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Picture Quality Control Strategies for
Dependent Video Coding

Student: Kao-Lung Huang Advisor: Dr. Hsueh-Ming Hang

Department of Electronics Engineering and Institute of Electronics
National Chiao Tung University

ABSTRACT

A conventional video rate control algorithm typically minimizes the total distortion at the
cost of large temporal quality variation, especially for videos with high motion and frequent
scene changes. To alleviate the-negativeseffect) of 'video quality variation, a few algorithms
have been propesed to, target on the constant quality across the entire sequence. As being
pointed out by some researchers, although the existing proposals canproduce constant-quality
videos, they oftenfail to accurately utilize.the available bits to minimize the global distortion.
In this thesis, we Would. like to achieve three goals simultaneously. They are (1) producing
smooth video quality (2) minimizing the total distortion, ‘and (3) meeting the bit budget
strictly. Three algorithms are proposed to accomplish this set of goals for two application
scenarios: constant bitrate channels and variable bitrate channels. Two algorithms are
designed for the constant bitrate channels, which may be used on the storage applications.
And one algorithm is designed for the variable bitrate channels, which is needed for, say,
Internet transmission applications.

The first algorithm uses the trellis-based structure to achieve the consistent quality video.
Our first contribution is to derive an equivalent condition between the distortion minimization
problem and the budget minimization problem. Second, the trellis state (tree node) is defined

in terms of distortion, which facilitates the consistent quality control. Third, by adjusting one
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key parameter in our algorithm, a solution in between the minimum total distortion and the
constant quality criteria can be obtained. The second algorithm combines the Lagrange
multipliers together with the proposed fast branch expansion process and optimization
procedure. Compared to the first algorithm, its PSNR performance is degraded slightly but the
computational complexity is significantly reduced. Simulation results show that our two
algorithms produce a much smaller PSNR variation at a slight average PSNR loss as
compared to the MPEG committee JM rate control. When they are compared to the recently
published MultiStage and LPF algorithms, our proposed algorithms can meet the bit budget
more accurately and produce the'largest average PSNR: at a small PSNR variation.

The third algorithm aims .at graceful quality variation for time-varying channels. We
replace the consistent quality constraint in the second algorithmiby a maximal inter-frame
quality variation'constraint. Because this algorithm operates on individual GOP’s, the quality
variation across GOP boundaries has also to be considered. In our experiments, the channel
bit rate for each GOP is set to follow the given bandwidth fluctuation pattern. Simulation
results show that our PSNR curve has asmoother shape and has no sudden drop at the GOP
boundaries. Also, theproposed algorithm meets the budget bits very accurately.

In summary, we develop a flexible quality control framework that leads to 3 separate
algorithms. They are nearly optimal solutions that achieve the triple goal: minimizing quality
variation, minimizing global distortion, and satisfying the bit budget constraint. In addition, a
channel coding study is presented in Appendix A for solving combined source-channel coding

in the future.
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Chapter 1

Introduction

Video coding technologies have been progressing very fast in the past two decades.
International video coding standards such as MPEG-1 [1], MPEG-2 [2], MPEG-4 [3], H.263
[4], and H.264/AVC [5-7] are developed to achieve efficient transmission and storage in
various environments. These coding standards specify the decoding process and the bit-stream
syntax only. This limitation of§cope permits maximal freedom to optimize the encoder for

coding performance improvement and complexity reduction.

1.1 Motivation and Discussed Topics

Due to the motion estimator and other inter-ffamé operations, the standard-compliant video
coding is an “inherently dependent coding process [8-11]. To achieve the optimal
rate-distortion (R-D) performance,.7ate control algorithms are usually applied to fulfill some
optimization criterias[12-17]. There are two commonly used optimization criteria: minimum
average distortion (the MINAVEeriterion) and minimum maximum distortion (the MINMAX
criterion) [18]. This MINAVE criterion'is widely adopted and is well studied in the literature
[19-22]. However, this MINAVE goal is attained often at the expense of a possibly larger
frame-by-frame quality variation. From the perspective of human visual system (HVS), a
video sequence with nearly constant quality or consistent quality is more desirable. Therefore,
the MINMAX criterion is proposed to minimize the maximal distortion for a given bit budget
[23-27]. Often, the MINMAX results do not achieve strictly the global MINMAX target. They
typically produce videos with a slowly varying quality, or in other words, with a consistent

quality, and this is practically all we need. However, the MINMAX criterion decreases the



frame-by-frame quality variation without paying attention to the total distortion. Therefore, a
hybrid MINMAX/MINAVE method [28] was suggested to increase the overall quality after
finding the MINMAX solution.

In this thesis, we first tackle the dependent MINAVE and consistent-quality problems
simultaneously for the storage applications. More specifically, we would like to achieve the
consistent quality goal across the entire sequence and, in the meantime, to meet the target bit
rate accurately and to minimize the total distortion. The trade-off between average distortion
and consistent quality is controlled by one key parameter, namely, the maximal quality
variation constraint. One method to solve the abeve optimization problem with finite
parameter set is the dynamic programming approach [12, 18]. By adopting the monotonicity
and clustering congepts [9], the tree structure in the dependent video coding is converted into
a trellis diagram [11]. Thus, the Viterbi algorithm [29] can be employed to find the truly
optimal solution‘in this dependent coding problem. The trellis state (tree node) is defined in
terms of distortion to facilitate the consistent quality control. In addition, a fast technique is
proposed to decrease the computationrin thebranch expansion process. By adjusting the key
parameters in our scheme such as cluster size, we can decréase the computational complexity
at the cost of minor performance loss. A second method 1s.proposed based on the Lagrange
multipliers [12]. To ensure the ‘global optimality on the dependent coding platform, an
iterative scheme is designed to find the best lambda (1) parameter (Lagrange multiplier) in the
Lagrange cost or Lagrangian. This algorithm backtracks many times to narrow down a valid A
range containing the optimal A. Then, the best A value is identified by a fast search algorithm
[30]. This scheme runs much faster than the trellis-based approach. Its performance is close to
but slight lower than that of the trellis-based approach.

Next we would like to show that the proposed scheme has the capability of graceful

quality variation on the time-varying channel. The time-varying channel is equivalently



represented by the time-varying GOP bit budget. The graceful quality fluctuation across the
GOP boundary is achieved by constraining the distortion variation of the first frame in one
GOP with respect to its previous frame. Under this cross-GOP constraint, we can achieve the
graceful quality fluctuation goal across the entire sequence while minimizing the total
distortion and meeting the bit budget accurately in a GOP.

Despite the optimality of both methods suggested in this thesis, their real-time
implementation is still beyond the current hardware capability. Thus, the proposed algorithms
may be more suitable for off-line applications such as DVD playback when video quality is
the major concern. We implement our algorithm on the new and very efficient H.264 coder

and evaluate its performance.

1.2 Organization of the-Thesis

The rate-distortion issues in lossy and deperndent video coding problem are described in
Chapter 2. We then develop effective-algorithms to achieve three goals simultaneously: (a)
producing consistent quality videos,(b) minimizing the total distortion and (c) meeting the bit
budget strictly in Chapter 3. A mathematical proposition is derived to set up its theoretical
foundation. Two new algorithms are proposed teraccomplish this goal. One is the the
trellis-based algorithm with Viterbi search and the other one is the Lagrangian-based iterative
algorithm with bisection search. Moreover, the proposed algorithms can produce a solution in
between the MINAVE and the constant quality extremes. Extensive simulations are conducted
to verify these goals.

Chapter 4 targets on the smooth video representation for time-varying channels. We wish
to both minimize the total distortion and meet the bit budget accurately. The third algorithm is
thus proposed to solve this problem. The detailed procedures are described and verified by

simulation over a time-varying channel. Experimental results show that the proposed



algorithm can accommodate the time-varying channel bandwidth and its PSNR performs in a

“graceful degradation” way.

Finally, Chapter 5 summarizes the findings in this thesis and the research topics in the

future. Appendix A presents the performance analysis on the serially concatenated forward

error correction (FEC) scheme in IEEE802.16a over the wireless channels. We study this

channel coding topic for the future joint source-channel research.

1.3 Contributions of the Thesis

The main contributions of this. thesis.are:

1.

We derive a theoretical proposition where an equivalent condition between the distortion
minimization problem and.the budget minimization problem is proposed. This proposition
is the theoretieal basis of our quality control algorithms.

We show that the triple goal of consistent quality video, total distortion minimization, and
meeting the bit budget strictly ean.be achieved simultaneously by the trellis-based
dependent coding structure.

By adjusting oné key parameter, the proposed framework'can achieve a solution in
between the MINAVE and the.constant quality criteria.

We propose a Lagrange-based: algorithm "together with the fast branch expansion
technique to significantly reduce the computational complexity in the trellis-based
framework. The resulting PSNR performance is close to that of the trellis one except for a
slight average PSNR loss.

Targeting at the time-varying channels with bandwidth fluctuation, a modified
Lagrange-based algorithm is proposed. It is able to follow the channel bitrate changes and

produce a smooth video representation and minimize the total distortion.



Chapter 2

Overview of Lossy Video Coding

A compromise between the rate and the distortion is an inherent nature of every lossy
compression scheme. In this chapter, we describe the basic knowledge related to R-D methods.
Rate and distortion are measured in bit and mean squared error (MSE) respectively. Video
coding property, R-D performance bound, two R-D. optimization criteria, and three R-D

optimization techniques are introduced to build up the foundation of this thesis.

2.1 Dependent and Independent Video'Coding

The hybrid motion compensated video coding’'standards as shown in Fig. 2.1 exploit spatial
and temporal redundancy through transform coding and motion estimation. Due to the motion
estimator and the other inter-frame™ operations in standard-compliant coding framework, it
results in the so-called dependent coding structure. In the dependent coding, a tree structure is
usually adopted to represent all pessible picture sequences.
Mathematically, the exhaustive search for the optimal frame QPs in a group of pictures (GOP)
is equivalent to finding the optimal path in a tree. Potentially, this approach can identify the
globally optimal solution. However, the computational complexity grows exponentially as
more pictures are coded. For optimal rate-distortion (R-D) solution, several methods are
proposed to reduce the search complexity, for example, the monotonicity assumption [9], the
node clustering [11], the steepest descent search [10] and the inter-frame R-D model [17].

A sub-optimal approach simplifies the original structure by adopting the independent

coding assumption [12], which picks up the best parameters for the current frame without



considering their effects on the future frames. Many practical one-pass or two-pass algorithms
belong to this category and they include R-D models such as the classical statistical model
[13-14], the quadratic model [15], and the rho-domain model [16]. The R-D optimality is not

guaranteed in this approach because of the unavailability of future frames.
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Fig.2'1. An illustration of hybrid.motion compensated video Encoder.

2.2 Rate-Distortion bound and Optimality

R-D theory has been“actively studied in the information-theory community for the last 60
years [31-33]. These studies focus on the derivation of performance bounds where the region
of achievable points in the R-D trade-off is determined for certain statistical source classes.
For examples, bounds have been known for independent identically distributed (i.i.d) scalar
sources with Gaussian, Laplacian, or generalized Gaussian distributions. However, those
bounds are derived from the high rate and large block size approximations and may not be
tight for situations of practical usage (e.g., low rate and small block size). Moreover, to derive
bounds, one needs to first characterize the sources and this can be problematic for complex
sources that can be considered as a class of sources characterized by their statistical

properties.



To solve the problem of complex source representation such as video, a specific coding
framework that can efficiently capture the relevant statistical dependencies and accommodate
different types of sources is prerequisite. International video coding standard such as
H.264/AVC 1is proposed to supply the need of specific coding framework. For a given
standard-compliant coding framework, we can define an operational R-D curve obtained by
applying all possible quantization choices on this input video source. Note that these points
are operational in that they are directly chosen, and thus the optimal performance is
achievable. In contrast, the bound given by Shannon’s theoretical R-D function gives no
constructive procedure for attaining the optimal performance.

Fig. 2.2 presents, the. individual admissible operating points. The boundary between
achievable and non-achievable regions is defined by the convex hull of the set of operation

points. Hereafter, we will consideroptimality in the operational sense.

D Convex Hull of R-D
Operating Pts.
A
X X
X Achievable
Region
X
X X
X

>
X X Set of Operating Pts.

Non-achievable X X \(
Region X
w X

R
Fig.2.2. An illustration of Operational R-D Characteristic.

In the spirit of operational R-D, we define the “optimal” solution as that achieving the
best R-D performance among all possible operating points. More specifically, we find the
optimal quantizer, or operating point, for each coding unit such that the goal of minimizing

the overall distortion constrained by a given total bit budget is achieved.



2.3 Rate-Distortion Optimization Criteria

To achieve the optimal R-D performance on a specific coding standard, the so-called rate
control algorithms are proposed to determine the best quantization parameter (QP) for a
coding unit (which can be a macroblock (MB) or a frame) and these algorithms should also
prevent the buffer(s) from underflow or overflow in the environment of a constant bit rate
(CBR) channel or a variable bit rate (VBR) channel [34]. There are two commonly used
optimization criteria in designing a rate control algorithm for a given bit rate: minimum the
average or total distortion (the MINAVE griterion) and minimum the maximum source
distortion (the MINMAX (Criterion).

The MINAVE ‘minimizes the average/ distortion at the cost of large temporal quality
variation, especially for videos with high metion and- frequent scene changes. To achieve a
visually pleasing video presentation, not only does each video frame need to be encoded at the
highest quality level, but also the frame-by-frame perceptual quality change need to be
smooth. In fact, the MINMAX ‘criterion is a good choice, when the goal is to achieve an
almost constant distortion. However, the MINMAX-seldom pays-attention to minimize the
total distortion.

Also the MINAVE achieves the minimum total distortion at the expense of a larger
localized distortion, especially in the areas of long boundary and small objects. As shown in
Fig. 2-3, three pictures are presented to illustrate the difference between MINAVE and
MINMAX. Simulation results show that the MINAVE approach has a larger localized
distortion in red circle. With the MINMAX approach, this problem does not exist since the

local maximum allowable distortion is explicitly bounded.
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2.4 Trellis RepFeéerltation of ’_che“'l"ree Structure

In the dependent coding structure, the current frame distortion and bits depend not only on the
current QP but also on the previous frame QPs. Given 52 possible QP values, there are 52
possible coded pictures (each coded using a different QP value) for the first frame. Each
coded picture is associated with a (distortion, rate) pair after coding. Each of them leads to 52
possible second-frame pictures. Therefore, there are in total 52° possible pictures (or states,
nodes in a tree) for the second picture. The picture (or state) number grows exponentially as

more frames are coded. All the possible picture sequences thus form a tree structure.



Two approaches were suggested to reduce the growing number of states. The state
pruning technique was proposed by [9] and the state clustering approach was proposed by
[11]. In the first approach [9], the state in a tree is denoted by the accumulated frame coded
bits. The theoretical basis of state pruning is the “monotonicity” assumption that a better
current coding frame will lead to a more efficient coding in the future. Although this
monotonicity condition is not always guaranteed as pointed out by [35], our experimental
results indicate this assumption is typically true. Therefore, the Markovian condition (the
future optimal path depends only on the current state not the previous one) is created. The
Viterbi Algorithm (VA) can thus:be applied. As a result, when multiple branches arrive at the
same state, only one branch of the least cost is selected as thé survivor and the complexity is
largely reduced. The 'second complexity reduction approach adepts the notion of “cluster”
[11], which merges a few neighboring nodes (states) into one cluster (a state) because these
nodes in one cluster have similar characteristics and thus lead to similar final results. Because
there are only ‘@ finite number| of states, the tree structure is degenerated into the trellis

structure.

2.5 Rate-Distortion Optimization Techniques

In this section, we briefly introduce’Lagrange multiplier, Lagrange relaxation, and dynamic

programming techniques which are usually employed to optimize the R-D performance.

2.5.1 Lagrange Multiplier

Generally the Lagrange multiplier method is employed to transform the constrained problem
into an unconstrained problem. Let O be the set of quantization parameter values. Given K

frames and a total bit budget Rr, the constrained problem is to minimize the overall distortion

*

D by choosing the optimal frame-level QP values gq* ={ q; 49, q: yers q;,l }for all K frames,
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where q,t e Q, for k=0,1,...K-1. Therefore, the constrained problem can be expressed as

follows:

K-1 K-1
min D = de(qo,q],..,qk), st. R= Zrk(qo,ql,..,qk) <R,, (2.1)

<0 k=0 k=0

where d; and r; are the kth frame distortion and bits.

The Lagrange multiplier method introduces a Lagrange multiplier 2, a non-negative real

number, to form the Lagrangian costJ (1) = Z(dk +/7,rk) . We thus formulate the Lagrangian

cost minimization as follows:

K -l
Min 1 (2) = Min p_(d, +Ar,). (2.2)
qeQ 9 €Q 570

It is well-known that the optimal-solutien to the minimizing distertion problem with budget
constraint in (1), 18 equivalent to ‘minimizing Lagrange cost problem, MinJ(2') in (2)
withr(4") = r, - With independent coding ‘assumption, the unconstrained problem can be

efficiently solved and formulated as‘follows:

K&l K-1
Min 5 ()= Min Y (dpsar )=y Min(d, +2r,). (2.3)
k=0

geo® 95 Q. k=0 %<2
The key step in finding the optimal solution is to identify A". Sweeping A from 0 tooo
will generate the entire convex hull of achievable distortion rate pairs. In general, this

optimal A" solution can be iteratively solved. The main problem with the Lagrange multiplier

method is that the only solutions which belong to the convex hull can be found.

2.5.2 Lagrange Relaxation

Lagrange relaxation is a generalization of the use of Lagrange multiplier in classical
optimization problems. Given a constrained optimization problem X with multiple constrains

(complicating constrain), this problem may be NP-hard. With Lagrange Relaxation concept,
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we say that the constrained problem Y is a relaxation of problem X if Y is obtained from X by
eliminating one or more constraints.

The optimal solution obtained from Lagrange relaxation method may be a suboptimal
solution to the original problem with complicating constrains. On the other hand, if the
solution satisfies the complicating constraint, it is optimal for the original problem. In this
thesis, we partition the complicating constraint into different subsets of simple constraints and
then iteratively solve the problem with one subset. Thus the solution obtained from the

Lagrange relaxation concept is still an optimal one.

2.5.3 Dynamic Programming

As noted previouslyythe Lagrange multiplier.method has the drawback of not being able to
reach the optimal“point.that does not reside on‘the convex hull-of R=D curve. One method that
can reach the optimal point that does not reside’on the convex hull of R-D curve is the
dynamic programming technique.

In general, trellis-based [dependeneies arise in cases where the memory in the underlying
system is finite, i.e:, the number' of states iS.finite'.In a trellis-based structure, each stage
corresponds to a coding unit.and each node often represents the cumulative coded bits. One
branch expansion is performed by encoding the current coding unit with a particular quantizer
and often accompanied with a branch cost. When multiple branches arrive at the same node,
only one branch of the minimal cost is selected as the survivor.

The dynamic programming is a technique to find the minimum cost path in a trellis.
Since the dependency in the video coding forms a tree structure and each node is defined as a
state in this thesis, a trellis representation of the tree structure is executed in order to use this
technique. By traversing the trellis from the root to the leaves, we can get successive bit

allocation for each coding unit and finally obtain the best picture sequence.
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2.6 Joint Source-Channel Coding

The problem of transmitting video signal involves both source coding and channel coding.
Date back to Shannon’s separation principle, one can theoretically separate the source and
channel coding tasks with no performance loss. This principle is derived from the large block
size and computational resource assumptions. It is obvious that such conditions are not met in
practice. Moreover, the available channel capacity is highly time-varying such as the network
congestion in network applications and fading in wireless communication applications.
Therefore, the closer interaction between sourcerand channel coding functions may be needed
to obtain more performance gain. More specifically, the total bit budget come from the
channel capacity shall.be appropriately allocated between source coding and channel coding.
Furthermore, th¢" capability to accommodate the -time-varying channel with graceful
performance variation is prerequisite for both source and channel coding tasks.

Because coded bit strcams to be transmitted have different error protection needs and the
available channel capacity /is time-varying, the channel codingmmust accommodate the
time-varying bit budget and behave| with: graceful performance variation. Foe example, the
rate-compatible punctured convolutional (RCPC) code-ispromising for many application [37].
Serially concatenated with the Reed-Solomon (RS) code, the performance of forward error
correction (FEC) system is investigated for both additive white Gaussian noise (AWGN)
channel and the fully interleaved Rayleigh fading channel (FI-RFC) [38]. Further details are
shown in Appendix A.

Similarly given the continuously time-varying budget bits, the source coding has to
encode the video sequence at the highest quality and the frame-by-frame quality change needs
to be smooth for video transmission applications. We focus on the “graceful degradation”
study in Chapter 4. Simulation results show that the goal of graceful quality variation can be

achieved.
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Chapter 3

Consistent Quality Control Algorithms

In this chapter, we describe the proposed consistent quality control algorithms [36]. In Section
3.1, we introduce the rate-control problem in video coding and derive an equivalent condition
between the distortion minimization problem and the budget minimization problem. Two
proposed algorithms are described in Section 3.2: a) the trellis-based algorithm with Viterbi
search and b) a Lagrangian-based iterative algorithm with bisection search. Section 3.3
presents the simulation tesults to show the effectiveness of 6ur algorithm. These results are
compared with existing. MINAVE,and MINMAX schemes. Also, the effect of control
parameters on PSNR and complexity is studied. Section 3.4.;summarizes the findings and their

limitations.

3.1 Problem Formulation and Distortion-Rate

Function

The frame-level bit allocation’ problem and the uniqueness property of the distortion-rate
function are described in this section. In our selected structure, we encode a frame and all its
macroblocks using the same QP. The notion of quality in this thesis is the well adopted image

objective criterion, PSNR.

3.1.1 Dependent MINAVE Bit Allocation Problem

In the (forward prediction) dependent coding formulation, the kth frame distortion and bits,

i.e., di and ry, depend on the current and previous frame QP values. Let 0 ={0,1,..,51 } be the

set of quantization parameter values in the H.264 standard video codec. Given K frames and a
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total bit budget Rr, our goal is to minimize the overall distortion D by choosing the optimal

frame-level QP values q* = { 4,,49, ,9,,., 4x } for all K frames in a sequence,

where qz € Q, for k=0,1,...K-1. That is,

K-1
q*=argminD=de(q0 q,) 3.1)

9, €Q k=0

subject to the constraints

K-1
R :zl/;c(qoﬂ"'aqk)SRT’ and

k=0

‘f(dk)—f(B)‘ <5, Vke{0,1,..K =1}

where D is the average distortion for all K frames and /*(.) is the PSNR function calculated by
f(d)=10log, (255 x FPN/d), where FPNiis the pixel number in a framé. The second constraint in

(3.1) is added to_achieve the consistent quality. video; that is,.the difference between the frame

PSNR and the average sequence PSNR is limited by *op.

Another important function of a‘raté control algorithm is to aveid the buffer underflow
and overflow problems. The MPEG standard imposes a hypothetical decoder model on a legal
bit stream, namely, Video Buffer Verifier (VBV). There are three prescribed operation modes
in VBV. In this study, we consider only.the constant bit rate (CBR) mode; i.e., the channel rate
is constant. We assume that the decoder buffer is large enough to eliminate the buffer
overflow problem. In more details, the buffer is initially empty. To avoid the buffer
underflow problem, bits in the decoder buffer accumulate for a specific time before the bits of
the first frame are removed. Afterwards, the decoder buffer continues receiving constant-rate
bits from the channel and the decoder removes the bits in buffer at regular frame-time
intervals. Essentially, the buffer underflow problem imposes a delay 7, on the decoder. For

frame £, the buffer occupancy is
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k k
BszO-i—kc—Z/;:Tdc—i-kc—Zri, (3.2)

0 i~
where By is the initial buffer occupancy and ¢ = channel bit rate/frame rate. The buffer
underflow is avoided if the constraint B;>0 for all £>0 is satisfied. In other words, the
decoder delay 7}, shall be selected to ensure that the buffer contains at least 7 bits, when the

decoder starts decoding frame & for all £ >0.

3.1.2 Uniqueness of Distortion-Rate Function

In the conventional MINAVE problem, we minimize the total distortion subject to a given bit
constraint. However, in orderito achieve a consistent quality video, it is more convenient if the
distortion, not the bitrtate, 1s the controllable argument in-our process. That is, we prefer
MinR(Dy) rather than MinD(R7).

In the classical information theory, the 'distortion-rate function,.D(R), is a nonincreasing,
convex function. and its slope must be both.monpositive and nendecreasing. Then, the
rate-distortion function, R(D), the inverse of D(R), 1s a legal nonincreasing, convex function
too. As a result, the solution to the MinR(Dz) problem is identical to that to the MinD(Ry)
problem. However, these ideal properties of the rate-distortion-function may not true for the
real-data case. Therefore, we study the relation of these two solutions in the operational sense

and derive the proposition as follows.

Proposition: Given a rate-distortion coder with control parameters of discrete and finite
values, we consider the operational R(D) and D(R) functions. In other words, D(R) is the
achievable distortion for the given bit rate R. R(D) is similarly defined. Then, the optimal
solution, (Dy"Ry), to  the minimum distortion problem, i.e., MinD(Ry), is also the optimal
solution, (D1,R;"), to the minimum budget problem, i.e., Min R(Dr=Dy"), if the optimal

distortion function D*(R) is a one-to-one mapping, where (D*,R) is the solution set to the Min

16



D(R7) problem at the given Ry  budget bits.

Proof :

Since (DI,RI*) is the optimal solution to Mil’lR(DT:Do*), it implies D1£D0*. On the other
hand, D," is the optimal solution (least amount of distortion) to MinD(Ry), thus D;>Dy’.
Consequently, we have D;=Dy =Dr. The optimal solution (Dy Ry of MinD(Ry) implies
Ro<Rr. In addition, R, is the optimal solution (least amount of bits) of MinR(DT=D0*); it thus
implies R 1* <Ry. Consequently, we have R 1* <Ry<R7. Now, if D*(R) is a one-to-one function,
the relation R1*=R() must be true because D1=D0*. Therefore, the solutions to these two
problems, MinR(Dr=Dy,’") and = MinD(R7) ", are identicalsif D (R) is a one-to-one function.

(QED).

3.2 Consistent Quality Control Algorithm

Two approaches are chosen to solve the inter-frame dependent coding problem in this study.
We start with the trellis-based approach: First, the tree structure inherent in dependent coding
is reduced to the trellis structure. . Then, the branch expansion process is described and the
Viterbi search is used to solve the bit allocation problem. Next, a fast branch expansion
algorithm extended from a ptevious proposal'is presented. In the last sub-section, we propose
the Lagrange multipliers approach. An iterative structure is designed for finding the optimal
lambda value in the Lagrange cost. To speed up this iterative process, a couple of the existing

but independently proposed fast schemes are included with proper modifications.

3.2.1 Trellis-Based Coding Scheme

We adopt both the concepts of monotonicity and cluster in this study. However, for the quality
variation control purpose in this study, the distortion value (represented by PSNR) is used as

the state variable. In addition, because the PSNR value is a real number, the problem of
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infinite states occurs in this formulation. Therefore, a cluster representing a distinct range of
PSNR values is defined as a state. The cluster size parameter P, is used to define the span of a
cluster. To convert the tree structure into a trellis, it is necessary to restrict the dynamic range
of admissible PSNR. It is set by the lowest quality, denoted by P;, and the highest quality,
denoted by Py. This range should include all the PSNR values in the optimal solution and is
chosen empirically. Consequently, the number of states equals to 1+ (B, -F,)/P, |, where | x|
denotes the integer part of x. Because there are only a finite number of states, the tree
structure is degenerated into the trellis structure. In contrast, the concept of cluster is proposed
to reduce the tree search complexity in [11] and now is extended for the purposes of both
defining finite states and reducing complexity in this study.

The rest is the detailed description-of our trellis structure. Fig. 1 illustrates the relation

among cluster, node, branch, P,, and 0p.
® Cluster: The notation c¢,(R,) represents-a cluster with index i at stage (frame) &,
where g€ [0l (R -r)/R]] and %k € [0,K-1]. The ith cluster PSNR range is
[P, +iP,, P, ¥(i+1)R ) . A cluster may-contaim a number.of nodes in it. The best

performing node (in the.R-D sense) inside a cluster is-chosen to be the representative

node of this cluster.

® Node: A node 7, (p,.,r ) represents a legal operating point of the coding result,

whose PSNR value is in the cluster i at frame k, where i=L(f(LTk)—PL)/PAJ ,

andD_k =D, /k . Dy and Ry are the accumulated coded distortion and bits before encoding

frame k respectively.

® Branch: A branch connects two nodes in the trellis diagram. The notation
b;’ (qk ) indicates that it stems from the representative node in cluster i at frame & and

it ends at a node in cluster j at frame £ +1. It uses g;to quantize frame k. It produces a
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next stage noden,,(D,., =D, +d;(¢,).R.,, =R +7(g,)), where j= [((D,)-P)/P ]
and D =D,M/(k+1) , if the three conditions, Ri+; < Ry, |f(dk )- 71 (Bk )| <¢, and
P <f(D,)<p, are all satisfied. A rate-distortion pair (7 (4,).d; (q,)) is associated
with this branch. Note that the average sequence PSNR value f (5) is not available

until the end of the encoding process. It is thus approximated by the current f (D_A)

value.

i—1 il
Ck Ck+l

k stage k +1 stage
Fig.3.1. An illustration of cluster, node, branch, P,, and Jp definitions.

3.2.2 Branch Expansion and Frame-level Bit Allocation

Let two nodes ofn/_ andn, be connected by a branchb,” (g, ,). In the branch expansion

process for node 7, , all the QPs satisfying the following three constraints are examined (that

is, they are used to quantize data in frame k): a) PSNR ranger, < f(D,,,)<P,, b) bit budget

Ri+1< Ry, and c) quality variation |/ (d,)- (D, )| <&, . The previous frame QP value,

gk, 1s selected to be the center QP value, denoted by QP., and the examined QPs are
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expanded from the center value gradually by g¢i, - gr.; T n, where the step index n is

incremented by one until any of the above constraints is violated.

The first frame (I frame) in a sequence is by default the first active node. In the following
frames (P frames), the number of branches and nodes grows exponentially if they are not
eliminated or merged. The adaptation of the cluster concept allows the merge of nodes with
similar distortions. A cluster containing at least one expanding node in it is called active
cluster. When a small cluster size, say, P, ~0.1dB, is in use, typically only the branch of least
accumulated bits and its associated node will be the single survivor in this cluster. The
survivor node in an active. cluster is defined as”an active node. The “monotonicity
assumption” enables the elimination of weaker branches (branches with higher bit rates)
ending at the same node.(cluster).-That is, in the backtracking process, only the active node
with the smallest total distortion and permissible bit usage is selected. Therefore, the goal of
minimizing the total distortion is achieved.

To accomplish the consistent quality.video goal, 6p < 0.4dB is.usually adopted. Overall,

the proposed quality control algorithm 1s summarized below.

Algorithm 1: Trellis-based Consistent Quality Control (TCQC) Algorithm

Step 1: Initialize the values of Ry, dp, Pr, Py, and Pa.

Step 2: Encode the first I frame using all quantization values. Prune the branches that violate
any of the two constraints: the PSNR range P, </(b,)<P, and the bit budget
Ry <Rr.

Step 3: If multiple branches merge at the same destination cluster, select the branch with the
least accumulated bits and its corresponding node becomes the survivor. At the end of
this step, each cluster contains only one active node, which is connected to only one

surviving branch. Save the context information of the survivor nodes.
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Step 4: Expand all active nodes for the next I- or P-frame. Encode the next frame (frame k)
using all allowable quantization scales. Prune the branches which violate any of the

three constraints: the PSNR range P < (D, )< P, Ri+;<Rr, and the quality variation

constraint |/ (d, )~ 7 (D, ) <5, .

Step 5: If the current frame is not the last frame in the sequence, go to Step 3.
Otherwise, among all active clusters, choose the survivor node with the best overall
quality as the final solution. Backtrack along the optimal path connecting to the
starting frame of this sequence. We thus obtain the optimal frame-level QP and bits for

each frame. This sequence is then done.

3.2.3 Fast Branch Expansion Process

Generally, a complete video encoding-processiis executed whenevera branch is expanded. In
the MPEG JM reference software, the coding parameéter selection is done by two components:
the rate-controlialgorithm and the rate distortion optimization (RDO) process. This 2-stage
coder control structure is well récognized=forsitsvefficiency for a highly complicated hybrid
video coder such as H.264. But the RDO process is costly in computation. The RDO process
needs a QP input valuefor its operation and it outputs the coding modes, distortion, header
bits, and residual signals. On' the lother hand, a‘typical rate-control algorithm needs the
modes etc. information to pick up the best QP for quantizing the current MB or frame.
Therefore, these two components depend on each other for supplying their inputs, a chicken
and egg problem [22]. Let QP; and QP, denote the QPs used by the RDO process and the
quantization process, respectively. The initial value of QP; is generally not equal to the value
of QP,. Therefore, an iterative procedure has been proposed for updating QP; (for example,
QPinew = (QP; + QP3)/2) after the first set of QP; and QP are obtained [22].

It is reported that the coding PSNR loss is less than 0.2 dB when |QP; — QP,| < 3 [22].
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When a frame is encoded twice using two sets of QP values, namely, QP;=QP,= ¢; and
QP,=QP,= ¢, separately, we run RDO only once with QP; =¢,. Using the aforementioned
property, the same RDO outputs are used for quantization in both cases, QP, = ¢g; and QP, =
q2, 1f ¢ and ¢ are sufficiently close. We thus save one RDO computation.

To lower the approximation error, we restrict the approximation range by |QP; — QP,| < 2.
The fast branch expansion process now runs as follows. First, the current frame is encoded
using the center QP defined in Section III-B, i.e., QP;=QP,=QP.. Then, the upper and lower
two branch expansions can be easily generated by performing the quantization processes four
times with QP,=QP.+1, QP,=QP.£2. As a result, five-branch expansions are generated at the
cost of computing oné¢ RDO .process and five quantization processes. If more branch
expansions are needed, another complete video encoding process is needed, for example,
QP,=QP,=QP.+50or QP.-5. Finally, to-prevent the approximation error propagation to the next
stage, a complete'video encoding process, i.e., running RDO and quantization with the chosen

final QP, is executed again for each active cluster.

3.2.4 Technique based on the Lagrange Multipliers

Another optimization technique, the so-called Lagrange multipliers method can also be used
to find the optimal operation point on the rate-distortion ¢urve [11]. We define the Lagrange
costto be (1) =Y d, +Ar, = J (2). The goal becomes
K-1 K-1

Min 5 (1) =Min Y (d, +Ar, )= Min(d, +Ar,). (3.3)
qe0® %<0 1= o0 <0

It is well-known that the optimal solution to the minimizing distortion problem with
budget constraint, denoted by MinD(Ry), is equivalent to that of minimizing the Lagrange cost,

MinJ(2") in (3.3) withr(2")=r,[11]. The key step in finding the optimal solution is to

identify A°, the optimal value of lambda. In general, this optimal A" solution can be iteratively
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solved [11]. However, in this study, we impose two additional constraints: the consistent
quality constraint, |f(d)-7(D)/<s, and the PSNR range constraint, P, < f(D)<PB,. We
develop an iterative process to solve this new and more complex problem as follows.

First, the budget constraint of Rr(1') =R, is relaxed. We intend to find a proper lambda
range, denoted by[4,,4,,], such that the solution to the Min J(A4)problem with a lambda
located inside this range shall satisfy all three constraints, P, < f(D)<PB, ,|f(d)-r(D)<s,,
and R(4,)<R, <R(4,). Therefore, the optimal lambda value A" is guaranteed to locate in the

selected range. Next, a fast bisection algorithm ing[30] is employed to find the solution to

the R(4") = &, problem. Fhat is, the lambda search process iterates until the predefined bit rate

tolerance, i.e., R, —R(/l)/ R s ¢, ispsatisfied. And the (optimal) QPs are a byproduct in this

process.
In the following, we describe how the.constraints are satisfied in the aforementioned

process of finding the lambda range. For a‘given frame, we examine.only the valid QP values
that satisfy the quality constraint, 4/(d)- £(0)| <4, . The picture coding process is similar to
the fast branch expanding step described earlier. To- satisty” the other two constraints

P <f(B)<P, andr(z

uu

)< R, < R(4, )5 we_start” with ‘two initial lambda values, 4, and 4, ,
such that bothr(4,)<R, <r(4,)and [P.P]c[P(4,).P(4, )]are satisfied. Then, the center
value in the current lambda interval is used as the test lambda 4. to determine whether the
solution to the MinJ (4 )problem satisfies the constraint 2 < f(p(4.))<p, . If the current
average PSNR is lower than P;, a smaller lambda should be used and thus the lower
subinterval[ 1,1 ]is selected as the lambda interval for the next iteration. Equivalently, the

test lambda value is decreased in the next iteration. On the other hand, if the current average

PSNR is larger than Py, the upper subinterval[4,, 4, ]is selected as the lambda interval for the
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next iteration, which increases the test lambda value in the next iteration.We check the
average PSNR value whenever a frame is coded. If either of the above conditions happens, we
need to re-encode the video sequence from the first frame again using the new lambda range.
This process continues until the chosen 2. leads to a successful coding of the entire video
sequence. At the end, if the resulting bits are smaller than the bit budget, the latest test lambda

value is referred as,. The same process is performed in the lambda interval[.,1,] to
obtain 2, value, but note that the obtained 4, value shall satisfy ®(4,, ) > R, . Theoretically, if the

values of P;, Py, 4,, and 4, are properly selected (so that the optimal solution exists),

because the R-D curve isi'convex, this algorithm converges. Overall, the iterative lambda

optimization steps are.summarized below:

Algorithm 2: Lagrange-based -ConsistentiQuality Control (LCQC) Algorithm

Step0: Startuwith two values 4, and 4, such that R(1,)<R <r(4,) and [P.P] <

[P(4, ), 2(2)]. SetA, =(A, +4,)/2-and frame index k=0,

Stepl: Given/,, use the fastsbranch expansion‘technique to examine all the QPs that

satisfy |/ (4, ) - 7 (D) <5,

Step2: IfF, < f(D(4))<E,, go to Step 3. Else if /(D(4,))>F,, setd, =2 ; otherwise
(f(D(4))<P), seta, =4,. Leta, =(4,+4,)/2, k =0 (start from the first frame

again), go to Step 1.

Step3: Encode the current frame again using the up-to-date QP value. If the current frame

is not the last frame in the sequence, let k= k+1, go to Step 1.
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Step4: Ifr(4,) <R, seti, =4, =24 .Elseseti, =4 =24, . If the lambda interval boundaries,

A and A

LL vuU 2

are both found, go to Step 5. Else let4, = (4, +4,)/2, k=0, go to Step

Step5: Perform the fast bisection search algorithm [30] in the lambda range [4,,4,] to

find the optimal 2", i.e, R(2)=R,. The usual stop rule R -R(2)/R <& is

adopted. A few assistant formulas are proposed in [30] so that this search process
converges rather fast. Normally, this step takes 2 to 4 recursions. The final 2° and

its associated QPssare our optimal solution.

Typically, Steps l-and 3 require only one branech expansion process (to examine the valid
QPs) and one complete encoding process (to prevent ‘approximation error propagation),
respectively. The computational complexity mainly,comes from the.number of iterations. It
usually takes 5.t0 8 iterations to complete this lambda search. Detailed simulation results

including PSNR and computing time are discussed in Section 3.3.

3.3 Simulation Results

We have implemented the proposed quality control algorithm on MPEG-4 AVC/H.264 video
coder with the rate-distortion optimization (RDO) option turned on. Experiments are
performed using the standard MPEG video sequences, Foreman, Table Tennis, News, and
Stefan. All test videos are 300 frames in QCIF size. The GOP size is 30. Only I- and P- frames
are in use. The PSNR range in each case is estimated from the minimum PSNR and the
maximum PSNR obtained by applying JM 7.6 to the test video sequence. Simulations are
performed on a 3-GHz Intel Pentium CPU.

We conduct four sets of simulations to evaluate performance of the proposed TCQC and

LCQC algorithms. In the first experiment, the TCQC algorithm is tested at different bit rates
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to show its effectiveness on bit allocation, as compared with the JM and the constant QP
schemes. The JM7.6 rate control scheme is unable to select a QP for the first frame. For fair
comparison, the first QP is set to be identical to that of the TCQC algorithm. Also, the best
constant QP case is shown, which is produced by using a single QP value for the entire
sequence. In this experiment, all possible QP values are tried and the one which produces bits
closest to the target bits is chosen. Next, the PSNR and complexity of the LCQC algorithm
are compared with two published algorithms, LPF in [24] and MultiStage in [27]. In the third

and fourth experiments, TCQC and LCQC are compared. Several d» and P, values are tested

to show the PSNR and complexity tradeoft.

3.3.1 Performance Comparison with Constant QP and JM

The TCQC algorithm 1s evaluated on four diffcrent video sequences at three different bit rates
to show its effectiveness on bit allocation. The Foreman sequence contains mainly a talking
head with a scene change near the end, the News sequence contains some amount of
background changes, the Table Tennis”sequence has a scene change in the middle, and the
Stefan sequence has high motion. Two other schemes, namely, JM 7.6 and constant QP, are
also applied to these sequences. The parameters used-in this.experiment are the cluster size

P»=0.1 dB and the maximal ‘quality variation 0/~0.4 dB. The PSNR curves and their relative

merits of these three schemes show similar trend on all these four test sequences and thus only
the Foreman and News sequences are displayed in Tables 3.1 and 3.2. The News plot which
has the largest variation is also displayed in Fig. 3.2.

As shown in Tables 3.1 and 3.2, the TCQC scheme has the least PSNR variation as
compared to JM and constant QP. It has the highest minimum PSNR and the lowest maximum
PSNR. The constant QP method is the simplest conceptually but its overall PSNR is often
lower; it has pretty low PSNR variation but not the lowest. Generally, the complexity of

constant QP method is much lower than that of TCQC. To ensure a consistent frame-by-frame
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quality, TCQC has a lower PSNR than JM 7.6, but the difference is often less than 0.5 dB. As
shown in Subsection 3.3.3, the average PSNR gets higher if the Jp constraint is loosen. Also
shown in Tables 3.1 and 3.2 are the decoder buffer delay (7, defined in (2)), which avoids
buffer underflow.

Table 3.1. Comparisons of Minimum PSNR, Maximum PSNR, Average PSNR, PSNR
Variance, Bit Rate, and Decoding Delay for JM 7.6, TCQC, and Constant QP Schemes on the

Foreman Sequence.

T;;%:t Method Rate(% error) PSNR(dB) Delay(s)
Min Max Avg Var

IM7.6 24.05 (1020%) | 22.53 3037 | 2635 3.32 0.43
24 kbps TCQC 2383 (:0.73%) | 2562 | 27.15 26.11 0.07 0.73
Fixed QP46 | 22.11 (-7.86%) | 2442 | 28.70 25.81 0.49 0.20
IM7.6 64.10 (10.15%) | 2546 | 3535 | 32.30 2.99 0.30
64 kbps TCQC 6338 (:097%) | 3176 | 3309 | 3230 0.04 0.67
Fixed QP36 | 58.50 (-8.59%) | 3024 | 33.79 31.91 0.77 0.40
IM7.6 112.04 (+0.04%) | 30.60 | 3846 35.43 2.6 0.33
112kbps [ TCQC 11146 (:0.48%) | 34.92 36.47 35.38 0.06 0.40
Fixed QP=31 | 104.97 (-628%) | 33.15 3679 | 35.09 0.97 0.50

Table 3.2. Comparisons-of Minimum PSNR, Maximum PSNR, Average PSNR, PSNR
Variance, Bit Rate, and Decoding Delay for JM 7.6, TCQC; and.Constant QP Schemes on the

News Sequence.

T]:;%:t Method Rate(% error) PSNR(dB) Delay(s)
Min Max Avg Var

IM7.6 2419 (+0.79%) | 2631 3099 | 2898 1.36 0.57
24 kbps TCQC 23.95(020%) | 284 2983 | 28381 0.05 0.43
Fixed QP=42 | 2225(-728%) | 27.71 2891 | 2830 0.04 033
IM7.6 6423 (+0.35%) | 3257 | 3844 35.46 1.07 0.47
64 kbps TCQC 62.95 (-1.65%) | 3439 3576 | 3481 0.04 0.37
Fixed QP=32 | 61.62(-3.72%) | 3439 | 3569 | 3491 0.06 0.33
IM7.6 11231 (+028%) | 3620 | 4220 39.06 0.92 0.37
112 Kbps TCQC 10971 (2.05%) | 3799 | 3927 | 3841 0.04 0.30
Fixed QP27 | 107.25 (-4.24%) | 38.05 3931 38.45 0.05 0.30

Simulation results also show that our minimum and maximum PSNR values are very
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close. Therefore, it is possible to narrow down the PSNR range for further complexity
reduction in our algorithm. Empirically the JM average PSNR, Py v, 1s a good estimate for
the TCQC average PSNR. Extensive simulation results conclude that typically the PSNR
range can be approximated by (Pavgim-1, Pavgimt1).

Fig. 3.2 depicts he frame-by-frame PSNR and used bit plots for the News sequence at
two different bit rates. The TCQC PSNR curve has no drop at the GOP boundaries or at scene
changes. It has the smoothest shape among these three curves. The overall PSNR performance
of JM 7.6 is the best but it has a large swing of more than 3 dB in PSNR across the entire
sequence. One may notice that the first few frames ofithe TCQC algorithm have higher PSNR.
This agrees with the well-known observation that a good I frame leads to better P frames in a
GOP. As discussedrearlier, the Viterbi search provides: the optimal solution under the given
assumptions and constraints. Therefore, although the raverage IPSNR of TCQC is slightly
lower than that'of JM, TCQC offers the best average PSNR under the consistent quality

constraint.
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Fig.3.2. PSNR and used bit plots of the TCQC, JM 7.6, and Constant QP algorithms for News at
two bit rates. (a).PSNR plots at 24 kbps (b) Usedbit plots at24 kbps (¢) PSNR plots at 112

kbps (d) Used bitplots at 112 kbps.
3.3.2 LCQC Performance Comparison with LPF and

MultiStage Algorithms

In this subsection, two recent well-performed rate-control algorithms, LPF in [24] and
MultiStage in [27], are simulated and compared to our LCQC algorithm. The basic idea
behind LPF (low-pass filtering) is to smooth out (low-pass filtering) the distortion curve by
reallocating the bits of frames inside a moving time window. A quite accurate model that
relates the smoothed distortion and the smoothed bit rate is proposed in [24].

The MultiStage algorithm is aiming at the constant quality target. A 2-stage iterative
procedure is proposed [27]. Given a set frame bits, the Target rate stage encodes each frame

with the given bits. Given the average PSNR of all frames, the Constant quality stage tries to
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encode every frame to reach the average PSNR by adjusting QP. If either of the following two
stop conditions is satisfied, the algorithm terminates: a) the difference between the maximal
and the minimal PSNR value in a sequence for the quality stage and b) the difference between
coded bits and the target bits for the rate stage. In our experiment, the threshold values are 0.5
dB and 2% for the quality stage and the rate stage, respectively. The parameters used by the

LCQC algorithm are: R —R(2)/R, <0.02, 6p=0.2 dB, and Pr=Py-P;=2 dB.

As shown in Tables 3.3 and 3.4, typically the LCQC algorithm can match the bit budget
very well. The MultiStage algorithm usually has a bit rate mismatch especially at low rates,
which are consistent with thereportin'[27]. The LPE algorithm has a bit rate mismatch too.
As discussed in [24], the coding bits converge to the-budgetsbits when the sequence length
goes to infinity. Often, the LCQC algorithm has the largest, average PSNR and its PSNR
variance is controlled at around 0.02 consistently "at all rates because the frame quality
variation is limited to a'range between —dp and Jp. That is, the PSNR is accurately controlled
by adjusting the, quality variation  parameter. In contrast, the LPF and the MultiStage
algorithms try to.achieve the constant quality goal only. The LCQE€ complexity (CPU time)
lies in between those of MultiStage and LPF, whereas LPF has. the smallest complexity. Both
the LCQC and the MultiStage algorithms have a larger complexity at low bit rates due to the
large number of iterations for convergence. Fig. 3.3 shows the frame-by-frame PSNR and

used bit plots for the News and the Table Tennis sequences at 64 kbps.
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Fig.3.3. PSNR and used bit plots of the LCQC, MultiStage, and LPRF algorithms P, =2.0dB
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for Table Tennis (d) Used bit plots for Table Tennis.
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Table 3.3. Comparisons of PSNR, bit rate, and complexity for LCQC, MultiStage, and LPF

algorithms on News at three bit rates.

Ts;%:t Method Rate(% error) PSNR(dB) Time(hr)
Min Max Avg Var

LCQC 23.82 (-0.76%) 28.29 29.22 28.57 0.017 2.33
24 kbps MultiStage 24.11 (+0.44%) 28.19 28.6 28.36 0.002 3.90
LPF 23.99 (-0.06%) 28.15 28.62 28.38 0.004 0.41
LCQC 63.93 (-0.11%) 34.35 35.09 34.70 0.018 1.63
64 kbps MultiStage 62.49 (-2.36%) 34.35 3491 34.60 0.006 2.25
LPF 62.66 (-2.10%) 34.22 34.88 34.54 0.014 0.41
LCQC 111.50 (-0.45%) 37.82 38.61 38.31 0.020 1.17
112 kbps MultiStage 107.82 (-3.73%) 37.70 38.45 38.06 0.009 1.42
LPF 107.19 (-4.30%) 37.70 38.65 38.14 0.021 0.41

Table 3.4. Comparisons:of PSNR, bit rate, and complexity for ECQC, MultiStage, and LPF

algorithms on Table Tennis at three bit rates.

T;;%:t Method Rate(% error) PSNR(dB) Time(hr)
Min Max Avg Var

LCQC 23.84 (-0.65%) 26.22 26.84 26.42 0.019 2.33
24 kbps MultiStage 25.35 (+5.61%) 26.71 27.31 26.91 0.005 5.94
LPF 24.31 (+1.29%) 26.18 27.51 26.93 0.018 0.41
LCQC 63.61 (-0.61%) 32.10 33.09 32.48 0.022 2.12
64 kbps MultiStage 63.17 (-1.3%) 32.10 32.77 32.47 0.007 3.25
LPF 62.66 (-2.10%) 32.09 32.79 32.45 0.011 0.41
LCQC 111.65 (-0.31%) 34.92 36.15 35.41 0.028 1.33
112 kbps MultiStage 108.76 (-2.89%) 34.92 35.50 35.25 0.007 2.32
LPF 105.70 (-5.63%) 34.71 35.34 35.01 0.013 0.41

3.3.3 Effects of Quality Variation Constraint on PSNR and

Complexity

One important feature of our schemes is the flexibility of adjusting the picture quality

variation over time. Our schemes achieve the MINAVE goal in (3.1) when dp=20. It produces

the constant quality pictures when dp approaches 0 dB. Generally, if dp is smaller than 0.4 dB,

a consistent quality solution is practically obtained. By adjusting the dp value in the range of
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[0.4,00], we obtain a solution in between the constant quality and the MINAVE.

The disadvantage of using a large dp value is to increase the number of branch expansions and
active nodes. It has a much less impact on the LCQC algorithm since LCQC does not have the
trellis structure. Table 3.5 shows the test results. Indeed, its computational load increases only

slightly from a small dp to a large op.

Table 3.5. Effect of quality variation constraint on PSNR and complexity for the LCQC

algorithm on three sequences, Foreman, Table Tennis, and News at three quality constraints.

PA:PU—PLzde.
. Target . .
Video Rate Qua.llty PSNR(dB) Time(hr)
Constraint(dB) Min Max Ave Var
0.2 25.76 26.48 26.01 0.017 2.45
Foreman | 24kbps 0.4 25.67 26.91 26.07 0.055 2.51
1.0 25.34 27.48 26.32 0.319 2.56
0.2 32.10 33.09 32.47 0.022 2.12
Table
Tennis 64kbps 0.4 32.09 33.15 32.50 0.049 2.23
1.0 31.75 33.62 32.81 0.138 2.31
0.2 37.82 38.61 38.31 0.020 1.17
News 112kbps 0.4 37.75 38.70 38.34 0.027 1.24
1.0 37.93 39.31 38.47 0.062 1.29

Fig. 3.4 is the frame PSNR plot for the News sequence at different quality variation
constraints. Simulation results show that a larger dp.value leads to larger picture variation but
produces a higher PSNR. As shown'in Fig. 3.4(b),"the PSNR curve produced by LCQC has
little variation at the beginning of the sequence as compared to that of TCQC in Fig. 3.2(a). It

shows that the LCQC algorithm generates even more smooth PSNR outputs.
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3.3.4 Effects of ClusterSize on PSNR and Complexity

Table 3.6 shows the TCQC results at various P, values. As expeeted, the average PSNR value
decreases when P, gets larger. The granularity. loss is ‘defined as the absolute PSNR
differences between P,=0.1 dB"case (very fine granularity) and the larger P cases. When the
cluster size is very small (P,=0.1 dB), we essentially achieve the best possible results without
PSNR loss due to the use of cluster. As expected, the granularity loss is getting larger as the
cluster size is larger than 0.1 dB.

Since LCQC does not have trellis structure, LCQC has no granularity loss. But on the
other hand, the LCQC formulation is an approximation to the integer programming problem
[11]. Also, in the lambda search procedure, we stop at a given tolerance. Therefore, there is a
performance loss due to the use of Lagrange cost and tolerance. Table 3.7 shows the test

results of TCQC and LCQC at the same quality variation of 6p=0.4dB and the same PSNR
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range of Py-P;=2dB. The cluster size is 0.1 dB for TCQC. As expected, TCQC is slightly

better but the PSNR difference is typically less than 0.3 dB. Again, LCQC is much faster in
speed.
Table 3.6. Effect of cluster size P,on the PSNR loss for the TCQC algorithm on Foreman and

Table Tennis at three cluster sizes and dp =0.4 dB.

Video T;;%:t Cluster Size (dB) PSNR(dB)
Avg Granularity Loss
0.1 35.38 0.00
Foreman 112 kbps 0.2 35.29 0.09
0.4 35.01 0.37
0.1 26.74 0.00
Table
Tennis 24 kbps 0.2 26.73 0.01
0.4 26.62 0.12

Table 3.7. Comparisons of average PSNR, bit rate, and complexity in TCQC and LCQC

algorithms for thrée sequences.

Video T;;%eet Rate(% error) Ave. PSNR(dB) Time(hr)
TCQC LCQC TCQC LCQC | Tcoc | LcQc
24 kbps | 23.83 (:0.73%) | 23.69 (-1.30%)| 26.11 26.07 8.15 251
Foreman| 64 kbps | 63.38 (:0.97%) | 63.74 (-:0.41%)| 32.30 3230 4.08 1.82
112 Kbps | 111.46 (-0.48%) |111.87 (-0.11%)|  35.38 3538 321 139
24 Kbps | 23.95 (:0.20%) | 23.90 (:0.42%)| 28.81 28.55 7.56 242
News | 64 kbps | 62.95 (-1.65%) | 6323 (-120%)| 3481 34.68 3.53 1.69
112 kbps | 109.71 (-4.24%) | 111.57 (-0.38%)|  38.41 3834 184 124
24 Kkbps | 23.70 (-125%) | 22.97 (4.28%)|  26.74 2638 7.98 247
TT:nbr:?S 64 kbps | 63.17 (-130%) | 63.68 (-:051%)| 32.61 32.50 5.26 233
112 kbps | 111.66 (-0.30%) |111.53 (:0.42%)|  35.4 3537 3.29 141

3.4 Summary

In this chapter, we realize the triple goal of producing consistent quality videos, minimizing
the total distortion and meeting the bit budget strictly. Moreover, this framework can flexibly
provide a solution in between the MINAVE and constant quality extremes. Two algorithms
are proposed to find the optimal and consistent quality solution. Inspired by the previous work,

a trellis-based quality control scheme is firstly proposed. This approach provides a nearly
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optimal solution (the resulting total distortion is minimized) for a given bit rate budget on a
dependent coding platform. The second algorithm is developed based on the Lagrange
multipliers method. We impose the consistent quality constraint on this formulation and also
we design a fast procedure to find the optimal solution. As compared to the trellis-based
algorithm, it runs much faster and has a performance very close to the former. Simulation
results show that both approaches have the largest PSNR average at a slight PSNR variation
as compared to the other published consistent quality proposals and have a much smaller
PSNR variation at a slight average PSNR loss as compared to the MPEG JM rate control. In
addition, only the proposed algorithms can strictly meet the target bit budget requirement.

Due to the inter-frame dependent consideration, two proposed schemes have rather high
computational complexity. Therefore;-they are targeting at off-linerapplications such as video
storage applications and DVD playback, in“which the coding performance has a higher

priority than the'complexity.
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Chapter 4

Graceful Quality Control Algorithm

In this chapter we discuss the graceful quality variation target needed for the video
transmission applications. Since the channel capacity is time-varying, the channel estimation
is usually employed to predict the available channel bit rate per GOP duration. Or,
equivalently, the GOP budget bits vary over time. This;circumstance creates the needs that the
coded picture quality shall- gradually change to match the fluctuation of the channel bit rate.
Due to lower complexity needed-in-transmission applications, we use the Lagrange-based
method only. Im* Section 4.1, the: graceful quality variation problem is formulated
mathematically."In Section 4.2, the proposed LCQC algorithm is modified and employed to
achieve the graceful quality variation goal for its simplicity and efficient. Section 4.3 presents
the simulation results which' show the effectiveness of our algorithm for video transmission

applications. Section.4.4 summarizes the findings and their limitations.

4.1 Graceful Quality Variation Problem

Inter-frame quality control is necessary in achieving the smooth video representation. Because
the proposed quality coding scheme controls picture quality inside a GOP, the quality control
across GOP boundaries is also needed. As discussed in Section 3.1.2, it is clear that using
distortion, not the bit rate, is more convenient to achieve the graceful quality variation. That is,
we also use the proposed proposition in Section 3.1.2 to perform MinR(Dy) rather than
MinD(R7) except that the coding performance is evaluated on the GOP basis instead of on the

sequence basis. This problem is thus formulated as follows.
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In the independent coding formulation, the Ath frame distortion and bits in a GOP, i.e., di
and 7y, only depend on the current frame QP values. Given K frames in a GOP and a total

GOP bit budget Rz, our goal is to minimize the overall GOP distortion D by choosing the

optimal frame-level QP values q* ={ 4,,9,,9,,.., 4x_ } for all K frames, where ¢, € Q, for

k=0,1,...K-1. That is,

K-1
g*¥=argmin D = de(qk),

q, €0 k=0

subject to the constraints

R= _r(q)SR,and
kzzo:" S (4.1)

11 (d,)-r(d,,)| <8, Yke{o,...k-1},
where f(.) is the PSNRfunction caleulated by™ £ ()< 10tog, (255" x#PN/a) and FPN is the pixel

number in a frame. The second constraint in (4:1).is added to limit,the inter-frame quality

variation; that isy the difference PSNR is limited by *op. In additiony to consider the quality

control across GOP boundaries; the-quality-constraint-on the first frame in a GOP can be
specified by the last frame in the‘previous GOP, except for the first GOP. More specifically,
the first frame quality f{dp) in a GOP is limited by the.dast frame quality f{(d_;) in the previous

GOP.

4.2 Graceful Quality Control Algorithm

In this Section, we propose to use the Lagrange-based method to solve the inter-frame quality
variation problem. As shown in Section 3.2.4, the Lagrange-based LCQC method is
introduced to solve the consistent quality problem across all frames in a sequence. Simulation
results show that the Lagrange-based method has a lower computational complexity and its

PSNR value is on a par with that of the Trellis-based method when the optimal lambda value
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is found. Therefore, the proposed LCQC algorithm is modified to meet the need of graceful
quality change in the transmission applications and a new Lagrange-based graceful quality
control (LGQC) method is thus developed.

The LGQC algorithm differs from the LCQC algorithm in that the quality constraint is

imposed on the neighboring frame and each GOP is independently processed. The current
frame quality f{dy) limited by f (5) +6,in (3.1) is replaced with f(d, )+ 6, in (4.1) even when

the GOP boundary is crossed. Since each GOP is independently processed, the optimal
lambda value of each GOP can be different. Further, the optimal lambda search complexity

can be reduced by referring to the optimal lambda value'in the previous GOP. In addition, the
consistent quality conStraint, i.e., 2, < /(D) <P, , is no loner 'needed in the graceful quality
control applications. The LGQC proceduse is described as. follows.

First, the budget constraint of R(2 )=&_is rélaxed. We start™with two initial lambda
values, 4, and 1 , such that R(2,) < R, < R(4) .is satisfied. We then find a proper lambda range,
denoted by[4,.4; ], which inclddes_the lambda value as a ipart' of the solution to the
Min J(4) problem‘with two constraints, lr(d)-r(d, )= dy,and R(2,)<R, <R(4,).Thus,
the optimal lambda value 4" is guaranteed to locatesin the selected range. Then, we employ a
fast bisection algorithm to find the optimal ‘solution to the #(2") = &, problem. The lambda
search process iterates until the predefined bit rate tolerance, i.e.,R. — R(4) / R, <&, 1s satisfied.

After the fist GOP is done, we set the next initial lambda interval[4,,2,] with [0.2/1‘,5[]

empirically to reduce the search complexity for the optimal lambda value A~ in the next GOP.

Overall, the step-by-step LGQC algorithm is summarized below.

Algorithm 3: Lagrange-based Graceful Quality Control (LGQC) Algorithm
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Step0:

Stepl:

Step2:

Step3:

Step4:

Start with two values 4, and 4, such thatr(2,) <R, <R(2,). SetA, =(4,+4,)/2 and

frame index £=0.

Given/,, use the fast branch expansion technique to examine all the QPs that

SatiSfy|f(dk)_f(dk—l )| < 5[: .

Encode the current frame again using the current QP value. If the current frame is

not the last frame in the GOP, let k = k+1, go to Step 1.

IfrR(2,) <R, setd, =4, =4 .Blseseti, = i+=4 . If the lambda interval boundaries,

4, and 4 gare both found, go to Step 4. Otherwise, let 4, =(4, +4,)/2, k=0, go

to Step. 1.

Perform the ‘fast bisection search algorithm [30] in the lambda range [1,.4,] to
find the optimal 7', i.e., R(27)=&,. The usual stop rule R ~R(1)/R, <& isadopted.
A few,_assistant techniques are proposed in [30]i'so that this search process

convergesirather fast. Normally, this step takes 2/to 4 iterations. The final 2° and

its associated QPs are our optimal solution. This' GOP is now done. Go to Step 2
and seti =1,4 =02x1",4,=5%x2, and the frame index =0, if we continue

encoding the next GOP.

4.3 Simulation Results

We have

implemented the proposed graceful quality control algorithm on the MPEG-4

AVC/H.264 video coder with the RDO option turned on. Its performance is evaluated using
two standard MPEG video sequences, Foreman and Carphone. All test videos are 300 frames

in QCIF size. The GOP size is 30. Only I- and P- frames are in use. The channel bit rate for
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each GOP is set to follow the sinusoidal fluctuation patterns. Simulations are performed on a
3-GHz Intel Pentium CPU.

We conduct two sets of simulations to evaluate the proposed LGQC algorithm. First, the
PSNR performance of the LGQC algorithm is compared to that of JM7.6 rate control at the
varying channel bit rate and the first QP in the JM7.6 rate control is set to be identical to that
of the LGQC algorithm. Next, the PSNR and complexity of the LGQC algorithm are

compared with two inter-frame quality variation values - to show the PSNR and complexity

tradeoff. Because we use only the Lagrange-based method, the analysis of cluster size effect is

not needed.

4.3.1 LGQC Performance Comparison with JM

The LGQC algorithm is evaluated on two different video sequences, Foreman and Carphone,
at two time-varying GOP bit rate sets. Their bitrate variations follow the stairstep patterns
shown in Figs. 4.1(a) and 4.1(b) respectively.
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Fig.4.1. Channel. bit irate patterns for LGQC graceful quality contrel test on two different
video sequences:(a) Foreman, and (b) Carphone.
Fig. 4.2 depicts the frame-by-frame PSNR plots for L GQC and JM7.6 algorithms at two
varying channel bit rates. The maximal quality variation parameter used in the LGQC

algorithm is 0,=0.5 dB.. The LGQC PSNR curve has ne'drop at the GOP boundaries. It has a

smoother shape at the largely varying channel bit rate as compared to that of JM7.6.
Obviously, the PSNR variance of JM7.6 is very large. This is because the first QP in the
current GOP is upper and lower bounded by that in the previous GOP. The average PSNR
values of JM 7.6 and LGQC are 33.27 dB and 32.40 dB in Fig. 4.2(a) and 35.42 dB and 34.26
dB in Fig. 4.2(b) respectively. However, the JM algorithm has a large bit rate mismatch. The
budget bit achievement ratio of JM 7.6 is 205.54% in Fig. 4.2(a) and 184.66% in Fig. 4.2(b)
respectively. In contrast, the budget bit achievement ratio of LGQC is 99.81% in Fig. 4.2(a)

and 99.75% in Fig. 4.2(b) respectively. Thus, the proposed Lagrange-based method achieves
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nearly the optimal solution. Although the JM 7.6 PSNR performance is better but it uses a
much higher bitrate and it has a large swing of more than 20 dB in PSNR across the entire

sequence. We summarize these simulation results in Table 4.1.
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Fig.4.2. PSNR plots of the LGQC and JM?7.6 algorithms for two sequences at two different
channel bit rates. (a) Foreman sequence using rate pattern in Fig. 4.1(a). (b) Carphone
sequence using rate pattern in at Fig. 4.1(b).

Table 4.1. Comparisons of PSNR, bit rate, and complexity for JM 7.6 and LGQC algorithms on

the Foreman and Carphone sequences at two varying channel bit rates.

Video Avg Target Method Rate(% error) PSNR (dB) Time(hr)
Bit Rate Min | Max | Avg | Var
IM7.6 131.55 (+105.54%)| 22.06 | 45.39 | 33.27 | 38.04 0.13
Foreman 64 kbps LGQC at 0, =0.5dB| 63.88(-0.19%) 29.09 | 35.66 |32.40 | 2.68 1.42
(Fig. 4.1(a)) P ) ) ) ) ) )
LGQC at 5p =1.0dB| 63.96 (-0.06%) | 28.63 | 35.42 | 32.40 | 2.54 1.53
IM 7.6 147.73 (+84.66%) | 23.57 | 46.64 | 35.42 | 44.97 0.13
80 kbps _ o
Carphone (Fig. 4.1(b)) LGQC at 5p =0.5dB| 79.80(-0.25%) 26.65 | 37.95 | 34.26 | 10.58 1.65
LGQC at 5p =1.0dB| 79.94 (-0.08%) | 28.99 | 37.93 | 34.35 | 9.43 1.87

4.3.2 Effects of Quality Variation Constraint,on PSNR and

Complexity

In this section, we change the quality variation parameter ,=1.0dB and rerun the experiments
in Section 4.3.1. We like to sec the effect of quality variation constraints on PSNR and
complexity. Fig. 4.3 is the frame PSNR and used bit, plots for Foreman and Carphone
sequences at two dp values. The details of numerical values are shown in Table 4.1.

As shown in Fig. 4.3(a) for the Foreman sequence, the PSNR curve produced by the
0p=1.0dB case has similar frame-by-frame quality variation as compared to that of 6p=0.5dB
case. It indicates that the quality constraint of dp=0.5dB is sufficient to achieve the optimal
solution for the Foreman sequence at the given GOP budget bits. Note that dpis defined by
the “maximal” quality variation allowed between two nearby frames. In contrast, the
simulation results in Fig. 4.3(b) for the Carphone sequence show similar results except for the

frames between 180 and 210, where the scene change occurs. It show that 0,=0.5dB has a
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large quality variation in this GOP. As stated in Section 3.3.3, a larger Jp value leads to a
larger picture variation but produces a higher PSNR. This claim has an implicit assumption
that a larger bitrate is available in these frames which contain high motion or scene changes.
Due to the limited GOP budget bits (the number of frames is small) and the imposed
inter-frame quality variation constraint, a good bit allocation policy applied to scene change is
to decrease the frame quality as early as possible. Therefore, the quality variation of the
0p=1.0dB case is smaller than that of the p=0.5dB case during this scene change period. As
shown in Table 4.1, the minimum PSNR values are 28.99 dB and 26.65 dB for LGQC
0p=1.0dB and 6p=0.5dB cases, tespectively. Consequently, a larger Jp case produces a higher
average PSNR.

Clearly, usinga large dp value-shall increase the number of branch expansions. However,
because the proposed LGQC algorithm uses the fast branch expansion process introduced in
Section 3.2.3, the computational load increases only slightly. As shown in Table 4.1, the

increased computation is around 0.1 hour.
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Fig.4.3. PSNR and used bit plots of the LGQC with.two op values and JM7.6 algorithms for

two sequences at:two different channel bit rates. (a) Foreman sequence, PSNR plots at Fig.
4.1(a) bit rate. (b)’Foreman sequenceused bit plots at Fig. 4.1(a) bit rate. (c) Carphone
sequence PSNR plots at Fig. 4.1(b) bit rate. (d) Carphone sequence used bit plots at Fig. 4.1(b)

bit rate.

4.4 Summary

In this chapter, we aim at the smooth video representation for time-varying channels and the
total distortion is minimized and the bit budget is met accurately. The third algorithm is
proposed to find the optimal solution to solve this problem. First, the problem is formulated
mathematically. Next the step-by-step procedures are described and verified by simulation. It
is shown that the proposed algorithm yields smoother video quality than the JM7.6 rate
control and the total bits used are very close to the given budget bits. In addition, the effect of

quality variation parameters on PSNR and complexity is discussed.
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Despite the optimality of proposed method in this chapter, their computational load is
still high. Vector or parallel processing hardware structure is needed for its real-time
implementation. Thus, the proposed algorithm may be more suitable for off-line applications

such as Internet video streaming.
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Chapter 5

Conclusions and Future Research Topics

In this thesis, we discuss the consistent and graceful quality control techniques for video
storage and transmission applications. The main results of the thesis are summarized below.

The study of consistent quality control technique is discussed in Chapter 3. Many
existing schemes cannot achieve at the same time the-goal of minimizing total distortion and
the goal of meeting budget bits accurately for constant quality representation. In contrast, this
study achieves three,goals (a) consistent video quality (b) minimizing the total distortion and
(c) meeting the bit budget accurately.-Moreover, by adjusting one key parameter, the goal in
the proposed framework can also be the constant quality or the MINAVE quality. Two
algorithms are ‘proposed to find the optimal and consistent quality solution. A trellis-based
quality control scheme is firstly proposed; Then the Lagrange multipliers method with fast
branch expansion process and optimization procedure is proposed to significantly reduce the
computational complexity at a slight average PSNR.10ss. Simulation results show that both
approaches have the largest average PSNR at a slight PSNR variation as compared to the
other existing consistent quality proposals and they have a much smaller PSNR variation at a
slight average PSNR loss as compared to the MPEG JM rate control. In addition, only the
proposed algorithms can strictly meet the target bit budget requirement.

The Lagrange multipliers method is attractive for its simplicity and efficiency in the
consistent quality applications. In Chapter 4, we discuss the graceful quality fluctuation
needed in source encoding to accommodate the time-varying channel bandwidth. Due to

lower complexity needed in transmission applications, we use the Lagrange-based method
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only. Based on the second algorithm, the third algorithm is proposed to achieve the graceful
quality variation goal while minimizing the total distortion and meeting the bit budget
accurately. Simulation results show that the proposed algorithm produces smoother quality
videos and the total bits used are very close to the given budget bits.

In this thesis, we discuss the design and analysis of a quality control framework in video
coding. Some potential research topics are as follows. First, the joint source-channel coding is
not discussed but it is an important topic. In Appendix A, our study related to channel coding

is presented for future source-channel integration. Second, although the optimal performance

is achieved in these proposed;ialgc M ] imot propose a real-time algorithm. A

potential topic is to
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Appendix A
Performance Analysis for Serially
Concatenated FEC in IEEE802.16a over

Wireless Channels

A.l Introduction

Recently, IEEE has proposed the standard referred to as IEEE802.16a for the local and
metropolitan area network [39]. Its serially concatenated FEC scheme consists of an
RS(255,239,8) code as the outer code and RCPC codes as the inner code.

To combat the severe channel degradation, concatenating RSscode with convolutional
code (CC) could enhance their error control performance [40].: One advantage of using
RS/RCPC concatenated codes -is that they can provides multiple services and multiple rate
transmissions, which is particularly useful for multimedia communications.

The idea of RCPC codes was first introduced by Hagenauer [37]. The performance
analysis of this type of codes over wireless channels could be found in [41]. However, few
studies have been reported on the performance analysis of the concatenation of the RS code
and the RCPC codes together. In addition, we like to identify a suitable operational range in
terms of signal-to-noise ratio and acceptable performance. The aim of this appendix is to
investigate the performance of RS/RCPC concatenation defined by the IEEE802.16a
specifications over the AWGN and the FI-RFC channels [41]. We derive the union upper

bounds on the BPSK-modulated BER (bit-error-rate) at the output of the concatenated RCPC
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and RS code. Also, we compare the theoretical bounds with the simulation results.

The rest of this appendix is organized as follows. Section A.2 describes the system model.
Union upper bounds on BER and PER are derived in Section A.3. Section A.4 shows the
simulation results and comparisons are made with the theoretical upper bound. Finally,

conclusions are drawn in Section A.5.

A.2 System Model

The model of the transmission system to be analyzed is shown in Fig. A.1. The message bit

stream in the analysis and simulation|is assumed to be a random bit sequence u,. The

message bits are packed:into blocks of 239x8 bits since the.RS code operates over GF(2%).
Each block is first coded by RS(255,239,8) coder:’ This coder inserts 16x8-bit redundancies
for each block. Thus, the output is a packet of length 255, bytes, which are then fed into the
RCPC coder. The mother code of this RCPC code has a coding rate,of 1/2 and a constraint
length of 7. With different puncture patterns:(perforation matrices), this RCPC is capable of
producing five different coding rates; 1/2, 2/3, 3/4, 5/6, and 7/8.: Therefore, depending on the
channel condition, We can seleet aniappropriateé bit rate that leads to'the best trade-off between
data throughput and error probability. A number of tailing bits are inserted to ensure proper
decoding operation with an aceeptable decoding delay: The choice of tailing bits leads to a
tradeoff between the error control performance and the data throughput rate. Another
parameter in the practical Viterbi decoding process is the decoder depth (decision path length).
This study uses 10 tailing bits and the decoder depth is 210 bits, 35 times the memory span of
the mother convolutional code of the given RCPC to get better performance in the Rayleigh

fading channel. The coded bits are the BPSK-modulated and the modulated symbols {x,} are

transmitted.

55



2 RS - RCPC- | %

— -
Codea; Code~
—— | | a!
Vi BM Viterbi | | %
Decoder@ Decodewg

Fig. A.1. System model.
Suppose the test channel has slow jand flatsRayleigh fading, then the phase error can be
perfectly tracked. We futther assume coherent demodulation is available. The received

sample y, is thus expressed-in the form

2R E,
= —F =X
0

(A.1)
where £, is the energy per information bit,  Ris the selected code rate of RCPC codes, and
n.1s the zero mean white Gaussian noise' sample with unit variance: Because we assume the
channel is a fully interleaved Rayleigh fading channel, the sequence {¢,}of the fading

envelope is independent and is identically Rayleigh distributed with the following probability

density function,

a?

a 5o
fla)==e? (A.2)
o

where o’ is the time-average power of the received signal before the envelop detection and
the fading envelope o has the properties of « >0and E[of]: 1. Moreover, «ais set to one for
the AWGN channel. Soft decision decoding (SDD) with no quantization is used in
conjunction with the Viterbi decoding process. In the RS decoding, the Berlekamp-Massey
based algorithm is used in simulation and only the error-correction ability is considered. After

RS decoding, the output bit sequence {v,} is obtained and then the BER (bit error rate) and
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PER (packet error rate) of the RS code are calculated.

A.3 Performance of Serially Concatenated FEC

In this section, the upper bounds on BER and PER of serially concatenated FEC are derived
for the AWGN and the FI-RFC channels. In the IEEE802.16a specifications, the concatenated
FEC can operate together with both BPSK and QPSK modulations; however, we analyze the
BPSK modulated signal only, since the performance of QPSK modulation is essentially the

same as that of BPSK [43].

A.3.1 Union Upper.Bound on the BER of RCPC Codes

The typical union bound can be expressedrinithe form

L L (A.3)

b,RCPC —

Pp

where pp,d, ,.and; ¢, are the puncture period, free distance, and weight distribution

/2
coefficient, respectively. Detailed description of the above'parameter$ can be found in [42].

Here, we calculate upper bound.of P, zz=by-summing-up-the Hamming distance d in the range
ofd, tod, +9. Without loss of generality, transmission of the.all-zero sequence is assumed and
the pair-wise error probability p,(d)is referred to_the case of selecting an incorrect path with

Hamming weightd in the Viterbi decoding process. In AWGN and coherent BPSK scheme,

p,(d)is given by

- (A.4)

0

P (d)- Q[ 24R E, j
where the © function is defined by 0(x)=(v27) [ “e%ax . Under the FI-RFC, coherent BPSK,

SDD, and perfect channel estimates {¢,} assumptions, the pair-wise error rate p,(d) is

derived using the concept of diversity. The concatenated FEC utilizes the time diversity

technique to attain independent fading envelope «, among the received coded symbols. A
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closed form of the pair-wise error rate p,(d) is given by

d-1

Pz(d)=7§’2(f1_1+i](l-n)i (A.5)

i=0 \

where y, :0.5(1—1/R(,yb/(1+Rl,yb)) and y,=E,/N,[43]. This probability is the d-th order time

diversity, which is equivalent to the d-th order path diversity when the max ratio combining is

applied.

A.3.2 Union Upper Bound on BER of RS Codes

The union upper bound on PER can be constructed based on the symbol error rate, which is
derived from the union bound on the BER of RCPC. A:inion upper bound on the PER of the

RS code is expressed in the form

By [f}p"(l—p)” (A.6)

i=t, 1

where p=1-(1=8 pere )8. When an RS code word etror occurs, thesassociated 8-bit symbol

error rate is given by

Birs < l " l[njpl (1 i p)nii (A7)
i\t
and the corresponding upper bound on BER is approximated by
2k—1
P <——0P (A.8)

b,RS = Ak 5,RS
20

A.4 Simulation Results

In this section, the average BERs of RCPC and RS codes are calculated using the simulated
data. The BER values are plotted and compared to the corresponding theoretical upper bounds
for the code rates 1/2, 2/3, 3/4, 5/6, and 7/8. In the simulation, up to 107 data bits are
transmitted. Simulations are plotted on Figs. A.2-5, where T and S denote theoretical bound
and simulation results respectively. Simulation results of BER are close to the theoretical

bounds, particularly when the signal-to-noise ratio is large. These results are consistent with
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the findings of the previous study [43]. Also, it shows that simulation results and theoretical
upper bounds are fairly tight. In addition, the uncoded BER curve is also plotted. It is clearly
shown that the coding gain can be obtained if the signal-to-noise ratio is sufficiently large.
Fig. A.6-7 showed the average PER of 255-byte RS packets in the AWGN and FI-RFC
channels, where A and R denote AWGN and FI-RFC channels respectively. With this data,
researchers who are primarily interested in packet-based transmission might simulate their

testing platform more easily with IEEE802.16a specification and get more realistic results.
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Fig. A.6. PER of RS code in AWGN.

61

107} e
o
]
S
a
0
re]
N
x 1072 n 7
w
o
Iy =)
g ]
g
S e T2
—— T2/3
3| —— T 3/4 .
070 « 150 ]
8- T7/8
|- O S1/2
1|+ S2/3
x-S 3/4
'| % S5/6
Lo s
10
0 15
Eb/No(dB)
J Fig. A.5. BER of RS code in FI-RFC.
10°
© =+ 9 e O
(@] - O
.+ y *_y . .
+ : * ‘
107 X. B ‘D» ]
—_ » *
%) . ’ o
2 * g 3
[Te) ’ *
& o
~— -2 N
o 10 | 7
g + e :
o
(=)
@ !
o : :
3 ; ._ )
. i
10°F ' g
X
O A1l/2
+ A2/3
x- A3/4
*- Ab5/6
o A7/8
10*4 I ! ! ! ! ! ! !
0 0.5 1 1.5 25 3 3.5 4 4.5 5
Eb/NO(dB)



AN

average PER (255 bytes)

w

10" —+ T T ]
L -©- R1/2 |}
[ —+— R2/3 |]
F —>— R3/4 |1
L —*— R5/6 |1
L —-8- R7/8 ||
10 | E
10°F 7
10°F 7

-4 ! !
0 5 10 15
Eb/No(dB)

10

Fig. A.7. PER of RS code in FI-RFC.

A.5 Conclusions

In this appendix,”the performancée of the serially concatenated CFEC defined by the
IEEE802.16a specifications issanalyzed and simulated for both AWGN and RFC channels.
The RFC channel is assumed to'be slow and flat fading and is fully interleaved. Moreover, the
soft decision Viterbi decoding has no quantization. The upper bounds on BER of RCPC and
RS codes have been derived and are compared to the simulation results. We thus found that
the upper bounds are quite tight.

Also, the PER performance is simulated and summarized. With this set of data,
researchers interested in packet-based transmission could easily design their IEEE802.16a
systems that meet the target performance. In conclusion, we provide a suitable operational
range for IEEE802.16a, which is a trade-off between the signal to noise ratio and the desired

performance.
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