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以二維影像與漸進式相似度外觀圖解法

為基礎之穩健三維物體辨識 

研究生：蘇宗敏        指導教授：胡竹生 博士 

國立交通大學電機與控制工程學系(研究所)博士班 

摘要 
 本論文提出了一套使用二維影像的穩健三維物體辨識架構。在此架構中包含

了兩個主要部份，第一部份是前處理的部份，用來抽取出二維影像中的前景物

體，以作為後續的學習與辨識之用。第二部份是一套漸進式資料庫建立方法，利

用從不同角度所拍攝到的三維物體之二維影像來建構出該三維物體資料庫，並且

能夠利用新拍攝到的二維影像來更新已建構好之三維物體資料庫。 
在前處理的部份，我們提出了一套包含強光與陰影濾除的背景濾除架構

(BSHSR)，使得前景物體在在光影變化與動態背景的影響下，依然能夠精確的被

萃取出來。BSHSR中包含了三個模型，分別是以色彩為基礎的機率背景模型

(CBM)、以CBM為基礎的梯度機率背景模型(GBM)，以及一個圓錐形的光影模型

(CSIM)。CBM是利用高斯混合模型(GMM)針對每個像素的像素值作統計所建構

出來的模型。而根據CBM，又可以建構出短期背景模型(STCBM)與長期背景模

型(LTCBM)，接著再利用STCBM與LTCBM建構出GBM。而為了區別前景、強

光與陰影的不同，本研究中提出了一建構在RGB色彩空間中且具有動態錐形邊界

的CSIM。在漸進式資料庫建立方法的部份，我們提出了一套以相似度外觀圖解

法為基礎的學習架構(ISAG)。利用相似度外觀圖解法，每個三維物體在資料庫中

均可用一組外觀(aspect)來表示，而每一個外觀則包含了數目不一的二維影像，

並且用一個特徵面(characteristic view)來代表。本研究所提出的漸進式資料庫建

立方法，目的在於提高屬於同一外觀的二維影像彼此之間的相似度，並且降低各

個特徵面彼此之間的相似度。此外，為了模擬人類認知物體的能力，我們採用隨

機取樣之角度所拍攝的三維物體之二維影像來做為訓練影像，隨著所收集到的二

維影像數目增加，該三維物體的資料庫也會隨之更新。最終，本論文先以實際複

雜環境中所拍攝的數段影片之實驗結果來說明所提出的BSHSR之可行性，接著

將BSHSR應用於三維物體辨識架構中，以抽取出二維影像中之前景物體。而為

了驗證所提出三維物體辨識架構之優越性，我們利用ISAG搭配物體的形狀與色

彩特徵，將之應用於三種不同的三維物體之問題，分別是剛體辨識、人形姿態辨

識與場景辨識，並根據辨識率結果來說明所提出的三維物體辨識架構之可行性。 
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Robust 3D Object Recognition using 2D Views 

via an Incremental Similarity-Based 

Aspect-Graph Approach 

Graduate Student: Tzung-Min Su           Advisor: Dr. Jwu-Sheng Hu 

Department of Electrical and Control Engineering 
National Chiao-Tung University 

Abstract 
This work presents a framework for robust recognizing 3D objects from 2D views. 

The proposed framework comprises of two stages: the pre-processing stage and the 

incremental database construction stage. In the pre-processing stage, foreground 

objects is extracted from 2D views and applied for building 3D database and 

recognizing. In the incremental database construction stage, a 3D object database is 

built and updated using 2D views randomly sampled from a viewing sphere. 

A background subtraction scheme involving highlight and shadow removal 

(BSHSR) is proposed as the pre-processing stage of the framework. Foreground 

regions can be precisely extracted from 2D views using the BSHSR despite 

illumination variations and dynamic background. The BSHSR comprises three models, 

called the color-based probabilistic background model (CBM), the gradient-based 

version of the color-based probabilistic background model (GBM) and a cone-shape 

illumination model (CSIM). The Gaussian mixture model (GMM) is applied to 

construct the CBM using pixel statistics. Based on the CBM, the short-term 

color-based background model (STCBM) and the long-term color-based background 

model (LTCBM) can be extracted and applied to build the GBM. Furthermore, a new 
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dynamic cone-shape boundary in the RGB color space, called the CSIM, is proposed 

to distinguish pixels among shadow, highlight and foreground.  

An incremental database construction method based on similarity-based 

aspect-graph (ISAG) is proposed for building the 3D object database using 2D views. 

Similarity-based aspect-graph, which contains a set of aspects and characteristic 

views for these aspects, is employed to represent the database of 3D objects. An 

incremental database construction method that maximizes the similarity of views in 

the same aspect and minimizes the similarity of prototypes is proposed as the core of 

the framework. To imitate the ability of human cognition, 2D views randomly 

sampled from a viewing sphere are applied for building and updating a 3D object 

database. The effectiveness of the BSHSR is demonstrated via experiments with 

several video clips collected in a complex indoor environment. The BSHSR is applied 

in the proposed framework to extract foreground object from 2D views. The proposed 

framework is evaluated on various 3D object recognition problems, including 3D 

rigid recognition, human posture recognition, and scene recognition. Shape and color 

features are employed in different applications with the proposed framework to show 

the efficiency of the proposed method. 
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Chapter 1  

Introduction 

1.1 Overview of 3D Object Recognition 

1.1.1  3D Object Recognition 

Object recognition is an important topic in computer vision where various 

approaches have been developed [1-5]. However, numerous technical issues require 

further investigation, especially for 3D object recognition. Variations in viewing 

direction and angle [1, 6-7], illumination changes [8-9], and scene clutter and 

occlusion [10-11] are the main challenges for object recognition. In recent years, 

many researches were presented for solving these issues. For example, a generic 

object class detection system [12] that combines the Implicit Shape Model and 

multi-view specific object recognition is presented to detect object instances from 

arbitrary viewpoints. A new framework [13] that combines a visual-cortex-like 

hierarchical structure and an increasingly complex and invariant feature was proposed 

for robust object recognition. Furthermore, a new object representation, Multicolored 
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Region Descriptor (M-CORN) [14], was proposed to describe the color and local 

shape information of objects. Moreover, some low-level visual features, such as 

object shading, surface texture and an object’s contour or binocular disparity, have 

recently been proposed to describe 3D object representation [15-19]. However, 3D 

object recognition is primarily influenced by position variations and illumination 

source type, and the relative positions of an observer and object. 

Some advanced theorems of 3D object perception have been investigated to solve 

these issues and enhance the 3D object recognition task [20]. Existing theorems for 

high-level 3D object perception can be categorized as object-centered and 

viewer-centered representations based on a coordinate system [2], and as 

volume-based (or model-based) and view-based representations based on the 

constituent elements [21]. Viewer-centered representation describes portions of an 

object relative to a coordinate system based on an observer. A view-based 

representation characterizes a 3D object using a set of object views. Both 

viewer-centered and view-based frameworks conform to the intuition of human 

perception, during which a person memorizes an object using several primary views 

without requiring an exhaustive 3D object model. Moreover, S. Kim et al. [22] 

proposed a combined model-based method to recognize 3D objects using a 

combination of a bottom-up process (model parameter initialization) and a top-down 

process (model parameter optimization). 

1.1.2  Human Posture Recognition 

Human posture recognition is an important example of 3D object recognition. A 

considerable number of studies have been made on this field over the past 10 years 

[23-24]. Existing approaches [25] for human posture recognition are classified as 
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direct and indirect approaches based on the human body model. The model has either 

a 2D or 3D representation based on the dimensionality of features. The direct 

approach typically consists of a detailed human body model. For example, Ghost [26] 

developed a silhouette-based body model, incorporating hierarchical body pose 

estimation, a convex hull analysis of the silhouette and a partial mapping from body 

parts to silhouette segments. Furthermore, Pfinder [27] utilized color information to 

develop a multi-class statistical model and identified human body parts using shape 

detection. However, occlusions and perspective distortion lead to the unreliable 

results. The indirect approach extracts features about the human body instead of a 

detailed human body model, and combines classifiers to estimate human posture. For 

example, Ozer et al. [28] utilized the AC-coefficients as the features and adopted 

principal component analysis (PCA) as the classifier. A recent work [29] used color, 

edge and shape as the features and the hidden Markov model as the classifier. 

Furthermore, complex 3D models utilize different equipment to solve problems 

associated with the angle from which human postures are observed. For instance, 

Delamarre et al. [30] proposed a method for building a 3D human body via three or 

more cameras, and then calculated the projection of the silhouette for comparison 

with 2D projections in a database. Additionally, 3D laser scanners [31] or thermal 

cameras [32] have also been adopted to build a 3D human body model. However, 

these 3-D solutions require enormous computing time and high device costs. 

1.1.3  Scene Recognition 

Recognizing scene can be addressed as a problem of 3D object recognition, where 

the scene represents variations due to changing the viewer location or camera pose 

[33-39]. Scene recognition is a fundamental element in the topological representation 
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of environment [40-41], where the graph node of the adjacency graph describes the 

robot’s location. Moreover, scene recognition can also be employed to memorize and 

detect visual landmarks in geometrical representation of environments [42-43]. In 

[44], a series of experiments were presented to show that only the overall geometry 

and a few key features are required to perform scene recognition. For capturing the 

key features, Kröse et al. [45] proposed a method for appearance-based modeling of 

an environment by extracting scene features using PCA. Oliva et al. [46] proposed a 

scene-center-based approach to estimate the structure of a scene image by the mean of 

global image features. Moreover, a framework combined with a supervised method 

for recognizing the door and an unsupervised method for learning door-reaching 

behavior has been proposed in [47]. 

1.2 Overview of Background Subtraction 

A reference image is generally used to perform background subtraction. The 

simplest means of obtaining a reference image is by averaging a period of frames [48]. 

However, it is not suitable to apply time averaging on the home-care applications 

because the foreground objects (especially for the elderly people or children) usually 

move slowly and the household scene changes constantly due to light variations from 

day to night, switches of fluorescent lamps and furniture movements etc. In short, the 

deterministic methods such as the time averaging have been found to have limited 

success in practice. For indoor environments, a good background model must also 

handle the effects of illumination variation, and the variation from background and 

shadow detection. Furthermore, if the background model cannot handle the fast or 

slow variations from sunlight or fluorescent lamps, the entire image will be regarded 

as foreground. That is, a single model cannot represent the distribution of pixels with 
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twinkling values. Therefore, to describe a background pixel by a bi-model instead of a 

single model is necessary in home-care applications in the real world. 

Two approaches were generally adopted to build up a bi-model of background 

pixel. The first approach is termed the parametric method, and uses single Gaussian 

distribution [27] or mixtures of Gaussian [49] to model the background image. 

Attempts were made to improve the GMM methods to effectively design the 

background model, for example, using an on-line updated algorithm of GMM [50] 

and the Kalman filter to track the variation of illumination in the background pixel 

[51]. Furthermore, motion information is used for extracting a set of regions that have 

coherent motion to improve the efficiency of region classification and computing time 

[52]. The second approach is called the non-parametric method, and uses the kernel 

function to estimate the density function of background images [53]. 

Another important consideration is the shadows and highlights. Numerous recent 

studies have attempted to detect the shadows and highlights. Stockham [54] proposed 

that a pixel contains both an intensity value and a reflection factor. If a pixel is termed 

the shadow, then a decadent factor is implied on that pixel. To remove the shadow, the 

decadent factor should be estimated to calculate the real pixel value. Rosin [55] 

proposed that shadow is equivalent to a semi-transparent region, and uses two 

properties for shadow detection. Moreover, Elgammal et al. [53] tried to convert the 

RGB color space to the rgb color space (chromaticity coordinate). Because 

illumination change is insensitive in the chromaticity coordinate, shadows are not 

considered the foreground. However, lightness information is lost in the rgb color 

space. To overcome this problem, a measure of lightness is used at each pixel [53]. 

However, the static thresholds are unsuitable for dynamic environment. 
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1.3 Outline of Proposed System  

Figure 1-1 illustrates the block diagram of the proposed framework. In the 

foreground detection block, image pixels of a 2D view are classified among 

foreground, shadow, highlight and background. The foreground pixels are applied to 

extract features for 3D object recognition. In the 3D object recognition block, one or 

more similarity measures are applied on the extracted features of a testing 2D view 

and all the objects in a 3D object database. The top three similar objects in the 

database (Top 3 Matches) are regarded as the recognition results. 

A 2D view 
sampled from an 
unknown object

Background 
Subtraction

3D Object 
Recognition Top 3 Matches

Proposed 3D Object Recognition System

 

Figure 1-1 Block diagram of proposed 3D object recognition system. 

1.3.1 Background Subtraction 

In the background subtraction block (Fig. 1-2), a background subtraction scheme 

with highlight and shadow removal (BSHSR) is proposed to extract foreground 

regions with three proposed background models. First, the CBM is applied for 

extracting foreground candidates pixels. After that, the CSIM is applied for 

classifying foreground candidate pixels among real foreground, shadow and highlight. 

Finally, the GBM is used for eliminating false foreground pixels from the foreground 

candidate pixels. Moreover, only those real foreground pixels are reserved for further 

processing. 
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CBM

GBM

CSIM

A 2D view Foreground 
Regions

BSHSR

 

Figure 1-2 Block diagram of foreground detection. 

1.3.2  3D Object Recognition 

In the 3D object recognition block (Fig.1-3), a main 3D object database (MOD) is 

built during the building procedure with the proposed incremental similarity-based 

aspect-graph (ISAG). After that, one or more features are extracted from those 

foreground region to measure similarity among the objects in the MOD. After a 

weighted combination of all similarity measures, the top 3 similar objects are regarded 

as the recognition results. 

Feature 
Extraction

Foreground 
Regions Top 3 Matches

3D Object Recognition

Similarity 
Measure

Matching Procedure

Weighted 
Combination

Incremental 
Similarity-Based 

Aspect-Graph
(ISAG)

A Main 3D 
Object Database

(MOD)

Building Procedure

 

Figure 1-3 Block diagram of 3D object recognition. 
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1.4 Contribution of this Dissertation 

The problem we address in this work is as follows: Given a set of 2D views of 3D 

objects, such as rigid objects, human postures, and scenes, how do we represent these 

3D objects with collected 2D views in an efficient way? In other words, how do we 

extract the representative views from these 2D views such that a 3D object can be 

indexed efficiently? For the purpose of this work, we propose a flexible 3D object 

recognition framework for building the 3D object database and recognizing 3D 

objects with 2D views. We place emphasis on three issues in practice, which are listed 

as follows. 

1. For extracting the object features from a complex background, a background 

subtraction scheme involving highlight and shadow removal (BSHSR) is 

proposed as the pre-processing stage of the framework. Foreground regions can 

be precisely extracted from 2D views using the BSHSR despite illumination 

variations and dynamic background. The BSHSR comprises three models, called 

the color-based probabilistic background model (CBM), the gradient-based 

version of the color-based probabilistic background model (GBM) and a 

cone-shape illumination model (CSIM).  

2. An incremental database construction learning method based on similarity-based 

aspect-graph (ISAG) is proposed for building the 3D object database using 2D 

views. The accuracy of the object representation increases with minimal growth 

of search space while collecting additional new object views. 

3. For improving the robustness and computing time, a hierarchical matching 

structure is proposed to decide the final recognition result with a weighted 

combination of the results from multiple features. 
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1.5 Dissertation Organization 

This chapter provides a brief introduction of the background subtraction system 

and 3D object recognition, including rigid object recognition, human posture 

recognition and scene recognition. This chapter also briefly discusses two main 

components in the proposed 3D object recognition framework. The remainder of this 

dissertation is organized as follows. Chapter 2 presents the proposed background 

subtraction algorithm (BSHSR), including the descriptions of the CBM, STCBM, 

LTCBM, GBM, and CSIM. Chapter 3 describes the ISAG and the proposed hierarchal 

matching structure. Chapter 4 presents experimental results that demonstrate the 

performance of the proposed method for 3D rigid objects, human postures and scene 

recognition. Finally, some concluding remarks and future researches are discussed in 

Chapter 5.
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Chapter 2 

Background Subtraction 

2.1 Introduction 

 For precisely extracting foreground objects, environmental changes and 

shadow/highlight effects are necessary to be considered. Despite the existence of 

abundance of research on individual techniques, as described in Chapter 1, few efforts 

have been made to investigate the integration of environmental changes and 

shadow/highlight effects. In this work, we proposed a scheme that combines the 

color-based background model (CBM), the gradient-based background model (GBM) 

and the cone-shape illumination model (CSIM) to solve the issue in practice.  

The remainder of this chapter is organized as follows. Section 2.2 describes the 

system architecture and the corresponding dataflow. Section 2.3 describes the 

statistical learning method used in the probabilistic modeling and defines the STCBM 

and LTCBM. Section 2.4 then proposes the CSIM using the STCBM and LTCBM to 

classify shadows and highlights efficiently. A hierarchical background subtraction 

framework that combined with color-based subtraction, gradient-based subtraction 
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and shadow and highlight removal was then described to extract the real foreground 

of an image. Finally, Section 2.6 presents discussions and conclusions. 

2.2 System Architecture 

Figure 2-1 illustrates the block diagram of the BSHSR. The BSHSR comprises 

three main models which are called the CBM, GBM and CSIM. The CBM comprises 

the LTCBM and STCBM, where the LTCBM is defined to record the background 

changes during a long period and STCBM is defined to record the background 

changes during a short period. Moreover, the STCBM and LTCBM are used to 

determine the parameters of the GBM and CSIM with a selection rule. Four stages are 

involved in the BSHSR. First, color-based background subtraction is performed on 

the input image for extracting the foreground candidates via the LTCBM. After that, 

shadow and highlight removal is performed on the foreground candidates via the 

CSIM for classifying the pixels of foreground candidates among real foreground, 

shadow and highlight. For eliminating the false foreground regions, gradient-based 

background subtraction is performed on the input image via the GBM. Finally, a 

hierarchal background subtraction is performed for combing the results from the 

CSIM and GBM. 

Color-Based Background Model
(CBM)

Short-Term Color-Based 
Background Model

(STCBM)

Long-Term Color-Based 
Background Model

(LTCBM) Gradient-Based 
Background Model

(GBM)

Input Image
Color-Based 
Background 
Subtraction

Gradient-Based 
Background Subtraction

Selection Rule

Cone-Shape 
Illumination Model

(CSIM)

Shadow and Highlight
Removal

Hierarchical 
Background Subtraction

Model Update

Model Update

Output Image

 

Figure 2-1 The block diagram of the BSHSR. 
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2.3 Background Modeling 

Our previous investigation [56] studied a CBM to record the activity history of a 

pixel via GMM. However, the foreground regions generally suffer from rapid 

intensity changes and require a period of time to recover themselves when objects 

leave the background. In this work, the STCBM and LTCBM are defined and applied 

to improve the flexibility of the gradient-based subtraction that proposed by Javed 

et.al [57]. The features of images used in this work include pixel color and gradient 

information. This study assumes that the density functions of the color features and 

gradient features are both Gaussian distributed. 

2.3.1     Color-Based Background Modeling 

 First, each pixel x  is defined as a 3-dimensional vector (R, G, B) at time t. N 

Gaussian distributions are used to construct the GMM of each pixel, which is 

described as Eq. (2-1). 
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Suppose },...,,{ 21 mxxxX =  is defined as a training feature vector containing 

m pixel values collected from a pixel among a period of m image frames. The next 

step is calculating the parameter λ  of GMM of each pixel so that the GMM can 

match the distribution of X  with minimal errors. A common method for calculating 
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λ  is the maximum likelihood (ML) estimation. ML estimation aims to find model 

parameters by maximizing the GMM likelihood function. ML parameters can be 

obtained iteratively using the expectation maximization (EM) algorithm [58] and the 

ML estimation of λ  is defined as Eq. (2-2). 
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The EM algorithm involves two steps; the parameters of GMM can be derived by 

iteratively using the Expectation step equation and Maximum step equation, as Eqs. 

(2-3) and (2-4). 
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jiβ  denotes the posterior probability that the feature jx  belongs to the ith  

Gaussian component distribution.  
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The termination criteria of the EM algorithm are as follows: 

1. The increment between the new log-likelihood value and the last log-likelihood 

value is below a minimum increment threshold. 

2. The iterative count exceeds a maximum iterative count threshold. 
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Suppose an image contains HWS ×= pixels, where W means the image width 

and H means the image height. There are total S  GMMs should be calculated by the 

EM algorithm with the collected training feature vector of each pixel.  

Moreover, this study uses the K-means algorithm [59], which is an unsupervised 

data clustering used before the EM algorithm iterations to accelerate the convergence. 

First, N random values are chosen from X  and assigned as the center of each class. 

Then the following steps are applied to cluster the m  values of the training feature 

vector X . 

1. To calculate 1-norm distances between the m  values and the N center values. 

Each value of X  is classified to the class having the minimum distance with it. 

2. After clustering all the values of X , re-calculate each class center by calculating 

the mean of the values among each class.  

3. Calculate the 1-norm distances between the m  values and the N new center 

values. Each value of X  is classified to the class which has the minimum 

distance with it. If the new clustering result is the same as the clustering result 

before re-calculating each class center, then stop, otherwise return to previous 

step to calculate the N new center values. 

4. After applying K-means algorithm to cluster the values of X , the mean of each 

class is assigned as the initial value of iμ , the maximum distance among the 

points of each class is assigned as the initial value of i∑ , and the value of iw  

is initialized as N/1 . 
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2.3.2     Model Maintenance of the LTCBM and STCBM 

According to the above sections, an initial color-based probabilistic background 

model is created using the training feature vector set X  with N Gaussian 

distributions and N  is usually defined as 3 to 5 based on the observation over a 

short period of time m. However, when the background changes are recorded over 

time, it is possible that more different distributions from the original N  distributions 

are observed. If the GMM of each pixel contains only N  Gaussian distributions, 

only N  background distributions are reserved and other collected background 

information is lost and it is not flexible to model the background with only N 

Gaussian distributions.  

To maintain the representative background model and improve the flexibility of 

the background model simultaneously, an initial LTCBM is defined as the 

combination of the initial color-based probabilistic background model and extra N 

new Gaussian distributions (total 2N distributions), an arrangement inspired by the 

work of [60]. Kaew et al. [49] proposed a method of sorting the Gaussian 

distributions based on the fitness value /i iw σ  ( Iii
2σ=∑ ), and extracted a 

representative model with a threshold value 0B .  

After sorting the first N Gaussian distributions with fitness value, b ( Nb ≤ ) 

Gaussian distributions are extracted with Eq. (2-5). 
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The first b Gaussian distributions are defined as the elected color-based 

background model (ECBM) to be the criterion to determine the background. 

Meanwhile, the remainders (2N-b) of the Gaussian distributions are defined as the 
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candidate color-based background model (CCBM) for dealing with the background 

changes. Finally, the LTCBM is defined using the combination of the ECBM and 

CCBM. Figure 2-2 shows the block diagram to illustrate the process of building the 

initial LTCBM, ECBM and CCBM. 

Training vector set X EM algorithm The initial Color-Based 
probabilistic background modelMatch EM Stopping Rules ?

Extra N Gaussian Distributions

Initial Long-Term 
Color-Based 

Background Model
(Initial LTCBM)

Yes

No

Sorting the 2N 
Gaussian distributions 

with fitness value

The first b Gaussian 
distributions are defined as 

ECBM

The remainders (2N-b) 
Gaussian distributions are 

defined as CCBM
 

Figure 2-2 Block diagram showing the process of building the initial LTCBM, ECBM 
and CCBM. 

The Gaussian distributions of the ECBM mean the characteristic distributions of 

“background”. Therefore, if a new pixel value belongs to any of the Gaussian 

distributions of the ECBM, the new pixel is regarded as “a pixel contains the property 

of background” and the new pixel is classified as “background”. In this work, a new 

pixel value is considered as background when it belongs to any Gaussian distribution 

in the ECBM and has a probability not exceeding 2.5 standard deviations away from 

the corresponding distribution. If none of the b Gaussian distributions match the new 

pixel value, a new test is conducted by checking the new pixel value against the 

Gaussian distributions in the CCBM. The parameters of the Gaussian distributions are 

updated via Eq. (2-6). ρ  and α  are termed the learning rates , and determine the 

update speed of the LTCBM. Moreover, )|( 1+
∧

t
i

t
i Xwp  results from background 

subtraction which is set to 1 if a new pixel value belongs to the thi  Gaussian 

distribution. If a new incoming pixel value does not belong to any of the Gaussian 
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distributions in the CBM and the number of Gaussian components in the CCBM is 

below (2Nb), a new Gaussian distribution is added to reserve the new background 

information with three parameters: the current pixel value as the mean, a large 

predefined value as the initial variance, and a low predefined value as the weight. 

Otherwise, the (2 )thN b−  Gaussian distribution in the CCBM is replaced by the new 

one. After updating the parameters of the Gaussian components, all Gaussian 

distributions in the CBM are resorted by recalculating the fitness values. 
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Unlike the LTCBM, the STCBM is defined to record the background changes 

during a short period. Suppose 1B  frames are collected during a short period 1B  and 

then 1B  new incoming pixels for each pixel are collected and defined as a test pixel 

set { }
1

,...,,...,, 21 Bq ppppP = , where qp  means the new incoming pixel at time q. 

A test pixel set P  is defined and used for calculating the STCBM and a result set S  

is then defined and calculated by comparing P with the LTCBM and is described as 

Eq.(2-7), where qI  means the result after background subtraction ,which means the 

index of Gaussian distribution of the initial LTCBM, qR  means the index of 

resorting result for each Gaussian distribution after each update, and qF  means the 

reset flag of each Gaussian distribution. 
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{ }1̀1 2, ,..., ,..., ,   ( , ( ), ( ))q B q q q qS S S S S and S I R i F i= =                          (2-7) 

where 1 2 ,  1 ( ) 2 ,  ( ) {0,1},1 2q q qI N R i N F i i N≤ ≤ ≤ ≤ ∈ ≤ ≤  

The histogram of CG  is then given using Eq. (2-8). 
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where '
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In brief, four Gaussian distributions are used to explain how Eqs. (2-7) and (2-8) 

work and the corresponding example is listed in Table 2-1. At first, the original CBM 

contains four Gaussian distributions ( 42 =N ), and the index of Gaussian distribution 

in the initial CBM is fixed (1,2,3,4). At the first time, a new incoming pixel which 

belongs to the second Gaussian distribution compares with the CBM, so the result of 

background subtraction is 2=qI . Moreover, the CBM is updated with Eq. (2-6) and 

the index of Gaussian distribution in the CBM is changed. When the order of the first 

and second Gaussian distributions is changed, )(iRq  records the change states; for 

example, 1)1( =qR  means the first Gaussian distribution has moved forward to the 

second one, and 1)2( −=qR  means the second Gaussian distribution has moved 

backward to the first one. At the second time, a new incoming pixel which belongs to 

the second Gaussian distribution based on the initial CBM is classified as the first 

Gaussian distribution ( 1=qI ) based on the latest order of the CBM. However, the CG 

histogram can be calculated according to the original index of the initial CBM with 

the latest order of the CBM and )(iRq , such that )2( =+ qqCG FIH  will be 

accumulated with one. Moreover, )(iRq  changes while the order of Gaussian 



 19

distributions changes. For example, at the fifth time in Table 2-1, the order of CBM 

changes from (2,1,3,4) to (1,2,3,4), and then 011)1( =−=qR  means the first 

Gaussian distribution of the initial CBM has moved back to the first one of the latest 

CBM, and 011)2( =+−=qR means the second Gaussian distribution has moved back 

to the second one of the latest CBM. 

Table 2-1 An example to calculate CG histogram 

TIME (q) 
INDEX OF 

INITIAL CBM  
1 2 3 4 TIME (q)

INDEX OF 

INITIAL CBM
1 2 3 4 

Index of 

CCBM at time 

q 

1 2 3 4

Index of 

CCBM at time 

q 

2 1 3 4 

qp   ＊ qp  ＊   

qI  2 qI  2 

qR  0 0 0 0 qR  1 -1 0 0 

qF  0 0 0 0 qF  0 0 0 0 

1 

CG 0 1 0 0

4 

CG 2 2 0 0 

Index of 

CCBM at time 

q 

2 1 3 4

Index of 

CCBM at time 

q 

1 2 3 4 

qp  ＊ qp  ＊    

qI  1 qI  1 

qR  1 -1 0 0 qR  0 0 0 0 

qF  0 0 0 0 qF  0 0 0 0 

2 

CG 0 2 0 0

5 

CG 3 2 0 0 

Index of 

CCBM at time 

q 

2 1 3 4

Index of 

CCBM at time 

q 

1 2 3 4 

qp   ＊ qp   ＊  

qI  2 qI  3 

qR  1 -1 0 0 qR  0 0 0 0 

qF  0 0 0 0 qF  0 0 0 0 

3 

CG 1 2 0 0

6 

CG 3 2 1 0 
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If a new incoming pixel qp  matches the thi  Gaussian distribution that has the 

least fitness value, the thi  Gaussian distribution is replaced with a new one and the 

flag qF  will be set to 1 to reset the accumulated value of )(iH CG . Figure 2-3 shows 

the block diagram about the process of calculating CGH . 

No

Test Pixel Pq Color-based Background 
Subtraction

q=B1? Calculate HCG

q=q+1Resorting the Gaussian 
Distributions of the LTCBM

The result structure Sq of the 
background Subtraction

Yes

LTCBM

Record Sq into the 
result structure S

Figure 2-3 Block diagram showing the process to calculate CGH . 

After matching all test pixels to the corresponding Gaussian distribution, the result 

set S  can be used to calculating CGH  using qI  and qF . With the reset flag qF , 

the STCBM can be built up rapidly based on a simple idea, threshold on the occurring 

frequency of Gaussian distribution. That is to say, the short-term tendency of 

background changes is apparent if an element of )(kH CG  is above a threshold 

value 2B  during a period of frames 1B . In this work, 1B  is assigned a value of 300 

frames and 2B  is set to be 0.8. Therefore, the representative background component 

in the short-term tendency can be determined to be k  if the value of )(kH CG  

exceeds 0.8, otherwise, the STCBM provides no further information on background 

model selection. 

2.3.3     Gradient-Based Background Modeling 

Javed et.al [57] developed a hierarchical approach that combines color and 

gradient information to solve the problem about rapid intensity changes. Javed et.al 

[57] adopted the thk , highest weighted Gaussian component of GMM at each pixel to 
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obtain the gradient information to build the gradient-based background model. The 

choice of k in [57] is similar to select k based only on the ECBM defined in this work. 

However, choosing the highest weighted Gaussian component of GMM leads to the 

loss of the short term tendencies of background changes. Whenever a new Gaussian 

distribution is added into the background model, it is not selected owing to its low 

weighting value for a long period of time. Consequently, the accuracy of the 

gradient-based background model is reduced for that the gradient information is not 

suitable for representing the current gradient information.  

To solve this problem, both STCBM and LTCBM are considered in selecting the 

value of k for developing a more robust gradient-based background model and 

maintaining the sensitivity to short-term changes. When the STCBM provides a 

representative background component (says the th
sk  bin in the STCBM), k is set to 

sk  rather than the highest weighted Gaussian distribution.  

Let ],,[, BGRxt
ji =  be the latest color value that matched the th

sk  distribution of 

the LTCBM at pixel location ),( ji , then the gray value of t
jix ,  is applied to calculate 

the gradient-based background subtraction. Suppose the gray value of t
jix ,  is 

calculated as Eq. (2-9), then t
jig ,  will be distributed as Eq. (2-10) based on 

independence among RGB color channels,  

BGRg t
ji γβα ++=,              (2-9) 

))(,(~ 2
,,,
t

ji
t

ji
t

ji mNg σ             (2-10) 

where 

Bkt
ji

Gkt
ji

Rkt
ji

t
ji

sssm ,,
,

,,
,

,,
,, γμβμαμ ++=  
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, )()()( Bkt

ji
Gkt

ji
Rkt

ji
t

ji
sss σγσβσασ ++=  

After that, the gradient along the x axis and y axis can be defined as 

t
ji

t
jix ggf ,,1 −= +  and t

ji
t

jiy ggf ,1, −= + . From the work of [57], xf  and yf  have the 

distributions defined in Eqs. (2-11) and (2-12). 

))(,(~ 2
xx ffx mNf σ                (2-11) 

))(,(~ 2
yy ffy mNf σ             (2-12) 

where 

t
ji

t
jif mmm

x ,,1 −= +  

t
ji

t
jif mmm

y ,1, −= +  

2
,

2
,1 )()( t

ji
t

jif x
σσσ += +  

2
,

2
1, )()( t

ji
t

jif y
σσσ += +  

Suppose 22
yxm ff +=Δ  is defined as the magnitude of the gradient for a pixel, 

)/(tan 1
yxd ff−=Δ  is defined as its direction (the angle with respect to the 

horizontal axis), and [ ]dm ΔΔ=Δ ,  is defined as the feature vector for modeling the 

gradient-based background model. The gradient-based background model based on 

feature vector [ ]dm ΔΔ=Δ ,  then can be defined as Eq. (2-13). 

( ) gk
f

k
f

dm
k TzF

yx

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−∏

Δ
=ΔΔ

)1(2
exp

12
, 22

m

ρρσσ
          (2-13) 

where  
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2.4 Background Subtraction with Shadow Removal 

2.4.1    Shadow and Highlight Removal 

Besides foreground and background, shadows and highlights are two important 

phenomenons that should be considered in most cases. Shadows and highlights result 

from changes in illumination. Compared with the original pixel value, shadow has 

similar chromaticity but lower brightness, and highlight has similar chromaticity but 

higher brightness. The regions influenced by illumination changes are classified as the 

foreground if shadow and highlight removal is not performed after background 

subtraction. 

Hoprasert et al. [60] proposed a method of detecting highlight and shadow by 

gathering statistics from N color background images. Brightness and chromaticity 

distortion are used with four threshold values to classify pixels into four classes. The 

method that used the mean value as the reference image in [60] is not suitable for 

dynamic background. Furthermore, the threshold values are estimated based on the 

histogram of brightness distortion and chromaticity distortion with a given detection 

rate, and are applied to all pixels regardless of the pixel values. Therefore, it is 

possible to classify the darker pixel value as shadow. Furthermore, it cannot record 

the history of background information. 
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This work proposes a 3D cone model that is similar to the pillar model proposed 

by Hoprasert [60], and combines the LTCBM and STCBM to solve the above 

problems. A cone model is proposed with the efficiency in deciding the parameters of 

3D cone model according to the proposed LTCBM and STCBM. In the RGB space, a 

Gaussian distribution of the LTCBM becomes an ellipsoid whose center is the mean 

of the Gaussian component, and the length of each principle axis equals 2.5 standard 

deviations of the Gaussian component. A new pixel ),,( BGRI  is considered to 

belong to background if it is located inside the ellipsoid. The chromaticities of the 

pixels located outside the ellipsoid but inside the cone (formed by the ellipsoid and 

the origin) resemble the chromaticity of the background. The brightness difference is 

then applied to classify the pixel as either highlight or shadow. Figure 2-4 illustrates 

the 3D cone model in the RGB color space. 

 

Figure 2-4 The proposed 3D cone model in the RGB color space. 

The threshold values lowτ  and highτ  are applied to avoid classifying the darker 

pixel value as shadow or the brighter value as highlight, and can be selected based on 

the standard deviation of the corresponding Gaussian distribution in the CBM. 
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Because the standard deviations of the R, G and B color axes are different, the angles 

between the curved surface and the ellipsoid center are also different. It is difficult to 

classify the pixel using the angles in the 3D space. The 3D cone is projected onto the 

2D space to classify a pixel using the slope and the point of tangency. Figure 2-5 

illustrates the projection of the 3D cone model onto the RG 2D space. 

 

Figure 2-5 2D projection of the 3D cone model from RGB space onto the RG space. 

Let a and b  denote the lengths of major and minor axis of the ellipse, where 

Ra σ*5.2=  and Gb σ*5.2= . The center of the ellipse is ),( GR μμ , and the elliptical 

equation is described as Eq. (2-14). 

1)()(
2

2

2

2

=
−

+
−

b
G

a
R GR μμ                                           (2-14) 

The line mRG =  is assumed to be the tangent line of the ellipse with the slope 

m . Equation (2-10) can then be solved using the line equation mRG =  with 

Eq.(2-15). 

)(2
))(2(4)()2(

22

22222

2,1
R

GGRRGR

a
ba

m
μ

μμμμμμ
−

−−−±−
=                  (2-15) 
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A matching result set is given by { }3,2,1, == ifF bib , where bif  is the matching 

result of a specific 2D space. A pixel vector [ ]BGR IIII ,,=  is then projected onto the 

2D spaces of R-G, G-B, and B-R. The pixel matching result is set to 1 when the slope 

of the projected pixel vector is between 1m  and 2m . Meanwhile, if the background 

mean vector is [ ]BGRE μμμ ,,= , the brightness distortion bα  can be calculated via 

Eq. (2-16) 

||||
)cos(||||

E
I

b
θα =                                             (2-16) 

where  

1 1

2 2 2 2
cos ( ) cos ( )G G

I E

R G R G

I
I I

μθ θ θ
μ μ

− −= − = −
+ +

 

The image pixel is classified as highlight, shadow or foreground using the 

matching result set bF , the brightness distortion bα  and Eq. (2-17). 

⎪
⎩

⎪
⎨

⎧
<<=

<<=
= ∑

∑

                                          :   
  ,    1  and  3  :     ighlight  
  ,    1  and  3  :         hadow

)(C highb

blow

otherwiseForeground
elseFH
elseFS

i b

b

τα
ατ

                (2-17) 

When a pixel is a large standard deviation away from a Gaussian distribution, the 

Gaussian distribution probability of the pixel approximately equals to zero. It also 

means the pixel does not belong to the Gaussian distribution. By using the simple 

concept, highτ  and lowτ  can be chosen using GN  standard deviation of the 

corresponding Gaussian distribution in the CBM and are described as Eq. (2-18). 
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where 

( ) ( )2 2|| || R GE μ μ= +  

( ) ( )2 2
G G|| || N NR GS σ σ= ⋅ + ⋅  

1 1

2 2 2 2
cos ( ) cos ( )G G

E S

R G R G

τ
μ σθ θ θ

μ μ σ σ
− −= − = −

+ +
 

2.4.2    Background Subtraction 

A hierarchical approach combining color-based background subtraction and 

gradient-based background subtraction has been proposed by Javed et.al [57]. This 

work proposes a similar method for extracting the foreground pixels. Given a new 

image frame I , the color-based backgound model is set to the LTCBM and STCBM, 

and gradient-based model is ( )dm
kF ΔΔ , . )(IC  is defined as the result of 

color-based background subtraction using the CBM. )(IG  is defined as the result of 

gradient-based background subtraction. )(IC  and )(IG  can be extracted by testing 

every pixel of frame I  using the LTCBM and ( )dm
kF ΔΔ , . Moreover, )(IC  and 

)(IG  are both defined as a binary image, where 1 represents the foreground pixel 

and 0 represents the background pixel. The foreground pixels labeled in )(IC  are 

further classified as shadow, highlight and foreground by using the proposed 3D cone 

model. )(' IC  can then be obtained from )(IC  after transferring the the foreground 

pixels which have been labeled as shadow and highlight in )(IC  into the 
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background pixel. The difference between Javed et.al [57] and the proposed method is 

that a pixel classifying procedure using the CSIM is applied before using the 

connected component algorithm to group all the foreground pixels in C(I ). The 

robustness of background subtraction is enhanced due to the better accuracy in || aR∂ . 

Moreover, the foreground pixels can be extracted using Eq. (2-19). 

B
a

Rji P
R

jiGjiI
a ≥
∂

∇∑ ∂∈

||
)),(),((),(                               (2-19) 

where I∇  denotes the edges of image I  and aR∂  represents the number of 

boundary pixels of region aR . 
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Chapter 3  

Incremental Similarity-Based 

Aspect-Graph 3D Object Recognition  

3.1 Introduction 

The common challenge in 3D object recognition, human posture recognition, and 

scene recognition is the variation in orientations. The simplest method for solving this 

problem is to characterize an object with a densely sampled collection of independent 

views. The object can be described in detail by constructing an object model with 

numerous 2D views; however, this approach significantly increases computing time 

due to the expansive search space. Thus, several approaches have been developed to 

extract a minimal set of object views. Appearance-based methods focus on changes in 

intensity of each view. However, changes to object lighting, rotation, deformation and 

occlusion affect object recognition results when using the appearance-based method. 

Aspect-graph representations focus on shape changes to an object’s projection [61-62]. 

Koenderink et al. [63] developed the underlying theory that describes 3D objects 
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using aspect-graph representation. Moreover, the traditional aspect-graph method [64] 

assumes that an object belongs to a limited class of shapes, and that characteristic 

views can be extracted using prior knowledge of the object. Aspect-graph vertices 

represent the characteristic views extracted from points on a transparent viewing 

sphere with an object in the object center. These characteristic views are extracted as 

prototypes of an object from a densely sampled collection of object views. 

Cyr and Kimia [1] presented a similarity-based aspect-graph method to extract the 

characteristic views using shape similarity between views. The viewing sphere is 

sampled at regular (5 degree) intervals and two similarity metrics, which one based on 

curving matching and the other based on shocking matching, are applied to combine 

views into aspects. Let there be N  objects 1 2 1{ ,  ,..., ,..., , }n N NO O O O O− , which 

comprise an object database. Each object is composed of M  views sampling the 

viewing sphere giving rise to a set of views 1
1{ ,..., ,..., }n N

m MV V V  where n
mV  denotes 

the thm  view of object nO . The aspect p  of object n is defined as n
pA , which is a 

collection of views ranging from n
m k

V −−
 to n

m k
V ++

and represented by the characteristic 

view n
mV .  Moreover, the dis-similarity of two views is represented as ( , )n i

m jd V V , 

which is the distance between the thm  view of object n  and the thi  view of object 

j . The goal is to minimize the set of views required to represent each object nO . 

Two criteria are imposed to maintain successful object recognition while forming 

aspects representation by characteristic views. The first criterion (local monotonicity) 

supposes that the dis-similarity of two views increases as their relative viewing angle 

between them increases. The second criterion describes that the distance of each view 

n
iV  in an aspect n

mA  and the characteristic view of that aspect n
mV  is smaller than 
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the distance between any non-aspect view n
jV  and the characteristic view n

mV . 

The training views of an object in [1], which are sampled at 5-degree increments 

and sorted by order, are collected in advanced. When additional views of an object are 

collected to improve object representation in the work of [1], the total views of an 

object must be resorted in order of view angles. The first criterion, local monotonicity, 

is not suitable when an object is symmetrical in the feature space. It is inconvenient to 

update the aspect-graph representation while collecting more new 2D views. To 

improve the flexibility of an update mechanism, this work presents an incremental 

database construction method for building and updating the aspect-graph with object 

views sampled at random intervals. Object representation becomes increasingly 

detailed using additional captured and characteristic views without re-calculating 

similarity measures by re-sorting total views. Moreover, the first criterion in the work 

of [1], local monotonicity, is not utilized, thereby improving flexibility of extracting 

aspects of symmetrical objects. Although the proposed approach cannot confirm the 

view angle of a test view using a specific object view, it improves the flexibility for 

building an aspect-graph representation, and reduces computing time when updating 

object aspects. Additionally, the accuracy of the object representation increases with 

minimal growth of search space while collecting additional new object views. 

The remainder of this chapter is organized as follows. Section 3.2 presents the 

system architecture and the corresponding dataflow. Section 3.3 describes the 

procedure for extracting features and the similarity measures for building database 

and object matching. Section 3.4 describes the ISAG for extracting the aspects and 

characteristic views of objects. Furthermore, the object matching procedure is 

described with a weighting combination between different similarity measures. 

Conclusions are discussed in Section 3.5. 
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3.2 System Architecture 

The proposed framework (Fig. 3-1) contains two parts, which are called the 

database building procedure and the matching procedure. Suppose an object database 

contains 0T  objects, and 1T  2D views of each object are randomly sampled from a 

viewing sphere. In the database building procedure, the ISAG (Fig. 3-2) is applied to 

extract the aspects of each object using 1T  2D views. The main 3D database 

contains a set of assistant 3D object databases (AOD). Furthermore, an AOD 

comprises the aspects of each object, where the aspects are represented by their 

characteristic views. Figure 3-3 illustrates the inner structure of an AOD. In Fig. 3-3, a 

set of aspects is employed to represent the database of a 3D object in the aspect level. 

The prototypes for these aspects, called the characteristic views, are utilized to 

represent an object for object matching. The passage from one characteristic view to 

another is defined with only the similarity measure. The proposed similarity-based 

aspect-graph focuses on an efficient learning method with associated features and 

similarity functions. While object features are sufficient to discriminate the similarity 

between each two 2D training views, the aspects and characteristic views can be 

extracted using associated similarity measures. Even if the objects are complex, the 

characteristic views can be extracted in the feature space. 

In the matching procedure, a similarity measure is applied between a 2D view 

sampled from an unknown object and all the characteristic views of the 3D object 

database. After the weighted combination of all similarity measures, the first three 

characteristic views that have the highest similarity with the testing 2D view are 

regarded as the recognition results (the top three matches). 
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Figure 3-1 The system architecture of the proposed framework. A MOD comprises of 
total AODs. 
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Figure 3-2 The database building procedure, where 0T  is the number of objects in 
the database and 1T  is the number of sampled views required to build the 
aspect-graph representation of an object. 
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Figure 3-3 The inner structure of an AOD. 
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3.3 Object Representation 

In this work, shape and color features are utilized to measure similarity between 

two object views. To extract shape information, a robust background subtraction 

framework from previous works [65-66] is utilized to extract foreground regions 

while considering shadows and highlights. Foreground detection provides flexibility 

when constructing the object database, even in an out-of-control environment. Canny 

edge detection [67] is then applied to extract shape edge, and the Gradient Vector 

Flow Snake (GVF) [68] is applied to extract the contour information. Assume that the 

contour information is included in a set Z , which is composed of N points iz , where 

iz  is a complex form given by Eq. (3-1). Two kinds of shape features, which are 

called the Fourier descriptor (FD) [69] and the point-to-point length (PPL), are 

extracted from Z . 

{ ( )} { },  0i iz i x jy i N= = + ≤ <Z                               (3-1) 

3.3.1     Shape Features 

The points inside the set Z  are re-sampled using Eq. (3-2) to eliminate variations 

in shift and scale. 

{ ( )} { [( ) ( )] / }c i c i cz i L x x j y y L= = − + −Z                                 (3-2) 

where 0 i N≤ < ; L  denotes contour length of Z , cL  is expected contour length, 

and ),( cc yx  is the location of the contour center of Z . Then, the Fourier transform 

is applied to Z  to compute FD  using Eq. (3-3). 
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1

0
( ) ( ) exp( 2 / ),  0 k<NN

n
FD k z n j kn Nπ−

=
= − ≤∑                     (3-3) 

The low-frequency parts of FD are extracted with the consideration of decreasing 

the variations of high-frequency noises, and are defined as MAG Notably, MAG is 

composed of 22T  magnitude values of frequency information selected among 2N  

frequencies. The method for extracting MAG is given by Eq. (3-4). 

2{| ( ) | , | ( ) | ,  1 } MAG FD k FD N k k T= − ≤ ≤                             (3-4) 

Intuitively speaking, MAG only characterizes the shape and not the orientation of 

human posture. Therefore, MAG cannot discriminate between similar shapes oriented 

differently. To solve this problem, phase information for FD must be used for 

memorizing an object. The work in [70] proposes that memorizing the phase value at 

low frequency is sufficient. Suppose the phase information is zθ , then zθ  can be 

calculated using (1)FD and ( 1)FD N − , as described in Eqs. (3-5) and (3-6). 

1 1 1(1) | (1)|.exp( )FD FD j R jIθ= = +                           (3-5) 

1 1 1( 1) | ( 1)|.exp( )N N NFD N FD N j R jIθ − − −− = − = +                     (3-6) 

Furthermore, zθ  can be calculated using Eq. (3-7). 

1 1 1 1 1 1( ) / 2 (arctan( / ) arctan( / )) / 2z N N NI R I Rθ θ θ − − −= + = +                 (3-7) 

where 1R and 1−NR  denote the real parts of (1)FD  and ( 1)FD N − , 1I  and 1−NI  

denote the imaginary parts of (1)FD  and ( 1)FD N − , and 1θ  and 1−Nθ  are the 

phases of (1)FD  and ( 1)FD N − . 

Moreover, the lengths between each pair of points in Z  are defined as PPL. 

PPL is suitable for describing shape details. To calculate PPL is time consuming due 
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to that each point is considered as a start point. Equations (3-8) and (3-9) describe the 

calculating processes of PPL. 

2 2
1 1( ) { } {|| ( ) ( 1) ||} { ( ) ( ) }i i i i iPPL k l z i z i x x y y− −= = − − = − + −                (3-8) 

( ) ( )z k z N k= +                                                     (3-9) 

where 

1 N, k N+kk i≤ ≤ ≤ ≤  

3.3.2     Color Features 

Numerous features, such as edge, corner, texture, color and shape, have been 

utilized to extract useful information from an image. Among these features, color 

involves the intuitive information to represent the conceptual idea of an image. 

Therefore, pixel color and pixel position are utilized in this work to extract the 

conceptual idea of an image. The color space used in this work is RGB color space, a 

format common to most video devices. To enhance the regional information of an 

image, the position (x, y) feature is combined with RGB color information as the 

feature vector. That is, each pixel contains a 5D feature vector (R, G, B, x, y), which is 

shown in Fig. 3-4. 
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Figure 3-4 5D feature vector construction. 
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This work applies Gaussian mixture model (GMM) to model region information 

in a scene image as a blob model, which is defined as BM, using 5D feature vectors 

(R, G, B, x, y). We assume that the density function of color and position features 

have Gaussian distributions. First, each pixel x  is defined as a 5-dimensional vector 

at time t. Moreover, N Gaussian distributions are used to construct the GMM, which 

is described in Eq. (3-10).  

∑
=

− −∑−−
∑

=
N

i
ii

T
i

i
di xxwxf

1

1 ))()(
2
1exp(

||)2(

1)|( μμ
π

λ                 (3-10) 

λ  represents the parameters of GMM, 

1  ,...,2,1 , },,{
N

1i
iii ==∑= ∑

=
iwandNiw μλ  

Next, parameters λ  of GMM are calculated to enable the GMM to match the 

feature vector distribution with least errors. The most common method for calculating 

parameters λ  is ML estimation. The objective of ML estimation is to identify model 

parameters by maximizing the likelihood function of GMM obtained from training 

feature vectors X . The ML parameters are derived iteratively using the EM 

algorithm. Supposing there are s  feature vectors 1 2, ,..., sx x x  (In this work, s is 

defined as image size, 320×240=76,800), then the ML estimation of λ  can be 

calculated using Eq. (3-11). 

1
arg max log ( | )

s

ML j
j

f x
λ

λ λ
=

= ∑                                         (3-11) 

Furthermore, unsupervised data clustering is used before the EM algorithm 

iterations to accelerate convergence. This study uses the K-means algorithm [59] for 

clustering. The number of clusters is defined, and then the initial center of each cluster 

is obtained randomly. The appropriate center and variance of each cluster can be 
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estimated iteratively using the K-means algorithm and applied as the initial mean and 

variance of each Gaussian component of the GMM. 

3.3.3     Similarity Functions 

To determine the similarity between two objects when building databases and 

recognizing objects, a similarity measurement ( ),D U V  is applied to extract features. 

We assume that the features extracted from two contours are { }0 1, , , ,i IU u u u −=  

and { }0 1, , , ,i IV v v v −= , respectively, where I denotes the feature size. Two 

similarity measures are applied using 1-norm distance (Eq. (3-12)) and K-L distance 

[71] (Eq. (3-13)), where c denotes the number of points on an extracted contour and 

s denotes image size. In this work, c is defined as 256 and s is defined as 76800. 

( ) 1
1 0

, , I
norm i ii

D U V u v I c−
− =

= − =∑                                     (3-12) 
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1 0
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3.3.4     Similarity Measures 

Suppose n
newV  represents a new sampled view of the thn object and n

mC  

represents the thm  characteristic view of the thn object. Moreover, minm
A  denotes 

the aspects that have the minimum distance from n
newV  and min

n
m

C  represents the 

minimal distance, where minm  is the index of minm
A . n

mC
1min −
 and n

m
C

1min +
 denote the 
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neighboring views of min
n
m

C . Let ( )1 ,n n
M new md V C  (Eq. (3-14)) denotes the similarity 

measure using MAG and 1-norm distance, ( )2 ,n n
M new md V C  (Eq. (3-15)) denotes the 

similarity measure using PPL and 1-norm distance, ( )3 ,n n
M new md V C  (Eq. (3-16)) 

denotes the similarity measure using BM and K-L distance, and ( )1 ,n n
a new md V C  

(Eq.(3-17)) denotes the similarity measure using zθ  and 1-norm distance.  

( ) 21
1

, | ( ) ( ) | | ( ) ( ) |
n n n n

new m new m
T V C V Cn n

M new m k
d V C MAG k MAG k MAG N k MAG N k

=
= − + − − −∑  

(3-14) 
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( )1 , | ( ) ( ) |n n T D
a new m z zd V C k kθ θ= −                                        (3-17) 

3.4 Flexible 3D Object Recognition Framework 

A flexible framework using the ISAG is described in this section. In the 

framework, a MOD is composed of one or more AODs. Each AOD is built using one 

main feature or using one main feature with one assistant feature. Moreover, each 

feature has its similarity function, such as Eqs. (3-14)-(3-17). 
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3.4.1  Generation of Aspects and Characteristic Views 

The ISAG is a four-step procedure and is illustrated as Fig. 3-5. Step A-1 to A-4 is 

applied to extract aspects and characteristic views. Those aspects comprise an object 

database and the characteristic views are used for object matching with a new view 

n
newV . 

Step A-1: 

Initialize the number of aspects be zero. 2D views of the thn  object are randomly 

sampled from a viewing sphere and each 2D view is regarded as n
newV . 

Step A-2: 

When the number of existing aspects of the thn  object equals zero, n
newV  is 

regarded as a characteristic view of a new aspect. 

Step A-3:  

When the number of existing aspects of the thn  object equals one or two, 

(A-3.1) When Eqs. (3-18) and (3-19) are both satisfied, n
newV  is combined into the 

minm  aspect, and the characteristic view of the minm  aspect remains the 

same. 

( )n
m min

3
 C
min ,

m

n n
M new m

all A
d V C T

∈
<                                 (3-18) 

( )n
m min

5
 C
min ,

m

n n
a new m

all A
d V C T

∈
<                                 (3-19) 

where 3T and 5T are both predefined threshold values. 

(A-3.2) Otherwise, if Eq. (3-18) is satisfied and Eq. (3-19) is not, n
newV  is 

combined into the minm  aspect, and is regarded as a new characteristic 

view of the minm  aspect. 
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(A-3.3) Otherwise, if Eqs. (3-18) and (3-19) are both unsatisfied, a new aspect of 

the thn  object is established, and n
newV  is regarded as the new 

characteristic view of the new aspect. 

Step A-4:  

When the number of existing aspects of the thn  object is ≥ 3, 

(A-4.1) If either Eq. (3-20) or Eq. (3-21) is true, a new aspect is constructed and 

n
newV  is considered the characteristic view of the new aspect. When a new 

aspect is established, the aspect order can be determined to let similar 

aspects be close to each other using Eq. (3-22). If Eq. (3-22) is true, the 

similarity distance between n
newV  and n

m
C

1min +
 exceeds that between n

newV  

and n
m

C
1min −
, then the new aspect is inserted between aspect minm  and 

aspect min 1m − ; otherwise, the new aspect is inserted between aspects 

minm  and min 1m + . 

( )n
m min

4
 C
min ,  

m

n n
M new m

all A
d V C T

∈
>                               (3-20) 

( ) ( )minn
m min

3 4 41 C
min ,C     ,C  

m

n n n n
M new m M new mall A

T d V T and d V T
±∈

< < >  (3-21) 

( ) ( )min min1 1
,   ,  n n n n

M new M newm m
d V C d V C

+ −
>                       (3-22) 

(A-4.2) Otherwise, if Eqs. (3-20) and (3-21) are both unsatisfied and Eq. (3-19) is 

true, n
newV  is combined into the minm  aspect and the characteristic view 

of the minm  aspect remains the same. 

(A-4.3) Otherwise, if Eqs. (3-20) and (3-21) are both unsatisfied and Eq. (3-19) is 

not true, n
newV  is combined into the minm  aspect and is regarded as a new 

characteristic view of the minm  aspect. 
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Figure 3-5 The procedure of the ISAG 

Terms 3T and 4T  are two predefined threshold values, where 4 3T T≥ . The 

criterion for selecting 3T  and 4T  depends on the precise level for describing the 

object. If 3T  and 4T  are both small, then the criterion of combining 2D views 

becomes strict and, thus, the number of aspects increases. Furthermore, if the 

difference between 3T  and 4T  decreases, the tolerance for the difference between 

2D views inside an aspect decreases, thereby the number of aspects decreases. 

Additionally, 3T  and 4T   should be initialized manually and modified iteratively 

until the final number of aspect reaches an acceptable number, which is determined 
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based on the degree of object symmetry. In this work, 
1

3
MdT  and 

1

4
MdT  are defined as 

3T  and 4T  while adopting MAG as the feature; 
2

3
MdT  and 

2

4
MdT  are defined as 3T  

and 4T  while adopting PPL as the feature; 
3

3
MdT  and 

3

4
MdT  are defined as the 3T and 

4T  while adopting BM as the feature, and 
1

5
adT  is defined the 5T  whiling adopting 

zθ  as the feature. Section 4.2 presents the values of 
1

3
MdT , 

2

3
MdT , 

3

3
MdT , 

1

4
MdT , 

2

4
MdT , 

3

4
MdT , and 

1

5
adT . 

3.4.2  Object Recognition using 2D Characteristic Views 

After constructing the aspect-graph representation of each object, a test view of an 

unknown object is recognized by matching itself with all the characteristic views of 

each AOD. If multiple AODs are utilized in the framework, a hierarchical matching 

process is applied calculate the final recognition results with a weighting combination 

of all similarity measures. Suppose the candidate objects in the thk  AOD are 

included in a set of kN , and ( )kn N  denotes the number of candidate object in kN .  

The number of candidate objects reduces after each object matching procedure, which 

is described in Eq. (3-23). 

1( ) ( ),  1k kn N n N k+ ≤ ≥                                              (3-23) 

 In the thk  AOD, the main feature and the assistant feature of the test view are 

extracted to match with all the characteristic views. Suppose i
jV  denotes a test view 

of an unknown object, the object matching in the proposed framework is described as 

Eqs. (3-24.1) and (3-24.2). 

( ) ( ) ( )1, , , , , 1k i n k i n k k i n k
j m m j m a j md V C d V C d V C n N kω= + ⋅ ∈ =                 (3-24.1) 
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( ) ( ) ( ) ( )( )1
min 2 1, , , , , 2k i n k k k i n k k i n k

j m m j m a j md V C d n d V C d V C n N kω ω−= + ⋅ + ⋅ ∈ ≥    (3-24.2) 

Let ( ),k i n
m j md V C  and ( )'( ),k i n k

a j md V C  denotes the main and assistant similarity 

distances between the unknown object and n
mC , where n  denotes the thn  object in 

the set of candidate objects kN . If the framework comprises only one AOD, the 

characteristic views of the first three smallest similarity distances in 

( )1 ,i n
j md V C (Eq.(3-24.1)) are regarded as the top-three matches. In Eq. (3-24.1), 1

kω  

is a weighting parameter for combing different similarity measures. When no assistant 

feature is utilized, 1
kω  is set to zero. Otherwise, the objects included in the first half 

smallest similarity distances of ( ),k i n
j md V C  are defined as a set 1kN + . The objects in 

1kN +  are preserved for further recognition in the ( 1)thk +  AOD.  

If the framework comprises two or more AODs, the characteristic views of the 

first three smallest similarity distances in ( ),k i n
j md V C  (Eq. (3-24.2)) are regarded as 

the top-three matches. In Eq. (3-24.2), ( )1
min
kd n−  denotes the minimum similarity 

distance between the unknown object and the thn  candidate object in the ( 1)thk −  

database. Moreover, 2
kω  is a weighting parameter for combing the similarity 

measure between the thk  and ( 1)thk −  AODs. 

3.4.3  Applications 

The proposed framework is evaluated on various object recognition problems, 

including 3D object recognition, human posture recognition, and scene recognition.  

Three assumptions are made for applying the proposed framework to the above three 

applications. First, different features are used in different applications with the 
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proposed framework. In this dissertation, the features described in Section 3.3 are 

employed in the above three applications to perform the efficiency of the proposed 

framework. Second, training images for extracting the aspect-graph of objects in 

different applications are randomly sampled from a viewing sphere of a robot 

platform. A Pan-Tilt-Zoon camera is set up in a fixed position in the robot platform.  

Next, the efficiency of the proposed framework is performed with the object database 

and testing images that belong to the same category with the object database. For 

example, 2D rigid-object testing images are tested with the rigid object database, and 

etc.  

The similarity measures described in Section 3.3 are employed in the three 

applications. Three kinds of combing structures are performed with these similarity 

measures. In the 3D rigid object recognition, two AODs are utilized with two main 

features MAG and PPL. The weighting combination of the similarity measures is 

described in Eqs. (3-25) and (3-26). 

( ) ( )1 1 1, , ,i n i n
j m m j md V C d V C n N= ∈                                      (3-25) 

( ) ( ) ( )( )2 1 2 2 2
min 2, , ,i n i n

j m m j md V C d n d V C n Nω= + ⋅ ∈                         (3-26) 

Moreover, ( )1 ,i n
m j md V C  is calculated with MAG using Eq. (3-14), and 

( )2 ,i n
m j md V C  is calculated with PPL using Eq. (3-15). Furthermore, the weighting 

parameters 1
1ω and 2

1ω are both set to zero and the weighting parameters 2
2ω  is 

defined as the Eq. (3-27). 
1

4
MdT  and 

2

4
MdT  are the threshold values applied on the 

ISAG, and are defined in Section 4.1. 

2 12
2 4 4/M Md dT Tω =                                                    (3-27) 
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In the human posture recognition, only one AOD is utilized with one main feature 

MAG and one assistant feature zθ . The weighting combination of the similarity 

measures is described in Eq (3-28). 

( ) ( ) ( )1 1 1 1 1
1, , , ,i n i n i n

j m m j m a j md V C d V C d V C n Nω= + ⋅ ∈                        (3-28) 

In Eq. (3-28), ( )1 ,i n
m j md V C  is calculated using Eq. (3-14) and ( )1 ',i n

a j md V C  is 

calculated using Eq. (3-17). Furthermore, the weighting parameter 1
1ω  is defined as 

Eq. (3-29), where 
1

5
adT is the threshold values applied on the ISAG, and is defined in 

Section 4.1. 

1

51/ adTω =                                                        (3-29) 

In the scene recognition, only one AOD is utilized with one main feature BM. The 

weighting combination of the similarity measures is described in Eq (3-30). 

( ) ( )1 1 1, , ,i n i n
j m m j md V C d V C n N= ∈                                      (3-30) 

In Eq. (3-30), ( ),i n
m j md V C  is calculated using Eq. (3-16). Furthermore, the 

weighting parameter 1
1ω  is defined as zero. 
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Chapter 4  

Experimental Results 

The chapter provides experimental results to assess the efficiency of the proposed 

3D object recognition system. In Section 4.1, five experiments are performed to test 

the robustness of the BSHSR with a complex background in an indoor environment. 

After that, the BSHSR is applied to extract foreground regions for building a 3D 

object database using the ISAG and testing the performance of the proposed 3D 

object recognition system. Three object recognition problems, namely rigid object 

recognition, human posture recognition, and scene recognition, are performed with 

the proposed method in Section 4.2. 

4.1 BSHSR 

The video data for experiments was obtained using a SONY DVI-D30 PTZ 

camera in an indoor environment. Morphological filter was applied to remove noise 

and the camera controls were set to automatic mode. The same threshold values were 

used for all experiments. The values of the important threshold values were 15NG = , 
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002.0=α , 1.0=BP , 7.00 =B , 3001 =B  and 8.02 =B . Meanwhile, the 

computational speed was around five frames per second on a P4 2.8GHz PC, while 

the video had a frame size of 320 x 240. 

4.1.1   Local Illumination Changes 

The first experiment was performed to test the robustness of the proposed method 

about the local illumination changes. Local illumination changes resulting from desk 

lights occur constantly in indoor environments. Desk lights are usually white or 

yellow. Two video clips containing several changes of desk light are collected to 

simulate local illumination changes. Figure 4-1(a) shows 15 representative samples of 

the first one video clip. Meanwhile, Fig. 4-1(b) shows the classified result of the 

foreground pixel using the proposed method, the CBM and CSIM, where red indicates 

shadow, green indicates highlight and blue indicates foreground. Figure 4-1(c) 

displays the result of the result of final background subtraction to demonstrate the 

robustness of the proposed method, where the white and black color represents the 

foreground and background pixels respectively. The image sequences comprise 

different levels of illumination changes. The desk light was turned on at the 476th 

frame and its brightness increased until the 1000th frame. The overall picture becomes 

the foreground regions of the corresponding frames in Fig. 4-1(b) owing to the lack of 

such information in the CBM. However, the final result of background subtraction of 

the corresponding frames in Fig. 4-1(c) is still good owing to the proposed scheme 

combining the CBM, CSIM and GBM. The desk light was then turned off at the 

1030th frame, and became darker until the 1300th frame. The original Gaussian 

distribution in the ECBM became the component in the CCBM, and a new 

representative Gaussian distribution in the ECBM is constructed for that a new 
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background information is involved from the new collected frames between the 476th 

and the 1000th frame are more than the initial collected 300 frames. Consequently, the 

1300th frame in Fig. 4-1(b) has many foreground regions. However the final result of 

the 1300th frame is still good. The illumination changes are all modeled into the 

LTCBM when the background model records the background changes. The area of the 

red, blue and green regions reduces after the 1300th frame. 

Table 4-1 compares the proposed scheme with the method proposed by Hoprasert 

[60]. Comparison criteria are identified by labeling the foreground regions of a frame 

manually. The CSIM can be constructed based on the appropriate representative 

Gaussian distribution chosen from the LTCBM and STCBM. The ability to handle 

illumination variation and the accuracy of the background subtraction are improved 

and the results are shown in Table 4-1. 

Table 4-1 The robustness test between the proposed method and that proposed by 
Hoprasert [60] via local illumination changes with a yellow desk light 

FRAME 476 480 500 580 650 

PROPOSED  

(%*) 

HOPRASERT [60] 

(%*) 
100.00 94.05 99.84 36.40 99.93 22.50 99.91 15.38 83.96 23.42

FRAME 750 900 1000 1030 1120 

PROPOSED  

(%*) 

HOPRASERT [60] 

(%*) 
91.50 31.51 93.10 30.91 95.44 34.26 97.75 38.28 99.15 32.90

FRAME 1150 1300 1330 1400 1600 

PROPOSED  

(%*) 

HOPRASERT [60] 

(%*) 
93.79 50.72 99.95 99.84 93.31 92.40 96.22 13.03 99.30 34.66

*: The value in the table means the recognition rate that correct background pixels in 
a frame divide total pixels in a frame(%) 
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Figure 4-1 The results of illumination changes with a yellow desk light, the number 
below the picture is the index of frame. (a) Original images. (b) The results of pixel 
classification, where red indicates the shadow, green indicates the highlight and blue 
indicates the foreground. (c) The results of background subtraction with shadow 
removal using the proposed method, where dark indicates the background and white 
indicates the foreground. 
 

 

 

 

1000        1030       1120       1150        1300       1330       1400       1600 

Background     476        480        500         580        650        750        900 

Background     476        480        500         580        650        750        900 

1000        1030       1120       1150        1300       1330       1400       1600 

Background     476        480        500         580        650        750        900 

1000        1030       1120       1150        1300       1330       1400       1600 
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Figure 4-2(a) shows a similar image sequence to that on Fig. 4-1(a). The two 

sequences differ only in the color of the desk light. The desk light was turned on at the 

660th frame and the same brightness was maintained until the 950th frame. The desk 

light was then turned off at the 1006th frame and turned on again at the 1180th frame. 

The results of shadows and highlights removal are shown in Fig. 4-2(b) and the 

results of final background subtraction are shown in Fig. 4-2(c). The results of 

background subtraction in Fig. 4-2 and the comparison result in Table 4-2 are shown 

to demonstrate the robustness of the proposed scheme. 

Table 4-2 The robustness test between the proposed method and that proposed by 
Hoprasert [60] via local illumination changes with a white desk light 

Frame 660 665 670 860 950 

Proposed  

(%*) 

Hoprasert[60] 

(%*) 
99.02 99.48 97.93 79.81 95.92 92.22 96.73 93.81 97.44 94.46

Frame 1006 1020 1150 1180 1250 

Proposed  

(%*) 

Hoprasert[60] 

(%*) 
98.12 95.65 99.94 98.85 99.78 99.68 98.94 99.08 97.28 93.81

Frame 1300 1375 1377 1380 1445 

Proposed  

(%*) 

Hoprasert[60] 

(%*) 
97.49 95.26 97.73 87.50 98.83 98.92 99.73 99.32 100.00 99.71

*: The value in the table means the recognition rate that correct background pixels 
in a frame divide total pixels in a frame(%). 
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Figure 4-2 The results of illumination changes with white desk light, the number 
below the picture is the index of frame. (a) Original images, where red indicates the 
shadow, green indicates the highlight and blue indicates the foreground. (b) The 
results of pixel classification. (c) The results of background subtraction with shadow 
removal using our proposed method, where dark indicates the background and white 
indicates the foreground. 
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(b) 

Background    660        665         670        860        950        1006       1020 

1150       1180       1250        1300       1375       1377       1380       1445 

 (c) 
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4.1.2   Global Illumination Changes 

The second experiment was performed to test the robustness of the proposed 

method in terms of global illumination changes. The image sequences consist of 

illumination changes where a fluorescent lamp was turned on at the 381th frame and 

more lamps were turned on at the 430th frame. The illumination changes are then 

modeled into the LTCBM when the proposed background model recorded the 

background changes. Notably the area of the red, blue and green regions decreases at 

the 580th frame. When the third daylight lamp is switched on in the 650th frame, it is 

clear that fewer blue regions appear at the 845th frame owing to illumination changes 

having been modeled in the LTCBM. However, the final results of background 

subtraction shown in Fig. 4-3(c) are all better than those of pure color-based 

background subtraction shown in Fig. 4-3(b). Table 4-3 shows the comparison results 

between the proposed scheme and that proposed by Hoprasert [60]. The comparison 

demonstrates that the proposed scheme is robust to global illumination changes. 

Table 4-3 The comparison between the proposed method and that proposed by 
Hoprasert [60] via global illumination changes with fluorescent lamps 

Frame 381 (1**) 385 (1**) 405 (1**) 430 (2**) 560 (2**) 

Proposed   

(%*) 

Hoprasert[60] 

(%*) 
98.24 93.54 88.35 82.14 83.85 78.24 56.50 68.42 66.85 69.82

Frame 565 (2**) 570 (2**) 580 (2**) 650 (3**) 700 (3**) 

Proposed  

(%*) 

Hoprasert[60] 

(%*) 
79.87 69.30 96.88 69.69 99.08 69.55 99.23 45.62 99.49 46.22

Frame 845 (3**) 910 (3**) 1000 (3**) 1050 (3**) 1110 (3**) 

Proposed  

(%*) 

Hoprasert[60] 

(%*) 
99.56 46.18 99.39 53.58 99.85 57.87 99.93 60.83 99.64 60.32

*: The value in the table means the recognition rate that correct background pixels in a 
frame divide total pixels in a frame(%). 
**: The number inside the parentheses indicates the number of fluorescent lamps that 
have turned on. 
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Figure 4-3 The results of global illumination changes with fluorescent lamps, the 
number below the picture is the index of frame. (a) Original images. (b) The results of 
pixel classification, where red indicates the shadow, green indicates the highlight and 
blue indicates the foreground. (c) The results of background subtraction with shadow 
removal using our proposed method, where dark indicates the background and white 
indicates the foreground. 
 
 
 
 

Background      381        385        405         430        560        565         570 

580         650        700         845        910       1000       1050       1110 

(a) 

Background      381        385        405         430        560        565         570 

580         650        700         845        910       1000       1050       1110 

 (b) 

Background      381        385        405         430        560        565         570 

580         650        700         845        910       1000       1050       1110 

 (c) 
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4.1.3   Foreground Detection 

In the third experiment (Fig. 4-4), a person goes into the monitoring area, and the 

foreground region can be effectively extracted regardless of the influence of shadow 

and highlight in the indoor environment. Owing to the captured video clip having 

little illumination variation and dynamic background variation, the comparison of the 

recognition rate of final background subtraction between the proposed method and 

that of Hoprasert [60] reveals that both methods are about the same, as listed in Table 

4-4. 

Table 4-4 The comparison between the proposed method and that proposed by 
Hoprasert [60] via foreground detection 

Frame 380 450 530 590 620 

Proposed  

(%*) 

Hoprasert[60] 

(%*) 
90.45 89.18 86.50 85.80 89.38 88.87 88.45 87.72 88.67 88.76

Frame 680 700 735 755 840 

Proposed  

(%*) 

Hoprasert[60] 

(%*) 
91.07 90.62 85.63 85.15 82.76 80.71 92.44 92.46 100.00 99.61

*: The value in the table means the recognition rate that correct background pixels in a 
frame divide total pixels in a frame(%). 

4.1.4   Dynamic Background 

In the fourth experiment (Fig. 4-5), image sequences consist of swaying clothes 

hung on a frame. The proposed method gradually recognizes the clothes as 

background owing to the ability of LTCBM to record the history of background 

changes. In situations involving large variation of dynamic background, a 

representative initial color-based background model can be established by using more 

training frames to handle the variations. 
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Figure 4-4 The results of foreground detection. (a) Original images. (b) The results of 
pixel classification, where the red color means the shadow, where red indicates the 
shadow, green indicates the highlight and blue indicates the foreground. (c) The 
results of background subtraction with shadow removal using our proposed method, 
where dark indicates the background and white indicates the foreground. 
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(a) 
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                          680            700            735            755             840 

 (b) 

Background         380            450             530            590            620 

                          680            700            735            755             840 

 (c) 
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Figure 4-5 The results of background subtraction about dynamic background. (a) 
Original images. (b) The results of pixel classification, where the red color means the 
shadow, where red indicates the shadow, green indicates the highlight and blue 
indicates the foreground. (c) The results of background subtraction with shadow 
removal using our proposed method, where dark indicates the background and white 
indicates the foreground. 
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4.1.5   Short-Term Color-based Background Model (STCBM) 

The final experiment (Fig. 4-6) shows the advantage of adding the STCBM. A doll 

is placed on the desk at the 360th frame. Initially, it is regarded as foreground, and at 

the 560th frame, the foreground region becomes background owing to the LTCBM. 

However, the Gaussian component belonging to the doll still does not have the 

highest weighting. Without adding the STCBM, when a hand is placed above the doll 

at the 590th frame, the foreground regions at the 670th frame remain the same as those 

at the 590th frame, as shown in Fig. 4-6(b). The foreground regions under our hand 

become shadows at the 670th frame in Fig. 4-6(c) for that shadows and highlights 

removal works well using a representative Gaussian component based on the STCBM. 

This experiment demonstrates the efficiency of the STCBM that a representative 

Gaussian component of the CBM can be selected by giving consideration to long-term 

tendency and short-term tendency. Besides, the advantage of the STCBM helps to 

reduce the computing time used in the GBM and increase the recognition rate of 

foreground detection. 
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Figure 4-6 The results of the advantage of the STCBM, where the red color means the 
shadow, the green color means the highlight and the blue color means the foreground. 
(a) Original images. (b) The results of background subtraction without the STCBM. (c) 
The results of background subtraction with the STCBM, where red indicates the 
shadow, green indicates the highlight and blue indicates the foreground. 

4.2 3D Object Recognition 

This section describes several experiments demonstrating the effectiveness of the 

proposed 3D object recognition. A SONY EVI-D30 PTZ camera was employed to 

capture object views. The following three databases were built to test the proposed 

method: Fig. 4-6 contains 12 3D rigid objects, Fig. 4-7 contains six 3D human 

postures, and Fig. 4-8 contains 11 scenes. 

 
 

  

301            360            560            590            670            740 

(a) 

301            360            560            590            670            740 

 (b) 

  

301            360            560            590            670            740 

(c) 
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Object 1 Object 2 Object 3 Object 4 

Object 5 Object 6 Object 7 Object 8 

Object 9 Object 10 Object 11 Object 12 

Figure 4-7 The first database containing 12 3D rigid objects. 

Posture 1 Posture 2 Posture 3 Posture 4 

Posture 5 Posture 6 Posture 7 Posture 8 

Figure 4-8 The second image database containing eight 3D human postures. 
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Scene 1 Scene 2 Scene 3 Scene 4 

    
Scene 5 Scene 6 Scene 7 Scene 8 

   

 

Scene 9 Scene 10 Scene 11  

Figure 4-9 The third image database containing 11 scenes. 

The notation 1, j
dV and 2, j

dV denote the sets of training views captured at 5° 

intervals, where 1, j
dV is employed during rigid object recognition, and 2, j

dV is 

employed during human posture recognition. The notation 3, j
dV , which denotes the 

set of training views captured at each location at a 1° increment, is utilized during 

scene recognition. Moreover, 1, j
tV  and 2, j

tV denote the set of testing views captured 

from trisection points between each pair of points separated by 5°, where 1, j
tV is 

utilized during rigid object recognition, and 2, j
tV is utilized during human posture 

recognition. Moreover, 3, j
tV  denotes the set of testing views captured at locations 

away from the original locations in four directions (forward, backward, left and right), 

five distances (5cm, 10cm, 15cm, 20cm and 50cm) and five covering rates (5%, 10%, 

15%, 20% and 50%). 3, j
tV  is utilized during scene recognition. The descriptions of 

the captured views are given by Eqs. (4-1)-(4-6). 
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1, 1,{ ( )},  where 1 12,  1 72j j
d dV i j i= ≤ ≤ ≤ ≤V                              (4-1) 

2, { ( )},  where 1 8,  1 72j j
d dV i j i= ≤ ≤ ≤ ≤V                               (4-2) 

3, { ( )},  where 1 11,  1 61j j
d dV i j i= ≤ ≤ ≤ ≤V                               (4-3) 

1, { ( )},  where 1 12,  1 216j j
t tV i j i= ≤ ≤ ≤ ≤V                      (4-4) 

2, { ( )},  where 1 8,  1 216j j
t tV i j i= ≤ ≤ ≤ ≤V                              (4-5) 

3, { ( )},  where 1 11,  1 6100j j
t tV i j i= ≤ ≤ ≤ ≤V                            (4-6) 

In the following experiments, 0T  denotes the number of objects, and is 12 for the 

rigid object recognition, 8 during human posture recognition, and 11 during scene 

recognition; 1T  denotes the number of training views, and is 72 during rigid object 

recognition and human posture recognition, and 61 during scene recognition. 2T  

denotes the number of low frequency information in FD, and is 40 in the following 

experiment. Moreover, the threshold values used in the ISAG is listed as Table 4-5. 

Table 4-5 The threshold values for the ISAG 

 

 

 

 

 

 

 

 

 

The first AOD The second AOD 

Main Feature 
Assistant 

Feature 
Main Feature 

Assistant 

Feature 
Experiment 

3T  4T  5T  3T  4T  5T  

3D object 

recognition 

1

3 640MdT =  
1 1

4 31.25*M Md dT T=  N/A 
2

3 336MdT =
2 2

4 31.25*M Md dT T=   N/A 

Human 

posture 

recognition 

1

3 1450MdT =
1 1

4 31.25*M Md dT T=
1

5 10adT =  N/A 

Scene 

recognition 

3

3 1100MdT =
3 3

4 31.25*M Md dT T=  N/A  N/A 
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Computing time for calculating similarity between a test view and a view in the 

database was approximately 0.006 seconds for rigid object recognition, 0.004 seconds 

for human posture recognition and 0.01 seconds for scene recognition on a P4 3.2G 

CPU with 1GB RAM. 

4.2.1  Rigid Object Recognition 

In the first experiment, the efficiency of the proposed framework was assessed 

using 2-D views captured at random intervals with the first database (Fig. 4-7). To 

determine average performance of the proposed method, training views were 

generated by sampling views in 1, j
dV  in 200 different random orders. Background 

subtraction was first performed on training 2D views to extract foreground objects. 

After that, Canny edge detection and GVF were performed on the extracted 

foreground objects to extract the object contour. Two features, called the MAG and 

PPL, are then extracted from the object contour and be used for building the AODs 

with the ISAG (Fig. 3-2). The characteristic views of aspects in each AOD are utilized 

for object matching. A recognition result is calculated with a weighted combination of 

the similarity measures from both AODs. Figure 4-10 illustrates the system 

architecture of the proposed framework for the 3D rigid object recognition. 
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The 1st AOD The 2nd AOD

MOD

A 2D view sampled 
from an unknown object

MAG feature Extraction

PPL feature Extraction

The 1st Similarity Measure

The 2nd Similarity Measure

Weighted Combination

Recognition Results
(Top Three Matches)

Feature Extraction Similarity Measure

3D rigid object recognition

 
Figure 4-10 The system architecture of the proposed framework applied on the first 
experiment (3D rigid object recognition). 

Table 4-6 The result of rigid object recognition using 2D views via MAG and PPL 

 

 

 

 

 

 

Table 4-6 presents statistical information for the means of aspect numbers using 

MAG and PPL. Furthermore, symmetrical objects, such as objects 2, 5, 6 and 7, had 

few aspects, thereby reducing computing time for recognizing objects. The views in 

1, j
tV  were adopted as unknowns, and tested whenever aspect-graph representations 

were built each time (200 times). The proposed aspect-graph generation is efficient 

due to its high recognition rate in the Top 1 to Top 3 matches in the Table 4-7. 

The proposed method, which constructs an aspect-graph representation using 

sampled views at random intervals, generates a practicable updating mechanism that 

integrates the database using new collected views. In this experiment, 18 random 

views sampled from 1, j
dV  are first utilized to construct a coarse aspect-graph 

The index of the objects in the first database listed in Fig. 4-7 Recognition 

Results 1 2 3 4 5 6 7 8 9 10 11 12 Avg. 

Numbers of 

aspect of MAG 
34.66 3.84 27.83 24.75 6.87 9.47 2.04 25.62 17.14 16.16 16.62 28.75 17.81

Numbers of 

aspect PPL 
38.72 14.08 14.32 22.84 10.98 20.12 8.41 31.07 25.79 17.68 23.61 19.88 20.63

Top 1 Match (%) 98.25 99.97 97.71 97.39 100 99.81 99.79 99.35 99.90 97.97 98.44 96.83 98.78

Top 2 Match (%) 99.21 100 98.96 98.73 100 99.96 99.86 99.67 99.97 98.68 99.47 98.17 99.39

Top 3 Match (%) 99.61 100 99.39 99.34 100 99.98 99.89 99.78 99.99 98.98 99.77 98.64 99.62
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representation of each object, called 18D . Eighteen additional random views are then 

adopted from the remaining views in 1, j
dV  to increase the accuracy of the database 

18D , called 36D . Similarly, 54D  and 72D  are constructed using views in remaining 

1, j
dV . Additionally, 90D  and 108D  are further constructed with extra random views 

sampled from 1, j
tV . Table 4-7 presents the average aspect numbers for each rigid 

object from 200 iterations. Although the aspect numbers increase when new views are 

employed to update the coarse database, the number of stored views remains 

significantly smaller than the number of original views. Figure 4-11 presents the 

recognition rate results obtained when using coarse to fine databases. Figure 4-12 

presents the standard deviations for recognition rates. The recognition rate increases 

when aspect-graph representations are trained using additional object views. 

Moreover, stability increases based on decreasing standard deviation. Therefore, the 

proposed method is demonstrated as effective for updating aspect-graph 

representations without re-sorting the overall collected views, or re-calculating overall 

similarity measures. 

Table 4-7 Results for numbers of aspects using MAG and PPL after updating with 
additional training views 

 

 

 

 

The index of the objects in the first database listed in Figure 4-7 Numbers 

of aspect 1 2 3 4 5 6 7 8 9 10 11 12 

18D  14.11 3.40 11.98 10.13 5.32 6.36 1.58 12.64 8.80 8.43 8.73 11.10

36D  22.86 3.60 18.83 16.15 6.23 8.01 1.80 19.16 12.53 12.17 12.48 18.29

54D  29.52 3.74 23.95 20.96 6.65 8.94 1.92 23.24 15.20  14.53 15.06 24.05

72D  34.66 3.84 27.83 24.75 6.87 9.47 2.04 25.62 17.14 16.16 16.62 28.75

90D  39.28 3.99 28.68 25.99 7.14 9.83 2.14 27.32 18.04 17.37 17.86 30.99

108D  43.28 4.07 29.50 27.14 7.36 10.12 2.26 28.67 18.90 18.50 19.06 33.12
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Figure 4-11 Recognition rates of coarse and fine databases ( 18D , 36D , 54D , 72D , 90D  and 

108D ), calculated using 200 results. 
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Figure 4-12 Standard deviations of recognition rates using coarse to fine databases 
( 18D , 36D , 54D , 72D , 90D  and 108D ), calculated using 200 results 

4.2.2  Human Posture Recognition  

The efficiency of the proposed method is demonstrated using the second image 

database (Fig. 4-8). As the same pre-processing in the first experiment, object contour 

(the contour of human posture) was extracted for further utilization. In the second 

experiment, two features, called the MAG and zθ , are extracted from the object 

contour and be used for building the AODs. The characteristic views of aspects in 

each AOD are utilized for human posture recognition. Figure 4-13 illustrates the 
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system architecture of the proposed framework for the human posture recognition. 

Table 4-8 shows the efficiency of the proposed method with a high recognition rate.  

The proposed method decreases the number of aspects for each human posture, 

and, thus, computing time for recognizing objects is decreased. Furthermore, adopting 

zθ  instead of PPL reduces the computing time. The similarity measure, which is 

based on posture contour with N points between an unknown posture and the posture 

in the database, requires computing N similarity distances while adopting PPL as the 

feature, but the similarity is computed only once while adopting zθ .  

The 1st AOD

MOD

A 2D view sampled 
from an unknown object

MAG feature Extraction

       feature Extraction

The 1st Similarity Measure

The 2nd Similarity Measure

Weighted Combination

Recognition Results
(Top Three Matches)

Feature Extraction Similarity Measure

Human posture recongition

 zθ

 

Figure 4-13 The system architecture of the proposed framework applied on the second 
experiment (human posture recognition). 

Table 4-8 Results of human posture recognition using 2D views via MAG and zθ  

The index of the postures in the second database listed in Fig. 4-8 
Recognition Results 

1 2 3 4 5 6 7 8 Avg. 

Number of Aspects 8 25 37 41 42 38 8 38 29.63

Top 1 Match (%) 94.91 99.07 98.15 100 99.07 96.30 99.54 100 98.38

Top 2 Match (%) 99.07 99.54 100 100 100 99.54 100 100 99.77

Top 3 Match (%) 100 99.54 100 100 100 99.54 100 100 99.88
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4.2.3  Scene Recognition 

In the third experiment, training images of 11 locations (Fig. 4-9) in an 

environment (Fig. 4-14) are obtained by rotating the PTZ camera from -30° to 30° 

using 1° increments at each location, thereby generating 61 images for each position. 

Furthermore, 12 Gaussian distributions are adopted in this work to build the blob 

model (BM feature). The number of aspects of each scene is below 13 after the 

combination processes. Figure 4-15 presents the sample training images, blob models 

and conceptual descriptions for each scene. Figure 4-16 illustrates the system 

architecture of the proposed framework for the scene recognition. Additionally, for the 

sake of illustration, the set of characteristic views at the 6th position in the indoor 

environment is cited as an instance of scene (Fig. 4-17).  

To test the efficiency of the proposed method, test images are captured by a 

mobile robot moving in four directions (forward, backward, left and right) at five 

different distances (5cm, 10cm, 15cm, 20cm and 50cm) and five different levels of 

occlusion (5%, 10%, 15%, 20% and 50%). Sixty-one images are captured at each 

position by rotating the camera from -30° to 30° at 1° increments with no occlusion. 

Figure 4-18 presents the test image samples captured at the 6th position. Figure 4-18(a) 

shows the test images captured in the forward and backward directions; Figure 4-18(b) 

presents the test images captured in the left and right directions. 
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Figure 4-14 The indoor environment from which scenes in the third database are 
obtained. 

 

 

 

 

 

 

 

 

 

Figure 4-15 The sample training image, blob model and conceptual description of 
each scene captured in the indoor environment (Fig. 4-14). (a) The sample image 
captured at each location in the indoor environment (from left to right is positions 
1,2,…,11). (b) The blob model of each sample captured image in (a) with 12 Gaussian 
distributions. (c) The conceptual description of each sample captured image in (a), 
which are calculated by comparing the original pixel values of each captured image 
with its blob model. 

(a) 

(b) 

(c) 
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The 1st AOD

MOD

A 2D view sampled 
from an unknown object BM feature Extraction The 1st Similarity Measure Weighted Combination

Recognition Results
(Top Three Matches)

Feature Extraction Similarity Measure

Scene Recognition

 

Figure 4-16 The system architecture of the proposed framework applied on the second 
experiment (human posture recognition). 

 
 
 
Figure 4-17 The 11 characteristic views at the 6th position in the indoor environment. 
 
 
 
 
 
 
 
 
Figure 4-18 The test images captured from the 6th position in the indoor environment. 
(a) The test images captured in the forward and backward directions; the shifted 
distances are as follows: backward 50 cm, backward 20 cm, backward 15 cm, 
backward 10 cm, backward 5 cm, 0 cm, forward 5 cm, forward 10 cm, forward 15 cm, 
forward 20 cm and forward 50 cm. (b) The test images captured in the left and right 
directions; the shifted distances are left 50 cm, left 20 cm, left 15 cm, left 10 cm, left 5 
cm, 0 cm, right 5 cm, right 10 cm, right 15 cm, right 20 cm and right 50 cm. 

To increase the robustness of scene cognition, multiple-view recognition is 

appropriate for testing. In this experiment, three arbitrary images iI ( 31 ≤≤ i ) 

obtained with different rotating angles of the PTZ camera are utilized for scene 

recognition. The first three recognized results that have the first three minimum 

similarity measures are adopted as candidates for further processing. Suppose O  is 

 

(a) 
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the set of recognized result defined as follows: 

{ },  1 3,1 3,1 11ij ijO o i j o= ≤ ≤ ≤ ≤ ≤ ≤ ,  

where i  is the index of the test image, and j  is the index of the order of 

recognition result. 

Three methods are proposed for estimating the final scene cognition result. The 

first result, 1R , is estimated using only one recognition result with only one captured 

image. The second result, 2R , uses the first three recognition result with only one 

captured image. The third result, 3R , uses all combinations of the first three 

recognition results with three captured images. The descriptions of 1R , 2R  and 3R  

are derived by Eq. (4-7). 

11
_

11 1 1 1
_ _ _ _

11 1 2 3 1 1 1 2 2 2

o , k 1                                                                          

o , k 2                                                         

o ( ) ( ) [ ( )

kR D r D

D D D r D D r D D

=

= ⋅ + ⋅ =

⋅ + ⋅ + ⋅ +
_

3 3( )],  k 3r D

⎧
⎪⎪
⎨
⎪
⎪ ⋅ =⎩

              (4-7) 

where  

arg max( )p pr F= , 31 ≤≤ p   

p

p

1,  if argmax(F ) exists           
,   1 3

0,  if argmax(F ) doesn't existpD p
⎧

= ≤ ≤⎨
⎩

  

{ }
3

1
,  1 11 ,   ( )p pq pq pj

j
F f q f q vδ

=

= ≤ ≤ = −∑   

Based on recognition results (Table 4-9), the recognition rates of the three 

methods are all above 95% when the level of occlusion is less than 20% and variation 

positions are below 20cm. Although the level of occlusion is 50% and variation 

positions are 50cm, recognition rates are still above 50%. Moreover, the third 

method, 3R , performs best and is reasonable based on the human vision used for 
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localization. When a person enters an unknown place, multi-directional views are 

captured by the eyes to assist recall of past experiences of the unknown place. In this 

work, the same strategy is adopted to increase scene cognition robustness. 

Table 4-9 Human posture recognition results using 2-D views via BM with position 
variations and different level of occlusion 

 

 

 

 

 

 

 

 

Covering Rate (1.000=100%) 

5% 10% 15% 20% 50% 

Shift Distance 

(cm) and 

Direction R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

0 cm 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.800 0.769 0.817 

Forward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.797 0.775 0.809 

Backward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.794 0.763 0.809 

Left 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.794 0.779 0.806 

5 

cm 

Right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.791 0.754 0.818 

Forward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.796 0.784 0.802 

Backward 0.997 0.979 1.000 1.000 0.997 1.000 1.000 0.997 1.000 0.997 0.996 1.000 0.785 0.738 0.802 

Left 1.000 0.993 1.000 1.000 0.996 1.000 1.000 0.996 1.000 1.000 0.993 1.000 0.796 0.772 0.805 

10 

cm 

Right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 0.999 1.000 0.770 0.747 0.817 

Forward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.784 0.769 0.797 

Backward 1.000 0.996 1.000 1.000 0.993 1.000 0.997 0.988 1.000 0.994 0.987 1.000 0.763 0.726 0.781 

Left 0.997 0.979 1.000 0.997 0.979 1.000 0.997 0.979 1.000 0.994 0.975 1.000 0.779 0.736 0.794 

15 

cm 

Right 0.992 0.982 0.997 0.992 0.977 0.997 0.992 0.979 0.997 0.992 0.977 0.997 0.726 0.705 0.757 

Forward 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.765 0.751 0.782 

Backward 0.999 0.987 1.000 0.994 0.982 1.000 0.991 0.979 1.000 0.988 0.976 1.000 0.733 0.711 0.748 

Left 0.976 0.960 0.987 0.979 0.970 0.993 0.975 0.961 0.979 0.975 0.963 0.979 0.748 0.699 0.776 

20 

cm 

Right 0.975 0.955 0.984 0.979 0.970 0.993 0.976 0.951 0.984 0.975 0.951 0.984 0.714 0.694 0.744 

Forward 0.845 0.838 0.854 0.845 0.844 0.849 0.842 0.829 0.845 0.832 0.815 0.839 0.508 0.503 0.523 

Backward 0.881 0.839 0.925 0.848 0.821 0.896 0.830 0.809 0.872 0.796 0.785 0.833 0.525 0.508 0.553 

Left 0.750 0.741 0.775 0.748 0.742 0.768 0.733 0.729 0.754 0.723 0.711 0.735 0.502 0.501 0.531 

50 

cm 

Right 0.811 0.794 0.841 0.799 0.784 0.827 0.781 0.770 0.817 0.753 0.763 0.778 0.532 0.502 0.531 
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Chapter 5  

Conclusions and Future Researches 

5.1 Conclusions 

This dissertation presents a robust framework for recognizing 3D objects from 2D 

views. Two main stages, namely the BSHSR and ISAG, are proposed in the 

framework. In the BSHSR, a background subtraction scheme involving highlight and 

shadow removal is proposed for extracting foreground regions with the consideration 

of illumination variations and dynamic background. Three background models, 

namely the CBM, GBM, and CSIM, are involved in the BSHSR. In the CBM, ECBM 

and CCBM are defined to increase the ability of recording a long period of 

background changes. Furthermore, the STCBM and LTCBM are defined to improve 

the flexibility and robustness of the gradient-based background subtraction. Most 

important, the CSIM is proposed to extract the shadow and highlight in this work with 

a 3D cone-shape boundary and combined with the CBM in the RGB color space. The 

threshold values highτ  and lowτ of CSIM can be calculated automatically using the 

standard deviation of the Gaussian distribution selected using the STCBM and 



 75

LTCBM. The proposed 3D cone model is compared with the nonparametric model in 

a complex indoor environment. The experimental results show the effectiveness of the 

proposed scheme for background subtraction with shadow and highlight removal. 

Moreover, the ISAG is proposed for building the 3D object database using 2D 

views sampled at random intervals. A robust database, which called a MOD, is 

composed of AODs. Each AOD is built using the ISAG with one main feature or one 

main feature and one assistant feature. The final recognition result can be estimated 

by combining the results calculated from each AOD. To demonstrate the efficiency of 

the proposed framework, three various object recognition problems, including 3D 

object recognition, human posture recognition, and scene recognition are performed in 

the experiments.  

Although the threshold values ( 3T and 4T ) applied on the ISAG are determined 

manually case by case, the criteria for selecting 3T and 4T  are described in Section 

3.4. The selection of 3T  and 4T  , which is a trade-off in this work, affects the 

number of aspects and thus affects the computing time and the error performance. 

Moreover, the feature selection plays an important role while applying the proposed 

method in different applications. Although the recognition rate decreases while the 

number of objects in the database increases in most applications, the proposed 

framework provides a hierarchical structure to combine more features to maintain the 

robustness of the recognition system. 

Moreover, the ISAG is practical for extracting aspects when features of an object 

conflict with the first criterion, namely, local monotonicity, as indicated by Cyr and 

Kimia [1]. For instance, the combinational algorithm developed by Cyr and Kimia [1] 

cannot efficiently combine 2D views of a human posture with MAG . However, the 
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ISAG overcomes this problem, and efficiently decreases the aspect number. In Fig. 

5-1 (a), the blue circles represents 2D views of a human posture, and the black human 

postures with the red and green lines connected to the blue circle represent the 2D 

views belonging to the same aspect. In Fig. 5-1 (b), the black human postures are the 

characteristic views of the aspects of human postures. The two aspects in Fig. 5-1 (b) 

clearly contain two clusters of 2D views that are opposites.  

The proposed method decreases computing time when updating the aspects with 

new 2D views. Using the method proposed by Cyr and Kimia [1], an object with N 

collected views requires a computing time of ( 1) / 2N N +  to calculate the mutual 

similarity distances between the ( 1)N +  2-D views and to extract the aspects and 

characteristic views. However, the proposed method requires only a computing time 

of N times to calculate the similarity distance between new incoming views and N 

existing views via the proposed method. However, as the proposed method has a high 

computation requirement, improving its efficiency is a topic for future works. 

 

(a)                              (b) 

Figure 5-1 The aspect-graph representation of the first human posture listed in Fig. 
4-8 via MAG only. (a)The similar 2D views of two aspects. (b)The characteristic 
views of two aspects. 
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5.2 Future Researches 

To improve the current 3D object recognition system, this dissertation purposes 

three possible further research directions. The first one is to combine a feature 

predictor with the original framework (Fig. 1-3).  Figure 5-2 illustrates the modified 

3D object recognition system. The feature predictor provides supplementary 

information to improve the robustness of extracted features based on statistics from 

continuous image frames. After that, even if the extracted features are influenced with 

noises, the feature predictor can fix errors or compensates the insufficient parts. For 

example, object contour is adopted as a kind of feature in this work. While the object 

edges are not determined in good condition, the object contour may converge to a 

false shape. In such condition, feature predictor should compensate the false part of 

the extracted contour based on past experience or some prior knowledge. 

Feature 
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Regions Top 3 Matches

3D Object Recognition

Similarity 
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Matching Procedure

Weighted 
Combination

Incremental 
Similarity-Based 
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A Main 3D 
Object Database

Building Procedure

Feature Predictor

 

Figure 5-2 3D object recognition system with a combination of a feature predictor and 
the proposed method illustrated in Fig. 1-3. 
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The second one is to investigate an efficient searching algorithm for finding top 

three matches. For example, Dayan et al. [72] proposed an approach to transform a 

multiclass recognition problem into a minimal binary classification problem using 

Minimal Classification Method (MCM). Unlike prevalent one-versus-one strategy 

that separates only two classes at each classification, their work has to separate two 

groups of multiple classes. Figure 5-3 shows the flow chart of the modified 

framework. As mentioned in Section 3.1, the accuracy of an object representation 

increases with minimal growth of search space while collecting additional new object 

views. However, the computing time increases while the number of objects in the 

database increases. Moreover, only the 2D views concerning the pan motion of the 

camera are collected for building the database. If we consider the 2D views sampled 

from the tilt motion of a camera, the characteristic views of an object increase. 

Therefore, an efficient searching algorithm is necessary while applying the proposed 

method in practice. 
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3D Object Recognition
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Incremental 
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Aspect-Graph
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A Main 3D 
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Building Procedure

An Efficient 
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Figure 5-3 3D object recognition system with an efficient searching algorithm. 
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