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Abstract(English)

The major objective of this thesis is to apply content-based approaches for motion

estimation algorithms and architectures. Motion Estimation (ME) has been proven

to be effective to exploit the temporal redundancy of video sequences and, there-

fore, becomes a key component of many multimedia standards, such as MPEG-X

and H.26X standards. In such multimedia systems, the motion estimation domi-

nates huge computation load and tends to consume much power. This issue has

become a significant problem. In order to solve this problem, to develop fast

searching algorithms and power-aware architectures becomes a most important

issue for such video systems, especially for a portable video device which is pow-

ered by battery. Although a great deal of effort has been made on this field, consid-

ering the content property of video source on the motion estimation application is

still seems to be lacking. In this thesis, we adopted a content-base methodology to

meet the requirement of fast searching ME and power-aware ME for such portable

video devices. This thesis proposes a edge-driven two-phase ME algorithm based

on the content of video sources to reduce computation load in the matching pro-

cedure and a content-based power-aware algorithm which adaptively subsamples

the background pixels only to perform grace trade-offs between quality degra-

dation and power consumption. By employing the content-based methodology,

these proposed algorithms, either for fast searching algorithm or power-aware al-

x
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gorithm, can achieve better results than the non-content-based ones.

In the proposed two-phase motion estimation, to match the low resolution

quantized edge pixels of a macro-block is used in the first phase. According to the

edge pixels span, the algorithm makes decision of suitable search scan-direction

to reuse the quantized data more efficiently. Then it generates the survived motion

vectors for the second phase which employs the SAD as the error criteria to per-

form accurate matching. This content-driven algorithm can reduce the significant

computational load comparing with the full-search algorithm and still be more

efficient than the existed two-phase algorithm. The content-based power-aware

algorithm performs power-aware function by disable/enable processing elements

according to the subsample mask based on the content of the video sources. The

power-aware approach extracts the edge pixels of a macro-block and subsamples

the non-edge pixels only to maintain the quality performance in acceptable level.

Since the power consumption is proportional to the subsample rate, this content-

based algorithm adopts a close-loop control mechanism to avoid the diverse prob-

lem of subsample rate in various video sources and hence keep the subsample rate

in stationary state. Founded on the proposed content-based algorithm, the power-

aware architecture can dynamically operate at different power consumption modes

with little quality degradation only according to the remaining capacity of battery

pack to achieve better battery discharging property.

Motivating from the applications of content methodology, this thesis proposes

a fast algorithm and a power-aware algorithm to implement the corresponding ar-

chitectures for conquering the drawbacks without employing content-based tech-

nique for the portable multimedia devices. As the simulation results showed, the

proposed content-based ME algorithms and architectures can achieve better power
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and quality performance for the portable multimedia applications than those with-

out adopting the content-based methodology.
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Chapter 1

Overview

1.1 Background

1.1.1 Video Coding System

Video coding system has been developed to reduce the transmission rate or stored

bits for over twenty years and proven to achieve the objective. Many standards are

defined to implement the video coding system such as ISO/IEC MPEG-1, MPEG-

2, MPEG-4 and the CCITT H.261 / ITU-T H.263, etc [1–6]. The demand of these

video standards is to remove the redundancies of the video sources and compress

the video sources to meet the constraints of limited transmission rate and stored

bits. In order to achieve this demand, transform coding and predictive coding have

become important strategies to identifying the large amount of spatial dependency

and temporal redundancy in the video sources.

Figure 1-1 illustrates a typical block diagram of an JPEG, MPEG, H.261, and

H.263 video coding system. The video encoder system contains several major

components, including discrete cosine transform (DCT), inverse DCT (IDCT),

1
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Figure 1-1: Main Processing flow in JPEG, MPEG, H.261, and H.263 encoding.

motion estimation (ME), motion compensation (MC), quantization (Q), inverse

quantization (Q−1), and variable-length coding (VLC) encoder.

In those components of such video systems, motion estimation is a key proces-

sor employing predictive coding technique to eliminate the temporal redundancy

and it is the most computationally expensive part. An encoder creates a predictive

frame of the current frame based on the reference frame (either previous or future

frame) and forms a residual between the predictive frame and the reference frame.

The bits to encode the residual can be fewer than to encode the original frame if

the prediction is successful. Although the motion estimation based on the pre-

dictive technique can achieve high compression rate, it consumes much computa-
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tional complexity in the matching procedure if it performs exhaustively searching

strategy in the searching area. According to the complexity analysis, the motion

estimation part is up to over 50% computational load of a MPEG or a H.261 cod-

ing system [4, 7]. Thus, many motion estimation algorithms, to optimize either

the full search or fast search block matching, had become an important research

field and been developed to meet various requirements for video applications.

1.1.2 Motion Estimation

As mentioned above, Motion Estimation (ME) has been proven to effectively

eliminate the temporal redundancy of video sequences and therefore becomes a

central part of the ISO/IEC MPEG-1, MPEG-2, MPEG-4 and the CCITT H.261

/ ITU-T H.263 video compression standards. The motion estimation achieves

very high compression rate by identifying the temporal redundancy and eliminat-

ing them since there is large amount of correlation between successive frames

in a video sequence. Of various approaches for motion estimation, the block-

matching algorithm is widely performed in those video coding systems since its

regular property. The block matching approach first divides a frame into non-

overlapped blocks regularly of the same size and find the motion vector by finding

the most like block in the searching area. According to the motion vectors of the

macro-blocks in a frame, the coding system encodes the residual part between the

original frame and motion-compensated frame to raise the compression ratio.

In those block-matching algorithms, the full-search block-matching (FSBM)

algorithm is the most popular approach because of its considerably good quality

and regular data path. Many works addressed on implementing architectures of

the full-search algorithms. Yang et al. presented 1D-array architectures [8] and
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many researchers addressed on 2D-array architectures [9–11]. Lai et al. proposed

architecture with data reuse scheme which accesses the reference pixels more ef-

ficiently but has restriction in the searching area [12]. Some works focused on the

discussion of low-power design of FSBM architectures [13, 14]. Paper of Tuan

et al. provides a data reuse analysis of FSBM architectures and proposed one ac-

cess architecture to achieve optimal memory bandwidth [15]. A fast full search

algorithm with adaptive scan direction is presented to speed up the conventional

full-search algorithm [16]. Those researches performed significant achievements

in the implementation of full-search block-matching algorithms.

Although the FSBM algorithm has the benefits of considerably good quality, it

dominates huge computation load and tends to consume significant power because

of its exhaustive search scheme. In order to solve this problem, to develop fast

searching algorithms becomes a most important issue for these video systems,

especially for a portable video device which is powered by battery. Many fast

search algorithms were proposed for alleviating the heavy computational load of

FSBM by reducing the search steps, such as the three-step search (TSS) [17], the

new three-step search (NTSS) [18], the one-dimensional full search (1DFS) [19],

the four-step search (4SS) [20], and the diamond search (DS) [21–23], etc. Some

researchers developed fast algorithms by simplifying the matching criterion [24–

27]. Those fast algorithms conquered the drawbacks of full-search algorithm and

accomplished great achievements in the application of video coding system.

This thesis will illustrate parts of those motion estimation algorithms in Chap-

ter 2 in detail.
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1.2 Objectives

Although lots of effort has been stressed on the research field of motion estima-

tion, employing the content methodology on the motion estimation application is

still seemed to be lacking. The major objective of this thesis is to focus on the

employment of content property upon motion estimation. Upon this argument,

we concentrate on two parts, one is for the fast searching algorithm and another is

for the power-aware application. As mention above, the fast algorithm can reduce

the computational complexity of the video system so this topic is still worth to

develop and stress, especially employing the content methodology. Another is-

sue for power-aware application has become very important since the demand of

portable video devices powered by battery raises these recent years. The power-

aware mechanism performs switching the power consumption modes with grace

quality degradation according to the non-idea battery properties to extend the bat-

tery life in such portable devices. This thesis proposed a content-based algorithm

to implement power-architecture to meet this requirement for portable applica-

tions.

In the proposed content-based fast algorithm, to match the low resolution

quantized edge pixels of a macro-block is used in the first phase. According to the

edge pixels span, the algorithm makes decision of suitable search scan-direction

to reuse the quantized data more efficiently. Different video content causes dif-

ferent scan-direction in which the reusability of quantized data is better. Then

the first phase removes the most impossible candidates and generates the survived

motion vectors for performing accurate match which employs the SAD as the er-

ror criteria in the second phase. This content-driven fast algorithm can reduce the

significant computational load comparing with the full-search algorithm and be
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more efficient than the existed two-phase algorithm.

In the second part, a content-based algorithm performing power-aware func-

tion by disable/enable processing elements according to the content-based sub-

sample mask is presented. In order to avoid the aliasing drawbacks of general

subsample technique, the proposed content-based approach extracts the edge pix-

els of a macro-block and subsamples the non-edge pixels only to maintain the

quality performance in acceptable level. Since the power consumption is propor-

tional to the subsample rate, the algorithm adopts a close-loop control mechanism

to keep the subsample rate in stationary state. Founded on the content-based al-

gorithm, the power-aware architecture can dynamically operate at different power

consumption modes with little quality degradation according to the remaining ca-

pacity of battery pack to achieve better battery discharging property.

1.3 Organization of this Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we will present

the related works of block-matching motion estimation. Chapter 3 illustrates the

algorithm and architecture of edge-driven two-phase motion estimation. Then in

Chapter 4, a content-based power-aware algorithm and architecture are addressed.

Finally, conclusions and future works are shown in Chapter 5.



Chapter 2

Related Works

In this chapter, the related works of motion estimation are introduced. Section

2.1 illustrates the popular algorithm of full searching block matching (FSBM) and

fast search algorithms by various methods to overcome the drawbacks of FSBM

algorithm are presented in section 2.2.

2.1 Full Search Block Matching Algorithm

The FSBM algorithm with SAD criterion is the most popular approach for motion

estimation because of its considerably good quality and regular data path. Figure

2-1 illustrates the representation of block matching motion estimation. In this fig-

ure, the block matching process first divides a current frame into non-overlapped

blocks of the same size N -by-N called current macro-block (CMB). Then a cur-

rent macro-block is exhaustively matched with all the candidate macro-blocks,

called reference macro-blocks (RMBs), in the searching area of the reference

frame which is either previous frame or next frame. Finally, the block match-

ing algorithm identifies the macro-block which has the minimum distortion to the

7
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N

N

Frame Width

Frame
Height

Search Window

Reference Macro-Block

Motion Vector (u,v)

-p

-p

p

p

Previous Frame

Current Frame

T

Current Macro-Block

Figure 2-1: Block matching motion estimation process.

current macro-block from all the reference macro-blocks in the searching area.

The desired motion vector is the offset from the reference macro-block with the

minimum distortion to the current macro-block.

The full search block matching algorithm uses (2-1) and (4-14) to compare

each current macro-block with all the reference macro-blocks in searching area to
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determine the best match.

SAD(u, v) =
N−1∑
i=0

N−1∑
j=0

|R(i + u, j + v)− S(i, j)|, (2-1)

for −p ≤ u, v < p and the motion vector is figured out by (4-14)

−−→
MV = (u, v)

∣∣
min−p≤u,v≤p−1 SAD(u,v) (2-2)

where the macro-block size is N -by-N , S(i, j) is the luminance value at (i, j) of

the current macro-block. The R(i + u, j + v) is the luminance value at (i, j) of

the reference macro-block which offsets (u, v) from the current macro-block in

the searching range 2p-by-2p.

2.2 Fast Search Algorithm

Although the FSBM algorithm has the benefits of considerably good quality and

regular data path, its huge number of comparison/difference operations results

in high computational complexity and power consumption. In order to meet the

real-time applications, the fast search algorithms have been widely developed and

studied by many researchers. These fast algorithm either reduce search steps or

simplify calculations of error criterion. These fast algorithms can be divided into

three main categories but not limited to them.

1. By reducing the search steps.

2. By simplifying the matching criteria.

3. Two-phase algorithm.
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In the following subsections, we will present these prior works.

2.2.1 Reduce the Searching Steps

Three Step Search (TSS)

The Three Step Search (TSS) [17] uses the rectangular search patterns with log-

arithmically decreasing search size to test the checking points. Figure 2-2 illus-

trates the search patterns of the TSS with the search area from −7 to 7. Each

check point with black color means the local minimum distortion in each search

step. In this illustration, the motion vector is (−4, 3). The total checking points

of the TSS is 25(= 9 + 8 + 8). With comparing to 255 search steps of the FSBM,

the TSS performs considerably less computational complexity with little motion

compensated quality loss.

New Three Step Search (NTSS)

The New Three Step Search (NTSS) algorithm based on the center-biased distri-

bution of motion vector was proposed for improving the performance of the TSS

since the TSS used a uniformly check points in its first step[18]. Figure 2-3(a)

presents the procedure and (b) shows the check points in the first search step of

NTSS. The NTSS checks the extra eight points of the search window center and

uses a halfway-stop technique to speed up the matching process if the motion vec-

tor is stationary or quasi-stationary. The total number of check points of NTSS is

from 17 in best case to 33 in worst case respectively.
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Figure 2-2: The Three Step Search.
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Figure 2-3: The New Three Step Search.
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Four Search Step (4SS)

Similar to the NTSS, the Four Search Step (4SS) uses the attribute of center-biased

distribution of motion vector and the approach of halfway-stop to save the check

points [20]. Figure 2-4(a) illustrates the procedure of the 4SS and (b) shows two

different search paths as examples. A black mark in each step is the point which

has the minimum distortion error and as the check window center of the next step.

From the first step to third step, the size of search window is 5-by-5 and the final

step uses 3-by-3. The check point of the 4SS is varied from 17 to 27. It reduces the

worse case check points from 33 to 27 and remains similar motion-compensated

error as compared to NTSS.

Diamond Search

Diamond Search (DS) employs a diamond-shaped search pattern which is rotated

from the square-shaped search pattern in 4SS by 45°[21–23]. It results in fewer

check points with similar motion-compensated distortion as compared to NTSS

and 4SS. The DS uses two search patterns shown in Fig. 2-5(a), one is large dia-

mond search pattern (LDSP) and another is small diamond search pattern (SDSP).

Figure 2-5(b) illustrates an example which leads to the motion vector (4,−2) in

five search steps, which are four times of LDSP and one time of SDSP. As the

experimental results, the DS significantly improves the performance in terms of

the required number of check points.

2.2.2 Simplifying the Matching Criterion

The matching criterion is employed to identify the error distortion between the

current macro-block and reference macro-block. Equation (2-3) shows the crite-
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rion of mean square error (MSE) which can achieve significant motion-compensated

quality.

MSE(u, v) =
1

N ·N
N−1∑
i=0

N−1∑
j=0

(R (i + u, j + v)− S (i, j))2 (2-3)

where all the variables are defined the same as (2-1) and (4-14). However, the

square operation consumes a lot of computational load by this error criterion.

In order to reduce the computational complexity, the mean absolute difference

(MAD) or mean absolute error (MAE) is presented which is defined as

MAD(u, v) =
1

N ·N
N−1∑
i=0

N−1∑
j=0

|R (i + u, j + v)− S (i, j)| (2-4)

In practical applications, the sum of absolute difference (SAD), defined in (2-1),

is usually employed instead of MAD to ignore the mean operation.

In this subsection, some techniques to conquer the drawbacks of the MSE and

MAD by simplifying the error criterion in matching process are presented.

The Pixel Difference Criterion (PDC)

In this technique, the matching criterion employs the Pixel Difference Counts [28].

Each pixel in a macro-block is clarified into either a matching or a mismatching

pixel by

Tu,v (i, j) =





1, if |R (i + u, j + v)− S (i, j)| ≤ t

0, otherwise
(2-5)
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for 0 ≤ i, j < N and t is the predefined threshold. Then the PDC is defined as

PDC (u, v) =
N−1∑
i=0

N−1∑
j=0

Tu,v (i, j) (2-6)

Since PDC counts the number of matching pixels between current macro-block

and reference macro-block, the motion vector is defined as the maximum PDC

shown in following equation.

−−→
MV = (u, v)

∣∣
max−p≤u,v≤p−1 PDC(u,v) (2-7)

Integral Projection-Matching(IPM)

Integral Projection Matching (IPM) was employed to extract the features of a

macro-block as the matching criterion instead the matching criterion mentioned

above [26, 29, 30]. The major principle of projection matching is to create a cost

function by summing up the luminance value of the row and the column. Equation

(2-8) and (2-9) show the integral projection of the current macro-block.

Hk (m) =
N−1∑
i=0

S (i,m) (2-8)

Vk (n) =
N−1∑
i=0

S (n, j) (2-9)
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for 0 ≤ m,n < N . As the same manner, equation (2-10) and (2-11) illustrate the

feature projection of the reference macro-block with searching area parameter p.

Hk−1 (m,u, v) =
N−1∑
i=0

R (i + u,m + v) (2-10)

Vk−1 (n, u, v) =
N−1∑
j=0

R (n + u, j + v) (2-11)

for 0 ≤ m,n < N and −p ≤ u, v < p. The R (·) and S (·) are the luminance

value, which have been defined above, of reference and current macro-block. Af-

ter the cost functions of integral projection are calculated, IPM perform the match-

ing step by (2-12) to (2-15).

DH (u, v) =
N−1∑
m=0

|Hk (m)−Hk−1 (m,u, v)| (2-12)

DV (u, v) =
N−1∑
n=0

|Vk (n)− Vk−1 (n, u, v)| (2-13)

MVy = v|min−p≤u,v<p DH(u,v) (2-14)

MVx = u|min−p≤u,v<p DV (u,v) (2-15)

2.2.3 Two-Phase Algorithm

Low Resolution Quantization Method

A two-phase fast algorithm by low-resolution quantized scheme was presented by

Lee et al [31]. In the first phase, each pixel value of the current macro-block and

the reference macro-blocks was quantized as two-bit low resolution by

f̂k(i, j) = Q2(fk(i, j)− Avgk), (2-16)
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where Avgk is the total pixel average of the current macro-block, which is defined

in (3-6).

Avgk =

N−1∑
i=0

N−1∑
j=0

fk(i, j)

N2
(2-17)

Then the first phase matched the low-resolution quantized value by

DPC(u, v) =
N−1∑
i=0

N−1∑
j=0

δ[f̂k(i, j), f̂k−1(u + i, v + j)] (2-18)

where

f̂k−1(u + i, v + j) = Q2(fk−1(u + i, v + j)− Avgk), (2-19)

and

δ
[
f̂k, f̂k−1

]
=





0 , for f̂k = f̂k−1

1 , otherwise
(2-20)

After the low resolution matching scheme, the first phase generates the pre-

defined number of survived motion vectors with minimum DPC in each row for

the further accurate matching of the second phase. In the second phase, the algo-

rithm figures out the motion vector from the survived motion vectors by matching

with SAD criterion.



Chapter 3

Edge-driven Two-Phase Motion

Estimation

3.1 Introduction

This chapter presents an edge-driven two-phase algorithm and architecture, called

Edge-matching First Block-matching Last Algorithm (EFBLA), for fast motion

estimation[32, 33]. In the proposed two-phase motion estimation, the major match-

ing criterion in the first phase is low resolution quantized edge pixels of a macro-

block. According to the edge pixels span, the algorithm makes decision of suitable

search scan-direction to reuse the quantized data more efficiently. Then it gener-

ates the survived motion vectors for the second phase which employs the SAD as

the error criteria to perform accurate matching. This content-driven algorithm can

reduce significant computational load comparing with the full-search algorithm

and still be more efficient than the existing two-phase algorithm.

Many papers have proposed different ways to reduce the computation com-

20
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plexity of the full search algorithm. Most of them target on the elimination of

impossible motion vectors, such as SEA[34] and LRQ[31, 35, 36], and only per-

form complete matching for the possible candidates. They have done great jobs

on the reduction of block-matching evaluations and further save the computation

power and cost. Applying this philosophy, the thesis proposes a two-phase algo-

rithm employing content methodology to remove the impossible candidates. The

edge-driven two-phase algorithm contains two major procedures, one is the edge

matching and the other is the block matching. Our goal is to decrease the number

of block-matching evaluations without degrading the video quality much such that

the computation load can be significantly reduced. Hence, how to effectively re-

move the impossible motion vectors becomes the key to solve the cost-consuming

problem of the full search algorithm.

The edge-matching procedure does not require complex computation; it only

needs shift, quantization, comparison and threshold operations. The edge-matching

procedure first performs high-pass filter on a macro-block of the current frame,

called a current macro-block, and then determines edge-pixels that have larger

value than threshold. According the distribution of edge-pixels, the procedure de-

termines the scan direction for high degree of data reusability. Then, the EFBLA

starts matching the current macro-block with those reference macro-blocks in the

searching area of the reference frame. The matching order is based on the scan

direction. The matching criterion is unmatched edge-pixel count (UEPC). An un-

matched edge-pixel is the pixel of the current macro-block whose low-resolution

quantized value is different from that of the corresponding edge-pixel of the ref-

erence macro-block. Obviously, the smaller the UEPC value the more similar

the target block to the reference block. Thus, the EFBLA only picks the mo-
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tion vectors with lower UEPC as the survived motion vectors (SMVs). Following

the edge-matching phase, the proposed algorithm then performs accurately block

matching with the SAD criteria on those SMVs. As results of simulating MPEG

video clips, the EFBLA requires fewer addition operations than the full search

algorithm.

This chapter is organized as follows. In this Section, we introduced the back-

ground and motivation of the two-phase algorithm. Section 3.2 presents the EF-

BLA in details and Section 3.3 proposes hardware architecture based on the EF-

BLA. Section 3.4 shows the experimental results and a brief summary of this work

is given in Section 3.5 finally.

3.2 Algorithm

Figure 3-1 illustrates the flow chart of the Edge-matching First Block-matching

Last Algorithm (EFBLA). Assume that the macro-block size is N-by-N and the

searching window is 2p-by-2p. The orientation of the current macro-block is

(x, y).

3.2.1 Edge-matching phase

The edge-matching phase of EFBLA contains five steps which will be described

as below:

Step 1. Perform high-pass filter on the current macro-block.

In the first phase, the proposed algorithm first performs the edge extraction

using the general high-pass spatial filter mask, as shown in (3-1)[37]. In (3-1), the

S(i, j) represents the intensity of the pixel at (i, j) in current macro-block. Note
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Figure 3-1: Flow chart of the EFBLA algorithm
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that G(i, j) expresses the gradient of the pixel at (i, j) and the larger the value of

G(i, j) the more possible is the pixel on the edge.

G (i, j) =

∣∣∣∣∣
1∑

∆i=−1

1∑
∆j=−1

c · S (i + ∆i, j + ∆j)

∣∣∣∣∣ ,

where





c = 8 , when (∆i, ∆j) = (0, 0)

c = −1 , otherwise

(3-1)

for 0 ≤ i, j < N .

Step 2. Edge Determination

In the EFBLA, we use the local edge-determination method in current macro-

block. It calculates edge threshold defined as (3-2) to determine the edge pixels.

Basically, the algorithm considers those pixels with G(i, j) greater or equal than

Eth are the edge pixels, as shown in (3-3). If the pixel at (i, j) is the edge pixel,

α(i, j) is set to 1; otherwise, α(i, j) is set to 0.

Eth =
max(G(i, j)) + min(G(i, j))

2
(3-2)

α(i, j) =





1 , if G(i, j) ≥ Eth

0 , otherwise
(3-3)

In order to increase the accuracy of the edge-matching, the EFBLA also regards

the pixels around pixels with G(i, j) greater than Eth as the edge pixels as well.

Thus, the EFBLA employs the edge extension as shown in (3-4) to mark the edge

pixels.

α(i, j) =





1 , if G(i± 1, j ± 1) ≥ Eth

0 , otherwise
(3-4)

Step 3. Determine the scan direction.
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The data reusability is highly dependent on the scan direction because it em-

ploys the criteria of unmatched edge-pixel count (UEPC), which will be illus-

trated in step 5. Before UEPC, EFBLA has to quantize the edge pixels in the

macro-block first. There are highly duplicated data in the successive searching

steps. Fig.3-2 shows the impact of the scan direction to the data reusability as an

example. If the edge pixels are widely distributed along with the y-coordinate,

searching along with x-coordinate can reuse the quantized data efficiently. In

Fig.3-2(a), a macro-block which size is 8-by-8 and black circles means an edge

pixels, that is, the α(i, j) is equal to 1 in the position marked as black circle. In

Fig.3-2(b) and (c), we assumed that the searching position shifts from A to B. The

gray and black marks represent the edge pixels when the referent macro-block is

at the position A. The black and white marks represent the edge pixels when the

target block is at the position B. Therefore, the quantized data at the black marks

can be reused in matching step that uses the criteria of UEPC. Obviously, it just

needs to calculate the quantized edge pixels in the white marks only, then removes

the unmatched edge pixel count in gray marks and plus these in white marks. So

the scan direction in Fig.3-2(b) has higher degree of data reusability than that in

Fig.3-2(c) .

The EFBLA has two scan directions: column-by-column and row-by-row, as

illustrated in Fig.3-3. To decide the scan direction, this step first determine the

span width of edge pixels with x-coordinate, named the x-span, and the span width

of edge pixels with y-coordinate, named the y-span. If the x-span is smaller than

y-span, the step selects the column-by-column scan as the direction; otherwise,

the scan direction will be row-by-row. As the example shown in Fig.3-2, the

value of x-span is equal to four and the y-span is eight, and therefore the efficient
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scan direction is column-by-column.

Step 4. Quantize the edge pixels of the macro-block.

This step quantizes the pixel values at the edge pixels for the low-resolution

computation. The philosophy of two-phase motion estimation is to eliminate im-

possible motion vectors at the lowest computation cost. Hence, the EFBLA uti-

lizes low-resolution computation to perform the edge matching.

Equation (3-5) represents the quantization of the reference blocks where Ŝ (i, j)

is the value of two most significant bits (MSBs) of (S(i, j) − Avgk). The reason

that the step quantizes (S(i, j)−Avgk) instead of S(i, j) is because the former has

higher variance than later. The higher variance leads to higher degree of accuracy

for edge matching.

Ŝ(i, j) = Q2(S(i, j)− Avgk),∀α(i, j) = 1, (3-5)

where Avgk is the total pixel average of the current macro-block, which is defined

as

Avgk =

N−1∑
i=0

N−1∑
j=0

S(i, j)

N2
(3-6)

Step 5. Perform edge matching and generate SMVs.

Upon the completion of the step 3 and 4, the first phase starts to perform

edge matching. First, the EFBLA matches the motion vectors along with the

scan direction obtained by the step 3. The edge matching employs the criteria of

unmatched edge-pixel count (UEPC), as shown in (3-7). In (3-7), R̂(u+i, v+j) is



CHAPTER 3. EDGE-DRIVEN TWO-PHASE MOTION ESTIMATION 27

y

x x-span

y-span

(a)

Scan
Direction

se
ar

ch
 p

os
iti

on
 A



se
ar

ch
 p

os
iti

on
 B



A

B

y

x

y

x

A B searching position B

searching position A

Scan Direction

(b) (c)

Figure 3-2: The reusability of quantized data in EFBLA



CHAPTER 3. EDGE-DRIVEN TWO-PHASE MOTION ESTIMATION 28

Scan direction
with

row-by-row

Scan direction
with

column-by-column
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the quantization result of the reference macro-block with the motion vector (u, v).

UEPC(u, v) =
N−1∑
i=0

N−1∑
j=0

α(i, j) · δ[Ŝ(i, j), R̂(u + i, v + j)], (3-7)

where

R̂(u + i, v + j) = Q2(R(u + i, v + j)− Avgk),∀α(i, j) = 1, (3-8)

and the delta function is defined as

δ
[
Ŝ, R̂

]
=





0 , for Ŝ = R̂

1 , otherwise
(3-9)

Next, this step generates a pair of SMVs for each scan line, either row or column.

The motion vectors with the high UEPCs on a scan line are most likely impossible

ones. Thus, the EFBLA only picks the motion vectors with the lowest two UEPC
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reference macro-blocks as the survived motion vectors (SMVs).

3.2.2 Block-matching phase

Following the edge-matching phase, the second phase of EFBLA performs block-

matching with SAD criteria on SMVs. Note that the block-matching requires

much less evaluations than the traditional full search block-matching because the

first phase has eliminated a large amount of impossible motion vectors.

3.3 Architecture

According to the Edge-matching First Block-matching Last Algorithm depicted

in the previous section, this thesis proposes a two-phase VLSI architecture and

its block diagram is showed in Fig. 3-4. In order to achieve the goal of parallel

processing and avoid multiple data access from the off-chip frame memory, the

proposed architecture is base on a two-dimensional sysolic array in both phases

and saves the data of current/reference macro-block in the CMB/RMB buffer. In

the following subsections, the architecture and behavior of each block will be

illustrated.

3.3.1 The First Phase

The architecture of the first phase contains a Current Macro-Block Buffer, an Edge

Generator Unit, a UEPC PEs Array, a Reference Macro-Block Buffer, a Quantiza-

tion Unit, an Adder Tree and a Survived Motion Vectors Selector. After the edge

matching processing, the first phase generates two survived motion vectors in each

searching row/column for the second phase to perform more accurate matching.
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Edge Generator Unit

In Fig. 3-5, we presented the architecture of Edge Generator Unit which is used

to produce the edge mask and makes decision of search scan-direction described

from Step 1 to Step 3 in section 3.2. This unit contains two main blocks, the

high-pass filter block and edge determination block. The former block calculates

the gradient of each pixel in current macro-block as shown in equation (3-1). The

later one is used to determine the edge mask and X-Y span depicted in the Step 3

of EFBLA.

According to (3-1), the high-pass filter calculates the gradient of a target pixel

with eight neighbor pixels around it. The data paths, CMB1, CMB2, and CMB3,

are the input interface of previous line, current line and next line from the CMB

buffer. The left and right pixels can be reserved by simply delay elements. In order

to avoid the boundary error when the target pixel is in the border, the proposed

architecture uses multiplexers to switch the null data out of the current macro-

block to existent pixels instead. The black-dot in each multiplexer indicates the

switching path when the filter unit is processing a border pixel. To calculate the

gradient value of a target pixel needs total six equivalent adder operations, which

are five adder operations and one absolute operation. We treated the computational

load of an absolute operation as an adder operation. The computational load of

×8 is ignored since it can be implemented with simple shift operation.

The edge determination unit, whose structure is illustrated in the right part

of Fig. 3-5, implements two main functions. The first one is to figure out the

maximum and minimum of the gradient value of the current macro-block and then

determines the threshold value according to the equations from (3-2) to (3-4). The

second one is to decide the searching scan-direction depicted in Step 3 of EFBLA.
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The determination of scan-direction contains simple logic OR gate and look-up

table (LUT) to figure out the XY-span. The edge determination unit generates the

edge mask and scan direction for the UEPC matching in the first phase.

RMB Buffer and Quantization Unit

Figure 3-6 illustrates the architecture of RMB buffer and Quantization Unit. The

reference macro-block (RMB) buffer has two major functions; one is to provide

the parallel data for UEPC PEs arrays in the first phase. The second function is to

buffer the data of reference macro-block for the second phase since by this way

we can ensure that it accesses the data from the reference frame memory only

once. In each clock period, the RMB buffer provides N pixels at the same time to

the Quantization Unit and the Quantization Unit transfers them to low-resolution

data for the matching procedure of UEPC.

In order to save the hardware resource, the quantization procedure for the

current macro-block shares the same quantization cell with the reference macro-

block. At the initial time, there are (N + 2P − 1) × (N − 1) cycles to store the
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reference macro-block ready to provide the parallel data for the PEs array. In this

period, the Quantization Unit is idle and can be switched to quantize the current-

macro-block.

Processing Elements Array

The architecture of Processing Elements Array is illustrated in Fig. 3-7. The

array is composed of N -by-N processing elements to calculate the criteria of

unmatched edge-pixel count shown in (3-7). The data path of CMB in the tail of

a row is linked to the head of the next row and thus it needs N2 cycles to shift

all the quantized data of current macro-block into the UEPC PEs array. By this

linked data path, to quantize the current macro-block only needs to active one

Quantization Unit.

Since the first phase uses the criteria of unmatched edge-pixel count, the PEs

array actives the processing element while corresponding pixel is an edge, that



CHAPTER 3. EDGE-DRIVEN TWO-PHASE MOTION ESTIMATION 34

PE
(N-1,N-1)

PE
(N-1,2)

PE
(N-1,1)

PE
(N-1,0)

PE
(2,N-1)

PE
(2,2)

PE
(2,1)

PE
(2,0)

PE
(1,N-1)

PE
(1,2)

PE
(1,1)

PE
(1,0)

PE
(0,N-1)

PE
(0,2)

PE
(0,1)

PE
(0,0)

Adder Tree

Edge Mask

Q
u
a
n
t
i
z
e
r

CMB

RMBN-1

RMB2

RMB1

RMB0

Figure 3-7: Architecture of Processing Element Array.



CHAPTER 3. EDGE-DRIVEN TWO-PHASE MOTION ESTIMATION 35

reg

reg

CMB

Enable

RMB

cmp

To Adder Tree

Figure 3-8: Architecture of Processing Element.

is, the edge mask α(u, v) is equal to 1 shown in (3-4). The turn-on/off signal is

from the Edge Mask generated from the Edge Generator Unit. The processing

element, which architecture is shown in Fig. 3-8, performs the unmatched edge-

pixel comparison and produces a signal 1 if the quantized data of current macro-

block is not identical to that of reference macro-block. The architecture of the

processing element to calculate the unmatched edge-pixel count is shown in Fig.

3-8. Each processing element contains two two-bit shift register to store the low-

resolution information of current macro-block and reference macro-blocks. The

compared circuit in a PE can be implemented with two exclusive-OR gates and

one OR gate. After the matching process, each processing element generates one

bit signal to the adder tree and SMVs selector for further evaluating the correlation

between the current and reference macro-block.

UEPC Accumulator and SMVs Selector

The UEPC accumulator is used to accumulate the unmatched edge-pixel signal

from each processing element. There is a look-up table (LUT) in each column to

transfer the unmatched signals to a binary number which counts that how many
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unmatched pixels in this column. Then the binary number can be summed up

by a parallel adder tree to measure the total unmatched edge-pixels in the macro-

block. The SMVs selector uses these unmatched edge-pixel counts to pick up two

survived motion vectors in each column for further detail matching in the second

phase. So the first phase figures out 2-by-2p survived motion vectors which are the

most possible motion vectors to the second phase. The architecture of the UEPC

accumulator and SMVs selector are shown in Fig. 3-9.

3.3.2 The Second Phase

In the second phase, it consists of an Accumulator Cell Array and a Motion Vector

Selector. The former unit is used to accumulate the SAD in position of the sur-

vived motion vectors and it is composed of 2-by-N accumulator cells. The later

one, Motion Vector Selector, is used to compare the SAD calculated from the

Accumulator Cell Array and to pick a best motion vector up with the minimum

distortion in the SMVs.

The Accumulator Cells Array

The second phase performs further matching with SAD criteria between those

SMVs generated from the first phase. Figure 3-10 shows the block diagram of

this phase. It consists of an accumulator cells array with dimension N -by-2 and

a controller. Each accumulator cell is used to calculate the SAD value of a row

in a macro block. Architecture of the accumulator cell is shown in the dash circle

on the right hand. The enable signal from the controller is used to active the

accumulator cell when the data in the RMB bus is in the range of the searching

position of corresponding survived motion vector generated form the first phase.
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Figure 3-10: Architecture of the second phase.

When the index counter is in the range of the SMVs, the controller generates the

enable signal to the corresponding accumulator cell to calculate the SAD value

at this searching position. The control signal named as Sel is used to switch the

multiplexer to receive the partial SAD value from the previous accumulator cell.

Figure 3-11 shows the execution of the accumulator cells array in the second

phase. In this diagram, it assumes that the macro block size N is 8 and the search-

ing window is from −8 to 7. The searching scan-direction is row direction. In

this illustration, the SMVs are (−8,−2) and (−8, 4) in the first row, (−7,−7)

and (−7, 7) in the second row and so on. In order to make the graph concise, the

diagram does not show every box of all SMVs as illustration.



CHAPTER 3. EDGE-DRIVEN TWO-PHASE MOTION ESTIMATION 39

(0,-5~2) (0,0~7)

(7,-3~4) (7,0~7)

(-8,-8) (-8,-2) (-8,4)

(-7,-7) (-7,7)

AC(0,0) AC(0,1) AC(1,0) AC(1,1) AC(7,0) AC(7,1)

(-8,-2~5) (-8,4~11)

(-7,-2~5) (-7,4~11) (-7,-7~0) (-7,7~14)

(-6,-2~5) (-6,4~11) (-6,-7~0) (-6,7~14)

(-1,-5~2) (-1,0~7)(-1,-2~5) (-1,4~11) (-1,-7~0) (-1,7~14)

(4,-5~2) (4,0~7)

(0,-3~4) (-1,0~7) (0,-7~0) (0,7~14)

(5,-5~2) (5,0~7)

(6,-5~2) (6,0~7)

(7,-2~9) (7,3~10)

(8,-2~9) (8,3~10)

(14,-2~9) (14,3~10)

Figure 3-11: Execution of the Accumulator Cells Array in the condition of N = 8
and p = 8.

The Motion Vector Selector

In the final step, the Motion Vector Selector receives the matching results from

the accumulator cells array and identify the SADs step by step to figure out the

the motion vector with minimum distortion from those survived motion vectors.

3.4 Performance Analysis

The proposed algorithm significantly reduces the number of motion vectors that

requires costly evaluations. To compare with the other motion estimation algo-

rithms, this paper uses two metrics: computation cost and the mean absolute dif-

ference (MAD). Since the major operation of motion estimation algorithms is

addition, we approximately consider the total number of equivalent addition, de-

noted as εadder, required for each macro-block as the computation cost. In this
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chapter, the 21 MPEG video clips of CIF format as test bench [38]. Each frame

has 352 by 288 pixels and each pixel value is 8-bit gray resolution. The macro-

block size N is 16-by-16, and the search window range is from (−16,−16) to

(15, 15). The full search algorithm (FS) and a two-phase algorithm, the low reso-

lution quantization algorithm (LRQ), are as comparisons with the proposed algo-

rithm EFBLA.

Table 3.I. and 3.II. show the quality performance and computational load of

these test clips. The results shown in the two tables are the average of 100 frames

for each test clip. Obviously, the EFBLA significantly saves 17.47% of the com-

putation cost while the MAD degradation is only 0.065 per pixel averagely with

comparing to LRQ. Fig. 3-12 (a) to (d) demonstrate the MAD curves of four typ-

ical clips and shows that the quality of the EFBLA is very close to the quality of

the others. The Akiyo and Weather clips are slow motion and the Children clip is

belong to middle motion type. The test sequence Stefan is a type of fast motion.

These results show that the EFBLA is capable of lower computational load and

having a good quality as well.

3.5 Brief Summary

This chapter proposes a two-phase algorithm and architecture to significantly re-

duce the computational load of motion estimation by removing the unlikely mo-

tion vectors in the fist phase. As the result of simulating video clips, the quality

degradation is very little comparing with FS, only degrading 0.435 per pixel in

MAD averagely. In addition, the algorithm features adaptive choosing for the

scan direction; it turns out a high degree of data reusability and low memory re-

quirement.
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Table 3.I.: Quality degradation analysis for different video clips.
Clips FS LRQ EFBLA vs. FS vs. LRQ
akiyo 0.605 0.645 0.652 0.047 0.007

children 2.572 2.882 2.930 0.358 0.048
coastguard 5.341 6.309 6.390 1.049 0.081

container 1.564 1.578 1.591 0.027 0.013
dancer 2.696 3.963 3.974 1.278 0.011

destruct 4.022 4.439 4.475 0.454 0.036
flower 6.000 6.367 6.491 0.491 0.124

foreman 2.838 3.614 3.684 0.846 0.070
hall monitor 2.543 2.678 2.686 0.143 0.008

mobile 8.837 9.053 9.445 0.608 0.392
mother daughter 1.496 1.646 1.645 0.148 -0.001

news 1.197 1.336 1.349 0.151 0.013
paris 2.500 2.732 2.782 0.282 0.049
sean 1.647 1.713 1.725 0.078 0.012

silent 1.723 1.923 1.930 0.207 0.007
singer 0.821 0.885 0.885 0.064 -0.000
stefan 6.615 7.429 7.715 1.099 0.286

table tennis 4.388 5.262 5.298 0.910 0.036
tempete 5.685 6.181 6.336 0.651 0.155

waterfall 2.948 3.152 3.150 0.202 -0.002
weather 0.797 0.830 0.847 0.050 0.017
Average 3.183 3.553 3.618 0.435 0.065
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Table 3.II.: Computational load analysis for different video clips.
Clips FS LRQ EFBLA vs. FS vs. LRQ
akiyo 711341 69105 57138 -91.97% -17.32%

children2 711341 69105 55823 -92.15% -19.22%
coastguard 711341 69105 58278 -91.81% -15.67%

container 711341 69105 57416 -91.93% -16.92%
dancer 711341 69105 58929 -91.72% -14.72%

destruct 711341 69105 56073 -92.12% -18.86%
flower 711341 69105 57918 -91.86% -16.19%

foreman 711341 69105 56121 -92.11% -18.79%
hall monitor 711341 69105 56671 -92.03% -17.99%

mobile 711341 69105 56742 -92.02% -17.89%
mother daughter 711341 69105 57223 -91.96% -17.19%

news 711341 69105 56064 -92.12% -18.87%
paris 711341 69105 56042 -92.12% -18.90%
sean 711341 69105 56911 -92.00% -17.65%

silent 711341 69105 56887 -92.00% -17.68%
singer 711341 69105 56734 -92.02% -17.90%
stefan 711341 69105 57402 -91.93% -16.94%

table tennis 711341 69105 57469 -91.92% -16.84%
tempete 711341 69105 56905 -92.00% -17.65%

waterfall 711341 69105 58352 -91.80% -15.56%
weather 711341 69105 56631 -92.04% -18.05%
Average 711341 69105 57035 -91.98% -17.47%

Unit: Equivalent Adder (εadder).
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Figure 3-12: MAD curves of FS, LRQ and EFBLA for four clips. (a) The Akiyo
Clip. (b) The Children Clip. (c) The Stefan Clip. (d) The Weather Clip.



Chapter 4

Power-Aware Algorithm and

Architecture

This chapter presents a power-aware architecture based on subsample algorithms

to perform graceful tradeoffs between power consumption and compression qual-

ity while the battery status changes [39–41]. As the available energy decreases,

the algorithm raises the subsample rate for maximizing battery lifetime. As shown

in experimental results, the proposed algorithm and architecture can dynamically

operate at different power consumption modes with little quality degradation ac-

cording to remaining capacity of battery pack.

This chapter is organized as follows. In Section 4.1 and 4.2, we will intro-

duce the motivation and background of power-aware paradigm. Section 4.3 and

4.4 present generic and content-based subsample algorithms in detail. Section

4.6 describes the proposed power-aware architecture and section 4.7 shows the

performance analysis. Finally, Section 4.8 is the conclusion of this work.

44
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4.1 Motivation

Motion estimation (ME) has been notably recognized as the most critical part in

many video compression applications, such as MPEG standards and H.26x, which

tends to dominate most computational load and hence power requirements. With

increasing demand of battery-powered multimedia devices, an ME architecture

that can be flexible in both power consumption and compression quality is highly

required. The requirement is driven by user-centric perspective [42]. Basically,

users have two thoughts on using portable devices. Sometimes, users might want

extremely high video quality at the cost of reduced battery lifetime. At other

times, users might want acceptable quality for extending battery lifetime.

This chapter, therefore, intends to presents a novel power-aware ME architec-

ture using a content-based subsample algorithm, which can adaptively perform

tradeoffs between power consumption and compression quality as the battery sta-

tus changes. The proposed architecture is driven by a content-based subsample

algorithm that allows the architecture to work at different power consumption

modes with acceptable quality degradation. Since the control mechanism and data

sequences at different power consumption modes are the same in the architecture,

the power-aware algorithm can switch power consumption modes very smoothly

on the fly. The block diagram shown in Fig. 4-1 illustrates a typical application

of the proposed power-aware ME architecture. The host processor monitors the

remaining capacity of battery pack and switches the power consumption modes.

According to the power mode, the power-aware architecture sets the subsample

rate and calculates the motion vector (MV) for motion compensation. Note that

most portable multimedia devices, in practice, have the battery monitor unit and

power management subroutines. Besides the power-aware motion estimation unit,
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all the units marked as gray background also can be designed with power-aware

capability to facilitate this portable system to be friendlier for the battery usage.

In this chapter, the thesis focuses the target to the power-aware motion estimation

based on the content property.

Lots of published papers have presented efficient algorithms for VLSI imple-

mentation of motion estimation, on either high performance or low power design.

Yet, most of them cannot dynamically adapt the compression quality to different

power consumption modes. Among these proposed algorithms, the Full-Search

Block-Matching (FSBM) algorithm with Sum of Absolute Difference (SAD) cri-

terion is the most popular approach for motion estimation because of its consid-

erably good quality. It is particularly attractive to the ones who require extremely

high quality. There are many types of architectures that have been proposed for

the implementation of FSBM algorithms [8, 11, 12, 15]. However, they require a

huge number of comparison/difference operations and result in high computation

load and power consumption. To reduce the computational complexity of FSBM,

researchers have proposed various fast algorithms. They either reduce search steps

[17–19, 21, 43, 44] or simplify calculations of error criterion [13, 29, 34, 45]. By

combining step-reduction and criterion-simplifying, some researchers proposed

two-phase algorithms to balance the performance between complexity and quality

[31, 32, 46]. They first use FSBM with a simplified matching criterion to generate

candidate vectors and then select the best motion vector from these candidates

with SAD criterion. These fast-search algorithms have successfully improved the

block matching speed while the quality degradation is little and, thus, lead to a low

power implementation. However, a low power implementation is not necessarily

a power-aware system in that a power-aware system should adaptively modify its
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behavior with the change of power/energy status and balance the performance be-

tween quality and battery life [47]. The requirement for ME algorithms to be suit-

able for power-aware design is high degree of scalability in performance tradeoffs.

Unfortunately, the fast algorithms mentioned above do not meet the requirement.

Articles in [24, 48] present subsample algorithms to significantly reduce the

computation cost with low quality degradation. The reduction of computation

cost implies the saving of power consumption. Since the power consumption can

be reduced by simply increasing the subsample rate, the subsample algorithms

have high degree of scalability and are very suitable for power-aware ME archi-

tecture. However, applying subsample algorithms for power-aware architecture

may suffer from aliasing problem in high frequency band. The aliasing problem

degrades the compression quality rapidly as the subsample rate increases. To alle-

viate the problem, we extend traditional subsample algorithms to a content-based

algorithm, called the content-based subsample algorithm (CSA). In the algorithm,

we first use edge extraction techniques to separate the high-frequency band from

a macro-block and then subsample the low-frequency band only. Combining the

edge pixels and subsample pixels, the algorithm generates a turn-on mask for the

architecture to limit the switch activities of processing elements (PEs) in a semi-

systolic array. By doing so, we can have significant power consumption save

and keep the quality degradation little as the subsample rate increases. Because

the number of high-frequency pixels varies with different video clips, we use an

adaptive control mechanism to set the threshold value for edge determination and

make the number of masked pixels stationary for a given power mode.

The CSA can be used in most existing ME architectures by turning off PEs

accordingly with subsample rate. In this chapter, we will present a semi-systolic
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architecture with gated PEs. The proposed architecture shows that the CSA algo-

rithm can dynamically alter the subsample rate as the power consumption mode

changes.

4.2 Battery Properties

One may simply consider battery as a capacitor in which the charge capacity is

linearly proportional to the output voltage. However, in practice, the behavior

of battery is non-ideal for its variable voltage and capacity. There are two most

important properties of battery, the rate capacity effect and recovery effect [49].

The first effect states that the capacity of battery is dependent on the discharging

rate and the second one means that a battery with an intermittent load may have

larger capacity than that with a continuous load. Figure 4-2(a) illustrates the rate

capacity effect by plotting the cell voltage for two different discharging loads with

time advancing. As shown in the curves, when the load is halved the battery life

can be more than two times longer. Figure 4-2(b) shows the recovery effect in

which the reduction of load causes the raise of the voltage. Therefore, one can

extend the battery lifetime by gradually stepping down the power dissipation. The

Intel® SpeedStep™ technology, for instance, which is widely used in the mobile

CPU has the same strategy to extend the battery lifetime [50]. The technology

changes the power consumption mode by scaling down the supplied voltage and

operating frequency, and hence degrades the performance to gain battery lifetime.

From these two properties of battery, we can learn two things. First, one can

reduce the load for longer battery lifetime because halving the current can more

than double the battery lifetime. Second, it is worthy to have optimal performance
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when the battery is fully charged because the battery capacity can be recovered

later by reducing the load. These form a good motivation for power-aware design

and reason out the requirement of power-aware architecture — high degree of

scalability in energy-quality tradeoffs.

4.3 Generic Subsample Algorithm

Much research addressed subsample techniques for motion estimation to reduce

the computation load of FSBM [24, 48, 51]. Liu and Zaccarin, as pioneers of

subsample algorithms, applied 4-to-1 subsampling to FSBM and significantly re-

duced the computation load. As the simulation results, the 4-to-1 subsample al-

gorithm reduces the computation load significantly while the quality is similar to
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that of exhaustive search.

Here, we presented a generic subsample algorithm in which the subsample

rate ranges from 4-to-1 to 1-to-1. The generic subsample algorithm uses (4-1)

as a matching criterion, called as subsample sum of absolute difference (SSAD),

where SM8:m is the subsample mask for the subsample rate 8-to-m as shown in

(4-2). The macro-block size is N -by-N and S(i, j) is the luminance value at (i, j)

of the current macro-block (CMB). The R(i + u, j + v) is the luminance value at

(i, j) of the reference macro-block (RMB) which offsets (u, v) from the CMB in

the searching area 2p-by-2p.

SSAD8:m (u, v) =
N−1∑
i=0

N−1∑
j=0

|SM8:m (i, j) · [R (i + u, j + v)− S (i, j)]|, (4-1)

for −p ≤ u, v ≤ p− 1 and the subsample mask SM8:m is defined as

SM8:m (i, j) = BM8:m (i mod 4, j mod 4) (4-2)

and the SM8:m is generated from basic mask as shown in (4-3).

BM8:m =


u (m− 2) u (m− 5) u (m− 2) u (m− 6)

u (m− 3) u (m− 7) u (m− 4) u (m− 8)

u (m− 2) u (m− 5) u (m− 2) u (m− 6)

u (m− 3) u (m− 7) u (m− 4) u (m− 8)




where u(n) is a step function; that is,u (n) =





1, for n ≥ 0

0, for n < 0.

(4-3)

For example, consider the subsample rate 8-to-6. The subsample mask SM8:6 can
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Figure 4-3: The subsample mask of the generic subsample rate 8-to-6.

be expressed as (4-4) and illustrated in Fig. 4-3. The dot circle means the pixel

will be considered in the subsample matching step.

SM8:6 =




1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0

1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0

1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0

1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0




(4-4)

Given a subsample mask, the computation cost of SSAD calculation can be

lower than that of SAD calculation. Since the reduction of computation cost im-

plies the saving of power consumption, the generic subsample algorithm allows

the system power to scale with changing subsample rate. The higher the subsam-

ple rate, the more the number of inactive processing elements will be. Accord-

ingly, the power consumption of the system is proportional to the inverse of the

subsample rate. Due to its flexibility in energy-quality tradeoffs, the generic sub-
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sample algorithm is suitable for implementing power-aware architectures. How-

ever, the algorithm suffers from aliasing problem for high frequency band. The

aliasing problem will degrade the MV quality and result in considerable quality

degradation when the high-frequency band is messed up.

4.4 Content-Based Subsample Algorithm

As mentioned in the previous section, the generic subsample algorithm has alias-

ing problem for high subsample rate and leads to considerable quality degradation

because the high frequency band is messed up. To alleviate the problem, this sec-

tion presents the content-based subsample algorithm (CSA) which can overcome

the drawback obviously. The procedure of the content-based subsample algorithm

is described in Fig. 4-4. The CSA first performs gradient filter to extraction high-

frequency pixels (or edge pixels) from a current macro-block and determines the

edge pixels by these gradient value. Then the proposed algorithm subsamples

the low-frequency pixels only and remains the high-frequency pixels to generate

the content-based subsample mask. Finally, the CSA uses the content-based sub-

sample mask to calculate the subsample SAD and employs the subsample SAD

as matching criteria to figure out the motion vector. Detailed procedure of the

content-based subsample algorithm is given in Fig. 4-5. We will describe the pro-

cedure in the following subsections.

4.4.1 Gradient Filter

This thesis uses three popular gradient filters to exercise the content-based al-

gorithm; they are the high-pass gradient filter, the Sobel gradient filter, and the
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Figure 4-4: The flow chart of content-based subsample algorithm

morphological gradient filter [37]. Equations (4-5)-(4-7) list the calculations of

these three gradient filters.

High-Pass Filter

Ghpf (i, j) = |MF (HPFmask, R (i, j))| ,

where HPFmask =




−1 −1 −1

−1 8 −1

−1 −1 −1


 .

(4-5)

Sobel Filter

Gsobel(i, j) = |MF (SXmask, R) (i, j)|+ |MF (SYmask, R) (i, j)| ,

where SXmask =




−1 −2 −1

0 0 0

1 2 1


 and SYmask =




−1 0 1

−2 0 2

−1 0 1


 .

(4-6)
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Morphological Gradient Filter

Gmorpho log ical = (R⊕B)− (RªB) ,

where B =




0 0 0

0 0 0

0 0 0


 ,

(4-7)

where the operations ’⊕’ and ’ª’ denote the morphological dilation and erosion.

In equations (4-5) and (4-6), the MF (·) function is the mask filter operation

as shown in (4-8).

MF (M,R) (i, j) =
1∑

p=−1

1∑
q=−1

M (p + 1, q + 1) ·R (i + p, j + q) (4-8)

where M is a 3-by-3 mask and R(i, j) is the luminance value at (i, j).

4.4.2 Edge Determination

After obtaining the gradients G, instead of using a constant threshold, we use a

floating threshold to determine the edge pixels of the current macro-block. The

floating threshold makes the edge extraction more robust with video content vary-

ing than the constant threshold. Equation (4-9) describes the calculation of the

floating threshold.

threshold = mt
1(x, y) ·max {G (i, j)}+ (1−mt

1(x, y)) ·min {G (i, j)} ,

for 0 ≤ mt
1 ≤ 1,

(4-9)

where mt
1(x, y) is the threshold parameter of macro-block (x, y) in the t-th frame.

Following the threshold setting step, the algorithm uses the threshold value to
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pick the edge pixels and produce the edge mask as shown in (4-10).

EdgeMask (i, j) =





1, for G (i, j) ≥ threshold

0, otherwise
(4-10)

Finally, the contend-based subsample mask (CSM) is generated by merging the

edge mask and the subsample mask, as shown in (4-11). According to the cal-

culation of CSM, the subsample rate in CSA (CSR), denoted as Rs, is N2-to-

csm cnt, where csm cnt is the number of 1’s in CSM and N2 is the macro-block

size. Figure 4-6 demonstrates an example of CSM in which the subsample rate is

64-to-27.
CSM (i, j) = SM8:m (i, j) ∨ EdgeMask (i, j) ,

0 ≤ i, j ≤ N − 1.
(4-11)

4.4.3 Adaptive Control Mechanism

In the previous subsection, the content-based subsample mask is generated by

merging the regular generic subsample mask with edge mask of high frequency

pixels. Since the edge pixels is determined by the edge threshold parameter, the

lower the edge threshold parameter, the more the edge pixels will be took. In

the prior work, we used constant edge threshold parameter to determine the edge

mask [39]. However, the same edge threshold parameter turns out diverse number

of edge pixels for various video clips. In Table 4.I., we analyzed the effect of

edge threshold parameter on the subsample pixels by setting the edge threshold

parameter from 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 to 0.6. As the simulation results shown

in the table, standard deviation is up to 13.846 between these 21 test clips for

the same edge threshold parameter. Since the subsample rate (N2-to-subsample
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Figure 4-6: The components of a content-based subsample mask (CSM)

pixels) is related to how many corresponding processing elements will be disabled

for saving power consumption, the diverse property of edge threshold parameter

causes obstacle to implement accurate power-aware architecture.

In order to conquer the obstacle, the content-based subsample algorithm pro-

poses an adaptive mechanism to self-optimize the edge threshold parameter to

converge the subsample pixels. Figure 4-7 shows the block diagram of the adap-

tive control mechanism. As described in the previous section, the host processor

receives the status of battery pack and decides the best target subsample pixels

(trg cnt) according to the battery profile. By the target subsample pixels, the

adaptive mechanism recursively updates the edge threshold parameter mt+1
1 (x, y)

according to the difference between target subsample pixels and current subsam-
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Table 4.I.: Analyze the effect of edge threshold parameter m1 on subsample pix-
els.

m1 0.05 0.1 0.2 0.3 0.4 0.5 0.6
akiyo 205.414 176.522 136.769 110.035 92.805 82.260 74.973

children 178.668 149.623 119.201 101.613 89.612 81.177 74.757
coastguard 226.269 200.438 157.329 125.502 103.123 87.978 77.955

container 211.320 183.773 145.082 118.056 99.330 86.446 77.758
dancer 213.506 191.270 153.491 123.626 102.685 88.545 77.913

destruct 204.833 170.554 128.369 103.568 88.558 79.085 72.849
flower 204.992 177.966 140.167 113.887 95.937 84.277 75.844

foreman 190.506 153.741 116.262 96.951 85.588 78.253 73.124
hall monitor 201.773 172.598 136.236 112.599 96.687 85.678 77.743

mobile 184.738 158.141 124.977 104.341 90.300 80.638 74.081
mother daughter 208.210 178.797 139.426 113.509 96.484 85.003 76.194

news 197.857 168.008 130.289 107.245 92.678 82.839 75.606
paris 187.107 157.579 124.165 104.327 91.431 82.612 76.093
sean 203.642 173.333 135.699 110.464 94.222 83.595 75.872

silent 203.741 173.749 132.628 106.703 90.764 80.832 74.483
singer 207.794 179.213 141.512 116.214 98.662 86.565 77.972
stefan 203.708 177.468 141.179 115.379 97.696 85.556 77.092

table tennis 215.165 184.407 138.681 109.122 91.020 80.171 73.374
tempete 197.329 165.714 128.063 104.663 89.659 79.982 73.699

waterfall 221.736 191.497 144.527 113.015 93.324 81.379 74.054
weather 169.356 149.140 125.092 108.309 97.317 87.226 80.078
Average 201.794 173.025 135.197 110.435 94.189 83.338 75.786

σ 13.749 13.846 10.522 7.052 4.646 3.059 1.967
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Figure 4-7: The block diagram of the edge-determination unit with adaptive con-
trol mechanism.

ple pixels (csm cnt) frame by frame, as shown in (4-12).

mt+1
1 (x, y) = mt

1(x, y) + Kp · (csm cnt− trg cnt) ;

if(mt+1
1 (x, y) < 0) {mt+1

1 (x, y) = 0};
if(mt+1

1 (x, y) > 1) {mt+1
1 (x, y) = 1};

(4-12)

where mt+1
1 (x, y) is the threshold parameter of macro-block (x, y) in the (t + 1)-

th frame and Kp is the control parameter. Figure 4-7 illustrates the block diagram

of the the edge-determination unit with the proposed adaptive control mechanism.

As shown in (4-12), the control parameter Kp that will affect the settling time

and stationary state error of subsample rate. If the control parameter is not well-

selected, the settling time would be too long to have real-time switching and the

CSR error would be so large to make the setting of power consumption mode in-

accurate and the power-awareness worse. The control parameter Kp in Fig. 4-7 is

the major factor to affect the settling time and the CSR error. In order to analyzing

the effect of Kp upon the subsample rate and stationary error, we simulated 21 test
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Table 4.II.: Average stationary error for 21 video clips with Kp = 0.2.
Target 96.000 128.000 160.000 192.000 224.000

HPF 95.913 127.827 159.771 191.359 221.731
Error 0.091% 0.135% 0.143% 0.334% 1.013%
SBL 96.026 127.818 159.712 191.261 221.659

Error 0.027% 0.142% 0.180% 0.385% 1.045%
MPH 96.553 128.015 159.734 191.370 222.179
Error 0.576% 0.012% 0.166% 0.328% 0.813%

clips for 30 frames with 1 : 1 of the initial subsample rate and 8 : 5 of the target

subsample rate. Figure 4-8 shows the effect of the Kp selections of four clips as

illustrations.

Obviously, the higher the value of Kp, the shorter the settling time and the

worse the stability of the CSR are. If the Kp is too large, the real subsample pixels

will be overshoot and oscillatory around the target subsample pixels. Although

the settling time is under three frames, the overshoot is up to 32 pixels worse in

the weather clip and hard to converge. On the other hand, the settling time will be

longer than twenty frames while the Kp is set too tiny. As shown in the response

plot of various Kp, the suitable range of Kp is from 0.1 to 0.3. In this range,

all the test clips can be converge to the target subsample pixels under ten frames

and less overshooting. That is, for a real-live video clip with 30 frames each

second, the system can be operated on the target power mode under 0.33 second.

Table 4.II. presents the average subsample pixels and station error of three filters

with the proposed adaptive mechanism. The simulation results clearly show that

the stationary error can be kept less than 1.045%.

Finally, Table 4.III. shows the simulation results by the proposed adaptive con-

trol mechanism. In order to comparing with the fixed edge threshold parameter

shown in Table 4.I., we set the target subsample pixels as the average subsam-
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Figure 4-8: Response time of four clips. (a) The Dancer Clip. (b) The News Clip.
(c) The Paris Clip. (d) The Weather Clip.
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Table 4.III.: Analyze the effect of controlled edge threshold parameter on subsam-
ple pixels.

Target 201.794 173.025 135.197 110.435 94.189 83.338 75.786
akiyo 201.430 172.929 135.121 110.373 94.155 83.813 76.256

children2 200.458 172.210 135.142 111.296 95.576 85.236 78.055
coastguard 201.198 172.537 134.989 110.477 94.563 84.081 76.705

container 200.960 172.690 135.206 110.601 94.411 84.011 76.518
dancer 200.848 172.613 135.572 111.167 95.083 84.667 77.370

destruct 200.837 172.315 134.867 110.587 94.899 84.504 77.361
flower 201.033 173.026 135.515 110.816 94.898 84.843 78.578

foreman 201.463 172.843 134.975 110.415 94.773 84.639 77.552
hall monitor 201.043 172.787 135.279 110.733 94.602 84.321 76.948

mobile 200.948 172.907 135.129 110.859 95.157 84.401 76.925
mother daughter 200.324 172.884 135.071 110.562 94.665 84.139 76.720

news 201.223 172.951 135.313 110.496 94.291 83.890 76.603
paris 200.924 172.855 135.240 110.786 94.741 84.260 76.926
sean 200.409 171.941 134.242 109.320 93.614 83.268 76.264

silent 199.972 172.756 135.039 110.336 94.025 83.898 76.366
singer 201.256 172.798 135.075 110.273 94.159 83.605 76.281
stefan 201.532 173.145 135.469 110.790 94.985 84.371 77.060

table tennis 200.460 171.941 134.546 110.115 94.315 83.886 76.715
tempete 201.527 173.155 135.454 110.875 94.894 84.144 76.853

waterfall 201.794 173.080 135.254 110.526 94.368 83.790 76.459
weather 198.632 172.282 136.317 113.543 98.618 88.744 81.883
Average 200.870 172.697 135.182 110.712 94.800 84.405 77.162

σ 0.690 0.365 0.404 0.763 0.981 1.089 1.234

ple pixels of these 21 test clips with the fixed edge threshold parameter. As the

results showed, the standard deviation can be reduced to 0.365 and the worse is

only 1.234, which is much better then the result 13.846 with uncontrolled edge

threshold parameter.

4.4.4 Matching Step

Once the CSM is generated, the algorithm can then determine the motion vec-

tor (MV) with the subsample sum of absolute difference (SSAD) criterion. The
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SSAD criterion is similar to that mentioned in Section 4.3 and shown in (4-13).

SSAD (u, v) =
N−1∑
i=0

N−1∑
j=0

|CSM (i, j) · [R (i + u, j + v)− S (i, j)]|, (4-13)

for−p ≤ u, v ≤ p−1. In this equation, S(i, j), R(i+u, j+v), N and p are defined

the same as (4-1). As the SSAD of each reference macro-block is calculated, the

motion vector can be selected with the minimum error distortion by

−−→
MV = (u, v)

∣∣
min−p≤u,v≤p−1 SSAD(u,v) (4-14)

4.5 Results

In this thesis, we simulate 21 352-by-288 MPEG clips with parameters N = 16

and p = 16 for 50 frames to analyze the quality performance of motion compen-

sation. The control parameter Kp in the adaptive control mechanism is set as 0.2

as we have presented the suitable Kp is ranged from 0.1 to 0.3 in section 4.3. The

target subsample rates are set as (4 : 1), (8 : 3), (2 : 1), (8 : 5), (4 : 3), (8 : 7),

and (1 : 1); that is, the target subsample pixel counts are 64, 96, 128, 160, 192,

224 and 256, respectively.

Table 4.IV. and 4.V. are the quality results of GSA and ACSA with high-pass

filter respectively. Figure 4-9 shows the quality degradation curve of four video

clips, the Dancer clip, the Hall Monitor clip, the News clip and the Paris clip.

In order to illustrate more robust performance, we showed the average quality

degradation curve in Fig 4-10. The dashed line in the figure is the result of the

generic subsample algorithm and the solid lines are the results of the content-

based subsample algorithm with three filters. As shown in the results, the quality
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Table 4.IV.: Quality performance of PSNR by GSA for different video clips.
Target Rs 8:2 8:3 8:4 8:5 8:6 8:7 8:8

akiyo 42.874 42.884 42.908 42.920 42.928 42.927 42.922
children 26.743 26.724 26.813 26.809 26.848 26.858 26.870

coastguard 30.567 30.594 30.623 30.624 30.634 30.640 30.652
container 38.373 38.383 38.396 38.401 38.400 38.402 38.405

dancer 32.166 32.209 32.389 32.462 32.657 32.676 32.714
destruct 28.728 28.749 28.822 28.857 28.919 28.921 28.937

flower 26.186 26.267 26.311 26.328 26.341 26.347 26.353
foreman 33.237 33.777 33.880 33.863 33.862 33.915 33.938

hall monitor 34.370 34.397 34.462 34.502 34.564 34.571 34.573
mobile 23.641 23.732 23.814 23.919 23.959 23.971 23.988

mother daughter 41.589 41.607 41.662 41.679 41.714 41.719 41.735
news 38.415 38.410 38.506 38.536 38.596 38.592 38.597
paris 30.508 30.524 30.587 30.608 30.659 30.668 30.676
sean 38.538 38.566 38.577 38.590 38.623 38.619 38.636

silent 36.452 36.759 36.780 36.793 36.800 36.796 36.811
singer 35.215 35.281 35.317 35.334 35.368 35.385 35.411
stefan 26.204 26.234 26.321 26.336 26.350 26.356 26.365

table tennis 30.937 30.958 31.013 31.026 31.053 31.054 31.066
tempete 27.295 27.322 27.349 27.360 27.381 27.379 27.387

waterfall 35.430 35.463 35.474 35.476 35.478 35.481 35.481
weather 36.701 36.725 36.756 36.792 36.845 36.836 36.840
Average 33.056 33.122 33.179 33.201 33.237 33.244 33.255

Unit: dB

degradation of the content-based algorithm is less than that of the generic sub-

sample algorithm, and the type of filter does not make much difference to the

performance of the proposed algorithm. Figure 4-11 and 4-12 illustrate the im-

provement of CSA over GSA. Because the CSA alleviates the aliasing problem

for high-frequency band, the compensated frame with CSA has better quality than

that with GSA on the edge of the test sequences. Besides the adaptive control

mechanism does work quite well to keep the subsample rate stationary.
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Table 4.V.: Quality performance of PSNR by ACSA with high pass filter for dif-
ferent video clips.

Target Rs 8:2 8:3 8:4 8:5 8:6 8:7 8:8
akiyo 42.874 42.967 42.986 42.962 42.959 42.937 42.922

children 26.743 26.840 26.821 26.838 26.847 26.869 26.870
coastguard 30.567 30.625 30.647 30.643 30.648 30.650 30.652

container 38.373 38.567 38.568 38.569 38.569 38.569 38.405
dancer 32.166 32.630 32.717 32.735 32.724 32.750 32.714

destruct 28.728 28.815 28.865 28.921 28.944 28.948 28.937
flower 26.186 26.284 26.305 26.328 26.348 26.350 26.353

foreman 33.237 33.924 33.951 33.966 33.963 33.951 33.938
hall monitor 34.370 34.521 34.559 34.572 34.581 34.578 34.573

mobile 23.641 23.912 23.946 23.964 23.974 23.981 23.988
mother daughter 41.589 41.700 41.722 41.732 41.733 41.735 41.735

news 38.415 38.621 38.656 38.666 38.632 38.632 38.597
paris 30.508 30.649 30.670 30.694 30.690 30.691 30.676
sean 38.538 38.626 38.636 38.640 38.643 38.639 38.636

silent 36.452 36.762 36.757 36.785 36.791 36.802 36.811
singer 35.215 35.586 35.560 35.510 35.453 35.438 35.411
stefan 26.204 26.285 26.327 26.347 26.362 26.363 26.365

table tennis 30.937 31.006 31.041 31.040 31.053 31.061 31.066
tempete 27.295 27.307 27.318 27.340 27.366 27.381 27.387

waterfall 35.430 35.484 35.485 35.485 35.484 35.484 35.481
weather 36.701 36.833 36.863 36.878 36.872 36.852 36.840
Average 33.056 33.235 33.257 33.267 33.268 33.270 33.255

Unit: dB
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Figure 4-9: Quality degradation curves of four clips. (a) The Dancer Clip. (b) The
Hall Monitor Clip. (c) The News Clip. (d) The Paris Clip.
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Figure 4-10: Average quality degradation curve of 21 test clips.

(a) (b) (c) (d)

Figure 4-11: The 26th frame of dancer clip. (a) GSA with 8-to-3 subsample rate
(b) Residual of motion compensation by GSA (c) CSA with 8-to-3 subsample rate
(d) Residual of motion compensation by CSA
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(a) (b)

(c) (d)

Figure 4-12: The 18th frame of table-tennis clip. (a) GSA with 8-to-3 subsample
rate (b) Residual of motion compensation by GSA (c) CSA with 8-to-3 subsample
rate (d) Residual of motion compensation by CSA

4.6 Power Aware Architecture

According to the content-based subsample algorithm, we presented a semi-systolic

architecture as shown in Fig. 4-13, based on existed 2D array architectures, such

as [11][13]. The proposed architecture contains an edge-extraction unit (EXU),

an array of processing elements (PEs), a parallel adder tree (PAT), a RMB Buffer

(RMBBUF), and a motion-vector selector (MVS). Given the power consumption

mode, the EXU extracts high-frequency (or edge) pixels from the current macro-

block (CMB) and generates 0-1 content-based subsample masks (CSM) for the

PE array to disable or enable processing elements (PEs). The PEs array is used to

accumulate absolute pixel differences column by column while the parallel adder

tree sum up all the results to generate the value of SSAD. The MVS, then, per-

forms compare-and-select operation to select the best motion vector.

In the following subsections, we will illustrate these blocks in detail and the

system execution schedule at the last subsection.
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Figure 4-13: The block diagram of the power-aware ME architecture driven by
the content-based subsample algorithm.
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4.6.1 Architecture

Processing Element Array and RMB Buffer

The processing elements array, which block diagram is shown in the right side of

Fig. 4-14, is used to accumulate absolute pixel differences column by column. It

is consisted of N -by-N processing element (PE) and each processing computes

the absolute difference between luminance values of a pixel in the current macro-

block and a pixel in the reference macro-block if the PE is not disabling by the

subsample mask. Then the PE adders the absolute difference with the partial sum

from the previous PE in the below row and forwards the updated partial sum to

the next PE in the above row. Finally, the PEs array accumulates the partial sums

of absolute difference in each column and sends these partial sum to the parallel

adder tree to sum up the final sum of absolute difference.

The reference macro-block buffer, shown in the left part of Fig. 4-14, contains

(N −1)-by-(2p−2) registers to save the pixel value of the reference macro-block

temporarily and it guarantees that each pixel is accessed only one time from the

frame memory for a macro-block matching iteration. Although this buffer can

save the frame memory bandwidth, there are still overlaps between the searching

area in the reference frame of successive macro-block which causes the multi-

accessing in a reference pixel. Each pixel in the reference frame is accessed for

(N + 2p− 1)2/
N2 times.

In the proposed architecture, there are three specific paths in the PEs array

to provide the luminance value of the current macro-block to the edge-extraction

unit. Those are one bypass path, marked as CMB, and two a line-delayed paths,

marked as CMBDL1 and CMBDL2. Since each filter operation needs the previous

and next lines to perform the mask operation, these paths can save the delay line
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Figure 4-14: The architecture of PEs array and RMB buffer.
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Figure 4-15: The structure of a PE.

the edge-extraction unit.

Figure 4-15 shows the PE structure and explains how the CSM disables/enables

processing elements. The CSM disables the PE by using the block element (BE)

marked as gray block. The BEs implemented by AND gates can nullify the input

signals of data path that consists of the absolute difference unit (|a− b|) and the

adder unit. When a PE are disabled during a MV searching iteration, the circuits

in the PE remain still until the next iteration starts and, thus, the consumption of

transient power can be saved.

Based on the systolic architecture with content-based subsample algorithm,

the architecture dynamically disable some processing elements to reduce the power

consumption in that we assume the major power consumption is determined by

the switch activity of system [13]. The enable/disable mask is generated from the

edge-extraction unit which will be depicted in the next subsection.



CHAPTER 4. POWER-AWARE ALGORITHM AND ARCHITECTURE 74

CMB

D

D

D

D

absx8

_

+

CMBDL1

right boundary

left boundary

To Edge-Determination

top boundary High-Pass Gradient Filter

CMBDL2

G

bottom boundary

TB

BB

LB

RB

Figure 4-16: The architecture of high-pass filter.

Edge Extraction Unit

The edge-extraction unit contains two blocks, the gradient filter and the CSM gen-

erator. The implementation of gradient filter is based on one of (4-5) to (4-7). The

proposed architecture only needs a single gradient filter embedded. However, we

still show all of their implementations for the purposes of estimating the overheads

and comparison. Figures 4-16 to 4-18, illustrate the implementations of high-pass

filter, Sobel filter and morphological gradient filter respectively. The multiplexers

are used to prevent from boundary errors for border pixels in performing gradi-

ent filter. The black-dot in each multiplexer indicates the switching path when

processing a border pixel. Figure 4-19 shows the structure of CSM generator. The

CSM generator has two steps. It first determines the threshold according to the

gradient values and the power mode, and then generates the CSM by OR-merging

the regular subsample pattern and the edge pattern, as shown in (4-9)-(4-11).
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Figure 4-17: The architecture of Sobel filter.
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Figure 4-18: The architecture of Morphological gradient filter.



CHAPTER 4. POWER-AWARE ALGORITHM AND ARCHITECTURE 76

Gradient
max D

min D

cmp
edge

pattern

1-m1

m1

OR

regular
subsample

pattern
CSM

power mode

N2 delay line

Controller Counter

Figure 4-19: The structure of CSM generator.

Execution of Power-Aware ME

The execution of power-aware motion estimation has five phases: initial CMB

phase, initial RMB phase, SAD calculation phase, filtering phase, and edge de-

termination phase. The initial CMB phase is for loading the CMB data into PEs

array while the initial RMB phase is for filling up PEs array in full with RMB data

to start the SAD calculation. As shown in Fig. 4-20, the initial CMB phase and

initial RMB phase are executed in parallel with the edge extraction and thus the

timing overhead of edge extraction is hidden by the initial phases. For p > 8, the

timing overhead of edge extraction is zero.

4.6.2 Implementation Results

The system architecture is implemented using Verilog HDL and synthesized with

0.35um cell library of TSMC™ process technology by Design Compiler® of Syn-

opsys, Inc. Table 4.VI. reports the synthesized results of the power-aware archi-

tecture. In the results, we show the gate count by blocks, which are PEs Array,

SRA, PAT+MVS, and EXU. In this way, we will use the synthesized gate count
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Figure 4-20: The execution phases of the power-aware architecture.
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Table 4.VI.: Implementation of the power-aware architecture.

EUi Gi

PEs array AD + Adder 117,760
Others 58,708

SRA 44,640
PAT+MVS 1,800

EXU 15,393

Unit: gate count
Cell library: TSMC™ 0.35um 1P4M process

to analyze the power consumption which will be illustrated in the next section.

4.7 Performance Analysis

4.7.1 Power Model

Before depict the simulation results, this subsection presents the power model

which will be used to analyze the performance in the thesis. In a VLSI system

designed in CMOS technology, one can consider the major power consumption of

a CMOS gate i as (4-15), where Ci is the output capacitance, fi is the operation

frequency, and ri(0 ↔ 1) is the switch activity of gate i. α and κ are constants.

Pgatei
= α · Ci · fi · V 2

DD = κ · Ci · ri(0 ↔ 1). (4-15)

For an execution unit EUj in such VLSI system, the power consumption can be

shown in (4-16), where Gj is the gate count of EUj .

PEUj
=

Gj∑
i=1

κ · Cj
i · rj

i (0 ↔ 1). (4-16)
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After considering the activity of execution units, the total power consumption

can be expressed as (4-17) and approximated as (4-19) by assuming the switch

activities are uniform within an execution unit; that is, rk
i (0 ↔ 1) = rk(0 ↔

1),∀rk
i (0 ↔ 1). Since the average output capacitances of each execution unit

(Ck
avg) are nearly the same as the average output capacitances of total system

(Cavg), the total power consumption can be approximated to (4-22). Therefore,

we can obtain an approximated power estimation model shown in (4-23), where

εgp is defined as the gate power coefficient. In this paper, we use the gate power

coefficient as the unit for estimating power dissipation.

Ptotal =
∑

∀inactiveEUj

PEUj
+

∑

∀activeEUk

PEUk
(4-17)

=
∑

∀inactiveEUj

κ

Gj∑
i=1

Cj
i · 0

+
∑

∀activeEUk

κ

Gk∑
i=1

Ck
i · rk

i (0 ↔ 1) (4-18)

∼= κ
∑

∀activeEUk

rk(0 ↔ 1)
Gk∑
i=1

Ck
i (4-19)

= κ
∑

∀activeEUk

rk(0 ↔ 1)×

Gk∑
i=1

Ck
i

Gk
×Gk (4-20)

= κ
∑

∀activeEUk

rk(0 ↔ 1)× Ck
avg ×Gk (4-21)

∼= (κ · Cavg)
∑

∀activeEUk

rk(0 ↔ 1)×Gk (4-22)

= εgp

∑

∀activeEUk

rk(0 ↔ 1)×Gk (4-23)
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Table 4.VII.: Power analysis of the power-aware architecture
EUi PE array SRA PAT+MVS EXU

AD + Adder Others
Gate Count Gi 117,760 58,708 44,640 1,800 15,393

ri(0 ↔ 1) 4p2R−1
s 4p2 4p2 4p2 N2

P i 1.21e8 ·R−1
s 6.01e7 4.57e7 1.84e6 3.94e6

Ptotal(εgp) 1.21e8 ·R−1
s + 1.12e8

N = 16 and p = 16
Cell library: TSMC 0.35um process

4.7.2 Results

Table 4.VII. shows the synthesis result using the TSMC 1P4M 0.35um cell li-

brary, where the symbol Rs means the content-based subsample rate and the εgp

is the gate power coefficient defined in (4-23). Comparing with the general semi-

systolic architecture [11], the edge extraction unit (EXU) of proposed architecture

is the major overhead for power-aware function. As mentioned above, this paper

uses one of three gradient filters to implement the EXU. As per the synthesis re-

sults, the gate counts of the three gradient filters are 499.33, 697.77 and 631.63

respectively. The variance of these values is very little to the overall gate count of

EXU. For instance, the gate count of EXU with high-pass filter is equal to 15393.

The number is extremely larger than the variance. It means that the selection of

gradient filter does not affect the overhead estimation much. Therefore, we selec-

tively use high pass filter to estimate the performance overhead caused by EXU.

From Table 4.VII., we can notice that the area overhead of EXU is 6.46% while

the worst-case power overhead is only 2.8% when the subsample rate is 4-to-1

with N = 16 and p = 16.

Figure 4-21 shows examples of four video clips for switching the power con-

sumption mode. The target subsample pixel count is reduced by 48 every 40
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frames and the control parameter Kp is set to 0.2. The result shows that the adap-

tive control mechanism can make the power consumption reach the target level

within 10 frames and the stationary error be under 5%. According to the battery

properties described in section 4.2, the curve shows that our power-aware architec-

ture can extend the battery lifetime by slowly and gradually degrading the quality.

The marks A, B, C, and D are corresponding to the switching points in Fig. 4-2(b)

respectively.

4.8 Summary

Motivated by the concept of battery properties and power-aware paradigm, this

chapter presents an architecture-level power-aware technique based on a novel

adaptive content-based subsample algorithm. When the battery is in the status of

full capacity, the proposed ME architecture will turn on all the PEs to provide the

best compression quality. In contrast, when the battery capacity is short for full

operation, instead of exhibiting an all-or-none behavior, the proposed architecture

will shift to lower power consumption mode by disable some PEs to extend the

battery lifetime with little quality degradation.

As the results of simulation, the CSA can significantly reduce computation

complexity with little quality degradation. However, there exists a non-stationary

problem with CSA for implementing power-aware architecture if the designer

uses constant threshold parameters mt
1 and statically sets the floating threshold

for a given power mode. Since different video clips with the same threshold pa-

rameters will have different subsample rates, setting the threshold value without

considering the content variation of video clips will make the subsample rate non-

stationary; that is, the power consumption will not be converged within a narrow
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Figure 4-21: The power switching curves of four clips. (a) The Dancer Clip. (b)
The News Clip. (c) The Paris Clip. (d) The Waterfall Clip.
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range for a given power mode. The divergence of power consumption can result

in a bad power-awareness. To solve this non-stationary problem, the paper uses

an adaptive control mechanism to adaptively adjust the threshold parameters so

that the subsample rate can be stationary. The adaptive control mechanism used

in this work is a run-time process that adjusts the threshold parameters fittingly

according to the difference between the current subsample rate and the desired

subsample rate (or target subsample rate).

Founded on the content-based algorithm, the power-aware architecture can

dynamically operate at different power consumption modes with little quality

degradation according to the remaining capacity of battery pack to achieve better

battery discharging property. And the control mechanism maintains the power-

consumption mode in an acceptable stationary state successively.



Chapter 5

Conclusion

This thesis has presented content-based motion estimation algorithms and archi-

tectures to solve the problem of huge computation load and power-aware issue

for the portable multimedia applications. The two-phase ME algorithm and the

content-based power-aware ME algorithm are proposed to achieve the target. The

formal one uses the edge-matching approach as matching criteria of the first phase

to reduce the computational complexity. The later one applies a content-based

subsample algorithm with the adaptive control mechanism to achieve the power-

aware function for better quality degradation while the power mode is operated in

the lower consumption level.

By employing the edge-matching criteria and the scan direction in the first

phase, the edge-driven two-phase algorithm can use the quantized pixel value

more efficiently and thus reduce the computation complexity. Reducing the com-

putational complexity means reducing the power consumption. As the simulation

results, the proposed two-phase algorithm can reduce the significant computation

load comparing with the full-search algorithm and still can be more efficient than

the exist two-phase algorithm.

84
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The content-based power-aware algorithm performs power-aware function by

disable/enable processing elements according to the subsample mask. The power-

aware approach extracts the edge pixels of a macro-block and subsamples the non-

edge pixels only to maintain the quality performance in acceptable level. Since

the power consumption is proportional to the subsample rate, this content-based

algorithm adopts a close-loop control mechanism to keep the subsample rate in

stationary state. Founded on the content-based algorithm, the power-aware archi-

tecture can dynamically operate at different power consumption modes with little

quality degradation according to the remaining capacity of battery pack to achieve

better battery discharging property.

According to the content-based methodology, the proposed algorithms and ar-

chitectures are very suitable for the portable multimedia devices which are pow-

ered by battery. The two-phase architecture is for the low-complexity application

and the power-aware architecture is for extending the battery life with better qual-

ity trade-off. As the simulation results show, the proposed content-based ME

algorithms and architectures can achieve better power and quality performance

for the portable multimedia application.
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