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Abstract:  Unit hydrographs (UHs), along with design rainfalls, are frequently used to determine 
the discharge hydrograph for design and evaluation of hydraulic structures. Due to the presence of 
various uncertainties in its derivation, the resulting UH is inevitably subject to uncertainty. Conse- 
quently, the performance of hydraulic structures under the design storm condition is uncertain. This 
paper integrates the linearly constrained Monte-Carlo simulation with the UH theory and routing 
techniques to evaluate the reliability of hydraulic structures. The linear constraint is considered 
because the water volume of each generated design direct runoff hydrograph should be equal to that 
of the design effective rainfall hyetograph or the water volume of each generated UH must be equal 
to one inch (or cm) over the watershed, For illustration, the proposed methodology is applied to 
evaluate the overtopping risk of a hypothetical flood detention reservoir downstream of Tong-Tou 
watershed in Taiwan. 

Keywords: Unit hydrograph, uncertainty analysis, linearly constrained Monte-Carlo sirnulation, 
reliability analysis. 

1 I n t r o d u c t i o n  

Since Freudenthal  (1947, 1956) first pioneered the structural  reliabil i ty concept in 
the area of civil engineering, much effort has been devoted to solving load-resistance 
interaction problems (Ang and Tang, 1984; Shinozuka, 1964; Shinozuka, 1981; Yen et 
ai., 1986). The effort has resulted in many practical  solution methods for reliability 
analysis. The rel iabil i ty of a hydraulic s tructure is the probabil i ty  that  the load does 
not exceed the capaci ty  or the resistance of the hydraulic structure.  On the other 
hand, the risk is the probabi l i ty  that  the load exceeds the resistance causing the failure 
of a hydraulic structure.  Failures can be broadly classified into performance failure 
and s tructural  failure. Herein, the term 'failure'  is used in a very general manner. 
The specific definition of the failure would depend on the problem to be addressed. 

Due to the presence of various uncertainties,  reliabili ty analysis is becoming an im- 
por tant  task in the  design and analysis of hydrosystems or hydraulic structures.  The 
methods for hydraulic  structures reliabili ty analysis can be classified into direct inte- 
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gration method, safety margin and safety factor method, first-/second-order methods, 
dynamic (time-dependent) reliability methods, and Monte-Carlo simulation and its 
variations (Yen et al., 19861 Mays and Tung, 1992; Yen and Tung, 1993). Monte- 
Carlo simulation methods implicitly consider the load-resistance interaction whereas 
the other methods do so explicitly. 

As discussed by Shinozuka (1989), Monte-Carlo simulation methods are becoming 
more promising and practically feasible tools in reliability anaIysis because (1) many 
much more complex real-life problems can be solved as computational hardware and 
software capabilities expand with accelerated speed, and (2) there are many large 
problems which simply cannot be approximated by explicit methods. In the area 
of hydraulic structure reliability analysis, hydraulic or hydrologic routing is often 
required to evaluate the failure probability of a hydraulic structure, which makes 
the explicit evaluation of the risk difficult, if not impossible. This paper focuses 
on integrating Monte-Carlo simulation with the unit hydrograph (UH) theory and 
routing techniques to evaluate the failure probability of a hydraulic structure. The 
failure probability of a hydraulic structure is computed by the fraction of simulations 
which produce inflows that cause the occurrences of failure to the hydraulic structure. 
Due to the mass balance constraint of input and output in a surface watershed system 
or the unity constraint for a UH, the linearly constrained Monte-Carlo simulation, in 
particular, will be applied. 

The UH theory is one of the most widely used hydrologic engineering tools for 
rainfall-runoff analysis. It is based on linear and time-invariant system theory, which 
leads to a convolution relationship among the effective rainfall hyetograph (ERH), 
direct runoff hydrograph (DRH), and UH. Based on the UH theory, the ERH and 
DRH are, respectively, the input to and output from a surface watershed; and the UH 
is the transformation function uniquely characterizing the surface watershed system. 
Once a UH for the surface watershed is derived from historical storm data, the selected 
design ERH is convolved with the UH to obtain a design DRH for the purposes of 
hydraulic structure design and analysis. In a discrete-time and matrix framework, 
the convolution relationship can be written as (Chow et al., 1988) 

Pdsgn u = qdsgn  (1) 

in which Pasan is a special Toeplitz matrix with its columns whose elements made 
up of shifted-down design ERH ordinates I u is a column vector of UH ordinates; and 
q&g~ is a column vector containing the design DRH ordinates. In turn, the computed 
design DRH, q&gn, combined with the baseflow, serves as the input to the hydraulic 
structure located downstream of the surface watershed. Then, the performance of the 
hydraulic structure can be evaluated by routing the design flow hydrograph through 
the hydraulic structure such as a detention reservoir, or levee. 

Because of measurement and data-processing errors in the EIKH and DRH and 
possible violation of assumptions for the UH theory, the derived UH is always subject 
to a certain degree of uncertainty. The uncertainties associated with the UH, through 
the convolution operation as shown in Eq.(1), will be transmitted to the design DRH. 
Therefore, the UH and DRH are random vectors. If the UH uncertainty features 
such as the mean vector and covariance matrix are known or quantified from an 
uncertainty analysis, Eq. (1) then can be used to analytically derive the mean and 
covariance matrix of the design DRH. With an assumed probability distribution, 
Monte-Carlo simulation can be used to generate random DRtt vectors. Some example 
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applications of Monte-Carlo simulation can be found in stream flow generation for 
purpose of reservoir and river system design (Fiering and Jackson, 1971; Hufschmidt 
and Fiehag, 1966), freeboard design of river bank (Mizumura asld Ouazar, 1992), 
a~d excavation scheduling in open pit coal mining operation affected by groundwater 
drawdown (Nguyen and Chowdhury, 1985). When a random vector, without being 
subject to any constraints, follows a multivariate normal distribution, the generation 
of random vectors can be performed by several efficient techniques (Ang and Tang, 
1984; Borgman, 1990). The generated DRH vectors, combined with the baseflow, are 
routed through the hydraulic structure located downstream of the surface watershed. 
It is conceivable that some of the generated DRH vectors may cause the failure of the 
hydraulic structure. The fraction of simulations in which failure incidents occur is 
the risk or the failure probability and such information is essential for the evaluation 
and modification of the hydraulic structure. 

By the law of mass conservation, the water volume of each generated DRH must be 
equal to that of the design ERH or, by definition, the water volume of each generated 
UH should be equal to one inch (or cm) over the watershed. Such physical constraints 
should be preserved in the Monte-Carlo simulation which generates random UHs 
and design DRHs. In particular, the linear constrained Monte-Carlo simulation is 
applicable to the problem in hand. The linearly constrained MontesCarlo simulation 
may be conducted by using the acceptance-rejection method which was first proposed 
by yon Neumann (1951). Detail discussions on the acceptance-rejection method are 
given by Rubinstein (1981). The acceptance-rejection methods depend on a much 
larger number of simulations in order to satisfy the constraint and, therefore, are not 
computationally efficient. On the other hand, every randomly generated UH and 
DRH vectors by the proposed method described later always satisfy the mass balance 
constraint. For a multivariate normal random vector subject to linear constraints, 
Borgman and Faucette (1993) recently developed an efficient method that converts 
the Gaussian linearly constrained simulation into the Gaussian conditional simulation 
which can be straightforwardly implemented. 

In this paper, the algorithm of Gaussian linearly constrained simulation is described. 
For illustration, the simulation algorithm, in conjunction with the UH theory and 
routing techniques, are applied to evaluate the overtopping risk for a hypothetical 
flood detention reservoir at the downstream end of Tong-Tou watershed in Taiwan. 
Furthermore, elaborations are given to some potential extensions of the proposed 
simulation algorithm in the risk-based design and analysis of hydraulic slructures. 

2 Unce r t a in ty  of  U H  

Yen et al, (1986) point out that the uncertainties in hydrology and hydraulics may 
be attributed to: (1) Natural uncertainties associated with the inherent randomness 
of natural processes; (2) Model uncertainty reflecting the inability of the simulation 
model or design procedure to represent precisely the system's true physical behavior; 
(3) Model parameter uncertainties resulting from inability to quantify accurately the 
model inputs and parameters; (4) Data. uncertainties including measurement errors, 
inconsistency and non-homogeneity of data, and data handling and transcription er- 
rors I (5) Operational uncertainties including those associated with construction, man- 
ufacture, deterioration, maintenance, and other human factors that are not accounted 
for in the modeling or design procedure. 
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The UH theory assumes that the surface watershed is a linear, lumped, and time- 
invariant system which presents the model uncertainty because most watershed sys- 
tems are non-linear, time-variant, and spatially distributed. Furthermore, measure- 
ment and data-processing errors in the ERH and DRH constitute data uncertainties. 
In the process of deriving a UH, these uncertainties will be transmitted to the re- 
sulting UH. Assessments of uncertainties associated with the derived UH have been 
made by using stochastic differential equation techniques (Sarino and Serrano, i990; 
Hjelmfelt and Wang, 1994) for an instantaneous UH (IUH) based on Nash's model 
where the storage coefficient was considered as a normal random variable. Yang et al. 
(1992) showed that the two parameters, N and K, in Nash's IUH model in a water- 
shed are negatively correlated, non-normal random variables. In the multiple-storm 
flamework, Zhao (1992)applied storm resampting techniques to quantify the uncer- 
tainty associated with a discrete UH of a specified duration from multiple complex 
storm events. Through an uncertainty analysis, the uncertainty features of a derived 
UH such as the mean and covariance matrix can be obtained. 

3 Reliability analysis by monte-carlo simulation 

Hydraulic or hydrologic routing is often required to evaluate the reliability of a hy 
draulic structure with the existing capacity. This makes the expIicit quantification of 
risk difficult, if not impossible. Therefore, Monte-Carlo simulation is a viable tooI tbr 
the task. Consider that the UH and DRH are multivariate random vectors and the 
given design ERH is deterministic. According to Eq. (1), the mean and covariance 
matrix associated with the DRH can be obtained, respectively, as: 

E(qdsgn) = Pdsgn E(U) (2) 

C(qa~g. = E { [qdsgn -- E(qdsgn)] [qd~g. -- E(qd~g.)] t } 

= { [ u  - E ( . ) ]  [u  - E(u)I } 

= pa~g~C(u) P~tsgn (3) 

in which E(u) and C(u) are, respectively, the mean vector and covariance matrix 
of the UH ordinates; E(qasgn) and Cqa~g, are, respectively, the mean vector and the 
covariance matrix of design DRH ordinates; and the superscript ' t '  represents the 
transpose of a matrix or vector. 

Once the mean and covariance matrix of the DRH corresponding to the design 
ERH are calculated, Monte-Carlo simulation can. be used to generate random vectors 
of DRH based on an assumed probability distribution of the DRH or UH ordinates. 
The most commonly used multivariate distribution is the multivariate normal (Gaus- 
sian). If the UH vector follows a multivariate Gaussian distribution, then the DRH 
vector also has a multivariate Gaussian distribution because of the linear relationship 
between the UH and DRH vectors. Other multivariate distributions such as multi- 
variate gamma and multivariate Pearson are discussed by Ronning (1977) and Parrish 
(1990), respectively. Recently, a practical approach for generating multivariate non- 
normal random variates with known marginal distributions has been proposed by 
Chang et al. (1994). The algorithm of implementing constrained non-normal mul- 
tivariate simulation is yet to be developed and, therefore, this study will focus on 
multivariate normal distribution. 
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Two approaches can be used to generate random DRH vectors. The first approach 
is to generate random DRH vectors according to the mean vector and covariance 
matrix of qasgn as derived from Eqs. (2) and (3). The second approach is to generate 
random UH vectors based on the mean vector and covariance matrix of u. Each 
of the generated UH vectors is then convolved with the design ERH by Eq.(1) to 
yield the corresponding design DRH. Although these two approaches give the same 
numerical solutions, a difference in computation efficiency between them should be 
mentioned here. If there is only one design ERH to consider in the design or analysis, 
there is no need to generate UH vectors and use them to convolve with the design 
ERH to obtain the design DRHs. Therefore, the first approach is more direct than 
the second approach when there is only one design ERH. On the other hand, if there 
are several design ERHs to consider, the second approach is recommended because 
the generated UHs can be stored and used at later time to convolve with different 
design ERHs by Eq. (1). If the first approach is used for several design ERHs, one 
has to generate a number of DRHs for each design ERH, which is computationally 
less el~cient than the second approach. 

However, one unique feature that must be observed in the Monte-Carlo simulation 
conducted herein. By the first approach, the generated DRHs must satisfy the mass 
balance constraint, namely, the water volume of each generated DRH must equal to 
that of the design ERH. When the second approach is used, each of the generated 
UHs must satisfy its definition, that is, the water volume of the generated UHs must 
equal to one inch (or cm) over the watershed. By either approach, one needs to obtain 
design DRHs, each of which satisfies the appropriate constraint. 

Suppose a hydraulic structure such as a flood detention reservoir or levee for flood 
control purposes is located at the downstream end of the surface watershed. The 
output from the upstream watershed is the input to the downstream detention reser- 
voir or levee. Therefore, the generated design DRHs, combined with the baseflow, 
are routed through the hydraulic structure among which some of them will cause the 
failure of the hydraulic structure. The fraction of simulations in which the failure 
of hydraulic structure occurs is the failure probability. Information such as this is 
important for the evaluation and modification of the hydraulic structure under con- 
sideration. From the Monte-Carlo simulation, other pertinent information about the 
failure characteristics can also be assessed. 

Herein, the Gaussian linearly constrained simulation algorithm, in conjunction with 
the UH theory, are used for reliability analysis. Before the algorithm of Gaussian lin- 
early constrained simulation for UH-based reliability analysis is derived, the Gaussian 
unconditional simulation and Gaussian conditional simulation will be presented due 
to the following two reasons: (1) the Gaussian linearly constrained simulation can 
be conducted under the framework of Gaussian conditional simulation, and (2) the 
Gaussian conditional simulation requires the use of the Gaussian unconditional sim- 
ulation. 

3.1 Gaussian unconditional simulation 

Let X be a vector involving n multivariate normal random variables with the mean 
vector tt x and covariance matrix Cx. The unconditional simulation (US) generates 
random x's based on the known mean vector tt x and covariance matrix Cx. There 
are several efficient algorithms for generating multivariate Gaussian random vectors. 
The algorithm based on eigenvector-eigenvalue (spectral) decomposition is as follows: 
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1. Perform eigenvector-eigenvalue decomposition of Cx=VxLxV~ in which Vx is an 
orthogonal eigenvectors matrix~ and L is a diagonal matrix whose elements are 
the eigenvalues of Cx. 

2. Generate an independent normal random vector z having mean 0 and covariance 
matrix I, an identity matrix. 

3. x (Us) = V ,  L °'5 z + ttx 

4. Repeat (2)-(3) a large number of times to obtain many x's. The number of 
simulation depends on each individual model. 

3.2 Gaussian conditional simulation 

The Gaussian conditional simulation (CS) is to generate normal random vector X2 
given X l = x l  where 

( X l )  
x = x ~  (4) 

and 

Xl Cx,12 

Steps (1)-(3) for the Gaussian conditional simulation are the same as those for the 
Caussian unconditional simulation presented in Section 3.1. The following steps (4) 
and (5) are for the conditional simulation: 

(4) Calculate 

(CS) t --1 X2 ---- Cx,12Cx,ll ( X l - x ~  US)) -~x~ US) (6) 

(5) Repeat (2)-(4) a large number of ti:mes to obtain many conditional x2's. 

3.3 Gaussian linearly constrained simulation 

Borgman and Faucette (1993) proposed an efficient procedure that converts the Gaus- 
sian linearly constrained simulation into the Gaussian conditional simulation. In the 
present problem context, oniy one simple constraint is involved. More specifically, the 
Oaussian linearly constrained simulation attempts to generate a J-element random 
vector X subject to a linear constraint that  

J 
xj = l t x  = constant (7) 

j=l 

where 1 is a column vector of ones. ~I~ convert the Gaussian linearly constrained 
simulation into the Gaussian conditional simulation, one defines a new (J+t)-element  
random vector, Y,  as 
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z Y = Y2 X T X  (8) 

where Y1 is a scalar, Y2 = X, and 

1 1 . . .  1 1 1 1 0 . . . 0 0  
T = 0 1 . . .  0 0 (9) 

. . . .  0 

0 0 0 0 1 (J-t-1)xJ 

Then, the mean and covariance matrix of Y, respectively, are 

Z y  = T z x  (10) 

Cy = T Cx  Tt (11) 

Now, the Gaussian linearly constrained simulation of X can be converted into the 
conditional simulation of Y2, given Y1 = Yl = constant, as 

,(CS) t C - 1  ( 'US)) X : ,Y2 : Cy,12 , , l l  Yl -- Y~ • y~US) (12) 

Then, the Gaussian conditional simulation algorithm can be used to generate a num- 
ber of x's, each of which is subject to the linear constraint (Eq. (7)). 

If the first approach is used to generate random design DRH vectors, then the 
Ganssian linearly constrained algorithm can be used by letting x = DRH and prop- 
erly defining the constant in Eq. (7) such that the volume of water of each generated 
DRH is equal to that of the design ERH. If the second approach is used to generate 
random UHs, then the algorithm can be applied by letting x = UH and properly 
defining the constant in Eq. (7) such that the water volume of each generated UH is 
equal to one inch (or cm) over the watershed. 

4 Appl i ca t ion  and  discussions 

For illustration, the Gaussian linearly constrained simulation presented above was 
applied to generate random UHs and DRHs for evaluating the overtopping probabil- 
ity of a hypothetical flood detention reservoir at the downstream end of Tong-Tou 
watershed (259.2 km 2) in Taiwan. The concern is given to typhoon storm events that, 
could threat the safety of the dam. Recently, Zhao et al. (1995) applied five statis- 
tical validation methods to evaluate the predictability of UHs estimated by various 
least-squared-based methods in conjunction with storm-stacking, storm-combining, 
storm-scaling, and single-storm averaging methods when data from several storms 
are available for estimating the UH. The least-squares-based methods considered in- 
clude the ordinary least squares (OLS), the ridge least squares with the mimmization 
of the mean squared error of UH (RDG/UH), and the ridge least squares with the 
mimmization of the mean squared error of DRH (RDG/DRH). The storm-stacking 
method is the conventional multiple-storm analysis. The storm-combining method is 
to directly add the DRH ordinates of all storms and ERH ordinates of all storms, re- 
spectively, to form a single DRH and ERH for a combined storm. The storm-scaling 
is to scale all storms so that all storms have the same amount of effective rainfall 
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depth of one unit. The storm-scaling method is achieved through dividing the ERH 
and DRH ordinates by the ER amount for each storm. 

The most important finding from the validation study is that the storm-stacking 
with storm-scaling gives the smallest prediction errors. Applications of the five valida- 
tion methods to Tong-Tou watershed indicate the prediction error by the RDG/DRH 
is smaller than that by the RDG/UH. Three out of five validation methods for Tong 
Tou watershed also show that the prediction error by the RDG/DRH is smaller than 
that by the OLS. Therefore, the storm stacking along with storm-scaling and the 
RDG/DRH is used herein to derive the representative UH. Rainfall-runoff data from 
seven typhoon events were used to estimate the UH ordinates for the watershed. The 
duration of the derived UH is 3 hours. 

For illustration, the adopted design ERH, as shown in Figure 1, was made of the 
largest ordinates of the observed ERHs at each of the 3-hour time intervals from the 
seven storm events used in UH derivation. The baseflow for Tong-Tou is 2.832 cms 
which contribute little to the occurrence of overtopping. The height of the hypotheti- 
cal detention reservoir is 9.144 meters having a controlled outlet allowing a maximum 
constant discharge of 849.5 cms without causing the detention reservoir to overtop. 
The elevation-storage curve and elevation-outflow curve for the hypothetical deten- 
tion reservoir are shown in Figures 2 and 3, respectively. In this example application, 
the design ERH, for simplicity, is considered deterministic. 

To apply the Gaussian linearly constrained Monte-Carlo simulation for assessing the 
overtopping probability, the statistical characteristics of UH vector such as its mean 
and covariance matrix must be known or assessed. Based on the concept of bootstrap 
technique (Efron, 1982; Efron and Tibshirani, 1986), Zhao (1992) developed a storm 
resampling technique to quantify uncertainty features associated with the UH by the 
multiple-storm method. The basic idea of the bootstrap technique is to extract more 
information from one observed" random sample to better understand the population 
(or the statistics associated with the population) by resampling this observed random 
sample a large number of times. In the storm resampling scheme, the observed 
storm events are considered as random samples. A large number of samples can 
be obtained by resampling, with replacement, the original observed storms a large 
number of times. Each sample is called a bootstrap storm sample from which a 
multiple-storm unit hydrograph is derived. The aforementioned bootstrap is called 
unbalanced bootstrap. The balanced bootstrap resampling only reuses each of the 
sample observations exactly equally often. 

Both balanced and unbalanced bootstrap techniques were used for purpose of com- 
parison. One thousand (1000) bootstrapped multiple-storm UHs based on the seven 
typhoon storm events occurred in Tong-tou watershed were obtained. The mean 
and standard deviation vectors of the multiple-storm UH vector from the ridge least 
squared method are shown in Table 1. As can be seen that there is little difference in 
the mean value for each UH ordinate between the unbalanced and balanced bootstrap 
methods. However, the standard deviation for most UH ordinates by the balanced 
bootstrap is slightly higher than that by the unbalanced bootstrap, indicating that 
there exist slightly larger uncertainties in the UH ordinates by the balanced bootstrap 
ping. The correlation matrix associated with the UH ordinates by the unbalanced 
and balanced bootstrap techniques are shown in Tables 2(a) and 2(b). No significant 
difference in the correlation matrices between both methods can be observed. 
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Table  1. Means and Standard Deviations of the Multiple-Storm UI-Is by Ridge Least 
Squared Method with Scaling Using Balanced and Unbalanced Bootstrap Techniques 

Unbalanced bootstrap Balanced bootstrap 
Mean Std Mean Std 

UH( l )  7.147e+00 9,502e-01 7.154e+00 9,573e-01 
UH(2) 5.902e+00 4.959e-01 5.914e+00 5.29ie-0t 
UH(3) 2.586e+00 3.035e-01 2.571e+00 3.114e-01 
UH(4) 1 378e+00 3.127e-0t l 370e+00 3 200e-01 
UI:I(5) 1A83e+00 3.116e-0t 1.495e+00 3.206e-01 
UtI(6) 1,385e+00 1.832e-0t 1.389e+00 t.848e-01 
UIi(7) 8.768e-0I 9.410e-02 8.707e-01 1.033e-01 
UH(8) 8.228e-01 9.713e-02 8.175e-01 1.019e-0t 
UH(9) 6.t07e-01 5.581e-02 6,092e-01 5.855e-02 
UH(10) 5.080e-0I 5.143e-02 5.061e-01 5.592e-02 
UH(I1) 3.379e-01 6.209e-02 3.366e-01 6.669e-02 
UIi(12) 3,335e-01 3.727e-02 3.349e-01 4A02e-02 
UH(13) 2,301e-01 3.862e-02 2.290e-01 4.t84e 02 
UH(14) 1.997e-01 2,599e-02 1.996e-01 3.029e-02 
UIt(15) 1.598e-01 1.837e-02 1.589e-01 1.994e-02 
UH(16) 1.282e-01 1.307e-02 1.280e-01 1.436e-02 
UH(17) 8.708e-02 1.161e-02 8.713e-02 1.488e 02 
UH(18) 6,301e-02 1.229e-02 6.263e-02 1.466e-02 
UH(19) 3.139e-02 1.222e-02 3.095e-02 1.287e-02 
UH(20) 1.961e-03 5,593e-03 1.920e-03 5.446e-03 
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To evaluate the probability of overtopping, one can directly simulate a large number 
of DRHs by using the Gaussian linearly constrained simulation after the mean vector 
and covariance matrix of the DRH are computed by Eqs. (2) and (3). In this example 
application, 2000 simulation runs were made to generate DRHs by the Gaussian 
linearly constrained simulation. Then, the baseflow is added to the generated DRHs 
to form the total runoff hydrographs which serve as the inflow hydrographs to the 
hypothetical detention reservoir. The level pool routing was performed to route these 
inflow hydrographs through the detention reservoir (Chow et al., 1988). 

Figures 4 and 5, respectively, show 20 simulated 3-hr UHs and the corresponding 
design DRHs. For the specified detention reservoir height, some of the simulated 
inflow hydrographs may overtop the detention reservoir, resulting in performance 
failure of the detention reservoir. The probability of overtopping for the detention 
reservoir is estimated by the fraction of simulations in the total simulation runs that 
overtopping event occurs. One can also estimate the statistical features of overtopping 
characteristics such as overflow duration, overflow peak, and overflow volume. 

Table 3 presents the estimated overtopping risks for the hypothetical detention 
reservoir by the unbalanced and balanced bootstrap techniques. One can observe 
that there is no significant difference between these two techniques. This could be 
attributed to the similarities of the statistical properties of UHs estimated by the 
balanced and unbalanced bootstrap techniques as shown in Table 1. However, the 
effect of difference in standard deviations between the two bootstrap techniques is 
revealed in the calculated overtopping risk as shown in Table 3. As expected, the 
overtopping risk associated with the balanced bootstrap procedure is somewhat higher 
than that of the unbalanced procedure due to a slightly larger standard deviation in 
the UH ordinates by the balanced bootstrapping. 

Table 4 summarizes the statistics of overflow duration, peak, and volume from the 
simulation. Again, there is no significant difference in the mean values of overflow 
duration between the two bootstrap procedures. It can be seen that the skewness of 
overtopping duration, peak and volume are all positive and the values of skewness for 
duration are smaller than those for peak and volume. Figure 6 shows the histograms 
of overtopping duration, peak, and volume from the simulation. Table 5 presents the 
correlation coefficients of overflow characteristics such as overflow duration, peak, and 
volume. All correlation coefficients are positive, which is consistent with the expected 
general behaviors. It can be observed that the correlation between the overflow peak 
and overflow volume is the strongest. 

The information in Table 3-5 is usefuI in risk-based hydraulic design for detention 
reservoirs. For each possible reservoir sizing strategy, one can compute the risk as in 
Table 3 and then select the optimal strategy based on the criteria of high efficiency, 
low cost, and acceptable overtopping risk. Then the possible damage due to over- 
topping is assessed by using the values of overtopping duration, overtopping peak, 
and overtopping volume. Because the overtopping duration, overtopping peak, and 
overtopping volume are random variables whose statistics are obtained as in Table 
4-5, the damage is also a random, variable. One then can compute the statistics of the 
damage, which includes the expected value, standard deviation, confidence intervals, 
and so on. For a more comprehensive risk-based hydrologic and hydraulic design, 
one can select an optimal detention reservoir sizing such that a weighted sum of the 
expected value and variance of overtopping damage is minimized. 
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Figure 4. 
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Table  3. Risk of Detention Reservoir Overflow Based on the Simulation Results by Various Meth- 
ods. 

Storm-stacking 
with scaling 

0.0810 Unbalanced 
bootstrap 

Balanced 0.0970 
bootstrap 

Table 4. Summary Statistics of Overflow Characteristics Based on the Mean and Covariance Ma- 
trix of UH Derived from Various Methods for the Tong-Tou Watershed. 

Unbalanced bootstrap Balanced bootstrap 
Duration Peak Volume Duration Peak Volume 
(hours) (cms) (cubic meter) (hours) (cms) (cubic meter) 

Mean 4.500e+00 4.444e-01 6.686e+03 4.438e+00 4.591e-01 7.114e+03 
STD 2.439e+00 3.801e-01 8.163e+03 2A27e+00 4.129e-01 9.318e+03 
CV 1.844e+00 1.16%+00 8.191e-01 1.827e+00 1.1lie+00 7.634e-01 
Skewness 1.157e+00 1.165e+00 2.093e+00 1.222e+00 1.341e+00 2.270e+00 
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Table 5. Correlation Coefficient Between the Simulated Overflow Duration, Peak, and Volume 
from Various Methods for the Tong-Tou Watershed. 

(a) By Unbalanced Bootstrap 

Overflow Overflow 
Duration Peak 

0.8809 Overflow 
Peak 

Overflow 0.8555 0.9666 
Volume 

(b) By Balanced Bootstrap 

Overflow Overflow 
Duration Peak 

Overflow 0.8581 
Peak 

Overflow 0.8362 0.9672 
Volume 

5 S u m m a r y  and conclusions 

Hydraulic structures are always placed in stochastic envirouments and their abilities 
to serve the intended functions generally cannot be ensured. Under such circum- 
stances, reliability is an important issue in hydraulic structure system designs and 
performance evaluations. Unit hydrograph is a widely used rainfall-runoff model for 
deriving discharge hydrograph used in design and performance evaluation of hydraulic 
structures. Due to the existence of various uncertainties, the derived unit hydrograph 
unavoidably is subject to uncertainty which, in turn, results in uncertainty in the de- 
sign discharge hydrograph. 

In this paper, reliability analysis based on the Gaussian linearly constrained simula- 
tion in conjunction with UH theory and a routing method was presented and applied 
to the evaluate the overtopping probability of a hypothetical detention reservoir. The 
linearly constrained simulation is required because of the physical relationship among 
the unit hydrograph ordinates and direct runoff hydrograph ordinates. It should be 
kept in mind that the Gaussian linearly constrained simulation applied in this paper 
assumes that unit hydrograph or direct runoff hydrograph ordinates are multivari- 
ate normal variables and the variables are linearly related. Further development is 
needed for multivariate hydroIogical simulations in which variables are non-normal 
and nonlinearly related. The proposed methodology can be applied to other hydraulic 
structures for risk-based design and analysis. 
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The present paper  considers only the uncertainty of the Utt  in the reliabili ty analysis 
of hydraulic structures.  The design storm hyetograph, which in reality is uncertain~ is 
t reated as known and deterministic.  Therefore, the overtopping risk presented in Ta- 
ble 3 should be regarded as conditional upon the specified design rainfall hyetograph. 
To incorporate uncer ta inty  in the design storm hyetograph, analysis is required with 
regard to the rainfall depth-durat ion-frequency relationship and the temporal  dis- 
t r ibut ion of storm. Once the uncertainty features of design storm hyetograph are 
available, the constrained simulation framework presented in the paper  can be ap- 
plied. 

A c k n o w l e d g m e n t s  

The study was sponsored in part  by the Agricultural  Council of the Executive Yuan, 
Taiwan, Republic of China, and the Wyoming Water  Resources Center. Gra t i tude  
is extended to Mr. Wen-Jung Hu of the Agricultural  Council for his support  and to 
Ms. Yue-Chuan Huang of tile Provincial  Water  Conservancy Bureau for her supply of 
rainfall-runoff data.  The authors are also very grateful to the editor and the anony- 
mous reviewers for their  constructive comments. 

References 

Ang. A. H-S.; Tang, W. H. Probability Concepts in Engineering Planning and Design, Vol. II: 
Design, Risk, and Reliability, New York, N.Y.: John Wiley and Sons, Inc. 562 pp 

Borgman, L.E. 1990: Irregular ocean waves: kinematics and forces. Ocean Engineering Science. 
Ed. by Mehaute, B.L. and Hanes, D.M., New York, N.Y.: John Wiley and Sons, Inc. 

Borgman, L.E.; Faueette, R.C. 1993: Frequency-domain simulation and stochastic interpolation 
of random vectors in multidimensional space. Compntationai Stochastic Mechanics. Ed. by 
H-D Cheng and C.Y. Yang 

Chang, C.H.; Tung, Y.K; Yang, J.C. 1994: Monte carlo simulation for correlated variables with 
marginal distributions. J. of Hydraulic Engr., ASCE, 120(2), 313-331 

Chow, V.T.; Maidment, D.R.; Mays, L.W. 1988: Applied Hydrology. New York: McGraw-Hill 
Book Company. 572 pp 

Efron, B. 1982: The Jackknife, the Bootstrap and Other P~esampling Plans, CBMS 38, SIAM 
Efron, B.; Tibshirani, R. 1986: Bootstrap methods for standard errors, confidence intervals, and 

other measures of statistical accuracy. Statistical Science, 1(1), 54-77 
Fiering, M.B.; Jackson, B.B. 1971: Synthetic Streamflows, Washington, D.C.: American Geo- 

physical Union 
Freudenthal, A.M. 1947: The safety of structures. Transactions, ASCE, 112, 125-180 
FreudenthaI, A.M. 1956: The safety and the probability of structural failure. Transactions, ASCE, 

121, 1337-1397 
Itjelmfelt, A.; Wang, M. 1994: General stochastic unit hydrograph. J. of Irrigation and Drainage 

Engineering, ASCE, 120(1), 138-148 
Hufschmidt, M.M.; Piering, M.B. 1966: Simulation Techniques for Design of Water-Resource Sys~ 

terns. Cambridge, Massachusetts: Harvard University Press. 
Mizumura, K.; Ouazar, D. 1992: Stochastic characteristics of open channel flow. Stochastic Hy- 

draulics '92, edited by J.T. Kuo and G.F. Lin. Proc. of 6th IAHR International Symposium on 
Stochastic Hydraulics. Department of Civil Engineering, National Taiwan University, Taipei, 
Taiwan, 417-423 

Nguyen, V.U.; Chowdhury, R.N. 1985: Simulation for risk analysis with correlated variables. 
Geotechnique, 35(1), 47-58 

Parrish, R.S. 1990: Generating random deviates from multivariate Pearson distributions. Com- 
putational statistics and Data analysis, 9, 283-295 

Ronning, G. 1977: A simple scheme for generating multivariate gamma distributions with nora 
negative. Technornetfics, 19(2), 179-183 

Rubinstein, R.Y. 1981: Simulation and the Monte Carlo Method, New York: John Wiley and 
Sons, Inc. 278 pp 

Sarino; Serrano, S.E. 1990: Development of the instantaneous unit hydrograph using stochastic 
differential equations. J. of Stochastic Hydrology and Hydraulics, 4, 151-160 



50 

Shinozuka, M. 1964: Probability of structural failure under random loading. J. of EMD, ASCE, 
90(5), 147-170 

Shinozuka, M. 1981: Stochastic characterization of loads and load Combinations, In: Structural 
Safety and Reliability, Ed. by Moan, T. and Shinozuka, M., New York, N.Y.: Elsevier Scientific 
Publishers 

Shinozuka, M. 1989: Developments in structural reliability. In: Structural Safety and Reliability, 
Ed. by Ang, A. H-S., Shinozuka, M., and Schueller, New York, N.Y.: ASCE 

yon Neumann, J. 1951: Various techniques used in connection with random digits. U.S. Nat. Bur. 
Stand. Appl. Math. Ser., 12, 36,38 

Yang, J.C.; Tung, Y.K.; Tang, S.Y.; Zhao, B. 1992: Uncertainty analysis of hydrologic model 
and its implications on reliability of hydraulic structures (I). Report, Agricultural Council, 
Executive Yuan, Taiwan, Republic of China. 240 pp 

Yen, B.C.; Tung, Y.K. 1993: Reliability and Uncertainties in ttydraulic Designs, ASCE, New 
York, NY 

Yen, B.C.; Cheng, S.T.; Melching, C.S. 1986: First Order Reliability Analysis. In: Stochastic 
and Risk Analysis in Hydraulic Engineering, B.C. Yen, ed., Littleton, CO: Water Resources 
Publications 

Zhao, B. 1992: Determination of a unit hydrograph and its uncertainty applied to reliability 
analysis of hydraulic structures. M.S. Thesis, Department of Statistics, University of Wyoming, 
352 pp 

Zhao, B.; Tung, Y.K.; Yeh, K.C.; Yang, J.C. 1995: Statistical validation methods: Application 
to unit hydrographs. J. of Hydraulic Engineering, ASCE, t21(8), 6t8-625 


