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a b s t r a c t

Process capability indices (PCIs), Cp, Ca, Cpk, Cpm, and Cpmk have been developed in certain

manufacturing industry as capability measures based on various criteria, including

process consistency, process departure from a target, process yield, and process loss. It is

noted in certain recent quality assurance and capability analysis works that the three

indices, Cpk, Cpm, and Cpmk provide the same lower bounds on the process yield. In this

paper, we investigate the behavior of the actual process yield, in terms of the number of

non-conformities (in ppm), for processes with fixed index values of Cpk ¼ Cpm ¼ Cpmk,

possessing different degrees of process centering. We also extend Johnson’s [1992. The

relationship of Cpm to squared error loss. Journal of Quality Technology 24, 211–215]

result formulating the relationship between the expected relative squared loss and PCIs.

Also a comparison analysis among PCIs is carried out based on various criteria. The

result illustrates some advantages of using the index Cpmk over the indices Cpk and Cpm in

measuring process capability (yield and loss), since Cpmk always provides a better

protection for the customers. Additionally, several extensions and applications to real

world problem are also discussed. The paper contains some material presented in the

Kotz and Johnson [2002. Process capability indices—a review, 1992–2000. Journal of

Quality Technology 34(1), 1–19] survey but from a different perspective. It also discusses

the more recent developments during the years 2002–2006.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Understanding the structure of a process and quantify-
ing process performance no doubt are essential for
successful quality improvement initiatives. Process cap-
ability analysis has become—in the course of some
20 years—an important and well-defined tool in applica-
tions of statistical process control (SPC) to a continuous
improvement of quality and productivity. The relationship
ll rights reserved.

6;
between the actual process performance and the specifi-
cation limits (or tolerance) may be quantified using
suitable process capability indices. Process capability
indices (PCIs), in particular Cp, Ca, Cpk, Cpm and Cpmk, which
provide numerical measures of whether or not a manu-
facturing process is capable to meet a predetermined level
of production tolerance, have received substantial atten-
tion in research activities as well as an increased usage
in process assessments and purchasing decisions during
last two decades. By now (2006) there are several books
(on different levels) cited in the references, which provide
discussions of various PCIs. A number of authors have
promoted the use of various process capability indices and
examined (with a various degree of completeness) their
properties.

www.sciencedirect.com/science/journal/proeco
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2008.11.008
mailto:cweiwu@fcu.edu.tw
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The first process capability index appearing in the engin-
eering literature was presumably the simple ‘‘precision’’
index Cp (Juran, 1974; Sullivan, 1984, 1985; Kane, 1986).
This index considers the overall process variability relative
to the manufacturing tolerance as a measure of process
precision (or product consistency).1 Another index Ca, a
function of the process mean and the specification limits,
referred to as an ‘‘accuracy’’ index, is geared to measure
the degree of process centering relative to the manufac-
turing tolerance (see, e.g., Pearn et al., 1998). This index is
closely related to an earlier measure originally introduced
in the Japanese literature (see Section 3). Formally:

Cp ¼
USL� LSL

6s
; Ca ¼ 1�

jm�mj

d
, (1)

where m is the process mean, s is the process standard
deviation, USL and LSL are the upper and the lower
specification limits, d ¼ (USL�LSL)/2 is the half specifica-
tion width related to the manufacturing tolerance
and m ¼ (USL+LSL)/2 is the midpoint between the upper
and lower specification limits. Due to its simplicity, Cp

cannot provide an assessment of process centering
(targeting). The index Cpk, on the other hand, takes both
the magnitude of process variance and the process
departure from the midpoint m into consideration. It
may be written as Cpk ¼ Cp � Ca a product of the two basic
indices Cp and Ca. The standard definition is

Cpk ¼ min
USL� m

3s
;
m� LSL

3s

� �
¼

d� jm�mj

3s
. (1)0

As alluded above the index Cpk was developed because
Cp does not adequately deal with cases where process
mean m is not centered (the mean does not equal to the
midpoint m). However, Cpk by itself still cannot provide
an adequate measure of process centering. That is, a large
value of Cpk does not provide information about the
location of the mean in the tolerance interval USL�LSL.
The Cp and Cpk indices are appropriate measures of
progress for quality improvement situations when reduc-
tion of variability is the guiding factor and process yield is
the primary measure of a success. However, they are not
related to the cost of failing to meet customers’ require-
ment of the target. A well-known pioneer in the quality
control, G. Taguchi, on the other hand, pays special
attention on the loss in product’s worth when one of
product’s characteristics deviates from the customers’
ideal value T.

To take this factor into account, Hsiang and Taguchi
(1985) introduced the index Cpm, which was also later
proposed independently by Chan et al. (1988). The index is
motivated by the idea of squared error loss and this loss-
based process capability index Cpm, sometimes called the
Taguchi index. The index is geared towards measuring the
ability of a process to cluster around the target, and
reflects the degrees of process targeting (centering). The
index Cpm incorporates the variation of production items
relative to the target value and the specification limits
1 We have not been able to discover any publications on Cp between

Juran (1974) and Sullivan (1984).
which are preset in a factory. The index Cpm is defined as

Cpm ¼
USL� LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðm� TÞ2

q ¼
d

3t , (2)

where as above USL�LSL is the allowable tolerance range
of the process, d ¼ (USL�LSL)/2 is the half-interval length,
and t ¼ ½s2 þ ðm� TÞ2�1=2 is a measure of the average
product deviation from the target value T. This index
Cpm can also be expressed as a function of the two
basic indices Cp and Ca, explicitly Cpm ¼ Cp=f1þ ½3Cp

ð1� CaÞ�
2g1=2. The quantity t2 ¼ E½ðX � TÞ2� combines two

variation components: (i) variation relative to the process
mean (s2) and (ii) deviation of the process mean from the
target (ðm� TÞ2).

Pearn et al. (1992) proposed the process capability
index Cpmk, which combines the features of the three
earlier indices Cp, Cpk and Cpm. The index Cpmk (motivated
by the structure of Cpk (1)0) alerts the user whenever the
process variance increases and/or the process mean
deviates from its target value. The index Cpmk has been
referred to as the third-generation capability index, and is
defined as

Cpmk ¼min
USL� m

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðm� TÞ2

q ;
m� LSL

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðm� TÞ2

q
8><
>:

9>=
>;

¼
d� jm�mj

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðm� TÞ2

q . (3)

Comparing the pair of indices ðCpmk;CpmÞ, analogously to
ðCpk;CpÞ, we obtain the relation Cpmk ¼ Cpm�Ca ¼

(Cpm�Cpk)/Cp. Consequently, Cpmk can be expressed
as Cpmk ¼ CpCa=f1þ ½3Cpð1� CaÞ�

2g1=2 in terms of the
‘‘elementary indices’’. More recently, Vännman (1995)
has proposed a superstructure Cpðu;vÞ ¼ ðd� ujm�
mjÞ=f3½s2 þ vðm� TÞ2�1=2g of capability indices for pro-
cesses based on normal distribution, which includes Cp,
Cpk, Cpm and Cpmk as particular cases. By setting u, v ¼ 0
and 1, we obtain the four indices Cpð0; 0Þ ¼ Cp,
Cpð1;0Þ ¼ Cpk, Cpð0; 1Þ ¼ Cpm, and Cpð1; 1Þ ¼ Cpmk. These
indices are effective tools for process capability analysis
and quality assurance. Two basic process characteristics:
the process location in relation to its target value, and the
process spread (i.e. the overall process variation) are
combined to determine formulas for these capability
indices. The closer the process output is to the target
value and the smaller is the process spread, the more
capable the process is. The first feature (closeness to the
target) is reflected in the denominator while the second
one (the process spread) appears in the numerators
of these four indices. In other words, the larger the value
of a PCI, the more capable is the process. In this paper,
all derivations are carried out assuming that the process is
in a state of statistical control and the characteristics
under investigation arise from a normal distribution.
Moreover, the target value is taken to be the midpoint
of the specification limits: T ¼ m (which is common in
practical situation) unless stated otherwise.

During the last two decades many authors have
promoted the use of various PCIs and examined them
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Fig. 1. Process spread with specification interval.
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with a different degree of completeness. These contribu-
tions include (in the chronological order): Chan et al.
(1988), Chou et al. (1990), Boyles (1991), Pearn et al.
(1992), Kushler and Hurley (1992), Rodriguez (1992),
Kotz and Johnson (1993), Vännman and Kotz (1995),
Bothe (1997), Kotz and Lovelace (1998), Franklin (1999),
Palmer and Tsui (1999), Wright (2000), Jessenberger and
Weihs (2000), Pearn and Shu (2003), Vännman and
Hubele (2003), Pearn and Wu (2005), Wu (2007) as well
as references therein. Applications of these indices range
over a great variety of situations and productions such
as manufacturing of semiconductor products (Hoskins
et al., 1988), head gimbals assembly for memory storage
systems (Rado, 1989), jet-turbine engine components
(Hubele et al., 1991), flip-chips and chip-on-board
(Noguera and Nielsen, 1992), rubber edge (Pearn
and Kotz, 1994), wood products (Lyth and Rabiej,
1995), aluminum electrolytic capacitors (Pearn and Chen,
1997a), audio-speaker drivers (Chen and Pearn, 1997),
Pulux Surround (Pearn and Chang, 1998), liquid crystal
display module (Chen and Pearn, 2002), and couplers and
wavelength division multiplexers (Wu and Pearn, 2005a).

Kotz and Johnson (2002) provided a compact survey
(with interpretations and comments) of some 170 pub-
lications on PCIs, during 1992–2000. Spiring et al. (2003)
consolidated the research findings of process capability
analysis and provide a bibliography of papers for the
period 1990–2002. We shall attempt to describe, in an
organized manner the interconnection between the PCIs
described above and (i) the process yield, in an organized
manner, (ii) the process loss, (iii) the process departure
from target and (iv) process variability. This may clarify
the role of the index Cpmk which is still the least
understood by practitioners.
2. The PCIs and process consistency

The general idea behind a PCI is to compare what the
process ‘‘should do’’ with what the process is ‘‘actually
doing’’ (Kotz and Lovelace, 1998). The specification
interval should reflect the bounds on usability of the
product, so that controlling the process will result in a
high-quality product. What the process is ‘‘actually doing’’
refers primarily to process variability (the lower the
variability, the lower is the proportion of items that falls
outside tolerance limits). Therefore, the quantity

Q ¼
process spread

specification interval

� �
� 100%

¼
6s

USL� LSL

� �
� 100% ¼

3s
d

� �
� 100% (4)

is used to quantify the percentage of the specification
band utilized by the process. This quantity should be
rendered as low as possible: the lower is the value of the
ratio, the lower would be the proportion of the specifica-
tion interval utilizing the process data. For example, the
value 1 indicates that the process variability (or spread)
utilizes the whole width of the specification interval
(tolerance band). For an on-target normally distributed
process, this would result in about 0.27% (2700 parts per
million (ppm)) non-conforming units. (Equivalently the
area outside the limits mþ 3s and m� 3s of a normal
Nðm; sÞ distribution is 0.27%.) A value of 0.75 means that
the process spread uses 75% of the tolerance band. In fact,
Q ¼ 0.75 is equivalent to Cp ¼ 1.33 which implies the
availability of 0.01% of non-conforming units. Thus, it is
desirable to have a Q as small as possible. Indeed large
values of Q (particularly those greater than 1.00) would
not be acceptable since this indicates that the natural
range of variation of the process does not fit within the
tolerance band. The process spread relative to specifica-
tion interval (tolerance band) for the normal distribution
is illustrated graphically in Fig. 1.

The ratio (4) can be rewritten as

Q ¼ ð1=CpÞ � 100% ¼ ðCa=CpkÞ � 100%

¼ f1=½Cpmð1þ x2
Þ
1=2
g � 100%

¼ fCa=½Cpmð1þ x2
Þ
1=2
g � 100%,

where x ¼ ðm� TÞ=s. Therefore, when the process is
centered (i.e. m ¼ T ¼ m and hence x ¼ 0, Ca ¼ 1.0), all of
the four indices provide the same bound on the process
relative consistency (Qpð1=CÞ � 100% with Cp ¼ Cpk ¼

Cpm ¼ Cpmk ¼ C).

3. The PCIs and process relative departures

As mentioned before, neither Cp nor Cpk indices
alone are sufficient to tell us the whole story, since both
indices have their individual drawbacks. By examining the
relationship between them and using these indices as a
pair, a substantial amount of information can be gleaned
about the process (without the worrisome confounding
of m and s in the Cpk case). The Cp and Cpk indices are
specifically related by the process capability index k, i.e.
Cpk ¼ Cp � ð1� kÞ, which was one of the original Japanese
indices. This index is defined as

k ¼
jm�mj

d
: cf : ca ¼ 1�

jm�mj

d
ð1Þ

� �
. (4)0

This index describes process capability in terms of
departure of process mean m from the center point m

and provides a quantified measure of the degree of ‘‘off-
centrality’’ of the process. For example, k ¼ 0 indicates
that the process is perfectly centered on target (m ¼ m),
k ¼ 1 on the other hand shows that the process mean is
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located at one of the specification limits (far away from
the center point). For 0oko1, the process mean is located
somewhere between the target and one of the specifica-
tion limits. If k41 it shows that m falls outside the
specification limits (i.e. m4USL or moLSL), the process is
severely off-centered and an immediate troubleshooting is
necessary. The complement of k: Ca ¼ 1� k measures the
degree of process centering (the ability to cluster around
the center), which was described before.

The index Cpm takes the proximity of process mean m
from the target value T into account, thus being more
sensitive to process ‘‘departures’’ than Cpk. Since the
structure of Cpm is based on the average process loss
relative to the manufacturing tolerance, it provides an
upper bound on the average process loss. Furthermore,
under the assumption that T ¼ m, definition (2) can be
rewritten as

Cpm ¼
USL� LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðm�mÞ2

q ¼
Cpffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
q , (4a)

where now

x ¼
m�m

s . (4b)

Chan et al. (1988) discussed this ratio and the sampling
properties of an estimated Cpm, Boyles (1991) has provided
an analysis of the index Cpm and its usefulness in
measuring process centering. He observes that both Cpk

and Cpm coincide with Cp when m ¼ m and decrease as m
departs from m. However, Cpko0 for m4USL or moLSL,
whereas Cpm of process with jm�mj40 is strictly
bounded above by the Cp value of a process with s ¼
jm�mj (see Eqs. (4a) and (4b)). Consequently,

Cpmo
USL� LSL

6jm�mj
. (5)

The index Cpm approaches to zero asymptotically as
jm�mj tends to infinity. On the other hand, while Cpk ¼

ðd� jm�mjÞ=ð3sÞ (see Eq. (1)0) increases without bound
for fixed m as s tends to zero, Cpm is bounded above
by Cpmod=ð3jm�mjÞ (recall that d ¼ ðUSL� LSLÞ=2).
The right-hand side of the equation is the limiting value
of Cpm as s tends to zero, and equals to Cp value of a
process with s ¼ jm�mj. It follows from (5) that a
necessary condition for CpmX1 is jm�mjod=3.

Kotz and Johnson (1999) examined the relations
between Cp, Cpk and Cpm. Roughly speaking, for a fixed k

value, the value of Cpm is greater than Cpk for small values
of Cp, but is less than Cpk for larger values of Cp. In fact

Cpk

Cpm
¼ ð1� kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

m�m

s

� �2
r

¼ ð1� kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9C2

pk2
q

.

Thus, the relation Cpk4ðoroÞCpm is according to whether
að1� kÞð1þ 9C2

pk2
Þ
1=24ðoroÞ1, i.e. according to Cp4ðoroÞ

ð1=3Þð1� kÞ½ð2� kÞ=k�1=2. Furthermore, the same authors
(2002) noted that

Cpk

Cpm
¼ 1�

1

3Cp

m�m

s

			 			� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

m�m

s

� �2
r

¼ 1�
1

3Cp
x
		 		� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
q

o 1�
1

3Cp
x
		 		� �

1þ
1

2
x2

� �
.

Hence the relation CpkoCpm is certainly valid if

1

3
Cpjxj41

2x
2 or; equivalently; when ko

2

9C2
p

.

3.1. In defense of the index Cpmk

Now the index Cpmk ¼ ðd� jm�mjÞ=f3½s2 þ ðm� TÞ2�1=2g

is constructed by combining the yield-based index Cpk

and the loss-based index Cpm, thus taking into account the
process yield (meeting the manufacturing specifications)
and the process loss (variation from the target). When
the process mean m departs from the target value T, the
reduction of the value of Cpmk is more substantial than
those of Cp, Cpk, and Cpm. Hence, the index Cpmk responds to
the departure of the process mean m from the target value
T faster than the other three basic indices Cp, Cpk, and Cpm,
while also being sensitive to the changes of the process
variation. We note that a process meeting the capability
requirement ‘‘CpkXC’’ may not meet the requirement
‘‘CpmXC’’ and vice versa. The discrepancy between
these two indices is due to the fact that the Cpk index
measures primarily the process yield, while Cpm focuses
to a large extent mainly on the process loss. However, if
the process meets the capability requirement ‘‘CpmkXC’’,
then a fortiori ‘‘CpkXC’’ and ‘‘CpmXC’’ are fulfilled
(since CpmkpCpk and CpmkpCpm). In fact, the definition
of Cpmk given by (3) can be rewritten as Cpmk ¼ Cpk=f1þ
½ðm� TÞ=s�2g1=2 or Cpmk ¼ ð1� jm�mj=dÞ � Cpm ð¼ ð1� kÞ

�CpmÞ. The index Cpmk is worse than Cpk being associated
with a certain percentage of non-conforming product,
however, one should not choose this index if process yield
is the main interest. Cpmk (and usually Cpm) is much more
sensitive than other capability indices to the deviation of
the process mean relative to m. In fact when m is equal to
m, Cpmk ¼ Cpk. If the mean of process moves away from m,
then, Cpmk decreases more rapidly than Cpk does (although
both are 0 when m equals one of the specification limits).
Conversely, when m is brought closer to m, Cpmk increases
much faster than Cpk does. The Cpmk has its maximum
value when the process is centered. Viewing Cpmk as a
mixture of Cpk and Cpm, Cpmk behaves ‘‘more like Cpm’’ if s2

is small, and ‘‘more like Cpk’’ if s2 is large (Jessenberger
and Weihs, 2000).

In addition to the above advantages, Cpmk reveals the
larger information about the location of the process mean.
Given a Cpk index of 1.0, all we can say about m is that
it is somewhere between the LSL and the USL, i.e.,
m� domomþ d or ko1, where as above d equals
ðUSL� LSLÞ=2 (cf. Eqs. (1) and (1)0). As far as the Cpm index
is concerned, it can be shown (Bothe, 1997) that the
distance between m and m must be less than d=ð3CpmÞ.
Therefore, given a Cpm index of 1.0, we know that
m� d=3omomþ d=3 or ko1=3. This is a narrower
interval than the one obtained for Cpk equals to 1.0. For
the Cpmk index, it can be shown that the distance between
m and m is less than d=ð3Cpmk þ 1Þ. Consequently when
Cpmk index of 1.0, it follows that m� d=4omomþ d=4 or
ko1=4, being a narrower interval than the one obtained
for Cpm ¼ 1. Ranking of the three indices (Cpk, Cpm, Cpmk)
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from the most sensitive to the least sensitive with respect
to the departures of the process mean from the target
value we thus have: (i) Cpmk, (ii) Cpm, and (iii) Cpk (see also
from Pearn and Kotz, 1994).
4. The PCIs and process yield

Process yield has been for some times the most
common and standard criterion used in the manufactur-
ing industries for judging process performance. Units are
inspected according to specification limits placed on
certain key product characteristics and are sorted into
two categories: passed (conforming) (C) or rejected non-
conforming. In the early days prior to mid eighties of the
20th century, fraction non-conforming for manufacturing
processes were usually calculated by counting the number
of non-conforming items in samples of 25 or 30 and then
extrapolating the results. With the rapid advancement of
the manufacturing technology, suppliers began to require
their products be of a high quality involving very low
fraction of non-conformities. The fraction of non-confor-
mities is usually less than 0.01%, and often measured in
ppm. The traditional methods of figuring out the fraction
non-conforming are no longer applicable since any sample
of a ‘‘reasonable size’’ may very likely contain no defective
product items. Hence an alternative method of measuring
the fraction of non-conforming is to use the capability
indices, discussed in Section 3 all of which are functions of
an item’s specification limits (the tolerance range) and the
variation of the process producing the item.

If a proportion of conforming items is the primary
concern, a most natural measure is the proportion itself
referred to the yield, which is defined as

Yield ¼

Z USL

LSL
dFðxÞ,

where F(x) is the cumulative distribution function of the
measured random characteristic X, and USL and LSL are, as
before, the upper and the lower specification limits,
respectively. The use of the yield as a quality measure
implies that each rejected unit costs the producer an
additional amount (to scrap or repair) while each passed
unit involves no additional cost.

It is often assumed (not always correctly) that the
product characteristic, X, follows the normal distribution,
N ðm;s2Þ. In this case the fraction of non-conforming (%NC)
may be expressed as

%NC ¼ 1� PðLSLpXpUSLÞ ¼ PðXoLSLÞ þ PðX4USLÞ

¼ F
LSL� m

s

� �
þ 1�F

USL� m
s

� �
,

where Fð�Þ is the cumulative distribution function (c.d.f.)
of the standard normal distribution N(0,1) (see Fig. 1).
Since USL ¼ mþ d and LSL ¼ m� d, we have

%NC ¼ F
m� d� m

s

� �
þ 1�F

mþ d� m
s

� �

¼ F �
dþ m�m

d
�

d

s

� �
þF �

d� mþm

d
�

d

s

� �
.

Therefore,

PðNCÞ ¼ F �
ð1þ dÞ

g


 �
þF �

ð1� dÞ
g


 �

(we identify here proportion with probability) where d ¼
ðm�mÞ=d and g ¼ s=d. Furthermore, since %NC is an even
function of d, %NC may be rewritten as

%NC ¼ F �
1þ jdj

g

� �
þF �

1� jdj
g

� �
. (6)

Noting that Ca ¼ 1� jdj and Cp ¼ 1=ð3gÞ (Eq. (1)), the
above expression for %NC also can be expressed as

%NC ¼ F½�3CpCa� þF½�3Cpð2� CaÞ�.

4.1. Yield assurance based on Cpk

The index Cpk has been regarded as a yield-based
index. It provides bounds on the process yield, 2Fð3CpkÞ�

1pYieldoFð3CpkÞ, for a normally distributed process
(Boyles, 1991). For a Cpk at level of 1, one would expect
that not more than 2700 ppm fall outside the specification
limits (fraction of defectives). At a Cpk level of 1.33,
the defect rate drops to 66 ppm. To achieve less than
0.544 ppm defect rate, a Cpk level of 1.67 is required. At a
Cpk level of 2.0, the likelihood of a defective part drops to
the minuscule 2 parts per billion (ppb). Note a drastic
decrease in the fraction of defectives as Cpk increases from
1 to 11

3, say.
This bound may be established by noting that for a

process with fixed Cpk the number of non-conformities
(product items falling outside of the specification interval
[LSL, USL]) is bounded but the actual number of non-
conformities will vary depending upon the location of the
process mean and the magnitude of the process variation.
First we rewrite the definition of the index Cpk in terms of
standardized parameters d ¼ ðm�mÞ=d and g ¼ s=d.

Cpk ¼
d� jm�mj

3s
¼

1� jðm�mÞ=dj

3ðs=dÞ

¼
1� jdj

3g ¼

1þ d
3g

for LSLpmpm

1� d
3g for mompUSL:

8>>>><
>>>>:

(7)

For a positive Cpk, Cpk40 (a natural situation), the exact
expected fraction of non-conforming formula for %NC can
be expressed as a function of Cpk and Ca or equivalently
that of Cpk and Cp as follows:

%NC ¼ F½�3Cpk� þF½�3Cpkð2� CaÞ=Ca� (8)

and

%NC ¼ F½�3Cpk� þF½�3ð2Cp � CpkÞ�. (9)

It follows from (8) that when the process mean m is
located within the specification limits, i.e. 0oCap1 or



ARTICLE IN PRESS

Fig. 2. Surface plot of NC for 0.8pCpkp1.5 and 0pCap1.

Fig 3. NC plots for Cpk ¼ 1.0(0.1)1.3 with 0oCap1 (from top to bottom).

Fig 4. Surface plot of NC for 0.8pCpkp1.5 and 0.8pCpp1.5.

Fig. 5. NC plots for Cpk ¼ 1.0(0.1)1.3 with 0.8pCpp1.5 (from top to

bottom).
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Cpk40, we have the bounds on %NC with Fð�3CpkÞo
%NCp2Fð�3CpkÞ since the standard normal c.d.f. Fð�Þ
is an increasing function. That is equivalent to the bounds
on the process yield 2Fð3CpkÞ � 1pYieldoFð3CpkÞ.
For Ca ¼ 1.0, the process is perfectly centered (m ¼ m).
For Ca ¼ 0, the process mean is at one of the specification
limits (m ¼ USL or m ¼ LSL) (cf. the beginning of Section 3).
For processes with fixed Cpk, the number of non-
conformities attains its maximum for a centered process
(Ca ¼ 1.0), and %NC is reduced when the process mean
departs from the center (namely Ca decreases). Fig. 2
displays the surface plot of the actual number of the non-
conformities (in ppm) for 0:8pCpkp1:5 and 0oCap1.
Fig. 3 plots the actual number of the non-conformities (in
ppm) for Cpk ¼ 1.0, 1.1, 1.2 and 1.3, with 0oCap1. Fig. 4
displays the surface plot of the actual number of the non-
conformities (in ppm) for 0:8pCpkp1:5 and 0:8pCpp1:5.
Fig. 5 plots the actual number of the non-conformities
(in ppm) for Cpk ¼ 1.0, 1.1, 1.2, and 1.3, with 0:8pCpp1:5.
Note that for CpkX1.3, the curves in Figs. 3 and 5 are
almost indistinguishable.
4.2. Yield assurance based on Cpm

In the case when T ¼ m, the definition of Cpm index (2)
can be rewritten as a function of the standardized
parameters d and g, as follows:

Cpm ¼
d

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðm�mÞ2

q ¼
1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ d2

q .

Hence,

g2 ¼
1

ð3CpmÞ
2
� d2

¼
1

3Cpm
þ d

� �
1

3Cpm
� d

� �
,

or, equivalently,

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3Cpm
þ d

� �
1

3Cpm
� d

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3Cpm
þ jdj

� �
1

3Cpm
� jdj

� �s

holds for 0pjdjp1=ð3CpmÞ, i.e., for 1� 1=ð3CpmÞpCap1.
We thus obtain the following explicit relationship be-
tween the exact expected proportion of NC and the indices
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Fig. 6. Surface plot of NC for 0.7pCpmp1.3 and 0.75pCap1.

Fig. 7. NC for Cpm ¼ 1.0(0.1)1.3, with 0.6pCap1 (from top to bottom in

the plot).
Fig. 8. Surface plot of NC for 0.5pCpmkp1.3 and 0.8pCap1.

Fig. 9. NC for Cpmk ¼ 1.0(0.1)1.3, with 0.75pCap1 (from top to bottom in

the plot).
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Cpm and Ca valid for 1� 1=ð3CpmÞpCap1:

%NC ¼ F �
2� Caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð3CpmÞ
2
� ð1� CaÞ

2

s
2
66664

3
77775

þF �
Caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð3CpmÞ
2
� ð1� CaÞ

2

s
2
66664

3
77775. (10)

Relation (10) shows that for a perfectly centered process
(i.e. Ca ¼ 1), the fraction of non-conforming has an
upper bound with %NCp2Fð�3CpmÞ. Fig. 6 displays the
surface plot of the actual number of the non-conformities
(in ppm) for 0:7pCpmp1:3 and 0:75pCap1. Fig. 7 plots
the actual number of non-conformities (in ppm) for
Cpm ¼ 1.0, 1.1, 1.2, and 1.3 (from top to bottom in the plot),
with 0:6pCap1. We note that for Cpm41.3, the curves
become close to each other.

4.3. Yield assurance based on Cpmk

Using a similar technique for deriving the formula of
the exact expected proportion of non-conforming, and the
relation Cpmk ¼ Cpm�Ca, we obtain the following exact
expected proportion of non-conforming in terms of Cpmk

and Ca as

%NC ¼ F �
2� Caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCa=3CpmkÞ
2
� ð1� CaÞ

2
q

2
64

3
75

þF �
Caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCa=3CpmkÞ
2
� ð1� CaÞ

2
q

2
64

3
75. (11)

Similarly, for Ca ¼ 1, the fraction of non-conforming has
an upper bound with %NCp2Fð�3CpmkÞ. Fig. 8 displays
the surface plot of the actual number of non-conformities
(in ppm) for 0:5pCpmkp1:3 and 0:8pCap1. Fig. 9
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Table 1
Bounds on %NC and Ca for Cpk ¼ Cpm ¼ Cpmk ¼ C, respectively.

C Cpk Cpm Cpmk

Bounds on NC (ppm) Bounds on Ca Bounds on NC (ppm) Bounds on Ca Bounds on NC (ppm) Bounds on Ca

1.00 2699.796 0pCap1 2699.796 0.667pCap1 2699.796 0.750pCap1

1.33 66.334 0pCap1 66.334 0.750pCap1 66.334 0.800pCap1

1.50 6.795 0pCap1 6.795 0.778pCap1 6.795 0.818pCap1

1.67 0.554 0pCap1 0.554 0.800pCap1 0.554 0.833pCap1

2.00 0.002 0pCap1 0.002 0.833pCap1 0.002 0.857pCap1
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plots the actual number of non-conformities (in ppm)
for Cpmk ¼ 1.0, 1.1, 1.2, and 1.3 (from top to bottom),
with 0:75pCap1. We note that for Cpmk41.3, the
corresponding curves are almost indistinguishable.

For reader’s convenience we summarize in Table 1 the
formulas for %NC in the various cases discussed above.
Fig. 10. The actual number of NC curves for Cpk ¼ 1.0 (top), Cpm ¼ 1.0

(dash), and Cpmk ¼ 1.0 (bottom) for various allowed values of Ca.

Fig. 11. The actual number of NC curves for Cpk ¼ 1.5 (top), Cpm ¼ 1.5

(dash), and Cpmk ¼ 1.0 (bottom) for various allowed values of Ca.
4.4. Yield comparison among PCIs

For a normally distributed process, the Cpk index
provides a lower bound on the process yield, YieldX
2Fð3CpkÞ � 1, or %NCp2Fð�3CpkÞ for LSLpmpUSL.
Furthermore, based on the Cpm index, Ruczinski (1996)
obtained a lower bound on the process yield as YieldX
2Fð3CpmÞ � 1, or %NCp2Fð�3CpmÞ for Cpm4

ffiffiffi
3
p

=3. The
bound, however, has never been analytically justified for
quality assurance purposes based on the Cpmk index. It is
not clear therefore whether Cpmk is related to the process
yield, since the relationship between Cpmk and the process
yield (or proportion of non-conforming) has not been
available. Recently, Pearn and Lin (2005) provided a
mathematical derivation of upper bound formula for Cpmk

on process yield, in terms of the number of non-
conformities (in ppm) as

0p%NCp2Fð3CpmkÞ for CpmkX

ffiffiffi
2
p

=3.

Based on the yield analysis among capability indices Cpk,
Cpm, and Cpmk, the result illustrates that the three indices
provide the same lower bounds on process yield for
normally distributed processes, that is, YieldX2Fð3CpkÞ�

1 ¼ 2Fð3CpmÞ � 1. For example, if it is given that
Cpk ¼ 1.00 we have the information on the process yield
only through the upper bound %NCp2699.796 ppm and
no information on C0. However, if Cpm ¼ 1.00 we have the
information on the process yield through the upper bound
%NCp2699.796 ppm and the process centering measure
0.667pCap1.00. Finally for Cpmk ¼ 1.00 we have the same
upper bound on process yield %NCp2699.796 ppm and
a narrower process centering measure 0.750pCap1.00.
Figs. 10 and 11 plot the actual number of the non-
conformities (in ppm) for Cpk ¼ Cpm ¼ Cpmk ¼ 1.00 and
1.50, with the bound of 0oCap1 for Cpk, with the bound
of 1� 1=ð3CpmÞpCap1 for Cpm, and the bound of 1�
1=ð1þ 3CpmkÞpCap1 for Cpmk. These results indicate on
an advantage of using index Cpmk over the indices Cpk and
Cpm when (together) measuring the process yield. Indeed
Cpmk provides a better protection for the customers in
terms of the quality yield of the products. Table 1 displays
the bounds on %NC and Ca for Cpk ¼ Cpm ¼ Cpmk ¼ C,
respectively (for C ¼ 1ð13Þ2).
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In certain manufacturing industries, reducing the
fraction of non-conformities or the expected proportion
of non-conforming items is of primarily concern and a
guiding principle for quality improvement. In such cases,
keeping the process centered (on-target) may not be a
good strategy for maintaining adequate process capability
since the number of non-conformities reaches its max-
imum when the process is centered (i.e. Ca ¼ 1.0), and
the %NC reduces when the process mean departs from
the center (i.e. Ca decreases) for a fixed Cpk, Cpm or Cpmk

(see Figs. 10 and 11). For other manufacturing industries,
a reduction of deviation from the target value serves as
a guiding principle (e.g. Taguchi’s quality philosophy, or
certain modern quality improvement theories). In such
cases, the efforts should not be focused entirely on
reducing the fraction of the non-conformities. Here
keeping a process centered (on-target) would be consid-
ered satisfactory. Note that if m happens to be far away
from the target T (the corresponding Ca is small) then the
process would not be viewed as capable even if s is so
small so that the %NC is small. (Recall the expressions for
Ca and %NC.)

%NC ¼ F �
2� Caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ca

3Cpmk

� �2

� ð1� CaÞ
2

s
2
66664

3
77775

þF �
Caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ca

3Cpmk

� �2

� ð1� CaÞ
2

s
2
66664

3
77775. (11)

5. The PCIs and the expected relative loss

A disadvantage of an yield measure is that it does not
distinguish at all among the products which fall inside of
the specification limits. Customers, however, do observe
the unit-to-unit differences of this characteristic, espe-
cially if the variance is large and/or the mean is offset from
the target. With the increased importance of clustering
around the target (rather than conforming to specification
limits) and utilization of loss functions an alternative
approach to PCIs is being developed. Instead of numbers
or fraction of non-conforming, various economic/production
costs (or losses) offer opportunities for developing an
improved assessment, monitoring, and comparisons of
process capability. Hsiang and Taguchi (1985) have
presented an approach to quality improvement in which
reduction of deviation from the target value serves as the
guiding principle. According to this approach any mea-
sured value x of a product characteristic X in general
results in a loss to the consumer.

Proceeding along these lines, it was observed that the
loss for each lot is often not necessarily the same, even
though the lots have the same fraction defectives. Hence,
to implement the Taguchi’s loss criterion, the loss caused
by the deviation from its target value is expressed as a
quadratic function with respect to the difference between
the actual value and the target value to distinguish
between the products by increasing the penalty as the
departure from the target increases. The squared loss
function for the product characteristic X in symmetric
case can be expressed as

LossðXÞ ¼ wðX � TÞ2,

where as above T denotes the target value of X and w is a
positive constant. (The choice of a quadratic function may
be viewed to be somewhat arbitrary and is no doubt
influenced by over of three hundred years tradition of
using mean square errors, etc., in statistical applications
augmented by certain optimal properties.) This implies
that the loss is zero when the process outcome is on target
and is positive for any deviation from the target. The
expected loss can be evaluated as

E½LossðXÞ� ¼ w

Z 1
�1

ðx� TÞ2 dFðxÞ ¼ w½ðm� TÞ2 þ s2�,

where Fð�Þ is the underlying c.d.f. of X.
A disadvantage of the expected loss lies in a difficulty

of setting a standard for the proposed index since it
increases from zero to infinity. To overcome this draw-
back, Johnson (1992) has defined the worth of the product
W(X), which can be expressed as a function of X with

WðXÞ ¼WT �wðX � TÞ2,

where WT denotes the worth of the product when
X is precisely on target. Defining D to be the distance
of X from the target T at which the worth of the product
is zero, we obtain 0 ¼WT �wD2 or D2

¼WT=w. If the
loss at the specification limits (either USL or LSL) is A0

and the distance from the specification limits to the
target T is d, then A0 ¼ LossðUSLÞ ¼ LossðLSLÞ ¼ Loss

ðT � dÞ ¼ wd2. From the above we have that A0=WT ¼

d2=D2 and the expected relative squared loss, say Le, can
be rewritten as

Le ¼
E½LossðXÞ�

D2
¼

E½LossðXÞ�

d2

A0

WT

� �
, (12)

which provides a unitless measure of process performance
in terms of the loss value of the product for industrial
applications. The distributional and statistical properties
of estimators of the loss index Le have been investigated in
Johnson (1992) and Pearn et al. (2004a).

5.1. Loss assurance based on Cpk

Below we shall extend (without details) the derivation
of the relationship between the expected relative squared
loss and Cpk by rewriting the index Cpk in the form

Cpk ¼
2dCa

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s2 þ ðm� TÞ2� � ðm� TÞ2

q ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0C2

a

WT Le � A0ð1� CaÞ
2

s
.

(13)

Consequently, the expected relative squared losses
based on the Cpk index, denoted by LCpk

can be expressed
as

LCpk
¼

A0

WT
ð1� CaÞ

2
þ

1

9

A0C2
a

WT C2
pk

. (14)
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By taking the derivative of LCpk
with respect to Ca we

arrive at the following equation:

qLCpk

qCa
¼

2A0

WT

9C2
pk þ 1

9C2
pk

 !
Ca � 1

" #
.

Thus, the expected relative loss with Cpk, LCpk
, has the

minimum loss ðA0=WT Þ=ð1þ 9C2
pkÞ when Ca ¼ 9C2

pk=

ð1þ 9C2
pkÞ. If the index Ca49C2

pk=ð1þ 9C2
pkÞ, then LCpk

decreases as Ca increases. Conversely, LCpk
increases as Ca

decreases if Cao9C2
pk=ð1þ 9C2

pkÞ. For example, at a level
of Cpk ¼ 1.00, the LCpk

has the minimum loss A0=ð10WT Þ at
Ca ¼ 0:9. Figs. 12 and 13 display the surface plot and the
contour plot of the loss LCpk

in terms of A0=WT for
0:5pCpkp2:0 and 0pCap1, respectively.
Fig. 12. The surface plot of LCpk
for 0.5pCpkp2.0 and 0pCap1.

Fig. 13. The contour plot of LCpk
for
5.2. Loss assurance based on Cpm

From the definition of expected relative squared loss Le

(12), the relationship between Le and Cpm index can easily
be derived as

Cpm ¼
2d

6D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½LossðXÞ�

p ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffi
A0

WT Le

s
. (15)

(Recall that A0 ¼ LossðLSLÞ; see also the introduction to
Section 5.)

Thus, the expected relative squared losses based on the
Cpm index, LCpm

, can be rewritten as

LCpm
¼

1

9

A0

WT C2
pm

ðc:f : ð14ÞÞ. (16)

From the expression of LCpm
given by (16), we note that

Cpm has the property of being the so-called a larger-the-
better index. Thus, small values of Cpm may be due to a
high expected loss resulting in a poorer process capability.
In addition, LCpm

is a constant A0=ð9WT C2
pmÞ for all values of

Ca. Figs. 14 and 15 display the surface and the contour
plots of the expected relative loss LCpm

for 0:5pCpmp2:0
and 0pCap1, respectively.

5.3. Loss assurance based on Cpmk

We shall briefly comment on the abilities of the index
Cpmk to provide a loss assurance. The relationship between
the expected relative squared loss Le and Cpmk can be
expressed directly as follows:

Cpmk ¼ Cpm � Ca ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffi
A0C2

a

WT Le

s
ðc:f : ð15ÞÞ. (17)
0.5pCpkp2.0 and 0pCap1.
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Hence the expected relative squared losses based on Cpmk,
LCpmk

, can be rewritten as

LCpmk
¼

1

9

A0C2
a

WT C2
pmk

. (18)

Expression (18) shows that LCpmk
increases as Ca

increases and reaches its maximum at Ca ¼ 1.0. For
example, at level of Cpmk ¼ 1.00, LCpmk

has the maximum
loss A0=ð9WT Þ obtained at Ca ¼ 1.0. Figs. 16 and 17 display
the surface and the contour plots of the expected relative
Fig. 14. The surface plot of LCpm
for 0.5pCpmp2.0 and 0pCap1.

Fig. 15. The contour plot of LCpm
for
quadratic loss LCpmk
for 0:5pCpmkp2:0 and 0pCap1,

respectively.
5.4. Loss comparison among PCIs

We shall now compare the expected relative squared
losses of PCIs given in (14), (16) and (18). The following
features of Le’S for e ¼ Cp; Cpk; and Cpmk are worth noting:
(i) LCpm

remains a constant A0=ð9WT C2
pmÞ for all values

of Ca, (ii) LCpk
attains a minimum value when Ca ¼

9C2
pk=ð1þ 9C2

pkÞ and (iii) LCpmk
increases as Ca increases

and reaches its maximum value at Ca ¼ 1.0.
0.5pCpmp2.0 and 0pCap1.

Fig. 16. The surface plot of LCpmk
for 0.5pCpmkp2.0 and 0pCap1.
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Fig. 17. The contour plot of LCpmk
for 0.5pCpmkp2.0 and 0pCap1. Fig. 18. The expected loss function curves for Cpk ¼ 1.0 (top), Cpm ¼ 1.0

(dash), and Cpmk ¼ 1.0 (bottom) with various Ca.

Fig. 19. The expected loss function curves for Cpk ¼ 1.5 (top), Cpm ¼ 1.5

(dash), and Cpmk ¼ 1.5 (bottom) with various Ca.
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Suppose now that the four capability indices values of
Cp, Cpk, Cpm and Cpmk are all set to be equal to C (a positive
constant). Then the expected relative squared losses of the
three indices (Cpk, Cpm and Cpmk) have the same value
A0=ð9WT C2

Þ when the process is centered (i.e. Ca ¼ 1.0).
Moreover, under specified capability indices values
Cpk ¼ Cpm ¼ Cpmk ¼ C, the ratios of the expected relative
squared losses for these PCIs satisfy:

LCpmk

LCpm

¼ C2
a , (19)

LCpk

LCpmk

¼ 1þ 9C2
ð1� CaÞ

2=C2
a , (20)

LCpk

LCpm

¼ C2
a þ 9C2

ð1� CaÞ
2. (21)

(Note that these three ratios become 1 for Ca ¼ 1.)
For the ratio of the expected relative squared losses

between Cpmk and Cpm (Eq. (19)), one concludes that
LCpmk

pLCpm
since of the value of Ca is between 0 and 1 for

LSLpmpUSL. For the ratio of the expected relative squared
losses between Cpk and Cpmk (Eq. (20)) since LCpk

=LCpmk
41

in all cases except for Ca ¼ 1, we obtain that LCpmk
pLCpk

for
0pCap1. Finally the Expression (21) shows that the ratio
of the expected relative squared loss between Cpk and Cpm

satisfies

LCpm
pLCpk

for Cap
9C2
� 1

9C2
þ 1

and

LCpm
4LCpk

for Ca4
9C2
� 1

9C2
þ 1

,

C being the common value.
These results illustrate the advantage of using the

index Cpmk over the indices Cpk and Cpm when measuring
squared process loss, since Cpmk indeed provides a better
protection to the customers in terms of the quality loss of
the products. Figs. 18 and 19 plot the expected relative
losses with Cpk ¼ Cpm ¼ Cpmk ¼ 1.00 and 1.50 for 0pCap1.

The use of various loss functions in quality assurance
settings is becoming more widespread as the Taguchi’s
approach becomes more prominent. Spiring (1993), Sun
et al. (1996), and Spiring and Yeung (1998) have devel-
oped a class of loss functions that provide practitioners
with a wide range of choices that can be used in depicting
loss due to departures from the process target. Research
efforts related to PCIs and the loss properties would
appear to offer opportunities that could potentially reduce
(but not yet eliminate!) practitioners’, managers’, and
researchers’ concerns and discrepancies in the area
of process capability. As it was already alluded above,
theoretical statisticians and economists have for many
years used the squared error loss function when making
decisions or evaluating decision rules. English and Taylor
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(1993) investigated the loss imparted to society by
examining the expected losses arising in non-normal
populations. Gupta and Kotz (1997) attempted to relate
the relative loss to a modified Cpm index, which they refer
to as Cpq. However, for the most part there has been little
research effort devoted to the area of loss and loss
functions along the lines of assessing process capability.
This may be due in part to criticisms of quadratic/squared
error losses. Criticism of the quadratic loss function is
widespread in the literature and includes statistical
decision analysts (Box and Tiao, 1992; Berger, 1985)
quality assurance practitioners and researchers (Tribus
and Szonyi, 1989; Leon and Wu, 1992), for the reasons of
its failure to provide a quantifiable maximum loss (i.e.,
unbounded loss) and because the sizes of losses are severe
for extreme deviations from the target. Pearn et al. (1992)
and other researchers also pointed out that the squared
error loss function is necessarily very often chosen due to
the simplicity of mathematical derivations rather for its
success in depicting actual process losses.

6. Extensions and applications

The theory and methodology of PCIs have been
successfully applied to real world problems including
cases with asymmetric tolerances, data collected as
multiple subsamples, tool wear, gauge measurement
error, supplier selection, multi-process product, multiple
quality characteristics and so on.

6.1. Extensions to asymmetric tolerances

A process is said to have a symmetric tolerance if the
target value T is set to be the mid-point of the
specification interval [LSL, USL], i.e. T ¼ ðUSLþ LSLÞ=2. In
the manufacturing industry cases with asymmetric toler-
ances (Tam) often occur. From the customer’s point of
view, asymmetric tolerances indicate that deviations from
the target that are less tolerable in one direction than the
other (see e.g. Boyles, 1994; Vännman, 1997; Wu and Tang,
1998). Nevertheless, asymmetric tolerances can also arise
in those situations where the tolerances are symmetric to
start with, but the process distribution is skewed follow-
ing a non-normal distribution. To deal with this situation
the data are usually transformed to achieve approximate
normality. A prominent example of this approach is Chou
et al. (1998) who have used the well-known, Johnson
(1949) curves to transform the non-normal process data.
Other research focused on cases with asymmetric toler-
ances include Choi and Owen (1990), Boyles (1994),
Vännman (1997), Chen (1998), Pearn et al. (1999a, b),
Chen et al. (1999), and more recent Jessenberger and
Weihs (2000), Pearn et al. (2006) and Chang and Wu
(2008).

Several generalizations of Cpk including C�pk, C0pk have
been proposed to handle processes with asymmetric
tolerances (see Kane, 1986; Franklin and Wasserman,
1992; Kushler and Hurley, 1992 for details). Unfortunately,
these generalizations understate or overstate the process
capability, depending on the position in many cases of m
relative to T. To remedy the situation, Pearn and Chen
(1998) proposed the index C00pk—another generalization
of Cpk—for processes with asymmetric tolerances. The
motivation for the new index C00pk is based on the general
criteria stipulated by Boyles (1994), Choi and Owen (1990)
and Pearn et al. (1992) when a d� ¼ Du ¼ Dl ¼ d analyzing
and comparing the existing capability indices dealing with
(a) process yield; (b) process centering; (c) other process
characteristics. The generalization C 00pk (the Pearn–Chen
index) is formally defined as

C00pk ¼
d� � A�

3s ,

where A� ¼ maxfd�ðm� TÞ=Du; d
�
ðT � mÞ=Dlg, d� ¼ min

Du;Dlg, Du ¼ USL� T and Dl ¼ T � LSL. Note that d�ðm�
TÞ=Du ¼ ½minfDu;Dlgðm� TÞ�=ðUSL� TÞ: Obviously, when-
ever T ¼ m (a symmetric tolerance), A� ¼ jm�mj and C00pk

reduces to the index Cpk. The index C00pk attains the
maximal values at m ¼ T, regardless of whether the preset
specification tolerances are symmetric or not. For pro-
cesses with asymmetric tolerances, the corresponding
loss function is also asymmetric (with respective to T).
The index C00pk takes into account the asymmetry of the
loss function. Thus, given two processes E and F with
mE4T and mFoT, satisfying ðmE � TÞ=Du ¼ ðT � mF Þ=Dl (i.e.,
processes E and F have equal ‘‘departure ratio’’), the C00pk

values for processes E and F are the same provided
sE ¼ sF . In addition, the index C00pk decreases when mean m
shifts away from target T in either direction. Actually, C00pk

decreases faster when m shifts away from T to the closer
specification limit than that to the farther specification
limit. This is an advantage since the index would respond
faster to the shift towards ‘‘the wrong side’’ of T other than
towards the middle of the specification interval. Pearn and
Chen (1998) also provide a thorough comparison among
the three indices, Cpk, C0pk and C00pk. The estimation of this
index C00pk, PDF, CDF of its estimator Ĉ

00

pk, and a decision
making procedure for C00pk can be found in Pearn and Chen
(1998) and Pearn et al. (1999b).

For cases with asymmetric tolerances, generalizations
of Cpm and Cpmk can be developed along the similar lines.
Chen et al. (1999) and Pearn et al. (1999a) considered
extensions of Cpm and Cpmk to handle a process with
asymmetric tolerances. Under the normally distributed
assumption, the explicit forms of the PDF and the CDF of
the estimated index Ĉ

00

pm and Ĉ
00

pmk with asymmetric
tolerances are derived.

6.2. Extensions to multiple subsamples

The results obtained so far regarding the statistical
properties of the estimated capability indices were based
on a single sample. However, a common practice in
process control is to estimate the PCIs by using the past
‘‘in-control data’’ from subsamples, especially, when a
daily-based or a weekly-based production control plan
is implemented for monitoring process stability. To use
estimators based on several small subsamples and then
interpret the results as if they were based on a single
sample may generate incorrect conclusions, and vice
versa. In order to use the past in-control data from
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subsamples to provide decisions regarding process cap-
ability, the distribution of the estimated capability index
based on multiple subsamples should be considered.

When using subsamples, Kirmani et al. (1991) have
investigated the distribution of estimators of Cp based on
the sample standard deviations of the subsamples. Li et al.
(1990) have investigated the distribution of estimators
of Cp and Cpk based on the ranges of the subsamples.
Vännman and Hubele (2003) considered the indices in the
super structure class defined by Cpðu;vÞ and derived
the distribution of the estimators of Cpðu;vÞ, in the case
when the estimators of the process parameters m and s
are based on subsamples. Consider the case when the
characteristic of the process is normally distributed and
we have h subsamples, where the sample size of the ith
subsample being ni. For each i, i ¼ 1;2; . . . ;h, let xij,
j ¼ 1;2; . . . ;ni, be a random sample from a normal
distribution with mean m and variance s2 measuring the
characteristic under consideration. Assume that the
process is monitored using a X̄-chart together with a S-
chart. For each subsample let x̄i and s2

i denote the sample
mean and sample variance, respectively, of the ith sample
and let N denote the total number of observations, namely,

x̄i ¼
1

ni

Xni

j¼1

xij; s2
i ¼

1

ni � 1

Xni

j¼1

ðxij � x̄iÞ
2 and N ¼

Xh

i¼1

ni.

Let N1 ¼
Ph

i¼1ðni � 1Þ ¼ N � h. When all the subsamples
are of the same size n, N ¼ hn and N1 ¼ hðn� 1Þ. As an
estimator of m and s2, we use the overall sample mean
and the pooled sample variance, respectively. These are
the unbiased estimators, i.e.

m̂ ¼ ¯̄x ¼
1

N

Xni

j¼1

nix̄i; ŝ2
¼ s2

p ¼
1

N1

Xni

j¼1

ðni � 1Þs2
i .

For the Cpk index, the natural estimator based on multiple
samples can be expressed as

Ĉ
M

pk ¼ min
USL� ¯̄x

3sp
;

¯̄x� LSL

3sp

� �
¼

d� j ¯̄x�mj

3sp
.

Using the techniques available for cases with a single
sample, the CDF of Ĉ

M

pk can be derived. Consequently, the
critical values, lower confidence bounds, and the manu-
facturing capability calculations also can be carried out.
For cases with multiple subsamples, several estimators
of Cpm and Cpmk can be derived using similar technique
(see Vännman and Hubele, 2003; Wu and Pearn, 2005b;
Wu, 2008 for more details). Hubele and Vännman (2004)
considered the pooled and un-pooled estimators of the
variance from subsamples, and provide the sampling
distributions of the corresponding estimators of Cpm. The
un-pooled variance estimator is equivalent to the usual
‘‘overall’’ or ‘‘long-term’’ variance estimator, whereas the
pooled variance estimator is based on a control chart
relating ‘‘within’’ and ‘‘short-term’’ variance estimator.
Namely, when the process has undergone a change in
variation, the un-pooled estimator captures all of the
variation, whereas the pooled one captures only the
component of within subsamples variation (see, e.g., Cryer
and Ryan, 1990; Hubele and Vännman, 2004).
6.3. Extensions to tool wear problem

In the 21st century, manufacturing systems are geared
towards meeting the challenges of a quality-based
competition. Process capability studies and analyses have
become critical issues in process control; indeed a number
of guidelines are available for process capability assess-
ment. Moreover, certain conditions such as normally
distributed output, statistical independence of observed
values and the existence of only random variation
(resulted from chance causes) ought to be stipulated
for this assessment. These conditions may not be fully
satisfied in a practical set-up and some departures are
quite likely to occur. Tool wear, naturally, constitutes
a dominant and inseparable component of variability
in many ‘‘machining’’ processes, and hence it represents a
systematic assignable cause. Process capability assess-
ment in such cases may turn out to be a bit tricky since
the standard procedure may not always provide accurate
results.

Observe that a process capability analysis is valid only
when the process under investigation is free of any special
or assignable causes (i.e., being in-control). A process is
said to have a ‘‘tool wear problem’’ when a variation due
to a certain systematic cause is present. There are, in fact,
two areas of interest when studying one process: process
stability and process capability. It is important to have
clear guideless about control before developing the plan
for a tool wear process. Specifically is the intent of our
plan to detect changes in the process or is our goal just to
monitor the tool? An action to be taken in an out-of-
control situation should be determined by the intent of
the plan. Statistical process studies and the ongoing
control can be quite complicated in case that we are
dealing with machine processes possessing a tool wear.
Indeed such a wear is a fact, and it is essential for
processes that exhibit tool wear to be controlled, to
maintain high part quality and to maximize the tool life.
In its simplest and most common form, tool wear data
tend to have an upward or a downward slope over time. To
determine this trend, a best-fit line to the data ought to be
generated. For standard control charts, the grand average
and the control limits are usually horizontal. In contrast,
when a tool wear is present, the control limits will
be parallel to the tool wear slope. Once control has been
assessed, the capability of the process can be then
determined.

Some investigators attempt to remove the variability
associated with the systematic cause. For example, Yang
and Hancock (1990) recommended that in computing the
basic Cp index, an unbiased estimator of s can be obtained
to be s=ð1� rÞ1=2, where r is defined as the average
correlation factor. Some other authors make a general
assumption of linear degradation in the tool. For instance,
Quesenberry (1988) suggested that tool wear can be
modeled over an interval of tool life by a regression model
and assumes that the tool wear rate is either known or a
good estimate of it is available, and that the process mean
can be adjusted after each batch without an error.
However, the procedure of model-building does not
appear to be either easy or directly applicable to realistic
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conditions. Long and De Coste (1988) approach is to
remove first the linearity by regressing on the means
of the subgroups and then to determine the process
capability. These authors discussed the techniques for
obtaining the best-fit line for the data, calculating the
control limits, comparing the slopes to determine differ-
ent tools, and finally calculating the capability of the
process. These techniques are based on the assumption
that tools are ‘‘consistent’’ within their tool groups. As
the data are recorded over several tools, the subgroup
averages are plotted over time. A best-fit line is then
determined using the methodology of the standard linear
regression analysis.

Evidently when systematic assignable causes are
present and tolerated, the overall variation of the process
(s2) is then composed of the variation due to random
causes (s2

r ) and the variation due to assignable causes
(s2

a), that is, s2 ¼ s2
r þ s2

a . The traditional PCI measures
disregard the portions of the overall variation, (in the
presence of tool wear) that are due to assignable causes.
Hence any estimates of the process capability will
confound the true capability with these two sources. In
order to get a true measure of a process capability, any
variation due to an assignable cause must be removed
from the measure of a process capability. However, the
above approaches tacitly assume a static process cap-
ability over a cycle. By allowing the process capability to
be dynamic within a cycle, as well as from a cycle to cycle,
one could circumvent some of the problems encountered.
Spiring (1989, 1991) viewed this as a dynamic process
which is in a constant change. In this dynamic model, the
capability of the process may vary, possibly even in a
predictable manner. Spiring has devised a modification of
Cpm index for this dynamic process under the influence
of systematic assignable causes. In this scenario the goal is
to maintain a minimum level of capability at all times. As
a result, the capability will be cyclical in nature and its
period being defined by the frequency of the process/
tolling adjustments. Even when the assignable cause
variation is not systematic, as is in the case with tool or
die wear, one ought to be able to deal with random
fluctuations of the process mean over time. Quite often in
practice, deviations from the target value are due to
assignable causes, which are easy to pinpoint such as
shift-to-shift changes, differences in the raw material
batches, environmental factors, etc.

The measure of process capability for dynamic process
proposed by Spiring (1991) is

Cpm ¼
min USL� T; T � LSLf g

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

rt þ ðmt � TÞ2
q ,

where USL, LSL and T as above but mt represents the mean
and s2

rt—the variation (due to random causes only) of the
process at time period t. As we have already remarked the
actual value of mt and s2

rt are seldom known, and in order
to get an assessment of process capability these values
ought to be estimated. These estimators will have to
incorporate various existing sources of variation. Monitor-
ing process’s capability will thus require obtaining the
value of Cpm or its suitable estimate at various times t over
each cycle during the lifetime of the tool.

It thus follows that the proposed sampling scheme
is similar to procedures used in monitoring a process
for control charting. The general format is to gather k

subgroups of size n from each cycle (e.g., the period from
t0 to t1) over the lifetime of the tool. The value of k will
be unique to each process and, in fact, may change from
cycle to cycle within the process. On the other hand,
sample size of less than five (i.e., no5) are cautioned
against, while larger samples (e.g., n425, see Spiring,
1991) may also pose problems. The optimal sample
size for assessing process capability in the presence of
systematic assignable causes will thus vary for each
process under consideration.

Assuming that the effect of the tool deterioration
is linear over the sampling window, estimates of Cpm

are available which would not involve contribution of the
assignable causes. Typically such an estimator is of the
form:

Ĉpm ¼
min USL� T ; T � LSLf g

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEt þ

n

n� 1
ðX̄t � TÞ2

r .

This measure of process capability considers only the
proximity to the target value T and the variation
associated with random causes as the linear effect of the
tool wear is effectively removed by using

MSEt ¼

PN
I¼1ðxtai

� x̂tai
Þ
2

n� 2

at sequentially selected points (i.e., ta1
; ta2

; ta3
; . . .) rather

than the standard estimator S2. The MSEt is the mean
square error associated with the regression equation xai

¼

aa þ btai
þ �ai

and where tai
is the sequence number of the

sampling unit and �ai
�Nð0;1Þ. The coefficient b represents

the linear change in the tool wear given a unit change in
time/production. The method was proposed by Spiring
(1991) who have suggested that the problem can be
tackled by viewing the process capability as ordinal
sequential dynamic rather than static process. This entails
calculating a new index and constant monitoring it as the
process advances. When the index reaches a preset
minimum value, the processing is terminated and reset-
ting/replacement is carried out.

6.4. Extensions to gauge measurement error

The inevitable variations in process measurements
come from two sources: the manufacturing process and
the gauge. Gauge capability reflects the gauge’s precision,
or lack of variation, which is not the same as calibration
(the latter assures the gauge’s accuracy). As it was
emphasized on a numerous occasions, process capability
measures the ability of a manufacturing process to meet
preassigned specifications. Nowadays, many customers
use process capability to judge supplier’s ability to deliver
quality products. Suppliers need to be aware of how
gauges affect various process capability estimates.

The gauge capability consists of two parts: repeat-
ability and reproducibility. Repeatability is the gauge’s
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experimental or random error. Namely, when measuring
the same specimen several times, the gauge will never
provide exactly the same measurement. Reproducibility is
the (quite annoying) inability of several inspectors or
gauges to arrive at the same measurement value from a
given specimen i.e. the variability due to different
operators using the gauge (or different time periods,
different environments, in general different conditions).
To summarize we have

s2
Measurement error ¼ s2

Gauge ¼ s2
repeatability þ s

2
reproducibility

Estimates for s2
repeatability and s2

reproducibility come from a
gauge study, or a GR&R (gauge repeatability and reprodu-
cibility) study. Barrentine (1991), Levinson (1995), Mon-
tgomery (2001, 2005), and Burdick et al. (2003), among
others, describe various procedures for gauge studies.

Gauge capability is a gauge’s ability to repeat and
reproduce measurements. Its measurement is the percen-
tage of tolerance consumed by (gauge) capability (PTCC).
Montgomery (2001) referred to it as the precision-to-
tolerance (or P/T) ratio. It is the ratio of the gauge’s
variation to the specification width; its smaller values are
evidently preferable. Denoting the gauge’s standard
deviation as sGauge, we have

PTCC ¼
6sGauge

USL� LSL
� 100%.

Some authors and practitioners prefer to use the coeffi-
cient 5.15 instead of 6 (see e.g. Barrentine, 1991; Levinson,
1995). This formula above uses 6s as a natural tolerance
width for the gauge based on the normal distribution
assumptions.

The gauge capability has a significant effect on process
capability measurements. An inaccurate measurement
system can thwart the benefits of improvement endeavors
and results in poor quality. Analyzing process capability
without considering gauge capability may often lead
to unreliable decisions. It could cause a serious loss
to producers if gauge capability is ignored in process
capability estimation and testing. On the other hand,
improving the gauge measurements and properly trained
operators can reduce the measurement errors. Since
measurement errors unfortunately cannot be avoided,
using appropriate confidence coefficients and power
becomes necessary. However, the real world is that no
measurement is free from an error or uncertainty even if it
is carried out with the aid of the most sophisticated and
precise measuring devices. Any variation in the measure-
ment process has a direct impact on the ability arrive at an
execute sound judgment about the manufacturing pro-
cess. Analyzing the effects of measurement errors on PCIs,
Levinson (1995) and Mittag (1997) developed definitive
techniques for quantifying the percentage error in process
capability indices estimation in the presence of measure-
ment errors.

Common approaches to GR&R studies, such as the
Range method (see Montgomery and Runger, 1993a) and
the ANOVA method (see Mandel, 1972; Montgomery
and Runger, 1993b) assume that the distribution of the
measurement errors is normal with a mean error of zero.
Let the measurement errors be described by a random
variable Me�Nð0;s2
Me
Þ; Montgomery and Runger (1993b)

determined the gauge capability l using of the formula:

l ¼
6sMe

USL� LSL
� 100%.

For a measurement system to be deemed acceptable, the
variability in the measurements due to this system ought
to be less than a predetermined percentage of the
engineering tolerance. Some guidelines for gauge accep-
tance have been developed by the Automotive Industry
Action Group (AIAG, 2002).

Let X�Nðm;s2Þ be the relevant quality characteristic
of a manufacturing process and consider this process
capability in a measurement error system. Due to the
measurement errors, the observed random variable
Y�NðmY ¼ m; s2

Y ¼ s2 þ s2
Me
Þ is measured under the as-

sumption that X and Me (the measurement error) are
stochastically independent (instead of measuring the
actual variable X). The empirical capability index CY

pk will
be obtained after substituting sY for s. The relationship
between the true process capability Cpk ¼minfðUSL� mÞ=
3s; ðm� LSLÞ=3sg and the empirical process capability CY

pk

can be expressed as

CY
pk

Cpk

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2C2
p

q .

Since the variation of the observed data is larger than the
variation of the original one, the denominator of the index
Cpk becomes larger, and the true capability of the process
will be understated if calculations of process capability
index are based on the empirical data represented by Y.
Suppose that the empirical data (the observed measure-
ments contaminated by errors) fYi; i ¼ 1;2; :::;ng are
available, then the natural estimator Ĉ

Y

pk is

Ĉ
Y

pk ¼
d� jȲ �mj

3SY
,

which is obtained by replacing the process mean m and
the process standard deviation s by their conventional
estimators Ȳ ¼

Pn
i¼1Yi=n and SY ¼ ½

Pn
i¼1ðYi � ȲÞ=ðn�

1Þ�1=2 from a ‘‘bonafide’’ stable process. When estimating
the capability, the estimator Ĉ

Y

pk in the case of contami-
nated data, substantially underestimates the true cap-
ability in the presence of measurement errors.
Consequently, if a statistical test is used to determine
whether the process meets the capability requirement,
the power of the test would drastically decrease.

In fact the discussions in Pearn and Liao (2005)
indicated that the true process capability would be
inappropriately underestimated if Ĉ

Y

pk is used. The prob-
ability that Ĉ

Y

pk is greater than c0 would be less than a
preassigned when using Ĉpk. Thus, when estimating Cpk

the a-risk using Ĉ
Y

pk is less than the a-risk of using Ĉpk. The
power of the test based on Ĉ

Y

pk is then also smaller than
that based on Ĉpk. Namely, the a-risk and the power of the
test decrease with the measurement error. Since the lower
confidence bound is underestimated and the power
becomes small, the producers cannot firmly state that
their processes meet the capability requirement even if
their processes are indeed sufficiently capable. Adequate
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and even superior product units could be incorrectly
rejected in this case. To help the situation, Pearn and
Liao (2005) derived the CDF of Ĉ

Y

pk and considered the
adjustment of the confidence bounds and of the critical
values to provide a better capability assessment. Suppose
that the required confidence coefficient is y, then an
adjusted confidence interval of Cpk with a lower con-
fidence bound L* can be obtained which improves the
accuracy of capability assessment.
6.5. Applications to supplier selection

In an initial stage of production setting, the decision
maker necessarily faces the problem of selecting the best
manufacturing supplier out of several available candi-
dates. There are many factors, such as quality, cost, service
and so on, that ought to be taken into account when
selecting the best supplier. Several selection rules have
been proposed for selecting the means or the variances in
the classical analysis of variance (ANOVA) (see e.g.
Gibbons et al., 1977; Gupta and Panchapakesan, 1979;
Gupta and Huang, 1981 for more details). The vast
majority all of the selection rules are based on the ordered
sample variances. A common drawback of these selection
rules is that the information available in sample data
cannot be efficiently used.

As it was mentioned in an earlier section of this
paper, PCIs provide common quantitative measures of the
manufacturing capability and production quality to be
used by both producer and supplier as guidelines when
signing a contract. Purchasing personnel could use the PCI
to decide whether to accept or reject the products
provided by suppliers. There are two common methods
that are available to determine the better suppliers’ PCI.
Simply carry out a 100% inspection to calculate separately
the PCI for each supplier, the suppliers can then be
compared according to their respective true PCI values;
this approach is, however, quite expensive and time-
consuming and is nowadays rarely used in practice. The
second method involves sampling implementation, and
statistical testing is then applied to assess suppliers’
process capabilities.

Tseng and Wu (1991) considered the problem of
selecting the best manufacturing process from k available
processes based on the (primitive) ‘‘precision’’ capability
index Cp and proposed a modified likelihood ratio (MLR)
selection rule. Details related to theoretical derivations of
the MLR selection rule are given in their paper. Some
tables of the sample size and of the critical values for
selecting the best manufacturing have also been com-
puted by controlling the probability of a correct selection
(CS) and the error probability based on the proposed MLR
selection rule. Furthermore, when the product quality
characteristic data for each process follows a non-normal
symmetric distribution, a simulation study has been
carried out to examine the robustness of the selection
rule. The results indicate that the proposed MLR selection
rule is quite insensitive to a number of non-normal
symmetric process distributions (including logistic and
uniform).
Chou (1994) developed an approximate method for
selecting a better supplier based on the one-sided
capability indices Cpu and Cpl for equal sample sizes.
Hubele et al. (2005) developed a Wald statistic for testing
the equality of g Cpu (or Cpl) indices where gX2 and there
is no restriction on sample sizes drawn from the g

processes. Based on the Cpm index a somewhat mathema-
tically cumbersome approximation method has been
developed by Huang and Lee (1995) for selecting a subset
of processes containing the best supplier from a given set
of processes. The method essentially compares the
average loss of a group of candidate processes, and selects
a subset of these processes with a small process loss
t2 ¼ E½ðX � TÞ2�, which, at a certain level of confidence,
contains the best process. Since the specification limits are
usually fixed and determined in advance, searching for the
largest Cpm is equivalent to searching for the smallest t2.
The selection rule of Huang and Lee (1995) is that one
retains the population i in the selected subset if and only
if, t2

i pc �min1pjpg;jait2
j where the value of c is deter-

mined by a function of parameters, which can be in turn
determined by calculations from the obtained samples.
Pearn et al. (2004b) have investigated the accuracy of this
selection method for the cases with two candidate
processes. Additionally, a two-phase selection procedure
was developed to select a superior supplier and further to
examine the magnitude of the difference between the two
suppliers. Chen and Chen (2004) developed an approx-
imate confidence interval for the ratio Cpm1=Cpm2 for
selecting the better of two suppliers based on Boyles
(1991) investigation. The performance was compared with
three well-known Bootstrap confidence intervals (SB, PB,
BCPB) using simulation. The results showed that the
confidence intervals based on Boyles’ (1991) and the SB
method are better than those based on PB and BCPB
methods. Additionally, they suggested that a sample size
greater than 30 is necessary for the interval based on
Boyles’ method and greater than 50 for the interval based
on SB method.
6.6. Applications to multi-process performance analysis

chart

Ever since Shewhart introduced his pioneering control
charts in 1932, it has become a common practice for
practitioners to use various control charts for monitoring
different processes on a routine basis. As an example,
when dealing with a variable data, the control chart
technique usually employs a chart (such as a X̄ chart) to
monitor the process center and a chart (such as an R chart
or an S chart) to monitor the process spread. These charts
are easy to comprehend, and they effectively commu-
nicate the critical process information without even
employing words and on formulas. Unfortunately, they
are applicable only for a single process (one process at a
time). Using them in multi-process environment could be
a clumsy and time-consuming task for supervisors or shop
engineers since it may require to analyze each individual
chart in order to evaluate the overall status of a shop
process control activities.
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We know that PCIs measure the ability of a process
to (re)produce products that meet certain specifications.
We also have seen that capability of a process, there
are mainly two characteristics of importance involved in
an analysis of capability process: the process location in
relation to its target value and the process spread. Recall
also that the closer the process output is to the target
value and the smaller is the process spread, the more
capable will the process be. However, the fact that PCIs
combine information about closeness to target with the
process spread, and expresses the capability of a process
by a single number, may in some instances become
viewed as one of their major drawbacks. When a process
is found to be ‘‘non-capable’’, the operator might well
be interested in knowing whether the non-capability is
caused because the process output is substantially off
target or because the process spread is too large, or is a
result of a combination of these two factors. To circum-
vent this defect a number of researchers in the last 15
years were suggesting to use different graphical methods
to ascertain the improvement initiatives aimed at devising
more capable processes (see, e.g. Gabel, 1990; Boyles,
1991; Tang et al., 1997; Deleryd and Vannman, 1999
among others).

A multi-process performance analysis chart (MPPAC),
originally proposed by Singhal (1990), evaluates the
performance of a multi-process product with symmetric
bilateral specifications, determine priorities among multi-
ple processes to achieve capability improvement and
indicates whether reducing the variability or the depar-
ture of the process mean should be the main task for
improvement. While Cpu and Cpl present the X-axis and
Y-axis, respectively, in a MPPAC, Cp is the average of Cpu

and Cpl, namely, Cp ¼ ðCpu þ CplÞ=2. Moreover, the Cpk

MPPAC provides an efficient route to process improve-
ment by comparing the locations on the chart of processes
before and after an improvement effort has been carried
out. Singhal (1991) also provided a MPPAC with several
well-defined capability zones by using the process cap-
ability indices Cp and Cpk for grouping processes in a
multiple process environment into several performance
categories on a single chart. This is indeed quite useful
when process performance is measured in terms of
capability indices. Different capability zones describe a
status of each process, which is easy to interpret and assist
in grouping the processes into performance categories to
implement of quality improvement operations.

The American giant corporation Motorola Inc. intro-
duced their very popular six sigma (6–s) program which
is equivalent to a defect rate of 3.4 ppm. This program
corresponds to a Cp value of 2.0 or more and a Cpk value of
1.5 or more. All this is accomplished under an implicit
normality assumption. In practical applications, when a
product has several models with required different
specifications which are required to be monitored and
controlled, it may be difficult or time-consuming to carry
out these factory control activities. As we have seen a
MPPAC not only evaluates the performance of a multi-
process product with symmetric bilateral specifications
but also sets the priorities among multiple processes for
capability improvement and indicate whether reducing
the variability or adjusting the departure of the process
mean should be the focus of our improvement operations.
This renders a MPPAC to be an efficient tool for
communicating between the product designer, manufac-
turers, quality engineers and among (often numerous)
management departments.

Subsequently Pearn and Chen (1997b) proposed a
modification of the Cpk MPPAC combining the third
generation process capability indices, Cpm or Cpmk, in
attempt to identify the problems which cause processes’
failings to center around the target value. Furthermore,
combining Singhal’s MPPAC with asymmetric process
capability index Cpa, and using unilateral characteristics,
Chen et al. (2001) introduced more recently a process
capability analysis chart (PCAC) to evaluate the process
potential and performance for an entire product which
may be composed of ‘‘the-smaller-the-better’’, ‘‘the-
larger-the-better’’, symmetric and asymmetric specifica-
tions. We have already noted that the process yield of a
multi-process product is lower than of any individual
process yields. Similarly, when the entire product cap-
ability is preset to satisfy the required level, the individual
process capabilities should exceed the preset standard for
the entire product. Therefore, the overall process cap-
ability is recognized as ‘‘capable’’ if all the individual
process capability indices are located within the process
capability zone. Conversely, processes must be upgraded
when some of the process capability indices are outside
this zone. It is straightforward to distinguish process
performance relative to the locations of the PCIs on a
modified Cpk MPPAC. Hence, the modified Cpk MPPAC not
only distinguishes between process capabilities, but also
reveals the degree of quality accuracy for multi-process
products. This renders the modified Cpk MPPAC as an
effective and efficient tool for evaluating multi-process
products, composed of various unilateral and bilateral
specifications.
6.7. Extensions to multiple characteristics

As we have emphasized on several occasions in this
book a PCI is a numerical summary that compares the
behavior of a product (or processes characteristics) related
to engineering specifications. Its convenience is due to
compressing complex information about the process into
a single number. At present, numerous customers request
their suppliers to record capability indices for product
characteristics on a regular basis. In a majority of
companies it became a key index to evaluate product
quality. A large number of quality engineers and statisti-
cians have proposed methodologies for assessing product/
process quality. However, the bulk of the studies asso-
ciated with analyzing the quality and efficiency of a
process are so far limited to a discussion of one single
quality specification.

By now in most processes, the products possess
multiple quality characteristics one. Multiple character-
istics processes are so common that our studies to
capability indices cannot be restricted to the univariate
domain. The multivariate relationship among the quality
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characteristics may or may not be reflected in the
engineering specifications. For instance, USL’s and LSL’s
may be given separately for each quality characteristic. In
two-dimension cases, these tolerance ranges compose a
rectangular tolerance region. In higher dimensions, they
form a hypercube. For more complex engineering speci-
fications, the tolerance region could be quite intrinsic.

For processes with multiple characteristics, Bothe
(1992) proposed a simple measurement of a tolerance
region by taking the minimum of the measure for each
single characteristic. Consider a n-characteristic process
with n yield measures (percentage of conformities) P1,
P2,y, and Pn. The overall process yield is measured as
P ¼ min{P1, P2,y,Pn}. However, this approach does not
reflect accurately the real situation. Suppose the process
has five characteristics (n ¼ 5) with equal characteristic
yield measures P1 ¼ P2 ¼ P3 ¼ P4 ¼ P5 ¼ in the amount of
99.73%. Using the approach considered by Bothe (1992),
the overall process yield is calculated as P ¼min{P1, P2, P3,
P4, P5} ¼ 99.73% (or equivalently 2700 ppm of non-
conformities). Assuming that the five characteristics are
mutually independent, the actual overall process yield
should be calculated as P ¼ P1� P2�?� P5 ¼ 98.66%
(or 134273 ppm of non-conformities), which is significantly
less than the one calculated by Bothe (1992) method.

When these variables are related characteristics, the
analysis ought to be based on a multivariate statistical
technique. Chan et al. (1991), Taam et al. (1993), Pearn
et al. (1992), Chen (1994), Karl et al. (1994), Shariari et al.
(1995), Boyles (1996), Wang and Du (2000), Wang et al.
(2000) and others have developed and presented multi-
variate capability indices for assessing capability. Wang
and Chen (1998) and Wang and Du (2000) proposed
multivariate extensions for Cp, Cpk, Cpm and Cpmk based on
the technique of principal component analysis, which
transforms number of original related measurement
variables into a set of uncorrected linear functions.
A comparison of three novel multivariate methodologies
for assessing capability is illustrated (and their usefulness
is discussed) in Wang et al. (2000).

At present, the research of multivariate PCIs is still very
limited in comparison to the research of the univariate
PCIs. A current problem for multivariate capability indices
is that there is no consistency regarding a methodology
for evaluating the capability. In addition, it is also quite
difficult to obtain the relevant statistical properties
needed for a more detailed inference for multivariate
PCIs. Consequently there still exist essential difficulties in
trying to assess the capability of a multivariate system by
means of a single value. Obviously, further investigations
in this field are needed and there are no guaranteed that a
universal success be reached.
7. Concluding remarks: statistical properties and general
observations

In view of the globalization trends capability indices
are becoming more and more powerful standard tools for
quality reporting through out the world, particularly, at
the management level. Proper understanding and their
accurate estimation are essential for a modern company
to maintain the status of a capable supplier. Most supplier
certification manuals include a discussion of process
capability analysis and describe the recommended proce-
dure for computing PCIs. Analyzing these capability
indices, the production department is able to trace and
improve inadequate processes in order to meet customers’
needs. On the surface mathematical expression of these
capability indices are easy to understand and seem to be
straightforward to apply. However, in practice even the
process mean m and the process variance s2 are usually
unknown. In order to calculate the index value, sample
data must be collected and a degree of uncertainty would
no doubt be introduced into capability assessments due to
inevitable sampling errors. The approach by just looking
at the calculated values of the estimated indices and
making conclusions as to the given process is capable,
is therefore highly unreliably approved. As the use of the
capability indices grows, users are becoming more and
more educated and sensitive to the impact of the
estimators and their sampling distributions, and discover-
ing that capability measures ought to be reported at least
via confidence intervals or via capability testing. Statis-
tical properties of the estimators of these indices under
various process conditions have been investigated quite
extensively, in the last 15 years. Zhang et al. (1990), Li
et al. (1990), Pearn et al. (1992), Kushler and Hurley
(1992), Kotz et al. (1993), Nagata and Nagahata (1994),
Chen and Hsu (1995), Vännman and Kotz (1995), Tang
et al. (1997), Zimmer and Hubele (1997), Vännman (1997),
Pearn et al. (1998), Wright (1998, 2000), Hoffman (2001),
Zimmer et al. (2001), Pearn and Lin (2002, 2004), Vänn-
man and Hubele (2003) and Pearn and Shu (2003) are
only a small part of works in the literature dealing with
these problems.

We have to stress that the indices described above are
designed to monitor the performance for solely normal
and near-normal processes with symmetric tolerances,
and are shown to be inappropriate for the majority of
cases with asymmetric tolerances. For normal distribu-
tions, these PCI estimators based on the statistics x̄ ¼Pn

i¼1xi=n and s2 ¼
Pn

i¼1ðxi � x̄Þ2=ðn� 1Þ are quite stable
and reliable. However, for non-normal distributions, they
become highly unstable since the distribution of the
sample variance s2 is quite sensitive to the departures
from normality. Somerville and Montgomery (1996)
presented an extensive study illustrating how poorly the
normality-based capability indices may perform as a
predictor of process fallout when the process is non-
normally distributed. When normality-based capability
indices are used to deal with non-normal process data, the
values of the capability indices may be incorrect and
might even misrepresent the actual product quality.
Therefore normality-based process capability indices such
as Cp, Cpk, Cpm and Cpmk are inappropriate to measure
processes for non-normal distributions.

For non-normal distributions of X, Clements (1989)
suggested that ‘‘6s’’ in the expression for Cp be replaced
by the length of the interval between the upper and lower
0.135 percentage points (corresponding to 6s in a normal
case) of the given distribution and considered fitting a
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distribution for X by means of the Pearson system of
distributions to obtain the required percentiles. Pearn
et al. (1992) suggested replacing ‘‘6s’’ in the denominator
of Cp by ‘‘6y’’, where y is chosen so that the ‘‘capability’’ is
not affected to a large extent by the shape of the
distribution at hand. English and Taylor (1993) examined
the effect of the non-normality assumption on PCIs and
concluded that Cpk is more sensitive to departures from
normality than Cp. Kotz and Johnson (1993) provided a
survey of earlier works on the properties of PCIs and their
estimators when the distribution is non-normal. Johnson
et al. (1994) introduced a ‘‘flexible’’ PCI which takes into
account possible differences in variability above and
below the target value. Vännman (1995) proposed a new
family of indices Cpðu;vÞ (mentioned earlier), parameter-
ized by (u, v) that includes many other indices as its
special cases. Deleryd (1996) investigated the suitable u

and v values of Cpðu;vÞ when the process distribution is
skewed. It is recommended that Cp(1,1), which is equiva-
lent to Cpmk, is most suited to handle non-normality of
PCIs. Pearn and Chen (1997a) considered a generalization
of Cpðu;vÞ, called CNpðu;vÞ, which can be applied to
processes with arbitrary distributions. Castagliola (1996)
introduced a non-normal PCI calculation method by
estimating the proportion of non-conforming items for
the Burr distribution. A new index CS, proposed by Wright
(1995) incorporates an additional skewness correction
factor in the denominator of Cpmk. Shore (1998) developed
a new approach to analyzing non-normal quality data and
used it for the process capability analysis. Chang et al.
(2002) proposed a heuristic weighted standard deviation
method to adjust the value of PCIs according to the degree
of skewness, considering separately the standard devia-
tions above and below the process mean. Tang and Than
(1999) reviewed several methods and presented a com-
prehensive evaluation and comparison of their ability to
handle non-normality of the original data.

It should be kept in mind that PCIs can be used only
after it has been established that the manufacturing
process is indeed under statistical control. For applica-
tions where routine-based data collection plans are
implemented, a common practice of process control is to
estimate the process capability by analyzing the past ‘‘in
control’’ data. To estimate s we typically use either the
sample standard deviation or the sample range. Control
charts can be utilized as a monitoring device or a logbook
to show the effect of changes in the process performance.
A process may be in control but not necessarily operating
at an acceptable level. Hence, management intervention
will be required either to improve the process capability,
or to change the manufacturing requirements to ensure
that the products meet at least the minimum acceptable
level. If the process is out of control in the early stages of
process capability analysis, it will be unreliable and
meaningless to estimate process capability. In such
situations the first step should be to find and eliminate
the assignable causes of variability which would bring the
process in-control.

On the whole, capability indices are very appealing.
Like many powerful tools, the PCIs can sometimes inflict
substantial damage if used incorrectly. Due to rapid
additions to the literature of PCIs periodically these
advances should periodically be monitored. We trust that
this paper fulfils this obligation for the first six years of the
21st century. When appropriately calculated, these indices
will provide a lot of vital information concerning the
manner that the current output of a process satisfies
customer requirements. On the other hand, incorrectly
applied and/or interpreted, these indices can generate an
abundance of misinformation that may cause practi-
tioners to carry out incorrect decisions.
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