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以價格為基礎之無線網路資源配置 

 
學生：高玉芬 

 

指導教授：黃仁宏 博士

國立交通大學 

管理科學系 

摘 要       

 
無線隨意網路近年來成為一門新興的研究領域，其中資源分配是一

個重要的議題。關於無線隨意網路的資源分配，研究者應同時關注公平

性與整體網路表現二個面向。為了達成促進競爭網路資源的個別傳輸點

彼此間互相合作之目標，藉由價格競爭以進行資源分配是一項良好的機

制。我們利用價格機制來做資源分配，考慮到二項無線網路的重要因素：

網路卡之多重傳輸速率及行動裝置之電量限制。首先，我們提出一個以

群集(clique)為基礎之模式，它考量了多重傳輸速率之因素，並使我們能

同時達到最佳資源分配與公平性。其次，我們將電量消耗納入考量，進

一步擴展資源分配模式，以動態調整價格來反映資料傳輸之電量需求。

我們的模式精確的反映出無線網路環境中許多重要因素與限制，具有實

務上的意義。我們也提出相關的模擬數據，以驗證所提方法之優越性。 

 
關鍵詞：隨意網路、非線性規劃、訂價、資源分配、無線通訊。 
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Price-Based Resource Allocation for Wireless Ad Hoc Networks with 
Multi-Rate Capability and Energy Constraints 

 

 
Student：Yu-Fen Kao Advisor：Dr. Jen-Hung Huang

Department of Management Science 
National Chiao Tung University 

ABSTRACT 

 
Wireless ad hoc networks have attracted a lot of attentions recently. Resource 

allocation in such networks needs to address both fairness and overall network 

performance. Pricing is a prospective direction to regulate behaviors of individual 

nodes while providing incentives for cooperation. In this work, we develop some 

pricing strategies for resource allocation by taking account of factors like multiple 

transmission rates and energy consumption of nodes, which have not been well studied 

in former works. Multi-rate transmission capability is commonly seen in most wireless 

products nowadays, while energy is one of the most important resources in portable 

devices. We propose a clique-based model which allows us to achieve optimal resource 

utilization and fairness among network flows when multi-rate transmission is 

considered. We also show how to extend the model to dynamically adjust prices based 

on energy consumptions of flows. In particular, our model takes into account energy 

consumptions in the transmitters’ side, the receivers’ side, and those that are 

non-transmitters and non-receivers but are interfered by these activities. So our model 

can more accurately reflect the real energy constraint in a wireless network. Simulation 
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results are presented to show the convergence and other properties of these strategies. 

 

Keywords: ad hoc network, nonlinear programming, pricing, resource allocation, 

wireless communication. 
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Chapter 1

Introduction

1.1 Research Background and Motives

In recent years, we have seen rising demand for mobile computing and commu-

nication services. The tremendous advancement in wireless network technologies

has made the dream of “communication anytime and anywhere” realizable. Users

can experience full mobility, while at the same time maintaining the ability to con-

nect with others as well as the Internet. Wireless networks provide people a more

durable and flexible way of communications. Successful wireless communication

systems include GSM, PHS, 3G WCDMA, and WLAN (WiFi) systems.

One wireless network configuration that has become a popular subject of re-

search is the mobile ad hoc network (MANET) [16, 20, 21]. A MANET is com-

prised of a collection of wireless nodes without a pre-existing infrastructure. Any

device with a microprocessor and a wireless interface, whether highly mobile or

static, may serve as a potential node in a MANET. Each node in the network acts

as a router to relay data packets for others. Each flow may travel over multiple

hops of wireless links from its origin to its destination. In a MANET, multi-hop

routing can achieve high degree of network connectivity, but this requires the
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willingness of each node to forward packets for others. However, constrained by

limited power and communication resources, a selfish node may be reluctant to

relay packets of others, but expect others to relay its packets. Compared to wired

networks, multi-hop MANETs have several special characteristics as opposed to

wireline networks. For example, nodes may suffer from a higher degree of in-

terference and energy resources are more constrained. Also, since competition

is related to the geographic distribution of nodes, some flows may unfairly con-

sume more resources (such as bandwidths and energies) than others. This raises

the problem of designing proper resource allocation mechanisms to encourage co-

operation among nodes in such a way that competing multi-hop flows can share

scarce channel as well as battery resources in a fair way, while the whole utility

of all flows is maximized.

1.2 Objectives of This Study

The aim of this dissertation is to explore the possibility of using price as incentives

in multi-hop MANETs to encourage nodes to acquire resources in a reasonable

way to maximize the aggregated utility (i.e., social welfare) of flows with fairness

in mind. The use of pricing as a tool for allocating resources in communication

networks has drawn a lot of attention recently. Both utility and pricing are not new

concepts and have been studied in economics for a long time. Utility is to reflect

the level of users’ satisfaction from consuming a resource and price is the cost per

unit of resource charged to users. The intention is to influence users’ behaviors

through pricing to achieve certain desired results, such as improving the overall

system utilization and maintaining fairness among users.
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We follow the traditional assumption in Economics that a utility function is

concave, reflecting the phenomenon of diminishing marginal utility [14, 15]. The

concavity assumption could prevent assigning too much resource to a specific user

and thus allow to achieve fairness among users. In addition to concavity, we also

assume that a utility function is strictly increasing, reflecting the fact that a higher

transmission rate generates higher utility.

In wireline networks, pricing mechanisms have been studied in [2, 4, 5, 6, 7,

9]. In wireless networks, a number of works [13, 18, 23] have introduced pricing

mechanisms to improve resource management. In the context of wireless LANs,

price-based resource allocation strategies have found application in power control

[18] and call admission control [3]. However, these models only concentrate on

single-hop infrastructure wireless networks. Price-based approaches to bandwidth

allocation in multi-hop MANETs are proposed in [17, 22]. In [17], an iterative

price and rate adaptation algorithm is proposed assuming that users set prices for

forwarding packets to maximize their own net benefits. The result shows that us-

ing pricing to stimulate cooperation will generate a socially optimal bandwidth

allocation, i.e., maximization of the total utility of all users. Reference [22] intro-

duces the concept of clique into the resource allocation problem to accommodate

the unique characteristics of contention among wireless nodes. Based on this new

model, they present a new pricing policy for end-to-end multi-hop flows. Their

simulation results demonstrate that pricing can indeed lead to the maximization

of aggregated utility of flows as well as fairness among flows.

In this work, we are interested in IEEE 802.11-based MANETs. IEEE 802.11

[8] is one of the most widely used broadband wireless access systems nowadays.

In this particular domain, we observe that there are important characteristics of
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MANETs that have not been carefully studied in existing works. First, the trans-

mission rate of a wireless link is in fact environment-sensitive. Most of today’s

wireless interfaces can support multiple modulations and thus can transmit at a

wide range of rates. Second, transmitting a packet in IEEE 802.11 incurs en-

ergy consumptions not only at the transmitter and the receiver sides, but also at

neighboring stations of the transmitter and the receiver. We name the latter the

idle-listening energy cost. It follows, interestingly, that the energy cost incurred

by a transmission also depends on the number of neighboring nodes. Without tak-

ing these factors into account, existing models can not accurately capture prices

that should be charged to traffic flows in a MANET. Based on these observations,

we then propose new pricing strategies for resource allocation in a MANET. Our

contributions are twofold. First, by including the factors of multiple transmission

rates and prices of idle-listening energy consumptions, our model and thus the de-

rived results are more realistic. Second, we demonstrate that it is still feasible to

use prices to control behaviors of nodes in a MANET to achieve maximal system

utilization with proper fairness among nodes.

1.3 Organization of This Dissertation

This dissertation is organized as follows. Related works are reviewed in Chapter

2. Chapter 3 presents our clique-based resource allocation strategy with multi-

rate constraint. Chapter 4 further extends our resource allocation strategy with

both multi-rate and energy constraints. Chapter 5 reports our experimental results.

Finally, Chapter 6 concludes the dissertation and provides future directions.
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Chapter 2

Related Works

We are interested in pricing mechanisms in IEEE 802.11-based MANETs. In

this particular domain, we observe that there are two important characteristics of

MANETs that have been ignored in existing works. First, the transmission rate of

a wireless link is environment-sensitive. Most of today’s wireless interfaces can

support multiple modulations and thus can transmit at a wide range of rates. For

example, IEEE 802.11b can operate at rates of 1, 2, 5.5, and 11 Mbps, while with

OFDM (orthogonal frequency division multiplexing), IEEE 802.11a can support

a wide range of rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbps. Second, transmit-

ting a packet in IEEE 802.11 incurs energy costs not only at the transmitter and

the receiver sides, but also at the neighboring stations of the transmitter and the

receiver. For example, an evaluation shows that an IEEE 802.11b card at trans-

mit, receive, monitor, and sleep modes would cost around 280, 180, 70, and 10

mW, respectively [19]. When two nodes are communicating, a node that is within

the transmitter’s transmission range will overhear the wireless signal, decode the

packet, and eventually drop it because it is not the intended receiver. These receiv-

ing activities do not benefit the overhearing node but would still cause significant

energy consumption to the overhearing node. We name this the idle-listening en-

5



ergy cost. Experiences show that idle-listening energy cost is not much less than

real receiving energy cost. It follows, interestingly, that the energy cost incurred

by a transmission also depends on the number of neighbors of the transmitter. Fur-

ther, because the IEEE 802.11 MAC protocol also requires extra control packets

being sent by the receiver, there is also extra energy cost incurred to neighboring

nodes of the receiver. This leads to an observation that the total energy consump-

tion incurred by a multi-hop traffic flow in a MANET also depends on the number

of neighboring nodes of the routing path. Based on these observations, we will

propose our pricing strategies in a MANET.

Utilizing pricing as a means for fostering cooperation in a MANET has been

studied in [17]. However, it assumes a simplified model, where each node k has a

transmission capacity of Ck, which is disassociated with other nodes. This model

ignores the unique characteristic of inter-node interference in wireless communi-

cations. In [22], it is shown that cliques (to be defined later) can better characterize

the interference nature. However, it is assumed that the channel capacity for each

wireless link is equal. Thus, the multi-rate nature of wireless communications is

ignored. Further, in both works, the factor of energy consumptions is ignored. A

comparative study of two price-based algorithms is in [12], where it is shown that

the gradient projection method has a better convergence property, but at the cost

of performance.

Our work will model the prices by nonlinear programming techniques [1, 10].

We will adopt the Lagrangian Primal-Dual solution, which is summarized as fol-

lows. Consider the following nonlinear problem P, which is called the primal

6



problem.

maximize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . , m (2.1)

Several problems, closely associated with the above primal problem, have been

proposed and are called dual problems. Among the various dual functions, the

Lagrangian dual function has perhaps drawn the most attention. The Lagrangian

form of the optimization problem P is defined as follows:

L(x, λ) = f(x) −
m∑

i=1

λigi(x). (2.2)

where λi ≥ 0 is the Lagrange multiplier associated with the inequality constraint

gi(x) ≤ 0. The Lagrange dual function θ(λ) is defined as the maximized L(x, λ)

over x, i.e.,

θ(λ) = supx∈X L(x, λ), (2.3)

where sup stands for the least upper bound, or the supremum. The Lagrange dual

problem D is presented below.

minimize θ(λ)

subject to λ ≥ 0. (2.4)

The optimal primal and dual objectives are equal. Any algorithms that find a pair

of primal-dual variables (x, λ) that satisfy the KKT optimality condition would

solve the primal and its dual problem. One possible approach is to use the gra-

dient projection method [1], which updates the dual variables λ to solve the dual

problem D:

λ(t + 1) =

[
λ(t) − α

∂θ(λ(t))

∂λ

]+

, (2.5)

7



where t is the iteration number and α > 0 is the step size. Certain choice of step

sizes guarantee that the sequence of dual variables λ(t) will converge to the dual

optimal λ∗ as t → ∞. The primal variable x(λ(t)) will also converge to the primal

optimal variable x∗.
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Chapter 3

Resource Allocation with
Transmission Rate Constraint

3.1 Network and Contention Models

We are given a multi-hop MANET. Each node has a maximum transmission dis-

tance of dtx. Two nodes are able to communicate with each other if their distance

is no larger than dtx. Wireless channels are considered as resources. When a

node is transmitting a packet, any node that is within the interference distance

of dint can detect the carrier from its radio interface, where dint ≥ dtx, and thus

is prohibited from transmitting and receiving. We assume that each radio inter-

face can support multiple modulations, and thus can transmit at multiple rates of

r1, r2, . . . , rm. Without loss of generality, let r1 > r2 > · · · > rm. The rate that a

node can transmit depends on its distance to the receiver. Let d1, d2, . . . , dm be m

distances such that d1 < d2 < · · · < dm = dtx. We assume that a transmitter can

successfully transmit to a receiver at the rate of ri if the distance between them is

no larger than di. The concept is illustrated in Fig. 3.1. We assume that a node can

determine, from past experience, the transmission rates that it can use with each

neighboring node and will always choose the best (highest) rate for use.

9
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Figure 3.1: Relationship of transmission distances and rates.
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We are interested in solving the resource allocation problem in a MANET

by modeling the power consumption incurred by a routing path by taking into

account the energy cost for transmission, reception, and inter-node interference

along the path. The network is modeled by a graph G = (V, E), where V (G) is

the set of mobile nodes and E(G) is the set of wireless links. For any two nodes

u, v ∈ V (G), a link (u, v) is included in E(G) iff their distance d(u, v) ≤ dtx.

For each link e = (u, v) ∈ E(G), depending on the distance d(u, v), we denote

by r(e) the best transmission rate for e. We are also given a set of n traffic flows

F in G. Each flow fi ∈ F , i = 1..n, goes from one source node to a destination

node via a predefined routing path (typically a shortest path). The set of wireless

links that are traversed by fi is denoted by E(fi) ⊆ E(G). The goal is to calculate

a rate allocation vector A = (r(f1), r(f2), . . . , r(fn)) such that each flow fi can

transmit at the rate of r(fi), i = 1..n. We will formulate the objectives and

constraints later on.

3.2 Clique-based Rate Allocation Strategy

Below, we will derive our node interference model. Then we will present our rate

allocation problem, followed by an iterative scheme to solve this problem. Our

results are based on [11, 22] with some extensions.

First, we will formulate the constraints of inter-node interference by modifying

the model in [22]. Since flows in G will contend with each other for transmission,

we first convert G into a link contention graph Gc = (Vc, Ec) [11]. Each link in

E(G) of the original graph G is converted into a vertex in Vc. Each pair of links

e1 and e2 in E(G) with a contention relation is converted to a link (e1, e2) in Ec,

11



where a contention relation is established if the distance between any endpoint of

e1 and any endpoint of e2 is ≤ dint. The reason for such a definition is to model

the behavior of the IEEE 802.11 MAC protocol, as shown in Fig. 3.2. For each

data packet being transmitted on a wireless link, RTS/CTS/ACK control packets

need to be sent. This calls for two-way communications, so we can model the

contention relation without regarding the directions of flows.

With graph Gc, we define our clique-based rate allocation problem as follows.

In a graph, a complete subgraph is called a clique. A maximal clique is a clique

such that no other clique is its superset. The set of all maximal cliques, or simply

cliques, in Gc is denoted by Q. Fig. 3.3 shows a network G and its corresponding

Gc. Two example maximal cliques (marked by dotted circles) are identified in

Fig. 3.3. For each q ∈ Q, the set of vertices of q (i.e., the set of wireless links

in E(G) which forms clique q) is denoted by V (q). Maximal cliques (or simply

called cliques below) in Q will be the units of resource allocation in our scheme.

For any feasible rate allocation vector A and for each link e that is traversed by

fi, the air time ratio r(fi)/r(e) is the amount of air time occupied by fi per time

unit. Because no two members in a maximal clique are allowed to transmit at the

same time (otherwise, collision will happen), this enforces that the sum of air time

ratios seen by all links belonging to the same clique be no more than 100%. More

specifically, for each clique q ∈ Q, the total of air time ratios occupied by all links

of all flows that go through q at any time unit must be no more than 100%, i.e.,

∀q ∈ Q :
∑

∀e∈V (q)

⎛
⎝ ∑

∀fi∈F :e∈E(fi)

r(fi)

r(e)

⎞
⎠ ≤ 1. (3.1)

For example, the total of air time ratios of members in each of the dotted circles

in Fig. 3.3 should be bounded by 100%. We say that a rate allocation vector A is

12



feasible if all inequalities in Eq. (3.1) are satisfied.

We now present our price-based resource allocation scheme with the above

air time constraints. Our derivation will be based on a social welfare model to

calculate a rate allocation vector A such that the total utility of all flows is max-

imized and fairness among flows is maintained. We will associate with the rate

r(fi) of each fi a utility function U(r(fi)), which represents the degree of satis-

faction of fi given rate r(fi). Following typical definitions of utility, we assume

that the function U(·) is strictly increasing, concave, and twice continuously dif-

ferentiable. The primal problem P can be formulated by a nonlinear optimization

problem as follows:

maximize
∑
∀fi∈F

U(r(fi))

subject to ∀q ∈ Q :
∑

∀e∈V (q)

⎛
⎝ ∑

∀fi∈F :e∈E(fi)

r(fi)

r(e)

⎞
⎠ ≤ 1. (3.2)

The goal is to maximize the total of all flows’ utilities. However, because of the

way that utility functions are defined, it also has a sense of fairness behind. Since

traffic flows have to compete with each other, they have to share the resources

provided by cliques. The way utility functions are defined will enforce a flow’s

utility to gradually saturate as more and more resources are taken by it. Intuitively,

when approaching the saturation point, it would be better to reduce its traffic rate

and give the saved resource to other traffic flows, which may generate higher

utility margins. This is what we mean by social welfare. Also, utility functions

are based on users’ psychological feelings to prices and can be defined differently.

Several examples of utility functions can be found in our simulations.

In order to solve problem P, we turn our attention to the dual problem D of

13



Figure 3.2: IEEE 802.11 MAC protocol.
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Figure 3.3: (a) network G and (b) link contention graph Gc and two example
maximal cliques.
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P defined as follows. For each q ∈ Q, let μq be the cost of the usage of one air

time unit charged by clique q. Problem D is defined as the following min-max

problem:

min
∀μ1,μ2,...,μ|Q|

{
max

∀r(f1),r(f2),...,r(fn)

{
D(r(f1), r(f2), . . . , r(fn); μ1, μ2, . . . , μ|Q|)

}}
,

where

D(r(f1), r(f2), . . . , r(fn); μ1, μ2, . . . , μ|Q|)

=
∑
∀fi∈F

⎛
⎝U(r(fi)) −

∑
∀e∈E(fi)

⎛
⎝ ∑

∀q∈Q:e∈V (q)

r(fi)

r(e)
· μq

⎞
⎠

⎞
⎠ +

∑
∀q∈Q

μq,(3.3)

under the same constraints as in P, where the expression inside the first summa-

tion can be considered as the net benefit of flow fi and the second term can be

considered as the total value of the potential capacities of all cliques that can be

offered to flows. Eq. (3.3) can be rewritten as

D(r(f1), r(f2), . . . , r(fn); μ1, μ2, . . . , μ|Q|)

=
∑
∀fi∈F

⎛
⎝U(r(fi)) − r(fi)

∑
∀q∈Q

μq

⎛
⎝ ∑

∀e∈E(fi):e∈V (q)

1

r(e)

⎞
⎠

⎞
⎠ +

∑
∀q∈Q

μq,(3.4)

which satisfies the Lagrangian form of the optimization problem P, where (μ1, μ2, . . . , μ|Q|)

is a vector of Lagrange multipliers. In Eq. (3.4), the term

∑
∀q∈Q

μq

⎛
⎝ ∑

∀e∈E(fi):e∈V (q)

1

r(e)

⎞
⎠ (3.5)

can be regarded as the unit path cost charged to flow fi. From Eq. (3.5), we

see that the difference between our formulation and that of [22] is that we take

into account the actual air time occupied for a flow in each clique, while [22]

only counts the number of links appearing in each clique. This does matter when
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two links belong to the same clique, one transmitting at a higher speed and the

other transmitting at a lower speed; although they may transmit the same amount

of information, the occupied air time ratios should be differentiated. Thus, our

formulation can more accurately model the cost charged to each flow.

Next, we develop an iterative algorithm to determine the rate allocation vector

A. Intuitively, each clique can be regarded as a provider and each flow can be

regarded as a buyer. Clique q may gradually adjust its unit price μq depending on

the demands of buyers. On the other hand, each buyer fi may gradually adjust

its flow rate r(fi) depending on its current utility value and the accumulated price

charged by all cliques that it will go through. More specifically, the algorithm

goes in a sequence of steps. At step t, the unit cost of each clique q is denoted

by μq(t), and the rate of each flow fi is denoted by r(fi, t). In each iteration, the

clique costs will be updated first, followed by updates of flow rates. The algorithm

is a distributed one executed by individual cliques and sources of flows.

A1. For each clique q, one node Lq is pre-elected as the leader of that clique. Lq

then collects the rate r(fi, t) of each fi such that E(fi) ∩ V (q) 
= ∅. (How

to elect a leader is trivial, so we omit the details.)

A2. Lq will determine the price of q in the next step t + 1 based on its current

price at step t using the gradient projection method [1] as follows:

μq(t + 1) =

[
μq(t) − γ

∂D(·)
∂μq

]+

, (3.6)

where γ is a small step size and [·]+ will return 0 when the value inside the

brackets is negative. Since the utility function is strictly concave, D(·) is
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continuously differentiable. From Eq. (3.3), Lq can derive that

∂D(·)
∂μq

= 1 −
∑
∀fi∈F

⎛
⎝ ∑

∀e∈E(fi):e∈V (q)

r(fi)

r(e)

⎞
⎠ . (3.7)

Plugging Eq. (3.7) into Eq. (3.6), Lq determines its unit price in step t + 1

as

μq(t + 1) =

⎡
⎣μq(t) − γ

⎛
⎝1 −

∑
∀fi∈F

⎛
⎝ ∑

∀e∈E(fi):e∈V (q)

r(fi)

r(e)

⎞
⎠

⎞
⎠

⎤
⎦

+

. (3.8)

Then Lq sends the updated price μq(t + 1) to all members in V (q).

A3. On receiving μq(t + 1), each e ∈ V (q) notifies the updated price to each

flow that goes through it. Each flow should forward the new price to its

source node.

A4. When the source of fi collects all updated prices at step t + 1, it derives its

updated net benefit function as

B(r(fi)) = U(r(fi)) −
∑

∀e∈E(fi)

⎛
⎝ ∑

∀q∈Q:e∈V (q)

r(fi)

r(e)
· μq(t + 1)

⎞
⎠ (3.9)

and takes the first derivative of B(r(fi)) by setting it to 0

∂B(r(fi))

∂r(fi)
= U ′(r(fi)) −

∑
∀e∈E(fi)

⎛
⎝ ∑

∀q∈Q:e∈V (q)

1

r(e)
· μq(t + 1)

⎞
⎠ = 0.(3.10)

The next injection rate that would maximize its net benefit is

r(fi, t + 1) = argr(fi)

{
∂B(r(fi))

∂r(fi)
= 0

}
. (3.11)

A5. The source of fi then communicates its updated rate r(fi, t+1) to all cliques

flowed by it by piggybacking the value with its data packets. The above

procedure then loops back to step A2 and repeats in each time step.
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Chapter 4

Resource Allocation with Both
Transmission Rate and Energy
Constraints

A radio channel is a kind of replenishable resource in the sense that in every

time unit, the same amount of resource can be provided again. On the contrary,

it is not so for battery energy in a mobile node because after each usage, the

remaining energy decreases until the battery is exhausted. Below, we will develop

an extension to our model to include energy price.

We first develop the energy consumption model in IEEE 802.11 MAC, where

each transmission of a data packet is accompanied by RTS/CTS/ACK control

packets, as illustrated in Fig. 3.2. Let the amounts of energy consumption per

time unit for transmission, reception, and idle-listening be Ptx, Prx, and Pidle, re-

spectively. For each directional wireless link �e = (u, v) ∈ E(G), the amount of

energy required to transmit one data bit from u to v can be written as

P (�e) = (1 + δtx) × 1

r(e)
× (Ptx + Prx + (|N(u)| − 1)Pidle) +

δrx × 1

r(e)
× (Ptx + Prx + (|N(v)| − 1)Pidle), (4.1)
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where the first term is the cost incurred by the transmission activities at u and

the second term is the cost incurred by the transmission activities at v. N(u) and

N(v) are the sets of neighbors of u and v in G, respectively. The terms δtx and δrx

are to account for the ratios of extra control overheads per data bit incurred for u

and v, respectively. Note that since �e is directional, P ((u, v)) may not be equal to

P ((v, u)). Fig. 4.1 shows an example.

We utilize energy price P (�e) in two ways. First, P (�e) will be sent to each

clique leader Lq to differentiate the unit price of q charged to each flow. More

specifically, the unit cost μq will be extended to μq,�e to account for the energy cost

of link �e. Second, the energy price will also be sent to each source node to be

included in its net benefit function. The detail procedure is shown below.

B1. Each directional link �e will calculate its energy cost P (�e). At step t, the

leader Lq of each clique q will collect the rate r(fi, t) of each fi such that

E(fi) ∩ V (q) 
= ∅ and the energy cost P (�e) of each link �e ∈ V (q).

B2. To reflect the difference in energy cost of each link, we modify Eq. (3.8)

such that Lq assigns a different step size γ�e to each link �e ∈ V (q). We

intentionally let links with higher energy costs get larger step sizes, and

vice versa. The intuition is to let links with higher energy costs adjust prices

more quickly. So flows passing high energy consumption areas will be more

sensitive to price changes. Specifically, Lq sets the unit price of link �e in step

t + 1 as

μq,�e(t + 1) =

⎡
⎣μq,�e(t) − γ�e

⎛
⎝1 −

∑
∀fi∈F

⎛
⎝ ∑

∀e∈E(fi):e∈V (q)

r(fi)

r(e)

⎞
⎠

⎞
⎠

⎤
⎦

+

,(4.2)

where μq,�e(t) is the unit price charged by each link �e in step t. Then Lq sends
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idle idle

idle idle

idle idle

idle idle

idle idle

idle idle

tx rx
rx tx

Figure 4.1: Power consumption model. For each node, the corresponding Px/Py

means the energy consumption incurred by transmissions of u/v, respectively.
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the updated price to all members in V (q). The value of γ�e is defined as fol-

lows. Let step size variance β be a positive constant such that β < γ (for ex-

ample, if γ = 0.01, then β can be 0.005.). Let Pavg = 1
2|V (q)|

∑
∀�e∈V (q) P (�e).

For link �e, we let

γ�e = γ + β · h
(

P (�e) − Pavg

Pavg

)
, (4.3)

where

h(y) =

⎧⎨
⎩

y if −1 ≤ y ≤ 1
−1 if y < −1
1 if y > 1

. (4.4)

Function h(y) is to constrain the returned value within [−1, 1] when y is

outside that range.

B3. On receiving μq,�e(t + 1), each �e ∈ V (q) notifies the updated price to each

flow that goes through it. Each flow should carry the new price to its source

node.

B4. When the source of fi collects all updated prices at step t + 1, it derives its

updated net benefit function as

B(r(fi)) = U(r(fi)) −
∑

∀e∈E(fi)

⎛
⎝ ∑

∀q∈Q:e∈V (q)

(
r(fi)

r(e)
· μq,�e(t + 1) + weng · r(fi) · P (�e)

)⎞
⎠ ,(4.5)

where weng is a constant representing the weight of the price of energy,

considering that one may give more or less emphasis on the cost of energy

consumption. Taking the first derivative of B(r(fi)) by setting it to 0, we

have

∂B(r(fi))

∂r(fi)
= U ′(r(fi)) −

∑
∀e∈E(fi)

⎛
⎝ ∑

∀q∈Q:e∈V (q)

(
μq,�e(t + 1)

r(e)
+ weng · P (�e)

)⎞
⎠ = 0.(4.6)
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The next injection rate that would maximize its net benefit is

r(fi, t + 1) = argr(fi)

{
∂B(r(fi))

∂r(fi)
= 0

}
. (4.7)

B5. The source of fi then communicates its updated rate to all cliques flowed by

it by piggybacking the value of r(fi, t + 1) with its data packets. The above

procedure then loops back to step B2 and repeats in each time step.
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Chapter 5

Experimental Results

To understand the convergence property and performance of the proposed proto-

cols, we have developed a simulator. We consider the effect of multi-rate transmis-

sion, without the effect of energy price. A network area of size 1500m×1500m is

simulated, on which 50 nodes are randomly generated. We assume that the IEEE

802.11b wireless interface cards are used, which support four transmission rates

of r1 = 11 Mbps, r2 = 5.5 Mbps, r3 = 2 Mbps, and r4 = 1 Mbps, with transmis-

sion distances of d1 = 30 m, d2 = 50 m, d3 = 80 m, and d4 = 145 m, respectively.

Therefore, dtx = 145 m. Unless stated otherwise, we set dint = 2× dtx and initial

price μq(0) = 1.00 for each q. For each flow, the initial rate is set to 0. The step

size γ is set to 0.05. In the following simulations, we first assume weng = 0 (i.e.,

no energy price). At the end, we will evaluate the impact of weng.

5.1 Convergence Test

First, we inject different initial values to verify the convergence property of our

scheme. We adopt the utility function U(x) = x1/2. There are n = 5 flows each

with an initial flow rate of 0 Mbps. The initial unit price for each clique is 1.0. We
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test different step sizes γ = 0.08, 0.18, and 0.28. The results are in Fig. 5.1, which

shows that in all step sizes, the clique unit prices and flow rates will converge to

the same values. A smaller step size will lead to slower convergence, which is

reasonable. We also conduct simulations with different initial clique unit prices,

under a fixed γ = 0.08. As Fig. 5.2 shows, initial unit prices do affect the speed

of convergence. However, all cases converge to the same flow rates. A similar test

of convergence using different initial flow rates are shown in Fig. 5.3.

5.2 Impact of Utility Functions

Next, we test on different utility functions: U(x) = x1/2, x1/4, and ln x. Note

that these utility functions conform to our assumptions that they should be strictly

increasing, concave, and twice continuously differentiable. Five traffic flows are

injected. Then we observe the changes of unit prices of some cliques (Fig. 5.4(a),

(c), (e)) and changes of rates of some flows (Fig. 5.4(b), (d), (f)). It can be seen

that in all cases, flow rates will converge within short times. The convergence

speed of U(x) = ln x is relatively slower. Overall, we see that when U(x) = x1/2

or x1/4, the flow rates converge at faster speeds than the case U(x) = ln x. This

is because the degree of satisfaction is less sensitive to rate change in the latter

case. Interestingly, we also see that even after all flow rates have converged, some

cliques’ unit prices will converge quickly, but some may keep on increasing or

decreasing. Decreasing ones are due to the corresponding cliques are not 100%

saturated yet. So their prices will keep on decreasing. However, flow rates may

not be increased any more (observe that some cliques may be saturated already

and become the bottlenecks of these flows). This causes such cliques drop their
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Figure 5.1: Test of convergence with different step sizes.
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Figure 5.2: Test of convergence with different initial clique unit prices.
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Figure 5.3: Test of convergence with different initial flow rates.
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unit prices gradually to 0. This can also explain why some flows will keep on

increasing their rates. As a flow sees a dropping path price, it will try to increase its

rate. However, since no more increase is possible, this only causes those already

saturated cliques to become over-saturated and thus increase their unit prices.

5.3 Varying the Network Density

In the next set of simulations, we fix the utility function at U(x) = x1/2 and

vary the network density. The network density can be changed by varying the

interference range or the number of nodes. The results in Fig. 5.5. are obtained

by setting dint = 2× dtx, 3× dtx, and 4× dtx. The convergence property remains

true. However, since the definitions of cliques will change as the interference

ranges change, the convergence speeds and the final flow rates are not necessarily

the same. The results in Fig. 5.6. are obtained by setting the numbers of nodes

to 50 and 100. While the convergence is guaranteed, the speed of convergence is

slower as there are more nodes, which is reasonable.

5.4 Impact of Number of Flows

Finally, we fix the utility function at U(x) = x1/2 and the interference range at

dint = 2.0 × dtx and vary the number of flows among 5, 10, and 25. The results

are in Fig. 5.7. The convergence speeds are not sensitive to the number of flows,

so the proposed protocol should be quite scalable to the number of flows.
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(a) Utility function = x^1/2
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(c) Utility function = x^1/4
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(d) Utility function = x^1/4
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(e) Utility function = ln x
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(f) Utility function = ln x
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Figure 5.4: Changes of clique unit prices and flow rates by varying the utility
functions.
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(a) Dint = 2 Dtx
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(c) Dint = 3 Dtx
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(e) Dint = 4 Dtx
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Figure 5.5: Varying the network density by changing the interference range.
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(a) Num. of Nodes = 50
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(c) Num. of Nodes = 100
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Figure 5.6: Varying the network density by changing the number of nodes.
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(a) Num. of flows = 5
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(c) Num. of flows = 10
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(d) Num. of flows = 10

0

0.05

0.1

0.15

0.2

0.25

0 4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94

Time

r(
fi

) 
 M

bp
s

r(f0)
r(f1)
r(f2)
r(f3)
r(f4)
r(f5)
r(f6)
r(f7)
r(f8)
r(f9)

(e) Num. of flows = 25
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(f) Num. of flows = 25
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Figure 5.7: Changes of clique unit prices and flow rates by varying the number of
flows.
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5.5 Impact of Energy Price

The above results assume no energy price (i.e., steps A1-A5 are adopted). In this

simulation, we set U(x) = x1/2, dint = 2.0 × dtx, and vary the weight weng (i.e.,

steps B1-B5 are adopted). The results are in Fig. 5.8. We see both the convergence

property and the impact of energy cost. Flows 1 and 3 consume the most energy,

so their stable rates decrease as weng increases. On the contrary, flows 2 and 4

consume relatively less energy, so their stable rates, benefiting from the channel

resources released by flows 1 and 3, increase as weng increases. Fig. 5.9 shows

the impact of weng by varying it between 0.1 and 2.0. As can be seen, the cost

of energy can suppress the rates of flows 1 and 3 effectively. As some channel

resources are released by flows 1 and 3, flows 2 and 4 will first benefit from

these new resources. However, as weng keeps on increasing, flows 2 and 4 will

eventually see higher overall prices, enforcing them to reduce their rates. This

explains why we see increment followed by decrement in stable rates for them as

weng keeps on increasing.
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Figure 5.8: Impact of energy price. (Set A considers only channel cost, while set
B considers both channel and energy costs.)
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siders only channel cost, while set B considers both channel and energy costs.)
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Chapter 6

Conclusions and Future Directions

We have addressed the resource allocation problem in MANETs by using pricing

to regulate individual flows’ behaviors. Two pricing strategies have been pro-

posed, which take the factors of multiple transmission rates and energy consump-

tions into account. These two factors are critical ones for MANETs, but have not

been well studied in former works. Therefore, our results can more closely reflect

realistic wireless network environments under current technologies. Our schemes

do not rely on global network information. Each clique will run as an individual

to adjust its unit price. Similarly, each flow will run as an individual to adjust its

flow rate depending on its current utility value and the external charges. As shown

by our simulations, the system will gradually reach a balance point. Our simula-

tion results have verified the convergence properties of the proposed clique-based

and clique-plus-energy-based models. Various factors including forms of utility

functions, network density, number of flows, and energy price, have been studied

in our simulation experiments.

The validity of our claims is supported by both theoretical exploration and

comprehensive simulation results. To the best of our knowledge, there is no previ-

ous work that addresses the issues of multiple transmission rates and energy costs
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while designing a price-based mechanism to allocate resources in wireless ad hoc

networks. Therefore, our model can provide more practical insights for resource

allocation in MANETs.

There are still some limitations in our work that may lead to future studies.

First, our assumptions on transmission distance (dtx) and interference distance

(dint) are based on an ideal radiation model in the sense that they are perfect cir-

cles. In reality, they may be of irregular shapes. Thus, how to change the definition

of cliques to adapt to such reality needs to be investigated. Second, determining

maximal cliques is computationally expensive, especially in a network environ-

ment, where a node has only local views on its surroundings. Also, a network

may have a large number of cliques. How to reduce this cost or simplify the com-

putation deserves further study. Third, we have only considered static MANETs in

the sense that stations have no mobility. In reality, stations in a MANET could be

highly mobile. It deserves investigating the feasibility of our model when apply-

ing to a mobile environment. Finally, we have shown how to conduct price-based

resource allocation in an IEEE 802.11-like network. How to extend our work to

other MAC protocols deserves further studies, too.
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