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貝氏門檻模型在財務議題之探討 

 
  學生：吳志強                             指導教授：李昭勝 博士 

                                                    鍾惠民 博士 

國立交通大學財務金融研究所博士班 

中文摘要 

這項研究包含兩篇貝氏門檻模型在金融市場議題探討之論文。 

在第一篇論文中，我們提出四因子的貝氏門檻模型去比較基金經理人面對市場走空

或走多時，對於系統風險調整是否存在非對稱性。我們證明不僅經理人有非對稱的擇時

能力而且三區間的模型比二區間模型有更顯著的擇時能力。另外，我們使用縱橫資料模

型檢查基金投資者的行為與基金績效和特性之間的關係。實證結果說明投資者的行為與

過去基金選股績效和基金規模正相關，而與過去基金周轉率，銷售費，費用率負相關。

另外，有較大即時現金流量的基金將有較好的預測上升趨勢市場的能力及較差的預測下

降趨勢市場的能力。 

第二篇論文提出穩健多變量門檻 VAR-GARCH-DCC 模型，這個模型可以描述在金融資

產其條件平均值，波動，與相關存在的非對稱性。另外，我們把門檻變數假設成所有內

生變數的線性組合。因為這樣不僅可以消除過分主觀的選取門檻變數，而且還可以作為

決定哪一市場是價格領先者。我們用 MCMC 方法去估計模型中的參數。而且，介紹幾個

有意義的準則去評估條件共變異矩陣的預測績效。最後，我們使用每日的 S&P500 期貨

和現貨價格，和 S&P500 與 Nasdaq100 現貨價格作為實證研究。  

 
 
關鍵字：門檻模型、共同基金、績效評估、波動預測、風險值、避險績效 
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Essays on the Bayesian Threshold Model in Finance 

 
Student: Chih-Chiang Wu                Advisers: Dr. Jack C. Lee 
                                            Dr. Huimin Chung 

Graduate Institute of  Finance 
National Chiao Tung University 

 
ABSTRACT 

 
This study contains two essays on the Bayesian threshold model in financial 

markets. 
In essay 1, we propose a Bayesian three-regime threshold four-factor model to 

compare the asymmetric risk adjustment between the transitions from neutral to 
downside markets and those from neutral to upside markets and investigate the 
performance of  mutual funds in changing market conditions. We show that not only 
fund managers have asymmetric timing ability but three-regime models are more 
powerful and exhibit significant timing ability more often than two-regime models. In 
addition, we use panel data model to examine fund investors’ behavior and the 
relationships between fund performances and characteristics. Empirical results suggest 
that investor’s behavior is positively associated with past selectivity performances and 
fund sizes, while it is negatively correlated to past turnover, load charges and expenses. In 
addition, funds with large contemporaneous net cash flows will results in better upside 
market timing ability but worse downside market timing ability. 

Essay 2 proposes a robust multivariate threshold vector autoregressive (VAR) model 
with generalized autoregressive conditional heteroskedasticities (GARCH) and dynamic 
conditional correlations (DCC) to describe conditional mean, volatility and correlation 
asymmetries in financial markets. In addition, the threshold variable for regime switching 
is formulated as a weighted average of  endogenous variables to eliminate excessively 
subjective belief  in the threshold variable decision and to serve as the proxy in deciding 
which market to be the price leader. Estimation is performed using Markov chain Monte 
Carlo (MCMC) methods. Furthermore, several meaningful criteria are introduced to 
assess the forecasting performance in conditional covariance matrix. The proposed 
methodology is illustrated using two data sets including daily S&P500 futures and spot 
prices, and S&P500 and Nasdaq100 spot prices. 
 
Keywords: Threshold Model; Mutual Fund; Performance Evaluation; Volatility 
Forecasting; Value at Risk; Hedge Performance 
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Chapter 1. Introduction 

Chapter 1. Introduction 

In the past decades several nonlinear time series models have been proposed and 

some of  them have been used in practical applications. It is now fairly widely accepted 

stylized fact that financial time series, such as stock returns, exchange rates series and etc., 

exhibit strong signs of  nonlinearity. The nonlinear phenomenon typically comes from 

the observation that many economic and financial time series are often characterized by 

regime specific behavior and asymmetric responses to shocks (see, Hansen (1996, 2000), 

Hsieh (1989, 1991, 1993), and Tsay (1989, 1998)). In addition, although the GARCH 

model can capture leptokurtosis and volatility clustering, structural breaks in the variance 

could lead to the spuriously high persistent in the GARCH model (see, Lamoureux and 

Lastrapes (1990) and Mikosch and Starica (2004)). Therefore, in the dissertation, we will 

use the threshold model to capture the nonlinear behavior in both returns and volatilities 

of financial assets. 

In the threshold class of  models, classical estimation of  parameters is usually done 

by the maximum likelihood or the least squares methods with a joint grid search over the 

threshold values using information criteria such as AIC or BIC. However, Koop and 

Potter (2003) and So et al. (2005) showed that the inadequacy of  these approaches is to 

fix the threshold parameters in advance before estimating the other parameters by least 

squares. Therefore, the uncertainty of  the threshold parameters cannot be taken into 

account when implementing statistical inference for the other parameters. In addition, 

another problem is the large number of  parameters in the threshold model must be 

estimated and the difficulty of  estimation due to the positive definiteness restrictions of  

the covariance matrix. Thus, MLE will result in unstable estimates. Moreover, previous 
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literatures (such as Koop and Potter (1999)) noted that likelihood functions of  many 

nonlinear models are non-smooth and multimodal. So, it may be inappropriate to 

chooses one point in the parameter space and to use the large sample property to infer. 

Therefore, to moderate the above problems, we adopt a Bayesian approach to 

estimate the threshold parameters as well as the other parameters simultaneously. And 

Bayesian method, by using information from the entire parameter space, captures this 

finite sample uncertainty about the true parameter values. In addition to the above 

inference advantage, a Bayesian method incorporates the investor’s prior belief about the 

validity of the pricing model and managerial technique with the information in the data, 

and thus it will result in more appropriate conclusions (see, Pastor and Stambaugh (2000, 

2002), and Jones and Shanken (2005)). The dissertation focuses on the application in 

several important issues in financial markets, including the mutual fund performance 

evaluation and the forecasting in conditional covariance matrix. 

For the first issue in this dissertation, we propose three-regime Bayesian threshold 

models and use daily returns for each fund to examine the threshold effect and to test 

this effect resulting from the change of mutual fund managerial micro-forecasting ability 

and market exposures among different market conditions. Our results show that the 

effect of public information in the three-regime model is more significant than that in the 

two-regime model. The unconditional model will overestimate selectivity in the upside 

market, but underestimate selectivity in the downside market. It also underestimates fund 

market exposures whether in downside or upside markets. We also reveal clearly that 

much managerial timing ability decides by their skills to forecast the downside market. In 

addition, our results indicate that the conditional three-regime threshold model bring 
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most powerful detection for significant timing activity. Our empirical results also indicate 

that selectivity and timing are negatively associated and the effect is especially significant 

in the downside market. This is very important for investors to allocate their portfolio. 

In the second issue, we present a robust threshold VAR (or VECM)-DCC-GARCH 

model and use the Metropolis-Hastings (MH) algorithm and the Gibbs sampling 

algorithm to estimate the parameters simultaneously. Our model extends existing 

approaches by admitting thresholds in conditional means, conditional volatilities and 

correlations of multivariate time series. Such an extension, allows us to account for rich 

asymmetric effects and dependencies of conditional means, volatilities and correlations, 

as they are often encountered in practical financial applications. In addition, we use the 

concept of Chen and So (2006) to define the threshold variables as the linear 

combination of endogenous variables. This setting can eliminate excessively subjective 

belief  in threshold variable decision. Besides, the weight coefficient can serve as the 

proxy in deciding which market is the price leader and which market is the price follower. 

Finally, threshold values in our model are not fixed ex ante, but they are estimated from 

the data, together with all other parameters in the model. 

We investigate the empirical performance of our model in two data sets including 

daily S&P500 futures and spot prices, and S&P500 and Nasdaq100 spot prices. Our 

study attempts to use posterior odds ratio and Bayes factors as a formal tool for making 

comparison between competing models. We reduce our testing problem to a Bayesian 

model selection problem. We can then select the model with a higher posterior odds 

ratio. We also present the performance comparison results of the one-step-ahead 

forecast in the conditional covariance matrix. The forecast results are assessed by several 
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criteria which include the views of statistical loss and risk managers. 

Based on the estimation results, we find that the asymmetric dynamic structure is 

obvious in both the dynamic relationship between S&P500 futures and spot markets and 

between S&P500 and Nasdaq100 spot markets. We also detect that S&P500 futures 

market is the price leader between S&P500 futures and spot markets, and S&P500 spot 

market is the price leader between S&P500 and Nasdaq100 spot markets. Furthermore, 

based on several in-sample and out-of-sample performance measures in the conditional 

covariance matrix prediction, we find that the threshold model outperforms the linear 

model across most measure criteria. 
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Chapter 2.  

Measuring Mutual Fund Asymmetric 

Performance in Changing Market Conditions 
1. INTRODUCTION 

The scale of U.S. mutual funds, especially equity funds, has grown quite rapidly in 

the past several decades. The trend illustrates that more and more investors prefer 

investing their capital in mutual funds rather than directly investing in the equity market. 

Due to the great number of funds in existence, it is significant to investigate whether 

managers of actively managed mutual funds rely on superior stock selection skills 

(micro-forecasting) and market timing capability (macro-forecasting) to outperform 

passive strategies. Furthermore, studies of relationships between mutual fund 

performances and characteristics are worthwhile for investors to reference when 

selecting funds. The investigation of mutual fund performance can serve as a guideline 

for fund investors and provide them detailed information and previous performance 

behavior about certain funds. In addition, the objective of identifying superior fund 

managers is also of interest to academia as a challenge to the efficient market hypothesis. 

Therefore, over the past 30 years, numerous evaluation techniques have been 

proposed to examine the investment performance of  mutual fund managers in the 

academic literature. For mutual funds’ managerial stock selection skills, starting with 

Jensen (1968), numerous studies employed regular proxies for the market portfolio such 

as Capital Asset Pricing Model (CAPM) benchmark to evaluate the performance of  

mutual funds. Later, Grinblatt and Titman (1994), Carhart (1997), and Wermers (2000) 

argued that the use of CAPM as a benchmark would result in inconsistent outcomes and 

were centered on examining managerial stock picking talents with several comparable 

passive benchmarks. They also showed that performance tests are entirely sensitive to the 
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chosen benchmark. In addition, Grinblatt and Titman (1989), Elton et al, (1993), Carhart 

(1997), and Wermers (2000) studied whether mutual fund managers possess superior 

talents for picking stocks with certain characteristics.  

On the subject of managerial market timing ability, Treynor and Mazuy (1966), 

Merton and Henriksson (1981), and Ferson and Schadt (1996) used monthly fund returns 

to examine whether fund managers take advantage of superior information by increasing 

(decreasing) market exposure before the stock market turns bullish (bearish) and found 

that only a minority of fund managers have good market timing skills. Furthermore, 

Ferson and Schadt (1996) argued that traditional performance measures may be biased 

when fund managers use dynamic strategies resulting in time varying risk. Hence, Ferson 

and Schadt (1996) took public information into consideration and proposed conditional 

performance evaluation approach which is consistent with the semi-strong form of 

market efficiency hypothesis. 

In addition, when the frequency of  market timer (e.g. daily) is higher than that of  

measured fund returns (e.g. monthly), Goetzmann, Ingersoll, and Ivkovic (2000) found 

that widely used Henriksson-Merton (HM) parameteric test would result in weak and 

biased downward timing skill. Therefore, they adjusted HM type model to detect daily 

timing skill without requiring daily timer data. But simulations showed that the adjusted 

test was not as powerful as the classical HM test executed directly on daily timer returns. 

Moreover, Busse (1999), and Bollen and Busse (2001) documented that daily data take 

account of more efficient estimates of time variation in systematic risk and are more 

powerful in testing timing ability than monthly data. 

Although a variety of evaluation methods have been proposed and implemented to 

study stock selection and market timing performance to date, they have only examined 

managerial stock selection ability without distinguishing between good and bad market 

conditions. Moreover, they have merely investigated the difference in funds’ market 
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exposure between upside and downside markets, but have not examined the asymmetric 

risk adjustment between the transitions from neutral (i.e. the market tends to be neither 

downside nor upside) to upside markets and those from neutral to downside markets. 

Additionally, in this essay, we take transaction costs into account when fund managers 

want to adjust their portfolios among different market conditions. Thus, managers may 

alter the overall risk composition of their portfolios in anticipation of excess market 

return being larger (smaller) than a certain positive (negative) level other than zero. We 

are also able to explore that managers’ overall timing ability mainly comes from downside 

or upside market timing ability. 

Furthermore, the majority of the earlier performance measure studies are based on 

least squares estimation or maximum likelihood estimation. However, a Bayesian 

approach of performance evaluation may be more adequate from an investor’s viewpoint. 

It combines an investor’s prior belief about the accuracy of the pricing model and 

managerial skills with the information in the data and obtains posterior distribution of 

the model’s parameters. As a result, the conclusions based on the Bayesian method may 

be more informative for investors than those based on the traditional statistical approach. 

To enable more powerful and efficient analyses of fund performance, we propose 

three-regime Bayesian threshold models and use daily returns for each fund to examine 

the threshold effect and to test this effect resulting from the change of mutual fund 

managerial micro-forecasting ability and market exposures among different market 

conditions. With regard to the chosen factor model, we select Carhart’s (1997) 

four-factor model, which contains market factor (MKT), size factor (SMB), 

book-to-market factor (HML), and the momentum factor (UMD).  

Our results show that the effect of public information in the three-regime model is 

more significant than that in the two-regime model. The unconditional model will 

overestimate selectivity in the upside market, but underestimate selectivity in the 
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downside market. It also underestimates fund market exposures whether in downside or 

upside markets. We also reveal clearly that much managerial timing ability decides by 

their skills to forecast the downside market. In addition, our results indicate that the 

conditional three-regime threshold model bring most powerful detection for significant 

timing activity. Our empirical results also indicate that selectivity and timing are negatively 

associated and the effect is especially significant in the downside market. This is very 

important for investors to allocate their portfolio. 

Subsequently, we adopt the annual estimation results based on the conditional 

three-regime threshold four-factor model and use a fixed effects panel data model to 

examine the relationships between investors’ behavior and past fund performances and 

various fund characteristics. We find strong evidence that funds with better past 

performances, except for downside market timing ability, will attract more investors and 

bring larger net cash flows. In addition, net cash flows are persistent and positively 

associated with fund sizes. We also find the inverse relationships between net cash flows 

and lagged turnover, load charges, and expenses.  

We also use a fixed effects panel data model to explore the relationships between 

fund performances and characteristics. Although numerous prior studies have examined 

their relationships, they mostly focused on selectivity performance and found the 

following results. For the relationship between performance and fund size, Grinblatt and 

Titman (1994) and Carhart (1997) found that managerial stock selection performance is 

not apparently related to fund size, while, Chen et al. (2004) found that fund size 

corrodes mutual fund performance. Moreover, prior evidence on the relationship 

between turnover and performance is mixed. Elton et al. (1993) and Carhart (1997) 

found that funds trading more actively have worse stock selection talents than those that 

trade less frequently, while Grinblatt and Titman (1994) found a positive relation 

between turnover and net mutual fund returns.  
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Again, for the relationship between total load and stock picking skills, Elton et al. 

(1993), Carhart (1997), and Dellva and Olson (1998) found that stock selection 

performance of the load fund is lower than that of the no-load fund. For the relation 

between expense and performance, Grinblatt and Titman (1994) and Carhart (1997) 

found that high expense funds have worse performances than low expense funds, while 

other extant literatures did not find any significant relations. In addition, Gruber (1996), 

Chevalier and Ellison (1997), Dellva and Olson (1998), and Sirri and Tufano (1998) 

found that funds with high cash positions and large net cash flows will produce superior 

overall stock selection performance. 

Our empirical analyses using the fixed effects panel data model show the following 

findings. The selectivity and market timing performances are not long persistent. In 

addition, we find that fund investors have no good selection ability. Fund sizes will 

corrode selectivity performance in the upside market, while, they reduce fund 

performance loss in the downside market. Conversely, active managers will advance 

selectivity performance in the upside market, whereas increase the losses of abnormal 

returns in the downside market. Because managers of higher expense funds do not create 

more performances to recover their charged fees, investors prefer to select funds with 

lower expenses to maximize their net expense returns. 

We also find that both managers with heavy trading as well as managers with low 

expenses have superior downside market timing ability, while they have worse upside 

market timing ability. In addition, net cash flows have negative impacts on timing the 

downside market but positive impacts on upside timing ability. This suggests that 

managers of large net cash flow funds might invest new cash in high beta stocks or call 

options to generate better timing ability in the upside market. Conversely, they might 

invest new cash in low beta stocks instead of put options and result in worse timing 

ability but better selectivity performances in the downside market. Finally, we also find 
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that funds with high expenses will have alert insights into the predictions of downside 

and upside markets.  

The rest of the essay is organized as follows. Section 2 presents the theoretical 

methodology and the estimation procedure. Data and the performance estimation results 

for an individual fund and all funds are described in Section 3. Section 4 investigates the 

behavior of funds investors. Section 5 documents the relationships between fund 

performance measures and fund characteristics. Section 6 concludes the essay. 

 

2. UNCONDITIONAL AND CONDITIONAL BAYESIAN 

THRESHOLD MODEL 

The model we proposed here is called the Bayesian threshold model, which allows 

the conditional variance to depend on its own previous realizations and to be drawn 

from different regimes. Since the purpose of  this essay is to compare the stock selection 

and market timing ability among different market conditions, we assume the regression 

coefficients of  other factor variables are identical in any market conditions. Therefore, 

the unconditional three-regime threshold model with conditional variances following 

GARCH(1,1) process based on Carhart’s (1997) four factor variables, is specified as 

follows: 
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where tpR , is the excess return of  the fund p at time t, tMKTR , is the market excess return 

at time t and is also an observed variable determining the switching points, and the three 

extra factors ( , , ,, ,SMB t HML t UMD tR R R ) are size, book-to-market, momentum factors at time t. 

The threshold parameters ,1pr  and ,2pr  satisfy ,1 ,20p pr r−∞ < < < < ∞ , and the 

distribution of ,p tε  conditional on information up to t-1, denoted by , 1p t−ℑ , is ( ),0,  p tN h . 

To allow heteroscedasticity in tpR ,  we have a GARCH formulation in the conditional 

variance equation for th . Standard restrictions on the GARCH parameters 

are ( )
,0 0j

pa > , ( )
,1 0j

pa ≥ , ( )
,1 0j

pb ≥ , and ( ) ( )
,1 ,1 1j j

p pa b+ <  for 3,2,1=j .  

The parameters ( ) ( ) ( )( )321  , , ppp ααα  are the abnormal returns for the fund p in the 

downside market, the neutral market, and the upside market, respectively. Moreover, the 

parameters ( ) ( ) ( )( )3
,

2
,

1
,  , , MKTpMKTpMKTp βββ  are the systematic risks for the fund p when the 

stock market conditions are downside, neutral, and upside, respectively. We motivate 

market timing from the fund managerial perspective, assuming that the manager attempts 

to time market exposure in the fund shareholder’s best interests. The successful market 

timer should increase the portfolio weight of  highly-risky equities prior to the market 

upswings. Therefore, the fund investors will earn more return when the market return is 

larger than a certain positive level. Conversely, the successful market timer should 

decrease the portfolio weight of  highly-risky equities prior to the market downturns. 

Therefore, it will reduce the loss due to market factors when the market return is below a 

certain negative level. If  a fund manager increases the market portfolio’s exposure prior 

to the market rise and decreases the market portfolio’s exposure prior to the market fall, 

then ( ) ( )1
,

2
, MKTpMKTp ββ − , ( ) ( )2

,
3
, MKTpMKTp ββ − , and ( ) ( )1

,
3
, MKTpMKTp ββ −  will be significantly larger 
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than zero. In addition, we can view ( ) ( )1
,

2
, MKTpMKTp ββ −  and ( ) ( )2

,
3
, MKTpMKTp ββ −  as indices of  

managers’ timing ability to downside and upside markets, respectively. Furthermore, we 

can use pα  to measure the fund managerial overall stock selection ability, where 

( )
{ }

( )
{ }

( )
{ }, ,1 ,1 , ,2 , ,2

1 2 3

1 1 1

1 1 1 1
MKT t p p MKT t p MKT t p

T T T

p p p pR r r R r R r
t t tT

α α α α
< ≤ < ≥

= = =

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
∑ ∑ ∑          (2.4) 

is the weighted average of  abnormal performance in the three different market 

conditions. If  pα  is significantly larger than zero, we say that the mutual fund manager, 

on average, has a superior selectivity performance. 

Because there may be public information that is correlated with future market 

returns, managers who use just public information to time market should get no credit 

for superior ability. Therefore, in order to eliminate this naïve market timing ability and 

allow time-varying returns and risk, we postulate that beta is a linear function of  a vector 

1−tZ  of  predetermined variables of  information, as in Ferson and Schadt (1996). 

Therefore, the conditional three-regime threshold model based on four factor variables 

can be expressed as follows: 

( ) ( )( )( ) { }
( ) ( )( )( ) { }
( ) ( )( )( ) { }

,0 , ,1

,1 , ,2

,2 , ,3

1 1
, , 1 ,

2 2
, 1 ,

3 3
, 1 ,

, , , , , ,

      

      

      

α β

α β

α β

β β β ε

− −∞= ≤ <

− ≤ <

− ≤ < =∞

′= + + Δ ⋅

′+ + + Δ ⋅

′+ + + Δ ⋅

+ + + +

p MKT t p

p MKT t p

p MKT t p

p t p p MKT p t MKT t r R r

p p MKT p t MKT t r R r

p p MKT p t MKT t r R r

p SMB SMB t p HML HML t p UMD UMD t

R z R I

z R I

z R I

R R R , ,    p t

         (2.5) 

where ( )1 1− −= −t tz Z E Z represents the vector of  deviations of  1−tZ from the average 

vector, Δ p measures the response of  the conditional beta to the information variables, 

and other notations are the same as equations (2.1) to (2.3). The criteria for measuring 

the fund’s performance are also identical to those described in the unconditional model. 

In the threshold class of  models, classical estimation of  parameters is usually done 

by the maximum likelihood or the least squares methods with a joint grid search over the 
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threshold values ,1pr and ,2pr using information criteria such as AIC or BIC. (see, e.g., 

Tong (1990), Rabemananjara and Zakoian (1993), Li and Li (1996), Tsay (1998)) However, 

the inadequacy of  these approaches is to fix the threshold parameters ( ,1 ,2,p pr r ) in 

advance before estimating the other parameters by least squares. Therefore, the 

uncertainty of  the threshold parameters cannot be taken into account when 

implementing statistical inference for the other parameters. To moderate the problems 

resulting from predetermining the threshold parameters, we adopt a Bayesian approach, 

which allows us to estimate the threshold parameters as well as the other parameters 

simultaneously. In addition to the above inference advantage, a Bayesian method 

incorporates the investor’s prior belief about the validity of the pricing model and 

managerial technique with the information in the data, and thus it will result in more 

appropriate conclusions. Specifically, we can generate approximated samples from 

Markov chain Monte Carlo (MCMC) methods. In order to abridge the space, we only 

describe the Bayesian estimation procedures for conditional model, which is as follows. 

Given the above assumptions, based on the conditional three-regime threshold 

four-factor model, it follows that the conditional likelihood function for the parameters 

( ) ( ) ( )( )1 2 3, , , ,p p p p pΘ Θ Θ Φ ϒ  is  
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where  

( ) ( ) ( ) ( ) ( ) ( )( ), ,0 ,1 ,1, , , ,α βΘ =j j j j j j
p p p MKT p p pa a b , ( ), , ,, ,p SMB p HML p UMDβ β βΦ = , 

( ), , ,, ,=t SMB t HML t UMD tf R R R , ( ),1 ,2,p p pr rϒ = , 1=jtI  indicates that , 1 , ,p j MKT t p jr R r− ≤ <  
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and 0=jtI  otherwise, and ,p th is the conditional variance of  the model. Bayesian 

estimation requires us to specify the prior distributions for all unknown parameters. We 

adopt independent normal prior and uniform prior on the regression and GARCH 

parameters ( ) ( ) ( )( )1 2 3, , , ,Θ Θ Θ Φ Δp p p p p . That is, 
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where ( )2,N μ σ  is a normal distribution with prior mean μ  and prior variance 2σ , 

and ( )⋅I  is the indicator function with ( ) 1=SI  if  the event S is true, otherwise 

( ) 0=SI . Throughout the essay, we set prior mean ( ) ( ) ( )1 2 3 ,0pp p p
αα α α

μ μ μ μ= = = , where 

,0pαμ equals to -1 multiplied by the fund’s annual expense ratio divided by the number of  

trading date per year. Intuitively, this implies that we believe in advance that the fund 

manager does not possess superior skill of selecting stocks and that investing in mutual 

funds will underperform the benchmark assets by the charged management expense.  In 

addition, the priors of  factor parameters are set by ( ) ( ) ( )1 2 3
, , ,

1
p MKT p MKT p MKTβ β β

μ μ μ= = =  and 

, , ,
0

p SMB p HML p UMDβ β βμ μ μ= = = , which imply that systematic risks of  fund and market are 

identical in any market conditions1 and these three factors do not capture the behavior 

                                                 
1 This can also be interpreted as that the fund manager does not have superior stock selection ability 

and expert market timing skill. 
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of  expected mutual fund return, respectively. The prior mean of  lagged public 

information are set by
,

0δμ =
p k

, for all k, which means that a portfolio manager does not 

use public information to predict the future market return. Leaving out overly subjective 

belief, we let prior variances of  all regression coefficients equal to one. Furthermore, if  

the fund managers have ability to predict the market condition, they will adjust their 

portfolio positions on risky assets in different market conditions. That is to say, good 

fund managers should have prior beliefs about when to reallocate their positions on risky 

assets in the portfolio. In general, they have higher probability of  adjusting their market 

exposure when the market condition attains certain level (i.e. , ,1 0 MKT t pR c< < or 

, ,2 0MKT t pR c> > ). By contrast, they will have less motivation to change their highly risky 

assets ratio of  the portfolio when the market condition will become a little better or a 

little worse ( , ,1MKT t pR c′< or , ,2MKT t pR c′>  where ,1 ,1 0p pc c′< < and ,2 ,2 0p pc c′> > ). In 

addition, they have a lower probability of  adjusting the highly risky asset ratio when the 

market condition will be much better or much worse ( , ,1  MKT t pR c′′< or 

, ,2MKT t pR c′′> where ,1 ,1 ,1 0p p pc c c′′ ′< < <  and ,2 ,2 ,2 0p p pc c c′′ ′> > > ). Therefore, we adopt 

a truncated normal prior on the threshold parameters ,1pr  and ,2pr , which can be 

written as 

( ) ( ) ( )
( ) [ ]( ) ( ) [ ]( ),1 ,1 ,2 ,2

,1 ,2

2 2
,1 ,2, 10 , 90, 0 , 0  ,μ σ μ σ

Π ϒ = Π ×Π

⎡ ⎤ ⎡ ⎤∝ ⋅ < < × ⋅ < <⎣ ⎦ ⎣ ⎦p p p p

p p p

r r p r r pMKT MKT

r r

N I R r N I r R
 (2.8) 

where
,1prμ and

,2prμ are the prior means of  ,1pr  and ,2pr , 
,1

2
prσ and

,2

2
prσ are the prior 

variances of  ,1pr  and ,2pr , and [ ]kmR ,  stands for the kth percentile of  the market excess 

returns ( )TMKTMKTMKT RRR ,2,1, ,,, …=MKTR . The amounts of  
,1

2
prσ and

,2

2
prσ  describe 
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uncertainty of  the managerial prior beliefs in selection of  a switching point to adjust the 

market risk exposure. If  
,1

2
prσ and

,2

2
prσ are large, it says that the manager has a more 

skeptical prior belief  in selecting switching point to adjust fund’s systematic risks. In 

contrast, the fund’s manager has a more determined prior beliefs for small 
,1

2
prσ and

,2

2
prσ . 

To avoid excessively subjective prior belief, we use weakly informative prior and assume 

the prior means [ ]25,1 MKTr R=μ and [ ]75,2 MKTr R=μ , and prior standard 

deviations 8
21

τσσ == rr , whereτ is the range of  the market excess returns. The 

posterior density for the parameters is proportional to the product of  the prior density 

and the conditional likelihood function. Given the conditional likelihood function in 

equation (2.6) and the prior densities in equations (2.7) and (2.8), the conditional joint 

posterior density can be written as  

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1 2 3

1 2 3

1 2 3

, , , , , , , , , ,

, , , , , , , , , ,

   , , , ,

p p p p p p p MKT SMB HML UMD

p MKT SMB HML UMD p p p p p p

p p p p p p

p

L

Θ Θ Θ Φ Δ ϒ

∝ Θ Θ Θ Φ Δ ϒ

×Π Θ Θ Θ Φ Δ ×Π ϒ

R R R R R Z

R R R R R Z        (2.9) 

Since this distribution does not have a standard form, we can compute moments of  

the joint posterior using the Metropolis-Hastings (MH) algorithm, which is a MCMC 

procedure introduced by Metropolis et al. (1953) and extended by Hastings (1970). The 

estimation procedures of  the Bayesian analysis are concisely outlined as follows. Sample 

iteratively from ( ), , , , ,p MKT SMB HML UMDp Θ R R R R R Z  to generate a posterior 

sample NΘΘΘ 21 ,,, … , where N is set to 10,000. Next, constructΘ̂ , the point estimate 

of Θ , as the sample mean of  the posterior sample, which is written 

as ∑
+=−

=
N

MMN 1

1ˆ
A

AΘΘ , where 000,5=M  is the number of  burn-in iterations to attain 

convergence. The detailed descriptions of  above procedures are shown in Appendix. The 
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unconditional or two-regime threshold models are also similar to above procedures. 

 

3. DATA AND PERFORMANCE EVALUATION RESULTS 

3.1. Data 

Our primary mutual fund data is drawn from the Center for Research in Security 

Prices (CRSP) Survivor-Bias Free Mutual Fund Database. The database includes 

information collected from several sources and is designed to be a comprehensive sample 

of  all funds from January 1962. Because the performance of  disappearing funds is 

typically worse than that of  surviving funds, inferring conclusions only on the selected 

sample of funds extant at the end of the time period will induce survivorship bias. 

Grinblatt and Titman (1989), Brown, Goetzman, Ibbotson, and Ross (1992), Brown and 

Goetzman (1995), and Malkiel (1995) concluded that the average return of  surviving 

funds is 50 to 140 basis points per annum higher than returns on all funds. Following 

many prior studies and dropping out survivorship bias problems, we restrict our analysis 

to the subset of  domestic diversified equity funds with a “common stock” investment 

policy and total net assets more than $500 million, as well as available daily net asset 

values (NAVs) and dividends (Ds). Therefore, by eliminating some redundant 

observations, our mutual fund sample consists of  622 open and domestic equity funds. 

These funds are classified as aggressive growth (141 funds), growth and income (202 

funds), and long-term growth (279 funds) according to the fund objective of  Investment 

Company Data, Inc. (ICDI). In our sample, there are thirteen funds which are not 

surviving on September 30, 2004. It is noted that the above objective code is based on 

the criterion specified by Standard & Poor’s Fund Services in 1993. We take daily net 

asset values per share and dividends from CRSP Survivor-Bias Free US Mutual Fund 

Database. We then construct a daily return series for each fund from January 3, 2001 to 

September 30, 2004, by combining NAVs and Ds. We define return as 
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1
1,

,,
, −

+
=

−tp

tptp
tp NAV

DNAV
r ,                           (2.10) 

where tpNAV ,  and tpD , are the net asset value and the dividend of  fund p at the end of  

date t, respectively. Because returns are calculated using net asset values, this measure of  

return is net of  operating expenses. 

    We use the Standard and Poors 500 (S&P 500) market return proxies for the market 

portfolio. In addition, to compute daily excess returns on the funds and on the market 

return, we use the one-month T-Bill rate from Federal Reserve Bank of  St. Louis’ 

website to estimate the return on the riskless asset. We also capture the daily SMB, HML, 

and MOM factor data from Ken French’s website.  

To represent the public information for our empirical analyses, we choose the same 

variables used by Ferson and Warther (1996), which have been shown to be useful in 

predicting stock returns. The variables are (1) the lagged level of  the one-month T-Bill 

yield, (2) the lagged dividend yield for the CRSP value-weighted NYSE and AMEX stock 

index, (3) the lagged slope of  the U.S. Government term structure, measured as the 

difference between constant-maturity ten-year Treasury bond and three-month Treasury 

bill yields, (4) the lagged corporate bond quality spread, measure as the difference 

between Moody’s BAA-rated and AAA-rated corporate bond yields, and (5) a dummy 

variable for month of  January. The data of  conditional information are from the data 

library of  the Federal Reserve Bank of  St. Louis. 

3.2. Performance estimation results for an individual fund 

We first compute the moments of  the posterior distribution of  the parameters for 

the model and the performance measure for a specific fund, which is randomly drawn 

from the investment objective category of  aggressive growth funds. The main reason for 

this choice is that the fund whose investment objective is classified as aggressive growth 
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can invest in more risky and flexible assets such as borrowing more than 10% of  the 

value of  its portfolio, short selling, investing in unregistered securities, and purchasing 

options. Therefore, the systematic risks in different market conditions for aggressive 

growth funds may have more significant differences. The total net assets of  this fund at 

the end of  3rd quarter 2004 are $1,653.7 million. Annual turnover ratio, total load fees 

ratio, and expense ratio are 78 percent, 5.5 percent, and 1.3 percent, respectively.  

As interpreted in the previous section, given the form of  the conditional likelihood 

and the assumed prior independence among the regression parameters, the GARCH 

parameters, and the threshold parameters, the regression and GARCH parameters in 

each regime conditional on the threshold parameters depend only on the data and the 

prior distribution in its regime. For the specific aggressive growth fund, the 

Metropolis-Hastings algorithm is implemented to compute the posterior means and 

standard deviations of  all parameters, as described in Appendix. We report the posterior 

means and standard deviations of  the parameters based on the unconditional 

two-regime 2  and three-regime threshold models and some performance measure 

parameters in Panel A and B of  Table 2.1, respectively. 

 
 

 

 

 

 

 

 
 
 
 
 
                                                 
2 This model can be viewed as an extension of Merton-Henriksson (1981) model. Here, we also allow 

that funds’ abnormal returns are different between up and down markets and assume abnormal return 
with a time-varying heteroskedasticity property. 
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TABLE 2.1 － Bayesian Estimation Results for a Specific Aggressive Growth 
Fund from Unconditional Two- and Three-Regime Threshold Four-Factor Models 

Panel A. Unconditional two-regime threshold four-factor model 
 Regime I Regime II  

Parameter 
 , 0MKT tR⎡ ⎤<⎣ ⎦

 
, 0MKT tR⎡ ⎤≥⎣ ⎦

  

( ) ( )%j
pα   -0.0537 (0.0292)* -0.0806 (0.0263)***   
( )

,
j

p MKTβ   1.0216 (0.0283)*** 1.1258 (0.0272)***   
( )

,0
j

pa   0.0088 (0.0047)* 0.0042 (0.0032)   
( )

,1
j

pa   0.1229 (0.0284)*** 0.0572 (0.0278)**   
( )

,1
j

pb   0.8535 (0.0389)*** 0.8969 (0.0374)***   

Parameter  Regime II- Regime I   

( )%pα   -0.0269 (0.0397)     
( )

,
j

p MKTβ   0.1042 (0.0366)***     

Parameter        

,p SMBβ   0.3768 (0.0244)***     

,p HMLβ   -0.1629 (0.0346)***     

,p UMDβ   0.0348 (0.0193)*     

( )%pα   -0.0676 (0.0194)***     

Panel B. Unconditional three-regime threshold four-factor model 
 Regime I Regime II Regime III 

Parameter 
 , 1MKT tR r⎡ ⎤<⎣ ⎦

 
1 , 2MKT tr R r⎡ ⎤≤ <⎣ ⎦

 
, 2MKT tR r⎡ ⎤≥⎣ ⎦

 

( ) ( )%j
pα   -0.0381 (0.1282) -0.0449 (0.0163)*** -0.1584 (0.0673)*** 
( )

,
j

p MKTβ   1.0435 (0.0708)*** 1.0519 (0.0360)*** 1.1688 (0.0439)*** 
( )

,0
j

pa   0.0886 (0.0381)*** 0.0062 (0.0053) 0.0288 (0.0157)** 
( )

,1
j

pa   0.2197 (0.0689)*** 0.041 (0.0251) 0.1444 (0.0668)** 
( )

,1
j

pb   0.5794 (0.1694)*** 0.8286 (0.0595)*** 0.7872 (0.0833)*** 

Parameter  Regime II- Regime I Regime III- Regime II Regime III- Regime I 

( )%pα   -0.0068 (0.1290) -0.1135 (0.0691) -0.1203 (0.1457) 
( )

,
j

p MKTβ   0.0083 (0.0800) 0.117 (0.0571)** 0.1253 (0.0797) 

Parameter        

,p SMBβ   0.3963 (0.0257)***     

,p HMLβ   -0.1776 (0.0358)***     

,p UMDβ   0.0435 (0.0200)**     

( ),1 %pr   -1.1203 (0.0748)***     

( ),2 %pr   0.6634 (0.1884)***     

( )%pα   -0.0719 (0.0281)***     
Panels A and B in the table shows the coefficient estimates for unconditional two- and three-regime threshold four-factor 
models, respectively, which are based on the daily market excess returns and the daily excess returns of a specific growth 
fund for sample period from January 3, 2001 to September 30, 2004 (940 days). The unconditional two-regime model 
with daily conditional volatility estimates from GARCH (1, 1), which we adopt here, is as follows. 
     ( ) ( )( ) { }

( ) ( )( ) { }

( ) ( ) ( ) ( )( ) { }
( ) ( ) ( )

, ,

,

1 1 2 2
, , , , , , , , , , , ,0 0

1 1 1 2 2 22 2
, 1 , , ,0 ,1 1 ,1 1 ,0 ,1 1 ,10

1 1 ,

where ~ 0,   and 1

MKT t MKT t

MKT t

p t p p MKT MKT t p p MKT MKT t p SMB SMB t p HML HML t p UMD UMD t p tR R

p t t p t p t p p t p t p p t p tR

R R R R R R

N h h a a b h a a b h

α β α β β β β ε

ε ε ε

< ≤

− − − − −<

= + ⋅ + + ⋅ + + + +

ℑ = + + ⋅ + + +( ) { },1 01 .
MKT tR≤⋅

 

The unconditional three-regime threshold four-factor model is specified as follows. 
( ) ( )( ) { }

( ) ( )( ) { }
( ) ( )( ) { }

( )
0 , 1 , 2 2 , 3

1 1 2 2 3 3
, , , , , ,

, , , , , , , , 1 ,

1 1 1

     ,    where ~ 0,   and 
MKT t MKT t MKT tp t p p MKT MKT t p p MKT MKT t p p MKT MKTtr R r r R r r R r

p SMB SMB t p HML HML t p UMD UMD t p t p t t p t

R R R R

R R R N h

α β α β α β

β β β ε ε

−∞= ≤ < ≤ < ≤ < =∞

−

= + ⋅ + + ⋅ + + ⋅

+ + + + ℑ

 

( ) ( ) ( )( ) { }
( ) ( ) ( )( ) { }

( ) ( ) ( )( ) { },0 , ,1 ,1 , ,2 ,2 , ,3

1 1 1 2 2 2 3 3 32 2 2
,0 ,1 1 ,1 1 ,0 ,1 1 ,1 1 ,0 ,1 1 ,1 11 1 1

p MKT t p p MKT t p p MKT t p
t p p t p t p p t p t p p t p tr R r r R r r R r

h a a b h a a b h a a b hε ε ε− − − − − −−∞= ≤ < ≤ < ≤ < =∞
= + + ⋅ + + + ⋅ + + + ⋅  

The numbers in parentheses are standard deviations. *,**, and *** indicate statistical significance at 10%, 5%, and 1% 
levels (two-tailed), respectively. 
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The results in Table 2.1 indicate that the systematic risk exposure increases when the 

stock market tends to rise regardless of  two- or three-regime threshold models. However, 

the selectivity performance of  fund manager decreases in the rising market, but the 

difference is not significant. We also find that the fund manager has a good market 

timing ability, which mainly results from the difference between neutral and upside 

markets ( 0.117 0.1253 93.4%≈ ). In addition, two-regime threshold model may 

underestimate the quantity of  changes in abnormal return and systematic risk exposure 

between downside and upside markets. The average abnormal returns are -0.0676 percent 

and -0.0719 percent a day (or about -16.9 percent and -17.9 percent a year) based on two- 

and three-regime threshold models, respectively. The intuition is that the manager has 

inferior ability to select undervalued securities and two-regime threshold model may 

overestimate fund manager’s selectivity. 

The GARCH parameters are almost significantly larger than zero in Panels A and B. 

This indicates that the abnormal return exhibits the volatility clustering phenomenon. 

That is to say, large changes in prices tend to cluster together and result in persistence of  

the amplitudes of  price changes. In addition, the daily unconditional volatilities of  

abnormal returns in different regimes are 0.611 percent and 0.305 percent3 (or about 

9.66 percent and 4.82 percent a year) in the two-regime threshold model, and 0.664 

percent, 0.218 percent, and 0.422 percent (or about 10.499 percent, 3.451 percent, and 

6.672 percent a year) in the three-regime threshold model, respectively. This 

demonstrates that volatilities of  stock selection performance in downside and upside 

markets are larger than that in the neutral market. Furthermore, the results show that the 

volatility of  stock selection performance in the downside market is larger than that in the 

upside market. The reason for this phenomenon may be that investors usually have larger 

                                                 
3 The daily unconditional volatility for the fund p in the jth regime is equal to ( ) ( ) ( )( ),0 ,1 ,11− −j j j

p p pa a b . 
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impulse responses when receiving bad news than good news. 

The estimation results for threshold parameters reported in Panel B of  Table 2.1 are 

-1.1203 percent and 0.6634 percent, and their standard deviations are 0.0748 percent and 

0.1884 percent, respectively. This indicates, on average, that the manager will adjust his 

investment strategy when he predicts the market excess return is larger than 0.6634 

percent and lower than -1.1203 percent. In addition, the asymmetric switching points 

may be explained as “languid” and “alert” anticipations in downside and upside markets, 

respectively. The manager’s belief  in choosing the switching point to the upside market is 

more diffuse than that to the downside market. 

Furthermore, we take the public information into consideration to evaluate the 

specific fund’s performance and show the results in Table 2.2. The differences between 

conditional two- and three-regime threshold models are similar to those between 

unconditional two- and three-regime threshold models. In Table 2.2, we find that only 

the variable dividend yield is statistically significant for this specific fund. The coefficient 

of  this variable is negative, which would be expected since a lower level of  dividend yield 

predicts higher market returns.  
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TABLE 2.2 － Bayesian Estimation Results for a Specific Aggressive Growth 
Fund from Conditional Two- and Three-Regime Threshold Four-Factor Models 

Panel A. Conditional two-regime threshold four-factor model 

 Regime I Regime II  
Parameter 

 , 0MKT tR⎡ ⎤<⎣ ⎦
 

, 0MKT tR⎡ ⎤≥⎣ ⎦
  

( ) ( )%j
pα   -0.0686 (0.0273)** -0.0728 (0.0265)***   
( )

,
j

p MKTβ   1.0293 (0.0271)*** 1.1488 (0.0275)***   
( )

,0
j

pa   0.008 (0.0041)** 0.0042 (0.0030)   
( )

,1
j

pa   0.1382 (0.0312)*** 0.0432 (0.0257)*   
( )

,1
j

pb   0.8392 (0.0394)*** 0.911 (0.0334)***   

Parameter  Regime II- Regime I   
( ) ( )%j
pα   -0.0042 (0.0383)     
( )

,
j

p MKTβ   0.1195 (0.0355)***     

Parameter     Parameter   

,p SMBβ   0.3823 (0.0258)***  ,1pδ  -0.0286 (0.0451) 

,p HMLβ   -0.1224 (0.0371)***  ,2pδ  -0.3990 (0.1331)*** 

,p UMDβ   0.0671 (0.0212)***  ,3pδ  0.0056 (0.0342) 

( )%pα   -0.0708 (0.0188)***  ,4pδ  -0.0996 (0.0720) 

     ,5pδ  0.0367 (0.0391) 

Panel B. Conditional three-regime threshold four-factor model 

 Regime I Regime II Regime III 
Parameter 

 , 1MKT tR r⎡ ⎤<⎣ ⎦
 

1 , 2MKT tr R r⎡ ⎤≤ <⎣ ⎦
 

, 2MKT tR r⎡ ⎤≥⎣ ⎦
 

( ) ( )%j
pα   -0.1473 (0.1296) -0.0467 (0.0167)*** -0.1141 (0.0673)* 
( )

,
j

p MKTβ   0.9940 (0.0723)*** 1.0805 (0.0351)*** 1.1672 (0.0447)*** 
( )

,0
j

pa   0.0708 (0.0313)** 0.0056 (0.0041) 0.0200 (0.0136) 
( )

,1
j

pa   0.2050 (0.0684)*** 0.0470 (0.0244)* 0.1175 (0.0645)* 
( )

,1
j

pb   0.6657 (0.1337)*** 0.8417 (0.0550)*** 0.8182 (0.0791)*** 

Parameter  Regime II- Regime I Regime III- Regime II Regime III- Regime I 
( ) ( )%j
pα   0.1006 (0.1302) -0.0674 (0.0698) 0.0332 (0.1540) 
( )

,
j

p MKTβ   0.0866 (0.0808) 0.0867 (0.0574) 0.1732 (0.0783)** 

Parameter     Parameter   

,p SMBβ   0.3923 (0.0263)***  ,1pδ  -0.0095 (0.0502) 

,p HMLβ   -0.1372 (0.0382)***  ,2pδ  -0.3095 (0.1442)** 

,p UMDβ   0.0702 (0.0222)***  ,3pδ  0.0098 (0.0384) 

( ),1 %pr   -1.1196 (0.0771)***  ,4pδ  -0.0773 (0.0767) 

( ),2 %pr   0.6581 (0.2127)***  ,5pδ  0.0464 (0.0434) 

( )%pα   -0.0810 (0.0271)***     
The table shows the results of Bayesian estimation for conditional two- and three- regime threshold four-factor models in 
Panels A and B, respectively, which are based on the daily market excess returns and the daily excess returns of a specific 
growth fund for sample period from January 3, 2001 to September 30, 2004 (940 days). The conditional two-regime 
model with daily conditional volatility estimates from GARCH (1, 1), which we adopt here, is as follows. 

( ) ( )
{ }

( ) ( )
{ }, ,

5 5
1 1 2 2

, , , , 1 , , , , 1 , , , , ,0 0
1 1

, , ,

1 1

      .

MKT t MKT tp t p p MKT p i i t MKT t p p MKT p i i t MKT t p SMB SMB t p HML HML tR R
i i

p UMD UMD t p t

R z R z R R R

R

α β δ α β δ β β

β ε

− −< ≤
= =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + ⋅ + + + ⋅ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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∑ ∑  

The conditional three-regime threshold four-factor model is specified as follows. 

( ) ( )
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( ) ( )
{ }

( ) ( )
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0 , 1 , 2

2 , 3

5 5
1 1 2 2

, , , , 1 , , , , 1 ,
1 1

5
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1

1 1

      1
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MKT t
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R z R z R

z R

α β δ α β δ

α β δ β

− −−∞= ≤ < ≤ <
= =

− ≤ < =∞
=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + ⋅ + + + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞

+ + + ⋅ +⎜ ⎟⎜ ⎟
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The numbers in parentheses are standard deviations. *,**, and *** indicate statistical significance at 10%, 5%, and 1% 
levels (two-tailed), respectively. 
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We also compare the dissimilarities between unconditional and conditional models. 

In two-regime threshold models, the momentum effect in the conditional model 

becomes more significant, and the unconditional model will overestimate fund’s 

abnormal return. We find more significant inconsistency on evaluating selectivity and 

market timing skills in three-regime threshold models. First, the abnormal return in the 

unconditional model will be overestimated in the downside market and underestimated 

in the upside market. Second, the market exposure will be overestimated and 

underestimated in downside and neutral markets, respectively, without taking 

predetermined information into account. In the conditional model, the market timing 

performance will averagely involve the skills to forecast downside and upside markets, 

instead of the pure aptitude for forecasting the upside market. Third, we find that the 

quantity of market timing measurement will be underestimated and the average abnormal 

return will be overevaluated compared to the conditional model. 

3.3. Performance estimation results for all funds 

Table 2.3 presents the average coefficient estimates for unconditional and 

conditional two- and three-regime threshold four-factor models of  the 622 mutual funds 

with a sample period of  January 3, 2001 to September 30, 2004. In Panel A, we find that 

the market exposure decrease, moving down the table from the AG funds to the GI 

funds, no matter in up or down markets based on the unconditional two-regime model. 

However, when we divide market conditions into three regimes, Panel B of  Table 2.3 

shows that the market exposure increase from the AG funds to GI funds in the 

downside market and demonstrates that the two-regime threshold model will 

overestimate or underestimate the market exposure in the downside market. In addition, 

for the AG and LG funds, we find that their market exposure increases from downside 

to neutral markets, while it decreases from neutral to upside markets. The result is 

opposite to the GI funds. Moreover, the GI funds have lowest down-threshold and 
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highest up-threshold. This indicates that the managers of GI funds have more laggard 

sensibility to predict downside and upside markets. 
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TABLE 2.3 － Bayesian Estimation Results for All Funds from Unconditional and Conditional Two- and Three-Regime Threshold 
Four-Factor Models 

Panel A. Unconditional two-regime threshold four-factor model 

Fund Types ( ) ( )1 %pα  ( )1
,p MKTβ  ( ) ( )2 %pα  ( )2

,p MKTβ  
,p SMBβ  

,p HMLβ  
,p UMDβ      

AG -0.05489 1.00695 -0.01597 1.03696 0.49184 -0.02554 -0.01910

LG -0.04413 0.99968 -0.01014 1.02284 0.04403 -0.07130 -0.00974

GI -0.00305 0.97831 -0.01031 0.98447 -0.12064 0.08191 0.04707

Overall -0.03323 0.99439 -0.01152 1.01358 0.09207 -0.01117 0.00659

Panel B. Unconditional three-regime threshold four-factor model 

Fund Types ( ) ( )1 %pα  ( )1
,p MKTβ  ( ) ( )2 %pα  ( )2

,p MKTβ  ( ) ( )3 %pα  ( )3
,p MKTβ  

,p SMBβ  
,p HMLβ  

,p UMDβ  ( )1 %r  ( )2 %r  

AG -0.16234 0.95403 -0.02518 1.04212 0.01335 1.02741 0.49702 -0.01188 -0.02418 -0.88907 0.85977

LG -0.08505 0.97696 -0.01968 1.03212 0.01166 1.01289 0.04208 -0.07100 -0.01133 -0.82026 0.86728

GI 0.01311 0.98499 -0.00887 0.96885 0.01258 0.97094 -0.12027 0.07269 0.04623 -0.91900 0.87863

Overall -0.07069 0.97437 -0.01741 1.01384 0.01234 1.00256 0.09248 -0.01093 0.00445 -0.86792 0.86927

Panel C. Conditional two-regime threshold four-factor model 

Fund Types ( ) ( )1 %pα  ( )1
,p MKTβ  ( ) ( )2 %pα  ( )2

,p MKTβ  
,p SMBβ  

,p HMLβ  
,p UMDβ      

AG -0.05082 1.01934 -0.02763 1.06075 0.48465 -0.00302 -0.01905

LG -0.03238 1.01508 -0.02028 1.03808 0.03358 -0.08140 -0.01763

GI 0.00327 0.97240 -0.00398 0.96336 -0.11983 0.04020 0.04029

Overall -0.02498 1.00219 -0.01665 1.01896 0.08601 -0.02414 0.00086

Panel D. Conditional three-regime threshold four-factor model 

Fund Types ( ) ( )1 %pα  ( )1
,p MKTβ  ( ) ( )2 %pα  ( )2

,p MKTβ  ( ) ( )3 %pα  ( )3
,p MKTβ  

,p SMBβ  
,p HMLβ  

,p UMDβ  ( )1 %r  ( )2 %r  

AG -0.16189 0.96118 -0.02483 1.03888 -0.01147 1.05371 0.49312 0.00471 -0.02105 -0.87826 0.80234

LG -0.04867 1.00494 -0.01860 1.02780 -0.02103 1.03865 0.03549 -0.07918 -0.01719 -0.76992 0.75371

GI 0.04233 0.99274 -0.00819 0.95922 0.01085 0.95625 -0.12003 0.03986 0.03994 -0.82127 0.75383

Overall -0.04478 0.99106 -0.01663 1.00804 -0.00851 1.01530 0.08873 -0.02150 0.00049 -0.81116 0.76477
Listed are average coefficient estimates for unconditional and conditional two- and three-regime threshold four-factor models, which are based on the daily market excess returns and the daily excess 
returns of the 622 mutual funds with sample period from January 3, 2001 to September 30, 2004. The models, which we apply in Panels A and C are the same as those that we mention in the Table 2.1. 
Moreover, the models which we adopt in Panels C and D are specified in the Table 2.2. 
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Comparing unconditional with conditional two-regime threshold models, we find 

controversial results. In Panel A, we find the GI funds with slight market timing ability. 

But separating the performance from public information, there is no expert market 

timing skill any more for the GI funds, which is shown in Panel C of Table 2.3. In Panel 

D, the market exposures become monotonically increasing or decreasing followed by 

market conditions compared with Panel B. The amounts of change in market exposures 

are more significant than those in the unconditional model. Comparing Panel A with 

Panel C, we find that the unconditional model results in the descending and ascending 

biases in the abnormal return by 2.061 percent and 1.283 percent a year in down and up 

markets. However, the phenomenon is more obvious for the three-regime threshold 

model. The unconditional model will bias the abnormal return downward by 6.478 

percent and upward by 5.213 percent a year in downside and upside markets, respectively. 

Furthermore, on average, down-threshold and up-threshold get higher and lower, 

respectively. Therefore, the unconditional model may underestimate or overestimate 

fund manager’s anticipations in choosing switching points to downside and upside 

markets.  

Table 2.4 lists the count of funds that have positive and negative changes in 

abnormal return and risk exposure coefficients and the number of funds that have 

significantly positive and negative shifts in abnormal return and risk exposure coefficients. 

We compare the discrepancy between unconditional and conditional models. In Panels A 

and C, even if the fraction of managers who have positive or negative changes in 

selectivity are similar, the change in selectivity between down and up markets gets less 

significant in the conditional model. The unconditional model biases the timing 

coefficients upward especially for the GI funds. For the three-regime threshold model, 

we find that the differences between unconditional and conditional models are similar to 

those for two-regime threshold model but the differences are more apparent. For 
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example, the unconditional model overestimates seriously the timing ability to forecast 

downside market and underestimates less the timing ability to predict upside market. In 

addition, although the fractions of managers who have significantly positive or negative 

timing coefficients, ( ) ( )2 1
, ,p MKT p MKTβ β− and ( ) ( )3 2

, ,p MKT p MKTβ β− , are low, the portion of funds 

whose timing coefficient between downside and neutral markets is significantly high. The 

conclusion is contrastive to the unconditional three-regime models whose timing 

coefficients, between downside and neutral markets and between neutral and upside 

markets, are more significant, but timing coefficient between downside and upside 

markets is less significant.  
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TABLE 2.4 － Unconditional and Conditional Measures of  Selectivity and Timing 
Based on Two- and Three-Regime Threshold Four-Factor Models 

Panel A. Unconditional two-regime threshold four-factor model 

 ( ) ( )2 1
p pα α−  ( ) ( )2 1

, ,p MKT p MKTβ β−    Fund Types Sizes
 — ＋ — ＋   

AG 141  48(17) 93(43) 35(3) 106(38)   

LG 279  92(26) 187(99) 71(6) 208(66)   

GI 202  91(33) 111(36) 56(12) 146(30)   

Overall 622  231(76) 391(178) 162(21) 460(134)   

Panel B. Unconditional three-regime threshold four-factor model 

 ( ) ( )2 1
p pα α−  ( ) ( )3 2

p pα α−  ( ) ( )3 1
p pα α−  

Fund Types Sizes
 — ＋ — ＋ — ＋ 

AG 141  34(13) 107(63) 55(11) 86(19) 35(19) 106(58) 

LG 279  96(28) 183(88) 106(23) 173(55) 90(34) 189(89) 

GI 202  101(41) 101(21) 56(11) 146(36) 83(32) 119(40) 

Overall 622  231(82) 391(172) 217(45) 405(110) 208(85) 414(187)

 ( ) ( )2 1
, ,p MKT p MKTβ β−  ( ) ( )3 2

, ,p MKT p MKTβ β−  ( ) ( )3 1
, ,p MKT p MKTβ β−  

Fund Types Sizes
 — ＋ — ＋ — ＋ 

AG 141  45(13) 96(55) 71(20) 70(25) 28(4) 113(43) 

LG 279  94(24) 185(96) 162(60) 117(29) 101(14) 178(55) 

GI 202  92(33) 110(30) 121(49) 81(23) 112(27) 90(9) 

Overall 622  231(70) 391(181) 354(129) 268(77) 241(45) 381(107)

Panel C. Conditional two-regime threshold four-factor model 

 ( ) ( )2 1
p pα α−  ( ) ( )2 1

, ,p MKT p MKTβ β−    Fund Types Sizes
 — ＋ — ＋   

AG 141  49(4) 92(14) 28(4) 113(44)   

LG 279  114(24) 165(28) 91(19) 188(58)   

GI 202  100(17) 102(7) 142(30) 60(6)   

Overall 622  263(45) 359(49) 261(53) 361(108)   

Panel D. Conditional three-regime threshold four-factor model 

 ( ) ( )2 1
p pα α−  ( ) ( )3 2

p pα α−  ( ) ( )3 1
p pα α−  

Fund Types Sizes
 — ＋ — ＋ — ＋ 

AG 141  36(11) 105(62) 64(8) 77(6) 31(18) 110(51) 

LG 279  122(44) 157(66) 142(32) 137(26) 125(46) 154(54) 

GI 202  170(69) 32(5) 56(8) 146(31) 139(29) 63(11) 

Overall 622  328(124) 294(133) 262(48) 360(63) 295(93) 327(116)

      

 ( ) ( )2 1
, ,p MKT p MKTβ β−  ( ) ( )3 2

, ,p MKT p MKTβ β−  ( ) ( )3 1
, ,p MKT p MKTβ β−  

Fund Types Sizes
 — ＋ — ＋ — ＋ 

AG 141  41(11) 100(43) 57(4) 84(12) 32(5) 109(52) 

LG 279  124(32) 155(38) 131(11) 148(32) 106(28) 173(60) 

GI 202  157(35) 45(6) 135(14) 67(13) 162(85) 40(4) 

Overall 622  322(78) 300(87) 323(29) 299(57) 300(118) 322(116)
The table shows the numbers of funds which their changes in selectivity and systematic risk are negative and positive between 
different market conditions based on unconditional and conditional two- and three-regime threshold four-factor models. The 
number in parentheses represents the number of statistically significant parameter estimates at 5% level (two-tailed). The 
sample consists of 622 mutual funds and sample period is January 2, 2001, to September 30, 2004, a total of 940 trading days.
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Furthermore, we compare the conditional two- with three-regime threshold models. 

We find that the fraction of funds with significant changes in selectivity between 

different market conditions is higher, when the three-regime threshold is used instead of 

two-regime. In addition, the three-regime threshold model adds the fraction of funds 

with significant timing coefficient between downside and upside markets especially for 

the GI funds. In Table 2.5, we try to know that the manager’s timing ability is mainly 

generated from the skill to predict downside or upside markets. We find that most fund 

managers with significant timing coefficients will adjust slightly their market exposure to 

a certain direction. Therefore, there are less fraction of funds with significant timing 

coefficients, ( ) ( )2 1
, ,p MKT p MKTβ β− and ( ) ( )3 2

, ,p MKT p MKTβ β− . But, as long as we only examine the 

timing coefficient between downside and upside markets, this will result in a significant 

timing coefficient. In addition, we find that the significant timing coefficients most result 

from the changes in the market exposure between downside and neutral markets. 

 

TABLE 2.5 － Frequency Counts of  Significantly Positive and Negative Market 
Timing Coefficients Based on the Conditional Three-Regime Threshold Model 

  Significant at 5 percent level 

( ) ( ) ( ) ( ) ( ) ( )( )2 1 3 2 3 1, ,MKT MKT MKT MKT MKT MKTβ β β β β β− − − N ( ) ( )2 1
MKT MKTβ β− ( ) ( )3 2

MKT MKTβ β−  ( ) ( )3 1
MKT MKTβ β−  

( )+ + +, ,  117 30 7 75 

( )+ − +, ,  129 53 7 31 

( )− + +, ,  76 9 31 10 

( )− − −, ,  140 17 8 85 

( )− + −, ,  106 52 19 29 

( )+ − −, ,  54 4 14 4 

Divide total sample into six possible regions based on the manager’s market timing skills. The frequency counts of 
significantly positive and negative market timing coefficients based on the conditional three-regime threshold model 
are reported. The sample consists of 622 mutual funds with sample period from January 3, 2001 to September 30, 
2004. 

 

To examine the relationship between selectivity and timing skills, we compute 

pair-wise correlation coefficients of  seven parameter estimates which are used to evaluate 
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funds’ performance. The correlation coefficients for the full sample are presented in 

Table 2.6. For the selectivity correlations between any two different market conditions, 

we find that the selectivity in the downside market is positively correlated with that in the 

neutral market, but is slightly negatively correlated with that in the upside market. In 

addition, we find that the average selectivity mainly depend on the managers’ selectivity 

ability in the downside market, and latter are those in neutral and upside markets. The 

similar results happen in the market timing. Fund managers’ market timing coefficients 

between downside and upside markets are highly positively correlated with those between 

downside and neutral markets. The managers with superior timing ability to forecast the 

downside market will posses inferior timing ability to predict the upside market 

simultaneously.  

 
TABLE 2.6 － Correlation Coefficients for Selectivity and Timing Estimated 

Parameters Based on the Conditional Three-Regime Threshold Model 
 α  ( )1α  ( )2α  ( )3α  ( ) ( )2 1

MKT MKTβ β− ( ) ( )3 2
MKT MKTβ β−  ( ) ( )3 1

MKT MKTβ β−  

α  1.0000  0.8266*** 0.6407*** 0.3554*** -0.7660*** -0.2289*** -0.9315*** 

( )1α   1.0000  0.4196***  -0.1499*** -0.8880*** 0.1308***  -0.8088***  

( )2α    1.0000  0.1895*** -0.4663*** 0.0543  -0.4346***  

( )3α     1.0000  0.0895**  -0.7395***  -0.4155***  

( ) ( )2 1
MKT MKTβ β−      1.0000  -0.3551***  0.7686***  

( ) ( )3 2
MKT MKTβ β−       1.0000  0.3251***  

( ) ( )3 1
MKT MKTβ β−        1.0000  

Pairwise correlation coefficients of selectivity, market timing, and threshold estimated parameters for the full sample 
are reported. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels (two-tailed test), 
respectively 

 

For the relationship between managers’ selectivity and timing ability, the correlation 

between the average return and the timing coefficient in our sample is -0.9315. This 

means that managers with good selection ability tend to be poor market timers, which is 

consistent with the findings in Henriksson (1984), Chang and Lewellen (1984), and 

Glosten and Jagannathan (1994). And, this appearance is more obvious in the downside 

market than in the upside market. The reason may be that the manager purchase put 
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options to hedge the market exposures in the downside market and this will result in a 

naïvely superior timing ability. Clearly, this type of  timing is artificial and is irrelevant to 

manager ability. Meanwhile, the hedge cost is reflected in lower manager selectivity. 

However, the evidence in the upside market is not as powerful as that in the downside 

market. This indicates that although more managers use options to hedge market 

exposures in the downside market, fewer managers earn more market premiums by 

options in the upside market.  

 

4. BEHAVIOR OF MUTUAL FUND CLIENTS 

In this section, we conduct an empirical analysis of  the determinants of  mutual 

fund flows, focusing on the past performance and characteristics variables. We use annual 

total net asset values from Standard & Poor’s Micropal to calculate annual normalized net 

cash flow for each fund. We define normalized net cash flow for the fund p during year t 

as 

( )
1,

1,,
,

1

−

− +−
=

tp

pttptp
tp TNA

RTNATNA
NCF ,            (2.11) 

where TNAp,t is the fund’s total net asset value at the end of  year t, and Rp,t is the fund’s 

return during year t. 

 We use conditional three-regime threshold four-factor model to estimate managers’ 

selectivity, market timing ability, and thresholds as measurement of  funds’ previous one 

year performance. The fund characteristics which we adopt in this essay are total net 

assets (TNA) under management in millions of  dollars, turnover (TURN) defined as the 

minimum of aggregate purchases and sales of securities divided by the average TNA over 

the calendar year, total loads ratio (LOAD) which include all maximum front, deferred, 

and redemption charges as a percentage of  new investment, expense (EXPEN) which is 

the total annual management fees and expenses divided by year-end TNA, percentage 
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invested in cash equivalents (CASH), and the dummy variable for the fund’s status on 

September 30, 2004 (I(p∈LIVE)), where (I(p∈LIVE)) equals to one if  the fund p is still 

surviving on September 30, 2004, and equals to zero otherwise. 

 To control the impacts of  both investment objective and year of  observation, we 

estimate the following fixed effects panel regression. 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( )

3 5
1 2 3 2 1

, 0 6 , 7 , 8 , 9 , ,
1 4

3 2
10 , , 11 , 1 12 , 1 13 , 1

14 , 1 15 , 1 16 , 1 17

           ln

           

p t i t i p p t p t p t p t p t
i i

p t p t p t p t p t

p t p t p t

NCF YEAR INVOB

TNA TURN LOAD

EXP CASH NCF I p LIVE

θ θ θ θ α θ α θ α θ β β

θ β β θ θ θ

θ θ θ θ

= =

− − −

− − −

= + + + + + + −

+ − + + +

+ + + + ∈ +

∑ ∑

,  p tε

(2.12) 

where INVOBp and YEARt are dummy variables for investment objective and year of  

observation, respectively. The first five variables in Equation (2.12) comprise the fixed 

effect model and account for period-specific fund net cash flows attributable to the same 

period economy-wide and investment-style effects. In addition, to control for 

autocorrelation and heteroscedasticity in the panel regression, we allow depend variable 

to follow a common AR(1) process and for each fund it has its own variance. Then again, 

we allow for disturbances to be contemporaneously correlated across funds.  

 The results presented in Table 2.7 indicates that the net cash flow are significantly 

and positively associated with all past selectivity and timing performance measures at 1 

percent level except for the market timing ability between downside and neutral markets. 

The finding provides supporting evidence that the naïve downside market timing ability 

resulted from the operation of  options is not valuable to fund investors. The behavior of  

Investors mainly relies on past managers’ selectivity and upside market timing ability. In 

addition, there is a strong positive relationship between mutual fund flows and last-year 

threshold points of  downside and upside markets. The results demonstrate that investors 

prefer managers with alert insight to forecast the downside market but with languid 

perception to forecast the upside market. 
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TABLE 2.7 － Regression of  Net Cash Flow on Fund’s Past Performance and Characteristics Based on the Conditional Three-Regime Threshold 

Four-Factor Model 
 Explanation variables 

 Performance variables for lagged one year Characteristics variables for lagged one year Status 
Dependent 

variable 
 ( ) ( )1 %α ( ) ( )2 %α  ( ) ( )3 %α ( ) ( )2 1

MKT MKTβ β− ( ) ( )3 2
MKT MKTβ β− ( )1 %r  ( )2 %r  Ln(TNA) TURN(%) LOAD(%) EXPEN(%) CASH(%) NCF LIVE 

NCF  0.10911 0.55963 0.06686 0.05302 0.09394 0.06984 0.01832 0.00410 -0.01102 -0.00082 -4.71237 0.00056 0.44941 0.02558 

  (0.02206)*** (0.04276)*** (0.01891)*** (0.03545) (0.02549)*** (0.00634)*** (0.00828)** (0.00113)*** (0.00315)*** (0.00027)*** (0.87444)*** (0.00030)* (0.07071)*** (0.00807)*** 

This table reports the coefficients and standard errors from the fixed-effect panel data model of net cash flow on seven lagged performance measure indexes, six lagged fund’s characteristic variables, and one status 
variables. The seven lagged performance measure indexes are (α(1), α(2), α(3)), which are fund’s selectivity in three different market conditions last year , (β(2)- β(1), β(3)- β(2)), which mean manager’s skill to predict 

downside and upside markets last year, and threshold points, (r1, r2), in previous one year. The six lagged characteristics variables are total net assets (TNA), turnover (TURN), total load (LOAD), expense (EXPEN), 
percentage invested in cash equivalents (CASH), net cash flow of the fund (NCF) in previous one year. The status variables are the dummy variable for the fund’s status on September 30, 2004. The standard errors for 

the coefficients are below the coefficients in parentheses. The regression factors are [α(1), α(2), α(3),β(2)- β(1), β(3)- β(2), r1, r2,TNA, TURN, LOAD, EXPEN, CASH, NCF, , I(p∈LIVE)], where I(p∈LIVE) equal to one if 
fund p is surviving on September 30, 2004, and equal to zero otherwise. The estimation results for dummy variables for the investment objectives and year of observation are ignored here. The sample consists of 622 

mutual funds. The mutual fund sample period is from January 3, 2001 to September 30, 2004. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels (two-tailed test), respectively. 
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 For the impacts of  characteristics on mutual fund flows, we find that a positive 

relationship between fund flow and fund size. One possible explanation for this result is 

that large funds spend more on advertising and are likely to attract greater investor cash 

flows. This finding is consistent with Jain and Wu (1998) who show that flows are 

significantly larger for those equity funds that are advertised in the financial magazines. 

Turnover, load fee, and management expense are significantly and negatively associated 

with money flows. The reason might be that investors think that fine managers should 

not operate their portfolio too frequently. In addition, Carhart (1997) found that load 

funds and funds with higher expense ratios have worse performance than funds with 

lower fees. Again, because investors would like to maximize net-of-fee earnings, higher 

load fee and expense ratio will reduce investor’s desires. Finally, we find that the net cash 

flows are persistent and positively related to live funds, suggesting that clients as a whole 

invest in funds expected to survive. 

 

5. RELATIONSHIPS BETWEEN PERFORMANCES AND 

CHARACTERISTICS 

In this section, we investigate the relationships between fund managerial 

performance and several fund characteristics. In addition, we examine if  fund 

performance is persistent and if  mutual fund investors have good selection ability. The 

fund characteristics which we adopt in this section are the same as those in previous 

section. To investigate the relationships between performance and characteristics, we 

estimate the following fixed effects panel regression. 

( )

( )

3 5
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where PMIp,t is performance measure indices (ex, selectivity or market timing indices) 

during year t based on the conditional three-regime threshold model and the definitions 

of  other variables are the same to those in Equation (2.12). As before, the regression is 

estimated allowing autocorrelation with lag one period (AR(1)) of  dependent variable to 

checking whether there is persistent fund performance. The lagged variable, NCFp,t-1, is 

used to examine if  fund investors have good selection ability. We also allow for 

disturbances to be contemporaneously correlated and heteroscedasticity across funds.  

 Panel A of  Table 2.8 reports the coefficient estimates with selectivity as dependent 

variables. The negative and significant coefficient estimate of  total net asset in the upside 

market supports the hypothesis that fund size erodes performance because of  liquidity 

mentioned by Chen et al. (2004). However, owing to small funds with more illiquid 

stocks, we find strong evidence that small funds earn significantly lower abnormal 

returns than larger funds in the downside markets. Size impacts on selectivity are as a 

whole not significant, which is consistent with the findings of  Carhart (1997) and 

Grinblatt and Titman (1994). In addition, the coefficients on the turnover are 

significantly negative in downside and neutral markets but significantly positive in the 

upside markets. This indicates that turnover has positive impacts on performance 

provided that managers are acting on good information in the upside market. However, 

the abnormal returns generated by more frequent operations do not cover the greater 

transaction costs, such as brokerage fees and bid-ask spreads, in downside and neutral 

markets and it results in worse selectivity performance.  

We also find that selectivity of  load funds is significant and superior to that of  

no-load funds in downside and upside markets. Panel A further indicates that the 

expense ratio is apparently and negatively associated with managers’ selectivity in neutral 

and upside markets. The significantly negative estimate for expense ratio coefficient 

suggests that management expenditures are not effectively used to support research on 
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searching for undervalued stocks and managerial expertise. Hence, they do not help 

investors creating satisfactory selectivity performance, which at least can recover the 

charged expenses. Moreover, cash position is positively related to stock selection talents 

in any market conditions. One reason may be that if funds do not have enough cash on 

hand, the manager is forced to sell stocks to meet redemptions. This will produce more 

transaction costs and generate worse selectivity performance. 

In addition, we find that net cash flows are significantly and positively related to 

selectivity performance, consistent with the results in Gruber (1996), Chevalier and 

Ellison (1997), Della and Olson (1998), and Sirri and Tufano (1998). This suggests that 

managers can invest in undervalued stocks by new cash flows but need not to sell 

existing stocks, and leave out some transaction costs or capital losses. This effect is more 

apparent in downside and neutral markets. Again, the results indicate that fund selectivity 

performances are not persistent, and investors can not only predict future selectivity 

performance but have an adverse prediction, especially in downside and neutral markets. 

This suggests that mutual fund investors have bad selection ability. The coefficient for 

the status variable is positive in the neutral market but negative in the upside market, 

implying that dead-fund managers will adopt investment strategies with greater risk. 

Hence, they will earn more abnormal return in the upside market. 
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TABLE 2.8 － Relationships between Fund Performances and Characteristics Based on the Conditional Three-Regime Threshold Four-Factor 
Dependent variable  Explanation variables 

 Fund’s immediate characteristic variables Lagged variables Status 
PMI 

 Ln(TNA) TURN(%) LOAD(%) EXPEN(%) CASH(%) NCF PMI(-1) NCF(-1) LIVE

( )%α   0.00017  -0.00330  0.00047  -0.45584  0.00119  0.02927  0.19622  -0.02092  -0.00818  

 (0.00070) (0.00247) (0.00026)* (0.13718)*** (0.00030)*** (0.00467)*** (0.16821) (0.00709)*** (0.00533) 
( ) ( )1 %α   0.00257  -0.01498  0.00225  0.18837  0.00276  0.08382  -0.08731  -0.05308  -0.03429  

 (0.00087)*** (0.00735)** (0.00052)*** (0.46461) (0.00104)*** (0.01078)*** (0.16527) (0.01812)*** (0.01826)* 
( ) ( )2 %α   0.00006  -0.00398  -0.00002  -0.49543  0.00051  0.01944  0.05186  -0.00653  0.00846  

 (0.00021) (0.00104)*** (0.00013) (0.15653)*** (0.00011)*** (0.00233)*** (0.10699) (0.00194)*** (0.00148)*** 
( ) ( )3 %α   -0.00209  0.00698  0.00087  -1.18825  0.00092  0.00797  0.05751  0.00207  -0.02748  

Pa
ne

l A
. 

Se
le

ct
iv

ity
 

 (0.00104)** (0.00193)*** (0.00023)*** (0.40176)*** (0.00013)*** (0.00707) (0.10008) (0.00672) (0.00969)*** 
( ) ( )2 1β β−   -0.00157  0.01422  -0.00375  -0.95618  -0.00311  -0.09219  -0.25614  0.01477  0.00038  

 (0.00142) (0.00313)*** (0.00067)*** (0.42543)** (0.00087)*** (0.02033)*** (0.16008) (0.02471) (0.01364) 
( ) ( )3 2β β−   0.00407  -0.02327  -0.00093  2.18563  -0.00099  0.03830  -0.06973  -0.02844  0.05811  

 (0.00129)*** (0.00416)*** (0.00077) (0.50196)*** (0.00045)** (0.00282)*** (0.11088) (0.00529)*** (0.00798)*** 
( ) ( )3 1β β−   0.00237  -0.00203  -0.00264  1.42494  -0.00362  -0.04472  0.06385  0.01367  0.07232  

Pa
ne

l B
. 

Ti
m

in
g 

 (0.00256) (0.00563) (0.00103)** (0.45853)*** (0.00150)** (0.00916)*** (0.19456) (0.01644) (0.02493)*** 

( )1 %r   0.01018  -0.02156  0.00084  4.42396  0.00088  0.28121  0.20681  -0.33437  0.13253  

  (0.00687) (0.01102)* (0.00558) (2.18383)** (0.00138) (0.09836)*** (0.25251) (0.09448)*** (0.03335)*** 

( )2 %r   -0.00991  0.01087  0.00289  -3.18407  0.00024  0.00455  -0.11925  0.07660  -0.02009  Pa
ne
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. 
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  (0.00475)** (0.01061) (0.00229) (1.49532)** (0.00139) (0.05333) (0.22155) (0.07174) (0.03357) 
This table presents the coefficients and standard errors form the fix-effect panel data model of annual performance measures (PMI), which are based on conditional four-factor model, on total net assets (TNA), turnover 
(TURN), total load (LOAD), expense (EXPEN), percentage invested in cash equivalents (CASH), net cash flow of the fund (NCF), lagged performance (PMI(-1)), lagged net cash flow (NCF(-1)), and the dummy 
variable for the fund’s status on September 30, 2004. The standard errors for the coefficients are below the coefficients in parentheses. The regression factors are [TNA, TURN, LOAD, EXPEN, CASH, NCF, , PMI(-1), 
NCF(-1), I(p∈LIVE)], where I(p∈LIVE) equal to one if fund p is surviving on September 30, 2004, and equal to zero otherwise. The sample consists of 622 mutual funds. The mutual fund sample period is from
January 3, 2001 to September 30, 2004. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels (two-tailed test), respectively. 
 



Chapter 2. Measuring Mutual Fund Asymmetric Performance 

 39

 The relationships between timing performance and characteristics are exhibited in 

Panel B of  Table 2.8. The results indicate that managers of  larger size funds tend to have 

better upside market timing ability. Combining with the finding, significantly negative 

relationship between selectivity and fund size in the downside market, in Panel A, this 

suggests that larger funds are more likely to generate naïve upside market timing ability 

by operating options. We also find that market exposures of high-turnover funds 

decrease more than that of low-turnover funds when market transits from neutral to 

downside. In contrast, the market exposure of low-turnover funds increases more 

significantly than that of high-turnover funds when market transits from neutral to 

upside. Moreover, managers of load funds have worse market timing ability and are 

specifically significant for the downside market. The market exposures of high-expense 

funds decrease less and increase more than those of low-expense funds when market 

transits from neutral to upside and from downside to upside. Again, funds with higher 

cash position have worse downside and upside market timing ability.  

We also find that net cash flows have significant and negative impacts on overall 

market timing ability, which supports the cash-flow hypothesis described in Warther 

(1995), Ferson and Warther (1996), and Edelen (1999). The hypothesis implies that 

investors increase subscriptions to mutual funds in the downside market and this leads to 

a temporarily large cash position and lower fund beta. However, dividing timing ability 

into two parts, we find that funds with larger net cash flows have worse downside market 

timing performance and better upside market timing performance, which is opposite to 

the cash-flow hypothesis. The reason might be that managers of fund with larger net 

cash flows are relatively likely to invest their capital in newly discovered and undervalued 

stocks instead of buying put options to reduce their market exposures in the downside 

market. Conversely, they might invest the new capital in high beta stocks or options to 

earn more risk premium in the upside market. As before, we find that managers’ market 
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timing ability is not persistent whether for downside or upside markets and fund 

investors have bad selection ability. Furthermore, the surviving fund has a larger increase 

in market exposure than the non-surviving fund when market transits from neutral to 

upside conditions and from downside to upside conditions. 

 We also explore the relationships between threshold points and fund characteristics, 

and the results are reported in Panel C of  Table 2.8. Fund sizes are significantly and 

negatively correlated to the up threshold, suggesting larger size funds are more sensitive 

to predict the upside market. In addition, funds with high expenses have positive impacts 

on the down threshold, and negative impacts on the up threshold. This implies managers 

of  higher expense funds are more alert to forecasting both downside and upside markets. 

Contemporaneous net cash flows can improve managers’ sensitivity of  the downside 

market prediction. But, higher lagged net cash flows cause managers with the languid 

discovery of the downside market. Moreover, managers of surviving funds have more 

alert insights to forecast the downside market. 

 

6. CONCLUSIONS 

In this essay, we use Bayesian unconditional and conditional threshold four-factor 

models to study how fund managers react to change in market conditions. We divide the 

market condition into three regimes (downside, neutral, and upside markets) and 

investigate managerial stock selection and market timing performance in different market 

conditions. The advantages of  using our approach to analyze stock selection and market 

timing performance of  mutual funds are not only incorporating the investor’s prior 

belief  and managerial information but also transparently detecting the performance 

behavior across three different market conditions rather than only two conditions. 

The empirical analyses show that there are more apparent differences between 

unconditional and conditional three-regime threshold models instead of  two-regime 
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threshold models. In addition, we find that most managers’ market timing ability comes 

from the skills to forecast the downside market. The three-regime threshold models have 

more power to detect significant timing activity when lagged public information is taken 

into account. 

We also estimate annual fund performances by the conditional three-regime 

threshold four-factor model and predict the behavior of  fund investors by fund 

performances and various characteristics in previous one year. We find that investors 

prefer to select funds with better past selectivity performance and upside market timing 

ability instead of  downside market timing skill. Moreover, fund clients favor large size 

funds and funds with lower turnover, total load charges, and expenses. Again, the 

behavior of  investors is persistent and positively related to surviving funds. 

Finally, we investigate the relationship between fund performances and 

characteristics. We find that fund sizes erode and add fund selectivity performances in 

upside and downside markets, respectively. High turnover funds tend to have worse 

(better) selectivity performances in the downside (upside) market. We also find that 

contemporaneous net cash flows are negatively associated with downside market timing 

ability, but are positively correlated to upside market timing skills. In addition, funds with 

higher expenses have alert sensitivities to discover downside and upside markets. 
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7. APPENDIX—BAYESIAN ESTIMATION OF THE CONDITIONAL 

THREE-REGIME THRESHOLD FOUR-FACTOR MODEL 

From the conditional joint posterior density in equation (2.9), we have the following 

conditional posterior of  parameters ( )j
pΘ , for 3,2,1=j : 

( ) ( )( )
( ) ( ) ( )( ) ( )( )1 2 3

, , , , , , , , ,

, , , , , , , , , ,

j j
p p p p p p MKT SMB HML UMD

j
p MKT SMB HML UMD p p p p p p p

p

L

Θ −Θ Φ Δ ϒ

∝ Θ Θ Θ Φ Δ ϒ Π Θ

R R R R R Z

R R R R R Z
   (A2.1) 

where ( )j
p−Θ represents the vector ( ) ( ) ( )( )1 2 3, ,p p pΘ Θ Θ without ( )j

pΘ . 

Expressing the target density in (A2.1) by f  and ( )j
pΘ by jω , we apply the 

Metropolis-Hasting (MH) algorithm to draw the regression parameters jω . The 

algorithm is described as follows.  

At the ith iteration, for M≤i  and 3,2,1=j , we generate a point *
jω from the 

random kernel, [ ] ε+= 1-i
j

*
j ωω , where ( )22 ,0~ INε  and [ ]1-i

jω is the (i-1)th iteration of  

jω . Thereupon, we accept as [ ]i
jω with probability ( ) [ ]( ){ }1-i

j
*
j ωω ffp ,1min= or else we 

set [ ] [ ]1-i
j

i
j ωω = . For i between M and N, we generate a point *

jω from the independent 

kernel, εμω +=
j

*
jω , ( )

j
N ωε Ω,0~ 2 , where 

jωμ and
jωΩ are the sample mean and 

sample covariance calculated by the first M iterates of jω . Then, we accept as [ ]i
jω with 

probability
( ) [ ]( )

[ ]( ) ( )⎪⎭
⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= *
j

1-i
j

1-i
j

*
j

ωω
ωω
gf

gf
p ,1min , where we set the Gaussian proposal 

density ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ Ω−∝ −

jjj ωωω -ω-ωω μμ 1

2
1exp Tg . Otherwise, we set [ ] [ ]1-i

j
i
j ωω = .  

For the extra three factors’ parameters, pΦ , we have the following target density,  
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( ) ( ) ( )( )
( ) ( ) ( )( ) ( )
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     (A2.2) 

The conditional posterior density for the public information parameters, pΔ , is 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

1 2 3

1 2 3

, , , , , , , , , ,

, , , , , , , , , ,
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Δ Θ Θ Θ Φ ϒ

∝ Θ Θ Θ Φ Δ ϒ Π Δ
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R R R R R Z
      (A2.3) 

The conditional posterior density for the threshold parameters, pϒ , is  

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

1 2 3

1 2 3

, , , , , , , , ,

, , , , , , , , , ,

p p p p p p MKT SMB HML UMD

p MKT SMB HML UMD p p p p p p p

p

L

ϒ Θ Θ Θ Φ

∝ Θ Θ Θ Φ Δ ϒ Π ϒ

R R R R R Z

R R R R R Z
       (A2.4) 

We also use the MH algorithm described above to implement the Bayesian estimates of  

all parameters. For full details about how to complete the MCMC methods, see Chib and 

Greenberg (1995), and Gilk, Richardson, and Spiegelhalter (1996).  
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Chapter 3. 

On a Robust Bayesian Threshold 

VAR-DCC-GARCH Model and the Forecasting 

Performance Comparison in the Conditional 

Covariance Matrix 

1. INTRODUCTION 

The Vector autoregressive (VAR) model, popularized by Sims (1980), has been used 

widely and extensively by economists to study the dynamic behavior of  economic variables. 

The appeal of  this model is likely owing to several attractive features relative to other 

econometric modeling methods. For example, although it includes a lot of  parameters, 

meanwhile it has a very elastic and simple structure. In addition, it only requires the order 

of  the autoregressive process to be considered. Its specification and estimation are simple, 

since it is neither necessary to specify the variables entering each equation nor to 

incorporate restrictions derived from economic theory. Thus, estimation and forecasting 

using a VAR model are purely mechanical processes. 

Most covariance matrices of  financial asset returns are serial correlated, so 

multivariate generalized autoregressive conditional heteroskedastic (GARCH) models are 

more and more popular in financial econometrics in the past decade. A number of  

different multivariate GARCH models have been proposed, including the simplified 

diagonal VECH model of  Bollerslev et al. (1988), the BEKK model of  Engle and Kroner 

(1995), the constant conditional correlation (CCC) model of  Bollerslev (1990), the factor 

ARCH model of  Engle et al. (1990) and the dynamic conditional correlation (DCC) model 

of  Engle (2002). Especially, the DCC-GARCH model is simpler and has successfully 
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solved many practical problems. For example, hedges require estimates of  the correlation 

between the returns of  the assets. It is well known that financial market volatility changes 

over time. If  the correlations and volatility are changing, then the hedge ratio should be 

adjusted to account for the most recent information. Also, construction of  an optimal 

portfolio with a set of  constraints requires a forecast of  the covariance matrix of  returns. 

Similarly, the calculation of  the standard deviation of  today’s portfolio requires the 

covariance matrix of  all the assets in the portfolio. These functions use estimation and 

forecasting of  large covariance matrices that potentially have thousands of  assets. 

Furthermore, multivariate threshold models are widely applicable, including 

co-integrated systems. A growing body of research in the recent time series literature has 

concentrated on incorporating nonlinear behavior in conventional linear reduced form 

specifications such as autoregressive and moving average models. The motivation for 

moving away from the traditional linear model with constant parameters has typically come 

from the observation that many economic and financial time series are often characterized 

by regime specific behavior and asymmetric responses to shocks. For such series the 

linearity and parameter constancy restrictions are typically inappropriate and may lead to 

misleading inferences about their dynamics. 

We next consider the situation in which each linear regime follows an 

autoregressive process. For instance, we have the well known threshold autoregressive class 

of models, the statistical properties of which have been investigated in the early work of 

Tong (1983, 1990) and Tsay (1989). Multivariate threshold VARs are piecewise linear 

models with different autoregressive matrices in each regime, which is determined by a 

transition variable (one of the endogenous variables), a delay and a threshold (Tsay, 1998). 

They were more recently reconsidered and extended in Hansen (1996, 2000), Caner and 
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Hansen (2001) among others. Hansen and Seo (2002) examined a two-regime vector 

error-correction model with a single co-integrated vector and a threshold. 

Bayesian methods are also increasingly becoming popular to researchers in financial 

econometrics recently. The VAR model usually has a large number of  parameters, which 

are often estimated through maximum likelihood or least squares. In the threshold VAR, 

however, finite-sample frequentist analysis of  the nonlinear functions is difficult. For 

instance, for some distributions of  data, the maximum likelihood estimation (MLE) does 

not have an analytical form or simply does not exist, or in some applications of  VAR 

models, nonlinear functions of  VAR parameters are the focus of  research. The difficulties 

faced in the frequentist approach of  VAR inference can be circumvented by the Bayesian 

approach, which combines information from observations with researcher’s priors. When 

the objective of  the model is to forecast, the Bayesian approach is more satisfactory. This 

approach consists of  imposing prior restrictions over the VAR model parameters. The 

estimates of  the model parameters are obtained by combining the prior belief  and the 

likelihood, so more accurate forecasts can be achieved. This kind of  models is known in 

the literature as Bayesian VAR or BVAR models (see, Zellner (1971), Bauwens et al. (1999)). 

Later, Ni and Sun (2003, 2005) proposed Bayesian estimates for VAR models under 

different priors. Vrontos et al. (2003) and Osiewalski and Pipień (2004) used Bayesian 

methodology to assess relative predictive and explanatory powers of various multivariate 

GARCH models. So et al. (2005) developed a Bayesian testing scheme for threshold 

nonlinearity in financial time series. Chen and So (2006) performed Bayesian diagnostic 

checking for the threshold heteroscedastic model. 

In this essay, we present a robust threshold VAR(or VECM)-DCC-GARCH model 

and use the Metropolis-Hastings (MH) algorithm and the Gibbs sampling algorithm to 
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estimate the parameters simultaneously. Our model extends existing approaches by 

admitting thresholds in conditional means, conditional volatilities and correlations of 

multivariate time series. Such an extension, allows us to account for rich asymmetric effects 

and dependencies of conditional means, volatilities and correlations, as they are often 

encountered in practical financial applications. In addition, we use the concept of Chen and 

So (2006) to define the threshold variables as the linear combination of endogenous 

variables. This setting can eliminate excessively subjective belief  in threshold variable 

decision. Besides, the weight coefficient can serve as the proxy in deciding which market is 

the price leader and which market is the price follower. Finally, threshold values in our 

model are not fixed ex ante, but they are estimated from the data, together with all other 

parameters in the model. 

We investigate the empirical performance of our model in two data sets including 

daily S&P500 futures and spot prices, and S&P500 and Nasdaq100 spot prices. Our study 

attempts to use posterior odds ratio and Bayes factors as a formal tool for making 

comparison between competing models. We reduce our testing problem to a Bayesian 

model selection problem. We can then select the model with a higher posterior odds ratio. 

We also present the performance comparison results of the one-step-ahead forecast in the 

conditional covariance matrix. The forecast results are assessed by several criteria which 

include the views of statistical loss and risk managers. 

Based on the estimation results, we find that the asymmetric dynamic structure is 

obvious in both the dynamic relationship between S&P500 futures and spot markets and 

between S&P500 and Nasdaq100 spot markets. We also detect that S&P500 futures market 

is the price leader between S&P500 futures and spot markets, and S&P500 spot market is 

the price leader between S&P500 and Nasdaq100 spot markets. Furthermore, based on 
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several in-sample and out-of-sample performance measures in the conditional covariance 

matrix prediction, we find that the threshold model outperforms the linear model across 

most measure criteria. 

The rest of the essay is organized as follows. In the next section, a robust 

multivariate threshold vector autoregressive is introduced. We assume the model with the 

error having multivariate DCC-GARCH. Then, Bayesian approach is specified including 

the priors setting, and then conditional posterior distributions for relevant parameters are 

derived. Also, the Markov chain Monte Carlo (MCMC) simulation methods and 

implementation algorithm are taken up. We then illustrate the empirical applications and 

model performance comparisons. Finally brief conclusions are given. 

 

2. THRESHOLD VAR-DCC-GARCH MODEL 

First, we consider the multivariate threshold vector autoregressive model with a 

dynamic correlated and heteroscedastic error. Let tY  be a K-dimensional time series with 

threshold variable t dz − , so the mean equation and the conditional distribution of  the 

innovation process are given by the following equations: 
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gΦ is K-dimensional 

intercept vector, ( )g
lΦ for 1, , gl L= …  are the K K× regression coefficient matrices in 

the gth regime, gL ∈`  is the lag of  VAR in the gth regime, tε  is a 1K ×  innovation 

term, and d ∈`  is the threshold lag of  the model with maximum delay 0d . -1tℑ  is the 

information set up to t-1, tH  is a K K× covariance matrix with elements ,ii th and 
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,ij th , 1, ,i K= … , 1, ,j i K= + … , where ,ii th  is the variance of  the ith variable at time t and 

,ij th is the covariance between the ith and jth variables at time t, and the number of  regime 

is G. In addition, the threshold values gr  must satisfy 0 1 Gr r r−∞ = < < < = ∞" , and thus 

the intervals 1[ , ), 1, ,g gr r j G− = … , form a partition of  the space of  t dz − .  

The threshold variable t dz −  is defined by a weighted average of it dy −  and this can be 

viewed as a extension of  Tsay (1998) and Brooks (2001), who set threshold variable to be a 

specific endogenous variables, it dy − . We think that this setting of  the threshold variable may 

have the following advantages and economic meanings. First, when it dy −  are returns of  

different markets, we can regard t dz −  as the return of  a portfolio without short sales, and 

the dynamic structure or leverage effect may be influenced by the portfolio return. That is, 

the structural change of  markets may rely on the global economic condition instead of  a 

specific market condition. Second, it can eliminate excessively subjective belief  in threshold 

variable decision and let the data choose a more appropriate t dz −  by estimating the 

weights, kw . Third, the weights kw  can reflect the relative significance of  each endogenous 

variable it dy − . This can not only govern the time series behavior of  tY   but also find 

which market is the lead price leader and which markets are price followers. 

 In addition, the accurate structure of  the conditional covariance matrix is of  primary 

importance in the practice of  portfolio analysis, asset pricing, and risk management. 

Recently, multivariate GARCH is used more and more extensively in modeling the 

correlation among financial time series and multivariate volatility. Bollerslev (1990) 

proposed the simple constant correlation coefficient (CCC) multivariate GARCH model, 

which is allowed to have time-varying conditional variances and covariance matrices, but 

constant conditional correlations. He decomposed the conditional covariance matrix tH  

as 

t t t=H D RD                  (3.3) 
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where R is the K×K time-invariant correlation matrix with element ijρ , 

1, ,i K= … , 1, ,j i K= + … , i j≠  and Dt is the K×K time-varying diagonal matrix with 

element ,ii th , 1, ,i K= … . The individual variances ,ii th  follow standard univariate 

GARCH models. 

 To relax the restriction of the CCC model, Engle (2002) proposed flexible and 

parsimoniously parameterized generalizations of the CCC model. The main difference 

between CCC and DCC models is that the DCC model allows the correlation matrix R to 

be time-varying. Consequently, the time varying conditional covariance matrix tH  is 

defined as follows: 

t t t t=H D R D ,                                (3.4) 

where tR  is time-varying correlation matrix of innovation tε . 

Because, in this essay, the structure of  the dynamic covariance matrix mainly focuses on the 

DCC model with the threshold structure, it can be viewed as an extension of  

DCC-GARCH of  Engle (2002). Therefore, by means of  the specification for tQ  

considered in Engle (2002), the threshold DCC-GARCH structure of  covariance matrix is 

given by 
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+ <∑ ∑ , D  is the Hadamard matrix product 

operator, 1
t t t

−=η εD is the vector of  standardized errors, ( )gQ  is the unconditional 

correlation matrix of tε  in the gth regime, and the parameters ( )gA and ( )gB are 

symmetric and positive semidefinite matrices. To ensure Q to be positive semidefinite, we 
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also restrict ( ) ( )( ' )g g− −ιι A B  to be positive semidefinite.  

 Under the assumption of  conditional normality for error process in Equation (3.2), 

the likelihood function for the parameters can be expressed as 
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whereθ is the set of  all parameters, ( )1 1 1 0, , , , , , , , ,G g gP Max L L m m n n d= … … … , tε , tD , 

and tR obey Equations (3.1), (3.5), and (3.6), respectively 

 However, when the variables tY  in the model are integrated and of  order one or 

more, estimating by Equation (3.1) is subject to the hazard of  regressions involving 

nonstationary variables. In addition, Engle and Yoo (1987) also argued that, in the presence 

of  co-integration, a VAR model with an error correction mechanism should outperform a 

VAR over longer forecasting horizons. Therefore, taking into account the explicitly 

long-run equilibrium relationship, the mean Equation (3.1) is modified to the threshold 

vector error correction model, which can be written as 
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where Δ  denotes the difference operator, 
1
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k
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= ⋅Δ∑ , b is K γ× full rank matrix of  

co-integrating vectors, ( )ga is K γ× full rank matrix of  coefficients associated with the 

error correction terms, and the value γ determines the number of  co-integrating 

relationships ( Kγ < ). Avoiding the identification problem, we impose the so-called linear 

normalization where ( ) oγ
′=b I b . So, the likelihood function for the parameters is similar 

to Equation (3.8) except tε must follow Equation (3.9). 
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3. BAYESIAN INFERENCE AND MCMC IMPLEMENTATION 

 In this section, first, we explain why the Bayesian method is used in this essay to 

analyze the threshold VAR(or VECM)-DCC-GARCH models. The reason is that using 

maximum likelihood method is difficult to estimate the parameters in the threshold 

VAR-DCC-GARCH models. The main problems are the large number of  parameters to be 

estimated and the difficulty of  estimation due to the positive definiteness restrictions of  

the covariance matrix. Thus, this will result in unstable estimates. In addition, due to the 

unknown threshold variable tz  in this essay, this hinders us to implement a two step 

estimation procedure similar to that considered by Tsay (1998) and Brooks (2001). Even if  

the threshold variable is known, Tsay (1998) showed that the asymptotic properties for the 

threshold lag, d, and threshold parameter, rg, are hard to infer. Thus, to deal with the above 

infeasible procedure by maximum likelihood method, we extend the Bayesian method using 

MCMC techniques introduced by Chen and So (2006). 

 Implementation of  the Bayesian analysis depends on a willingness to assign 

probability distributions not only to data variable y, but also to all unknown parameters. 

Consider a situation in which absolutely weakly previous subjective information is known 

about the phenomenon of  interest, so as to mitigate frequentist criticisms of  intentional 

subjectivity. Thus, in this essay, we choose noninformative or weakly informative priors for 

most parameters to interject the least amount of  prior knowledge and the specification of  

priors is listed below. 

 First, we assume the discrete uniform prior for the threshold lag parameter d with 

maximum delay d0, and it can be written as 0 0( ) 1 , 1, ,d d d dπ = = … , which does not 

favor any one of  the candidate d values over any other. Since the weighted vector 

( )1, , Kw w= …w  relies on d, the conditional prior of  w given d, ( )dπ w , is taken as 
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symmetric Dirichlet distribution, ( ), ,d D δ δ∼ …w , where the hyper-parameter 0δ > . 

Identically, t dz −  depends on d and w, so we assume the conditional prior of  every 

threshold parameter, ,  for 1, , 1gr g G= −… , to be a continuously bounded uniform 

distribution, ( ) ( ) ( )( )up low, 1 g g
gr d r rπ = −w , ( ) ( )

low up
g g

gr r r≤ ≤ . The lower and upper bounds for 

threshold parameters are employed to constrain that there are at least τ  percent of  

observations in each regime. As well, τ  depends on the number of  observations. When 

the sample size is small, higher τ  is recommended. The purpose of  this setting is to make 

parameter estimates more efficient and more reliable. 

 Subsequently, we divide the parameters in each regime into four independent blocks, 

which are the parameters in the VAR model (3.1, 3.9), the error correction term (3.9), the 

volatility process (3.5), and the dynamic correlation procedure (3.7), and we assume the 

priors are independent among any two regimes. For the priors of  VAR parameters, 

Litterman (1980) and Kinal and Ratner (1986) have indicated that VAR sometime suffers 

from overparameterization. The requirement to estimate a large number of  coefficients in 

VAR often leads to large standard errors for inferences and forecasts. The Bayesian VAR 

imposing some prior restrictions on parameters will usually provide more accurate forecasts. 

In this essay, we adopt Litterman’s (1980) Minnesota prior for VAR parameters and make 

some proper modifications. For convenience, we define ( ) ( ) ( ) ( )
0 1 , ,

g

g g g g
L

′⎡ ⎤= ⎣ ⎦"Φ Φ ,Φ Φ , 

which is a ( )1 gK K L× + ⋅ matrix, and consider vectorized ( )gΦ , ( )( )vec gΦ ,which we 

denote by ( )gφ . We assume that the vector ( )gφ follows a multivariate normal distribution 

with zero mean and diagonal covariance matrix φΣ . That is, we believe in advance the 

unconditional mean and short run dynamics center around zero, and investors are unable 

to earn excess returns by this short run dynamic relationship. In addition, the priors are 

made independently across elements of  ( )gφ and the standard deviation of  the 
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coefficient ( )g
ijlφ , which is an element of  ( )gφ  and describes how variable i is affected by 

variable j of  lag l in the gth regime, is given by 

( )( )
if 

if 

g
ijl

i

j

i j
l

i j
l

λ

φ τηλ
τ

⎧ =⎪⎪= ⎨
⎪ ⋅ ≠
⎪⎩

S ,                                           (3.10) 

where the hyper-parameter λ  controls the tightness of  beliefs on ( )gφ , i jτ τ  is a 

correction for the scale of  series i compared with series j, and the restriction 0 1η< <  

implies that the series are more likely to be influenced by their own lags than by the lags of  

other series.  

The above model requires us to choose specific values for the 

hyper-parametersλ , iτ , jτ ,and η . The correction term i jτ τ is engaged in modifying the 

inconsistency in variation of  each series variable. While in principle these should be chosen 

on the basis of  a priori reasoning or knowledge, we will in practice follow Litterman (1986) 

in choosing these as the sample standard deviations of  residuals from univariate 

autoregressive models fit to the individual series in the sample. For the remaining 

hyper-parameters, λ  is commonly set from 0.1 to 0.9, and η ranges from 0.2 to 0.5 (see, 

Litterman (1986), Kinal and Ratner (1986), Doan (1990)). In addition, Villani (2001) 

showed that the selection of  these two parameters is not sensitive to the forecasting results. 

So, we use 0.5λ =  and 0.4η = in our empirical analysis. We also set the standard 

deviation of  the intercept coefficient as 1 to employ a more diffuse prior. 

 For the prior on the long term structure (ie, error correction term) in each regime, we 

follow Geweke (1996) to choose uniform prior for both the matrix of  co-integrating 

vectors ( )gb  and the associated weighting matrix ( )ga , and the prior can be written as 

( ) ( )( ), 1g gπ ∝a b . Furthermore, a uniform prior with some restrictions is assumed for the 

parameters of  the GARCH and is written as  
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( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 11

, , 0; 0; 0; 1
g gm nK

g g g g g g g g
i ip iq ip iq

p qi

Iπ ω α β α β
= ==

⎛ ⎞
∝ > ≥ ≥ + <⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∏ω α β ,         (3.11) 

where ( )I ⋅ is the indicator function which takes unity if  the constraint holds and otherwise 

zero, and ( ) ( )( ) ( )
1 , ,g g g

Kω ω= …ω , ( ) ( )( ) ( ) ( ) ( )
1 1, , , , , ,

g g

g g g g g
i im K Kmα α α α= … … …α , and 

( ) ( )( ) ( ) ( ) ( )
1 1, , , , , ,

g g

g g g g g
i im K Kmβ β β β= … … …β . Finally, we also choose a uniform prior for the 

dynamic correlation structure, 

( ) ( ) ( )( ) ( ), ,g g g Iπ ∝Α Β Q ϒ ,                                             (3.12) 

where ϒ is the set of  ( ) ( ) ( )( ), ,g g gΑ Β Q , which must satisfy that ( )gΑ , ( )gΒ , 

and ( ) ( )( ' )g g− −ιι A B are symmetric and positive semidefinite matrices, and ( )gQ is a form 

of  correlation coefficient matrix. Therefore, the prior of  all unknown parameters in the 

threshold VAR-DCC-GARCH model can be expressed as: 

( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

1

1

1

( ) ,

            , , , , .

G

g
g

G
g g g g g g g

g

d d r dπ π π π

π π π

−

=

=

⎛ ⎞
∝ ⎜ ⎟

⎝ ⎠
⎛ ⎞
⋅⎜ ⎟
⎝ ⎠

∏

∏

θ

φ ω α β Α Β

w w

Q

                 (3.13) 

Bayesian inference about the parameter vectorθ conditional on data matrix y are 

constructed through the posterior density ( )p θ y . Using Bayes theorem, the posterior 

density is formed by the prior density ( )π θ and the likelihood ( )L y θ , and it can be 

written: 

( ) ( ) ( )
( ) ( )

( ) ( )
L

p L
L d

π
π

π
= ∝
∫

θ θ
θ θ θ

θ θ θ

y
y y

y
.                              (3.14) 

Therefore, the optimal Bayes estimator of  θ  under quadratic loss is simply the posterior 

mean, which is  

( ) ( )ˆ E p d= = ∫θ θ θ θ θY y .                                           (3.15) 
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However, for many realistic problems, the posterior distribution ( )p θ y  may not 

have an analytically tractable form, particularly in high dimensions, so calculating the 

posterior mean is a difficult task. In fact, to settle our major problems, we can use 

numerical or asymptotic methods to compute the approximate posterior mean for the full 

Bayesian model. Because, the posterior density is with very high dimension and only known 

up to a constant, in this essay we adopt the MCMC sample algorithm as our tool for this 

purpose. The idea is based on the Hammersley-Clifford theorem (1968), which says that a 

joint distribution can be characterized by its complete conditional distributions. For 

example, the posterior distribution, ( )1 2,p θ θ y , can be characterized by the complete 

conditional distribution, ( )1 2,p θ θy and ( )2 1,p θ θy . 

Given the initial values, ( )0
1θ and ( )0

2θ , we draw ( )1
1θ from ( ) ( )( )1 0

1 2,p θ θy and then 

( )1
2θ from ( ) ( )( )1 1

2 1,p θ θy . Iterating the steps, we produce a series of  sample, 

( ) ( ){ }1 2 1
,

Mm m

m
θ θ

=
, which will converge to the joint posterior distribution under some mild 

conditions. Thus, we can obtain the Bayesian estimator îθ  by computing the mean from 

the sample of  the stationary distribution of  the simulated ( )m
iθ , which is after some 

burn-in iterations . When the complete conditional distribution is known, such as Normal 

distribution or Beta distribution, we only use Gibbs sampler to draw the random variables. 

On the contrary, if  it is unknown, we will use a hybrid method consisting of  both Gibbs 

steps and Metropolis-Hastings (MH) steps. Assuming the complete conditional distribution 

( )1 2,p θ θy  is unknown, in the MH algorithm, we generate a value *
1θ from its proposal 

distribution ( )g ⋅ and accept the proposal value, i.e. ( )1 *
1 1

gθ θ+ = , with probability 

( )( )*
1 1,gλ θ θ , which is  

( )( ) ( )
( )( )

( )
( )( )

* *
1 2 1*

1 1
1 2 1

,
, min ,1

,
g

g g

p g

p g

θ θ θ
λ θ θ

θ θ θ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

y

y
.                            (3.16) 
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Theoretically, we can use almost any distribution for the proposal distribution. However, in 

practice, we need to choose proposal distribution very carefully to ensure fast convergence 

of  MCMC samples. See Chib and Greenberg (1995), and Gilk et al. (1996) among others 

for full detailed explanations and discussions about the MH algorithm as well as the 

MCMC methods. 

 Furthermore, in order to reduce the possible bias due to the selection of  starting 

values, generated sample within an initial transient or burn-in period are usually discarded. 

Since rate of  convergence on different target distributions vary considerably, it is also 

difficult to determine the required length of  burn-in. In this essay, we choose the length of  

burn-in period by the convergence diagnostic (CD) in Geweke (1992). The idea and 

calculation procedure of  this method are described as follows. Let θ  denote a parameter 

of  interest and ( )jθ denote the parameter at the jth iteration. Suppose observations of  the 

chain for m n+  iterations and form averages 

( )

1

1 bm n
j

b
j mbn

θ θ
+

= +

= ∑ and ( )

1

1

a

m n
j

a
j m n nan

θ θ
+

= + − +

= ∑  

where a bn n n+ < . If  m is the length of  burn-in period, then aθ and bθ are the ergodic 

averages at the end and beginning of  the convergence period and should behavior similarly. 

Thus, the statistic CD is given as  

( ) ( )
CD

ˆ ˆ
a b

a bVar Var

θ θ

θ θ

−
=

+
,             (3.17) 

and it asymptotically follows standard normal distribution. So, if  convergence has been 

achieved, the statistic CD should not be large. Following the suggestion of  Geweke (1992), 

we calculate the statistic by setting 0.5an n= and 0.1bn n= , and using spectral density 

estimators for the variances to take into account any autocorrelation.  

Subsequently, we will use Bayes factors to select the appropriate order of the VAR 
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process and to choose between linear ( 1G = ) and non-linear ( 2G ≥ ) versions of our 

model. When comparing any two competing parametric Bayesian models ( ,i jM M ) for the 

same data matrix y, the Bayes factor (BF) can be calculated by marginal likelihood concept. 

In general terms letting jθ be the appropriate set of  parameters under model jM , the 

marginal likelihood can be written: 

( ) ( ) ( ),
j

j j j jp M p M p M d
Θ

= ∫ θ θ θy y ,          (3.18) 

where ( ), jp Mθy  and ( )jp Mθ  are the sampling density function and the prior 

density function, respectively. 

For the Bayesian model selection, we can determine the posterior odds ratio (POR) of  

iM  against jM  by the Bayes factors ( ) ( )ij i jB p M p M= y y  and the prior odds 

ratio ( ) ( )i jp M p M , and it can be expressed as 
( ) ( )POR
( ) ( )

i i
ij ij

j j

p M p M B
p M p M

= =
y
y

.           (19) 

If there is absence of a prior preference for either model, i.e. ( ) ( ) 1 2i jp M p M= = , the 

Bayes factor can be interpreted as a measure of  the extent to which the data support iM  

over jM . When 1ijB > , the data prefer iM  over jM , and when 1ijB < , the data favor 

jM  over iM . Thus, in this essay we compare any two threshold VAR-GARCH time 

series models of  different orders and regimes by computing Bayes factors as the ratio of  

marginal likelihood evaluated along the route of  Chib (1995). 

 

4. EMPIRICAL APPLICATIONS 

4.1. Data description 

 Our data consist of  daily closing prices for S&P500 index, Nasdaq 100 index, and 

S&P500 index futures for the period between January 3, 1995 and December 31, 2004. 
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They are collected from TICK DATA and the sample size for each stock market is 2519. In 

addition, intraday 5-minute prices are used to construct the series of  realized covariance as 

done in the past related literature. 

 The descriptive statistics of  daily returns from January 3, 1995, to December 31, 2004, 

are summarized in Table 3.1. The statistics reported are sample mean, standard deviation, 

maximum, minimum, Jarque-Bera (JB) statistics, and the Ljung-Box (LB) statistics for the 

return and the square return series. For the S&P500 stock market, the standard deviation 

of  futures returns is larger than that of  the spot returns, indicating that the futures market 

is more volatile than the spot market. In addition, the Nasdaq100 spot returns are more 

volatile than S&P500 spot and futures returns. The spot and futures returns of  S&P500 

index are negatively skewed, whereas the returns of  Nasdaq100 index are positively skewed. 

All spot and futures returns present concerns for excess kurtosis. The Jarque-Bera test 

statistics provide clear evidence to reject the null hypothesis of  normality for each returns 

series and this is mainly due to the presence of  skewness and excess kurtosis. The 

augmented Dickey-Fuller unit root test results suggest that all return series are stationary. 

The Ljung-Box Q statistics indicate possible serial correlations for all returns series. 

Moreover, the Q2 statistics suggest that there are autoregressive conditional 

heteroskedasticity effects on each returns series. The Johansen co-integration test indicates 

a long-run equilibrium relationship between S&P500 spot and futures indices.  
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TABLE 3.1 － Descriptive Statistics for the Returns of Daily S&P500 Index, 
S&P500 Index Futures, and Nasdaq 100 Index, from 1995 to 2004 
 RS&P500,F RS&P500,S RNasdaq100,S 

Mean(%) 0.0383 0.0385 0.0551 

SD(%) 1.1935 1.1446 2.2737 

Skewness -0.1544 -0.1184 0.1185 

Kurtosis 6.3738 6.0544 6.1907 

Max(%) 5.8141 5.3080 17.2030 

Min(%) -7.7058 -7.1127 -10.3777 

JB 1204.6951 985.0505 1074.4440 

ADF -51.8382 -50.6566 -38.8717 
( )12Q  21.2310 24.9340 35.2010 
( )2 12Q  605.1300 636.5300 1028.5000 

Johansen Test 58.1941  
Note: RS&P500,F, RS&P500,S, and RNasdaq100,S refer to S&P500 spot, S&P500 futures, and Nasdaq 100 spot returns, 
respectively. Returns for stock indices are calculated by 100×(ln(Pt)-ln(Pt-1)). The values in rows JB, ADF, Johansen 
are statistics of Jarque-Bera normality test, the augmented Dickey-Fuller unit root test, and the Johansen cointegration 
test. Q(12) and Q2(12) report the Ljung-Box (LB) portmanteau test statistics including 12 lags for the return and 
square return series. The Critical values at 5% of JB, ADF, Johansen, and LBP are 5.991, 2.862, 3.433, and 21.026, 
respectively. 

 

4.2. Goodness-of-fit results 

 In this section, we use bivariate threshold time series model, which was introduced 

earlier, to two data sets. One data set covers the returns series of  S&P500 spot and futures 

markets, and thus the bivariate threshold VECM-GARCH model is appropriate. The other 

data set consists of  the returns series of  S&P500 and Nasdaq100 spot markets, so we 

adopt the bivariate threshold VAR-GARCH model. We also use two different time lengths 

(five years and ten years) to perform model comparison. In addition, we simplify our model 

by assuming 1 GL L L= = =" , and GARCH(1,1) model is considered as a parsimonious 

model which is found to be appropriate in most applications. The matrix parameters 

( )gA and ( )gB in Equation (3.7) are also reduced to scale parameters. So, to ensure Q to be 

positive semidefinite, we restrict ( ) ( ) 1,  for 1, ,g gA B g G+ < = … . Therefore, we only need to 

choose proper L and G by the Bayes factor criterion. 

 To implement our MCMC sampling scheme, we carry out 30,000 iterations which are 
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performed with the first 10,000 burn-in iterations discarded, to reach the convergence of  

every parameter. The logarithm marginal likelihood, the logarithm Bayes factors, which are 

on the basis of  simple linear VECM(1)-DCC-GARCH(1,1) or VAR(1)-DCC-GARCH(1,1) 

model, and the overall ranking of  models for different L and G are shown in Tables 3.2 

and 3.3. For the period between 2000 and 2004, Table 3.2 shows that the best model to 

describe the dynamic relationship between S&P500 futures and spot markets is the 

two-regime threshold VECM(3)-DCC-GARCH(1,1) model with a logarithm of  marginal 

likelihood value of  -1866.171. If  we compare the best model with linear 

VECM(1)-DCC-GARCH(1,1) model, i.e. a model where there is no asymmetric effect on 

mean, variance, and correlation equations, then the difference in logarithm marginal 

likelihood is ( )6,1 59.833Ln B = , which yields a Bayes factor of  25
6,1 9.664 10B = × . This 

means the two-regime threshold VECM(3)-DCC-GARCH(1,1) model is 259.664 10×  

times more likely than the linear VECM(1)-DCC-GARCH(1,1) model. Table 3.2 also 

indicates that the two-regime threshold VECM(3)-DCC-GARCH(1,1) model is more 

satisfactory than the other competitors considered here regardless of  five- or ten-year data. 

Generally speaking, the results in Table 3.2 show that models which consider asymmetric 

effects and longer lags have larger logarithms of  marginal likelihood. This suggests that 

there are asymmetric effects on mean, covariance, or error correction processes for the 

dynamic relationship between S&P500 futures and spot markets. In addition, considering 

longer lags will benefit model explanatory power. 

 In Table 3.3, for the period between 2000 and 2004, we find that the best model to 

characterize the dynamic relationship between S&P500 and Nasdaq100 spot returns is the 

two-regime threshold VAR(1)-DCC-GARCH(1,1) model which is 148.405 10×  times 

more likely than the linear VAR(1)-DCC-GARCH(1,1) model. However, for ten-year time 
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length, we find that the three-regime threshold VAR(1)-DCC-GARCH(1,1) model is most 

appropriate among our competitive models. On the whole, our findings suggest that the 

threshold model is more suitable than the linear model in the dynamic relationship between 

S&P500 and Nasdaq100 spot returns. In addition, the logarithm marginal likelihood of  the 

model with shorter lags is larger than that with longer lags except for the linear models 

with five years data. 
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 TABLE 3.2 － Logarithms of Marginal Likelihood and Bayes Factors-The Dynamic Relationship between S&P500 Futures and Spot 
Markets 

  2000-2004 (5 years) 1995-2004 (10 years) 

Model (Mi) 
Number of 
parameters ( )iLn p M⎡ ⎤⎣ ⎦y Ln(Bi,1) Rank ( )iLn p M⎡ ⎤⎣ ⎦y Ln(Bi,1) Rank 

M1, VECM(1)-DCC-GARCH(1,1) 18 -1926.004 0.000 9 -3654.369 0.000 9 

M2, VECM(2)-DCC-GARCH(1,1) 22 -1909.399 16.605 8 -3604.425 49.944 8 

M3, VECM(3)-DCC-GARCH(1,1) 26 -1896.580 29.424 5 -3584.793 69.576 7 

M4, 2R-VECM(1)-DCC-GARCH(1,1) 38 -1898.022 27.982 7 -3583.782 70.587 6 

M5, 2R-VECM(2)-DCC-GARCH(1,1) 46 -1888.237 37.767 2 -3532.965 121.404 3 

M6, 2R-VECM(3)-DCC-GARCH(1,1) 54 -1866.171 59.833 1 -3513.248 141.120 1 

M7, 3R-VECM(1)-DCC-GARCH(1,1) 56 -1897.335 28.669 6 -3567.204 87.165 5 

M8, 3R-VECM(2)-DCC-GARCH(1,1) 68 -1888.504 37.500 3 -3540.125 114.244 4 

M9, 3R-VECM(3)-DCC-GARCH(1,1) 80 -1896.414 29.590 4 -3516.374 137.995 2 
Note:The table shows the number of parameter, logarithms of marginal likelihood, logarithms of Bayes factor, and the ranks of marginal likelihood for several models and two different 
time lengths. The data are based on the daily S&P500 futures and spot market prices for the sample period from January 3, 1995 to December 31, 2004. 
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TABLE 3.3－Logarithms of Marginal Likelihood and Bayes Factors- The Dynamic Relationship between S&P500 and Nasdaq100 Spot Returns

  2000-2004 (5 years) 1995-2004 (10 years) 

Model (Mi) 
Number of 
parameters ( )iLn p M⎡ ⎤⎣ ⎦y Ln(Bi,1) Rank ( )iLn p M⎡ ⎤⎣ ⎦y Ln(Bi,1) Rank 

M1, VAR(1)-GARCH(1,1) 15 -3863.507 0.000 9 -7388.013 0.000 7 

M2, VAR(2)-GARCH(1,1) 19 -3857.392 6.115 6 -7394.210 -6.197 8 

M3, VAR(3)-GARCH(1,1) 23 -3862.844 0.663 8 -7398.697 -10.684 9 

M4, 2R-VAR(1)-GARCH(1,1) 33 -3829.141 34.365 1 -7365.001 23.012 2 

M5, 2R-VAR(2)-GARCH(1,1) 41 -3831.830 31.677 2 -7371.956 16.056 4 

M6, 2R-VAR(3)-GARCH(1,1) 49 -3841.109 22.398 5 -7383.827 4.186 6 

M7, 3R-VAR(1)-GARCH(1,1) 49 -3833.646 29.860 3 -7349.133 38.880 1 

M8, 3R-VAR(2)-GARCH(1,1) 61 -3840.603 22.904 4 -7362.203 25.810 3 

M9, 3R-VAR(3)-GARCH(1,1) 73 -3857.999 5.508 7 -7380.973 7.040 5 
Note:The table reports the number of parameter, logarithms of marginal likelihood, logarithms of Bayes factor, and the ranks of marginal likelihood for several different models and two 
different time lengths. The data are based on the daily S&P500 and Nasdaq100 market returns for the sample period from January 3, 1995 to December 31, 2004. 
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4.3. Bayesian estimation results 

In this section, we will illustrate the Bayesian estimation results of  two data sets, 

which are used in the above section, for full sample periods. Table 3.4 presents the linear 

and threshold VECM(3)-DCC-GARCH(1,1) models estimation results for the mean 

equation (3.9) and variance-covariance matrix equations (3.5, 3.6, 3.7) for the dynamic 

relationship between S&P500 futures and spot markets. The feedback effects between each 

pair of  S&P500 futures and spot markets are observed except for the upside market. That 

is, lagged spot (futures) returns help to predict current futures (spot) returns. More 

specifically, the lagged spot (futures) returns have positive effects on current futures (spot) 

returns. In addition, the lagged spot (futures) returns have negative effects on current spot 

(futures) returns. That is to say, each market exhibits mean reversion behavior with a 

stronger degree occurring in the spot market except for the upside market with a stronger 

degree occurring in the futures market. 
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TABLE 3.4 － Bayesian Estimation Results for S&P500 Futures and Spot Markets 
  One Regime Two Regime Three Regime 
   

1tz r≤  
1tz r>  

1tz r≤  
1 2tr z r< ≤  

2 tr z<  

  ln tFΔ  ln tSΔ  ln tFΔ  ln tSΔ  ln tFΔ ln tSΔ ln tFΔ ln tSΔ ln tFΔ ln tSΔ  ln tFΔ ln tSΔ

0φ⋅  0.047 0.094 -0.203 -0.168 0.054 0.103 -0.145 -0.161 0.023 0.035 0.176 0.213 

 (0.042) (0.053) (0.120) (0.106) (0.036) (0.058) (0.122) (0.107) (0.033) (0.055) (0.227) (0.212) 

1Fφ⋅  -0.162 0.392 -0.330 0.266 -0.209 0.318 -0.338 0.292 -0.213 0.331 -0.315 0.149 

 (0.067)** (0.060)** (0.079)** (0.071)** (0.080)** (0.072)** (0.083)** (0.072)** (0.073)** (0.069)** (0.116)** (0.135) 

2Fφ⋅  0.012 0.306 -0.009 0.268 -0.084 0.242 -0.066 0.242 0.021 0.323 -0.313 0.094 

 (0.083) (0.076)** (0.115) (0.098)** (0.110) (0.098)* (0.122) (0.112)* (0.081) (0.070)** (0.120)** (0.123) 

3Fφ⋅  -0.101 0.053 0.066 0.212 -0.110 0.061 -0.008 0.154 -0.020 0.140 -0.058 0.149 

 (0.065) (0.060) (0.142) (0.128) (0.078) (0.072) (0.123) (0.115) (0.074) (0.070)* (0.199) (0.188) 

1Sφ⋅  0.179 -0.372 0.207 -0.389 0.256 -0.287 0.230 -0.401 0.257 -0.291 0.284 -0.208 

 (0.070)** (0.064)** (0.076)** (0.068)** (0.080)** (0.072)** (0.080)** (0.066)** (0.072)** (0.068)** (0.097)** (0.113)* 

2Sφ⋅  -0.021 -0.309 -0.055 -0.314 0.078 -0.246 -0.034 -0.324 -0.005 -0.308 0.153 -0.252 

 (0.086) (0.078)** (0.121) (0.103)** (0.112) (0.100)* (0.123) (0.112)** (0.082) (0.071)** (0.131) (0.131)* 

3Sφ⋅  0.080 -0.070 -0.123 -0.255 0.116 -0.059 -0.084 -0.231 0.042 -0.126 0.024 -0.168 

 (0.066) (0.062) (0.144) (0.129)* (0.080) (0.075) (0.126) (0.118)* (0.076) (0.072) (0.197) (0.185) 

a -0.020 0.076 -0.130 0.000 0.015 0.103 -0.106 0.011 0.016 0.107 0.091 0.156 

 (0.046) (0.044) (0.110) (0.106) (0.056) (0.053)* (0.109) (0.104) (0.050) (0.048)* (0.236) (0.232) 

b -1.001 -1.001 -1.000 

M
ea

n 
Eq

ua
tio

ns
 

 (0.001)** (0.001)** (0.001)** 
d 1# 1# 1# 

     
w1   0.790 0.904 
   (0.118)** (0.068)** 

r1   -0.599 -0.629 
   (0.024)** (0.028)** 

r2       1.762 Th
re

sh
ol

d 
Pa

ra
m

et
er

s 

       (0.059)** 
ω  0.025 0.022 0.304 0.284 0.033 0.023 0.303 0.275 0.038 0.025 0.724 0.584 

 (0.006)** (0.005)** (0.046)** (0.043)** (0.007)** (0.006)** (0.046)** (0.042)** (0.007)** (0.006)** (0.179)** (0.171)**

α  0.063 0.070 0.069 0.079 0.056 0.065 0.080 0.091 0.015 0.046 0.035 0.046 

 (0.009)** (0.010)** (0.011)** (0.013)** (0.010)** (0.012)** (0.012)** (0.015)** (0.010) (0.012)** (0.017)* (0.018)**

β  0.916 0.910 0.864 0.844 0.858 0.858 0.840 0.822 0.860 0.858 0.683 0.700 

 (0.012)** (0.013)** (0.019)** (0.022)** (0.016)** (0.017)** (0.025)** (0.030)** (0.015)** (0.016)** (0.086)** (0.090)**

A 0.136 0.147 0.223 0.160 0.245 0.123 
 (0.016)** (0.039)** (0.024)** (0.043)** (0.029)** (0.066)8 

B 0.128 0.172 0.173 0.221 0.147 0.385 
 (0.052)** (0.094) (0.060)** (0.128) (0.059)* (0.228) 
ρ  0.975 0.971 0.977 0.969 0.977 0.967 

Va
ria

nc
e 
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ov

ar
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nc
e 

Eq
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ns

 

 (0.001)** (0.004)** (0.001)** (0.009)** (0.001)** (0.067)** 
Note:This table shows the parameter estimates for one, two and three regime threshold VECM(3)-DCC-GARCH(1,1) models, respectively, which are 
based on the daily S&P500 futures and spot market returns for sample period from January 3, 1995 to December 31, 2004. The numbers in 
parentheses are standard deviations. *and** indicate statistical significance at 5%, and 1%, respectively. # indicates the posterior mode of the 
threshold lag parameter. 
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In the two-regime threshold model, the spot returns tend to increase when the spread 

is large in order to restore the long-run equilibrium relationship only in the upside market. 

The evidence suggests that the S&P500 spot price tends to converge to the futures price 

and the effect is more apparent in the upside market. Furthermore, the futures price seems 

to converge to the spot price in the downside market, but the effect is not significant.  In 

the three-regime threshold model, the coefficients of  error correction terms are only 

significant in spot returns in the neutral market. Although only a few coefficients of  error 

correction terms are significantly different from zero, these coefficients increase from 

downside to upside markets in both futures and spot returns. This exhibits that the 

structures of  error correction terms are asymmetric in different market conditions. In both 

two- and three-regime models, the weighted coefficient in threshold variable, 1w , is 

significantly larger than 0.5, especially in the three-regime threshold model. This indicates 

that S&P500 futures market is the price leader whereas the spot market is the price follower. 

Additionally, we find that the threshold values, r1 and r2, are not symmetric and point out 

the asymmetric dynamic structures between downside and upside markets. For the 

coefficients of  variance covariance equations, we find that the volatility is most persistent 

in the downside market and followed by neutral and upside markets in both futures and 

spot markets. However, the persistence of  the correlation between futures and spot returns 

has an opposite outcome. In addition, the unconditional correlation coefficients, ρ , are all 

above 0.95 and the coefficients in DCC structure, B, are all below 0.4. This shows that 

futures and spot returns are highly correlated and the lagged correlation does not heavily 

influence the current correlation.  

The linear and threshold VAR(1)-DCC-GARCH(1,1) models estimation results for 

the dynamic relationship between S&P500 and Nasdaq100 spot markets are reported in 
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Table 3.5 and we have the following findings. First, the S&P500 market is the price leader 

whereas the Nasdaq100 is the price follower during the sample period. Second, the 

persistence in volatility and correlation is heaviest in the neutral market. Finally, we find 

that the dynamic volatility and correlation structures between S&P500 and Nasdaq100 

returns is very significant and has obvious variations among different market conditions. 
 

TABLE 3.5 － Bayesian Estimation Results for S&P500 and Nasdaq100 Spot Markets 
  One Regime Two Regime Three Regime 
   

1tz r≤  
1tz r>  

1tz r≤  
1 2tr z r< ≤  

2 tr z<  

  , SP tR  
, NAS tR  

, SP tR  
, NAS tR  

, SP tR  
, NAS tR , SP tR  

, NAS tR , SP tR  
, NAS tR  

, SP tR  
, NAS tR

0φ⋅  0.080  0.137  -0.717  -0.775  0.070 0.108 -0.672 -0.673 0.067  0.100  0.299 1.000 

 (0.017)** (0.031)** (0.251)** (0.394) (0.018)** (0.032)** (0.294)** (0.452) (0.018)** (0.032)** (0.336) (0.635)

1SPφ⋅  0.053  0.059  -0.330  -0.324  0.082 0.121 -0.336 -0.324 0.098  0.155  0.019 -0.249 

 (0.033) (0.059) (0.094)** (0.129)** (0.034)** (0.062)* (0.093)** (0.118)** (0.037)** (0.067)** (0.138) (0.208)

1NASφ⋅  -0.017  -0.056  -0.029  -0.167  -0.024 -0.058 -0.016 -0.148 -0.021  -0.068  -0.058 -0.039 

M
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n 
Eq
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 (0.015) (0.031) (0.054) (0.111) (0.015) (0.032) (0.054) (0.113) (0.016) (0.033)** (0.050) (0.111)

d 1# 1# 1# 

       

w1   0.894  0.911  

   (0.059)** (0.044)** 

r1   -1.713  -1.698  

   (0.073)** (0.075)** 

r2       1.797  Th
re

sh
ol

d 
Pa

ra
m

et
er

s 

       (0.100)** 

ω  0.013  0.036  0.025  0.032  0.011 0.036 0.010 0.028 0.008  0.032  0.274 0.433 

 (0.003)** (0.007)** (0.031) (0.029) (0.003)** (0.009)** (0.006)** (0.025) (0.002)** (0.008)** (0.107)** (0.243)

α  0.070  0.068  0.123  0.131  0.049 0.052 0.141 0.155 0.046  0.051  0.037 0.053 

 (0.007)** (0.007)** (0.018)** (0.019)** (0.009)** (0.008)** (0.018)** (0.022)** (0.008)** (0.008)** (0.017)* (0.017)**

β  0.916  0.921  0.782  0.823  0.934 0.932 0.810 0.805 0.941  0.935  0.682 0.780 

 (0.008)** (0.007)** (0.046)** (0.031)** (0.009)** (0.008)** (0.032)** (0.030)** (0.008)** (0.008)** (0.062)** (0.064)**

A 0.044  0.068  0.043  0.109  0.045  0.060  

 (0.007)** (0.023)** (0.006 )** (0.029)** (0.007)** (0.025)* 

B 0.942  0.739  0.953  0.753  0.952  0.873  

 (0.010)** (0.070)** (0.008)** (0.069)** (0.008)** (0.058)** 

ρ  0.802  0.812  0.740  0.662  0.726  0.723  Va
ria

nc
e 

C
ov

ar
ia
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e 

Eq
ua
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ns

 

 (0.036)** (0.066)** (0.153)** (0.131)** (0.150)** (0.166)** 
Note:This table presents theparameter estimates for one, two and three regime threshold VAR(1)-DCC-GARCH(1,1) models, respectively, which are 
based on the daily S&P500 and Nasdaq100 market returns for sample period from January 3, 1995 to December 31, 2004. The numbers in 
parentheses are standard deviations. *and** indicate statistical significance at 5%, and 1%, respectively. # indicates the posterior mode of the 
threshold lag parameter. 
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5. FORECASTING PERFORMANCE COMPARISIONS IN 

CONDITIONAL COVARIANCE MATRIX 

 In this section, the data from January 1, 2000 to December 31, 2004, consisting of  

1256 trading days, are used for in-sample estimation and forecasting performance 

evaluation in the one-step-ahead conditional covariance matrix. The 61 observations from 

January 1, 2005 to March 31, 2005 are used for the out-of-sample performance evaluation 

purposes. In addition, we present two categories of  criteria to measure forecasting 

performance of  different competitive models. One category is based on the views of  the 

statistical loss function, which is a non-negative function that generally increases as the 

distance between the actual value and the forecasted value increases, and three different 

types of  criteria are adopted here. The other category of  performance measure is based on 

the views of  risk managers and two types of  criteria are introduced. 

5.1. Statistical Loss Performance 

Thereinafter, we will introduce three types of  loss functions. First, a multivariate 

version of  the classical mean absolute error (MAE) statistic is addressed, which is 

, ,2
, 1 1

1 1 ˆMAE
K n

ij t ij t
i j t

h h
K n= =

= −∑ ∑ ,            (3.20) 

where ,îj th and ,ij th denote the forecast and the actual of  the covariance between assets i and j 

at time t, respectively. 

The second type of  loss function is a multivariate version of  the mean square error (MSE) 

statistic, which is 

( )2

, ,2
, 1 1

1 1 ˆMSE
K n

ij t ij t
i j t

h h
K n= =

= −∑ ∑ .            (3.21) 

The above two loss functions are symmetric, and we will also use an asymmetric loss 

function, which is linear-exponential (LINEX) loss with the form: 
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( ){ }, , , ,2
, 1 1

1 1 ˆ ˆLINEX exp ( ) 1
K n

ij t ij t ij t ij t
i j t

h h h h
K n

ζ ζ
= =

⎡ ⎤= − − − −⎣ ⎦∑ ∑ ,      (3.22) 

where ζ  is a given parameter. When ζ  is close to 0, the LINEX loss function is nearly 

symmetric and is not much different from the MSE statistic. In the LINEX loss function, 

positive errors are weighed differently from the negative errors when 0ζ ≠ . 

If 0ζ > ( 0ζ < ), the LINEX loss function is approximately linear (exponential) for 

, ,
ˆ 0ij t ij th h− < and exponential (linear) for , ,

ˆ 0ij t ij th h− > . This implies that an overestimate 

(underestimate) needs to be taken into consideration more seriously. More specifically, in 

all above cases, a lower loss measure indicates a higher forecasting power.  

As a result of the unobservable property of  the covariance matrices, here we use 

intraday 5-minute data to construct the proxies for the daily-realized covariance 

observations. The concept of  the realized volatility has been proposed by French, Schwert, 

and Stambaugh(1987) and Andersen et al.(2001). The realized volatility is nothing more 

than the sum of  squared high-frequency returns over a given sampling period. Similarly, we 

can directly express the realized covariance (RCOV) as: 

( ) ( ) ( )
1

1
RCOV , 1 , 1 ,

j

t R t j R t j
Δ

=

′Δ = − + ⋅Δ Δ − + ⋅Δ Δ∑ ,        (3.23) 

where ( ),R t Δ denotes the 1K × vector of  logarithm returns over the [ ],t t−Δ time interval.  

The compared results of the forecast performance measures in the conditional 

covariance matrix between S&P500 futures and spot returns and between S&P500 and 

Nasdaq100 spot returns for the different models are presented in Figures 3.1, 3.2 and 

Tables 3.6, 3.7, respectively. When looking at the in-sample prediction in Tables 3.6 and 3.7, 

we observe that the threshold model yields better performance relative to the linear model 

no matter what symmetric (MAE and MSE) or asymmetric (LINEX) loss functions are 

adopted. In Table 3.6, we also find that the LINEX(1) indictor for the linear model is 
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about twice as large as that for the threshold model, but the LINEX(-1) indictor is close 

for all competitive models. This indicates that the linear model may overestimate the 

covariance matrix. For the out-of-sample forecast, the threshold model performs more 

appropriately for the covariance between S&P500 and Nasdaq100 spot returns. However, 

the linear model in predicting covariance between S&P500 futures and spot returns seems 

better than the threshold model. 
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Covariance Forecast Comparison for S&P500 Futures and Spot Markets
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FIGURE 3.1－One Period Ahead Covariance Forecast Comparison for S&P500 Futures 

and Spot Markets, 2000/1-2005/3. 
 

 

Covariance Forecast Comparison for S&P500 and Nasdaq100 Indices
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FIGURE 3.2－One Period Ahead Covariance Forecast Comparison for S&P500 and 

Nasdaq100 Indices, 2000/1-2005/3. 
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TABLE 3.6 － In- and Out-of-sample Covariance Matrix Forecast Comparison of Alternative Models for S&P500 Futures and Spot Markets 
  In Sample  Out-of-Sample 

Model (Mi)  MAE MSE LINEX(1) LINEX(-1)  MAE MSE LINEX(1) LINEX(-1) 

M1, VECM(1)-DCC-GARCH(1,1)  0.788 2.054 0.829 9.329  0.212 0.058 0.032 0.026 

M2, VECM(2)-DCC-GARCH(1,1)  0.808 2.101 0.965 9.215  0.215 0.062 0.035 0.028 

M3, VECM(3)-DCC-GARCH(1,1)  0.819 2.138 0.824 9.885  0.233 0.071 0.040 0.032 

M4, 2R-VECM(1)-DCC-GARCH(1,1)  0.668 1.762 0.441 9.430  0.248 0.075 0.043 0.035 
M5, 2R-VECM(2)-DCC-GARCH(1,1)  0.715 1.788 0.467 9.498  0.254 0.082 0.047 0.037 

M6, 2R-VECM(3)-DCC-GARCH(1,1)  0.682 1.720 0.512 8.763  0.259 0.091 0.052 0.040 
M7, 3R-VECM(1)-DCC-GARCH(1,1)  0.713 1.785 0.472 9.301  0.287 0.106 0.061 0.046 

M8, 3R-VECM(2)-DCC-GARCH(1,1)  0.731 1.768 0.522 8.798  0.276 0.107 0.063 0.046 

M9, 3R-VECM(3)-DCC-GARCH(1,1)  0.752 1.829 0.540 9.193  0.285 0.113 0.067 0.049 
Note:This table computes the mean-absolute-errors (MAE), mean-square-errors (MSE), and asymmetric LINEX loss (LINEX) with 1ζ = and 1ζ = − . The measured covariance matrices are daily realized covariance 
matrices which are calculated by intra-day 5-minute returns. The data used are daily and intra-day 5-minute S&P500 index futures and spot price. The in-sample data period is from January 1, 2000 to December 31, 
2004 and out-of-sample data period is from January 1, 2005 to March 31, 2005. 
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TABLE 3.7 － In- and Out-of-sample Covariance Matrix Forecast Comparison of Alternative Models for S&P500 and Nasdaq100 
Indices 

  In Sample  Out-of-Sample 

Model (Mi)  MAE MSE LINEX(1) LINEX(-1)  MAE MSE LINEX(1) LINEX(-1) 

M1, VAR(1)-GARCH(1,1)  1.773 13.745 30.487 29.830  0.393 0.213 0.135 0.088 

M2, VAR(2)-GARCH(1,1)  1.743 13.441 28.818 30.076  0.378 0.197 0.123 0.082 

M3, VAR(3)-GARCH(1,1)  1.751 13.489 29.346 29.801  0.388 0.205 0.129 0.086 

M4, 2R-VAR(1)-GARCH(1,1)  1.673 12.078 26.935 28.182  0.253 0.095 0.051 0.047 

M5, 2R-VAR(2)-GARCH(1,1)  1.677 11.778 29.244 27.743  0.240 0.089 0.048 0.044 

M6, 2R-VAR(3)-GARCH(1,1)  1.690 12.002 29.107 27.427  0.253 0.097 0.052 0.047 

M7, 3R-VAR(1)-GARCH(1,1)  1.626 11.270 23.487 27.773  0.242 0.092 0.050 0.045 

M8, 3R-VAR(2)-GARCH(1,1)  1.657 11.638 25.190 26.604  0.260 0.102 0.056 0.049 

M9, 3R-VAR(3)-GARCH(1,1)  1.598 11.034 22.299 27.971  0.252 0.095 0.051 0.047 
Note:This table computes the mean-absolute-errors (MAE), mean-square-errors (MSE), and asymmetric LINEX loss (LINEX) with 1ζ = and 1ζ = − . The measured covariance matrices are daily realized 
covariance matrices which are calculated by intra-day 5-minute returns. The data used are daily and intra-day 5-minute S&P500 and Nasdaq 100 indices prices. The in-sample data period is from January 1, 
2000 to December 31, 2004 and out-of-sample data period is from January 1, 2005 to March 31, 2005. 
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5.2. Risk Management Performance 

Predictability in covariance between two assets’ returns, as measured by traditional 

criteria that focus on the size of  the forecast error, does not necessarily imply that an 

investor can make profits or reduce risk from a trading strategy based on such forecasts. 

Therefore, we also use the other category of  performance measure which is based on the 

views of  risk managers, and two types of  criteria are used. One is to calculate the value at 

risk (VaR) as an evaluation of  the estimator. For a two-asset portfolio with δ  invested in 

the first asset and ( )1 δ−  in the second asset, the one-step-ahead VaR at time t and 

at %α , assuming normality, is  

( ) ( )( ) ( ) ( )22
1, 2, 11, 22, 12,

ˆ ˆ ˆˆ ˆVaR 1 1 2 1t t t t t tr r z h h hαα δ δ δ δ δ δ⎡ ⎤= − + − − ⋅ + − + −⎢ ⎥⎣ ⎦
,   (3.24) 

where az  is the right quantile at %α . To compare and evaluate model performances on 

several different model specifications, we choose the following criteria. By definition, the 

failure rate (FR) is the proportion of  returns (in absolute value) exceed the forecasted VaR, 

i.e. ( ) ( ) ( )( )1, 2,1
FR 1 1 VaRT

t t tt
T I r rδ δ α

=
= + − < −∑ , where ( )I ⋅ is the indicator 

function. Hence, if  the VaR model is correctly specified, the failure rate should be equal to 

the prespecified VaR level. We also use Kupiec LR test (1995) to examine if  the model is 

correctly specified. To test 0H :f α= against 1 :H f α≠ , the LR statistic is 

( )( ) ( ) ( )( )( )2ln 1 2 ln 1
NN T NT NLR N T N Tα α −−= − − + − , where N is the number of  VaR 

violations, T is the total number of  observations and f is the theoretical failure rate. Under 

the null hypothesis, the LR test statistic is asymptotically distributed as ( )2 1χ .  

Figure 3.3 plots one period ahead 5% VaR forecast comparison for a hedged portfolio 

with weights (1,-1) and three weighted portfolios with weights (0.5, 0.5), (0.3, 0.7), and (0.7, 

0.3). The fractions of  VaR violations and p-values of  the Kupiec (1995) failure rate test are 

reported in Table 3.8. For in-sample data, the p-values for the null hypothesis of  the 
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hedged portfolio are all smaller than 0.05 when the linear model is considered. The 

threshold model performs very well as there are no p-values smaller than 0.05. Thus the 

switch from the linear model to threshold model yields a significant improvement in the 

VaR performance in the hedged portfolio. For the weighted portfolios consisting of  S&P 

and Nasdaq100 spot markets, the failure rates are very close to the prespecified VaR level 

and p-values are larger than 0.05 for in-sample predictions in all linear and threshold 

models. For the out-of-sample VaR performance comparison, we find that there are no 

p-values smaller than 0.05 no matter what kinds of  portfolios or models which we consider 

here. But, the fractions of  VaR violation based on the threshold model are closer to the 

prespecified VaR level than those based on the linear model except the weighted portfolio 

with weights (0.7, 0.3). In view of  in-sample and out-of-sample empirical results, we find 

that the linear model may sometimes overestimate the VaR, so using the threshold model 

to calculate the portfolio’s VaR may be more appropriate. 
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A.   5% VaR for S&P500 Futures-Spot
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B.   5% VaR for 0.5*S&P500+0.5*Nasdaq100
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C.   5% VaR for 0.3*S&P500+0.7*Nasdaq100
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D.   5% VaR for 0.7*S&P500+0.3*Nasdaq100
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FIGURE 3.3－One Period Ahead 5% VaR Forecast Comparison for Various Portfolios, 2000/1-2005/3. 
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TABLE 3.8 － In- and Out-of-sample 5% VaR Failure Rate Results for the S&P500 

Futures-Spot and S&P500-Nasdaq100 Spot Markets 

A. Fraction of VaR Violation 

  In sample Out of sample 

  
S&P500 

Fut-Spot 
S&P500-Nasdaq100 

S&P500 

Fut-Spot
S&P500-Nasdaq100 

Model (Mi)  
VaR 

(1,-1) 

VaR 

(0.5,0.5) 

VaR 

(0.3,0.7)

VaR 

(0.7,0.3)

VaR 

(1,-1) 

VaR 

(0.5,0.5)

VaR 

(0.3,0.7) 

VaR 

(0.7,0.3)

M1  1.911 5.096 5.016 4.697 1.639 1.639 1.639 3.279 

M2  1.433 5.255 5.096 4.936 1.639 1.639 1.639 3.279 

M3  2.389 5.255 5.096 4.857 1.639 1.639 1.639 3.279 

M4  4.459 5.334 5.096 5.016 3.279 3.279 4.918 3.279 

M5  4.379 5.096 5.255 5.414 3.279 6.557 4.918 3.279 

M6  6.131 5.255 5.096 5.175 3.279 6.557 4.918 3.279 

M7  5.732 5.175 5.096 5.096 6.557 4.918 4.918 3.279 

M8  5.096 5.334 5.255 4.857 4.918 3.279 4.918 3.279 

M9  5.334 5.334 5.255 5.175 4.918 3.279 4.918 3.279 

B. P-Value of Kupiec LR Test 

  In sample Out of sample 

  
S&P500 

Fut-Spot 
S&P500-Nasdaq100 

S&P500 

Fut-Spot
S&P500-Nasdaq100 

Model (Mi)  
VaR 

(1,-1) 

VaR 

(0.5,0.5) 

VaR 

(0.3,0.7)

VaR 

(0.7,0.3)

VaR 

(1,-1) 

VaR 

(0.5,0.5)

VaR 

(0.3,0.7) 

VaR 

(0.7,0.3)

M1  0.000 0.877 0.979 0.619 0.164 0.164 0.164 0.512 

M2  0.000 0.681 0.877 0.917 0.164 0.164 0.164 0.512 

M3  0.000 0.681 0.877 0.815 0.164 0.164 0.164 0.512 

M4  0.370 0.590 0.877 0.979 0.512 0.512 0.977 0.512 

M5  0.303 0.877 0.681 0.506 0.512 0.594 0.977 0.512 

M6  0.075 0.681 0.877 0.777 0.512 0.594 0.977 0.512 

M7  0.244 0.777 0.877 0.877 0.594 0.977 0.977 0.512 

M8  0.877 0.590 0.681 0.815 0.977 0.512 0.977 0.512 

M9  0.590 0.590 0.681 0.777 0.977 0.512 0.977 0.512 
Note:This table shows the 5% VaR forecast results of four different portfolios for alternative models. Panel A is the fraction of VaR 
violations, and the results of Kupiec LM test (1995) are showed in Panel B. The data used are daily S&P500 index futures, S&P500 
and Nasdaq 100 index prices. The in-sample data period is from January 1, 2000 to December 31, 2004 and out-of-sample data 
period is from January 1, 2005 to March 31, 2005. M1,M2,…,M9 denote the same models in Tables 3.2. 
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 While futures contracts are popular among investors as a class of speculative assets, 

they are important in the financial markets due to their use as a hedging instrument. 

Furthermore, hedging with futures contracts may be the simplest method to manage 

market risk resulting from adverse movements in the price of various assets. In this 

section, we assume the hedger attempts to minimize the conditional variance of the 

spot-futures portfolio. It is well known that the optimal hedge ratio (OHR) is the ratio of 

the conditional covariance between spot and futures returns over the conditional 

variance of the futures return. So, the one-step-ahead forecasts of optimal hedge ratios 

can then be calculated as 

( ) ( )*
1 1,t s f ft t t tHR Cov r r Var r+ += ,          (3.25) 

where rs and rf are spot and futures returns, respectively. The variance of the estimated 

optimal hedged portfolio can be characterized as 

( )*
, ,s t t f tVar r HR r− ⋅ . 

To evaluate hedging performance, the typical criterion is based on the percentage 

variance reduction (PVR) of the hedged portfolio relative to the unhedged position. It 

can be calculated as 

( )
( )

Var Hedged Portfolio
PVR(%) 1 100%

Var Unhedged Portfolio

⎡ ⎤⎛ ⎞
= − ×⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

.      (3.26) 

When the futures contract completely eliminates risk, PVR=100 is obtained, otherwise 

PVR=0 is obtained when hedging with the futures contract does not reduce risk. Hence, 

a larger PVR indicates better hedging performance.  

The in- and out-of-sample hedged portfolio variances and hedging effectiveness of 

alternative models for the S&P500 futures contract are presented in Table 3.9. The 

variances of hedged portfolio returns are calculated under the following eleven 
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alternative models: three linear VECM-DCC-GARCH models with different lag 

parameter L (M1,M2,M3), six threshold VECM-DCC-GARCH models with different lag 

parameter L and the number of regime G (M4,---,M9), hedging with a constant OHRs 

estimate using regression methods of returns and the naïve hedge with hedge ratio of 1 at 

all times. The results show that the three-regime threshold VECM(3)-DCC-GARCH 

model has the lowest in-sample hedged portfolio variance, with a 93.037% in-sample 

variance reduction compared to the variance of the unhedged position. In addition, the 

in-sample hedging performance of the linear model is even worse than that of OLS or 

naïve strategy.  

 

Table 3.9. In- and Out-of-sample Hedging Effectiveness of Alternative Models for 
S&P500 Spot and Futures Markets 

  In Sample Out of Sample 

Model (Mi)  Variance 
Variance 

Reduction
Rank Variance 

Variance 

Reduction 
Rank 

M1  0.09457 92.55636 10 0.02249 96.48434 9 

M2  0.09854 92.24371 11 0.03114 95.13240 10 

M3  0.09342 92.64672 9 0.02356 96.31607 11 

M4  0.09053 92.87463 6 0.01891 97.04412 2 

M5  0.08872 93.01648 2 0.01909 97.01488 4 

M6  0.08912 92.98510 4 0.01877 97.06492 1 

M7  0.08911 92.98586 3 0.01896 97.03593 3 

M8  0.08943 92.96117 5 0.01916 97.00495 6 

M9  0.08846 93.03718 1 0.01910 97.01378 5 

OLS  0.09091 92.84419 7 0.01922 96.99463 7 

Naïve  0.09182 92.77321 8 0.01929 96.98378 8 
Note: The table reports the variance of the hedged portfolio, percentage variance reductions, and the ranks of hedging effectiveness 
for several different models. The data used are daily index futures and spot price. The in-sample data period is from January 1, 2000 
to December 31, 2004 and out-of-sample data period is from January 1, 2005 to March 31, 2005. M1,M2,…,M9 denote the same 
models in Tables 3.2. 

 

However, active hedgers are likely to be more concerned about future hedging 
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performance. Therefore, the comparison of out-of-sample performance is a better way to 

evaluate our hedging strategy. We find that the ranking of out-of-sample hedging 

effectiveness is the same as that of in-sample hedging effectiveness. The two-regime 

threshold VECM(3)-DCC-GARCH model has a 97.065% out-of-sample variance 

reduction and outperforms all linear dynamic and static hedging models we considered. 

Overall, the dynamic hedge with threshold model has a better hedging performance than 

that with linear VECM-DCC-GARCH model. Both naïve and OLS strategies tend to 

outperform the linear VECM-DCC-GARCH model. This fact may indicate that the 

threshold model has superior ability to forecast the optimal hedge ratios. 

 

6. CONCLUSIONS 

We proposed a robust multivariate VAR-DCC-GARCH model that extends 

existing approaches by admitting multivariate thresholds in conditional means, 

conditional volatilities and conditional correlations. In addition, such threshold variables 

are defined by a weighted average of endogenous variables and the weights are estimated 

from the data. This threshold setting can not only enhance the robustness of the model 

but also has some economic meanings or values. Moreover, the Markov chain Monte 

Carlo method is implemented for the Bayesian inference. We studied the performance of 

our model in an application to two data sets consisting of daily S&P500 futures and spot 

prices and S&P500 and Nasdaq100 spot prices. 

We develop a Bayesian testing scheme for model selection among several competing 

models and select the model with a higher posterior probability. We also adopt several 

criteria, which are based on the views of  statistical loss and risk managers, to evaluate the 

prediction performance of  the conditional covariance matrix. 
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In our real data application we find that estimated conditional volatilities are 

strongly characterized by both GARCH and multivariate threshold effects. Dynamic 

correlations are still apparent between S&P500 and Nasdaq100 spot returns, while 

slighter between S&P500 futures and spot markets. In addition, the estimation results 

suggest that S&P500 futures market is price leader between S&P500 futures and spot 

markets and S&P500 spot market is price leader between S&P500 and Nasdaq100 spot 

markets. For the comparison in covariance matrix forecasting performance, the threshold 

model has a better in-sample and out-of-sample forecasting performance relative to the 

linear model across most measure criteria. 
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Chapter 4. Summary and Conclusions 

There are more and more academics shows that financial time series, such as stock 

returns, exchange rates series and etc., exhibit strong signs of  nonlinearity. For this 

reason, some of  traditional financial models should be modified appropriately. In this 

dissertation, we focus on the threshold model and use the Bayesian approach to settle the 

difficulty in the maximum likelihood estimation and inference. In addition, the 

applications in several important issues in financial markets are discussed, including the 

mutual fund performance evaluation and the forecasting in conditional covariance 

matrix. 

The first essay in this dissertation uses three-regime Bayesian unconditional and 

conditional threshold four-factor models to study how fund managers react to change in 

market conditions. Our empirical analyses show that there are more apparent differences 

between unconditional and conditional three-regime threshold models instead of  

two-regime threshold models. In addition, we find that most managers’ market timing 

ability comes from the skills to forecast the downside market. The three-regime 

threshold models have more power to detect significant timing activity when lagged 

public information is taken into account. 

In addition, for the relationship between fund performances and various 

characteristics, we find that investors prefer to select funds with better past selectivity 

performance and upside market timing ability instead of  downside market timing skill. 

Moreover, fund clients favor large size funds and funds with lower turnover, total load 

charges, and expenses. High turnover funds tend to have worse (better) selectivity 

performances in the downside (upside) market. We also find that contemporaneous net 

cash flows are negatively associated with downside market timing ability, but are 

positively correlated to upside market timing skills. In addition, funds with higher 
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expenses have alert sensitivities to discover downside and upside markets. 

In the second essay, we proposed a robust multivariate VAR-DCC-GARCH model 

that extends existing approaches by admitting multivariate thresholds in conditional 

means, conditional volatilities and conditional correlations. In addition, such threshold 

variables are defined by a weighted average of endogenous variables and the weights are 

estimated from the data. We studied the performance of our model in an application to 

two data sets consisting of daily S&P500 futures and spot prices and S&P500 and 

Nasdaq100 spot prices. 

Our empirical analyses find that estimated conditional volatilities are strongly 

characterized by both GARCH and multivariate threshold effects. Dynamic correlations 

are still apparent between S&P500 and Nasdaq100 spot returns, while slighter between 

S&P500 futures and spot markets. In addition, the estimation results suggest that 

S&P500 futures market is price leader between S&P500 futures and spot markets and 

S&P500 spot market is price leader between S&P500 and Nasdaq100 spot markets. For 

the comparison in covariance matrix forecasting performance, the threshold model has a 

better in-sample and out-of-sample forecasting performance relative to the linear model 

across most measure criteria. 
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