound on the BER of RCPC Codes .........................................57 
A.3.2 Union Upper Bound on BER of RS Codes.....................................................58 

A.4 Simulation Results .....................................................................................................58 
A.5 Conclusions ...............................................................................................................62 

 viii



List of Tables 

Table 3.1. Comparisons of Minimum PSNR, Maximum PSNR, Average PSNR, PSNR 
Variance, Bit Rate, and Decoding Delay for JM 7.6, TCQC, and Constant QP 
Schemes on the Foreman Sequence..........................................................................27 

Table 3.2. Comparisons of Minimum PSNR, Maximum PSNR, Average PSNR, PSNR 
Variance, Bit Rate, and Decoding Delay for JM 7.6, TCQC, and Constant QP 
Schemes on the News Sequence...............................................................................27 

Table 3.3. Comparisons of PSNR, bit rate, and complexity for LCQC, MultiStage, and LPF 
algorithms on News at three bit rates........................................................................34 

Table 3.4. Comparisons of PSNR, bit rate, and complexity for LCQC, MultiStage, and LPF 
algorithms on Table Tennis at three bit rates. ..........................................................34 

Table 3.5. Effect of quality variation constraint on PSNR and complexity for the LCQC 
algorithm on three sequences, Foreman, Table Tennis, and News at three quality 
constraints. PΔ=PU－PL=2dB......................................................................................35 

Table 3.6. Effect of cluster size PΔ on the PSNR loss for the TCQC algorithm on Foreman and 
Table Tennis at three cluster sizes and δP =0.4 dB....................................................38 

Table 3.7. Comparisons of average PSNR, bit rate, and complexity in TCQC and LCQC 
algorithms for three sequences. ................................................................................38 

Table 4.1. Comparisons of PSNR, bit rate, and complexity for JM 7.6 and LGQC algorithms 
on the Foreman and Carphone sequences at two varying channel bit rates. ...........47 

 

 ix



List of Figures 

Fig.2.1. An illustration of hybrid motion compensated video Encoder......................................6 
Fig.2.2. An illustration of Operational R-D Characteristic. .......................................................7 
Fig.2.3. Comparison of frame 248 coding results on the Carphone sequence between 

MINMAX ...........................................................................................................................9 
 

Fig.3.1. An illustration of cluster, node, branch, PΔ, and δP definitions...................................19 
Fig.3.2. PSNR and used bit plots of the TCQC, JM 7.6, and Constant QP algorithms for News 

at two bit rates. (a) PSNR plots at 24 kbps (b) Used bit plots at 24 kbps (c) PSNR plots at 
112 kbps (d) Used bit plots at 112 kbps............................................................................30 

Fig.3.3. PSNR and used bit plots of the LCQC, MultiStage, and LPRF algorithms PΔ = dB 
and

2.0

Pδ = dB at 64 kbps: (a) PSNR plots for News (b) Used bit plots for News (c) PSNR 
plots for Table Tennis (d) Used bit plots for Table Tennis. ...............................................33 

0.2

Fig.3.4. LCQC results for News at 24 kbps and PΔ=2.0dB : (a) δP = 0.2dB. (b) δP = 0.4dB.(c) 
δP =1.0dB..........................................................................................................................37 

Fig.4.1. Channel bit rate patterns for LGQC graceful quality control test on two different 
video sequences. (a) Foreman, and (b) Carphone............................................................45 

Fig.4.2. PSNR plots of the LGQC and JM7.6 algorithms for two sequences at two different 
channel bit rates. (a) Foreman sequence using rate pattern in Fig. 4.1(a). (b) Carphone 
sequence using rate pattern in at Fig. 4.1(b).....................................................................47 

Fig.4.3. PSNR and used bit plots of the LGQC with two δP values and JM7.6 algorithms for 
two sequences at two different channel bit rates. (a) Foreman sequence PSNR plots at 
Fig. 4.1(a) bit rate. (b) Foreman sequence used bit plots at Fig. 4.1(a) bit rate. (c) 
Carphone sequence PSNR plots at Fig. 4.1(b) bit rate. (d) Carphone sequence used bit 
plots at Fig. 4.1(b) bit rate. ...............................................................................................50 

 
Fig.A.1. System model. ............................................................................................................56 
Fig.A.2. BER of RCPC codes in AWGN. ................................................................................59 
Fig.A.3. BER of RCPC codes in FI RFC. ................................................................................60 
Fig.A.4. BER of RS code in AWGN. .......................................................................................60 
Fig.A.5. BER of RS code in FI-RFC........................................................................................61 
Fig.A.6. PER of RS code in AWGN.........................................................................................61 
Fig.A.7. PER of RS code in FI-RFC. .......................................................................................62 

 x



Chapter 1 

Introduction 

Video coding technologies have been progressing very fast in the past two decades. 

International video coding standards such as MPEG-1 [1], MPEG-2 [2], MPEG-4 [3], H.263 

[4], and H.264/AVC [5-7] are developed to achieve efficient transmission and storage in 

various environments. These coding standards specify the decoding process and the bit-stream 

syntax only. This limitation of scope permits maximal freedom to optimize the encoder for 

coding performance improvement and complexity reduction.  

1.1 Motivation and Discussed Topics  

Due to the motion estimator and other inter-frame operations, the standard-compliant video 

coding is an inherently dependent coding process [8-11]. To achieve the optimal 

rate-distortion (R-D) performance, rate control algorithms are usually applied to fulfill some 

optimization criteria [12-17]. There are two commonly used optimization criteria: minimum 

average distortion (the MINAVE criterion) and minimum maximum distortion (the MINMAX 

criterion) [18]. This MINAVE criterion is widely adopted and is well studied in the literature 

[19-22]. However, this MINAVE goal is attained often at the expense of a possibly larger 

frame-by-frame quality variation.  From the perspective of human visual system (HVS), a 

video sequence with nearly constant quality or consistent quality is more desirable. Therefore, 

the MINMAX criterion is proposed to minimize the maximal distortion for a given bit budget 

[23-27]. Often, the MINMAX results do not achieve strictly the global MINMAX target. They 

typically produce videos with a slowly varying quality, or in other words, with a consistent 

quality, and this is practically all we need. However, the MINMAX criterion decreases the 
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frame-by-frame quality variation without paying attention to the total distortion. Therefore, a 

hybrid MINMAX/MINAVE method [28] was suggested to increase the overall quality after 

finding the MINMAX solution. 

In this thesis, we first tackle the dependent MINAVE and consistent-quality problems 

simultaneously for the storage applications. More specifically, we would like to achieve the 

consistent quality goal across the entire sequence and, in the meantime, to meet the target bit 

rate accurately and to minimize the total distortion. The trade-off between average distortion 

and consistent quality is controlled by one key parameter, namely, the maximal quality 

variation constraint. One method to solve the above optimization problem with finite 

parameter set is the dynamic programming approach [12, 18]. By adopting the monotonicity 

and clustering concepts [9], the tree structure in the dependent video coding is converted into 

a trellis diagram [11]. Thus, the Viterbi algorithm [29] can be employed to find the truly 

optimal solution in this dependent coding problem. The trellis state (tree node) is defined in 

terms of distortion to facilitate the consistent quality control. In addition, a fast technique is 

proposed to decrease the computation in the branch expansion process. By adjusting the key 

parameters in our scheme such as cluster size, we can decrease the computational complexity 

at the cost of minor performance loss. A second method is proposed based on the Lagrange 

multipliers [12]. To ensure the global optimality on the dependent coding platform, an 

iterative scheme is designed to find the best lambda (λ) parameter (Lagrange multiplier) in the 

Lagrange cost or Lagrangian. This algorithm backtracks many times to narrow down a valid λ 

range containing the optimal λ. Then, the best λ value is identified by a fast search algorithm 

[30]. This scheme runs much faster than the trellis-based approach. Its performance is close to 

but slight lower than that of the trellis-based approach. 

Next we would like to show that the proposed scheme has the capability of graceful 

quality variation on the time-varying channel. The time-varying channel is equivalently 
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represented by the time-varying GOP bit budget. The graceful quality fluctuation across the 

GOP boundary is achieved by constraining the distortion variation of the first frame in one 

GOP with respect to its previous frame. Under this cross-GOP constraint, we can achieve the 

graceful quality fluctuation goal across the entire sequence while minimizing the total 

distortion and meeting the bit budget accurately in a GOP.  

Despite the optimality of both methods suggested in this thesis, their real-time 

implementation is still beyond the current hardware capability. Thus, the proposed algorithms 

may be more suitable for off-line applications such as DVD playback when video quality is 

the major concern. We implement our algorithm on the new and very efficient H.264 coder 

and evaluate its performance.  

1.2 Organization of the Thesis  

The rate-distortion issues in lossy and dependent video coding problem are described in 

Chapter 2. We then develop effective algorithms to achieve three goals simultaneously: (a) 

producing consistent quality videos, (b) minimizing the total distortion and (c) meeting the bit 

budget strictly in Chapter 3. A mathematical proposition is derived to set up its theoretical 

foundation. Two new algorithms are proposed to accomplish this goal. One is the the 

trellis-based algorithm with Viterbi search and the other one is the Lagrangian-based iterative 

algorithm with bisection search. Moreover, the proposed algorithms can produce a solution in 

between the MINAVE and the constant quality extremes. Extensive simulations are conducted 

to verify these goals.  

Chapter 4 targets on the smooth video representation for time-varying channels. We wish 

to both minimize the total distortion and meet the bit budget accurately. The third algorithm is 

thus proposed to solve this problem. The detailed procedures are described and verified by 

simulation over a time-varying channel. Experimental results show that the proposed 
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algorithm can accommodate the time-varying channel bandwidth and its PSNR performs in a 

“graceful degradation” way.  

Finally, Chapter 5 summarizes the findings in this thesis and the research topics in the 

future. Appendix A presents the performance analysis on the serially concatenated forward 

error correction (FEC) scheme in IEEE802.16a over the wireless channels. We study this 

channel coding topic for the future joint source-channel research.  

1.3 Contributions of the Thesis  

The main contributions of this thesis are:  

1. We derive a theoretical proposition where an equivalent condition between the distortion 

minimization problem and the budget minimization problem is proposed. This proposition 

is the theoretical basis of our quality control algorithms. 

2. We show that the triple goal of consistent quality video, total distortion minimization, and 

meeting the bit budget strictly can be achieved simultaneously by the trellis-based 

dependent coding structure. 

3. By adjusting one key parameter, the proposed framework can achieve a solution in 

between the MINAVE and the constant quality criteria. 

4. We propose a Lagrange-based algorithm together with the fast branch expansion 

technique to significantly reduce the computational complexity in the trellis-based 

framework. The resulting PSNR performance is close to that of the trellis one except for a 

slight average PSNR loss. 

5. Targeting at the time-varying channels with bandwidth fluctuation, a modified 

Lagrange-based algorithm is proposed. It is able to follow the channel bitrate changes and 

produce a smooth video representation and minimize the total distortion. 
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Chapter 2 

Overview of Lossy Video Coding 

A compromise between the rate and the distortion is an inherent nature of every lossy 

compression scheme. In this chapter, we describe the basic knowledge related to R-D methods. 

Rate and distortion are measured in bit and mean squared error (MSE) respectively. Video 

coding property, R-D performance bound, two R-D optimization criteria, and three R-D 

optimization techniques are introduced to build up the foundation of this thesis.  

2.1 Dependent and Independent Video Coding  

The hybrid motion compensated video coding standards as shown in Fig. 2.1 exploit spatial 

and temporal redundancy through transform coding and motion estimation. Due to the motion 

estimator and the other inter-frame operations in standard-compliant coding framework, it 

results in the so-called dependent coding structure. In the dependent coding, a tree structure is 

usually adopted to represent all possible picture sequences.  

Mathematically, the exhaustive search for the optimal frame QPs in a group of pictures (GOP) 

is equivalent to finding the optimal path in a tree. Potentially, this approach can identify the 

globally optimal solution. However, the computational complexity grows exponentially as 

more pictures are coded. For optimal rate-distortion (R-D) solution, several methods are 

proposed to reduce the search complexity, for example, the monotonicity assumption [9], the 

node clustering [11], the steepest descent search [10] and the inter-frame R-D model [17].  

A sub-optimal approach simplifies the original structure by adopting the independent 

coding assumption [12], which picks up the best parameters for the current frame without 
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considering their effects on the future frames. Many practical one-pass or two-pass algorithms 

belong to this category and they include R-D models such as the classical statistical model 

[13-14], the quadratic model [15], and the rho-domain model [16]. The R-D optimality is not 

guaranteed in this approach because of the unavailability of future frames. 

 
        Fig.2.1. An illustration of hybrid motion compensated video Encoder. 

2.2 Rate-Distortion bound and Optimality 

R-D theory has been actively studied in the information-theory community for the last 60 

years [31-33]. These studies focus on the derivation of performance bounds where the region 

of achievable points in the R-D trade-off is determined for certain statistical source classes. 

For examples, bounds have been known for independent identically distributed (i.i.d) scalar 

sources with Gaussian, Laplacian, or generalized Gaussian distributions. However, those 

bounds are derived from the high rate and large block size approximations and may not be 

tight for situations of practical usage (e.g., low rate and small block size). Moreover, to derive 

bounds, one needs to first characterize the sources and this can be problematic for complex 

sources that can be considered as a class of sources characterized by their statistical 

properties.  
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To solve the problem of complex source representation such as video, a specific coding 

framework that can efficiently capture the relevant statistical dependencies and accommodate 

different types of sources is prerequisite. International video coding standard such as 

H.264/AVC is proposed to supply the need of specific coding framework. For a given 

standard-compliant coding framework, we can define an operational R-D curve obtained by 

applying all possible quantization choices on this input video source. Note that these points 

are operational in that they are directly chosen, and thus the optimal performance is 

achievable. In contrast, the bound given by Shannon’s theoretical R-D function gives no 

constructive procedure for attaining the optimal performance.  

Fig. 2.2 presents the individual admissible operating points. The boundary between 

achievable and non-achievable regions is defined by the convex hull of the set of operation 

points. Hereafter, we will consider optimality in the operational sense.  

 
            Fig.2.2. An illustration of Operational R-D Characteristic.  

In the spirit of operational R-D, we define the “optimal” solution as that achieving the 

best R-D performance among all possible operating points. More specifically, we find the 

optimal quantizer, or operating point, for each coding unit such that the goal of minimizing 

the overall distortion constrained by a given total bit budget is achieved. 
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2.3 Rate-Distortion Optimization Criteria 

To achieve the optimal R-D performance on a specific coding standard, the so-called rate 

control algorithms are proposed to determine the best quantization parameter (QP) for a 

coding unit (which can be a macroblock (MB) or a frame) and these algorithms should also 

prevent the buffer(s) from underflow or overflow in the environment of a constant bit rate 

(CBR) channel or a variable bit rate (VBR) channel [34]. There are two commonly used 

optimization criteria in designing a rate control algorithm for a given bit rate: minimum the 

average or total distortion (the MINAVE criterion) and minimum the maximum source 

distortion (the MINMAX criterion).  

The MINAVE minimizes the average distortion at the cost of large temporal quality 

variation, especially for videos with high motion and frequent scene changes. To achieve a 

visually pleasing video presentation, not only does each video frame need to be encoded at the 

highest quality level, but also the frame-by-frame perceptual quality change need to be 

smooth. In fact, the MINMAX criterion is a good choice, when the goal is to achieve an 

almost constant distortion. However, the MINMAX seldom pays attention to minimize the 

total distortion.  

Also the MINAVE achieves the minimum total distortion at the expense of a larger 

localized distortion, especially in the areas of long boundary and small objects. As shown in 

Fig. 2-3, three pictures are presented to illustrate the difference between MINAVE and 

MINMAX. Simulation results show that the MINAVE approach has a larger localized 

distortion in red circle. With the MINMAX approach, this problem does not exist since the 

local maximum allowable distortion is explicitly bounded.  
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                (a)                                   (b) 

 
                (c) 

Fig.2.3. Comparison of frame 248 coding results on the Carphone sequence between MINMAX  

and MINAVE results. (a) original. (b) MINAVE result. (c) MINMAX result.  

2.4 Trellis Representation of the Tree Structure 

In the dependent coding structure, the current frame distortion and bits depend not only on the 

current QP but also on the previous frame QPs. Given 52 possible QP values, there are 52 

possible coded pictures (each coded using a different QP value) for the first frame. Each 

coded picture is associated with a (distortion, rate) pair after coding. Each of them leads to 52 

possible second-frame pictures. Therefore, there are in total 522 possible pictures (or states, 

nodes in a tree) for the second picture. The picture (or state) number grows exponentially as 

more frames are coded. All the possible picture sequences thus form a tree structure. 
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Two approaches were suggested to reduce the growing number of states. The state 

pruning technique was proposed by [9] and the state clustering approach was proposed by 

[11]. In the first approach [9], the state in a tree is denoted by the accumulated frame coded 

bits. The theoretical basis of state pruning is the “monotonicity” assumption that a better 

current coding frame will lead to a more efficient coding in the future. Although this 

monotonicity condition is not always guaranteed as pointed out by [35], our experimental 

results indicate this assumption is typically true. Therefore, the Markovian condition (the 

future optimal path depends only on the current state not the previous one) is created. The 

Viterbi Algorithm (VA) can thus be applied. As a result, when multiple branches arrive at the 

same state, only one branch of the least cost is selected as the survivor and the complexity is 

largely reduced. The second complexity reduction approach adopts the notion of “cluster” 

[11], which merges a few neighboring nodes (states) into one cluster (a state) because these 

nodes in one cluster have similar characteristics and thus lead to similar final results. Because 

there are only a finite number of states, the tree structure is degenerated into the trellis 

structure.  

2.5 Rate-Distortion Optimization Techniques 

In this section, we briefly introduce Lagrange multiplier, Lagrange relaxation, and dynamic 

programming techniques which are usually employed to optimize the R-D performance.  

2.5.1 Lagrange Multiplier  

Generally the Lagrange multiplier method is employed to transform the constrained problem 

into an unconstrained problem. Let Q be the set of quantization parameter values. Given K 

frames and a total bit budget RT, the constrained problem is to minimize the overall distortion 

D by choosing the optimal frame-level QP values  =｛ , , ,.., ｝for all K frames, *q
*
0q *

1q *
2q *

1Kq −
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where Q, for k=0,1,…K-1. Therefore, the constrained problem can be expressed as 

follows:  

*
kq ∈

            
1

0 1
0

min ( ),, ,..,
k

K

k kq Q
k

D d q q q
−

∈
=

= ∑  s.t. 
1

0 1
0

( ), ,.., ,
K

k k
k

 TR r q q q R
−

=

= ∑ ≤                (2.1) 

where dk and rk are the kth frame distortion and bits.  

The Lagrange multiplier method introduces a Lagrange multiplierλ , a non-negative real 

number, to form the Lagrangian cost ( ) ( )
k

k kJ d rλ λ= +∑ . We thus formulate the Lagrangian 

cost minimization as follows: 

( ) (
1

0
 .

K
k

k k
q QQ

K

k
JMin Min d rλ λ

∈∈

−

=

= +∑
q

)                                        (2.2) 

It is well-known that the optimal solution to the minimizing distortion problem with budget 

constraint in (1), is equivalent to minimizing Lagrange cost problem, ( )* Min J λ  in (2) 

with ( )*

TR Rλ = .  With independent coding assumption, the unconstrained problem can be 

efficiently solved and formulated as follows: 

( ) ( ) (
1 1

0 0
 .

K
k k

k k k k
q Q q QQ

K K

k k
JMin Min Mind r d rλ λ

∈ ∈∈

− −

= =

= + =∑ ∑
q

)λ+                         (2.3) 

The key step in finding the optimal solution is to identify *λ . Sweepingλ  from 0 to∞  

will generate the entire convex hull of achievable distortion rate pairs. In general, this 

optimal *λ solution can be iteratively solved. The main problem with the Lagrange multiplier 

method is that the only solutions which belong to the convex hull can be found.  

2.5.2 Lagrange Relaxation  

Lagrange relaxation is a generalization of the use of Lagrange multiplier in classical 

optimization problems. Given a constrained optimization problem X with multiple constrains 

(complicating constrain), this problem may be NP-hard. With Lagrange Relaxation concept, 
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we say that the constrained problem Y is a relaxation of problem X if Y is obtained from X by 

eliminating one or more constraints.  

The optimal solution obtained from Lagrange relaxation method may be a suboptimal 

solution to the original problem with complicating constrains. On the other hand, if the 

solution satisfies the complicating constraint, it is optimal for the original problem. In this 

thesis, we partition the complicating constraint into different subsets of simple constraints and 

then iteratively solve the problem with one subset. Thus the solution obtained from the 

Lagrange relaxation concept is still an optimal one.  

2.5.3 Dynamic Programming  

As noted previously, the Lagrange multiplier method has the drawback of not being able to 

reach the optimal point that does not reside on the convex hull of R-D curve. One method that 

can reach the optimal point that does not reside on the convex hull of R-D curve is the 

dynamic programming technique.  

In general, trellis-based dependencies arise in cases where the memory in the underlying 

system is finite, i.e., the number of states is finite. In a trellis-based structure, each stage 

corresponds to a coding unit and each node often represents the cumulative coded bits. One 

branch expansion is performed by encoding the current coding unit with a particular quantizer 

and often accompanied with a branch cost. When multiple branches arrive at the same node, 

only one branch of the minimal cost is selected as the survivor. 

The dynamic programming is a technique to find the minimum cost path in a trellis. 

Since the dependency in the video coding forms a tree structure and each node is defined as a 

state in this thesis, a trellis representation of the tree structure is executed in order to use this 

technique. By traversing the trellis from the root to the leaves, we can get successive bit 

allocation for each coding unit and finally obtain the best picture sequence.  
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2.6 Joint Source-Channel Coding 

The problem of transmitting video signal involves both source coding and channel coding.  

Date back to Shannon’s separation principle, one can theoretically separate the source and 

channel coding tasks with no performance loss. This principle is derived from the large block 

size and computational resource assumptions. It is obvious that such conditions are not met in 

practice. Moreover, the available channel capacity is highly time-varying such as the network 

congestion in network applications and fading in wireless communication applications. 

Therefore, the closer interaction between source and channel coding functions may be needed 

to obtain more performance gain. More specifically, the total bit budget come from the 

channel capacity shall be appropriately allocated between source coding and channel coding. 

Furthermore, the capability to accommodate the time-varying channel with graceful 

performance variation is prerequisite for both source and channel coding tasks. 

Because coded bit streams to be transmitted have different error protection needs and the 

available channel capacity is time-varying, the channel coding must accommodate the 

time-varying bit budget and behave with graceful performance variation. Foe example, the 

rate-compatible punctured convolutional (RCPC) code is promising for many application [37]. 

Serially concatenated with the Reed-Solomon (RS) code, the performance of forward error 

correction (FEC) system is investigated for both additive white Gaussian noise (AWGN) 

channel and the fully interleaved Rayleigh fading channel (FI-RFC) [38]. Further details are 

shown in Appendix A.  

Similarly given the continuously time-varying budget bits, the source coding has to 

encode the video sequence at the highest quality and the frame-by-frame quality change needs 

to be smooth for video transmission applications. We focus on the “graceful degradation” 

study in Chapter 4. Simulation results show that the goal of graceful quality variation can be 

achieved. 
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Chapter 3 

Consistent Quality Control Algorithms 

In this chapter, we describe the proposed consistent quality control algorithms [36]. In Section 

3.1, we introduce the rate-control problem in video coding and derive an equivalent condition 

between the distortion minimization problem and the budget minimization problem. Two 

proposed algorithms are described in Section 3.2: a) the trellis-based algorithm with Viterbi 

search and b) a Lagrangian-based iterative algorithm with bisection search. Section 3.3 

presents the simulation results to show the effectiveness of our algorithm. These results are 

compared with existing MINAVE and MINMAX schemes. Also, the effect of control 

parameters on PSNR and complexity is studied. Section 3.4 summarizes the findings and their 

limitations. 

3.1 Problem Formulation and Distortion-Rate 

Function 

The frame-level bit allocation problem and the uniqueness property of the distortion-rate 

function are described in this section. In our selected structure, we encode a frame and all its 

macroblocks using the same QP. The notion of quality in this thesis is the well adopted image 

objective criterion, PSNR. 

3.1.1 Dependent MINAVE Bit Allocation Problem  

In the (forward prediction) dependent coding formulation, the kth frame distortion and bits, 

i.e., dk and rk, depend on the current and previous frame QP values. Let Q =｛0,1,..,51｝ be the 

set of quantization parameter values in the H.264 standard video codec. Given K frames and a 
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total bit budget RT, our goal is to minimize the overall distortion D by choosing the optimal 

frame-level QP value *  =
*
0

*
1 ,  

*
1Kqs ｛ ,..,q q , q *

2q − ｝ for all K frames in a seq e, 

where
*
kq ∈Q, for k=0,1,…K

uenc

-1. That is,  

1

0,...,
0

* arg min ( ),
k

K

k k
q Q k

D d q q
−

∈ =

= = ∑q                                                (3.1) 

subject to the constraints 

{ }

1

0
0

( ,..., ) , and

( ) ( ) , 0,1,..., 1 ,

K

k k T
k

k p

R r q q R

f d f D k Kδ

−

=

= ≤

− ≤ ∀ ∈ −

∑
                                                     

where D is the average distortion for all K frames and ( ).f is the PSNR function calculated by 

( ) ( 2

10
10 log 255 )FPN df d ×= , where FPN is the pixel number in a frame. The second constraint in 

(3.1) is added to achieve the consistent quality video; that is, the difference between the frame 

PSNR and the average sequence PSNR is limited by ±δ .  P

d

Another important function of a rate control algorithm is to avoid the buffer underflow 

and overflow problems. The MPEG standard imposes a hypothetical decoder model on a legal 

bit stream, namely, Video Buffer Verifier (VBV). There are three prescribed operation modes 

in VBV. In this study, we consider only the constant bit rate (CBR) mode; i.e., the channel rate 

is constant. We assume that the decoder buffer is large enough to eliminate the buffer 

overflow problem.  In more details, the buffer is initially empty. To avoid the buffer 

underflow problem, bits in the decoder buffer accumulate for a specific time before the bits of 

the first frame are removed. Afterwards, the decoder buffer continues receiving constant-rate 

bits from the channel and the decoder removes the bits in buffer at regular frame-time 

intervals. Essentially, the buffer underflow problem imposes a delay T  on the decoder. For 

frame k, the buffer occupancy is 
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0k i d
0 0

,
k k

i i
iB B kc r T c kc r

= =

= + − = + −∑ ∑                                        (3.2) 

where B0 is the initial buffer occupancy and c = channel bit rate/frame rate. The buffer 

underflow is avoided if the constraint B ≥ 0k  for all 0 is satisfied. In other words, the 

decoder delay T  shall be selected to ensure that the buffer contains at least rk bits, when the 

decoder starts decoding fra

3.1.2 Uniqueness of Distortion-Rate Function 

ieve a consistent quality video, it is more convenient if the 

disto

es of the rate-distortion function may not true for the 

al-data case. Therefore, we study the relation of these two solutions in the operational sense 

*

* roblem, i.e., Min R(DT=D0
*), if the optimal 

distortion function D*(R) is a one-to-one mapping, where (D*,R) is the solution set to the Min 

k≥

d

me k for all k ≥ 0. 

In the conventional MINAVE problem, we minimize the total distortion subject to a given bit 

constraint. However, in order to ach

rtion, not the bit rate, is the controllable argument in our process. That is, we prefer 

MinR(DT) rather than MinD(RT).  

In the classical information theory, the distortion-rate function, D(R), is a nonincreasing, 

convex function and its slope must be both nonpositive and nondecreasing. Then, the 

rate-distortion function, R(D), the inverse of D(R), is a legal nonincreasing, convex function 

too. As a result, the solution to the MinR(DT) problem is identical to that to the MinD(RT) 

problem. However, these ideal properti

re

and derive the proposition as follows.  

 

Proposition: Given a rate-distortion coder with control parameters of discrete and finite 

values, we consider the operational R(D) and D(R) functions. In other words, D(R) is the 

achievable distortion for the given bit rate R. R(D) is similarly defined. Then,  the optimal 

solution, (D0 ,R0), to  the minimum distortion problem, i.e., MinD(RT), is also the optimal 

solution, (D1,R1 ), to the  minimum budget p
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D(RT) problem at the given RT  budget bits.  

* * *

* *

* *

* *

* *

Proof :  

Since (D1,R1 ) is the optimal solution to MinR(DT=D0 ), it implies D D0 .  On the other 

hand, D0  is the optimal solution (least amount of distortion) to MinD(RT), thus D D0 . 

Consequently, we have D1=D0 =DT. The optimal solution  (D0 ,R0)  MinD(RT) plies 

R RT. In addition, R1  is the optimal solution (least amount of bits) of R(DT=D0 ) s 

implies R1 R0.  Consequently, we have R1

1 ≤

 of

 Min

1 ≥

 im

; it thu0 ≤

≤ ≤ R0 ≤ RT. Now, if D (R) is a one-to-one function, 

the relation R1
*=R0 must be true because D1=D0

*. Therefore,  the solutions to these two 

e-to-one function.     

(QED). 

Two approaches are chosen to solve the inter-frame dependent coding problem in this study. 

We start with the trellis-based approach. First, the tree structure inherent in dependent coding 

is reduced to the trellis structure. Then, the branch expansion process is described and the 

Viterbi search is used to solve the bit allocation problem. Next, a fast branch expansion 

algorithm extended from a previous proposal is presented. In the last sub-section, we propose 

the Lagrange multipliers approach. An iterative structure is designed for finding the optimal 

lamb ve process, a couple of the existing 

We adopt both the concepts of monotonicity and cluster in this study. However, for the quality 

variation control purpose in this study, the distortion value (represented by PSNR) is used as 

the state variable. In addition, because the PSNR value is a real number, the problem of 

*

problems, MinR(DT=D0
*) and  MinD(RT) , are identical if D*(R) is a on

3.2 Consistent Quality Control Algorithm 

da value in the Lagrange cost. To speed up this iterati

but independently proposed fast schemes are included with proper modifications. 

3.2.1 Trellis-Based Coding Scheme  
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infinite states occurs in this formulation. Therefore, a cluster representing a distinct range of 

PSNR values is defined as a state. The cluster size parameter PΔ is used to define the span of a 

cluster. To convert the tree structure into a trellis, it is necessary to ynamic ra  

of admissible PSNR. It is set by the lowest quality, denoted by PL, and the highest quality, 

denoted by PU. This range should include all the PSNR values in the optimal solution and is 

chosen empirically. Consequently, the number of states equals to ( )

 restrict the d nge

⎣ ⎦1 U LP P PΔ+ − , where x⎢ ⎥⎣ ⎦  

denotes the integer part of x. Because there are only a finite number of states, the tree 

struc

1] and now is extended for the purposes of both 

the detaile

among cluster, node, branch,

Cluster

ture is degenerated into the trellis structure. In contrast, the concept of cluster is proposed 

to reduce the tree search complexity in [1

defining finite states and reducing complexity in this study.  

The rest is d description of our trellis structure. Fig. 1 illustrates the relation 

 PΔ, and δP.  

 : The notation ( )k k
i Rc

)

 represents a cluster with index  at stage (frame) , 

where i ∈ (

i k

⎣ ⎦[ ]0, UP − L P
Δ andP  k ∈ [0,K-1]. The ith cluster PSNR range is 

( )[ ), 1L LP iP P iΔ Δ+ + + . A cluster may contain a number of nodes in it. The best 

performing node (in the R-D sense) inside a cluster is chosen to b tive 

P

e the representa

node of this cluster. 

 Node: A node  represents a legal operating point of the coding result, ( ),
k k

i
k D Rn

whose PSNR value is in the clu ( )( )ster i at frame k, where k LDf P Pi Δ−⎢ ⎥= ⎣ ⎦  , 

and k kD D k= . Dk and Rk are the accumulated coded distortion and bits before encoding 

frame k respectively. 

 Branch: A branch connects two nodes in the trellis diagram. The notation 

indicates that it stems from the representative node in cluster i at frame k and 

it ends at a node in cluster j at frame k +1.  It uses qk to quantize frame k. It produces a 

( ),i j
k kqb
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next s wheretage node ( ) ( )( )1 11 ,i
k k k k k k k

j i
k kD D d R R rq qn + ++ = + = + ,  j= ( )⎣ ⎦1( )k Lf D P P

Δ+ −  

and ( )
1 1

1k kD D k
+ +

+= , if the three conditions, Rk+1 ≤ RT, ( ) ( )k pkf f Dd δ− ≤  and 

1( )L k UP D Pf +≤ ≤  are all satisfied. A rate-distortion pair ( ) ( )( ),k k

i i
k kq qr d  is associated 

with this branch. Note that the average sequence PSNR value ( )Df  is not available 

until the end of the encodi ated by the current ng process. It is thus approxim ( )kDf  

value. 

               

{PΔ

} Pδ

} Pδ

( )1, 1i i
kb q− −

( )1,i i
kb q−

1i
kC −

1i
kn −

i
kC

i
kn

1
1

i
kC −
+

1
1

i
kn −
+

1
i
kC +

1
i
kn +

 k stage 1 k stage+

 
nch, PΔ,            Fig.3.1. An illustration of cluster, node, bra  and δP definitions. 

3.2.2 Branch Expansion and Frame-level Bit Allocation  

Let two nodes of 1
j

k−n and in be connected by a branchk ( )1 1k k− −

re

,i jb q nch expansion 

process for node i
kn , all the QPs satisfying th e constraints are examined (that 

is, they are used to quantize data in frame k): a) PSNR range

. In the bra

e following th

1( )L k U+P D Pf≤ ≤ , b) bit budget 

( )Rk+1 RT tion   ≤ , and c) quality varia ( )k pkf f Dd δ− ≤ . The previous frame QP value, 

qk-1, is selected to be the center QP value, denoted by QPc, and the examined QPs are 
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expanded from the center value gradually by qk,n = qk-1 ± n, where the step index n is 

incremented by one until any of the above constraints is violated. 

The first frame (I frame) in a sequence is by default the first active node. In the following 

frames (P frames), the number of branches and nodes grows exponentially if they are not 

eliminated or merged. The adaptation of the cluster concept allows the merge of nodes with 

similar distortions. A cluster containing at least one expanding node in it is called active 

cluster. When a small cluster size, say, PΔ ≈ 0.1dB, is in use, typically only the branch of least 

accumulated bits and its associated node will be the single survivor in this cluster. The 

survivor node in an active cluster is defined as an active node. The “monotonicity 

assumption” enables the elimination of weaker branches (branches with higher bit rates) 

endin

 selected. Therefore, the goal of 

To accomplish the consistent quality video goal, δP 

g at the same node (cluster). That is, in the backtracking process, only the active node 

with the smallest total distortion and permissible bit usage is

minimizing the total distortion is achieved. 

≤ 0.4dB is usually adopted. Overall, 

ow. 

Algorithm 1: Trellis-based Consistent Quality Control (TCQC) Algorithm 

 

Step 1: i the values of RT, δP , PL, PU , and PΔ.  

the proposed quality control algorithm is summarized bel

 

Init alize 

Step 2: Encode the first I frame using all quantization values. Prune the branches that violate 

any of the two constraints:  the PSNR range ( )L k UDP f P≤ ≤  and the bit budget 

Rk ≤ RT . 

If multiple branches merge at the same destination cluster, select the Step 3: branch with the 

nformation of r

least accumulated bits and its corresponding node becomes the survivor. At the end of 

this step, each cluster contains only one active node, which is connected to only one 

surviving branch. Save the context i  the su vivor nodes. 
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Step 4: Expand all active nodes for the next I- or P-frame. Encode the next frame (frame k) 

late any of the using all allowable quantization scales. Prune the branches which vio

three constraints: the PSNR range 
1

( )L k UP D Pf
+

≤ ≤ , Rk+1 ≤ RT, and the quality variation 

constraint  ( ) ( )k k pDf fd δ− ≤ . 

 If the current frame is not the last frame in the sequence, go to Step 3. 

Otherwise, among all active clusters, ch

Step 5:

oose the survivor node with the best overall 

optimal path connecting to the 

starting frame of this sequence. We thus obtain the optimal frame-level QP and bits for 

each frame. This sequence is then done. 

 process and the 

quan

quality as the final solution. Backtrack along the 

3.2.3 Fast Branch Expansion Process 

Generally, a complete video encoding process is executed whenever a branch is expanded. In 

the MPEG JM reference software, the coding parameter selection is done by two components: 

the rate-control algorithm and the rate distortion optimization (RDO) process. This 2-stage 

coder control structure is well recognized for its efficiency for a highly complicated hybrid 

video coder such as H.264. But the RDO process is costly in computation. The RDO process 

needs a QP input value for its operation and it outputs the coding modes, distortion, header 

bits, and residual signals.  On the other hand, a typical rate-control algorithm needs the 

modes etc. information to pick up the best QP for quantizing the current MB or frame. 

Therefore, these two components depend on each other for supplying their inputs, a chicken 

and egg problem [22]. Let QP1 and QP2 denote the QPs used by the RDO

tization process, respectively. The initial value of QP1 is generally not equal to the value 

of QP2. Therefore, an iterative procedure has been proposed for updating QP1 (for example, 

QP1new = (QP1 + QP2)/2) after the first set of QP1 and QP2 are obtained [22]. 

It is reported that the coding PSNR loss is less than 0.2 dB when |QP1 − QP2| ≤ 3 [22]. 
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Whe

 quantization processes. If more branch 

expan for example, 

QP1=QP2=QPc+5 or QPc-5. Finally, to prevent the approximation error propagation to the next 

stage, a complete video encoding process, i.e., running RDO and quantization with the chosen 

final QP, is executed again for each active cluster. 

3.2.4 Technique based on the Lagrange Multipliers 

Another optimization technique, the so-called 

to fin

n a frame is encoded twice using two sets of QP values, namely, QP1=QP2= q1 and 

QP1=QP2= q2, separately, we run RDO only once with QP1 =q1. Using the aforementioned 

property, the same RDO outputs are used for quantization in both cases, QP2 = q1 and QP2 = 

q2, if q1 and q2 are sufficiently close. We thus save one RDO computation. 

To lower the approximation error, we restrict the approximation range by |QP1 − QP2| ≤ 2. 

The fast branch expansion process now runs as follows. First, the current frame is encoded 

using the center QP defined in Section III-B, i.e., QP1=QP2=QPc. Then, the upper and lower 

two branch expansions can be easily generated by performing the quantization processes four 

times with QP2=QPc±1, QP2=QPc±2. As a result, five branch expansions are generated at the 

cost of computing one RDO process and five

sions are needed, another complete video encoding process is needed, 

Lagrange multipliers method can also be used 

d the optimal operation point on the rate-distortion curve [11]. We define the Lagrange 

cost to be ( ) ( )
k k k

k k

d JJ r λλ λ= + =∑ ∑ . The goal becomes 

1 1

0 0k k

K K

k k

− −

= =

It is well-known that the optimal solution to the minimizing distortion problem with 

budget constraint, denoted by T), is equivalent to that of minimizing the Lagrange cost, 

( ) ( ) ( .
K k k k k

q Q q QQ
JMin Min Mind r d rλ λ λ

∈ ∈∈
= + +=∑ ∑

q
)                                  (3.3) 

MinD(R

( )* Min J λ  in (3.3) with TR Rλ = [11]. The key step in finding the optimal solution is to ( )*

identify *λ , the optimal value of lam neral, this optimal *bda. In ge λ solution can be iteratively 
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solved [11]. Howe this study, we impose two additional constraints: the consistent 

quality constraint, ( )

ver, in 

( )
P

f d f D δ− ≤  and the PSNR range constraint, ( )L UDP f P≤ ≤ e 

deve ess to solve this new and more comple problem as follows. 

First, the budget constraint of 

.  W

lop an iterative proc x 

( )*

TR Rλ = is relaxed. We intend to find a proper lambda 

range, denoted by[ ],LL UUλ λ , such that the solution to the ( ) Min J λ problem with a lambda 

located inside t satisfy all three constraints, his range shall ( )L UDP f P≤ ≤ , ( ) ( )
P

f d f D δ− ≤ , 

and (
UUR λ )

T< < ( )
LLR R λ . Therefore, the optimal lambda value *λ is guaranteed to locate in the 

selected range. Next, a fast bisection algorithm in [30] is employed to find the solution to 

the ( )*

TR Rλ = problem. That is, the lambda search process iterates until the predefined bit rate 

tolerance, i.e., ( )
T TR R Rλ ε− ≤ ,  he (optimal) QPs are a byproduct in this 

process. 

llowin w the constraints are satisfied in the aforem ntion d 

process of findi ge. F xamine only the valid QP values 

that satisfy the quality constraint, 

is And t

In the fo g, we describe ho e e

ng the lambda ran or a given frame, we e

 satisfied. 

( ) ( ) PDf d f δ− ≤ . The picture coding process is similar to 

the fast branch expanding step described earlier. To sa two constraints tisfy the other 

( )L UDP f P≤ ≤  and ( ) ( )
UU T LLR R Rλ λ< < , we start with two initial lambda values, Uλ and Lλ , 

such that b ) ( )
U T LR Roth (R λ λ< < and [ ] ( ) ( )[ ], ,L U U LP P P Pλ λ⊂ are satisfied. Then, the center 

value in the current lambda interval is used as the test lambda Tλ to determine whether the 

solution to the ( ) TMin J λ problem satisfies the constraint ( )( )
L T U

DP f Pλ≤ ≤ . If the current 

average PSNR is lower than PL, a smaller lambda should be used and thus the lower 

subinterval[ ],L Tλ λ is selected as the lambda interval for the next iteration. Equivalently, the 

test lambda value is decreased in the next iteration. On the other hand, if the current average 

PSNR is larger than PU, the upper subinterval[ ],L Tλ λ is selected as the lambda interval for the 
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next iteration, which increases the test lambda value in the next iteration.We check the 

average PSNR value whenever a frame is coded. If either of the above conditions happens, we 

need to e-encode the video sequence from the first frame agai e new lambda range. 

This process contin es until he chosen T

 r  n using th

u  t λ  leads to a successful coding of the entire video 

sequence. At the end, if the resulting bits are smaller than the bit budget, the latest test lambda 

value is referred as UUλ . The same process is performed in the lambda interval  to 

obtain

[ ],T UUλ λ

value, but note that the obtained value shall satisfy ( )
LLλ LLλ LL TR Rλ > . Theoretically  the 

values of 

, if

PL, PU, Lλ , and Uλ   are properly selected (so that the optimal solution exist

e lamb

Algorithm 

s), 

because th rithm converg  the iterativ da 

optim

 

Algorithm 2

St   two s

e R-D curve is convex,

: 

ith

 this algo es. Overall,

ity Control (LCQC) 

ization steps are summarized below. 

Lagrange-based Consistent Qual

 

Start wep0:  value Uλ and Lλ such that ( ) (
U TR R )

LR and [ ],L UP P  λ λ< < ⊂  

( ) ( ) 2( )[ ], .U Lλ λP P  Set k=0. T L Uλ λ= + λ  and fram

Step1: Given

e index 

, use t t bran pansion technTλ he fas ch ex ique to examine all the QPs that 

satisfy ( ) ( )k kDf fd pδ− ≤ . 

Step2: If ( )( )
TL UDP f Pλ≤ ≤ , go to Step 3. Else if ( )( )D T Uf Pλ > , set L Tλ λ= ; otherwise 

( ) 2T L Uλ λ λ= + , ( ( )( ) k = 0 (sta

1, go to Step 1. 

T LDf Pλ < ), set U Tλ λ= . Let rt from e 

Step3: Encode the current fram  the up-to-date QP value. If the current frame 

not th t fr k = k+  

 the first fram

again), go to St

is 

ep 1. 

am

e again using

e in the sequence, let e las
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Step4: If ( )
T TR Rλ <  set UU U Tλ λ λ= = . Else set LL L Tλ λ λ= = . If the lambda interval boundaries, 

LLλ  and UUλ , are bo  found,  5. Else let ( )th go to Step 2T L Uλ λ λ= + tep 

1. 

, k = 0, go to S

Step5: Perform the fast bisection search algorithm [30] in the lambda range [ ],LL UUλ λ  to 

find the optimal *λ , i.e., ( )*

TR Rλ = . The usual stop rule ( )
T TR R Rλ ε− ≤  is 

adopted. A few assistant formulas are proposed in [30] so that this search process 

converges rather fast. Normally, this step takes 2 to 4 recursions. The final *λ  and 

its associated QPs are our optimal solution. 

Typically, Steps 1 and 3 require only one branch expansion process (to examine the valid 

QPs) and one complete encoding process (to prevent approximation error propagation), 

ity mainly comes from the number of iterations. It 

o sequences, Foreman, Table Tennis, News, and 

Stefa

LCQC algorithms. In the first experiment, the TCQC algorithm is tested at different bit rates 

respectively. The computational complex

usually takes 5 to 8 iterations to complete this lambda search. Detailed simulation results 

including PSNR and computing time are discussed in Section 3.3. 

3.3 Simulation Results 

We have implemented the proposed quality control algorithm on MPEG-4 AVC/H.264 video 

coder with the rate-distortion optimization (RDO) option turned on. Experiments are 

performed using the standard MPEG vide

n. All test videos are 300 frames in QCIF size. The GOP size is 30. Only I- and P- frames 

are in use. The PSNR range in each case is estimated from the minimum PSNR and the 

maximum PSNR obtained by applying JM 7.6 to the test video sequence. Simulations are 

performed on a 3-GHz Intel Pentium CPU. 

We conduct four sets of simulations to evaluate performance of the proposed TCQC and 
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to show its effectiveness on bit allocation, as compared with the JM and the constant QP 

schemes. The JM7.6 rate control scheme is unable to select a QP for the first frame. For fair 

comparison, the first QP is set to be identical to that of the TCQC algorithm. Also, the best 

constant QP case is shown, which is produced by using a single QP value for the entire 

sequence. In this experiment, all possible QP values are tried and the one which produces bits 

closest to the target bits is chosen. Next, the PSNR and complexity of the LCQC algorithm 

are com ird 

and fourth experiments, TCQC and LCQC are compared. Several δP and PΔ values are tested 

to show the PSNR and complexity tradeoff. 

B. The PSNR curves and their relative 

meri

pared with two published algorithms, LPF in [24] and MultiStage in [27]. In the th

3.3.1 Performance Comparison with Constant QP and JM 

The TCQC algorithm is evaluated on four different video sequences at three different bit rates 

to show its effectiveness on bit allocation. The Foreman sequence contains mainly a talking 

head with a scene change near the end, the News sequence contains some amount of 

background changes, the Table Tennis sequence has a scene change in the middle, and the 

Stefan sequence has high motion. Two other schemes, namely, JM 7.6 and constant QP, are 

also applied to these sequences. The parameters used in this experiment are the cluster size 

PΔ=0.1 dB and the maximal quality variation δP=0.4 d

ts of these three schemes show similar trend on all these four test sequences and thus only 

the Foreman and News sequences are displayed in Tables 3.1 and 3.2. The News plot which 

has the largest variation is also displayed in Fig. 3.2.  

As shown in Tables 3.1 and 3.2, the TCQC scheme has the least PSNR variation as 

compared to JM and constant QP. It has the highest minimum PSNR and the lowest maximum 

PSNR. The constant QP method is the simplest conceptually but its overall PSNR is often 

lower; it has pretty low PSNR variation but not the lowest. Generally, the complexity of 

constant QP method is much lower than that of TCQC. To ensure a consistent frame-by-frame 
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quality, TCQC has a lower PSNR than JM 7.6, but the difference is often less than 0.5 dB. As 

 Also 

Table 3.1. Comparisons of Minimum PSNR, Maximum PSNR, Average PSNR, PSNR  

Variance, Bit Rate, and Decoding Delay for JM 7.6, TCQC, and Constant QP Schemes on the  

Foreman Sequence.  

shown in Subsection 3.3.3, the average PSNR gets higher if the δP constraint is loosen.

shown in Tables 3.1 and 3.2 are the decoder buffer delay (Td defined in (2)), which avoids 

buffer underflow. 

 

Table 3.2. Comparisons of Minimum PSNR, Maximum PSNR, Average PSNR, PSNR 

Variance, Bit Rate, and Decoding Delay for JM 7.6, TCQC, and Constant QP Schemes on the 

News Sequence. 

 

Simulation results also show that our minimum and maximum PSNR values are very 
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close. Therefore, it is possible to narrow down the PSNR range for further complexity 

redu

scussed earlier, the Viterbi search provides the optimal solution under the given 

assumptions and constraints. Therefore, although the average PSNR of TCQC is slightly 

lower than that of JM, TCQC offers the best average PSNR under the consistent quality 

constraint. 

ction in our algorithm. Empirically the JM average PSNR, Pavg,JM, is a good estimate for 

the TCQC average PSNR. Extensive simulation results conclude that typically the PSNR 

range can be approximated by (Pavg,JM -1, Pavg,JM+1). 

Fig. 3.2 depicts he frame-by-frame PSNR and used bit plots for the News sequence at 

two different bit rates. The TCQC PSNR curve has no drop at the GOP boundaries or at scene 

changes. It has the smoothest shape among these three curves. The overall PSNR performance 

of JM 7.6 is the best but it has a large swing of more than 3 dB in PSNR across the entire 

sequence. One may notice that the first few frames of the TCQC algorithm have higher PSNR. 

This agrees with the well-known observation that a good I frame leads to better P frames in a 

GOP. As di
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Fig.3.2. PSNR and used bit plots of the TCQC, JM 7.6, and Constant QP algorithms for News at 

two bit rates. (a) PSNR plots at 24 kbps (b) Used bit plots at 24 kbps (c) PSNR plots at 112 

kbps (d) Used bit plots at 112 kbps. 

3.3.2 LCQC Performance Comparison with LPF and 

MultiStage Algorithms  

In this subsection, two recent well-performed rate-control algorithms, LPF in [24] and 

MultiStage in [27], are simulated and compared to our LCQC algorithm. The basic idea 

behind LPF (low-pass filtering) is to smooth out (low-pass filtering) the distortion curve by 

reallocating the bits of frames inside a moving time window. A quite accurate model that 

relates the smoothed distortion and the smoothed bit rate is proposed in [24].  

The MultiStage algorithm is aiming at the constant quality target. A 2-stage iterative 

procedure is proposed [27]. Given a set frame bits, the Target rate stage encodes each frame 

with the given bits. Given the average PSNR of all frames, the Constant quality stage tries to 
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encode every frame to reach the average PSNR by adjusting QP. If either of the following two 

stop conditions is satisfied, the algorithm terminates: a) the difference between the maximal 

and the minimal PSNR value in a sequence for the quality stage and b) the difference between 

coded bits and the target bits for the rate stage. In our experiment, the threshold values are 0.5 

dB and 2% for the quality stage and the rate stage, respectively. The parameters used by the 

LCQC algorithm are: ( ) 0.02T TR R Rλ− ≤ , δP=0.2 dB, and PΔ=PU－PL=2 dB. 

As shown in Tables 3.3 and 3.4, typically the LCQC algorithm can match the bit budget 

very well. The MultiStage algorithm usually has a bit rate mismatch especially at low rates, 

which are consistent with the report in [27]. The LPF algorithm has a bit rate mismatch too. 

As discussed in [24], the coding bits converge to the budget bits when the sequence length 

goes to infinity. Often, the LCQC algorithm has the largest average PSNR and its PSNR 

variance is controlled at around 0.02 consistently at all rates because the frame quality 

variation is limited to a range between −δP and δP. That is, the PSNR is accurately controlled 

by adjusting the quality variation parameter. In contrast, the LPF and the MultiStage 

algorithms try to achieve the constant quality goal only. The LCQC complexity (CPU time) 

lies in between those of MultiStage and LPF, whereas LPF has the smallest complexity. Both 

the LCQC and the MultiStage algorithms have a larger complexity at low bit rates due to the 

large number of iterations for convergence. Fig. 3.3 shows the frame-by-frame PSNR and 

used bit plots for the News and the Table Tennis sequences at 64 kbps. 
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Fig.3.3. PSNR and used bit plots of the LCQC, MultiStage, and LPRF algorithms PΔ = dB 

and

2.0

Pδ = dB at 64 kbps: (a) PSNR plots for News (b) Used bit plots for News (c) PSNR plots 

for Table Tennis (d) Used bit plots for Table Tennis. 

0.2
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Table 3.3. Comparisons of PSNR, bit rate, and complexity for LCQC, MultiStage, and LPF 

algorithms on News at three bit rates. 

 

Table 3.4. Comparisons of PSNR, bit rate, and complexity for LCQC, MultiStage, and LPF 

algorithms on Table Tennis at three bit rates. 

 

3.3.3 Effects of Quality Variation Constraint on PSNR and 

Complexity  

One important feature of our schemes is the flexibility of adjusting the picture quality 

variation over time. Our schemes achieve the MINAVE goal in (3.1) when δP=∞. It produces 

the constant quality pictures when δP approaches 0 dB. Generally, if δP is smaller than 0.4 dB, 

a consistent quality solution is practically obtained. By adjusting the δP value in the range of 

 34



[0.4,∞], we obtain a solution in between the constant quality and the MINAVE. 

The disadvantage of using a large δP value is to increase the number of branch expansions and 

active nodes. It has a much less impact on the LCQC algorithm since LCQC does not have the 

trellis structure. Table 3.5 shows the test results. Indeed, its computational load increases only 

slightly from a small δP to a large δP.  

Table 3.5. Effect of quality variation constraint on PSNR and complexity for the LCQC 

algorithm on three sequences, Foreman, Table Tennis, and News at three quality constraints. 

PΔ=PU－PL=2dB. 

 

Fig. 3.4 is the frame PSNR plot for the News sequence at different quality variation 

constraints. Simulation results show that a larger δP value leads to larger picture variation but 

produces a higher PSNR. As shown in Fig. 3.4(b), the PSNR curve produced by LCQC has 

little variation at the beginning of the sequence as compared to that of TCQC in Fig. 3.2(a). It 

shows that the LCQC algorithm generates even more smooth PSNR outputs. 
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Fig.3.4. LCQC results for News at 24 kbps and PΔ=2.0dB : (a) δP = 0.2dB. (b) δP = 0.4dB.(c) δP 

=1.0dB. 

3.3.4 Effects of Cluster Size on PSNR and Complexity 

Table 3.6 shows the TCQC results at various PΔ values. As expected, the average PSNR value 

decreases when PΔ gets larger. The granularity loss is defined as the absolute PSNR 

differences between PΔ=0.1 dB case (very fine granularity) and the larger PΔ cases. When the 

cluster size is very small (PΔ=0.1 dB), we essentially achieve the best possible results without 

PSNR loss due to the use of cluster. As expected, the granularity loss is getting larger as the 

cluster size is larger than 0.1 dB. 

Since LCQC does not have trellis structure, LCQC has no granularity loss. But on the 

other hand, the LCQC formulation is an approximation to the integer programming problem 

[11]. Also, in the lambda search procedure, we stop at a given tolerance. Therefore, there is a 

performance loss due to the use of Lagrange cost and tolerance. Table 3.7 shows the test 

results of TCQC and LCQC at the same quality variation of δP=0.4dB and the same PSNR 
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range of PU－PL=2dB. The cluster size is 0.1 dB for TCQC. As expected, TCQC is slightly 

better but the PSNR difference is typically less than 0.3 dB. Again, LCQC is much faster in 

speed. 

Table 3.6. Effect of cluster size PΔ on the PSNR loss for the TCQC algorithm on Foreman and 

Table Tennis at three cluster sizes and δP =0.4 dB. 

 

Table 3.7. Comparisons of average PSNR, bit rate, and complexity in TCQC and LCQC 

algorithms for three sequences. 

 

3.4 Summary 

In this chapter, we realize the triple goal of producing consistent quality videos, minimizing 

the total distortion and meeting the bit budget strictly. Moreover, this framework can flexibly 

provide a solution in between the MINAVE and constant quality extremes. Two algorithms 

are proposed to find the optimal and consistent quality solution. Inspired by the previous work, 

a trellis-based quality control scheme is firstly proposed. This approach provides a nearly 
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optimal solution (the resulting total distortion is minimized) for a given bit rate budget on a 

dependent coding platform. The second algorithm is developed based on the Lagrange 

multipliers method. We impose the consistent quality constraint on this formulation and also 

we design a fast procedure to find the optimal solution. As compared to the trellis-based 

algorithm, it runs much faster and has a performance very close to the former. Simulation 

results show that both approaches have the largest PSNR average at a slight PSNR variation 

as compared to the other published consistent quality proposals and have a much smaller 

PSNR variation at a slight average PSNR loss as compared to the MPEG JM rate control. In 

addition, only the proposed algorithms can strictly meet the target bit budget requirement. 

Due to the inter-frame dependent consideration, two proposed schemes have rather high 

computational complexity. Therefore, they are targeting at off-line applications such as video 

storage applications and DVD playback, in which the coding performance has a higher 

priority than the complexity. 
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Chapter 4 

Graceful Quality Control Algorithm  

In this chapter we discuss the graceful quality variation target needed for the video 

transmission applications. Since the channel capacity is time-varying, the channel estimation 

is usually employed to predict the available channel bit rate per GOP duration. Or, 

equivalently, the GOP budget bits vary over time. This circumstance creates the needs that the 

coded picture quality shall gradually change to match the fluctuation of the channel bit rate. 

Due to lower complexity needed in transmission applications, we use the Lagrange-based 

method only. In Section 4.1, the graceful quality variation problem is formulated 

mathematically. In Section 4.2, the proposed LCQC algorithm is modified and employed to 

achieve the graceful quality variation goal for its simplicity and efficient. Section 4.3 presents 

the simulation results which show the effectiveness of our algorithm for video transmission 

applications. Section 4.4 summarizes the findings and their limitations. 

4.1 Graceful Quality Variation Problem 

Inter-frame quality control is necessary in achieving the smooth video representation. Because 

the proposed quality coding scheme controls picture quality inside a GOP, the quality control 

across GOP boundaries is also needed. As discussed in Section 3.1.2, it is clear that using 

distortion, not the bit rate, is more convenient to achieve the graceful quality variation. That is, 

we also use the proposed proposition in Section 3.1.2 to perform MinR(DT) rather than 

MinD(RT) except that the coding performance is evaluated on the GOP basis instead of on the 

sequence basis. This problem is thus formulated as follows.  
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In the independent coding formulation, the kth frame distortion and bits in a GOP, i.e., dk 

and rk, only depend on the current frame QP values. Given K frames in a GOP and a total 

GOP bit budget RT, our goal is to minimize the overall GOP distortion D by choosing the 

optimal frame-level QP values  =｛ , , ,.., *q
*
0q *

1q *
2q *

1Kq − ｝for all K frames, where
*
kq ∈Q, for 

k=0,1,…K-1. That is,  

1

0

* arg min ( ),
k

K

k k
q Q k

D d q
−

∈ =

= = ∑q                                                      

subject to the constraints 

( ) ( ) { }

1

0

1

( ) , and

, , 0,1,..., 1 ,

K

k k T
k

k k p

R r q R

f f k Kd d δ

−

=

−

= ≤

− ≤ ∀ ∈ −

∑
                                          (4.1) 

where is the PSNR function calculated by ( ).f ( ) ( )2

10
10 log 255 FPN df d ×=  and FPN is the pixel 

number in a frame. The second constraint in (4.1) is added to limit the inter-frame quality 

variation; that is, the difference PSNR is limited by ±δP. In addition, to consider the quality 

control across GOP boundaries, the quality constraint on the first frame in a GOP can be 

specified by the last frame in the previous GOP, except for the first GOP. More specifically, 

the first frame quality f(d0) in a GOP is limited by the last frame quality f(d-1) in the previous 

GOP. 

4.2 Graceful Quality Control Algorithm 

In this Section, we propose to use the Lagrange-based method to solve the inter-frame quality 

variation problem. As shown in Section 3.2.4, the Lagrange-based LCQC method is 

introduced to solve the consistent quality problem across all frames in a sequence. Simulation 

results show that the Lagrange-based method has a lower computational complexity and its 

PSNR value is on a par with that of the Trellis-based method when the optimal lambda value 
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is found. Therefore, the proposed LCQC algorithm is modified to meet the need of graceful 

quality change in the transmission applications and a new Lagrange-based graceful quality 

control (LGQC) method is thus developed.  

The LGQC algorithm differs from the LCQC algorithm in that the quality constraint is 

imposed on the neighboring frame and each GOP is independently processed. The current 

frame quality f(dk) limited by ( ) pDf δ± in (3.1) is replaced with 1( )k pdf δ− ± in (4.1) even when 

the GOP boundary is crossed. Since each GOP is independently processed, the optimal 

lambda value of each GOP can be different. Further, the optimal lambda search complexity 

can be reduced by referring to the optimal lambda value in the previous GOP. In addition, the 

consistent quality constraint, i.e., ( )L UDP f P≤ ≤ , is no loner needed in the graceful quality 

control applications. The LGQC procedure is described as follows.   

First, the budget constraint of ( )*

TR Rλ = is relaxed. We start with two initial lambda 

values, Uλ and Lλ , such that ( )
U TR R ( )

LRλ λ< <  is satisfied. We then find a proper lambda range, 

denoted by [ ],LL UUλ λ , which includes the lambda value as a part of the solution to the 

( ) Min J λ  problem with two constraints, ( ) ( )1k kf fd d pδ−− ≤ ), and . Thus, 

the optimal lambda value

( ) (
UU T LLR R Rλ λ< <

*λ  is guaranteed to locate in the selected range. Then, we employ a 

fast bisection algorithm to find the optimal solution to the ( ) T

*R Rλ = problem. The lambda 

search process iterates until the predefined bit rate tolerance, i.e., ( )
T TR R Rλ ε− ≤ , is satisfied. 

After the fist GOP is done, we set the next initial lambda interval[ ],L Uλ λ  with [ ]* *0.2 , 5λ λ  

empirically to reduce the search complexity for the optimal lambda value *λ  in the next GOP. 

Overall, the step-by-step LGQC algorithm is summarized below.  

 

Algorithm 3: Lagrange-based Graceful Quality Control (LGQC) Algorithm 
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Step0: Start with two values Uλ and Lλ such that ( ) ( )
U T LR R Rλ λ< < . Set ( ) 2T L Uλ λ λ= +  and 

frame index k=0. 

Step1: Given Tλ , use the fast branch expansion technique to examine all the QPs that 

satisfy ( ) ( )1k k pf fd d δ−− ≤

( )
T

. 

Step2: Encode the current frame again using the current QP value. If the current frame is 

not the last frame in the GOP, let k = k+1, go to Step 1.  

Step3: If T Rλ <  set UU U Tλ λ= = . Else set LL L=λR λ Tλ λ= . If the lambda interval boundaries, 

LLλ  and UUλ , are both found, go to Step 4. Otherwise, let ( ) 2λ λ λ= +

[

T L U , k = 0, go 

to Step 1. 

]Step4: Perform the fast bisection search algorithm [30] in the lambda range ,λ λ

*

LL UU  to 

find the optimal ( )*R Rλ = ( )
T . The usual stop rule T Tλ , i.e., R R Rλ ε≤

*

−  is adopted. 

A few assistant techniques are proposed in [30] so that this search process 

converges rather fast. Normally, this step takes 2 to 4 iterations. The final λ  and 

its associated QPs are our optimal solution. This GOP is now done. Go to Step 2 

and set *

T λ= 0.2, *

Lλ λ 5U= × *, λλ λ= × , and the frame index k=0, if we continue 

encoding the next GOP. 

4.3 Simulation Results 

We have implemented the proposed graceful quality control algorithm on the MPEG-4 

AVC/H.264 video coder with the RDO option turned on. Its performance is evaluated using 

two standard MPEG video sequences, Foreman and Carphone. All test videos are 300 frames 

in QCIF size. The GOP size is 30. Only I- and P- frames are in use. The channel bit rate for 
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each GOP is set to follow the sinusoidal fluctuation patterns. Simulations are performed on a 

3-GHz Intel Pentium CPU. 

We conduct two sets of simulations to evaluate the proposed LGQC algorithm. First, the 

PSNR performance of the LGQC algorithm is compared to that of JM7.6 rate control at the 

varying channel bit rate and the first QP in the JM7.6 rate control is set to be identical to that 

of the LGQC algorithm. Next, the PSNR and complexity of the LGQC algorithm are 

compared with two inter-frame quality variation values δP to show the PSNR and complexity 

tradeoff. Because we use only the Lagrange-based method, the analysis of cluster size effect is 

not needed. 

4.3.1 LGQC Performance Comparison with JM 

The LGQC algorithm is evaluated on two different video sequences, Foreman and Carphone, 

at two time-varying GOP bit rate sets. Their bitrate variations follow the stairstep patterns 

shown in Figs. 4.1(a) and 4.1(b) respectively.  
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Fig.4.1. Channel bit rate patterns for LGQC graceful quality control test on two different 

video sequences. (a) Foreman, and (b) Carphone. 

Fig. 4.2 depicts the frame-by-frame PSNR plots for LGQC and JM7.6 algorithms at two 

varying channel bit rates. The maximal quality variation parameter used in the LGQC 

algorithm is δP =0.5 dB. The LGQC PSNR curve has no drop at the GOP boundaries. It has a 

smoother shape at the largely varying channel bit rate as compared to that of JM7.6. 

Obviously, the PSNR variance of JM7.6 is very large. This is because the first QP in the 

current GOP is upper and lower bounded by that in the previous GOP. The average PSNR 

values of JM 7.6 and LGQC are 33.27 dB and 32.40 dB in Fig. 4.2(a) and 35.42 dB and 34.26 

dB in Fig. 4.2(b) respectively. However, the JM algorithm has a large bit rate mismatch. The 

budget bit achievement ratio of JM 7.6 is 205.54% in Fig. 4.2(a) and 184.66% in Fig. 4.2(b) 

respectively. In contrast, the budget bit achievement ratio of LGQC is 99.81% in Fig. 4.2(a) 

and 99.75% in Fig. 4.2(b) respectively. Thus, the proposed Lagrange-based method achieves 
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nearly the optimal solution. Although the JM 7.6 PSNR performance is better but it uses a 

much higher bitrate and it has a large swing of more than 20 dB in PSNR across the entire 

sequence. We summarize these simulation results in Table 4.1. 

0 30 60 90 120 150 180 210 240 270 300
20

25

30

35

40

45

50

 Frame 

 P
S

N
R

(d
B

) 

 

 
LGQC 0p5
JM 7.6

 
                                  (a) 

0 30 60 90 120 150 180 210 240 270 300
20

25

30

35

40

45

50

 Frame 

 P
S

N
R

(d
B

) 

 

 
LGQC 0p5
JM 7.6

 
                                  (b) 

 46



Fig.4.2. PSNR plots of the LGQC and JM7.6 algorithms for two sequences at two different 

channel bit rates. (a) Foreman sequence using rate pattern in Fig. 4.1(a). (b) Carphone 

sequence using rate pattern in at Fig. 4.1(b). 

Table 4.1. Comparisons of PSNR, bit rate, and complexity for JM 7.6 and LGQC algorithms on 

the Foreman and Carphone sequences at two varying channel bit rates. 

 

4.3.2 Effects of Quality Variation Constraint on PSNR and 

Complexity 

In this section, we change the quality variation parameter δP=1.0dB and rerun the experiments 

in Section 4.3.1. We like to see the effect of quality variation constraints on PSNR and 

complexity. Fig. 4.3 is the frame PSNR and used bit plots for Foreman and Carphone 

sequences at two δP values. The details of numerical values are shown in Table 4.1. 

As shown in Fig. 4.3(a) for the Foreman sequence, the PSNR curve produced by the 

δP=1.0dB case has similar frame-by-frame quality variation as compared to that of δP=0.5dB 

case. It indicates that the quality constraint of δP=0.5dB is sufficient to achieve the optimal 

solution for the Foreman sequence at the given GOP budget bits. Note that δP is defined by 

the “maximal” quality variation allowed between two nearby frames. In contrast, the 

simulation results in Fig. 4.3(b) for the Carphone sequence show similar results except for the 

frames between 180 and 210, where the scene change occurs. It show that δP=0.5dB has a 
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large quality variation in this GOP. As stated in Section 3.3.3, a larger δP value leads to a 

larger picture variation but produces a higher PSNR. This claim has an implicit assumption 

that a larger bitrate is available in these frames which contain high motion or scene changes. 

Due to the limited GOP budget bits (the number of frames is small) and the imposed 

inter-frame quality variation constraint, a good bit allocation policy applied to scene change is 

to decrease the frame quality as early as possible. Therefore, the quality variation of the 

δP=1.0dB case is smaller than that of the δP=0.5dB case during this scene change period. As 

shown in Table 4.1, the minimum PSNR values are 28.99 dB and 26.65 dB for LGQC 

δP=1.0dB and δP=0.5dB cases, respectively. Consequently, a larger δP case produces a higher 

average PSNR.   

Clearly, using a large δP value shall increase the number of branch expansions. However, 

because the proposed LGQC algorithm uses the fast branch expansion process introduced in 

Section 3.2.3, the computational load increases only slightly. As shown in Table 4.1, the 

increased computation is around 0.1 hour. 
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Fig.4.3. PSNR and used bit plots of the LGQC with two δP values and JM7.6 algorithms for 

two sequences at two different channel bit rates. (a) Foreman sequence PSNR plots at Fig. 

4.1(a) bit rate. (b) Foreman sequence used bit plots at Fig. 4.1(a) bit rate. (c) Carphone 

sequence PSNR plots at Fig. 4.1(b) bit rate. (d) Carphone sequence used bit plots at Fig. 4.1(b) 

bit rate. 

4.4 Summary 

In this chapter, we aim at the smooth video representation for time-varying channels and the 

total distortion is minimized and the bit budget is met accurately. The third algorithm is 

proposed to find the optimal solution to solve this problem. First, the problem is formulated 

mathematically. Next the step-by-step procedures are described and verified by simulation. It 

is shown that the proposed algorithm yields smoother video quality than the JM7.6 rate 

control and the total bits used are very close to the given budget bits. In addition, the effect of 

quality variation parameters on PSNR and complexity is discussed.  
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Despite the optimality of proposed method in this chapter, their computational load is 

still high. Vector or parallel processing hardware structure is needed for its real-time 

implementation. Thus, the proposed algorithm may be more suitable for off-line applications 

such as Internet video streaming. 
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Chapter 5 

Conclusions and Future Research Topics 

In this thesis, we discuss the consistent and graceful quality control techniques for video 

storage and transmission applications. The main results of the thesis are summarized below. 

The study of consistent quality control technique is discussed in Chapter 3. Many 

existing schemes cannot achieve at the same time the goal of minimizing total distortion and 

the goal of meeting budget bits accurately for constant quality representation. In contrast, this 

study achieves three goals (a) consistent video quality (b) minimizing the total distortion and 

(c) meeting the bit budget accurately. Moreover, by adjusting one key parameter, the goal in 

the proposed framework can also be the constant quality or the MINAVE quality. Two 

algorithms are proposed to find the optimal and consistent quality solution. A trellis-based 

quality control scheme is firstly proposed. Then the Lagrange multipliers method with fast 

branch expansion process and optimization procedure is proposed to significantly reduce the 

computational complexity at a slight average PSNR loss. Simulation results show that both 

approaches have the largest average PSNR at a slight PSNR variation as compared to the 

other existing consistent quality proposals and they have a much smaller PSNR variation at a 

slight average PSNR loss as compared to the MPEG JM rate control. In addition, only the 

proposed algorithms can strictly meet the target bit budget requirement. 

The Lagrange multipliers method is attractive for its simplicity and efficiency in the 

consistent quality applications. In Chapter 4, we discuss the graceful quality fluctuation 

needed in source encoding to accommodate the time-varying channel bandwidth. Due to 

lower complexity needed in transmission applications, we use the Lagrange-based method 
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only. Based on the second algorithm, the third algorithm is proposed to achieve the graceful 

quality variation goal while minimizing the total distortion and meeting the bit budget 

accurately. Simulation results show that the proposed algorithm produces smoother quality 

videos and the total bits used are very close to the given budget bits.  

In this thesis, we discuss the design and analysis of a quality control framework in video 

coding. Some potential research topics are as follows. First, the joint source-channel coding is 

not discussed but it is an important topic. In Appendix A, our study related to channel coding 

is presented for future source-channel integration. Second, although the optimal performance 

is achieved in these proposed algorithms, we did not propose a real-time algorithm. A 

potential topic is to further reduce the search complexity for finding the optimal lambda value. 
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Appendix A 

Performance Analysis for Serially 

Concatenated FEC in IEEE802.16a over 

Wireless Channels 

A.1 Introduction 

Recently, IEEE has proposed the standard referred to as IEEE802.16a for the local and 

metropolitan area network [39]. Its serially concatenated FEC scheme consists of an 

RS(255,239,8) code as the outer code and RCPC codes as the inner code. 

To combat the severe channel degradation, concatenating RS code with convolutional 

code (CC) could enhance their error control performance [40]. One advantage of using 

RS/RCPC concatenated codes is that they can provide multiple services and multiple rate 

transmissions, which is particularly useful for multimedia communications. 

The idea of RCPC codes was first introduced by Hagenauer [37]. The performance 

analysis of this type of codes over wireless channels could be found in [41]. However, few 

studies have been reported on the performance analysis of the concatenation of the RS code 

and the RCPC codes together. In addition, we like to identify a suitable operational range in 

terms of signal-to-noise ratio and acceptable performance. The aim of this appendix is to 

investigate the performance of RS/RCPC concatenation defined by the IEEE802.16a 

specifications over the AWGN and the FI-RFC channels [41]. We derive the union upper 

bounds on the BPSK-modulated BER (bit-error-rate) at the output of the concatenated RCPC 
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and RS code. Also, we compare the theoretical bounds with the simulation results. 

The rest of this appendix is organized as follows. Section A.2 describes the system model. 

Union upper bounds on BER and PER are derived in Section A.3. Section A.4 shows the 

simulation results and comparisons are made with the theoretical upper bound. Finally, 

conclusions are drawn in Section A.5. 

A.2 System Model 

The model of the transmission system to be analyzed is shown in Fig. A.1. The message bit 

stream in the analysis and simulation is assumed to be a random bit sequence . The 

message bits are packed into blocks of 239x8 bits since the RS code operates over GF(28). 

Each block is first coded by RS(255,239,8) coder. This coder inserts 16x8-bit redundancies 

for each block. Thus, the output is a packet of length 255 bytes, which are then fed into the 

RCPC coder. The mother code of this RCPC code has a coding rate of 1/2 and a constraint 

length of 7. With different puncture patterns (perforation matrices), this RCPC is capable of 

producing five different coding rates: 1/2, 2/3, 3/4, 5/6, and 7/8. Therefore, depending on the 

channel condition, we can select an appropriate bit rate that leads to the best trade-off between 

data throughput and error probability. A number of tailing bits are inserted to ensure proper 

decoding operation with an acceptable decoding delay. The choice of tailing bits leads to a 

tradeoff between the error control performance and the data throughput rate. Another 

parameter in the practical Viterbi decoding process is the decoder depth (decision path length). 

This study uses 10 tailing bits and the decoder depth is 210 bits, 35 times the memory span of 

the mother convolutional code of the given RCPC to get better performance in the Rayleigh 

fading channel. The coded bits are the BPSK-modulated and the modulated symbols 

iu

{ }ix  are 

transmitted. 
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                           Fig. A.1. System model. 

Suppose the test channel has slow and flat Rayleigh fading, then the phase error can be 

perfectly tracked. We further assume coherent demodulation is available. The received 

sample  is thus expressed in the form iy

                      
0

2 c b
i i

R Ey
N

α= i ix n+                                  (A.1) 

where is the energy per information bit, is the selected code rate of RCPC codes, and 

is the zero mean white Gaussian noise sample with unit variance. Because we assume the 

channel is a fully interleaved Rayleigh fading channel, the sequence {

bE cR

in

}iα of the fading 

envelope is independent and is identically Rayleigh distributed with the following probability 

density function, 

                      ( )
2

22
2f e

α
σαα

σ
−

=                                     (A.2) 

where 2σ  is the time-average power of the received signal before the envelop detection and 

the fading envelope α  has the properties of 0α ≥ and 2 1E α =⎡ ⎤⎣ ⎦ . Moreover, α is set to one for 

the AWGN channel. Soft decision decoding (SDD) with no quantization is used in 

conjunction with the Viterbi decoding process. In the RS decoding, the Berlekamp-Massey 

based algorithm is used in simulation and only the error-correction ability is considered. After 

RS decoding, the output bit sequence { }iv  is obtained and then the BER (bit error rate) and 
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PER (packet error rate) of the RS code are calculated. 

A.3 Performance of Serially Concatenated FEC 

In this section, the upper bounds on BER and PER of serially concatenated FEC are derived 

for the AWGN and the FI-RFC channels. In the IEEE802.16a specifications, the concatenated 

FEC can operate together with both BPSK and QPSK modulations; however, we analyze the 

BPSK modulated signal only, since the performance of QPSK modulation is essentially the 

same as that of BPSK [43]. 

A.3.1 Union Upper Bound on the BER of RCPC Codes 

The typical union bound can be expressed in the form 

                      ( ),

1

f

b RCPC d
d d

P c
pp

∞

=

≤ ×∑ 2p d                                 (A.3) 

where , , and are the puncture period, free distance, and weight distribution 

coefficient, respectively. Detailed description of the above parameters can be found in [42]. 

Here, we calculate upper bound of by summing up the Hamming distance in the range 

of to . Without loss of generality, transmission of the all-zero sequence is assumed and 

the pair-wise error probability is referred to the case of selecting an incorrect path with 

Hamming weight in the Viterbi decoding process. In AWGN and coherent BPSK scheme, 

pp

fd +

fd

9

dc

,b RCPCP

( )d

d

fd

(

2p

d

)2p d is given by 

                         ( )2

0

2 c bdR E
P d Q

N
=

⎛
⎜
⎝ ⎠

⎞
⎟                               (A.4) 

where the function is defined by Q ( ) ( ) 21 / 22 x

x
Q x e dxπ

− ∞ −= ∫ . Under the FI-RFC, coherent BPSK, 

SDD, and perfect channel estimates { }iα  assumptions, the pair-wise error rate ( )2p d  is 

derived using the concept of diversity. The concatenated FEC utilizes the time diversity 

technique to attain independent fading envelope iα  among the received coded symbols. A 
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closed form of the pair-wise error rate ( )2p d

(1-

 is given by 

                 ( ) )
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                                (A.5) 

where ( )( )0.5 1 / 1c b c bs R Rγ γγ − +=  and /b bE oNγ = [43]. This probability is the d-th order time 

diversity, which is equivalent to the d-th order path diversity when the max ratio combining is 

applied. 

A.3.2 Union Upper Bound on BER of RS Codes 

The union upper bound on PER can be constructed based on the symbol error rate, which is 

derived from the union bound on the BER of RCPC. A union upper bound on the PER of the 

RS code is expressed in the form 

( )1 n ip,
1c
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p RS
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where . When an RS code word error occurs, the associated 8-bit symbol 

error rate is given by 

( 8
,1 1 b RCPCp P= − − )
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and the corresponding upper bound on BER is approximated by 
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A.4 Simulation Results 

In this section, the average BERs of RCPC and RS codes are calculated using the simulated 

data. The BER values are plotted and compared to the corresponding theoretical upper bounds 

for the code rates 1/2, 2/3, 3/4, 5/6, and 7/8. In the simulation, up to 107 data bits are 

transmitted. Simulations are plotted on Figs. A.2-5, where T and S denote theoretical bound 

and simulation results respectively. Simulation results of BER are close to the theoretical 

bounds, particularly when the signal-to-noise ratio is large. These results are consistent with 
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the findings of the previous study [43]. Also, it shows that simulation results and theoretical 

upper bounds are fairly tight. In addition, the uncoded BER curve is also plotted. It is clearly 

shown that the coding gain can be obtained if the signal-to-noise ratio is sufficiently large. 

Fig. A.6-7 showed the average PER of 255-byte RS packets in the AWGN and FI-RFC 

channels, where A and R denote AWGN and FI-RFC channels respectively. With this data, 

researchers who are primarily interested in packet-based transmission might simulate their 

testing platform more easily with IEEE802.16a specification and get more realistic results. 
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                        Fig. A.2. BER of RCPC codes in AWGN. 
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                       Fig. A.3. BER of RCPC codes in FI RFC. 
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                          Fig. A.4. BER of RS code in AWGN. 
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                         Fig. A.5. BER of RS code in FI-RFC. 
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                           Fig. A.6. PER of RS code in AWGN. 

 61



0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
(dB) 

 a
ve

ra
ge

 P
E

R
 (

 2
55

 b
yt

es
 )

 

R 1/2 
R 2/3 
R 3/4 
R 5/6 
R 7/8 

 
                         Fig. A.7. PER of RS code in FI-RFC. 

A.5 Conclusions 

In this appendix, the performance of the serially concatenated CFEC defined by the 

IEEE802.16a specifications is analyzed and simulated for both AWGN and RFC channels. 

The RFC channel is assumed to be slow and flat fading and is fully interleaved. Moreover, the 

soft decision Viterbi decoding has no quantization. The upper bounds on BER of RCPC and 

RS codes have been derived and are compared to the simulation results. We thus found that 

the upper bounds are quite tight. 

Also, the PER performance is simulated and summarized. With this set of data, 

researchers interested in packet-based transmission could easily design their IEEE802.16a 

systems that meet the target performance. In conclusion, we provide a suitable operational 

range for IEEE802.16a, which is a trade-off between the signal to noise ratio and the desired 

performance. 
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