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Essays on the Bayesian Threshold Model in Finance

Student: Chih-Chiang Wu Advisers: Dr. Jack C. Lee
Dr. Huimin Chung
Graduate Institute of Finance
National Chiao Tung University

ABSTRACT

This study contains two essays on the Bayesian threshold model in financial
markets.

In essay 1, we propose a Bayesian three-regime threshold four-factor model to
compare the asymmetric risk adjustment between the transitions from neutral to
downside markets and those from neutral to upside markets and investigate the
performance of mutual funds in changing market conditions. We show that not only
fund managers have asymmetric, timing—ability but three-regime models are more
powerful and exhibit significant~timing-ability more often than two-regime models. In
addition, we use panel data model to examine fund investors’ behavior and the
relationships between fund performancés-and._characteristics. Empirical results suggest
that investor’s behavior is positively.associated with' past selectivity performances and
fund sizes, while it is negatively correlated to-past turnover, load charges and expenses. In
addition, funds with large contemporaneous net cash flows will results in better upside
market timing ability but worse downside market timing ability.

Essay 2 proposes a robust multivariate threshold vector autoregressive (VAR) model
with generalized autoregressive conditional heteroskedasticities (GARCH) and dynamic
conditional correlations (DCC) to describe conditional mean, volatility and correlation
asymmetries in financial markets. In addition, the threshold variable for regime switching
is formulated as a weighted average of endogenous variables to eliminate excessively
subjective belief in the threshold variable decision and to serve as the proxy in deciding
which market to be the price leader. Estimation is performed using Markov chain Monte
Carlo (MCMC) methods. Furthermore, several meaningful criteria are introduced to
assess the forecasting performance in conditional covariance matrix. The proposed
methodology is illustrated using two data sets including daily S&P500 futures and spot
prices, and S&P500 and Nasdaq100 spot prices.

Keywords: Threshold Model; Mutual Fund; Performance Evaluation; Volatility
Forecasting; Value at Risk; Hedge Performance
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Chapter 1. Introduction

Chapter 1. Introduction

In the past decades several nonlinear time series models have been proposed and
some of them have been used in practical applications. It is now fairly widely accepted
stylized fact that financial time series, such as stock returns, exchange rates series and etc.,
exhibit strong signs of nonlinearity. The nonlinear phenomenon typically comes from
the observation that many economic and financial time series are often characterized by
regime specific behavior and asymmetric responses to shocks (see, Hansen (1996, 2000),
Hsieh (1989, 1991, 1993), and Tsay (1989, 1998)). In addition, although the GARCH
model can capture leptokurtosis and volatility clustering, structural breaks in the variance
could lead to the spuriously high persistentiin: the GARCH model (see, Lamoureux and
Lastrapes (1990) and Mikosch and Starica (2004))., Therefore, in the dissertation, we will
use the threshold model to capture the nonliear behavior in both returns and volatilities
of financial assets.

In the threshold class of models, classical estimation of parameters is usually done
by the maximum likelihood or the least squares methods with a joint grid search over the
threshold values using information criteria such as AIC or BIC. However, Koop and
Potter (2003) and So ez al. (2005) showed that the inadequacy of these approaches is to
fix the threshold parameters in advance before estimating the other parameters by least
squares. Therefore, the uncertainty of the threshold parameters cannot be taken into
account when implementing statistical inference for the other parameters. In addition,
another problem is the large number of parameters in the threshold model must be
estimated and the difficulty of estimation due to the positive definiteness restrictions of

the covariance matrix. Thus, MLE will result in unstable estimates. Moreover, previous
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Chapter 1. Introduction

literatures (such as Koop and Potter (1999)) noted that likelihood functions of many
nonlinear models are non-smooth and multimodal. So, it may be inappropriate to
chooses one point in the parameter space and to use the large sample property to infer.

Therefore, to moderate the above problems, we adopt a Bayesian approach to
estimate the threshold parameters as well as the other parameters simultaneously. And
Bayesian method, by using information from the entire parameter space, captures this
finite sample uncertainty about the true parameter values. In addition to the above
inference advantage, a Bayesian method incorporates the investor’s prior belief about the
validity of the pricing model and managerial technique with the information in the data,
and thus it will result in more appropriate conclusions (see, Pastor and Stambaugh (2000,
2002), and Jones and Shanken (2005)). The disscrtation focuses on the application in
several important issues in financial ‘markets, including the mutual fund performance
evaluation and the forecasting in conditional covariance matrix.

For the first issue in this dissertation, we propose three-regime Bayesian threshold
models and use daily returns for each fund to examine the threshold effect and to test
this effect resulting from the change of mutual fund managerial micro-forecasting ability
and market exposures among different market conditions. Our results show that the
effect of public information in the three-regime model is more significant than that in the
two-regime model. The unconditional model will overestimate selectivity in the upside
market, but underestimate selectivity in the downside market. It also underestimates fund
market exposures whether in downside or upside markets. We also reveal clearly that
much managerial timing ability decides by their skills to forecast the downside market. In

addition, our results indicate that the conditional three-regime threshold model bring



Chapter 1. Introduction

most powerful detection for significant timing activity. Our empirical results also indicate
that selectivity and timing are negatively associated and the effect is especially significant
in the downside market. This is very important for investors to allocate their portfolio.

In the second issue, we present a robust threshold VAR (or VECM)-DCC-GARCH
model and use the Metropolis-Hastings (MH) algorithm and the Gibbs sampling
algorithm to estimate the parameters simultaneously. Our model extends existing
approaches by admitting thresholds in conditional means, conditional volatilities and
correlations of multivariate time series. Such an extension, allows us to account for rich
asymmetric effects and dependencies of conditional means, volatilities and correlations,
as they are often encountered in practical financial applications. In addition, we use the
concept of Chen and So (2006) to define  the 'threshold variables as the linear
combination of endogenous vatiables. This setting canh climinate excessively subjective
belief in threshold variable deciston. Besides, the sweight coefficient can serve as the
proxy in deciding which market is the price leader and which market is the price follower.
Finally, threshold values in our model are not fixed ex ante, but they are estimated from
the data, together with all other parameters in the model.

We investigate the empirical performance of our model in two data sets including
daily S&P500 futures and spot prices, and S&P500 and Nasdaql00 spot prices. Our
study attempts to use posterior odds ratio and Bayes factors as a formal tool for making
comparison between competing models. We reduce our testing problem to a Bayesian
model selection problem. We can then select the model with a higher posterior odds
ratio. We also present the performance comparison results of the one-step-ahead

forecast in the conditional covariance matrix. The forecast results are assessed by several
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criteria which include the views of statistical loss and risk managers.

Based on the estimation results, we find that the asymmetric dynamic structure is
obvious in both the dynamic relationship between S&P500 futures and spot markets and
between S&P500 and Nasdaql00 spot markets. We also detect that S&P500 futures
market is the price leader between S&P500 futures and spot markets, and S&P500 spot
market is the price leader between S&P500 and Nasdaql00 spot markets. Furthermore,
based on several in-sample and out-of-sample performance measures in the conditional
covariance matrix prediction, we find that the threshold model outperforms the linear

model across most measutre criteria.



Chapter 2. Measuring Mutual Fund Asymmetric Performance

Chapter 2.

Measuring Mutual Fund Asymmetric

Performance in Changing Market Conditions

1. INTRODUCTION

The scale of U.S. mutual funds, especially equity funds, has grown quite rapidly in
the past several decades. The trend illustrates that more and more investors prefer
investing their capital in mutual funds rather than directly investing in the equity market.
Due to the great number of funds in existence, it is significant to investigate whether
managers of actively managed mutual funds rely on superior stock selection skills
(micro-forecasting) and market timing capability (macro-forecasting) to outperform
passive strategies. Furthermore, Jstudies of “felationships between mutual fund
performances and characteristies .are worthwhile. for investors to reference when
selecting funds. The investigation 'of mutual-fund performance can serve as a guideline
for fund investors and provide thém detailed-information and previous performance
behavior about certain funds. In addition, the objective of identifying superior fund
managers is also of interest to academia as a challenge to the efficient market hypothesis.

Therefore, over the past 30 years, numerous evaluation techniques have been
proposed to examine the investment performance of mutual fund managers in the
academic literature. For mutual funds’ managerial stock selection skills, starting with
Jensen (1968), numerous studies employed regular proxies for the market portfolio such
as Capital Asset Pricing Model (CAPM) benchmark to evaluate the performance of
mutual funds. Later, Grinblatt and Titman (1994), Carhart (1997), and Wermers (2000)
argued that the use of CAPM as a benchmark would result in inconsistent outcomes and
were centered on examining managerial stock picking talents with several comparable

passive benchmarks. They also showed that performance tests are entirely sensitive to the
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Chapter 2. Measuring Mutual Fund Asymmetric Performance

chosen benchmark. In addition, Grinblatt and Titman (1989), Elton et al, (1993), Carhart
(1997), and Wermers (2000) studied whether mutual fund managers possess superior
talents for picking stocks with certain characteristics.

On the subject of managerial market timing ability, Treynor and Mazuy (1960),
Merton and Henriksson (1981), and Ferson and Schadt (1996) used monthly fund returns
to examine whether fund managers take advantage of superior information by increasing
(decreasing) market exposure before the stock market turns bullish (bearish) and found
that only a minority of fund managers have good market timing skills. Furthermore,
Ferson and Schadt (1996) argued that traditional performance measures may be biased
when fund managers use dynamic strategies resulting in time varying risk. Hence, Ferson
and Schadt (1996) took public information into consideration and proposed conditional
performance evaluation approach ,which is consistent with the semi-strong form of
market efficiency hypothesis.

In addition, when the frequencylof imatket timer (e.g. daily) is higher than that of
measured fund returns (e.g. monthly),; Goetzmann, Ingersoll, and Ivkovic (2000) found
that widely used Henriksson-Merton (HM) parameteric test would result in weak and
biased downward timing skill. Therefore, they adjusted HM type model to detect daily
timing skill without requiring daily timer data. But simulations showed that the adjusted
test was not as powerful as the classical HM test executed directly on daily timer returns.
Moreover, Busse (1999), and Bollen and Busse (2001) documented that daily data take
account of more efficient estimates of time variation in systematic risk and are more
powerful in testing timing ability than monthly data.

Although a variety of evaluation methods have been proposed and implemented to
study stock selection and market timing performance to date, they have only examined
managerial stock selection ability without distinguishing between good and bad market

conditions. Moreover, they have merely investigated the difference in funds’ market
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Chapter 2. Measuring Mutual Fund Asymmetric Performance

exposure between upside and downside markets, but have not examined the asymmetric
risk adjustment between the transitions from neutral (i.e. the market tends to be neither
downside nor upside) to upside markets and those from neutral to downside markets.
Additionally, in this essay, we take transaction costs into account when fund managers
want to adjust their portfolios among different market conditions. Thus, managers may
alter the overall risk composition of their portfolios in anticipation of excess market
return being larger (smaller) than a certain positive (negative) level other than zero. We
are also able to explore that managers’ overall timing ability mainly comes from downside
or upside market timing ability.

Furthermore, the majority of the earlier performance measure studies are based on
least squares estimation or maximum likelihood estimation. However, a Bayesian
approach of performance evaluatiog'may be more adequate from an investor’s viewpoint.
It combines an investor’s prior- belief about.the aceuracy of the pricing model and
managerial skills with the information in-the data and obtains posterior distribution of
the model’s parameters. As a result, the:.conclusions based on the Bayesian method may
be more informative for investors than those based on the traditional statistical approach.

To enable more powerful and efficient analyses of fund performance, we propose
three-regime Bayesian threshold models and use daily returns for each fund to examine
the threshold effect and to test this effect resulting from the change of mutual fund
managerial micro-forecasting ability and market exposures among different market
conditions. With regard to the chosen factor model, we select Carhart’s (1997)
four-factor model, which contains market factor (MKT), size factor (SMB),
book-to-market factor (HML), and the momentum factor (UMD).

Our results show that the effect of public information in the three-regime model is
more significant than that in the two-regime model. The unconditional model will
overestimate selectivity in the upside market, but underestimate selectivity in the

7



Chapter 2. Measuring Mutual Fund Asymmetric Performance

downside market. It also underestimates fund market exposures whether in downside or
upside markets. We also reveal clearly that much managerial timing ability decides by
their skills to forecast the downside market. In addition, our results indicate that the
conditional three-regime threshold model bring most powerful detection for significant
timing activity. Our empirical results also indicate that selectivity and timing are negatively
associated and the effect is especially significant in the downside market. This is very
important for investors to allocate their portfolio.

Subsequently, we adopt the annual estimation results based on the conditional
three-regime threshold four-factor model and use a fixed effects panel data model to
examine the relationships between investors’ behavior and past fund performances and
various fund characteristics. We find strong evidence that funds with better past
performances, except for downside;market timing ability, will attract more investors and
bring larger net cash flows. In=addition, net.cash. flows are persistent and positively
associated with fund sizes. We also find the invetse relationships between net cash flows
and lagged turnover, load charges, and expenses:

We also use a fixed effects panel data model to explore the relationships between
fund performances and characteristics. Although numerous prior studies have examined
their relationships, they mostly focused on selectivity performance and found the
following results. For the relationship between performance and fund size, Grinblatt and
Titman (1994) and Carhart (1997) found that managerial stock selection performance is
not apparently related to fund size, while, Chen et al. (2004) found that fund size
corrodes mutual fund performance. Moreover, prior evidence on the relationship
between turnover and performance is mixed. Elton et al. (1993) and Carhart (1997)
found that funds trading more actively have worse stock selection talents than those that
trade less frequently, while Grinblatt and Titman (1994) found a positive relation

between turnover and net mutual fund returns.
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Again, for the relationship between total load and stock picking skills, Elton et al.
(1993), Carhart (1997), and Dellva and Olson (1998) found that stock selection
performance of the load fund is lower than that of the no-load fund. For the relation
between expense and performance, Grinblatt and Titman (1994) and Carhart (1997)
found that high expense funds have worse performances than low expense funds, while
other extant literatures did not find any significant relations. In addition, Gruber (1996),
Chevalier and Ellison (1997), Dellva and Olson (1998), and Sirri and Tufano (1998)
found that funds with high cash positions and large net cash flows will produce superior
overall stock selection performance.

Our empirical analyses using the fixed effects panel data model show the following
findings. The selectivity and market timing performances are not long persistent. In
addition, we find that fund investors have no ‘good selection ability. Fund sizes will
corrode selectivity performance in' the lupside . market, while, they reduce fund
performance loss in the downside market.-Conversely, active managers will advance
selectivity performance in the upside market, whereas increase the losses of abnormal
returns in the downside market. Because managers of higher expense funds do not create
more performances to recover their charged fees, investors prefer to select funds with
lower expenses to maximize their net expense returns.

We also find that both managers with heavy trading as well as managers with low
expenses have superior downside market timing ability, while they have worse upside
market timing ability. In addition, net cash flows have negative impacts on timing the
downside market but positive impacts on upside timing ability. This suggests that
managers of large net cash flow funds might invest new cash in high beta stocks or call
options to generate better timing ability in the upside market. Conversely, they might
invest new cash in low beta stocks instead of put options and result in worse timing

ability but better selectivity performances in the downside market. Finally, we also find
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Chapter 2. Measuring Mutual Fund Asymmetric Performance

that funds with high expenses will have alert insights into the predictions of downside
and upside markets.

The rest of the essay is organized as follows. Section 2 presents the theoretical
methodology and the estimation procedure. Data and the performance estimation results
for an individual fund and all funds are described in Section 3. Section 4 investigates the
behavior of funds investors. Section 5 documents the relationships between fund

performance measures and fund characteristics. Section 6 concludes the essay.

2. UNCONDITIONAL AND CONDITIONAL BAYESIAN

THRESHOLD MODEL

The model we proposed here is called the Bayesian threshold model, which allows
the conditional variance to dependion its own pfevious realizations and to be drawn
from different regimes. Since the-purpose of this essay is to compare the stock selection
and market timing ability among-différent.market conditions, we assume the regression
coefficients of other factor variables are identical‘in any market conditions. Therefore,
the unconditional three-regime threshold model with conditional variances following
GARCH(1,1) process based on Carhart’s (1997) four factor variables, is specified as

follows:

(W 1) )
RPJ - (ap +’BP,MKT RMKTJ I{—oo o0 <Ruicr ¢ <Fp. } +ﬂp MKT RMKTt I{ersRMK”«p,z}

3 3
+(O[E)) +ﬂé,l)\/lKT RMKT,t)' I{fpz<RMKn<rp;—w + B smeRom. + B i R 2.1)

+ ,Bp,UMD RUMD,t +e&

£yi[Spn ~N(0. ), 2.2)
1 1) 2 1
e = (@50 +akes +bg,=hp,t—l)' I{—oo:rpﬁosRMKTvtdp’l}

)
pit 05Ny ) I{rp,lsRMm«p.z} (2.3)

Pl pt-1 ) I{rpﬁzgRMKmrpj:w}
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Chapter 2. Measuring Mutual Fund Asymmetric Performance

where R is the excess return of the fund p at time 4, Ryyr, is the market excess return

at time 7 and is also an observed variable determining the switching points, and the three

extra factors (Rgyg 1> Ry > Rump ) ate size, book-to-market, momentum factors at time 7

The threshold parameters r,, and r,, satisfy —oo<r  <0<r,, <o, and the

b

Pl

distribution of &, conditional on information up to #1, denoted by 3, |, is N (0, h,. )

To allow heteroscedasticity in R, we have a GARCH formulation in the conditional
variance equation for h, . Standard restricions on the GARCH parameters

areal’) >0,al) >0,b{)) 20, andal!) +b\!) <1 for j=123.

5

0, g a(3)) are the abnormal returns for the fund p in the

The parameters (ap ay,a

downside market, the neutral market, and’the upside' market, respectively. Moreover, the
parameters (/8;()1)MKT9 ﬁgz,)leT, ﬂ’(f,)leT) are the systematic risks for the fund p when the

stock market conditions are dowhside, neutral, and upside, respectively. We motivate
market timing from the fund managerial perspective, assuming that the manager attempts
to time market exposure in the fund shareholder’s best interests. The successful market
timer should increase the portfolio weight of highly-risky equities prior to the market
upswings. Therefore, the fund investors will earn more return when the market return is
larger than a certain positive level. Conversely, the successful market timer should
decrease the portfolio weight of highly-risky equities prior to the market downturns.
Therefore, it will reduce the loss due to market factors when the market return is below a
certain negative level. If a fund manager increases the market portfolio’s exposure prior

to the market rise and decreases the market portfolio’s exposure prior to the market fall,

then 8 Efl)\/IKT - ﬁél,)MKT B S,?\/IKT -p gfl)vIKT , and 8 ;()3,2\/IKT - ;()1,)MKT will be significantly larger

11



Chapter 2. Measuring Mutual Fund Asymmetric Performance

than zero. In addition, we can view ﬂp()zlzllKT - ,B,()I,)MKT and ,B,(f?leT - ,B,()z,)leT as indices of
managers’ timing ability to downside and upside markets, respectively. Furthermore, we

canuse &, to measure the fund managerial overall stock selection ability, where

_ _ 1] o N O\
@ =7| % zl{RWTVt«Nﬁ“p Zl{erSRMKTJ«M}M‘p ZI{RMK”NM} (24)

t=1 t=1 t=1

is the weighted average of abnormal performance in the three different market

conditions. If @ is significantly larger than zero, we say that the mutual fund manager,

on average, has a superior selectivity performance.

Because there may be public information that is correlated with future market
returns, managers who use just public information to time market should get no credit
for superior ability. Therefore, in order to eliminate this naive market timing ability and
allow time-varying returns and risky we postulate that'beta is a linear function of a vector
Z,, of predetermined variables' of information, as in Ferson and Schadt (1990).
Therefore, the conditional three-tegime.thteshold moedel based on four factor variables

can be expressed as follows:

Rpi = (Ofg) + (:B;(al,zleT +ALZ, ) Rukr ¢ ) I{*w:fp,oSRMKT,NpJ}

(2) ( () , ) )
+lo, + +A7z )R |
( P By v Pt JEMKTE ] M <Rir <) (2.5)
(3) (3) ' .
+ (ap + ﬂp,MKT + ApZH RMKT,t I{rp’ZSRMKT1<|’p)3:m}
+ B sve Rswie.c + B Rea + Bpuvo Rumo « + .10
where 7, , =2, ,— E(Z)represents the vector of deviations of Z,  from the average

vectof, Apmeasures the response of the conditional beta to the information variables,

and other notations are the same as equations (2.1) to (2.3). The criteria for measuring
the fund’s performance are also identical to those described in the unconditional model.
In the threshold class of models, classical estimation of parameters is usually done

by the maximum likelithood or the least squares methods with a joint grid search over the

12



Chapter 2. Measuring Mutual Fund Asymmetric Performance

threshold valuesl,, and I, ,using information criteria such as AIC or BIC. (see, e.g,

Tong (1990), Rabemananjara and Zakoian (1993), Li and Li (1996), Tsay (1998)) However,

the inadequacy of these approaches is to fix the threshold parameters (I, ,,r,,) in

advance before estimating the other parameters by least squares. Therefore, the
uncertainty of the threshold parameters cannot be taken into account when
implementing statistical inference for the other parameters. To moderate the problems
resulting from predetermining the threshold parameters, we adopt a Bayesian approach,
which allows us to estimate the threshold parameters as well as the other parameters
simultaneously. In addition to the above inference advantage, a Bayesian method
incorporates the investor’s prior belief about the validity of the pricing model and
managerial technique with the information in'the data, and thus it will result in more
appropriate conclusions. Speciffeally, we:|can  generate approximated samples from
Markov chain Monte Carlo (MCMC) methods. In otder to abridge the space, we only
describe the Bayesian estimation pfecedures for conditional model, which is as follows.
Given the above assumptions, based on the conditional three-regime threshold

four-factor model, it follows that the conditional likelihood function for the parameters

(0V,0,00),@,,7,) is

p>=p>=p

L(RP,RMKT,RSMB,RHML,RUMD,Z|®<;),®<;>,®(;>,Ap,q>p,1rp)
) ) 2
0|3 | (Rp’t—(ag’“r(ﬁ’gfh),,m+A’pzt_1)RMKT,t+CD’pft)) (2.0)
= Z exp| — 1y e s
t=1 | j=I 27Thp,t 2hp,t
where

®(pj) = (aﬁ’),ﬂ,()fh)m ) a'(pj,())’ agl,l)a ng1)) D= (IBp,SMB s By > B uwo ) >
f = (RSMB,t, RimLes RUMDJ) , X, = (rp,I’ I’p,2> , I =1 indicates that I <Ry, <r,;

13



Chapter 2. Measuring Mutual Fund Asymmetric Performance

and |, =0 otherwise, and h, is the conditional variance of the model. Bayesian

estimation requires us to specify the prior distributions for all unknown parameters. We

adopt independent normal prior and uniform prior on the regression and GARCH

p>=p>

parameters(®(l) eV @U DA ) That is,

2.7)

X
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|
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ks
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OCH[ (14007 IN (12 )1 (20050, a0, 807 >0 ag{3+bggg<1)}
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o TV O LY PN L 7SN 1 3 ) L Y

2 . ¥ . ! 2 3 . . 2
where N ( U, ) is a normal distribution“with-prior mean g and prior variance o~ ,

and I() is the indicator function «with |(S)=l if the event S is true, otherwise

I(S)z 0. Throughout the essay, we set prior mean Moy =Mooy =M =My, where

Mo, equals to -1 multiplied by the fund’s annual expense ratio divided by the number of

trading date per year. Intuitively, this implies that we believe in advance that the fund
manager does not possess superior skill of selecting stocks and that investing in mutual
funds will underperform the benchmark assets by the charged management expense. In

addition, the priors of factor parameters are set by u

Bhr —H

ﬂs)z,r)mm ﬂp MKT

My e = H5 o = Mo = 0, which imply that systematic risks of fund and market are

identical in any market conditions' and these three factors do not capture the behavior

' This can also be interpreted as that the fund manager does not have superior stock selection ability
and expert market timing skill.
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Chapter 2. Measuring Mutual Fund Asymmetric Performance

of expected mutual fund return, respectively. The prior mean of lagged public

information are set by s ok = 0, for all £, which means that a portfolio manager does not

use public information to predict the future market return. Leaving out overly subjective
belief, we let prior variances of all regression coefficients equal to one. Furthermore, if
the fund managers have ability to predict the market condition, they will adjust their
portfolio positions on risky assets in different market conditions. That is to say, good
fund managers should have prior beliefs about when to reallocate their positions on risky

assets in the portfolio. In general, they have higher probability of adjusting their market

exposure when the market condition attains certain level (ie. Ry, <C,, <0 or

Rykr: > C,, > 0). By contrast, they will have less motivation to change their highly risky

assets ratio of the portfolio when the market condition will become a little better or a

. ! ! ! !
little worse (Ryyr, <C, or Ry p>€,, wheéreC; <C,; <0and C,,>C,,>0). In

addition, they have a lower probability of- adjusting the highly risky asset ratio when the

4

p.l or

market condition will be much bettet’ or much worse ( Ry, <C
Rykrt > Cp,where €7, <c,,<C,, <0 andc;,>C,,>C,>0). Therefore, we adopt

a truncated normal prior on the threshold parameters r,; and I, ,, which can be

p.2>

written as
mn(Y,)=1(r,, )x1(r,,)

oc [N (/er‘l,o'urz,){1 ) I (RMKT,[IO] <r,, < O)}{N (,urpvz,afp’z ) I (O <r, < RMKT’[%])J ’ (2.8)

2

. 2 .
where My and My, are the prior means of I, and r,,, o, and o, ,are the prior

variances of [y, and I,,,andR; ) stands for the £th percentile of the market excess

p,2>

- 2 2 .
returns  Ryr —(RMKT,I,RMKT’Z,...,RMKT’T). The amounts of o, and o} =~ describe
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Chapter 2. Measuring Mutual Fund Asymmetric Performance

uncertainty of the managerial prior beliefs in selection of a switching point to adjust the

market risk exposure. If o ,and o} ,are large, it says that the manager has a more
P, p.

skeptical prior belief in selecting switching point to adjust fund’s systematic risks. In

. . . 2 2
contrast, the fund’s manager has a more determined prior beliefs for small o, ando; .
P! P

To avoid excessively subjective prior belief, we use weakly informative prior and assume

the prior means 4 =Ryqps) and 4, =Ry » and  prior  standard

deviations 0, =0, =7/8, where7 is the range of the market excess returns. The

posterior density for the parameters is proportional to the product of the prior density
and the conditional likelihood function. Given the conditional likelihood function in
equation (2.6) and the prior densities in equations (2.7) and (2.8), the conditional joint

posterior density can be written as

p(®(’)1),®(p2)’®(§),cbp,Ap,Yp‘RP,RMKT,RSMB,RHML,RUMD,Z)

o L( Ry, R R R Ry Z{005 05,00 07 A, 2.9)

<11(01),05,60), 0,4, )xI1(Y,)

Since this distribution does not have a standard form, we can compute moments of
the joint posterior using the Metropolis-Hastings (MH) algorithm, which is a MCMC
procedure introduced by Metropolis et al. (1953) and extended by Hastings (1970). The

estimation procedures of the Bayesian analysis are concisely outlined as follows. Sample

iteratively  from p(@‘Rp,RMKT,RSMB,RHML,RUMD,Z) to generate a posterior

sample 0',0%,...,0", where Nis set to 10,000. Next, construct® , the point estimate

of ®

as the sample mean of the posterior sample, which is written

b

2s@ =

N
= N_M Z@é , where M =5,000 is the number of burn-in iterations to attain
- =M+l

convergence. The detailed descriptions of above procedures are shown in Appendix. The
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Chapter 2. Measuring Mutual Fund Asymmetric Performance

unconditional or two-regime threshold models are also similar to above procedures.

3. DATA AND PERFORMANCE EVALUATION RESULTS
3.1. Data

Our primary mutual fund data is drawn from the Center for Research in Security
Prices (CRSP) Survivor-Bias Free Mutual Fund Database. The database includes
information collected from several sources and is designed to be a comprehensive sample
of all funds from January 1962. Because the performance of disappearing funds is
typically worse than that of surviving funds, inferring conclusions only on the selected
sample of funds extant at the end of the time period will induce survivorship bias.
Grinblatt and Titman (1989), Brown, Goetzman, Ibbotson, and Ross (1992), Brown and
Goetzman (1995), and Malkiel (1995) concluded that the average return of surviving
funds is 50 to 140 basis points pet.annum higher than returns on all funds. Following
many prior studies and dropping-out survivorship bias problems, we restrict our analysis
to the subset of domestic diversifiéd equity funds with a “common stock” investment
policy and total net assets more than $500 million, as well as available daily net asset
values (NAVs) and dividends (Ds). Therefore, by eliminating some redundant
observations, our mutual fund sample consists of 622 open and domestic equity funds.
These funds are classified as aggressive growth (141 funds), growth and income (202
funds), and long-term growth (279 funds) according to the fund objective of Investment
Company Data, Inc. ICDI). In our sample, there are thirteen funds which are not
surviving on September 30, 2004. It is noted that the above objective code is based on
the criterion specified by Standard & Poor’s Fund Services in 1993. We take daily net
asset values per share and dividends from CRSP Survivor-Bias Free US Mutual Fund
Database. We then construct a daily return series for each fund from January 3, 2001 to

September 30, 2004, by combining NAVs and Ds. We define return as
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NAV,, +D
F o NAVRetDpe (2.10)

pt-1
where NAV,, and D are the net asset value and the dividend of fund p at the end of

date # respectively. Because returns are calculated using net asset values, this measure of
return is net of operating expenses.

We use the Standard and Poors 500 (S&P 500) market return proxies for the market
portfolio. In addition, to compute daily excess returns on the funds and on the market
return, we use the one-month T-Bill rate from Federal Reserve Bank of St. Louis’
website to estimate the return on the riskless asset. We also capture the daily SMB, HML,
and MOM factor data from Ken French’s website.

To represent the public information for.our empirical analyses, we choose the same
variables used by Ferson and Watther (1996);svhich, have been shown to be useful in
predicting stock returns. The vatiables are (1) the lagged level of the one-month T-Bill
yvield, (2) the lagged dividend yield-for the CRSP-value-weighted NYSE and AMEX stock
index, (3) the lagged slope of the US!Government term structure, measured as the
difference between constant-maturity ten-year Treasury bond and three-month Treasury
bill yields, (4) the lagged corporate bond quality spread, measure as the difference
between Moody’s BAA-rated and AAA-rated corporate bond yields, and (5) a dummy
variable for month of January. The data of conditional information are from the data
library of the Federal Reserve Bank of St. Louis.

3.2. Performance estimation results for an individual fund

We first compute the moments of the posterior distribution of the parameters for
the model and the performance measure for a specific fund, which is randomly drawn
from the investment objective category of aggressive growth funds. The main reason for

this choice is that the fund whose investment objective is classified as aggressive growth
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can invest in more risky and flexible assets such as borrowing more than 10% of the
value of its portfolio, short selling, investing in unregistered securities, and purchasing
options. Therefore, the systematic risks in different market conditions for aggressive
growth funds may have more significant differences. The total net assets of this fund at
the end of 3 quarter 2004 are $1,653.7 million. Annual turnover ratio, total load fees
ratio, and expense ratio are 78 percent, 5.5 percent, and 1.3 percent, respectively.

As interpreted in the previous section, given the form of the conditional likelihood
and the assumed prior independence among the regression parameters, the GARCH
parameters, and the threshold parameters, the regression and GARCH parameters in
each regime conditional on the threshold parameters depend only on the data and the
prior distribution in its regime. For the specific aggressive growth fund, the
Metropolis-Hastings algorithm is implemented ‘to'.compute the posterior means and
standard deviations of all parametets,'as described in Appendix. We report the posterior
means and standard deviations ofi the parameters based on the unconditional
two-regime * and three-regime threshold models and some performance measure

parameters in Panel A and B of Table 2.1, respectively.

% This model can be viewed as an extension of Merton-Henriksson (1981) model. Here, we also allow
that funds’ abnormal returns are different between up and down markets and assume abnormal return
with a time-varying heteroskedasticity property.
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TABLE 2.1 — Bayesian Estimation Results for a Specific Aggressive Growth
Fund from Unconditional Two- and Three-Regime Threshold Four-Factor Models

Panel A. Unconditional two-regime threshold four-factor model

Regime I Regime 11
Parameter
I:RMKT,l < 0] [ MKT .t = 0]
a(ﬂi) (%) -0.0537 (0.0292)* -0.0806 (0.0263)***
E)J,)m 1.0216 (0.0283)*** 1.1258 (0.0272)***
a(DJ()) 0.0088 (0.0047)* 0.0042 (0.0032)
agll) 0.1229 (0.0284)*** 0.0572 (0.0278)**
bf]jl) 0.8535 (0.0389)*** 0.8969 (0.0374)%**
Parameter Regime II- Regime I
a, (%) -0.0269 (0.0397)
(i) 0.1042 (0.0366)***
p.MKT
Parameter
Bosve 0.3768 (0.0244)***
B s -0.1629 (0.0346)***
Boowo 0.0348 (0.0193)*
@, (%) -0.0676 (0.0194)***
Panel B. Unconditional three-regime threshold four-factor model
Regime | Regime 11 Regime 11
Parameter
I:RMKT,l <r|] I:rl SRMKT,( <r2:| I:RMKTl >rz:|
a(ﬂi) (%) -0.0381 (0.1282) -0.0449 (0.0163)*** -0.1584 (0.0673)***
E)Jr)m 1.0435 (0.0708)**x* 1.0519 (0,0360)*** 1.1688 (0.0439)**x*
al)) 0.0886 (0.0381)%** 0.0062 (0.0053) 0.0288 (0.0157)**
al) 0.2197 (0.0689)*** 0:041 (0.0251) 0.1444 (0.0668)**
bfﬂ) 0.5794 (0.1694)%%** 0.8286 (0.0595)*** 0.7872 (0.0833)***
Parameter Regime II- Regime 1 Regime 11I-Regime 11 Regime I1I- Regime 1
a, (%) -0.0068 (0.1290) -0.1135 (0.0691) -0.1203 (0.1457)
E)J,)m 0.0083 (0.0800) 0.117 (0.0571)** 0.1253 (0.0797)
Parameter
Bose 0.3963 (0.0257)***
Bosmi -0.1776 (0.0358)***
Boowo 0.0435 (0.0200)**
r,. (%) -1.1203 (0.0748)***
. (%) 0.6634 (0.1884)***
@, (%) -0.0719 (0.0281)***

Panels A and B in the table shows the coefficient estimates for unconditional two- and three-regime threshold four-factor
models, respectively, which are based on the daily market excess returns and the daily excess returns of a specific growth
fund for sample period from January 3, 2001 to September 30, 2004 (940 days). The unconditional two-regime model
with daily conditional volatility estimates from GARCH (1, 1), which we adopt here, is as follows.

Ry = (a(pl) +ﬂ:)l.=wk'r RMKT.()'I{RMH <ol +(‘7‘(2) + ﬁ:fn)AKT Ruir « )'1{0<an + By sve R + By i Rina e + Bypomo Ruwoe + €ps
where £,,|3,, ~N (0, h,,) and h, ( ) +allel, +bh, ) — +(a( +alleZ +b)h ,) fo<F
The unconditional three-regime threshold four-factor model is specified as follows.
Ryt ( U ﬂp wict Rukr ¢ )‘1{,w:,ogRMKT_I<,} +<a(pZ) +ﬁ,(fr)w<r RMKTJ)'I{HSRMKHGZ} +<‘ZS) +ﬁSr)\nKT RMKT{).l{ngRMKHq‘:x}
+ By susRsvis.c + By s Ry + By oo Roos +&py» Where 2, |5, ~N (0, h, ) and
h = (al, +ale?, +b{h ) <R <) +(af) +alle? +bh, ) P +(alh +allar, +bih )

The numbers in parentheses are standard deviations. *,** and *** indicate statistical significance at 10%, 5%, and 1%
levels (two-tailed), respectively.

{Fo2=Runer e <rpa=c]
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The results in Table 2.1 indicate that the systematic risk exposure increases when the
stock market tends to rise regardless of two- or three-regime threshold models. However,
the selectivity performance of fund manager decreases in the rising market, but the
difference is not significant. We also find that the fund manager has a good market
timing ability, which mainly results from the difference between neutral and upside
markets ( 0.117/0.1253~93.4% ). In addition, two-regime threshold model may
underestimate the quantity of changes in abnormal return and systematic risk exposure
between downside and upside markets. The average abnormal returns are -0.0676 percent
and -0.0719 percent a day (or about -16.9 percent and -17.9 percent a year) based on two-
and three-regime threshold models, respectively. The intuition is that the manager has
inferior ability to select undervalued securities and two-regime threshold model may
overestimate fund manager’s selectivity.

The GARCH parameters are-almost significantly larger than zero in Panels A and B.
This indicates that the abnormal return’exhibits, the volatility clustering phenomenon.
That is to say, large changes in prices‘tend to cluster together and result in persistence of
the amplitudes of price changes. In addition, the daily unconditional volatilities of
abnormal returns in different regimes are 0.611 percent and 0.305 percent’ (or about
9.66 percent and 4.82 percent a year) in the two-regime threshold model, and 0.664
percent, 0.218 percent, and 0.422 percent (or about 10.499 percent, 3.451 percent, and
0.672 percent a year) in the three-regime threshold model, respectively. This
demonstrates that volatilities of stock selection performance in downside and upside
markets are larger than that in the neutral market. Furthermore, the results show that the
volatility of stock selection performance in the downside market is larger than that in the

upside market. The reason for this phenomenon may be that investors usually have larger

? The daily unconditional volatility for the fund p in the jth regime is equal to \/a(pj()) / (1 —al) _bfjjl)) .
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impulse responses when receiving bad news than good news.

The estimation results for threshold parameters reported in Panel B of Table 2.1 are
-1.1203 percent and 0.6634 percent, and their standard deviations are 0.0748 percent and
0.1884 percent, respectively. This indicates, on average, that the manager will adjust his
investment strategy when he predicts the market excess return is larger than 0.6634
percent and lower than -1.1203 percent. In addition, the asymmetric switching points
may be explained as “languid” and “alert” anticipations in downside and upside markets,
respectively. The manager’s belief in choosing the switching point to the upside market is
more diffuse than that to the downside market.

Furthermore, we take the public information into consideration to evaluate the
specific fund’s performance and show the results in Table 2.2. The differences between
conditional two- and three-regime: threshold models are similar to those between
unconditional two- and three-regime. threshold:models. In Table 2.2, we find that only
the variable dividend yield is statistically-Significant for-this specific fund. The coefficient
of this variable is negative, which would:be expected since a lower level of dividend yield

predicts higher market returns.
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TABLE 2.2 — Bayesian Estimation Results for a Specific Aggressive Growth
Fund from Conditional Two- and Three-Regime Threshold Four-Factor Models

Panel A. Conditional two-regime threshold four-factor model

Regime I Regime II
Parameter
[Rukry <0] [Rur, 20]
V(%) -0.0686  (0.0273)** -0.0728  (0.0265)***
() e 1.0293 (0.0271)*** 1.1488 (0.0275)***
al)) 0.008 (0.0041)** 0.0042 (0.0030)
all) 0.1382 (0.0312)*** 0.0432 (0.0257)*
bl 0.8392 (0.0394)*** 0.911 (0.0334)***
Parameter Regime II- Regime I
all (%) -0.0042  (0.0383)
) 0.1195 (0.0355)***
Parameter Parameter
Byswe 03823 (0.0258)*** 5, -0.0286  (0.0451)
By -0.1224  (0.0371)%*** 3, 203990 (0.1331)%**
Bywo 0.0671  (0.0212)*** S, 0.0056  (0.0342)
a, (%) -0.0708 (0.0188)*** 8y -0.0996 (0.0720)
Sys 0.0367 (0.0391)
Panel B. Conditional three-regime threshold four-factor model
Regime | Regime 11 Regime 11
Parameter [Rucr <1 [ <Rykre <1 ] [Rucre 21 ]
!V (%) -0.1473 (0.1296) -0.0467 (0.0167)*** -0.1141 (0.0673)*
B 0.9940 (0.0723 )%*#* 1.0805 (0.0351 )*** 1.1672 (0.0447)***
ay) 0.0708  (0.0313)%* 0.0056  (0.0041) 0.0200  (0.0136)
all) 0.2050 (0.0684)*** 0:0470 (0.0244)* 0.1175 (0.0645)*
bl 0.6657 (0.1337)*** 0.8417 (0.0550)*** 0.8182 (0.0791)***
Parameter Regime II- Regime I Regime [II- Regime 11 Regime I1I- Regime 1
o\ (%) 0.1006 (0.1302) -0.0674 (0.0698) 0.0332 (0.1540)
AU 0.0866 (0.0808) 0.0867 (0.0574) 0.1732 (0.0783)**
Parameter Parameter
Byswe 0.3923  (0.0263)*** S, -0.0095  (0.0502)
By -0.1372 (0.0382)%*** 3, -0.3095  (0.1442)**
Boomo 0.0702  (0.0222)*** s 0.0098 (0.0384)
N (%) -1.1196  (0.0771)*** S 0.0773  (0.0767)
o2 (%) 0.6581  (0.2127y** Sps 0.0464  (0.0434)
a, (%) -0.0810 (0.0271)***

The table shows the results of Bayesian estimation for conditional two- and three- regime threshold four-factor models in
Panels A and B, respectively, which are based on the daily market excess returns and the daily excess returns of a specific
growth fund for sample period from January 3, 2001 to September 30, 2004 (940 days). The conditional two-regime
model with daily conditional volatility estimates from GARCH (1, 1), which we adopt here, is as follows.

5 S
1 1 2 2
Rp_l = [U‘L) + [ﬁé)MKT + Z 5;;,.2.,171 j Rukr ¢ } : I;RM” <0} + [a(p V4 [ﬂ:ﬂ?AKT + Z‘Sp,u Zig j Ruier 1 j . l{ogRMKT | + ﬂp,SMB R + ﬂp_HMLRHML,l
i =]

+ ﬂp,UMD RUMD,( +Ep
The conditional three-regime threshold four-factor model is specified as follows.

5 5
1 1 N 2 2
Roi = [“Ea) + (ﬁf,_)mm + 2. 00i% j Rucr J T erprer [“E: '+ [ﬁfm)m LI ) Rukr ¢ ] T <R en)
i=1 ; i=l ;

|

5
(3) (3)
+ (“p + (ﬂp.MKT + . 5p.i Zi.t—lj Rykre J . l{rZSRMKT.l<I3:m} + ﬂp.SMB RSMB,t + ﬂp,HML RiwLe + ﬂp.UMD Romo. + Ept

i=1

The numbers in parentheses are standard deviations. *,**, and *** indicate statistical significance at 10%, 5%, and 1%
levels (two-tailed), respectively.
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We also compare the dissimilarities between unconditional and conditional models.
In two-regime threshold models, the momentum effect in the conditional model
becomes more significant, and the unconditional model will overestimate fund’s
abnormal return. We find more significant inconsistency on evaluating selectivity and
market timing skills in three-regime threshold models. First, the abnormal return in the
unconditional model will be overestimated in the downside market and underestimated
in the upside market. Second, the market exposure will be overestimated and
underestimated in downside and neutral markets, respectively, without taking
predetermined information into account. In the conditional model, the market timing
performance will averagely involve the skills to forecast downside and upside markets,
instead of the pure aptitude for forecasting the upside market. Third, we find that the
quantity of market timing measuremyent will be underestimated and the average abnormal
return will be overevaluated compated to the conditional model.
3.3. Performance estimation results.for-all funds
Table 2.3 presents the avefage- coefficient estimates for unconditional and
conditional two- and three-regime threshold four-factor models of the 622 mutual funds
with a sample period of January 3, 2001 to September 30, 2004. In Panel A, we find that
the market exposure decrease, moving down the table from the AG funds to the GI
funds, no matter in up or down markets based on the unconditional two-regime model.
However, when we divide market conditions into three regimes, Panel B of Table 2.3
shows that the market exposure increase from the AG funds to GI funds in the
downside market and demonstrates that the two-regime threshold model will
overestimate or underestimate the market exposure in the downside market. In addition,
for the AG and LG funds, we find that their market exposure increases from downside
to neutral markets, while it decreases from neutral to upside markets. The result is
opposite to the GI funds. Moreover, the GI funds have lowest down-threshold and
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highest up-threshold. This indicates that the managers of GI funds have more laggard

sensibility to predict downside and upside markets.
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TABLE 2.3 — Bayesian Estimation Results for All Funds from Unconditional and Conditional Two- and Three-Regime Threshold
Four-Factor Models

Panel A. Unconditional two-regime threshold four-factor model

Fund Types (%) Botucr ol (%) B Byswe J By
AG -0.05489 1.00695 -0.01597 1.03696 0.49184 -0.02554 -0.01910
LG -0.04413 0.99968 -0.01014 1.02284 0.04403 -0.07130 -0.00974
GI -0.00305 0.97831 -0.01031 0.98447 -0.12064 0.08191 0.04707

Overall -0.03323 0.99439 -0.01152 1.01358 0.09207 -0.01117 0.00659

Panel B. Unconditional three-regime threshold four-factor model

Fund Types (%) Bitucr o (%) B ) (%) Biur By.swe By By (%) r, (%)
AG -0.16234 0.95403 -0.02518 1.04212 Q.013‘35 " 1,02741 0.49702 -0.01188 -0.02418 -0.88907 0.85977
LG -0.08505 0.97696 -0.01968 1.03212 70.01166 1.01289 0.04208 -0.07100 -0.01133 -0.82026 0.86728
GI 0.01311 0.98499 -0.00887 0.96885 ' 0.01258 0.97094 -0.12027 0.07269 0.04623 -0.91900 0.87863

Overall -0.07069 0.97437 -0.01741 1.01384 | 0.01234‘ ; - 1.00256 0.09248 -0.01093 0.00445 -0.86792 0.86927

Panel C. Conditional two-regime threshold four-factor model

Fund Types (%) Bt ) B 5 T il By
AG -0.05082 1.01934 -0.02763 1.06075 0.48465 -0:00302 -0.01905
LG -0.03238 1.01508 -0.02028 1.03808 0.03358 -0.08140 -0.01763
GI 0.00327 0.97240 -0.00398 0.96336 -0.11983 0.04020 0.04029

Overall -0.02498 1.00219 -0.01665 1.01896 0.08601 -0.02414 0.00086

Panel D. Conditional three-regime threshold four-factor model

Fund Types (%) Bitucr o (%) B ) (%) Bir By.swe By By (%) r, (%)
AG -0.16189 0.96118 -0.02483 1.03888 -0.01147 1.05371 0.49312 0.00471 -0.02105 -0.87826 0.80234
LG -0.04867 1.00494 -0.01860 1.02780 -0.02103 1.03865 0.03549 -0.07918 -0.01719 -0.76992 0.75371
GI 0.04233 0.99274 -0.00819 0.95922 0.01085 0.95625 -0.12003 0.03986 0.03994 -0.82127 0.75383
Overall -0.04478 0.99106 -0.01663 1.00804 -0.00851 1.01530 0.08873 -0.02150 0.00049 -0.81116 0.76477

Listed are average coefficient estimates for unconditional and conditional two- and three-regime threshold four-factor models, which are based on the daily market excess returns and the daily excess
returns of the 622 mutual funds with sample period from January 3, 2001 to September 30, 2004. The models, which we apply in Panels A and C are the same as those that we mention in the Table 2.1.
Moreover, the models which we adopt in Panels C and D are specified in the Table 2.2.
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Comparing unconditional with conditional two-regime threshold models, we find
controversial results. In Panel A, we find the GI funds with slight market timing ability.
But separating the performance from public information, there is no expert market
timing skill any more for the GI funds, which is shown in Panel C of Table 2.3. In Panel
D, the market exposures become monotonically increasing or decreasing followed by
market conditions compared with Panel B. The amounts of change in market exposures
are more significant than those in the unconditional model. Comparing Panel A with
Panel C, we find that the unconditional model results in the descending and ascending
biases in the abnormal return by 2.061 percent and 1.283 percent a year in down and up
markets. However, the phenomenon is more obvious for the three-regime threshold
model. The unconditional model will bias the abnormal return downward by 6.478
percent and upward by 5.213 percent a year in downside and upside markets, respectively.
Furthermore, on average, dowm-threshold and up-threshold get higher and lower,
respectively. Therefore, the unconditional_model may underestimate or overestimate
fund manager’s anticipations in choosing switching points to downside and upside
markets.

Table 2.4 lists the count of funds that have positive and negative changes in
abnormal return and risk exposure coefficients and the number of funds that have
significantly positive and negative shifts in abnormal return and risk exposure coefficients.
We compare the discrepancy between unconditional and conditional models. In Panels A
and C, even if the fraction of managers who have positive or negative changes in
selectivity are similar, the change in selectivity between down and up markets gets less
significant in the conditional model. The unconditional model biases the timing
coefficients upward especially for the GI funds. For the three-regime threshold model,
we find that the differences between unconditional and conditional models are similar to

those for two-regime threshold model but the differences are more apparent. For
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example, the unconditional model overestimates seriously the timing ability to forecast
downside market and underestimates less the timing ability to predict upside market. In

addition, although the fractions of managers who have significantly positive or negative
timing coefficients, ,Br()z,)\,,KT - ﬂél)MKT and ﬂﬂnm - ﬂgzzﬂm , are low, the portion of funds

whose timing coefficient between downside and neutral markets is significantly high. The
conclusion is contrastive to the unconditional three-regime models whose timing
coefficients, between downside and neutral markets and between neutral and upside
markets, are more significant, but timing coefficient between downside and upside

markets is less significant.
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TABLE 2.4 — Unconditional and Conditional Measures of Selectivity and Timing
Based on Two- and Three-Regime Threshold Four-Factor Models

Panel A. Unconditional two-regime threshold four-factor model

(1)

2
ﬂé,l{AKT - ﬂp,MKT

Fund Types Sizes % af’l)
— + — +
AG 141 48(17) 93(43) 35(3) 106(38)
LG 279 92(26) 187(99) 71(6) 208(66)
GI 202 91(33) 111(36) 56(12) 146(30)
Overall 622 231(76) 391(178) 162(21) 460(134)
Panel B. Unconditional three-regime threshold four-factor model
Fund Types Sizes a(pz} — a(”]) a(;) _a(;) a(;) _a(”l)
— + — + — +
AG 141 34(13) 107(63) 55(11) 86(19) 35(19) 106(58)
LG 279 96(28) 183(88) 106(23) 173(55) 90(34) 189(89)
GI 202 101(41) 101(21) 56(11) 146(36) 83(32) 119(40)
Overall 622 231(82) 391(172) 217(45) 405(110) 208(85) 414(187)
Fund Typss  Sizes Prcr =By By = Py Bt =B
— + — + — +
AG 141 45(13) 96(55) 7L(20) 70(25) 28(4) 113(43)
LG 279 94(24) 185(96) 162(60) 117(29) 101(14) 178(55)
GI 202 92(33) 110(30) 121(49) 81(23) 112(27) 90(9)
Overall 622 231(70) 391(181) 354(129) 268(77) 241(45) 381(107)
Panel C. Conditional two-regime threshold four-factor model
Fund Types Sizes a(pz‘ — as) ﬂ'(’?“)"KT ¥ﬂ:’l':m
— o - +
AG 141 49(4) 92(14) 28(4) 113(44)
LG 279 114(24) 165(28) 91(19) 188(58)
GI 202 100(17) 102(7) 142(30) 60(6)
Overall 622 263(45) 359(49) 261(53) 361(108)
Panel D. Conditional three-regime threshold four-factor model
Fund Types Sizes a(pZ) — zxf}]) ag") _aLZ) a(;) —ag)
— + — + — +
AG 141 36(11) 105(62) 64(8) 77(6) 31(18) 110(51)
LG 279 122(44) 157(66) 142(32) 137(26) 125(46) 154(54)
GI 202 170(69) 32(5) 56(8) 146(31) 139(29) 63(11)
Overall 622 328(124) 294(133) 262(48) 360(63) 295(93) 327(116)
FundTypes  Sizes Biur = By Pis =P B =Byt
— + — + — +
AG 141 41(11) 100(43) 57(4) 84(12) 32(5) 109(52)
LG 279 124(32) 155(38) 131(11) 148(32) 106(28) 173(60)
GI 202 157(35) 45(6) 135(14) 67(13) 162(85) 40(4)
Overall 622 322(78) 300(87) 323(29) 299(57) 300(118) 322(116)
The table shows the numbers of funds which their changes in selectivity and systematic risk are negative and positive between

different market conditions based on unconditional and conditional two- and three-regime threshold four-factor models. The
number in parentheses represents the number of statistically significant parameter estimates at 5% level (two-tailed). The
sample consists of 622 mutual funds and sample period is January 2, 2001, to September 30, 2004, a total of 940 trading days.
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Furthermore, we compare the conditional two- with three-regime threshold models.
We find that the fraction of funds with significant changes in selectivity between
different market conditions is higher, when the three-regime threshold is used instead of
two-regime. In addition, the three-regime threshold model adds the fraction of funds
with significant timing coefficient between downside and upside markets especially for
the GI funds. In Table 2.5, we try to know that the manager’s timing ability is mainly
generated from the skill to predict downside or upside markets. We find that most fund
managers with significant timing coefficients will adjust slightly their market exposure to

a certain direction. Therefore, there are less fraction of funds with significant timing
coefficients ,6’(2) — ,B(l) and ﬂ(3) - ,3(2) But, as long as we only examine the
> P, MKT p,MKT p,MKT p,MKT * 5 g w y

timing coefficient between downside and, upside markets, this will result in a significant
timing coefficient. In addition, we.find thatthe Significant timing coefficients most result

from the changes in the market exposure between downside and neutral markets.

TABLE 2.5 — Frequency Counts ofSignificantly Positive and Negative Market
Timing Coefficients Based on the Conditional Three-Regime Threshold Model

Significant at 5 percent level

(Bt = Bikr - Biaks = Bate - Biaks = Biokr) N Pite =Bie Pisk =Piakr Pk = Buakr
(+++) 117 30 7 75
(+—+) 129 53 7 31
(=++) 76 9 31 10
(==-) 140 17 8 85
(=+-) 106 52 19 29
(+--) 54 4 14 4

Divide total sample into six possible regions based on the manager’s market timing skills. The frequency counts of
significantly positive and negative market timing coefficients based on the conditional three-regime threshold model
are reported. The sample consists of 622 mutual funds with sample period from January 3, 2001 to September 30,
2004.

To examine the relationship between selectivity and timing skills, we compute

pair-wise correlation coefficients of seven parameter estimates which are used to evaluate
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funds’ performance. The correlation coefficients for the full sample are presented in
Table 2.6. For the selectivity correlations between any two different market conditions,
we find that the selectivity in the downside market is positively correlated with that in the
neutral market, but is slightly negatively correlated with that in the upside market. In
addition, we find that the average selectivity mainly depend on the managers’ selectivity
ability in the downside market, and latter are those in neutral and upside markets. The
similar results happen in the market timing. Fund managers’ market timing coefficients
between downside and upside markets are highly positively correlated with those between
downside and neutral markets. The managers with superior timing ability to forecast the
downside market will posses inferior timing ability to predict the upside market

simultaneously.

TABLE 2.6 — Correlation:Cocffigients for Selectivity and Timing Estimated
Parameters Based on the Conditional Threc:Regime Threshold Model

[24 a(l) Ol(z) 0!(3) ﬂrEAzzT _ﬂS}LT ﬂlslil)(T _ﬂrEAZ}lT rSAsle - &})(T

a 1.0000 0.8266%** = 0.6407F KT TTO3554 4 5-0.7660%**  -0.2289%**  -0.93]15%**
a 1.0000 0:4196%%*  -0.1499%F%  _0.8880%**  (.1308%**  -0.8088***
a®? 1.0000 0.1895%*%  .0.4663***  0.0543 -0.4346%%*
o 1.0000 0.0895%*  -0.7395%%%  _0.4]55%%*
B~ pLL 10000 -0.3551%%  0.7686***
A B 1.0000 0.3251%%%
ﬂS&T —ﬂmr 1.0000

Pairwise correlation coefficients of selectivity, market timing, and threshold estimated parameters for the full sample
are reported. *, ** and *** indicate statistical significance at the 10%, 5%, and 1% levels (two-tailed test),
respectively

For the relationship between managers’ selectivity and timing ability, the correlation
between the average return and the timing coefficient in our sample is -0.9315. This
means that managers with good selection ability tend to be poor market timers, which is
consistent with the findings in Henriksson (1984), Chang and Lewellen (1984), and
Glosten and Jagannathan (1994). And, this appearance is more obvious in the downside

market than in the upside market. The reason may be that the manager purchase put
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options to hedge the market exposures in the downside market and this will result in a
naively superior timing ability. Clearly, this type of timing is artificial and is irrelevant to
manager ability. Meanwhile, the hedge cost is reflected in lower manager selectivity.
However, the evidence in the upside market is not as powerful as that in the downside
market. This indicates that although more managers use options to hedge market
exposures in the downside market, fewer managers earn more market premiums by

options in the upside market.

4. BEHAVIOR OF MUTUAL FUND CLIENTS

In this section, we conduct an empirical analysis of the determinants of mutual
fund flows, focusing on the past performance and characteristics variables. We use annual
total net asset values from Standard.& Poor’s Micropal to calculate annual normalized net
cash flow for each fund. We define normalized.net cash flow for the fund p during year #

as

TNA  —~TNA  (1+R
NCF,, =—" piall+Ry) , 2.11)
TNA

p.t-1

where TNA, , is the fund’s total net asset value at the end of year # and R, is the fund’s
return during year 7

We use conditional three-regime threshold four-factor model to estimate managers’
selectivity, market timing ability, and thresholds as measurement of funds’ previous one
year performance. The fund characteristics which we adopt in this essay are total net
assets (TNA) under management in millions of dollars, turnover (TURN) defined as the
minimum of aggregate purchases and sales of securities divided by the average TNA over
the calendar year, total loads ratio (LOAD) which include all maximum front, deferred,
and redemption charges as a percentage of new investment, expense (EXPEN) which is
the total annual management fees and expenses divided by year-end TNA, percentage
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invested in cash equivalents (CASH), and the dummy variable for the fund’s status on
September 30, 2004 (I(p€LIVE)), where (I(p€LIVE)) equals to one if the fund p is still
surviving on September 30, 2004, and equals to zero otherwise.

To control the impacts of both investment objective and year of observation, we

estimate the following fixed effects panel regression.

3 5
NCF,, =6, +> OYEAR + 6 INVOB, +,al) + 0,00 + a5 +6,( 85 - A1)
i=1

i—4
+0, (A5~ B)+ 6, m(TNA
+6,EXP, , +6,CASH

p.t-1

)+6,TURN,  +6,LOAD, 2.12)

p.t-1

+0,NCF

p.t-1

+0,1(peLIVE)+e,,

p.t-l p.t-1
where INVOB  and YEAR, ate dummy variables for investment objective and year of
observation, respectively. The first five variables in Equation (2.12) comprise the fixed
effect model and account for period-specific fund net cash flows attributable to the same
period economy-wide and investment-style “effects. In addition, to control for
autocorrelation and heteroscedasticity in the panel regtession, we allow depend variable
to follow a common AR(1) process and for'each-fund it has its own variance. Then again,
we allow for disturbances to be contemporaneously correlated across funds.

The results presented in Table 2.7 indicates that the net cash flow are significantly
and positively associated with all past selectivity and timing performance measures at 1
percent level except for the market timing ability between downside and neutral markets.
The finding provides supporting evidence that the naive downside market timing ability
resulted from the operation of options is not valuable to fund investors. The behavior of
Investors mainly relies on past managers’ selectivity and upside market timing ability. In
addition, there is a strong positive relationship between mutual fund flows and last-year
threshold points of downside and upside markets. The results demonstrate that investors

prefer managers with alert insight to forecast the downside market but with languid

perception to forecast the upside market.
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TABLE 2.7 — Regression of Net Cash Flow on Fund’s Past Performance and Characteristics Based on the Conditional Three-Regime Threshold
Four-Factor Model

Explanation variables

Dependent
Performance variables for lagged one year Characteristics variables for lagged one year Status
variable
" (% (% (% (2) gl 50 p2) r (% (% Ln(INA) TURN(%) LOAD(%) EXPEN(%) CASH(%) NCF LIVE
MKT MKT MKT MKT
NCF 0.10911 0.55963 0.06686 0.05302 0.09394 0:06984 0.01832 0.00410 -0.01102 -0.00082 -4.71237 0.00056 0.44941 0.02558

(0.02206)** (0.04276)*** (0.01891)*** (0.03545)  (0.02549)*** (0.00634)**#* (0:00828Y%* - (0.00113)*** (0.00315)*** (0.00027)*** (0.87444)*** (0.00030)* (0.07071)*** (0.00807)%**

This table reports the coefficients and standard errors from the fixed-effect panel data model.of net cash flow on'seven lagged performance measure indexes, six lag%ed fund’s characteristic variables, and one status
variables. The seven lagged performance measure indexes are (o, a®, o), which are fund’s'selectivity in thre¢ different market conditions last year , (B&)- B™M, BY- B, which mean manager’s skill to predict
downside and upside markets last year, and threshold points, (ry, 12), in previous one year. The six lagged characteristics variables are total net assets (TNA), turnover (TURN), total load (LOAD), expense (EXPEN),
percentage invested in cash equivalents (CASH), net cash flow of the fund (NCF) in previous one year. The status variables are the dummy variable for the fund’s status on September 30, 2004. The standard errors for
the coefficients are below the coefficients in parentheses. The regression factors are [a(”, a®, a®,8®- B, B2- 8P, 1}, 1,,TNA, TURN, LOAD, EXPEN, CASH, NCF, , I(peLIVE)], where I(peLIVE) equal to one if
fund p is surviving on September 30, 2004, and equal to zero otherwise. The estimation results for dummy variables for the investment objectives and year of observation are ignored here. The sample consists of 622
mutual funds. The mutual fund sample period is from January 3, 2001 to September 30, 2004. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels (two-tailed test), respectively.
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For the impacts of characteristics on mutual fund flows, we find that a positive
relationship between fund flow and fund size. One possible explanation for this result is
that large funds spend more on advertising and are likely to attract greater investor cash
flows. This finding is consistent with Jain and Wu (1998) who show that flows are
significantly larger for those equity funds that are advertised in the financial magazines.
Turnover, load fee, and management expense are significantly and negatively associated
with money flows. The reason might be that investors think that fine managers should
not operate their portfolio too frequently. In addition, Carhart (1997) found that load
funds and funds with higher expense ratios have worse performance than funds with
lower fees. Again, because investors would like to maximize net-of-fee earnings, higher
load fee and expense ratio will reduce investor’s desires. Finally, we find that the net cash
flows are persistent and positively related to live funds, suggesting that clients as a whole

invest in funds expected to survive.

5. RELATIONSHIPS BETWEEN ' PERFORMANCES AND
CHARACTERISTICS
In this section, we investigate the relationships between fund managerial
performance and several fund characteristics. In addition, we examine if fund
performance is persistent and if mutual fund investors have good selection ability. The
fund characteristics which we adopt in this section are the same as those in previous
section. To investigate the relationships between performance and characteristics, we

estimate the following fixed effects panel regression.

3 5
PMI,, =6, + Y OYEAR +Y 6INVOB, +6, In(TNA, )+ 6,TURN
i=1 i=4

+6,LOAD,, +6,EXP, , +6,,CASH ,, +,NCF, +6,PMI | 2.13)
+6,NCF,, , +6,1(peLIVE)+s,,,

p,t-1
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where PMI, is performance measure indices (ex, selectivity or market timing indices)
during year t based on the conditional three-regime threshold model and the definitions
of other variables are the same to those in Equation (2.12). As before, the regression is
estimated allowing autocorrelation with lag one period (AR(1)) of dependent variable to
checking whether there is persistent fund performance. The lagged variable, NCF, ,, is
used to examine if fund investors have good selection ability. We also allow for
disturbances to be contemporaneously correlated and heteroscedasticity across funds.

Panel A of Table 2.8 reports the coefficient estimates with selectivity as dependent
variables. The negative and significant coefficient estimate of total net asset in the upside
market supports the hypothesis that fund size erodes performance because of liquidity
mentioned by Chen et al. (2004). However, owing to small funds with more illiquid
stocks, we find strong evidence that small funds. earn significantly lower abnormal
returns than larger funds in thesdownside markets. Size impacts on selectivity are as a
whole not significant, which is<consistent-with. the-findings of Carhart (1997) and
Grinblatt and Titman (1994). In'‘addition, the coefficients on the turnover are
significantly negative in downside and neutral markets but significantly positive in the
upside markets. This indicates that turnover has positive impacts on performance
provided that managers are acting on good information in the upside market. However,
the abnormal returns generated by more frequent operations do not cover the greater
transaction costs, such as brokerage fees and bid-ask spreads, in downside and neutral
markets and it results in worse selectivity performance.

We also find that selectivity of load funds is significant and superior to that of
no-load funds in downside and upside markets. Panel A further indicates that the
expense ratio is apparently and negatively associated with managers’ selectivity in neutral
and upside markets. The significantly negative estimate for expense ratio coefficient

suggests that management expenditures are not effectively used to support research on
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searching for undervalued stocks and managerial expertise. Hence, they do not help
investors creating satisfactory selectivity performance, which at least can recover the
charged expenses. Moreover, cash position is positively related to stock selection talents
in any market conditions. One reason may be that if funds do not have enough cash on
hand, the manager is forced to sell stocks to meet redemptions. This will produce more
transaction costs and generate worse selectivity performance.

In addition, we find that net cash flows are significantly and positively related to
selectivity performance, consistent with the results in Gruber (1996), Chevalier and
Ellison (1997), Della and Olson (1998), and Sirri and Tufano (1998). This suggests that
managers can invest in undervalued stocks by new cash flows but need not to sell
existing stocks, and leave out some transaction costs or capital losses. This effect is more
apparent in downside and neutral markets. Again, the results indicate that fund selectivity
performances are not persistent; and investors can'not only predict future selectivity
performance but have an adverse prediction,-especially in downside and neutral markets.
This suggests that mutual fund invéstors have bad selection ability. The coefficient for
the status variable is positive in the neutral market but negative in the upside market,
implying that dead-fund managers will adopt investment strategies with greater risk.

Hence, they will earn more abnormal return in the upside market.
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TABLE 2.8 — Relationships between Fund Performances and Characteristics Based on the Conditional Three-Regime Threshold Four-Factor

Dependent variable

Explanation variables

PMI Fund’s immediate characteristic variables Lagged variables Status
Ln(TNA) TURN(%) LOAD(%) EXPEN(%) CASH(%) NCF PMI(-1) NCF(-1) LIVE
a(%) 0.00017 -0.00330 0.00047 -0.45584 0.00119 0.02927 0.19622 -0.02092 -0.00818
(0.00070) (0.00247) (0.00026)* (0.13718)***  (0.00030)***  (0.00467)*** (0.16821) (0.00709)*** (0.00533)
_ a" (%) 0.00257 -0.01498 0.00225 0.18837 0.00276 0.08382 -0.08731 -0.05308 -0.03429
= E (0.00087)***  (0.00735)** (0.00052)***  (0.46461) (0.00104)***  (0.01078)*** (0.16527) (0.01812)*** (0.01826)*
g 5 a? (%) 0.00006 -0.00398 -0.00002 -0.49543 0.00051 0.01944 0.05186 -0.00653 0.00846
(0.00021) (0.00104)***  (0.00013) (0.15653)% %5 5 o _(0.00011)***  (0.00233)*** (0.10699) (0.00194y*** (0.00148)***
o (%) -0.00209 0.00698 0.00087 2118825 0.00092 0.00797 0.05751 0.00207 -0.02748
(0.00104)** (0.00193)***  (0.00023)*** = (0.40176)*%*- _ (0.000i3)***  (0.00707) (0.10008) (0.00672) (0.00969)***
B - pv -0.00157 0.01422 -0.00375 -0.95618 -0.00311 -0.09219 -0.25614 0.01477 0.00038
(0.00142) (0.00313)***  (0.00067)*** = | (0.42543)%* (0.00087)***  (0.02033)*** (0.16008) (0.02471) (0.01364)
% %" BY - g 0.00407 -0.02327 -0.00093 2.18563 -0.00099 0.03830 -0.06973 -0.02844 0.05811
g E (0.00129)***  (0.00416)***  (0.00077) (0.50196)*** __(0.00045)** (0.00282)*** (0.11088) (0.00529)*** (0.00798)***
B - gl 0.00237 -0.00203 -0.00264 1.42494 -0.00362 -0.04472 0.06385 0.01367 0.07232
(0.00256) (0.00563) (0.00103)** (0.45853)***  (0.00150)** (0.00916)*** (0.19456) (0.01644) (0.02493)***
(%) 0.01018 -0.02156 0.00084 4.42396 0.00088 0.28121 0.20681 -0.33437 0.13253
= é (0.00687) (0.01102)* (0.00558) (2.18383)** (0.00138) (0.09836)*** (0.25251) (0.09448) %% (0.03335)%**
& § r, (%) -0.00991 0.01087 0.00289 -3.18407 0.00024 0.00455 -0.11925 0.07660 -0.02009
(0.00475)** (0.01061) (0.00229) (1.49532)%* (0.00139) (0.05333) (0.22155) (0.07174) (0.03357)

This table presents the coefficients and standard errors form the fix-effect panel data model of annual performance measures (PMI), which are based on conditional four-factor model, on total net assets (TNA), turnover
(TURN), total load (LOAD), expense (EXPEN), percentage invested in cash equivalents (CASH), net cash flow of the fund (NCF), lagged performance (PMI(-1)), lagged net cash flow (NCF(-1)), and the dummy
variable for the fund’s status on September 30, 2004. The standard errors for the coefficients are below the coefficients in parentheses. The regression factors are [TNA, TURN, LOAD, EXPEN, CASH, NCF, , PMI(-1),
NCEF(-1), I(peLIVE)], where I(peLIVE) equal to one if fund p is surviving on September 30, 2004, and equal to zero otherwise. The sample consists of 622 mutual funds. The mutual fund sample period is from
January 3, 2001 to September 30, 2004. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels (two-tailed test), respectively.
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The relationships between timing performance and characteristics are exhibited in
Panel B of Table 2.8. The results indicate that managers of larger size funds tend to have
better upside market timing ability. Combining with the finding, significantly negative
relationship between selectivity and fund size in the downside market, in Panel A, this
suggests that larger funds are more likely to generate naive upside market timing ability
by operating options. We also find that market exposures of high-turnover funds
decrease more than that of low-turnover funds when market transits from neutral to
downside. In contrast, the market exposure of low-turnover funds increases more
significantly than that of high-turnover funds when market transits from neutral to
upside. Moreover, managers of load funds have worse market timing ability and are
specifically significant for the downside market. The market exposures of high-expense
funds decrease less and increase more than those'of low-expense funds when market
transits from neutral to upside and. from downside. to-upside. Again, funds with higher
cash position have worse downside and upside-market timing ability.

We also find that net cash flows have significant and negative impacts on overall
market timing ability, which supports the cash-flow hypothesis described in Warther
(1995), Ferson and Warther (1996), and Edelen (1999). The hypothesis implies that
investors increase subscriptions to mutual funds in the downside market and this leads to
a temporarily large cash position and lower fund beta. However, dividing timing ability
into two parts, we find that funds with larger net cash flows have worse downside market
timing performance and better upside market timing performance, which is opposite to
the cash-flow hypothesis. The reason might be that managers of fund with larger net
cash flows are relatively likely to invest their capital in newly discovered and undervalued
stocks instead of buying put options to reduce their market exposures in the downside
market. Conversely, they might invest the new capital in high beta stocks or options to

earn more risk premium in the upside market. As before, we find that managers’ market
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timing ability is not persistent whether for downside or upside markets and fund
investors have bad selection ability. Furthermore, the surviving fund has a larger increase
in market exposure than the non-surviving fund when market transits from neutral to
upside conditions and from downside to upside conditions.

We also explore the relationships between threshold points and fund characteristics,
and the results are reported in Panel C of Table 2.8. Fund sizes are significantly and
negatively correlated to the up threshold, suggesting larger size funds are more sensitive
to predict the upside market. In addition, funds with high expenses have positive impacts
on the down threshold, and negative impacts on the up threshold. This implies managers
of higher expense funds are more alert to forecasting both downside and upside markets.
Contemporaneous net cash flows can improve managers’ sensitivity of the downside
market prediction. But, higher lagged net cash flows cause managers with the languid
discovery of the downside market. Moreover,-managers of surviving funds have more

alert insights to forecast the downside matket.

6. CONCLUSIONS

In this essay, we use Bayesian unconditional and conditional threshold four-factor
models to study how fund managers react to change in market conditions. We divide the
market condition into three regimes (downside, neutral, and upside markets) and
investigate managerial stock selection and market timing performance in different market
conditions. The advantages of using our approach to analyze stock selection and market
timing performance of mutual funds are not only incorporating the investor’s prior
belief and managerial information but also transparently detecting the performance
behavior across three different market conditions rather than only two conditions.

The empirical analyses show that there are more apparent differences between

unconditional and conditional three-regime threshold models instead of two-regime
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threshold models. In addition, we find that most managers’ market timing ability comes
from the skills to forecast the downside market. The three-regime threshold models have
more power to detect significant timing activity when lagged public information is taken
into account.

We also estimate annual fund performances by the conditional three-regime
threshold four-factor model and predict the behavior of fund investors by fund
performances and various characteristics in previous one year. We find that investors
prefer to select funds with better past selectivity performance and upside market timing
ability instead of downside market timing skill. Moreover, fund clients favor large size
funds and funds with lower turnover, total load charges, and expenses. Again, the
behavior of investors is persistent and positively related to surviving funds.

Finally, we investigate the. relationship  between fund performances and
characteristics. We find that fund sizes erode and add: fund selectivity performances in
upside and downside markets, respeetively.—High turnover funds tend to have worse
(better) selectivity performances in'‘the downside (upside) market. We also find that
contemporaneous net cash flows are negatively associated with downside market timing
ability, but are positively correlated to upside market timing skills. In addition, funds with

higher expenses have alert sensitivities to discover downside and upside markets.
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7. APPENDIX—BAYESIAN ESTIMATION OF THE CONDITIONAL
THREE-REGIME THRESHOLD FOUR-FACTOR MODEL

From the conditional joint posterior density in equation (2.9), we have the following
conditional posterior of parameters ®(pj) ,for j=1,23:

p(®(Pj)‘_®(pj)’q)p’Ap’Yp’Rp’RMKTﬁRSMB’RHMLﬂRUMD’Z)
(A2.1)
1 2 3
o L(Rp’RMKT’RSMB’RHML’RUMD’Z‘G)(p)’@(p)’@( )

p 2

A, Y, r(e)))

p

where —®(pj ) represents the vector (@?, ®(p2)a ®(p3 ) ) without ®(pj) :

Expressing the target density in (A2.1) by f and ®(pj) by @; , we apply the

Metropolis-Hasting (MH) algorithm to draw the regression parameters @; . The
algorithm is described as follows.

At the ith iteration, for | M and | =123 we generate a pointw; from the

random kernel, a); = wE.i'I] + &, where, £~ NZ(O, | 2) and wE.i'I] is the (~1)th iteration of

o; . Thereupon, we accept as o with probability p = min{l, f(w; )/ f (wE.i'I])}or else we

J

[i]

J

set@’" = wE.i'I]. For 7 between M and N, we generate a point w; from the independent

kernel, a); =M, tE, £~ N Z(O,ij ), where 4, and ij are the sample mean and

sample covariance calculated by the first M iterates of ;. Then, we accept as wE.i] with

f (o) Jo(of

N *)} , where we set the Gaussian proposal
0! g\;
i i

probability p = min{l,
density g(w) oc eXp{_ %(w - H,, T Q;I, (w - M, )} . Otherwise, we set a)E.i] = a)E.H] )

For the extra three factors’ parameters, @, we have the following target density,
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p(q)p‘®(;)7®(p2)5®(p3)’Ap7Yp5Rp’RMKT’RSMB’RHML’RUMD’Z)

(A2.2)
o L( Ry, R R R R Z[04,05,00), 0 A Y, 11,
The conditional posterior density for the public information parameters, A, is
p(Ap ‘®(p1)’®(p2)5®(p3)’q)p’YpBRp’RMKT ’RSMB7RHML’RUMD7Z)
(A2.3)
) @2 o
o L( Ry, R R R R Z[04,007,00,0 4,7 )11 (A )
The conditional posterior density for the threshold parameters, Y, is
p(Yp ‘®(pl)’®(p2)7®(;)’q)p’Rp’RMKT ’RSMB’RHMLBRUMD’Z)
(A2.4)

oc L(Rp’RMKTBRSMB’RHML’RUMD’Z ®(ri)’®(p2)’®(p3)’¢)p’Ap’Yp)H(YP)
We also use the MH algorithm described above to implement the Bayesian estimates of
all parameters. For full details about how to complete the MCMC methods, see Chib and

Greenberg (1995), and Gilk, Richardson, and Spiegelhalter (1990).
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Chapter 3.
On a Robust Bayesian Threshold
VAR-DCC-GARCH Model and the Forecasting

Performance Comparison in the Conditional

Covariance Matrix

1. INTRODUCTION

The Vector autoregressive (VAR) model, popularized by Sims (1980), has been used
widely and extensively by economists to study the dynamic behavior of economic variables.
The appeal of this model is likely owing to several attractive features relative to other
econometric modeling methods. For_example, although it includes a lot of parameters,
meanwhile it has a very elastic and simple structure. In: addition, it only requires the order
of the autoregressive process to be considered. Its specification and estimation are simple,
since it is neither necessary to specify the vatiables entering each equation nor to
incorporate restrictions derived from economic theory. Thus, estimation and forecasting
using a VAR model are purely mechanical processes.

Most covariance matrices of financial asset returns are serial correlated, so
multivariate generalized autoregressive conditional heteroskedastic (GARCH) models are
more and more popular in financial econometrics in the past decade. A number of
different multivariate GARCH models have been proposed, including the simplified
diagonal VECH model of Bollerslev e a/. (1988), the BEKK model of Engle and Kroner
(1995), the constant conditional correlation (CCC) model of Bollerslev (1990), the factor
ARCH model of Engle ¢z a/. (1990) and the dynamic conditional correlation (DCC) model

of Engle (2002). Especially, the DCC-GARCH model is simpler and has successfully
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solved many practical problems. For example, hedges require estimates of the correlation
between the returns of the assets. It is well known that financial market volatility changes
over time. If the correlations and volatility are changing, then the hedge ratio should be
adjusted to account for the most recent information. Also, construction of an optimal
portfolio with a set of constraints requires a forecast of the covariance matrix of returns.
Similarly, the calculation of the standard deviation of today’s portfolio requires the
covariance matrix of all the assets in the portfolio. These functions use estimation and
forecasting of large covariance matrices that potentially have thousands of assets.

Furthermore, multivariate threshold models are widely applicable, including
co-integrated systems. A growing body of research in the recent time series literature has
concentrated on incorporating nonlineat 'behavior in conventional linear reduced form
specifications such as autoregressive and moving average models. The motivation for
moving away from the traditionaldinear model with constant parameters has typically come
from the observation that many ecénomic and finangial time series are often characterized
by regime specific behavior and asymmetric responses to shocks. For such series the
linearity and parameter constancy restrictions are typically inappropriate and may lead to
misleading inferences about their dynamics.

We next consider the situation in which each linear regime follows an
autoregressive process. For instance, we have the well known threshold autoregressive class
of models, the statistical properties of which have been investigated in the early work of
Tong (1983, 1990) and Tsay (1989). Multivariate threshold VARs are piecewise linear
models with different autoregressive matrices in each regime, which is determined by a
transition variable (one of the endogenous variables), a delay and a threshold (Tsay, 1998).

They were more recently reconsidered and extended in Hansen (1996, 2000), Caner and
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Hansen (2001) among others. Hansen and Seo (2002) examined a two-regime vector
error-correction model with a single co-integrated vector and a threshold.

Bayesian methods are also increasingly becoming popular to researchers in financial
econometrics recently. The VAR model usually has a large number of parameters, which
are often estimated through maximum likelihood or least squares. In the threshold VAR,
however, finite-sample frequentist analysis of the nonlinear functions is difficult. For
instance, for some distributions of data, the maximum likelihood estimation (MLE) does
not have an analytical form or simply does not exist, or in some applications of VAR
models, nonlinear functions of VAR parameters are the focus of research. The difficulties
faced in the frequentist approach of VAR inference can be circumvented by the Bayesian
approach, which combines information«rom’ébservations with researcher’s priors. When
the objective of the model is to ferecast, the Bayesian approach is more satisfactory. This
approach consists of imposing ptior restrictions over“the VAR model parameters. The
estimates of the model parameterS:ate obtained by*combining the prior belief and the
likelihood, so more accurate forecasts can be achieved. This kind of models is known in
the literature as Bayesian VAR or BVAR models (see, Zellner (1971), Bauwens e al. (1999)).
Later, Ni and Sun (2003, 2005) proposed Bayesian estimates for VAR models under
different priors. Vrontos et al. (2003) and Osiewalski and Pipien (2004) used Bayesian
methodology to assess relative predictive and explanatory powers of various multivariate
GARCH models. So ez al (2005) developed a Bayesian testing scheme for threshold
nonlinearity in financial time series. Chen and So (2006) performed Bayesian diagnostic
checking for the threshold heteroscedastic model.

In this essay, we present a robust threshold VAR(or VECM)-DCC-GARCH model

and use the Metropolis-Hastings (MH) algorithm and the Gibbs sampling algorithm to
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estimate the parameters simultaneously. Our model extends existing approaches by
admitting thresholds in conditional means, conditional volatilities and correlations of
multivariate time series. Such an extension, allows us to account for rich asymmetric effects
and dependencies of conditional means, volatilities and correlations, as they are often
encountered in practical financial applications. In addition, we use the concept of Chen and
So (2006) to define the threshold variables as the linear combination of endogenous
variables. This setting can eliminate excessively subjective belief in threshold variable
decision. Besides, the weight coefficient can serve as the proxy in deciding which market is
the price leader and which market is the price follower. Finally, threshold values in our
model are not fixed ex ante, but they are estimated from the data, together with all other
parameters in the model.

We investigate the empirical pérformance of our model in two data sets including
daily S&P500 futures and spot prices, and S&P500 and*Nasdaq100 spot prices. Our study
attempts to use posterior odds ratio. and Bayes: factors as a formal tool for making
comparison between competing models. We reduce our testing problem to a Bayesian
model selection problem. We can then select the model with a higher posterior odds ratio.
We also present the performance comparison results of the one-step-ahead forecast in the
conditional covariance matrix. The forecast results are assessed by several criteria which
include the views of statistical loss and risk managers.

Based on the estimation results, we find that the asymmetric dynamic structure is
obvious in both the dynamic relationship between S&P500 futures and spot markets and
between S&P500 and Nasdaq100 spot markets. We also detect that S&P500 futures market
is the price leader between S&P500 futures and spot markets, and S&P500 spot market is

the price leader between S&P500 and Nasdaql00 spot markets. Furthermore, based on
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several in-sample and out-of-sample performance measures in the conditional covariance
matrix prediction, we find that the threshold model outperforms the linear model across
most measure criteria.

The rest of the essay is organized as follows. In the next section, a robust
multivariate threshold vector autoregressive is introduced. We assume the model with the
error having multivariate DCC-GARCH. Then, Bayesian approach is specified including
the priors setting, and then conditional posterior distributions for relevant parameters are
derived. Also, the Markov chain Monte Carlo (MCMC) simulation methods and
implementation algorithm are taken up. We then illustrate the empirical applications and

model performance comparisons. Finally brief conclusions are given.

2. THRESHOLD VAR-DCC-GARCH MODEL

First, we consider the multivariate threshold vector autoregressive model with a
dynamic correlated and heteroscedastic error. Let Y+ be a K-dimensional time series with
threshold variable z, ;, so the mean equation and the conditional distribution of the

innovation process are given by the following equations:

G Ly
Y, = Zchég) +Zq)|(g)yt_|]- | (rg_1 <74 <f, ):|+gt , (3.1)
1

g=1 1=

&l 3. ~N@OH), (3.2)
Vi A gy - Al )

where Y, =| > ‘Dég) =| > (I)|(g) = » L= Zwkykt )
Vi 49 49 . g “

0<w, <1,>w =1, for t=07X7, g=1,..., 7Ky =1,...,g?_KgK'. q)ég)is K-dimensional

k=1
intercept vectot, (I)l(g)for 1=1..., Lg are the KxK regression coefficient matrices in

the gth regime, L, €N is the lag of VAR in the gth regime, & is aKx1 innovation
term, and d € N is the threshold lag of the model with maximum delay d,. J,; is the

information set up to #1, H, is a KxK covariance matrix with elements h,, and
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hij’t J=1..., K j=i+1...,K  where hii't is the variance of the 7th variable at time #and

h

i« is the covariance between the 7th and jth variables at time # and the number of regime
is G. In addition, the threshold values r, must satisfy—00 =1, <I <---<I; =00, and thus
the intervals [I’g_l, I‘g), 1=1...,G, form a partition of the space of Z, ;.

The threshold variable 2z, , is defined by a weighted average of ¥, , and this can be
viewed as a extension of Tsay (1998) and Brooks (2001), who set threshold variable to be a
specific endogenous variables, Y, 4. We think that this setting of the threshold variable may
have the following advantages and economic meanings. First, when Y, , are returns of
different markets, we can regard Z,_, as the return of a portfolio without short sales, and
the dynamic structure or leverage effect may be influenced by the portfolio return. That is,
the structural change of markets may rely'on the global economic condition instead of a
specific market condition. Second st can eliminate excessively subjective belief in threshold
variable decision and let the data choose’a more appropriate Z,_; by estimating the
weights, W, . Third, the weights W, can reflect the relative significance of each endogenous
variable Y, ;. This can not only govern the time series behavior of Y, but also find
which market is the lead price leader and which markets are price followers.

In addition, the accurate structure of the conditional covariance matrix is of primary
importance in the practice of portfolio analysis, asset pricing, and risk management.
Recently, multivariate GARCH is used more and more extensively in modeling the
correlation among financial time series and multivariate volatility. Bollerslev (1990)
proposed the simple constant correlation coefficient (CCC) multivariate GARCH model,
which is allowed to have time-varying conditional variances and covariance matrices, but
constant conditional correlations. He decomposed the conditional covariance matrix H,

as

H, = D,RD, (3.3)
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where R is the KXK time-invatiant correlation matrix with element p;

=1...,K,j=i+1...,K,i# ] and D, is the KXK time-varying diagonal matrix with
element /h;,, 1=1...,K. The individual variances h;, follow standard univariate
GARCH models.

To relax the restriction of the CCC model, Engle (2002) proposed flexible and
parsimoniously parameterized generalizations of the CCC model. The main difference
between CCC and DCC models is that the DCC model allows the correlation matrix R to
be time-varying. Consequently, the time varying conditional covariance matrix H, is
defined as follows:

H,=D,RD,, (3.4
where R, is time-varying correlation matrixjof innovation g, .

Because, in this essay, the structure’of the dynamic.covariance matrix mainly focuses on the
DCC model with the threshold structure,” it can -be viewed as an extension of

DCC-GARCH of Engle (2002).#Thetefore, by means of the specification for Q,

considered in Engle (2002), the threshold DCC-GARCH structure of covariance matrix is

given by
Z[dlag{a)(g)}+2dlag{a(g)}oet oEin +Zd|ag{ﬂ,‘g) J I (rg 157 <1, ) , (3.5)
g=1

R, =diag {Q,} ** Qiag{Q,} **, (36)
G

QtZZ((”l_ ) Q °77t177t1+B OQtl) (ngth<rg)’ (3.7)
g=1

Mg My
where® >0, 20,89 >0, ¥ +> 9 <1,0 is the Hadamard matrix product
operator, 73, = D, g, is the vector of standardized errors, (j(g) is the unconditional
correlation matrix of & in the gth regime, and the parameters A9 and B are

symmetric and positive semidefinite matrices. To ensure Q to be positive semidefinite, we
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also restrict (z2'— A _ B(g)) to be positive semidefinite.
Under the assumption of conditional normality for error process in Equation (3.2),

the likelithood function for the parameters can be expressed as

1 X 2 1 g -1
L(y|6)=]] (27) 2 |H,| zexp{—zgth €t}

t=P+1

- ﬁ (2;;)*§|DthDt|% exp{—%gt’(DthDt ) gt}

t=P+1

(3.8)

where fis the set of all parameters, P = Max(Ll,...,Lg,ml,...,mg,nl,...,ng,do),gt,Dt,
and R, obey Equations (3.1), (3.5), and (3.0), respectively

However, when the variables Y, in the model are integrated and of order one or
more, estimating by Equation (3.1) is subject to the hazard of regressions involving
nonstationary variables. In addition, Engle and Yoo (1987) also argued that, in the presence
of co-integration, a VAR model with an erfor cotrection mechanism should outperform a
VAR over longer forecasting horizons. Therefore, taking into account the explicitly

long-run equilibrium relationship, ‘the ‘mean Equationr (3.1) is modified to the threshold

vector error correction model, which can be wtitten as

P

G 9
AY, = Zl:(a(g)b'Yt—l +cI)(§g) +Zq)|(g)AYt_IJ- I (rg_1 <z, 4<T, ):l—i—gt , (3.9)
g=1

1=1

where A denotes the difference operator, z, = ZK:wk Ay, , bisKxy full rank matrix of
k=1

co-integrating vectors, a%is K x y full rank matrix of coefficients associated with the

error correction terms, and the value y determines the number of co-integrating

relationships (7 < K). Avoiding the identification problem, we impose the so-called linear

normalization whereb = ( I, bo) . So, the likelihood function for the parameters is similar

to Equation (3.8) except & must follow Equation (3.9).
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3. BAYESIAN INFERENCE AND MCMC IMPLEMENTATION

In this section, first, we explain why the Bayesian method is used in this essay to
analyze the threshold VAR(or VECM)-DCC-GARCH models. The reason is that using
maximum likelihood method is difficult to estimate the parameters in the threshold
VAR-DCC-GARCH models. The main problems are the large number of parameters to be
estimated and the difficulty of estimation due to the positive definiteness restrictions of
the covariance matrix. Thus, this will result in unstable estimates. In addition, due to the
unknown threshold variable z, in this essay, this hinders us to implement a two step
estimation procedure similar to that considered by Tsay (1998) and Brooks (2001). Even if
the threshold variable is known, Tsay (1998) showed that the asymptotic properties for the
threshold lag, 4, and threshold parametet,i#, até hard to infer. Thus, to deal with the above
infeasible procedure by maximum likelilhood-method, we extend the Bayesian method using
MCMC techniques introduced by*Chen and-8o (2006).

Implementation of the Bayesian analysis .depends on a willingness to assign
probability distributions not only to data variable y; but also to all unknown parameters.
Consider a situation in which absolutely weakly previous subjective information is known
about the phenomenon of interest, so as to mitigate frequentist criticisms of intentional
subjectivity. Thus, in this essay, we choose noninformative or weakly informative priors for
most parameters to interject the least amount of prior knowledge and the specification of
priors is listed below:

First, we assume the discrete uniform prior for the threshold lag parameter 4 with
maximum delay 4, and it can be written asz(d) = 1/d0 ,d=1,...,d,, which does not
favor any one of the candidate & values over any other. Since the weighted vector

W:(Wl,...,WK) relies on d, the conditional prior of w given d,ﬂ(W|d), is taken as
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symmetric Dirichlet distribution, W|d ~ D(5 ey O ) , where the hyper-parameter & > 0.
Identically, z, ;, depends on 4 and w;, so we assume the conditional prior of every
threshold parameter, ry forg=1...,G-1, to be a continuously bounded uniform
distribution, ﬂ(rg |d , W) = ]7/ ( ru(pg) - I’,ESJ ) , ﬁffiv) <r < I’u(s ) The lower and upper bounds for
threshold parameters are employed to constrain that there are at least 7 percent of
observations in each regime. As well, 7 depends on the number of observations. When
the sample size is small, higher 7 is recommended. The purpose of this setting is to make
parameter estimates more efficient and more reliable.

Subsequently, we divide the parameters in each regime into four independent blocks,
which are the parameters in the VAR model (3.1, 3.9), the error correction term (3.9), the
volatility process (3.5), and the dynamieicofrelation procedure (3.7), and we assume the
priors are independent among any two regimes. For the priors of VAR parameters,
Litterman (1980) and Kinal and Ratner (19806) have indicated that VAR sometime suffers
from overparameterization. The requirement to estimate a large number of coefficients in
VAR often leads to large standard errors for inferences and forecasts. The Bayesian VAR
imposing some prior restrictions on parameters will usually provide more accurate forecasts.
In this essay, we adopt Litterman’s (1980) Minnesota prior for VAR parameters and make

'
some proper modifications. For convenience, we define o9 = [@ég),q)l(g),---,q)égg)] ,
which is a Kx(l+K-Lg)matriX, and consider vectotized CI)(g),vec(CI)(g)),which we
denote by ¢(g) . We assume that the vector ¢(g) follows a multivariate normal distribution
with zero mean and diagonal covariance matrix2,. That is, we believe in advance the
unconditional mean and short run dynamics center around zero, and investors are unable
to earn excess returns by this short run dynamic relationship. In addition, the priors are

made independently across elements of ¢(g) and the standard deviation of the
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coefﬁcient¢(g) which is an element of ¢(g) and describes how variable 7 is affected by

ijl >
variable 7 of lag /in the gth regime, is given by

Ii ifi=j

(9)) =
s(¢.,-| )— "’ ifi¢j’ (3.10)
Iz

where the hyper-parameter A controls the tightness of beliefs on ¢(g) , T /TJ- is a

correction for the scale of series 7 compared with seties /, and the restricion 0<7<1
implies that the series are more likely to be influenced by their own lags than by the lags of

other series.

The above model requires us to choose specific values for the
hyper-parameters 4,7;,7; ,and 7. The correction term 7, / 7; is engaged in modifying the
inconsistency in variation of each series watiablés While in principle these should be chosen
on the basis of a priori reasoning ot knowledge, we will-in practice follow Litterman (1986)
in choosing these as the sample standatd deviations of residuals from univariate
autoregressive models fit to the “individual series «in the sample. For the remaining
hyper-parameters, A is commonly set from 0.1 to 0.9, and 77 ranges from 0.2 to 0.5 (see,
Litterman (1986), Kinal and Ratner (1986), Doan (1990)). In addition, Villani (2001)
showed that the selection of these two parameters is not sensitive to the forecasting results.
So, we use 4=0.5 and 7=0.4in our empirical analysis. We also set the standard

deviation of the intercept coefficient as 1 to employ a more diffuse prior.

For the prior on the long term structure (ie, error correction term) in each regime, we

follow Geweke (1996) to choose uniform prior for both the matrix of co-integrating

(9)

b

vectors b(g) and the associated weighting matrix a and the prior can be written as
ﬁ(a(g),b(g)) ocl. Furthermore, a uniform prior with some restrictions is assumed for the

parameters of the GARCH and is written as
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K my ng
ﬁ(a)(g),a(g),ﬂ(g)) oc | I (a)i(g) >0, 20, B > O;Z;‘ai(pg) +Z_l:,3igg) <1] , (3.11)

p=: a

where | () is the indicator function which takes unity if the constraint holds and otherwise

zero, and @9 = (a)fg),...,a)(Kg)) a9 :(ai(lg),...,ai(,ﬁ’g),...,aﬁ),...,a}(&)g ), and
ﬁ(g) =( i(lg),...,,Bi(nf’g),..., &%),..., é?n)g ) Finally, we also choose a uniform prior for the

dynamic correlation structure,
”(A(g),B(G)’Q(g)) < 1(Y), (3.12)

where Y is the set of (A(g),B(g),(j(g)) , which must satisfy that AY , BY ,
and (z2'- A _ B(g)) are symmetric and positive semidefinite matrices, and (j(g) is a form
of correlation coefficient matrix. Thérefore, the ptior of all unknown parameters in the

threshold VAR-DCC-GARCH model can be expressed as:

n(@)ocﬂ(d)ﬂ(WId)(ﬁﬂ(rg Id,W)]

. (3.13)
. (9) (@) ,(9) pla) (@) plo) /)
[gﬁ(qs )2(® a9, 49) (4, 5,0 )J.

Bayesian inference about the parameter vector @ conditional on data matrix y are
constructed through the posterior density p(0|y). Using Bayes theorem, the posterior
density is formed by the prior densityﬂ(@) and the likelihood L(y|6), and it can be

| __L(yle)=(6)
P(ely)= [L(vle)z(6)de

«L(y|6)z(8). (3.14)

Therefore, the optimal Bayes estimator of @ under quadratic loss is simply the posterior

mean, which is

0=E(0]Y)=[op(0]y)de. (3.15)
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However, for many realistic problems, the posterior distribution p(0|y) may not
have an analytically tractable form, particularly in high dimensions, so calculating the
posterior mean is a difficult task. In fact, to settle our major problems, we can use
numerical or asymptotic methods to compute the approximate posterior mean for the full
Bayesian model. Because, the posterior density is with very high dimension and only known
up to a constant, in this essay we adopt the MCMC sample algorithm as our tool for this
purpose. The idea is based on the Hammersley-Clifford theorem (1968), which says that a
joint distribution can be characterized by its complete conditional distributions. For
example, the postetior distribution, p(6?1,6?2|y), can be characterized by the complete
conditional distribution, p(é’l | Y, Hz)and p(92 |y, (91).

Given the initial values, 91(0) and 92(0) ;L We »draw 01(1) from p(@l(l)

Y, Héo) ) and then

6’2(1) from p(ﬁél)

y,Hl(l)). Iterating| the- steps;, we produce a series of sample,

M
{Gl(m),ﬁém)} g which will converge to the joint postetior distribution under some mild
m=:

~

conditions. Thus, we can obtain thé Bayesian estimator 6, by computing the mean from
the sample of the stationary distribution of the simulated (9i(m), which is after some
burn-in iterations . When the complete conditional distribution is known, such as Normal
distribution or Beta distribution, we only use Gibbs sampler to draw the random variables.
On the contrary, if it is unknown, we will use a hybrid method consisting of both Gibbs
steps and Metropolis-Hastings (MH) steps. Assuming the complete conditional distribution
p(01|y, 02) is unknown, in the MH algorithm, we generate a value @, from its proposal

distribution g() and accept the proposal value, ie. 91(g+1) 6, , with probability

Z(Hl(g) , 191*) , which is
p(6]y.6,) /a(6)
p(a°y.6,)/ o(6”)

(6,6 ) = min (3.16)
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Theoretically, we can use almost any distribution for the proposal distribution. However, in
practice, we need to choose proposal distribution very carefully to ensure fast convergence
of MCMC samples. See Chib and Greenberg (1995), and Gilk et al. (1996) among others
for full detailed explanations and discussions about the MH algorithm as well as the
MCMC methods.

Furthermore, in order to reduce the possible bias due to the selection of starting
values, generated sample within an initial transient or burn-in period are usually discarded.
Since rate of convergence on different target distributions vary considerably, it is also
difficult to determine the required length of burn-in. In this essay, we choose the length of
burn-in period by the convergence diagnostic (CD) in Geweke (1992). The idea and
calculation procedure of this method aretdeséribed as follows. Let € denote a parameter
of interest and 6 denote the parameter at the sth itération. Suppose observations of the

chain for Mm+n iterations and form averages

1 ™ 1 m+n

gb — = z g(j)ande_a‘:_ z 0(])

N, Zm a j=m+n-n,+1

where N, +n,<n. If 7 is the length of burn-in period, then gaandgbare the ergodic
averages at the end and beginning of the convergence period and should behavior similarly.

Thus, the statistic CD is given as
-0,

0,6,
\/\7ar(¢§a)+\7ar(¢§lj) ’

and it asymptotically follows standard normal distribution. So, if convergence has been

CD= (3.17)

achieved, the statistic CD should not be large. Following the suggestion of Geweke (1992),
we calculate the statistic by setting N, =0.5nandn, =0.1n, and using spectral density
estimators for the variances to take into account any autocorrelation.

Subsequently, we will use Bayes factors to select the appropriate order of the VAR
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process and to choose between linear (G =1) and non-linear (G > 2) versions of our
model. When compating any two competing parametric Bayesian models (M;,M ) for the
same data matrix y, the Bayes factor (BF) can be calculated by marginal likelihood concept.
In general terms letting HJ- be the appropriate set of parameters under model M i» the

marginal likelithood can be written:

p(y‘Mj)zjp(y‘e,Mj)p(e‘Mj)dej, (3.18)

j
where p(y‘O,Mj) and p(@‘l\/lj) are the sampling density function and the prior
density function, respectively.

For the Bayesian model selection, we can determine the posterior odds ratio (POR) of

M; against M; by the Bayes factors B; = p(y|Mi)/p(y‘Mj) and the prior odds

ratio p(Mi)/ P(M;), and it can be expressed as
_pMi]y) _ p(M) o

POR, = i
p(M,ly)  p(M))

(19)

If there is absence of a prior prefetence for either.model, i.e. p(M;)=p(M;) =1/2, the
Bayes factor can be interpreted as a measute of the extent to which the data support M,
over M ;- When Bij >1, the data prefer M, over M ;» and when Bij <1, the data favor
M. over M,. Thus, in this essay we compare any two threshold VAR-GARCH time

]

series models of different orders and regimes by computing Bayes factors as the ratio of

marginal likelihood evaluated along the route of Chib (1995).

4. EMPIRICAL APPLICATIONS
4.1. Data description
Our data consist of daily closing prices for S&P500 index, Nasdaq 100 index, and

S&P500 index futures for the period between January 3, 1995 and December 31, 2004.
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They are collected from TICK DATA and the sample size for each stock market is 2519. In
addition, intraday 5-minute prices are used to construct the series of realized covariance as
done in the past related literature.

The descriptive statistics of daily returns from January 3, 1995, to December 31, 2004,
are summarized in Table 3.1. The statistics reported are sample mean, standard deviation,
maximum, minimum, Jarque-Bera (JB) statistics, and the Ljung-Box (LB) statistics for the
return and the square return series. For the S&P500 stock market, the standard deviation
of futures returns is larger than that of the spot returns, indicating that the futures market
is more volatile than the spot market. In addition, the Nasdaql00 spot returns are more
volatile than S&P500 spot and futures returns. The spot and futures returns of S&P500
index are negatively skewed, whereas thetéturnsrof Nasdaql00 index are positively skewed.
All spot and futures returns present concerns for exeess kurtosis. The Jarque-Bera test
statistics provide clear evidence to reject the'null hypothesis of normality for each returns
series and this is mainly due to “the presence of sskewness and excess kurtosis. The
augmented Dickey-Fuller unit root test results suggest that all return series are stationary.
The Ljung-Box Q statistics indicate possible serial correlations for all returns series.
Moreover, the Q° statistics suggest that there are autoregressive conditional
heteroskedasticity effects on each returns series. The Johansen co-integration test indicates

a long-run equilibrium relationship between S&P500 spot and futures indices.
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TABLE 3.1 — Descriptive Statistics for the Returns of Daily S&P500 Index,
S&P500 Index Futures, and Nasdag 100 Index, from 1995 to 2004

RS&P5OO,F RS&PSOO,S RNasdaquO,S
Mean(%) 0.0383 0.0385 0.0551
SD(%) 1.1935 1.1446 22737
Skewness 101544 10.1184 0.1185
Kurtosis 6.3738 6.0544 6.1907
Max(%) 5.8141 5.3080 17.2030
Min(%) 7.7058 71127 -10.3777
B 1204.6951 985.0505 1074.4440
ADF 51,8382 -50.6566 -38.8717
Q(12) 21.2310 24.9340 35.2010
Q*(12) 605.1300 636.5300 1028.5000
Johansen Test 58.1941

Note: Rsgpsoor, Rsepsoos, @Nd Rnasdaguoos refer to S&P500 spot, S&P500 futures, and Nasdaq 100 spot returns,

respectively. Returns for stock indices are calculated by 100x(In(Py)-In(P..1)). The values in rows JB, ADF, Johansen

are statistics of Jarque-Bera normality test, the augmented Dickey-Fuller unit root test, and the Johansen cointegration

test. Q(12) and Q?(12) report the Ljung-Box (LB) portmanteau test statistics including 12 lags for the return and

square return series. The Critical values at 5% of JB, ADF, Johansen, and LBP are 5.991, 2.862, 3.433, and 21.026,

respectively.
4.2. Goodness-of-fit results

In this section, we use bivariate thfeshold*time series model, which was introduced
earlier, to two data sets. One data set covers the returns series of S&P500 spot and futures
markets, and thus the bivariate threshold VECM-GARCH model is appropriate. The other
data set consists of the returns series of S&P500 and NasdaqlO0 spot markets, so we
adopt the bivariate threshold VAR-GARCH model. We also use two different time lengths
(five years and ten years) to perform model comparison. In addition, we simplify our model
by assumingl, =---=L; =L, and GARCH(1,1) model is considered as a parsimonious
model which is found to be appropriate in most applications. The matrix parameters
A%and B@in Equation (3.7) are also reduced to scale parameters. So, to ensure Q to be
positive semidefinite, we restrict A9 4 B < 1, forg =1,...,G. Therefore, we only need to

choose proper L and G by the Bayes factor criterion.

To implement our MCMC sampling scheme, we carry out 30,000 iterations which are
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performed with the first 10,000 burn-in iterations discarded, to reach the convergence of
every parameter. The logarithm marginal likelihood, the logarithm Bayes factors, which are
on the basis of simple linear VECM(1)-DCC-GARCH(1,1) or VAR(1)-DCC-GARCH(1,1)
model, and the overall ranking of models for different I. and G are shown in Tables 3.2
and 3.3. For the period between 2000 and 2004, Table 3.2 shows that the best model to
describe the dynamic relationship between S&P500 futures and spot markets is the
two-regime threshold VECM(3)-DCC-GARCH(1,1) model with a logarithm of marginal
likelihood value of -1866.171. If we compare the best model with linear
VECM(1)-DCC-GARCH(1,1) model, i.e. a model where there is no asymmetric effect on
mean, variance, and correlation equations, then the difference in logarithm marginal
likelihood is Ln(BM) =59.833, whichyields @ Bayes factor of By, = 9.664x10%. This
means the two-regime threshold VECM(3)-DCC-GARCH(1,1) model is 9.664x10%
times more likely than the linear VECM(1)-DCC-GARCH(1,1) model. Table 3.2 also
indicates that the two-regime threshold VECM(@3)-DCC-GARCH(1,1) model is more
satisfactory than the other competitors considered here regardless of five- or ten-year data.
Generally speaking, the results in Table 3.2 show that models which consider asymmetric
effects and longer lags have larger logarithms of marginal likelihood. This suggests that
there are asymmetric effects on mean, covariance, or error correction processes for the
dynamic relationship between S&P500 futures and spot markets. In addition, considering
longer lags will benefit model explanatory power.

In Table 3.3, for the period between 2000 and 2004, we find that the best model to
characterize the dynamic relationship between S&P500 and Nasdaq100 spot returns is the
two-regime threshold VAR(1)-DCC-GARCH(1,1) model which is 8.405x10" times

more likely than the linear VAR(1)-DCC-GARCH(1,1) model. However, for ten-year time
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length, we find that the three-regime threshold VAR(1)-DCC-GARCH(1,1) model is most
appropriate among our competitive models. On the whole, our findings suggest that the
threshold model is more suitable than the linear model in the dynamic relationship between
S&P500 and Nasdaq100 spot returns. In addition, the logarithm marginal likelithood of the
model with shorter lags is larger than that with longer lags except for the linear models

with five years data.
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TABLE 3.2 — Logarithms of Marginal Likelihood and Bayes Factors-The Dynamic Relationship between S&P500 Futures and Spot

Markets
2000-2004 (5 years) 1995-2004 (10 years)
Model (M) parameters LPOIM)] @) Renk  Lalp(yM)] L@ Rank
M;, VECM(1)-DCC-GARCH(1,1) 18 -1926.004 0.000 9 -3654.369 0.000 9
M,, VECM(2)-DCC-GARCH(1,1) 22 -1909:399 16.605 8 -3604.425 49.944 8
Mz, VECM(3)-DCC-GARCH(1,1) 26 -1896.580 29.424 5 -3584.793 69.576 7
M,, 2R-VECM(1)-DCC-GARCH(1,1) 38 -1898.022 27.982 7 -3583.782 70.587 6
Ms, 2R-VECM(2)-DCC-GARCH(1,1) 46 -1888:237 37.767 2 -3532.965 121.404 3
Mg, 2R-VECM(3)-DCC-GARCH(1,1) 54 =1866.171 59.833 1 -3513.248 141.120 1
M5, 3R-VECM(1)-DCC-GARCH(1,1) 56 -1897.335 28.669 6 -3567.204 87.165 5
Mg, 3R-VECM(2)-DCC-GARCH(1,1) 68 -1888.504 37.500 3 -3540.125 114.244 4
Mg, 3R-VECM(3)-DCC-GARCH(1,1) 80 -1896.414 29.590 4 -3516.374 137.995 2

Note:The table shows the number of parameter, logarithms of marginal likelihood, logarithms of Bayes factor, and the ranks of marginal likelihood for several models and two different
time lengths. The data are based on the daily S&P500 futures and spot market prices for the sample period from January 3, 1995 to December 31, 2004.

63



Chapter 3. On a Robust Bayesian Threshold VAR-DCC-GARCH Model

TABLE 3.3 Logarithms of Marginal Likelihood and Bayes Factors- The Dynamic Relationship between S&P500 and Nasdag100 Spot Returns

2000-2004 (5 years) 1995-2004 (10 years)
Model (M) glaurranngg':e?: Ln[ p(y[M, )] Ln(Bi.) Rank Ln[ p(y|M, )] Ln(Bi.) Rank
Mi, VAR(1)-GARCH(1,1) 15 -3863,507 0.000 9 -7388.013 0.000 7
M., VAR(2)-GARCH(1,1) 19 -3857.392 6.115 6 -7394.210 -6.197 8
Ms, VAR(3)-GARCH(1,1) 23 :3862.844 0.663 8 -7398.697 -10.684 9
My, 2R-VAR(1)-GARCH(1,1) 33 -3829.141 34.365 1 -7365.001 23.012 2
Ms, 2R-VAR(2)-GARCH(1,1) 41 -3831:830 31.677 2 -7371.956 16.056 4
Me, 2R-VAR(3)-GARCH(1,1) 49 -3841.109 22.398 5 -7383.827 4.186 6
M-, 3R-VAR(1)-GARCH(1,1) 49 -3833.646 29.860 3 -7349.133 38.880 1
Mg, 3R-VAR(2)-GARCH(1,1) 61 -3840.603 22.904 4 -7362.203 25.810 3
Mo, 3R-VAR(3)-GARCH(1,1) 73 -3857.999 5.508 7 -7380.973 7.040 5

Note:The table reports the number of parameter, logarithms of marginal likelihood, logarithms of Bayes factor, and the ranks of marginal likelihood for several different models and two
different time lengths. The data are based on the daily S&P500 and Nasdag100 market returns for the sample period from January 3, 1995 to December 31, 2004.
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4.3. Bayesian estimation results

In this section, we will illustrate the Bayesian estimation results of two data sets,
which are used in the above section, for full sample periods. Table 3.4 presents the linear
and threshold VECM(3)-DCC-GARCH(1,1) models estimation results for the mean
equation (3.9) and variance-covariance matrix equations (3.5, 3.6, 3.7) for the dynamic
relationship between S&P500 futures and spot markets. The feedback effects between each
pair of S&P500 futures and spot markets are observed except for the upside market. That
is, lagged spot (futures) returns help to predict current futures (spot) returns. More
specifically, the lagged spot (futures) returns have positive effects on current futures (spot)
returns. In addition, the lagged spot (futures) returns have negative effects on current spot
(futures) returns. That is to say, each, amarket exhibits mean reversion behavior with a
stronger degree occurring in the spot market except for the upside market with a stronger

degree occurring in the futures matket.
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TABLE 3.4 — Bayesian Estimation Results for S&P500 Futures and Spot Markets

One Regime Two Regime Three Regime
Z,<n > Z,<r <z, <r, r,<z,
AlnF, AlnS, AlnF, AlnS, AlnF, AlInS, AlnF, AInS, AlnF, AlnS, AlnF, AlnS,
@, 0.047 0.094 -0.203  -0.168  |0.054 0.103 -0.145  -0.161  |0.023 0.035 0.176 0.213
(0.042)  (0.053) |(0.120)  (0.106) |(0.036)  (0.058) |(0.122)  (0.107) |(0.033)  (0.055) |(0.227)  (0.212)
P, |-0.162  0.392 0330 0.266 0209  0.318 0338 0.292 0213 0.331 0315 0.149
(0.067)** (0.060)** |(0.079)** (0.071)** |(0.080)** (0.072)** |(0.083)** (0.072)** |(0.073)** (0.069)** |(0.116)** (0.135)
#,(0.012 0.306 -0.009  0.268 -0.084  0.242 -0.066  0.242 0.021 0.323 -0.313  0.094
(0.083)  (0.076)** |(0.115)  (0.098)** |(0.110)  (0.098)* |(0.122)  (0.112)* |(0.081)  (0.070)** |(0.120)** (0.123)
| #rs[-0201 0053 0.066 0.212 -0.110  0.061 -0.008  0.154 -0.020  0.140 -0.058  0.149
s (0.065)  (0.060) |(0.142)  (0.128) |(0.078)  (0.072) |(0.123)  (0.115)  |(0.074)  (0.070)* |(0.199)  (0.188)
g #s,10.179 0372 |0.207 -0.389  0.256 0287  |0.230 0401  |0.257 0291 [0.284 -0.208
'-'CJ (0.070)** (0.064)** |(0.076)** (0.068)** |(0.080)** (0.072)** |(0.080)** (0.066)** [(0.072)** (0.068)** |(0.097)** (0.113)*
S|¢e,[-0021 0309 |005  -0314 |0.078 -0.246  |-0034  -0.324  |0.005  -0.308  [0.153 -0.252
= (0.086)  (0.078)** |(0.121)  (0.103)** |(0.112)  (0.100)* |(0.123)  (0.112)** |(0.082)  (0.071)** |(0.131)  (0.131)*
#0080 -0.070  |0.123  -0.255  |0.116 -0.059  |-0.084  -0.231  [0.042 -0.126  |0.024 -0.168
(0.066)  (0.062) |(0.144)  (0.129)* |(0.080)  (0.075) |(0.126)  (0.118)* |(0.076)  (0.072) |(0.197)  (0.185)
a [-0.020  0.076 -0.130  0.000 0.015 0,103 0106  0.011 0.016 0.107 0.091 0.156
(0.046)  (0.044) |(0.120)  (0.106)  |(0.056)" (0.053)* {(0.109)  (0.104)  |(0.050)  (0.048)* [(0.236)  (0.232)
b -1.001 -1.001 -1.000
(0.001)** (0.001)** (0.001)**
d 1# 1# 1
o
L
% wy 0.790 0.904
E (0.128)** (0.068)**
=" -0.599 -0.629
g (0.024)** (0.028)**
il IE: 1.762
(0.059)**
® 0.025 0.022 0.304 0.284 0.033 0.023 0.303 0.275 0.038 0.025 0.724 0.584
o (0.006)** (0.005)** |(0.046)** (0.043)** (0.007)** (0.006)** |(0.046)** (0.042)** (0.007)** (0.006)** (0.179)** (0.171)**
S| a [0.063 0.070 0.069 0.079 0.056 0.065 0.080 0.091 0.015 0.046 0.035 0.046
§ (0.009)** (0.010)** |(0.011)** (0.013)** (0.010)** (0.012)** |(0.012)** (0.015)** (0.010)  (0.012)** (0.017)* (0.018)**
'jﬂ B |0.916 0.910 0.864 0.844 0.858 0.858 0.840 0.822 0.860 0.858 0.683 0.700
§ (0.012)** (0.013)** |(0.019)** (0.022)** (0.016)** (0.017)** |(0.025)** (0.030)** (0.015)** (0.016)** (0.086)** (0.090)**
§ A 0.136 0.147 0.223 0.160 0.245 0.123
3 (0.016)** (0.039)** (0.024)** (0.043)** (0.029)** (0.066)8
% B 0.128 0.172 0.173 0.221 0.147 0.385
§ - (0.052)** (0.094) (0.060)** (0.128) (0.059)* (0.228)
p 0.975 0.971 0.977 0.969 0.977 0.967
(0.001)** (0.004)** (0.001)** (0.009)** (0.001)** (0.067)**

Note: This table shows the parameter estimates for one, two and three regime threshold VECM(3)-DCC-GARCH(1,1) models, respectively, which are
based on the daily S&P500 futures and spot market returns for sample period from January 3, 1995 to December 31, 2004. The numbers in
parentheses are standard deviations. *and** indicate statistical significance at 5%, and 1%, respectively. * indicates the posterior mode of the
threshold lag parameter.
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In the two-regime threshold model, the spot returns tend to increase when the spread
is large in order to restore the long-run equilibrium relationship only in the upside market.
The evidence suggests that the S&P500 spot price tends to converge to the futures price
and the effect is more apparent in the upside market. Furthermore, the futures price seems
to converge to the spot price in the downside market, but the effect is not significant. In
the three-regime threshold model, the coefficients of error correction terms are only
significant in spot returns in the neutral market. Although only a few coefficients of error
correction terms are significantly different from zero, these coefficients increase from
downside to upside markets in both futures and spot returns. This exhibits that the
structures of error correction terms are asymmetric in different market conditions. In both
two- and three-regime models, the weightéds coefficient in threshold wvariable, W, , is
significantly larger than 0.5, especially in the|three-regime threshold model. This indicates
that S&P500 futures market is theprice leader whereas the spot market is the price follower.
Additionally, we find that the threshold values, 7, and 7,, are not symmetric and point out
the asymmetric dynamic structures between downside and upside markets. For the
coefficients of variance covariance equations, we find that the volatility is most persistent
in the downside market and followed by neutral and upside markets in both futures and
spot markets. However, the persistence of the correlation between futures and spot returns
has an opposite outcome. In addition, the unconditional correlation coefficients, p, are all
above 0.95 and the coefficients in DCC structure, B, are all below 0.4. This shows that
futures and spot returns are highly correlated and the lagged correlation does not heavily
influence the current correlation.

The linear and threshold VAR(1)-DCC-GARCH(1,1) models estimation results for

the dynamic relationship between S&P500 and Nasdaql00 spot markets are reported in
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Table 3.5 and we have the following findings. First, the S&P500 market is the price leader

whereas the NasdaqlOO is the price follower during the sample period. Second, the

persistence in volatility and correlation is heaviest in the neutral market. Finally, we find

that the dynamic volatility and correlation structures between S&P500 and Nasdaq100

returns is very significant and has obvious variations among different market conditions.

TABLE 3.5 — Bayesian Estimation Results for S&P500 and Nasdag100 Spot Markets

One Regime Two Regime Three Regime
Z,<r >0 Z, < <z, <r, r,<z,
RSP,I RNAS, t RSP, t RNAS, t RSP, t RNAS. t RSP. t RNAS,I RSP. t RNAS, t RSP, t RNAS,I
w| %o | 0080 0.137 | -0.717  -0.775 | 0.070 0.108 | -0672  -0.673 | 0.067 0.100 0.299 1.000
IS (0.017)** (0.031)** | (0.251)**  (0.394) |(0.018)** (0.032)**|(0.294)** (0.452) |(0.018)** (0.032)**| (0.336)  (0.635)
g $spy | 0.053 0.059 | -0.330 -0.324 | 0.082 0121 | -0.336  -0.324 | 0.098 0.155 0.019  -0.249
'-'é (0.033)  (0.059) |(0.094)** (0.129)** |(0.034)** (0.062)* |(0.093)** (0.118)** | (0.037)** (0.067)**| (0.138)  (0.208)
S| Pyus | 0017 0056 | -0029 -0167 | -0024 _-0058 | -0.016 -0.148 | -0.021  -0.068 | -0.058  -0.039
= (0.015)  (0.031) | (0.054) (0.111) | (0.018) ~ (0.032) | (0.054)  (0.113) | (0.016) (0.033)**| (0.050)  (0.111)
d 1* 1* 1*
£
k)
% Wi 0.894 0.911
g (0.059)* (0.044)**
2| n -1.713 -1.698
§ (0.073)** (0.075)**
Sl rn 1.797
(0.100)**
® 0.013 0.036 0.025 0.032 0.011 0.036 0.010 0.028 0.008 0.032 0.274 0.433
. (0.003)** (0.007)**| (0.031)  (0.029) (0.003)** (0.009)**|(0.006)** (0.025) (0.002)** (0.008)** (0.107)** (0.243)
é a 0.070 0.068 0.123 0.131 0.049 0.052 0.141 0.155 0.046 0.051 0.037 0.053
g_ (0.007)** (0.007)** | (0.018)** (0.019)** (0.009)** (0.008)** | (0.018)** (0.022)** (0.008)** (0.008)** (0.017)* (0.017)**
% yij 0.916 0.921 0.782 0.823 0.934 0.932 0.810 0.805 0.941 0.935 0.682 0.780
§ (0.008)** (0.007)** | (0.046)** (0.031)** (0.009)** (0.008)** | (0.032)** (0.030)** (0.008)** (0.008)** (0.062)** (0.064)**
‘E A 0.044 0.068 0.043 0.109 0.045 0.060
S (0.007)** (0.023)** (0.006 )** (0.029)** (0.007)** (0.025)*
§ B 0.942 0.739 0.953 0.753 0.952 0.873
g (0.010)** (0.070)** (0.008)** (0.069)** (0.008)** (0.058)**
>l p 0.802 0.812 0.740 0.662 0.726 0.723
(0.036)** (0.066)** (0.153)** (0.131)** (0.150)** (0.166)**

Note:This table presents theparameter estimates for one, two and three regime threshold VAR(1)-DCC-GARCH(1,1) models, respectively, which are
based on the daily S&P500 and Nasdaql00 market returns for sample period from January 3, 1995 to December 31, 2004. The numbers in
parentheses are standard deviations. *and** indicate statistical significance at 5%, and 1%, respectively. * indicates the posterior mode of the
threshold lag parameter.
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5. FORECASTING PERFORMANCE COMPARISIONS IN

CONDITIONAL COVARIANCE MATRIX

In this section, the data from January 1, 2000 to December 31, 2004, consisting of
1256 trading days, are used for in-sample estimation and forecasting performance
evaluation in the one-step-ahead conditional covariance matrix. The 61 observations from
January 1, 2005 to March 31, 2005 are used for the out-of-sample performance evaluation
purposes. In addition, we present two categories of criteria to measure forecasting
performance of different competitive models. One category is based on the views of the
statistical loss function, which is a non-negative function that generally increases as the
distance between the actual value and the forecasted value increases, and three different
types of criteria are adopted here. The otheét'category of performance measure is based on
the views of risk managers and twe types of-criterta are-introduced.
5.1. Statistical Loss Performance

Thereinafter, we will introduce three types of+loss functions. First, a multivariate
version of the classical mean absolute error (MAE) statistic is addressed, which is

1 $1
L3ty

i N

A

MAE = h . —h |, (3.20)

it~ it

where h. and h..

it i« denote the forecast and the actual of the covariance between assets 7 and /

at time 7 respectively.
The second type of loss function is a multivariate version of the mean square error (MSE)

statistic, which is
1 &1 n 2
MSE:FZ—Z(hM ~hy.) - (3.21)

L=

The above two loss functions are symmetric, and we will also use an asymmetric loss

function, which is linear-exponential (LINEX) loss with the form:
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n

S|

{exp [g(ﬁij,t - hij,t):| _C(ﬁij,t - hij,t)_l} > (3-22)

1 K
LINEX :FZ
i,j=1

t=1

where ¢ is a given parameter. When ¢ is close to 0, the LINEX loss function is neatly
symmetric and is not much different from the MSE statistic. In the LINEX loss function,
positive errors are weighed differently from the negative errors when §#0 .
Ifd>0(4<0), the LINEX loss function is approximately linear (exponential) for

A

h . — ;. <0and exponential (linear) for I‘Alij’t —h,

it i« > 0. This implies that an overestimate

(underestimate) needs to be taken into consideration more seriously. More specifically, in
all above cases, a lower loss measure indicates a higher forecasting power.

As a result of the unobservable property of the covariance matrices, here we use
intraday 5-minute data to construct the proxies for the daily-realized covariance
observations. The concept of the realized volatility has been proposed by French, Schwert,
and Stambaugh(1987) and Andefsenez a/(2001). The tealized volatility is nothing more
than the sum of squared high-frequency returnsiover a given sampling period. Similarly, we

can directly express the realized covariance (RCOV) as:

YA ,
RCOV(t,A)=> R(t-1+ j-AA)R(t-1+j-A,A) , (3.23)
j=1

where R (t, A) denotes the K x1vector of logarithm returns over the [t —A, t] time interval.

The compared results of the forecast performance measures in the conditional
covariance matrix between S&P500 futures and spot returns and between S&P500 and
Nasdaq100 spot returns for the different models are presented in Figures 3.1, 3.2 and
Tables 3.6, 3.7, respectively. When looking at the in-sample prediction in Tables 3.6 and 3.7,
we observe that the threshold model yields better performance relative to the linear model
no matter what symmetric (MAE and MSE) or asymmetric (LINEX) loss functions are

adopted. In Table 3.6, we also find that the LINEX(1) indictor for the linear model is
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about twice as large as that for the threshold model, but the LINEX(-1) indictor is close
for all competitive models. This indicates that the linear model may overestimate the
covariance matrix. For the out-of-sample forecast, the threshold model performs more
appropriately for the covariance between S&P500 and Nasdaql00 spot returns. However,
the linear model in predicting covariance between S&P500 futures and spot returns seems

better than the threshold model.
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Covariance Forecast Comparison for S&P500 Futures and Spot Markets
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FIGURE 3.1—One Period Ahead Covariance Forecast Comparison for S&P500 Futures
and Spot Markets, 2000/1-2005/3.

Covariance Forecast Comparison'for S&P500 and Nasdaq100 Indices
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FIGURE 3.2 —One Period Ahead Covariance Forecast Comparison for S&P500 and
Nasdaqg100 Indices, 2000/1-2005/3.
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TABLE 3.6 — In- and Out-of-sample Covariance Matrix Forecast Comparison of Alternative Models for S&P500 Futures and Spot Markets

In Sample Out-of-Sample
Model (M) MAE MSE LINEX(1) LINEX(-1) MAE MSE LINEX(1) LINEX(-1)
M;, VECM(1)-DCC-GARCH(1,1) 0.788 2.054 0.829 9.329 0.212 0.058 0.032 0.026
M,, VECM(2)-DCC-GARCH(1,1) 0.808 2.101 0:965 9.215 0.215 0.062 0.035 0.028
Ms, VECM(3)-DCC-GARCH(1,1) 0.819 2.138 0.824 9.885 0.233 0.071 0.040 0.032
M, 2R-VECM(1)-DCC-GARCH(1,1) 0.668 1.762 0.441 9:430 0.248 0.075 0.043 0.035
Ms, 2R-VECM(2)-DCC-GARCH(1,1) 0.715 1.788 0.467 9.498 0.254 0.082 0.047 0.037
Ms, 2R-VECM(3)-DCC-GARCH(1,1) 0.682 1.720 0.512 8.763 0.259 0.091 0.052 0.040
M, 3R-VECM(1)-DCC-GARCH(1,1) 0.713 1.785 0.472 9.301 0.287 0.106 0.061 0.046
Mg, 3R-VECM(2)-DCC-GARCH(1,1) 0.731 1.768 0.522 8.798 0.276 0.107 0.063 0.046
Ms, 3R-VECM(3)-DCC-GARCH(1,1) 0.752 1.829 0.540 9.193 0.285 0.113 0.067 0.049

Note:This table computes the mean-absolute-errors (MAE), mean-square-errors (MSE), and asymmetric LINEX loss (LINEX) with S =1and ¢ =—1. The measured covariance matrices are daily realized covariance
matrices which are calculated by intra-day 5-minute returns. The data used are daily and intra-day 5-minute S&P500 index futures and spot price. The in-sample data period is from January 1, 2000 to December 31,
2004 and out-of-sample data period is from January 1, 2005 to March 31, 2005.
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TABLE 3.7 — In- and Out-of-sample Covariance Matrix Forecast Comparison of Alternative Models for S&P500 and Nasdag100

Indices
In Sample Out-of-Sample
Model (M;) MAE MSE LINEX(1) LINEX(-1) MAE MSE LINEX(1) LINEX(-1)
M;, VAR(1)-GARCH(1,1) 1.773 13.745 30.487 29.830 0.393 0.213 0.135 0.088
M,, VAR(2)-GARCH(1,1) 1.743 13.441 28.818 30.076 0.378 0.197 0.123 0.082
M3, VAR(3)-GARCH(1,1) 1.751 13.489 29,346 29,801 0.388 0.205 0.129 0.086
M, 2R-VAR(1)-GARCH(1,1) 1.673 12.078 26.935 28.182 0.253 0.095 0.051 0.047
Ms, 2R-VAR(2)-GARCH(1,1) 1.677 11.778 29.244 21.743 0.240 0.089 0.048 0.044
M, 2R-VAR(3)-GARCH(1,1) 1.690 12.002 29.107 21.427 0.253 0.097 0.052 0.047
My, 3R-VAR(1)-GARCH(1,1) 1.626 11.270 23.487 27.773 0.242 0.092 0.050 0.045
Mg, 3R-VAR(2)-GARCH(1,1) 1.657 11.638 25.190 26.604 0.260 0.102 0.056 0.049
Mg, 3R-VAR(3)-GARCH(1,1) 1.598 11.034 22.299 27.971 0.252 0.095 0.051 0.047
Note:This table computes the mean-absolute-errors (MAE), mean-square-errors (MSE), and asymmetric LINEX loss (LINEX) with l1and & =—1. The measured covariance matrices are daily realized

covariance matrices which are calculated by intra-day 5-minute returns. The data used are daily and intra-day 5-minute S&P500 and

2000 to December 31, 2004 and out-of-sample data period is from January 1, 2005 to March 31, 2005.
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5.2. Risk Management Performance

Predictability in covariance between two assets’ returns, as measured by traditional
criteria that focus on the size of the forecast error, does not necessarily imply that an
investor can make profits or reduce risk from a trading strategy based on such forecasts.
Therefore, we also use the other category of performance measure which is based on the
views of risk managers, and two types of criteria are used. One is to calculate the value at
risk (VaR) as an evaluation of the estimator. For a two-asset portfolio with ¢ invested in
the first asset and (1—5) in the second asset, the one-step-ahead VaR at time 7 and

ata% , assuming normality, is

VaR, (a)= —[(5@t +(1-6)f,) -2, W/azﬁm +(1-6) hyy, +26(1-6)hy,, } . (3.24)

where Z, is the right quantile at % . To compate.and evaluate model performances on
several different model specifications, we choose the following criteria. By definition, the
failure rate (FR) is the proportion-of retutas-{in-absolute value) exceed the forecasted VaR,
ie. FR=(YT)Y 1(8r, +(1-6)hus=VaRi(a)) , where 1(-)is the indicator
function. Hence, if the VaR model is correctly specified, the failure rate should be equal to
the prespecified VaR level. We also use Kupiec LR test (1995) to examine if the model is
correctly specified. To test Hy:f =a against H,:f #a , the LR statistic is
LR=-2In(a"" (1-a)" )+2In((N/T)"" (1-(N/T))"). where N is the number of VaR
violations, T'is the total number of observations and fis the theoretical failure rate. Under
the null hypothesis, the LR test statistic is asymptotically distributed as y* (1)

Figure 3.3 plots one period ahead 5% VaR forecast comparison for a hedged portfolio
with weights (1,-1) and three weighted portfolios with weights (0.5, 0.5), (0.3, 0.7), and (0.7,
0.3). The fractions of VaR violations and p-values of the Kupiec (1995) failure rate test are

reported in Table 3.8. For in-sample data, the p-values for the null hypothesis of the
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hedged portfolio are all smaller than 0.05 when the linear model is considered. The
threshold model performs very well as there are no p-values smaller than 0.05. Thus the
switch from the linear model to threshold model yields a significant improvement in the
VaR performance in the hedged portfolio. For the weighted portfolios consisting of S&P
and Nasdaq100 spot markets, the failure rates are very close to the prespecified VaR level
and p-values are larger than 0.05 for in-sample predictions in all linear and threshold
models. For the out-of-sample VaR performance comparison, we find that there are no
p-values smaller than 0.05 no matter what kinds of portfolios or models which we consider
here. But, the fractions of VaR violation based on the threshold model are closer to the
prespecified VaR level than those based on the linear model except the weighted portfolio
with weights (0.7, 0.3). In view of in-sample ahd out-of-sample empirical results, we find
that the linear model may sometimes overestimate.the-VaR, so using the threshold model

to calculate the portfolio’s VaR may be mote appropriate:
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A. 5% VaR for S&P500 Futures-Spot B. 5% VaR for 0.5*S&P500+0.5*Nasdaq100
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FIGURE 3.3— One Period Ahead 5% VaR Forecast Comparison for Various Portfolios, 2000/1-2005/3.
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TABLE 3.8 — In- and Out-of-sample 5% VaR Failure Rate Results for the S&P500
Futures-Spot and S&P500-Nasdagl100 Spot Markets

A. Fraction of VVaR Violation

In sample Out of sample
S&P500 S&P500
S&P500-Nasdagq100 S&P500-Nasdaq100
Fut-Spot Fut-Spot
Model (M) VaR VaR VaR VaR VaR VaR VaR VaR
(1-1) (0505) (0.3,0.7) (0.703) (1-1) (050.5) (0.30.7) (0.7,0.3)
M, 1.911 5.096 5.016 4.697 1.639 1.639 1.639 3.279
M, 1.433 5.255 5.096 4.936 1.639 1.639 1.639 3.279
M; 2.389 5.255 5.096 4.857 1.639 1.639 1.639 3.279
M, 4.459 5.334 5.096 5.016 3.279 3.279 4.918 3.279
Ms 4.379 5.096 5.255 5.414 3.279 6.557 4.918 3.279
Ms 6.131 5.255 5.096 5.175 3.279 6.557 4.918 3.279
M- 5.732 5.175 5.096 5.096 6.557 4918 4918 3.279
Mg 5.096 5.334 5.255 4.857 4.918 3.279 4918 3.279
Mg 5.334 5.334 5.255 5.175 4918 3.279 4918 3.279
B. P-Value of Kupiec LR Test
In sample Out of sample
S&P500 S&P500
S&P500-Nasdag100 S&P500-Nasdaq100
Fut-Spot Fut-Spot
Model (M) VaR VaR VaR VaR VaR VaR VaR VaR
(1-1) (0505) (0.3,0.7) (0.703) (1-1) (0505) (0.30.7) (0.7,0.3)
M, 0.000 0.877 0.979 0.619 0.164 0.164 0.164 0.512
M, 0.000 0.681 0.877 0.917 0.164 0.164 0.164 0.512
M; 0.000 0.681 0.877 0.815 0.164 0.164 0.164 0.512
M, 0.370 0.590 0.877 0.979 0.512 0.512 0.977 0.512
Ms 0.303 0.877 0.681 0.506 0.512 0.594 0.977 0.512
Ms 0.075 0.681 0.877 0.777 0.512 0.594 0.977 0.512
M- 0.244 0.777 0.877 0.877 0.594 0.977 0.977 0.512
Mg 0.877 0.590 0.681 0.815 0.977 0.512 0.977 0.512
Mg 0.590 0.590 0.681 0.777 0.977 0.512 0.977 0.512

Note: This table shows the 5% VaR forecast results of four different portfolios for alternative models. Panel A is the fraction of VaR
violations, and the results of Kupiec LM test (1995) are showed in Panel B. The data used are daily S&P500 index futures, S&P500
and Nasdaq 100 index prices. The in-sample data period is from January 1, 2000 to December 31, 2004 and out-of-sample data
period is from January 1, 2005 to March 31, 2005. My,M,,...,Mq denote the same models in Tables 3.2.
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While futures contracts are popular among investors as a class of speculative assets,
they are important in the financial markets due to their use as a hedging instrument.
Furthermore, hedging with futures contracts may be the simplest method to manage
market risk resulting from adverse movements in the price of various assets. In this
section, we assume the hedger attempts to minimize the conditional variance of the
spot-futures portfolio. It is well known that the optimal hedge ratio (OHR) is the ratio of
the conditional covariance between spot and futures returns over the conditional
variance of the futures return. So, the one-step-ahead forecasts of optimal hedge ratios

can then be calculated as

HR! = Cov, (rre) /Varm‘t (r). (3.25)

where 7, and 7, are spot and futures,teturns, respectively. The variance of the estimated

optimal hedged portfolio can be characterized ‘as

Var (r,, —HR-1; ).

To evaluate hedging performance, the typical criterion is based on the percentage
variance reduction (PVR) of the hedged portfolio relative to the unhedged position. It

can be calculated as

Var (Hedged Portfolio)
1- | 1x100%. (3.26)
Var (Unhedged Portfolio)

PVR (%) =

When the futures contract completely eliminates risk, PVR=100 is obtained, otherwise
PVR=0 is obtained when hedging with the futures contract does not reduce risk. Hence,
a larger PVR indicates better hedging performance.

The in- and out-of-sample hedged portfolio variances and hedging effectiveness of
alternative models for the S&P500 futures contract are presented in Table 3.9. The

variances of hedged portfolio returns are calculated under the following eleven

79



Chapter 3. On a Robust Bayesian Threshold VAR-DCC-GARCH Mode!

alternative models: three linear VECM-DCC-GARCH models with different lag

parameter L. (M;,M,,M,), six threshold VECM-DCC-GARCH models with different lag

parameter I and the number of regime G (M,,---,M,), hedging with a constant OHRs

estimate using regression methods of returns and the naive hedge with hedge ratio of 1 at

all times. The results show that the three-regime threshold VECM(3)-DCC-GARCH

model has the lowest in-sample hedged portfolio variance, with a 93.037% in-sample

variance reduction compared to the variance of the unhedged position. In addition, the

in-sample hedging performance of the linear model is even worse than that of OLS or

naive strategy.

Table 3.9. In- and Out-of-sample Hedging Effectiveness of Alternative Models for
S&P500 Spot and Futures Markets

In Sample Out of Sample
Model (M;) Variance Varige Rank Variance Variance Rank
Reduction Reduction
M, 0.09457 92.55636 10 0.02249 96.48434 9
M, 0.09854 92.24371 11 0.03114 95.13240 10
Ms 0.09342 92.64672 9 0.02356 96.31607 11
M, 0.09053 92.87463 6 0.01891 97.04412 2
Ms 0.08872 93.01648 2 0.01909 97.01488 4
Me 0.08912 92.98510 4 0.01877 97.06492 1
My 0.08911 92.98586 3 0.01896 97.03593 3
Mg 0.08943 92.96117 5 0.01916 97.00495 6
Mg 0.08846 93.03718 1 0.01910 97.01378 5
OLS 0.09091 92.84419 7 0.01922 96.99463 7
Naive 0.09182 92.77321 8 0.01929 96.98378 8

Note: The table reports the variance of the hedged portfolio, percentage variance reductions, and the ranks of hedging effectiveness
for several different models. The data used are daily index futures and spot price. The in-sample data period is from January 1, 2000
to December 31, 2004 and out-of-sample data period is from January 1, 2005 to March 31, 2005. My,M,,...,

models in Tables 3.2.

Mg denote the same

However, active hedgers are likely to be more concerned about future hedging
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performance. Therefore, the comparison of out-of-sample performance is a better way to
evaluate our hedging strategy. We find that the ranking of out-of-sample hedging
effectiveness is the same as that of in-sample hedging effectiveness. The two-regime
threshold VECM(3)-DCC-GARCH model has a 97.065% out-of-sample variance
reduction and outperforms all linear dynamic and static hedging models we considered.
Overall, the dynamic hedge with threshold model has a better hedging performance than
that with linear VECM-DCC-GARCH model. Both naive and OLS strategies tend to
outperform the linear VECM-DCC-GARCH model. This fact may indicate that the

threshold model has superior ability to forecast the optimal hedge ratios.

6. CONCLUSIONS

We proposed a robust multivariate] VAR-DEC-GARCH model that extends
existing approaches by admitting multivariate - thresholds in conditional means,
conditional volatilities and conditidbnal correlations. In addition, such threshold variables
are defined by a weighted average of endogenous variables and the weights are estimated
from the data. This threshold setting can not only enhance the robustness of the model
but also has some economic meanings or values. Moreover, the Markov chain Monte
Carlo method is implemented for the Bayesian inference. We studied the performance of
our model in an application to two data sets consisting of daily S&P500 futures and spot
prices and S&P500 and Nasdaq100 spot prices.

We develop a Bayesian testing scheme for model selection among several competing
models and select the model with a higher posterior probability. We also adopt several
criteria, which are based on the views of statistical loss and risk managers, to evaluate the

prediction performance of the conditional covariance matrix.
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In our real data application we find that estimated conditional volatilities are
strongly characterized by both GARCH and multivariate threshold effects. Dynamic
correlations are still apparent between S&P500 and Nasdaql00 spot returns, while
slighter between S&P500 futures and spot markets. In addition, the estimation results
suggest that S&P500 futures market is price leader between S&P500 futures and spot
markets and S&P500 spot market is price leader between S&P500 and Nasdaq100 spot
markets. For the comparison in covariance matrix forecasting performance, the threshold
model has a better in-sample and out-of-sample forecasting performance relative to the

linear model across most measure criteria.
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Chapter 4. Summary and Conclusions

There are more and more academics shows that financial time seties, such as stock
returns, exchange rates series and etc., exhibit strong signs of nonlinearity. For this
reason, some of traditional financial models should be modified appropriately. In this
dissertation, we focus on the threshold model and use the Bayesian approach to settle the
difficulty in the maximum likelihood estimation and inference. In addition, the
applications in several important issues in financial markets are discussed, including the
mutual fund performance evaluation and the forecasting in conditional covariance
matrix.

The first essay in this dissertation uses three-regime Bayesian unconditional and
conditional threshold four-factor models to study how fund managers react to change in
market conditions. Our empirical analyses'show that there are more apparent differences
between unconditional and conditional thtee-regime threshold models instead of
two-regime threshold models. Inaddition, - we find that most managers’ market timing
ability comes from the skills to fofrecast the¢ downside market. The three-regime
threshold models have more power to detect significant timing activity when lagged
public information is taken into account.

In addition, for the relationship between fund performances and various
characteristics, we find that investors prefer to select funds with better past selectivity
performance and upside market timing ability instead of downside market timing skill.
Moreover, fund clients favor large size funds and funds with lower turnover, total load
charges, and expenses. High turnover funds tend to have worse (better) selectivity
performances in the downside (upside) market. We also find that contemporaneous net
cash flows are negatively associated with downside market timing ability, but are

positively correlated to upside market timing skills. In addition, funds with higher
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expenses have alert sensitivities to discover downside and upside markets.

In the second essay, we proposed a robust multivariate VAR-DCC-GARCH model
that extends existing approaches by admitting multivariate thresholds in conditional
means, conditional volatilities and conditional correlations. In addition, such threshold
variables are defined by a weighted average of endogenous variables and the weights are
estimated from the data. We studied the performance of our model in an application to
two data sets consisting of daily S&P500 futures and spot prices and S&P500 and
Nasdaq100 spot prices.

Our empirical analyses find that estimated conditional volatilities are strongly
characterized by both GARCH and multivariate threshold effects. Dynamic correlations
are still apparent between S&P500 and Nasdaql00 spot returns, while slighter between
S&P500 futures and spot markets: In addition,;“the estimation results suggest that
S&P500 futures market is pricesleader between S&P500 futures and spot markets and
S&P500 spot market is price leader between-S&P500 and Nasdaql00 spot markets. For
the comparison in covariance matrix forecasting performance, the threshold model has a
better in-sample and out-of-sample forecasting performance relative to the linear model

aCross most measure criteria.
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