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Abstract

This work presents a framework for robust recognizing 3D objects from 2D views.
The proposed framework compriseés of two stages: the pre-processing stage and the
incremental database construction. 'stage. In- the pre-processing stage, foreground
objects is extracted from 2D«-views and-applied" for building 3D database and
recognizing. In the incremental database construction stage, a 3D object database is
built and updated using 2D views randomly sampled from a viewing sphere.

A background subtraction scheme involving highlight and shadow removal
(BSHSR) is proposed as the pre-processing stage of the framework. Foreground
regions can be precisely extracted from 2D views using the BSHSR despite
illumination variations and dynamic background. The BSHSR comprises three models,
called the color-based probabilistic background model (CBM), the gradient-based
version of the color-based probabilistic background model (GBM) and a cone-shape
illumination model (CSIM). The Gaussian mixture model (GMM) is applied to
construct the CBM using pixel statistics. Based on the CBM, the short-term
color-based background model (STCBM) and the long-term color-based background

model (LTCBM) can be extracted and applied to build the GBM. Furthermore, a new

v



dynamic cone-shape boundary in the RGB color space, called the CSIM, is proposed
to distinguish pixels among shadow, highlight and foreground.

An incremental database construction method based on similarity-based
aspect-graph (ISAG) is proposed for building the 3D object database using 2D views.
Similarity-based aspect-graph, which contains a set of aspects and characteristic
views for these aspects, is employed to represent the database of 3D objects. An
incremental database construction method that maximizes the similarity of views in
the same aspect and minimizes the similarity of prototypes is proposed as the core of
the framework. To imitate the ability of human cognition, 2D views randomly
sampled from a viewing sphere are applied for building and updating a 3D object
database. The effectiveness of the BSHSR is demonstrated via experiments with
several video clips collected in a complex indoor €nvironment. The BSHSR is applied
in the proposed framework to extract foreground object from 2D views. The proposed
framework is evaluated on various3D-ebject, recognition problems, including 3D
rigid recognition, human posture récognitions-and scene recognition. Shape and color
features are employed in different applications with the proposed framework to show

the efficiency of the proposed method.
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Chapter 1

Introduction

1.1 Overview of 3D Object Recognition

1.1.1 3D Object Recognition

Object recognition is an important topic in computer vision where various
approaches have been developed [1-5]. However, numerous technical issues require
further investigation, especially for 3D object recognition. Variations in viewing
direction and angle [1, 6-7], illumination changes [8-9], and scene clutter and
occlusion [10-11] are the main challenges for object recognition. In recent years,
many researches were presented for solving these issues. For example, a generic
object class detection system [12] that combines the Implicit Shape Model and
multi-view specific object recognition is presented to detect object instances from
arbitrary viewpoints. A new framework [13] that combines a visual-cortex-like
hierarchical structure and an increasingly complex and invariant feature was proposed

for robust object recognition. Furthermore, a new object representation, Multicolored



Region Descriptor (M-CORN) [14], was proposed to describe the color and local
shape information of objects. Moreover, some low-level visual features, such as
object shading, surface texture and an object’s contour or binocular disparity, have
recently been proposed to describe 3D object representation [15-19]. However, 3D
object recognition is primarily influenced by position variations and illumination

source type, and the relative positions of an observer and object.

Some advanced theorems of 3D object perception have been investigated to solve
these issues and enhance the 3D object recognition task [20]. Existing theorems for
high-level 3D object perception can be categorized as object-centered and
viewer-centered representations based on a coordinate system [2], and as
volume-based (or model-based) and ,view-based representations based on the
constituent elements [21]. Viewer-centered répresentation describes portions of an
object relative to a coordinate  system ‘based on an observer. A view-based
representation characterizes a“~3D= gbjeet-using- a set of object views. Both
viewer-centered and view-based frameworks conform to the intuition of human
perception, during which a person memorizes an object using several primary views
without requiring an exhaustive 3D object model. Moreover, S. Kim et al. [22]
proposed a combined model-based method to recognize 3D objects using a
combination of a bottom-up process (model parameter initialization) and a top-down

process (model parameter optimization).

1.1.2 Human Posture Recognition

Human posture recognition is an important example of 3D object recognition. A
considerable number of studies have been made on this field over the past 10 years

[23-24]. Existing approaches [25] for human posture recognition are classified as



direct and indirect approaches based on the human body model. The model has either
a 2D or 3D representation based on the dimensionality of features. The direct
approach typically consists of a detailed human body model. For example, Ghost [26]
developed a silhouette-based body model, incorporating hierarchical body pose
estimation, a convex hull analysis of the silhouette and a partial mapping from body
parts to silhouette segments. Furthermore, Pfinder [27] utilized color information to
develop a multi-class statistical model and identified human body parts using shape
detection. However, occlusions and perspective distortion lead to the unreliable
results. The indirect approach extracts features about the human body instead of a
detailed human body model, and combines classifiers to estimate human posture. For
example, Ozer et al. [28] utilized the AC-coefficients as the features and adopted
principal component analysis (PCA) as the classifier. A recent work [29] used color,
edge and shape as the features .and the hidden Markov model as the classifier.
Furthermore, complex 3D models futilize-different equipment to solve problems
associated with the angle from which. human postures are observed. For instance,
Delamarre et al. [30] proposed a method for building a 3D human body via three or
more cameras, and then calculated the projection of the silhouette for comparison
with 2D projections in a database. Additionally, 3D laser scanners [31] or thermal
cameras [32] have also been adopted to build a 3D human body model. However,

these 3-D solutions require enormous computing time and high device costs.

1.1.3 Scene Recognition

Recognizing scene can be addressed as a problem of 3D object recognition, where
the scene represents variations due to changing the viewer location or camera pose

[33-39]. Scene recognition is a fundamental element in the topological representation



of environment [40-41], where the graph node of the adjacency graph describes the
robot’s location. Moreover, scene recognition can also be employed to memorize and
detect visual landmarks in geometrical representation of environments [42-43]. In
[44], a series of experiments were presented to show that only the overall geometry
and a few key features are required to perform scene recognition. For capturing the
key features, Krose et al. [45] proposed a method for appearance-based modeling of
an environment by extracting scene features using PCA. Oliva et al. [46] proposed a
scene-center-based approach to estimate the structure of a scene image by the mean of
global image features. Moreover, a framework combined with a supervised method
for recognizing the door and an unsupervised method for learning door-reaching

behavior has been proposed in [47].

1.2 Overview of Background Subtraction

A reference image is generally uwsed to-perform background subtraction. The
simplest means of obtaining a reference image is by averaging a period of frames [48].
However, it is not suitable to apply time averaging on the home-care applications
because the foreground objects (especially for the elderly people or children) usually
move slowly and the household scene changes constantly due to light variations from
day to night, switches of fluorescent lamps and furniture movements etc. In short, the
deterministic methods such as the time averaging have been found to have limited
success in practice. For indoor environments, a good background model must also
handle the effects of illumination variation, and the variation from background and
shadow detection. Furthermore, if the background model cannot handle the fast or
slow variations from sunlight or fluorescent lamps, the entire image will be regarded

as foreground. That is, a single model cannot represent the distribution of pixels with
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twinkling values. Therefore, to describe a background pixel by a bi-model instead of a

single model is necessary in home-care applications in the real world.

Two approaches were generally adopted to build up a bi-model of background
pixel. The first approach is termed the parametric method, and uses single Gaussian
distribution [27] or mixtures of Gaussian [49] to model the background image.
Attempts were made to improve the GMM methods to effectively design the
background model, for example, using an on-line updated algorithm of GMM [50]
and the Kalman filter to track the variation of illumination in the background pixel
[51]. Furthermore, motion information is used for extracting a set of regions that have
coherent motion to improve the efficiency of region classification and computing time
[52]. The second approach is called the non-parametric method, and uses the kernel

function to estimate the density fiinction of background images [53].

Another important consideration is the shadows and highlights. Numerous recent
studies have attempted to detect the shadows and highlights. Stockham [54] proposed
that a pixel contains both an intensity value and a reflection factor. If a pixel is termed
the shadow, then a decadent factor is implied on that pixel. To remove the shadow, the
decadent factor should be estimated to calculate the real pixel value. Rosin [55]
proposed that shadow is equivalent to a semi-transparent region, and uses two
properties for shadow detection. Moreover, Elgammal et al. [53] tried to convert the
RGB color space to the rgb color space (chromaticity coordinate). Because
illumination change is insensitive in the chromaticity coordinate, shadows are not
considered the foreground. However, lightness information is lost in the rgb color
space. To overcome this problem, a measure of lightness is used at each pixel [53].

However, the static thresholds are unsuitable for dynamic environment.



1.3 Outline of Proposed System

Figure 1-1 illustrates the block diagram of the proposed framework. In the
foreground detection block, image pixels of a 2D view are classified among
foreground, shadow, highlight and background. The foreground pixels are applied to
extract features for 3D object recognition. In the 3D object recognition block, one or
more similarity measures are applied on the extracted features of a testing 2D view
and all the objects in a 3D object database. The top three similar objects in the

database (Top 3 Matches) are regarded as the recognition results.

o o ———————— — — — —— — —

{ Proposed 3D Object Recognition System \I
I

| ! |

A 2D view I Background 3D Object )
sampled from an ™ . > . +—» Top 3 Matches

. Subtraction Recognition

unknown object | |

| |

\ —— e gl R e . N o e — 7/

Figure 1-1 Block diagram of proposed 3D ebject recognition system.

1.3.1  Background Subtraction

In the background subtraction block (Fig. 1-2), a background subtraction scheme
with highlight and shadow removal (BSHSR) is proposed to extract foreground
regions with three proposed background models. First, the CBM is applied for
extracting foreground candidates pixels. After that, the CSIM is applied for
classifying foreground candidate pixels among real foreground, shadow and highlight.
Finally, the GBM is used for eliminating false foreground pixels from the foreground
candidate pixels. Moreover, only those real foreground pixels are reserved for further

processing.
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Figure 1-2 Block diagram of foreground detection.

1.3.2 3D Object Recognition

In the 3D object recognition block (Fig.1-3), a main 3D object database (MOD) is
built during the building procedure with the proposed incremental similarity-based
aspect-graph (ISAG). After that, one .or . more features are extracted from those
foreground region to measure similaritylamong the objects in the MOD. After a
weighted combination of all similarity measures, the top 3 similar objects are regarded

as the recognition results.

( . i R
3D Object Recognition
T m—_——— N
| Matching Procedure |
! I

Foreground | Feature Similarity Weighted ]
Regions | - Extraction Measure Combination | | Top 3 Matches
! I
| J
r-e—————————— -
| Building Procedure |
|
|
| Incremental AMain3D | |
| Similarity-Based .
— Object Database | |
| Aspect-Graph (MOD)
I (ISAG) :
v J
- J

Figure 1-3 Block diagram of 3D object recognition.



1.4 Contribution of this Dissertation

The problem we address in this work is as follows: Given a set of 2D views of 3D

objects, such as rigid objects, human postures, and scenes, how do we represent these

3D objects with collected 2D views in an efficient way? In other words, how do we

extract the representative views from these 2D views such that a 3D object can be

indexed efficiently? For the purpose of this work, we propose a flexible 3D object

recognition framework for building the 3D object database and recognizing 3D

objects with 2D views. We place emphasis on three issues in practice, which are listed

as follows.

1.

For extracting the object features from a complex background, a background
subtraction scheme involvingshighlight-and shadow removal (BSHSR) is
proposed as the pre-processing stage of the framework. Foreground regions can
be precisely extracted from 2D, views using the BSHSR despite illumination
variations and dynamic background. The BSHSR comprises three models, called
the color-based probabilistic background model (CBM), the gradient-based
version of the color-based probabilistic background model (GBM) and a
cone-shape illumination model (CSIM).

An incremental database construction learning method based on similarity-based
aspect-graph (ISAG) is proposed for building the 3D object database using 2D
views. The accuracy of the object representation increases with minimal growth
of search space while collecting additional new object views.

For improving the robustness and computing time, a hierarchical matching
structure is proposed to decide the final recognition result with a weighted

combination of the results from multiple features.



1.5 Dissertation Organization

This chapter provides a brief introduction of the background subtraction system
and 3D object recognition, including rigid object recognition, human posture
recognition and scene recognition. This chapter also briefly discusses two main
components in the proposed 3D object recognition framework. The remainder of this
dissertation is organized as follows. Chapter 2 presents the proposed background
subtraction algorithm (BSHSR), including the descriptions of the CBM, STCBM,
LTCBM, GBM, and CSIM. Chapter 3 describes the ISAG and the proposed hierarchal
matching structure. Chapter 4 presents experimental results that demonstrate the
performance of the proposed method for 3D rigid objects, human postures and scene
recognition. Finally, some concluding remarks and future researches are discussed in

Chapter 5.



Chapter 2

Background Subtraction

2.1 Introduction

For precisely extracting. foreground objects; environmental changes and
shadow/highlight effects are necessary to be considered. Despite the existence of
abundance of research on individual techniques, as described in Chapter 1, few efforts
have been made to investigate the integration of environmental changes and
shadow/highlight effects. In this work, we proposed a scheme that combines the
color-based background model (CBM), the gradient-based background model (GBM)

and the cone-shape illumination model (CSIM) to solve the issue in practice.

The remainder of this chapter is organized as follows. Section 2.2 describes the
system architecture and the corresponding dataflow. Section 2.3 describes the
statistical learning method used in the probabilistic modeling and defines the STCBM
and LTCBM. Section 2.4 then proposes the CSIM using the STCBM and LTCBM to
classify shadows and highlights efficiently. A hierarchical background subtraction

framework that combined with color-based subtraction, gradient-based subtraction
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and shadow and highlight removal was then described to extract the real foreground

of an image. Finally, Section 2.6 presents discussions and conclusions.

2.2 System Architecture

Figure 2-1 illustrates the block diagram of the BSHSR. The BSHSR comprises
three main models which are called the CBM, GBM and CSIM. The CBM comprises
the LTCBM and STCBM, where the LTCBM is defined to record the background
changes during a long period and STCBM is defined to record the background
changes during a short period. Moreover, the STCBM and LTCBM are used to
determine the parameters of the GBM and CSIM with a selection rule. Four stages are
involved in the BSHSR. First, color-based background subtraction is performed on
the input image for extracting the foreground-candidates via the LTCBM. After that,
shadow and highlight removal-is performed-on the foreground candidates via the
CSIM for classifying the pixels of foreground ‘candidates among real foreground,
shadow and highlight. For eliminating the false foreground regions, gradient-based
background subtraction is performed on the input image via the GBM. Finally, a
hierarchal background subtraction is performed for combing the results from the

CSIM and GBM.

l

Shadow and Highlight
Removal

Hierarchical |l Output Image
Background Subtraction P &

Gradient-Based
Background Subtraction

!

R e e i . Cone-Shape
Color-Based Background Model | Tllumination Model —»

1
! (CBM) (CSIM)
Color-Based Model Update : Short-Term Color-Based
Input Image }—» Background : Background Model
Subtraction 1 (STCBM)
: Selection Rule
1
[
+—»  Background Model
1
1
1

Model Update
(LTCBM) Gradient-Based

__________ Background Model |—»
(GBM)

Long-Term Color-Based

Figure 2-1 The block diagram of the BSHSR.
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2.3 Background Modeling

Our previous investigation [56] studied a CBM to record the activity history of a
pixel via GMM. However, the foreground regions generally suffer from rapid
intensity changes and require a period of time to recover themselves when objects
leave the background. In this work, the STCBM and LTCBM are defined and applied
to improve the flexibility of the gradient-based subtraction that proposed by Javed
et.al [57]. The features of images used in this work include pixel color and gradient
information. This study assumes that the density functions of the color features and

gradient features are both Gaussian distributed.

2.3.1 Color-Based Background Modeling

First, each pixel x is defined as a.-3=dimensional vector (R, G, B) at time . N

Gaussian distributions are used’:to. construct the' GMM of each pixel, which is

described as Eq. (2-1).

fxID)=2w,

1
=l v (27T)d ‘zl ‘

exp(—%(x )T Y - ) (2-1)

where 1 represents the parameters of GMM,

N
/1={Wiaﬂi,zi},i:1,2,...,Nand zwi =1

i=l1
Suppose X ={x,,x,,...,x, } is defined as a training feature vector containing
m pixel values collected from a pixel among a period of m image frames. The next
step is calculating the parameter 4 of GMM of each pixel so that the GMM can

match the distribution of X with minimal errors. A common method for calculating
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A 1s the maximum likelihood (ML) estimation. ML estimation aims to find model
parameters by maximizing the GMM likelihood function. ML parameters can be
obtained iteratively using the expectation maximization (EM) algorithm [58] and the
ML estimation of A 1is defined as Eq. (2-2).
Ay = argm?szzlllogf(xj | 4) (2-2)
The EM algorithm involves two steps; the parameters of GMM can be derived by
iteratively using the Expectation step equation and Maximum step equation, as Egs.

(2-3) and (2-4).

B Expectation step: (E step)

w (x| p,,2, J
B = ZASTAL) [ SN, | =, m (2-3)

zakf(xj | s 220)

B, denotes the posterior probability=that=the, feature x; belongs to the ith

Gaussian component distribution.

B Maximum step: (M step)

A 1 &

w;, = ﬁ;ﬂjl

ﬁiZZ/gﬁxj/Zﬂji (2-4)
=1 =1

The termination criteria of the EM algorithm are as follows:

1. The increment between the new log-likelihood value and the last log-likelihood
value is below a minimum increment threshold.

2. The iterative count exceeds a maximum iterative count threshold.
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Suppose an image contains S =W x H pixels, where W means the image width
and H means the image height. There are total S GMMs should be calculated by the

EM algorithm with the collected training feature vector of each pixel.

Moreover, this study uses the K-means algorithm [59], which is an unsupervised
data clustering used before the EM algorithm iterations to accelerate the convergence.
First, N random values are chosen from X and assigned as the center of each class.
Then the following steps are applied to cluster the m values of the training feature

vector X .

1. To calculate 1-norm distances between the m values and the N center values.

Each value of X is classified to the class having the minimum distance with it.

2. After clustering all the valuesof X , re-calculate each class center by calculating

the mean of the values among.each class.

3. Calculate the 1-norm distances-between-the' m values and the N new center
values. Each value of X is classified“to the class which has the minimum
distance with it. If the new clustering result is the same as the clustering result
before re-calculating each class center, then stop, otherwise return to previous

step to calculate the N new center values.

4.  After applying K-means algorithm to cluster the values of X' , the mean of each

class is assigned as the initial value of g, the maximum distance among the

points of each class is assigned as the initial value of 2., and the value of w,

is initialized as 1/ N .
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2.3.2 Model Maintenance of the LTCBM and STCBM

According to the above sections, an initial color-based probabilistic background
model is created using the training feature vector set X with N Gaussian
distributions and N is usually defined as 3 to 5 based on the observation over a
short period of time m. However, when the background changes are recorded over
time, it is possible that more different distributions from the original N distributions
are observed. If the GMM of each pixel contains only N Gaussian distributions,
only N background distributions are reserved and other collected background
information is lost and it is not flexible to model the background with only N

Gaussian distributions.

To maintain the representative’background medel and improve the flexibility of
the background model simultaneously,' an initial LTCBM is defined as the
combination of the initial color-based prebabilistic-background model and extra N
new Gaussian distributions (total 2V -distributions), an arrangement inspired by the

work of [60]. Kaew et al. [49] proposed a method of sorting the Gaussian
distributions based on the fitness value w. /o, ( X, =0/l ), and extracted a

representative model with a threshold value B,,.

After sorting the first N Gaussian distributions with fitness value, b (b< N)

Gaussian distributions are extracted with Eq. (2-5).

b
B= argminij > B, (2-5)

b Jj=1

The first b Gaussian distributions are defined as the elected color-based
background model (ECBM) to be the criterion to determine the background.

Meanwhile, the remainders (2N-b) of the Gaussian distributions are defined as the
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candidate color-based background model (CCBM) for dealing with the background
changes. Finally, the LTCBM is defined using the combination of the ECBM and
CCBM. Figure 2-2 shows the block diagram to illustrate the process of building the

initial LTCBM, ECBM and CCBM.

The initial Color-Based

probabilistic background model Initial Long-Term
Color-Based
Background Model
(Initial LTCBM)

Extra N Gaussian Distributions

Training vector set X — EM algorithm

Y
Match EM Stopping Rules ?

The first b Gaussian Sorting the 2N
distributions are defined as Gaussian distributions
ECBM with fitness value

The remainders (2N-b)
Gaussian distributions are
defined as CCBM

Figure 2-2 Block diagram showing the process of building the initial LTCBM, ECBM
and CCBM.

The Gaussian distributions -0f the ECBM mean the characteristic distributions of
“background”. Therefore, if a“new- pixel-value belongs to any of the Gaussian
distributions of the ECBM, the new pixel isiregarded as ““a pixel contains the property
of background” and the new pixel is classified as “background”. In this work, a new
pixel value is considered as background when it belongs to any Gaussian distribution
in the ECBM and has a probability not exceeding 2.5 standard deviations away from
the corresponding distribution. If none of the » Gaussian distributions match the new
pixel value, a new test is conducted by checking the new pixel value against the
Gaussian distributions in the CCBM. The parameters of the Gaussian distributions are

updated via Eq. (2-6). p and « are termed the learning rates , and determine the

update speed of the LTCBM. Moreover, ;J(wf | X*') results from background

subtraction which is set to 1 if a new pixel value belongs to the i” Gaussian

distribution. If a new incoming pixel value does not belong to any of the Gaussian
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distributions in the CBM and the number of Gaussian components in the CCBM is
below (2Nb), a new Gaussian distribution is added to reserve the new background
information with three parameters: the current pixel value as the mean, a large

predefined value as the initial variance, and a low predefined value as the weight.
Otherwise, the (2N —b)" Gaussian distribution in the CCBM is replaced by the new

one. After updating the parameters of the Gaussian components, all Gaussian

distributions in the CBM are resorted by recalculating the fitness values.

W'l = (- a)w! +ap(wl | X! (2-6)
m{" = (1= p)m] + pX "
S = (- p) X (X - m ) (s ™)
p=og(X/" |m,X])
Unlike the LTCBM, the STCBM s defined to record the background changes

during a short period. Suppose B, frames are'collected during a short period B, and

then B, new incoming pixels for each pixel are collected and defined as a test pixel

set P = {pl,pz,...,pq,...,pBl }, where p_  means the new incoming pixel at time q.

A test pixel set P is defined and used for calculating the STCBM and a result set S

is then defined and calculated by comparing P with the LTCBM and is described as

Eq.(2-7), where I, means the result after background subtraction ,which means the
index of Gaussian distribution of the initial LTCBM, R, means the index of

resorting result for each Gaussian distribution after each update, and F, means the

reset flag of each Gaussian distribution.
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S ={8,.8,0s8,.... 85 .and S, =(I,.R, (i), F, (i)} (2-7)

where 1</ <2N, I<R (i))<2N, F,(i)e{0,1},1<i<2N

The histogram of CG is then given using Eq. (2-8).
Heo(k)= X, [80c=(1, + R, (I, )+ F, Y 8Gk—(1, + R, (I)))/ B (2:8)
where 1<k<2N, 1<¢g<B,1<q <q

In brief, four Gaussian distributions are used to explain how Egs. (2-7) and (2-8)
work and the corresponding example is listed in Table 2-1. At first, the original CBM
contains four Gaussian distributions (2N =4 ), and the index of Gaussian distribution
in the initial CBM is fixed (1,2,3,4).7At the first time, a new incoming pixel which

belongs to the second Gaussian/distribution: compares with the CBM, so the result of

background subtraction is /, =2. Moreover, the CBM is updated with Eq. (2-6) and
the index of Gaussian distribution in the CBMis changed. When the order of the first
and second Gaussian distributions is changed, R, (i) records the change states; for

example, R (1)=1 means the first Gaussian distribution has moved forward to the

second one, and R (2)=-1 means the second Gaussian distribution has moved

backward to the first one. At the second time, a new incoming pixel which belongs to

the second Gaussian distribution based on the initial CBM is classified as the first

Gaussian distribution (/, =1) based on the latest order of the CBM. However, the CG

histogram can be calculated according to the original index of the initial CBM with

the latest order of the CBM and R, (i), such that H (I, +F, 6 =2) will be

accumulated with one. Moreover, R (i) changes while the order of Gaussian
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distributions changes. For example, at the fifth time in Table 2-1, the order of CBM

changes from (2,1,3,4) to (1,2,3,4), and then R,(1)=1-1=0 means the first

Gaussian distribution of the initial CBM has moved back to the first one of the latest

CBM, and R, (2)=-1+1=0means the second Gaussian distribution has moved back

to the second one of the latest CBM.

Table 2-1 An example to calculate CG histogram

INDEX OF INDEX OF
TIME (q) 2 TIME (q) 2
INITIAL CBM INITIAL CBM
Index of Index of
CCBM at time 2 CCBM at time 1
q q
P, * P, *
1 4
I, I,
R, 0 R, 1
g 0 £, 0
CG 1 CG 2
Index of Index of
CCBM at time 1 CCBM at time 2
q q
Py Py
2 5
1‘/ 1‘1
R . -1 R .y 0
g 0 £, 0
CG 2 CG 2
Index of Index of
CCBM at time 1 CCBM at time 2
q q
p, * p,
3 6
1‘1 I']
R, -1 q 0
g 0 g 0
CG 2 CG 2
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If a new incoming pixel p, matches the i" Gaussian distribution that has the

least fitness value, the i” Gaussian distribution is replaced with a new one and the

flag F, will be set to 1 to reset the accumulated value of H ; (i) . Figure 2-3 shows

the block diagram about the process of calculating H .. .

| 4 . struct i Yes
Test Pixel Pq |—» Color-based Ba_ckground . The result structure Sq gf the N Record Sq into the L, Calculate Hea
Subtraction background Subtraction result structure S

f | No

Resorting the Gaussian —atl
Distributions of the LTCBM 4

LTCBM —|

Figure 2-3 Block diagram showing the process to calculate H ..

After matching all test pixels to thé corresponding Gaussian distribution, the result

set § can be used to calculating K., using 1 ‘and F, . With the reset flag F,,

the STCBM can be built up rapidly based-on-a-simple idea, threshold on the occurring
frequency of Gaussian distribution.~That is' to say, the short-term tendency of
background changes is apparent if an element of H.(k) is above a threshold
value B, during a period of frames B,. In this work, B, is assigned a value of 300
frames and B, is set to be 0.8. Therefore, the representative background component
in the short-term tendency can be determined to be k if the value of H ; (k)
exceeds 0.8, otherwise, the STCBM provides no further information on background

model selection.

2.3.3 Gradient-Based Background Modeling

Javed et.al [57] developed a hierarchical approach that combines color and
gradient information to solve the problem about rapid intensity changes. Javed et.al

[57] adopted the k" , highest weighted Gaussian component of GMM at each pixel to
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obtain the gradient information to build the gradient-based background model. The
choice of k in [57] is similar to select k based only on the ECBM defined in this work.
However, choosing the highest weighted Gaussian component of GMM leads to the
loss of the short term tendencies of background changes. Whenever a new Gaussian
distribution is added into the background model, it is not selected owing to its low
weighting value for a long period of time. Consequently, the accuracy of the
gradient-based background model is reduced for that the gradient information is not

suitable for representing the current gradient information.

To solve this problem, both STCBM and LTCBM are considered in selecting the
value of k& for developing a more robust gradient-based background model and

maintaining the sensitivity to short-term, changes. When the STCBM provides a
representative background component (says the, k.” bin in the STCBM), k is set to

k, rather than the highest weighted Gaussian distribution.

Let x{, =[R,G,B] be the latest colorwalue that matched the k" distribution of
the LTCBM at pixel location (i, j), then the gray value of xf’j is applied to calculate
the gradient-based background subtraction. Suppose the gray value of x| ;s

calculated as Eq. (2-9), then gf’j will be distributed as Eq. (2-10) based on

independence among RGB color channels,

gf’j =aR+ G+ yB (2-9)
g ~N(m/,,(o],)") (2-10)
where

1k, R 1.k, .G 1k, B

t
m; =0+ ﬂ/u[,_,‘ +
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After that, the gradient along the x axis and y axis can be defined as

fi=g.,~g, and f =g/, —g; . Fromthework of [S7], f, and f, have the

distributions defined in Egs. (2-11) and (2-12).

fo~N(@m, ,(c,)?) @2-11)
f,~N@m, ,(c,)) (2-12)
where

my = mp,;—mg

mp=m—m

2 2
o, =\(0L.,) +(o]))

2 2
Oy = \/(O-it,jﬂ) + (O-it,j)

Suppose A, =./f7+ fy2 is defined as the magnitude of the gradient for a pixel,

A, =,Jtan”'(f,/ f,) 1s defined as its direction (the angle with respect to the

horizontal axis), and A =[A,,A,] is defined as the feature vector for modeling the

gradient-based background model. The gradient-based background model based on

feature vector A = [Am ,A d] then can be defined as Eq. (2-13).

A
F*A,,A,)= — - exp[— z - ]>Tg (2-13)
ZHGfXafy 1-p 2(1-p7)

where
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2.4 Background Subtraction with Shadow Removal

2.4.1 Shadow and Highlight Removal

Besides foreground and background, shadows and highlights are two important
phenomenons that should be considered in most cases. Shadows and highlights result
from changes in illumination. Compared withisthe original pixel value, shadow has
similar chromaticity but lower brightness, and highlight has similar chromaticity but
higher brightness. The regions mfluenced by illumination changes are classified as the
foreground if shadow and highlight removal is:not performed after background

subtraction.

Hoprasert et al. [60] proposed a method of detecting highlight and shadow by
gathering statistics from N color background images. Brightness and chromaticity
distortion are used with four threshold values to classify pixels into four classes. The
method that used the mean value as the reference image in [60] is not suitable for
dynamic background. Furthermore, the threshold values are estimated based on the
histogram of brightness distortion and chromaticity distortion with a given detection
rate, and are applied to all pixels regardless of the pixel values. Therefore, it is
possible to classify the darker pixel value as shadow. Furthermore, it cannot record

the history of background information.
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This work proposes a 3D cone model that is similar to the pillar model proposed
by Hoprasert [60], and combines the LTCBM and STCBM to solve the above
problems. A cone model is proposed with the efficiency in deciding the parameters of
3D cone model according to the proposed LTCBM and STCBM. In the RGB space, a
Gaussian distribution of the LTCBM becomes an ellipsoid whose center is the mean
of the Gaussian component, and the length of each principle axis equals 2.5 standard
deviations of the Gaussian component. A new pixel /(R,G,B) is considered to
belong to background if it is located inside the ellipsoid. The chromaticities of the
pixels located outside the ellipsoid but inside the cone (formed by the ellipsoid and
the origin) resemble the chromaticity of the background. The brightness difference is
then applied to classify the pixel as either highlight or shadow. Figure 2-4 illustrates

the 3D cone model in the RGB color space.

[ chiichs

[ ] Backeround

Figure 2-4 The proposed 3D cone model in the RGB color space.

The threshold values 7, and 7, are applied to avoid classifying the darker

pixel value as shadow or the brighter value as highlight, and can be selected based on

the standard deviation of the corresponding Gaussian distribution in the CBM.
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Because the standard deviations of the R, G and B color axes are different, the angles
between the curved surface and the ellipsoid center are also different. It is difficult to
classify the pixel using the angles in the 3D space. The 3D cone is projected onto the
2D space to classify a pixel using the slope and the point of tangency. Figure 2-5

illustrates the projection of the 3D cone model onto the RG 2D space.

high

Figure 2-5 2D projection of the 3D cone model from:RGB space onto the RG space.

Let aand b denote the lengths of major and minor axis of the ellipse, where

a=25%c, and b=2.5%0,. The center of the ellipse is (1, 1), and the elliptical

equation is described as Eq. (2-14).

(R— )’ N (G—ug)’ 1 (2-14)
a’ b

The line G =mR 1is assumed to be the tangent line of the ellipse with the slope
m . Equation (2-10) can then be solved using the line equation G =mR with

Eq.(2-15).

_ —Quupptg) £ — 1)~ ACpuppt )7 ~ pil)
2a’ - up)

(2-15)

1,2
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A matching result set is given by F, = { f,,i=1,23} where f, isthe matching

result of a specific 2D space. A pixel vector ] = [] rolc.1 B] is then projected onto the

2D spaces of R-G, G-B, and B-R. The pixel matching result is set to 1 when the slope

of the projected pixel vector is between m, and m,. Meanwhile, if the background
mean vector is E = [/1 ro My M B], the brightness distortion ¢, can be calculated via
Eq. (2-16)

_ |11 cos(0)

a (2-16)
’ I E||

where

0=10,-6,] = oos () cas

I Hg )
Ve + 1 Ny + He
The image pixel is classified as highlight, shadow or foreground using the

matching result set F,, the brightness distortion ., and Eq. (2-17).

Shadow : ZFb =3 and 7, <o, <1 , else
C(i) =+ Highlight ~ : Y F, =3 and l<a, <7, , else (2-17)

Foreground : otherwise

When a pixel is a large standard deviation away from a Gaussian distribution, the
Gaussian distribution probability of the pixel approximately equals to zero. It also

means the pixel does not belong to the Gaussian distribution. By using the simple

concept, 7,, and 7, can be chosen using N, standard deviation of the

corresponding Gaussian distribution in the CBM and are described as Eq. (2-18).
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where

I1E = (1) + (126

18 (Ng -0)’ +(Ng -0, )

0 = |QE —6’S| = cos_]( )—cos"l(
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2.4.2 Background Subtraction

A hierarchical approach eombining color-based background subtraction and
gradient-based background subtraction has-been proposed by Javed et.al [57]. This
work proposes a similar method for extracting the foreground pixels. Given a new

image frame [/, the color-based backgound model is set to the LTCBM and STCBM,
and gradient-based model is F*(A,,A,). C(I) is defined as the result of

color-based background subtraction using the CBM. G([/) is defined as the result of

gradient-based background subtraction. C(/) and G(I) can be extracted by testing
every pixel of frame / using the LTCBM and F*(A,,A,). Moreover, C(I) and

G(I) are both defined as a binary image, where 1 represents the foreground pixel
and 0 represents the background pixel. The foreground pixels labeled in C(/) are
further classified as shadow, highlight and foreground by using the proposed 3D cone

model. C'(/) can then be obtained from C([/) after transferring the the foreground

pixels which have been labeled as shadow and highlight in C(/) into the
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background pixel. The difference between Javed et.al [57] and the proposed method is
that a pixel classifying procedure using the CSIM is applied before using the

connected component algorithm to group all the foreground pixels in C(/ ). The

robustness of background subtraction is enhanced due to the better accuracy in |OR,, |.

Moreover, the foreground pixels can be extracted using Eq. (2-19).

Z (i,j)<0R, TZ;(Z] NG, ))) P (2-19)

where VI denotes the edges of image / and OR, represents the number of

boundary pixels of region R .
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Chapter 3

Incremental Similarity-Based

Aspect-Graph 3D Object Recognition

3.1 Introduction

The common challenge in 3D object recognition, human posture recognition, and
scene recognition is the variation in orientations. The simplest method for solving this
problem is to characterize an object with a densely sampled collection of independent
views. The object can be described in detail by constructing an object model with
numerous 2D views; however, this approach significantly increases computing time
due to the expansive search space. Thus, several approaches have been developed to
extract a minimal set of object views. Appearance-based methods focus on changes in
intensity of each view. However, changes to object lighting, rotation, deformation and
occlusion affect object recognition results when using the appearance-based method.
Aspect-graph representations focus on shape changes to an object’s projection [61-62].

Koenderink et al. [63] developed the underlying theory that describes 3D objects
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using aspect-graph representation. Moreover, the traditional aspect-graph method [64]
assumes that an object belongs to a limited class of shapes, and that characteristic
views can be extracted using prior knowledge of the object. Aspect-graph vertices
represent the characteristic views extracted from points on a transparent viewing
sphere with an object in the object center. These characteristic views are extracted as

prototypes of an object from a densely sampled collection of object views.

Cyr and Kimia [1] presented a similarity-based aspect-graph method to extract the
characteristic views using shape similarity between views. The viewing sphere is
sampled at regular (5 degree) intervals and two similarity metrics, which one based on
curving matching and the other based on shocking matching, are applied to combine

views into aspects. Let there be N _objects {0, O,,...,0,,...,O, ,0,}, which

comprise an object database. Edch object is'composed of M views sampling the

viewing sphere giving rise to a set of views {V;',..,V",....V,)} where V" denotes
the m” view of object O,. The aspect p ofobject nis defined as Ay, which is a
collection of views ranging from V" _ to V" . and represented by the characteristic

view V,'. Moreover, the dis-similarity of two views is represented as d(V,,V}),

m

th

which is the distance between the m"” view of object n and the i” view of object

J - The goal is to minimize the set of views required to represent each object O, .
Two criteria are imposed to maintain successful object recognition while forming
aspects representation by characteristic views. The first criterion (local monotonicity)

supposes that the dis-similarity of two views increases as their relative viewing angle

between them increases. The second criterion describes that the distance of each view

V" in an aspect A4 and the characteristic view of that aspect V' is smaller than
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the distance between any non-aspect view V" and the characteristic view V, .

The training views of an object in [1], which are sampled at 5-degree increments
and sorted by order, are collected in advanced. When additional views of an object are
collected to improve object representation in the work of [1], the total views of an
object must be resorted in order of view angles. The first criterion, local monotonicity,
is not suitable when an object is symmetrical in the feature space. It is inconvenient to
update the aspect-graph representation while collecting more new 2D views. To
improve the flexibility of an update mechanism, this work presents an incremental
database construction method for building and updating the aspect-graph with object
views sampled at random intervals. Object representation becomes increasingly
detailed using additional captured,and-characteristic views without re-calculating
similarity measures by re-sorting total views. Mereover, the first criterion in the work
of [1], local monotonicity, is not utilized; thereby improving flexibility of extracting
aspects of symmetrical objects. Although the proposed approach cannot confirm the
view angle of a test view using a specific object view, it improves the flexibility for
building an aspect-graph representation, and reduces computing time when updating
object aspects. Additionally, the accuracy of the object representation increases with

minimal growth of search space while collecting additional new object views.

The remainder of this chapter is organized as follows. Section 3.2 presents the
system architecture and the corresponding dataflow. Section 3.3 describes the
procedure for extracting features and the similarity measures for building database
and object matching. Section 3.4 describes the ISAG for extracting the aspects and
characteristic views of objects. Furthermore, the object matching procedure is
described with a weighting combination between different similarity measures.

Conclusions are discussed in Section 3.5.
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3.2 System Architecture

The proposed framework (Fig. 3-1) contains two parts, which are called the

database building procedure and the matching procedure. Suppose an object database

contains 7, objects, and 7, 2D views of each object are randomly sampled from a

viewing sphere. In the database building procedure, the ISAG (Fig. 3-2) is applied to

extract the aspects of each object using 7, 2D views. The main 3D database

contains a set of assistant 3D object databases (AOD). Furthermore, an AOD
comprises the aspects of each object, where the aspects are represented by their
characteristic views. Figure 3-3 illustrates the inner structure of an AOD. In Fig. 3-3, a
set of aspects is employed to represent the,database of a 3D object in the aspect level.
The prototypes for these aspects, callédithé, characteristic views, are utilized to
represent an object for object matching. The passage from one characteristic view to
another is defined with only the similarity“measure. The proposed similarity-based
aspect-graph focuses on an efficient learning method with associated features and
similarity functions. While object features are sufficient to discriminate the similarity
between each two 2D training views, the aspects and characteristic views can be
extracted using associated similarity measures. Even if the objects are complex, the

characteristic views can be extracted in the feature space.

In the matching procedure, a similarity measure is applied between a 2D view
sampled from an unknown object and all the characteristic views of the 3D object
database. After the weighted combination of all similarity measures, the first three
characteristic views that have the highest similarity with the testing 2D view are

regarded as the recognition results (the top three matches).
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Figure 3-3 The inner structure of an AOD.
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3.3 Object Representation

In this work, shape and color features are utilized to measure similarity between
two object views. To extract shape information, a robust background subtraction
framework from previous works [65-66] is utilized to extract foreground regions
while considering shadows and highlights. Foreground detection provides flexibility
when constructing the object database, even in an out-of-control environment. Canny
edge detection [67] is then applied to extract shape edge, and the Gradient Vector

Flow Snake (GVF) [68] is applied to extract the contour information. Assume that the

contour information is included in a set Z, which is composed of N points z, , where

z, is a complex form given by Eq. (3-1). Two kinds of shape features, which are

1

called the Fourier descriptor (FD), [69]1andthe point-to-point length (PPL), are

extracted from Z.

Z=1{z()} = {x,+ jy}, 0<i<N (3-1)

3.3.1 Shape Features

The points inside the set Z are re-sampled using Eq. (3-2) to eliminate variations

in shift and scale.

Z= {20} ={LICx, = x)+ (2, =y )1/ L} (3-2)

where 0<i< N ;L denotes contour length of Z, L.  is expected contour length,

and (x,,y,) is the location of the contour center of Z. Then, the Fourier transform

is applied to Z to compute FD using Eq. (3-3).
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FD(k)=Y""Z(n)yexp(~ j2zkn/ N), 0 < k<N (3-3)

The low-frequency parts of FD are extracted with the consideration of decreasing
the variations of high-frequency noises, and are defined as MAG Notably, MAG is

composed of 27, magnitude values of frequency information selected among 2N

frequencies. The method for extracting MAG is given by Eq. (3-4).
MAG ={|FD(k)|, | FD(N =k)|, 1<k<T,} (3-4)

Intuitively speaking, MAG only characterizes the shape and not the orientation of
human posture. Therefore, MAG cannot discriminate between similar shapes oriented
differently. To solve this problem, phase information for FD must be used for
memorizing an object. The work in [70] proposes that memorizing the phase value at
low frequency is sufficient. Suppose thesphase mformation is 6_, then & can be

calculated using FD(l)and FD(N —1), as described’in Egs. (3-5) and (3-6).
FD(1) 5 FD(1).exp(j6)) = R, + (3-5)
FD(N -1)=| FD(N —=1)l.exp(j6y ,) =R\, + JI , (3-6)
Furthermore, &. can be calculated using Eq. (3-7).

0. =(6,+0, )/ 2=(arctan(/,/ R )+arctan(/,, , /R, ,))/2 (3-7)

where R and R, , denote the real parts of FD() and FD(N-1), I, and I, ,

denote the imaginary parts of FD(l) and FD(N-1), and 6, and @, , are the

phases of FD(1) and FD(N -1).

Moreover, the lengths between each pair of points in Z are defined as PPL.

PPL is suitable for describing shape details. To calculate PPL is time consuming due
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to that each point is considered as a start point. Equations (3-8) and (3-9) describe the

calculating processes of PPL.

FTL%)=UJ={HKD—EU—DH}=RK%—%4Y+(%—%4f}
Z(k)=Z2(N +k)
where

1<k <N, k<i<N+k

3.3.2 Color Features

(3-8)

(3-9)

Numerous features, such as edge, corner, texture, color and shape, have been

utilized to extract useful information from an image. Among these features, color

involves the intuitive information-to represent the: conceptual idea of an image.

Therefore, pixel color and pixel position-are. utilized in this work to extract the

conceptual idea of an image. The color:space-used in this work is RGB color space, a

format common to most video devices. To enhance the regional information of an

image, the position (x, y) feature is combined with RGB color information as the

feature vector. That is, each pixel contains a 5D feature vector (R, G, B, x, y), which is

shown in Fig. 3-4.

Color Image Plane (3D) Feature Plane (5D

Pixel(x,y) Combine

Spatial Inforiatio

Red Level

Blue Level

Figure 3-4 5D feature vector construction.
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This work applies Gaussian mixture model (GMM) to model region information
in a scene image as a blob model, which is defined as BM, using 5D feature vectors
(R, G, B, x, y). We assume that the density function of color and position features
have Gaussian distributions. First, each pixel x is defined as a 5-dimensional vector
at time ¢. Moreover, N Gaussian distributions are used to construct the GMM, which
is described in Eq. (3-10).

u 1 1
S A) =2 W —————exp(— (= 1) X7 (r = 1)) (3-10)
% Jem' x| 2

A represents the parameters of GMM,

N
A={w,u, 2.}, i=12,...N and Zwl. =1

i=1
Next, parameters 4 of GMM are calculated to enable the GMM to match the
feature vector distribution withleast errors: The most'common method for calculating
parameters A is ML estimation.”The objective of ML estimation is to identify model
parameters by maximizing the likelihood function of GMM obtained from training

feature vectors X . The ML parameters are derived iteratively using the EM

algorithm. Supposing there ares feature vectors x,,x,,...x, (In this work, s is

defined as image size, 320x240=76,800), then the ML estimation of A can be
calculated using Eq. (3-11).
A =argm?x210gf(xj ) (3-11)
=
Furthermore, unsupervised data clustering is used before the EM algorithm
iterations to accelerate convergence. This study uses the K-means algorithm [59] for
clustering. The number of clusters is defined, and then the initial center of each cluster

is obtained randomly. The appropriate center and variance of each cluster can be

37



estimated iteratively using the K-means algorithm and applied as the initial mean and

variance of each Gaussian component of the GMM.

3.3.3 Similarity Functions

To determine the similarity between two objects when building databases and

recognizing objects, a similarity measurement D(U , V) is applied to extract features.
We assume that the features extracted from two contours are U = {uo,---,ui, U ,_1}

and V:{vo,-'-,vi,---,vl_l}, respectively, where [ denotes the feature size. Two

similarity measures are applied using 1-norm distance (Eq. (3-12)) and K-L distance
[71](Eq. (3-13)), where ¢ denotes the number of points on an extracted contour and

s denotes image size. In this work; ¢ is defined'as 256 and s is defined as 76800.

Dl—norm (U’ V) = Zl[;(”ul _Vi H 1 =C (3-12)
-1
() Dy()
Dy, (U,V)~ (p (1)-log(=—=)+ py () -log(—>) |, I = (3-13)
KL ; 1 p(t) 0 p(t)
s—1 s—1
Wherepo (l) = L 2 pl (t) = VI ” usum = ui? Vsum = vi’ p(t) = M
sum sum i=0 i=0

3.3.4 Similarity Measures

Suppose V"

new

represents a new sampled view of the n, object and C)
represents the m™ characteristic view of the n” object. Moreover, Ammin denotes

the aspects that have the minimum distance from V'

new

and C,me represents the

minimal distance, where m™" is the index of 4 .. C

mmin -1

and C’:mm+l denote the
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neighboring views of C” . . Let d1 ,C") (Eq. (3-14)) denotes the similarit
g g m new q y

measure using MAG and 1-norm distance, d,, ( C”) (Eq. (3-15)) denotes the

new?

similarity measure using PPL and 1-norm distance, d, ( i ”) (Eq. (3-16))

denotes the similarity measure using BM and K-L distance, and d, ( C”)

new?

(Eq.(3-17)) denotes the similarity measure using 6. and 1-norm distance.

dy (Vi Co)= > | MAG"™ (k) — MAG (k) | + | MAG"™ (N — k)~ MAG™ (N = k)|
(3-14)
d;, (Vr,.Co) =3 | PPL'(k)- PPL% (k)| (3-15)
) =3[ p0)-1oeP s pliyito po(t)j 3-16
dy, (V,.Ch) = ,=o(p() og( I paltlog 0 (3-16)

s=1 s—1 1)+ t
Wherepo(l‘) :uL , pl(t) = vt 5 usum = zup vsum = ZV[’ p(t) =M
i=0

sum sum i=0

d,(V5,.Cp) =67 (k)- 0 (k)| (3-17)

3.4 Flexible 3D Object Recognition Framework

A flexible framework using the ISAG is described in this section. In the
framework, a MOD is composed of one or more AODs. Each AOD is built using one
main feature or using one main feature with one assistant feature. Moreover, each

feature has its similarity function, such as Eqgs. (3-14)-(3-17).
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3.4.1 Generation of Aspects and Characteristic Views

The ISAG is a four-step procedure and is illustrated as Fig. 3-5. Step A-1 to A-4 is
applied to extract aspects and characteristic views. Those aspects comprise an object

database and the characteristic views are used for object matching with a new view

V n

new *

Step A-1:
Initialize the number of aspects be zero. 2D views of the n” object are randomly

sampled from a viewing sphere and each 2D view is regarded as V"

Step A-2:

When the number of existing aspects of the n” object equals zero, V" is

new

regarded as a characteristic viéw of a new aspect.
Step A-3:
When the number of existing-aspects of the- n” “object equals one or two,

(A-3.1) When Eqgs. (3-18) and (3-19) are both satisfied, V' is combined into the

new

m™" aspect, and the characteristic view of the m™" aspect remains the

same.
. d V” Cn T 3-1 8
all (lj’glliilmmm M ( new? m) < 3 ( )
min  d, (V,,'ZW, c ) <T o
all Ched i,

where T, and T} are both predefined threshold values.

(A-3.2) Otherwise, if Eq. (3-18) is satisfied and Eq. (3-19) is not, V' is

new

in

combined into the m™" aspect, and is regarded as a new characteristic

view of the m™ aspect.
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(A-3.3) Otherwise, if Egs. (3-18) and (3-19) are both unsatisfied, a new aspect of

the n” object is established, and V" is regarded as the new

characteristic view of the new aspect.
Step A-4:
When the number of existing aspects of the n” object is > 3,

(A-4.1) If either Eq. (3-20) or Eq. (3-21) is true, a new aspect is constructed and

V" is considered the characteristic view of the new aspect. When a new

new

aspect is established, the aspect order can be determined to let similar

aspects be close to each other using Eq. (3-22). If Eq. (3-22) is true, the

similarity distance between V"

new

and C:;mm exceeds that between V"

+1 new

and C’,, , then the'mew aspect.is mserted between aspect m™" and

aspect m™ —1; otherwise, the néw aspect is inserted between aspects

min min

m and m™ +1.

min  d,, (V.

new?>
all Ched
m

Cr)>T, (3-20)

I,< min d,, (V”

new?
n
all Cyy eAmmi“

C.)<T, and d, (V.

new?

Clu)>T, (3221

dy (Vs ) > dyy (Vi ) (3-22)

(A-4.2) Otherwise, if Egs. (3-20) and (3-21) are both unsatisfied and Eq. (3-19) is

true, V" is combined into the m™"

new

aspect and the characteristic view

of the m™" aspect remains the same.
(A-4.3) Otherwise, if Egs. (3-20) and (3-21) are both unsatisfied and Eq. (3-19) is

not true, V" is combined into the m™"

new

aspect and is regarded as a new

in

characteristic view of the m™" aspect.
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. . . in— . min
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min+l min

Add a new characteristic view between view m and view m

Figure 3-5 The procedure of the ISAG

Terms T,and 7, are two predefined threshold values, where 7, >T7,. The

criterion for selecting 7; and 7, depends on the precise level for describing the

object. If 7; and 7, are both small, then the criterion of combining 2D views

becomes strict and, thus, the number of aspects increases. Furthermore, if the

difference between 7, and 7, decreases, the tolerance for the difference between

2D views inside an aspect decreases, thereby the number of aspects decreases.

Additionally, 7, and 7, should be initialized manually and modified iteratively

until the final number of aspect reaches an acceptable number, which is determined
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based on the degree of object symmetry. In this work, T;’L and ]f}” are defined as
T, and T, while adopting MAG as the feature; T;’i’ and 7}(1‘5 are defined as T,
and 7, while adopting PPL as the feature; T;"}“ and Tﬁ are defined as the T;and
T, while adopting BM as the feature, and Tsd‘l' is defined the 7, whiling adopting
0. as the feature. Section 4.2 presents the values of T;’L , T;"ﬁ , T;’L , 7:‘”":4, 7}(1‘5,

d; d;
I, ,and Ti.

3.4.2 Object Recognition using 2D Characteristic Views

After constructing the aspect-graph representation of each object, a test view of an
unknown object is recognized by matching itSelf with all the characteristic views of
each AOD. If multiple AODs are utilized in the framework, a hierarchical matching
process is applied calculate the final recognition results with a weighting combination
of all similarity measures. Suppose ‘the ‘candidate objects in the k” AOD are
included in a set of N*, and n(N*) denotes the number of candidate object in N*.
The number of candidate objects reduces after each object matching procedure, which

is described in Eq. (3-23).
n(N* <n(N*), k>1 (3-23)
In the k" AOD, the main feature and the assistant feature of the test view are
extracted to match with all the characteristic views. Suppose Vj" denotes a test view
of an unknown object, the object matching in the proposed framework is described as

Egs. (3-24.1) and (3-24.2).

a (v.cp)=ay(v).cy)+af -d (V].Ch)ne N k=1 (3-24.1)

m
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d (V},Cp)=ds (n)+ ok -(di (V. Co)+ @ -di (V/.Cp) ) neN* k=2 (3-242)

min

Let df (V;,CZ) and d* (V;,CZ“”) denotes the main and assistant similarity

h

distances between the unknown object and C”, where n denotes the n'

m?>

object in

the set of candidate objects N*. If the framework comprises only one AOD, the

characteristic views of the first three smallest similarity distances in
d' (V; ,C,’;)(Eq.(3-24.1)) are regarded as the top-three matches. In Eq. (3-24.1), o
is a weighting parameter for combing different similarity measures. When no assistant

feature is utilized, a)lk is set to zero. Otherwise, the objects included in the first half

smallest similarity distances of d* (V]l, C;) are defined as a set N**'. The objects in

N*"' are preserved for further recognitionin.the (k+1)" AOD.

If the framework comprises two or more AODs; the characteristic views of the

first three smallest similarity distances in d* (V,laC,Z) (Eq. (3-24.2)) are regarded as

the top-three matches. In Eq. (3-24.2), d,. (n) denotes the minimum similarity
distance between the unknown object and the n” candidate object in the (k—1)"

database. Moreover, @, is a weighting parameter for combing the similarity

measure between the £” and (k—1)" AODs.

3.4.3 Applications

The proposed framework is evaluated on various object recognition problems,
including 3D object recognition, human posture recognition, and scene recognition.
Three assumptions are made for applying the proposed framework to the above three

applications. First, different features are used in different applications with the
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proposed framework. In this dissertation, the features described in Section 3.3 are
employed in the above three applications to perform the efficiency of the proposed
framework. Second, training images for extracting the aspect-graph of objects in
different applications are randomly sampled from a viewing sphere of a robot
platform. A Pan-Tilt-Zoon camera is set up in a fixed position in the robot platform.
Next, the efficiency of the proposed framework is performed with the object database
and testing images that belong to the same category with the object database. For
example, 2D rigid-object testing images are tested with the rigid object database, and

etc.

The similarity measures described in Section 3.3 are employed in the three
applications. Three kinds of combing structures are performed with these similarity
measures. In the 3D rigid object'recognition; two 'AODs are utilized with two main
features MAG and PPL. The Wweighting combination of the similarity measures is

described in Egs. (3-25) and (3-26).

d'(v).cy)=d,(v/.C.).neN' (3-25)

& (V),Cp)=dy, (n)+@} (a2 (V],Cp))neN? (3-26)

Moreover, d,ln(Vj,C,Z) is calculated with MAG using Eq. (3-14), and
di(Vj.",C,’;) is calculated with PPL using Eq. (3-15). Furthermore, the weighting
parameters @, and ] are both set to zero and the weighting parameters @. is
defined as the Eq. (3-27). Tf‘l” and Tfi’ are the threshold values applied on the

ISAG, and are defined in Section 4.1.

@ =T | T (3-27)
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In the human posture recognition, only one AOD is utilized with one main feature

MAG and one assistant feature 6.. The weighting combination of the similarity

measures is described in Eq (3-28).
d'(v).cp)=a,(v).C))+al-d,(V].C}).neN' (3-28)
In Eq. (3-28), d,, (V,laC,Z) is calculated using Eq. (3-14) and d| (VJ’,C;) is
calculated using Eq. (3-17). Furthermore, the weighting parameter @, is defined as

Eq. (3-29), where Tsd‘ll is the threshold values applied on the ISAG, and is defined in

Section 4.1.
w=1/T (3-29)

In the scene recognition, only one AOD is-tilized with one main feature BM. The

weighting combination of the similarity measures is described in Eq (3-30).

d'(v.cy)=a,(v/.C,)neN' (3-30)

In Eq. (3-30), dm(l/j,C,’;) is calculated using Eq. (3-16). Furthermore, the

weighting parameter @, is defined as zero.
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Chapter 4

Experimental Results

The chapter provides experimental results to assess the efficiency of the proposed
3D object recognition system. In Section:-4.1, five experiments are performed to test
the robustness of the BSHSR with a complex background in an indoor environment.
After that, the BSHSR is appliéd to extract foreground regions for building a 3D
object database using the ISAG and testing the performance of the proposed 3D
object recognition system. Three object recognition problems, namely rigid object
recognition, human posture recognition, and scene recognition, are performed with

the proposed method in Section 4.2.

4.1 BSHSR

The video data for experiments was obtained using a SONY DVI-D30 PTZ
camera in an indoor environment. Morphological filter was applied to remove noise

and the camera controls were set to automatic mode. The same threshold values were
used for all experiments. The values of the important threshold values were N, =15,
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a=0.002, P,=01, B,=07, B =300 and B,=0.8 . Meanwhile, the

computational speed was around five frames per second on a P4 2.8GHz PC, while

the video had a frame size of 320 x 240.

4.1.1  Local lllumination Changes

The first experiment was performed to test the robustness of the proposed method
about the local illumination changes. Local illumination changes resulting from desk
lights occur constantly in indoor environments. Desk lights are usually white or
yellow. Two video clips containing several changes of desk light are collected to
simulate local illumination changes. Figure 4-1(a) shows 15 representative samples of
the first one video clip. Meanwhile;"Fig. 4-1(b) shows the classified result of the
foreground pixel using the propgsed method, the:CBM and CSIM, where red indicates
shadow, green indicates highlight and blue indicates foreground. Figure 4-1(c)
displays the result of the result of final background subtraction to demonstrate the
robustness of the proposed method, where the white and black color represents the
foreground and background pixels respectively. The image sequences comprise
different levels of illumination changes. The desk light was turned on at the 476"
frame and its brightness increased until the 1000™ frame. The overall picture becomes
the foreground regions of the corresponding frames in Fig. 4-1(b) owing to the lack of
such information in the CBM. However, the final result of background subtraction of
the corresponding frames in Fig. 4-1(c) is still good owing to the proposed scheme
combining the CBM, CSIM and GBM. The desk light was then turned off at the
1030™ frame, and became darker until the 1300™ frame. The original Gaussian
distribution in the ECBM became the component in the CCBM, and a new

representative Gaussian distribution in the ECBM is constructed for that a new
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background information is involved from the new collected frames between the 476"
and the 1000™ frame are more than the initial collected 300 frames. Consequently, the
1300™ frame in Fig. 4-1(b) has many foreground regions. However the final result of
the 1300™ frame is still good. The illumination changes are all modeled into the
LTCBM when the background model records the background changes. The area of the

red, blue and green regions reduces after the 1300™ frame.

Table 4-1 compares the proposed scheme with the method proposed by Hoprasert
[60]. Comparison criteria are identified by labeling the foreground regions of a frame
manually. The CSIM can be constructed based on the appropriate representative
Gaussian distribution chosen from the LTCBM and STCBM. The ability to handle
illumination variation and the accuracy,of the background subtraction are improved

and the results are shown in Table4-1.

Table 4-1 The robustness test:between the proposed method and that proposed by
Hoprasert [60] via local illumination changeswith a yellow desk light

FRAME 476 480 500 580 650

PROPOSED  |HOPRASERT [60]

(%*) (%*)

FRAME 750 900 1000 1030 1120

PROPOSED  |HOPRASERT [60]
(%*) (%*)

FRAME 1150 1300 1330 1400 1600

PROPOSED  |HOPRASERT [60]
(%*) (%)

*: The value in the table means the recognition rate that correct background pixels in

a frame divide total pixels in a frame(%)
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(2)

Background 476 480 500 580 650 750 900

1000 1030 1120 1150 1300 1330 1400 1600

(b)
480 500 580

Background 476

650 750 900

1000 1030 1120 1150 1300 1330 1400 1600

(©)

Figure 4-1 The results of illumination changes with a yellow desk light, the number
below the picture is the index of frame. (a) Original images. (b) The results of pixel
classification, where red indicates the shadow, green indicates the highlight and blue
indicates the foreground. (c) The results of background subtraction with shadow
removal using the proposed method, where dark indicates the background and white

indicates the foreground.
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Figure 4-2(a) shows a similar image sequence to that on Fig. 4-1(a). The two

sequences differ only in the color of the desk light. The desk light was turned on at the

660" frame and the same brightness was maintained until the 950" frame. The desk

light was then turned off at the 1006™ frame and turned on again at the 1180™ frame.

The results of shadows and highlights removal are shown in Fig. 4-2(b) and the

results of final background subtraction are shown in Fig. 4-2(c). The results of

background subtraction in Fig. 4-2 and the comparison result in Table 4-2 are shown

to demonstrate the robustness of the proposed scheme.

Table 4-2 The robustness test between the proposed method and that proposed by

Hoprasert [60] via local illumination changes with a white desk light

Frame

660

665

670

860

950

Proposed
(%*)

Hoprasert[60]
(%%)

99.02 | 99.48

97:93 | 79.81

95.92 | 92.22

96.73 | 93.81

97.44 | 94.46

Frame

1006

1020

1150

1180

1250

Proposed
(%)

Hoprasert[60]
(%%)

98.12

99.94

99.78

98.94

97.28

Frame

1300

1375

1377

1380

1445

Proposed
(%)

Hoprasert[60]
(%%)

97.49 | 95.26

97.73 | 87.50

98.83 | 98.92

99.73 | 99.32

100.00 | 99.71

*: The value in the table means the recognition rate that correct background pixels

in a frame divide total pixels in a frame(%).
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1150 1180 1250 1300 1375 1377 1380 1445

Background 660 665 670 860 950 1006 1020

1150 1180 1250 1300 1375 1377 1380 1445

(b)
- ..
665 670 860

Background 660

-

950 1006 1020

1150 1180 1250 1300 1375 1377 1380 1445
(©

Figure 4-2 The results of illumination changes with white desk light, the number
below the picture is the index of frame. (a) Original images, where red indicates the
shadow, green indicates the highlight and blue indicates the foreground. (b) The
results of pixel classification. (¢) The results of background subtraction with shadow
removal using our proposed method, where dark indicates the background and white

indicates the foreground.
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4.1.2  Global lllumination Changes

The second experiment was performed to test the robustness of the proposed
method in terms of global illumination changes. The image sequences consist of
illumination changes where a fluorescent lamp was turned on at the 381" frame and
more lamps were turned on at the 430" frame. The illumination changes are then
modeled into the LTCBM when the proposed background model recorded the
background changes. Notably the area of the red, blue and green regions decreases at
the 580™ frame. When the third daylight lamp is switched on in the 650" frame, it is
clear that fewer blue regions appear at the 845™ frame owing to illumination changes
having been modeled in the LTCBM. However, the final results of background
subtraction shown in Fig. 4-3(c) are, all better than those of pure color-based
background subtraction shown in‘Fig. 4-3(b).-Table.4-3 shows the comparison results
between the proposed scheme and-that proposed by Hoprasert [60]. The comparison

demonstrates that the proposed scheme:is robust to global illumination changes.

Table 4-3 The comparison between the proposed method and that proposed by

Hoprasert [60] via global illumination changes with fluorescent lamps

Frame 381 (17) 385 (17) 405 (17 430 2 560 (27

Proposed | Hoprasert[60]
98.24193.54 | 88.35| 82.14 | 83.85| 78.24 | 56.50 | 68.42 | 66.85 | 69.82

(%*) (%*)
Frame 565 (27) 570 (27 580 (2) 650 (37) 700 (37)

Proposed | Hoprasert[60]
79.87 169.30 | 96.88 | 69.69 | 99.08 | 69.55|99.23 | 45.62 | 99.49 | 46.22

(%*) (%*)
Frame 845 (37) 910 37) 1000 (3™ | 1050 (3™) | 1110337
Proposed | Hoprasert[60]
99.56 | 46.18 [ 99.39 | 53.58 (99.85 | 57.87 | 99.93 | 60.83 | 99.64 | 60.32
(%*) (%*)

*: The value in the table means the recognition rate that correct background pixels in a
frame divide total pixels in a frame(%).
**: The number inside the parentheses indicates the number of fluorescent lamps that

have turned on.
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580 650 700 845 910 1000 1050 1110

Background 381 385 405 430 560 565 570

580 650 700 845 910 1000 1050 1110

Background 381 385 570

580 650 700

1000 1050 1110

Figure 4-3 The results of global illumination changes with fluorescent lamps, the
number below the picture is the index of frame. (a) Original images. (b) The results of
pixel classification, where red indicates the shadow, green indicates the highlight and
blue indicates the foreground. (c) The results of background subtraction with shadow
removal using our proposed method, where dark indicates the background and white

indicates the foreground.
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4.1.3  Foreground Detection

In the third experiment (Fig. 4-4), a person goes into the monitoring area, and the
foreground region can be effectively extracted regardless of the influence of shadow
and highlight in the indoor environment. Owing to the captured video clip having
little illumination variation and dynamic background variation, the comparison of the
recognition rate of final background subtraction between the proposed method and
that of Hoprasert [60] reveals that both methods are about the same, as listed in Table

4-4.

Table 4-4 The comparison between the proposed method and that proposed by

Hoprasert [60] via foreground detection

Frame 380 450 530 590 620

Proposed Hoprasert[60]
(%%) (%™)

Frame 680 700 735 755 840

Proposed Hoprasert[60]
(%) (%*)

*: The value in the table means the recognitionrate that correct background pixels in a

frame divide total pixels in a frame(%).

4.1.4 Dynamic Background

In the fourth experiment (Fig. 4-5), image sequences consist of swaying clothes
hung on a frame. The proposed method gradually recognizes the clothes as
background owing to the ability of LTCBM to record the history of background
changes. In situations involving large variation of dynamic background, a
representative initial color-based background model can be established by using more

training frames to handle the variations.
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Background 380 450 530 590 620

680 700 735 755 840

Background 380 450 530 590 620

680 700 735 755 840

Background 380 450 530 590 620

680 700 735 755 840
(©)

Figure 4-4 The results of foreground detection. (a) Original images. (b) The results of
pixel classification, where the red color means the shadow, where red indicates the
shadow, green indicates the highlight and blue indicates the foreground. (c) The
results of background subtraction with shadow removal using our proposed method,

where dark indicates the background and white indicates the foreground.
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Background 500 540 580 620 660 700 740

IIIIIIIII
780

820 860 900 940 980 1020 1060

(©)

Figure 4-5 The results of background subtraction about dynamic background. (a)
Original images. (b) The results of pixel classification, where the red color means the
shadow, where red indicates the shadow, green indicates the highlight and blue
indicates the foreground. (c¢) The results of background subtraction with shadow
removal using our proposed method, where dark indicates the background and white
indicates the foreground.
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4.1.5  Short-Term Color-based Background Model (STCBM)

The final experiment (Fig. 4-6) shows the advantage of adding the STCBM. A doll
is placed on the desk at the 360" frame. Initially, it is regarded as foreground, and at
the 560" frame, the foreground region becomes background owing to the LTCBM.
However, the Gaussian component belonging to the doll still does not have the
highest weighting. Without adding the STCBM, when a hand is placed above the doll
at the 590" frame, the foreground regions at the 670" frame remain the same as those
at the 590™ frame, as shown in Fig. 4-6(b). The foreground regions under our hand
become shadows at the 670" frame in Fig. 4-6(c) for that shadows and highlights
removal works well using a representative Gaussian component based on the STCBM.
This experiment demonstrates the efficiency of the STCBM that a representative
Gaussian component of the CBMean be selected by.giving consideration to long-term
tendency and short-term tendency. Besides, the advantage of the STCBM helps to
reduce the computing time used in~the GBM and- increase the recognition rate of

foreground detection.
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301 360 560 590 670 740

301 360 560 590 670 740

301 360 560 590 670 740

Figure 4-6 The results of the adv tzlfge

shadow, the green color means ﬂle

: fﬁﬁ?ﬁ}/l where the red color means the
'I ’aqd‘ t‘hel lue color means the foreground.
ound ﬂbtractlon without the STCBM. (¢)
i h i *STCBM where red indicates the

shadow, green indicates the highlight anEl’lﬂle indicates the foreground.

(a) Original images. (b) The resu
The results of background subtr

4.2 3D Object Recognition

This section describes several experiments demonstrating the effectiveness of the
proposed 3D object recognition. A SONY EVI-D30 PTZ camera was employed to
capture object views. The following three databases were built to test the proposed
method: Fig. 4-6 contains 12 3D rigid objects, Fig. 4-7 contains six 3D human

postures, and Fig. 4-8 contains 11 scenes.
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Object 1 Object 2 Object 3 Object 4

el

Object 5 Object 6 Object 7 Object 8

--

Object 9 Object 100 . . Object 11 Object 12
Figure 4-7 The first .d'atabaéel'-alzd_njg_éiiniﬁg'_12 3D rigid objects.

; =]
| -
| b ]

Posture 1 Posture 2 Posture 3 Posture 4
Posture 5 Posture 6 Posture 7 Posture 8

Figure 4-8 The second image database containing eight 3D human postures.
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Scene 1

Scene 8

Scene 5

Scene 10 Scene 11

Figure 4-9 The third image database containing 11 scenes.
AR MLy,

The notation V}/ and V2/ dénote 'ﬂT
S A
I =

S —

it | 0 "-1' ’ '|?| )
intervals, where V)’ is employed -guﬁ,ng rigid | gbject recognition, and V.’ is

w % 18HSDG

b, el . ffi-.?
" .. A . i .
recognition.-The notation V,”, which denotes the

ik

employed during human posture

set of training views captured at each location at a 1° increment, is utilized during

scene recognition. Moreover, V' and V’/denote the set of testing views captured
from trisection points between each pair of points separated by 5°, where V'/is
utilized during rigid object recognition, and V?/is utilized during human posture

recognition. Moreover, V/ denotes the set of testing views captured at locations

away from the original locations in four directions (forward, backward, left and right),

five distances (5cm, 10cm, 15¢m, 20cm and 50cm) and five covering rates (5%, 10%,
15%, 20% and 50%). V>’ is utilized during scene recognition. The descriptions of
the captured views are given by Egs. (4-1)-(4-6).
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VY = (M (i)}, where 1< j <12, 1<i<72

V> =¥/ (i)}, where 1< j <8, 1<i<72

V> ={V/(i)}, where 1< j <11, 1<i<61

VY =/ (i)}, where 1< j <12, 1<i<216

V> ={V/(i)}, where 1< j <8, 1<i<216

V> ={V/ (i)}, where 1< j <11, 1<i<6100

(4-1)

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)

In the following experiments, 7; denotes the number of objects, and is 12 for the

rigid object recognition, 8 during human posture recognition, and 11 during scene

recognition; 7; denotes the number’of training views, and is 72 during rigid object

recognition and human posture recognition; and 61 during scene recognition. 7,

denotes the number of low frequency. information in FD, and is 40 in the following

experiment. Moreover, the threshold valuesused in the ISAG is listed as Table 4-5.

Table 4-5 The threshold values for the ISAG

The first AOD The second AOD
) Assistant Assistant
Experiment Main Feature Main Feature
Feature Feature
T T, T, T T, T
3D object 4! g 4l 2 72 7
| T =640 | T =125%T% | NA T =336 | T/ =1.25%T% | N
recognition
Human
1 1 1 1
posture | Ty =1450 | T, =1.25*T | T,“ =10 | N/A
recognition
Scene 2 2 &
N T =1100 | T =125%T% | NA N/A
recognition
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Computing time for calculating similarity between a test view and a view in the
database was approximately 0.006 seconds for rigid object recognition, 0.004 seconds
for human posture recognition and 0.01 seconds for scene recognition on a P4 3.2G

CPU with 1IGB RAM.

4.2.1 Rigid Object Recognition

In the first experiment, the efficiency of the proposed framework was assessed
using 2-D views captured at random intervals with the first database (Fig. 4-7). To

determine average performance of the proposed method, training views were

generated by sampling views in ¥,/ in 200 different random orders. Background

subtraction was first performed on training 2D views to extract foreground objects.
After that, Canny edge detection and: GVF: wete performed on the extracted
foreground objects to extract the object.contour. Two features, called the MAG and
PPL, are then extracted from the object contour‘and be used for building the AODs
with the ISAG (Fig. 3-2). The characteristic views of aspects in each AOD are utilized
for object matching. A recognition result is calculated with a weighted combination of
the similarity measures from both AODs. Figure 4-10 illustrates the system

architecture of the proposed framework for the 3D rigid object recognition.
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A 2D view sampled
from an unknown object

‘Weighted Combination

Recognition Results
\ 3D rigid object recognition (Top Three Matches) )

The 1st AOD

The 2nd AOD

Figure 4-10 The system architecture of the proposed framework applied on the first

experiment (3D rigid object recognition).

Table 4-6 The result of rigid object recognition using 2D views via MAG and PPL

Recognition The index of the objects in the first database listed in Fig. 4-7
Results 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

Numbers of

34.66 3.84 2783 2475 6.87 9.47 204 2562 17.14 1616 1662 2875 17.81
aspect of MAG
Numbers of

38.72 14.08 14.32 22.84 10.98 20.12 8.41 31.07 25.79 17.68 23.61 19.88 20.63
aspect PPL
Top 1 Match (%) 98.25 99.97 97.71 97.39 100 99.81 99.79 99.35 99.90 97.97 98.44 96.83 98.78
Top 2 Match (%) 99.21 100 98.96 98.73 100 99.96 99.86 99.67 99.97 98.68 99.47 98.17 99.39
TOp 3 Match (%) 99.61 100 99.39 99.34 100 99.98 99.89 99.78 99.99 98.98 99.77 98.64 99.62

Table 4-6 presents statistical information for the means of aspect numbers using
MAG and PPL. Furthermore, symmetrical objects, such as objects 2, 5, 6 and 7, had

few aspects, thereby reducing computing time for recognizing objects. The views in

V! were adopted as unknowns, and tested whenever aspect-graph representations

were built each time (200 times). The proposed aspect-graph generation is efficient

due to its high recognition rate in the Top 1 to Top 3 matches in the Table 4-7.

The proposed method, which constructs an aspect-graph representation using
sampled views at random intervals, generates a practicable updating mechanism that

integrates the database using new collected views. In this experiment, 18 random

views sampled from V)’ are first utilized to construct a coarse aspect-graph
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representation of each object, called D, . Eighteen additional random views are then
adopted from the remaining views in V)’ to increase the accuracy of the database
Dy, called D, . Similarly, D,, and D,, are constructed using views in remaining
V)7 . Additionally, D,, and D,, are further constructed with extra random views

sampled from V'/. Table 4-7 presents the average aspect numbers for each rigid

object from 200 iterations. Although the aspect numbers increase when new views are
employed to update the coarse database, the number of stored views remains
significantly smaller than the number of original views. Figure 4-11 presents the
recognition rate results obtained when using coarse to fine databases. Figure 4-12
presents the standard deviations for, técognition rates. The recognition rate increases
when aspect-graph representations are trained’ using additional object views.
Moreover, stability increases based on decreasing standard deviation. Therefore, the
proposed method is demonstrated as effective for updating aspect-graph
representations without re-sorting the overall collected views, or re-calculating overall

similarity measures.

Table 4-7 Results for numbers of aspects using MAG and PPL after updating with

additional training views

Numbers The index of the objects in the first database listed in Figure 4-7

of aspect 1 2 3 4 5 6 7 8 9 10 11 12
Dy 14.11 3.40 11.98 10.13 5.32 6.36 1.58 12.64 8.80 8.43 8.73 11.10
D, 22.86 3.60 18.83 16.15 6.23 8.01 1.80 19.16 12.53 12.17 12.48 18.29
Dy, 29.52 3.74 23.95 20.96 6.65 8.94 1.92 23.24 15.20 14.53 15.06 24.05
D, 34.66 3.84 27.83 24.75 6.87 9.47 2.04 25.62 17.14 16.16 16.62 28.75
Dy, 39.28 3.99 28.68 25.99 7.14 9.83 2.14 27.32 18.04 17.37 17.86 30.99
D 43.28 4.07 29.50 27.14 7.36 10.12 2.26 28.67 18.90 18.50 19.06 33.12
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Figure 4-11 Recognition rates of coarse and fine databases (p,,p,,,D,,,D,,,D,, and

D, )> calculated using 200 results.
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Figure 4-12 Standard deviations of recognition rates using coarse to fine databases

(p,>» Dy, D, D,, D, and p, ), calculated using 200 results

The efficiency of the proposed method is demonstrated using the second image
database (Fig. 4-8). As the same pre-processing in the first experiment, object contour
(the contour of human posture) was extracted for further utilization. In the second
experiment, two features, called the MAG and @_, are extracted from the object
contour and be used for building the AODs. The characteristic views of aspects in

each AOD are utilized for human posture recognition. Figure 4-13 illustrates the

4.2.2

Human Posture Recognition
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system architecture of the proposed framework for the human posture recognition.

Table 4-8 shows the efficiency of the proposed method with a high recognition rate.

The proposed method decreases the number of aspects for each human posture,
and, thus, computing time for recognizing objects is decreased. Furthermore, adopting
0. instead of PPL reduces the computing time. The similarity measure, which is
based on posture contour with N points between an unknown posture and the posture
in the database, requires computing N similarity distances while adopting PPL as the

feature, but the similarity is computed only once while adopting 6. .

roT T I T T T 7z
Feature Extraction

| [
| |
MAG feature Extraction )
. | |
A 2D view samplef{ | | Weighted Combination
from an unknown object | | |
. 1
Hz feature Extraction | |
1 ) |\

Recognition Results
\_ Human posture recongition (Top Three Matches)

Similarity Measure \

The Ist Similarity Measure

The 2nd Similarity Measure

Figure 4-13 The system architecture of the proposed framework applied on the second

experiment (human posture recognition).

Table 4-8 Results of human posture recognition using 2D views via MAG and 6,

The index of the postures in the second database listed in Fig. 4-8

Recognition Results

1 2 3 4 5 6 7 8 Avg.

Number of Aspects 8 25 37 41 42 38 8 38 29.63
Top 1 Match (%) 9491 99.07  98.15 100 99.07 9630  99.54 100 98.38
Top 2 Match (%) 99.07  99.54 100 100 100 99.54 100 100 99.77
Top 3 Match (%) 100 99.54 100 100 100 99.54 100 100 99.88

68



4.2.3 Scene Recognition

In the third experiment, training images of 11 locations (Fig. 4-9) in an
environment (Fig. 4-14) are obtained by rotating the PTZ camera from -30° to 30°
using 1° increments at each location, thereby generating 61 images for each position.
Furthermore, 12 Gaussian distributions are adopted in this work to build the blob
model (BM feature). The number of aspects of each scene is below 13 after the
combination processes. Figure 4-15 presents the sample training images, blob models
and conceptual descriptions for each scene. Figure 4-16 illustrates the system
architecture of the proposed framework for the scene recognition. Additionally, for the
sake of illustration, the set of characteristic views at the 6™ position in the indoor

environment is cited as an instance of scene.(Fig. 4-17).

To test the efficiency of the proposed method, test images are captured by a
mobile robot moving in four directions{forward, backward, left and right) at five
different distances (5cm, 10cm, 15em, 20cm and*50cm) and five different levels of
occlusion (5%, 10%, 15%, 20% and 50%). Sixty-one images are captured at each
position by rotating the camera from -30° to 30° at 1° increments with no occlusion.
Figure 4-18 presents the test image samples captured at the 6™ position. Figure 4-18(a)
shows the test images captured in the forward and backward directions; Figure 4-18(b)

presents the test images captured in the left and right directions.
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Y,
e
-

Figure 4-14 The indoor environment from which scenes in the third database are

obtained.

(©

Figure 4-15 The sample training image, blob model and conceptual description of
each scene captured in the indoor environment (Fig. 4-14). (a) The sample image
captured at each location in the indoor environment (from left to right is positions
1,2,...,11). (b) The blob model of each sample captured image in (a) with 12 Gaussian
distributions. (c) The conceptual description of each sample captured image in (a),

which are calculated by comparing the original pixel values of each captured image

with its blob model.
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Figure 4-16 The system architecture of the proposed framework applied on the second

experiment (human posture recognition).

Figure 4-18 The test images captured from the 6™ position in the indoor environment.

(a) The test images captured in the forward and backward directions; the shifted
distances are as follows: backward 50 cm, backward 20 c¢m, backward 15 cm,
backward 10 c¢m, backward 5 cm, 0 cm, forward 5 c¢m, forward 10 c¢m, forward 15 cm,
forward 20 c¢m and forward 50 c¢m. (b) The test images captured in the left and right
directions; the shifted distances are left 50 cm, left 20 cm, left 15 cm, left 10 cm, left 5
cm, 0 cm, right 5 cm, right 10 cm, right 15 cm, right 20 ¢m and right 50 cm.

To increase the robustness of scene cognition, multiple-view recognition is

appropriate for testing. In this experiment, three arbitrary images [/, (1<i<3)
obtained with different rotating angles of the PTZ camera are utilized for scene
recognition. The first three recognized results that have the first three minimum

similarity measures are adopted as candidates for further processing. Suppose O is
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the set of recognized result defined as follows:

O={o,}, 1<i<3,1<j<3,1<0, <11,

where i is the index of the test image, and ; 1is the index of the order of

recognition result.

Three methods are proposed for estimating the final scene cognition result. The
first result, R,, is estimated using only one recognition result with only one captured
image. The second result, R,, uses the first three recognition result with only one

captured image. The third result, R,, uses all combinations of the first three
recognition results with three captured images. The descriptions of R, R, and R,

are derived by Eq. (4-7).

0,,k=
R, =10, -Di+1-D, k=2 (4-7)
0,,+(D, D, D,)+1, (D)) + D75 A D;Y+D, (15:D,)], k=3

where

r, =argmax(F,), 1< p<3

1, if argmax(F, ) exists
= { <p<3

o, if argmax(F, ) doesn't exist’
3

Fp :{qu7 1£q£11}7 qu :Zé‘(q_vpj)
=1

Based on recognition results (Table 4-9), the recognition rates of the three
methods are all above 95% when the level of occlusion is less than 20% and variation
positions are below 20cm. Although the level of occlusion is 50% and variation
positions are 50cm, recognition rates are still above 50%. Moreover, the third

method, R, , performs best and is reasonable based on the human vision used for
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localization. When a person enters an unknown place, multi-directional views are
captured by the eyes to assist recall of past experiences of the unknown place. In this

work, the same strategy is adopted to increase scene cognition robustness.

Table 4-9 Human posture recognition results using 2-D views via BM with position

variations and different level of occlusion

Shift Distance Covering Rate (1.000=100%)
(cm) and 5% 10% 15% 20% 50%
Direction R, R, R R, R, Rs R, R, R3 R, R, R;3 R, R, R
0cm 1000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0800 0769 0817
Forward ~ 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1000 1000 1.000 1000 0797 0775  0.809
5  Backward 1.000 1.000 1.000 1.000 1.000 1.000 1000 1.000 1.000 0999 1000 1000 0794 0763  0.809
em Left 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 079 0779  0.806
Right 1.000  1.000 1.000 1.000 1000 1.000 1.000 1000 1000 1000 1.000 1.000 0791 0754 0818
Forward ~ 1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1000 1.000 1000 0796 0.784  0.802
10 Backward 0997 0979 1000 1.000 0997 1000 1000 0997 1000 0997 099 1000 0785 0738  0.802
em Left 1000 0993  1.000 1.000 0996 1.000 1.000 0996 1.000 1.000 0993 1.000 079 0772  0.805
Right 1000  1.000 1.000 1.000 1.000 1.000 1.000 0997 1.000 1.000 0999  1.000 0770 0747 0817
Forward =~ 1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1000 1000 1000 1000 0784 0769  0.797
15 Backward 1.000 0996 1.000 1.000 0993 1000 0997 0988 1000 0994 0987 1000 0763 0726  0.781
cm Left 0997 0979 1.000 0997 0979 1.000 0997 0979  1.000 0994 0975 1.000 0779 0736  0.79%
Right 0992 0982 0997 0992 0977 0997 0992 0979 0997 0992 0977 0997 0726 0705 0757
Forward =~ 1.000  1.000 1.000 1.000 1.000 1.000 1000 1.000 1000 1.000 1000 1000 0765 0751  0.782
20  Backward 0999 0987  1.000 0994 098 1000 0991 0979 1.000 0988 0976 1000 0733 0711 0748
em Left 0976 0960 0987 0979 0970 0993 0975 0961 0979 0975 0963 0979 0748 0.699 0776
Right 0975 0955 0984 0979 0970 0993 0976 0951 0984 0975 0951 0984 0714 0694 0744
Forward ~ 0.845 0838 0854 0845 0844 0849 0842 0829 0845 0832 0815 0839 0508 0503 0523
50 Backward 0881 0839 0925 0848 0821 0896 0830 0809 0872 0796 0785 0833 0525 0508  0.553
em Left 0750 0741 0775 0748 0742 0768 0733 0729 0754 0723 0711 0735 0502 0501  0.531
Right 0811 0794 0841 0799 078 0827 0781 0770 0817 0753 0763 0778 0532 0502 0531
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Chapter 5

Conclusions and Future Researches

5.1 Conclusions

This dissertation presents a robust framework for recognizing 3D objects from 2D
views. Two main stages, namely *the BSHSR ‘and ISAG, are proposed in the
framework. In the BSHSR, a background subtraction scheme involving highlight and
shadow removal is proposed for extracting foreground regions with the consideration
of illumination variations and dynamic background. Three background models,
namely the CBM, GBM, and CSIM, are involved in the BSHSR. In the CBM, ECBM
and CCBM are defined to increase the ability of recording a long period of
background changes. Furthermore, the STCBM and LTCBM are defined to improve
the flexibility and robustness of the gradient-based background subtraction. Most
important, the CSIM is proposed to extract the shadow and highlight in this work with

a 3D cone-shape boundary and combined with the CBM in the RGB color space. The

threshold values 7, and 7, of CSIM can be calculated automatically using the
standard deviation of the Gaussian distribution selected using the STCBM and
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LTCBM. The proposed 3D cone model is compared with the nonparametric model in
a complex indoor environment. The experimental results show the effectiveness of the

proposed scheme for background subtraction with shadow and highlight removal.

Moreover, the ISAG is proposed for building the 3D object database using 2D
views sampled at random intervals. A robust database, which called a MOD, is
composed of AODs. Each AOD is built using the ISAG with one main feature or one
main feature and one assistant feature. The final recognition result can be estimated
by combining the results calculated from each AOD. To demonstrate the efficiency of
the proposed framework, three various object recognition problems, including 3D
object recognition, human posture recognition, and scene recognition are performed in

the experiments.

Although the threshold values (Z;and 7)) applied on the ISAG are determined

manually case by case, the critéria for selecting Ziand 7, are described in Section

3.4. The selection of 7, and 7, , which is a trade-off in this work, affects the

number of aspects and thus affects the computing time and the error performance.
Moreover, the feature selection plays an important role while applying the proposed
method in different applications. Although the recognition rate decreases while the
number of objects in the database increases in most applications, the proposed
framework provides a hierarchical structure to combine more features to maintain the

robustness of the recognition system.

Moreover, the ISAG is practical for extracting aspects when features of an object
conflict with the first criterion, namely, local monotonicity, as indicated by Cyr and
Kimia [1]. For instance, the combinational algorithm developed by Cyr and Kimia [1]

cannot efficiently combine 2D views of a human posture with MAG . However, the
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ISAG overcomes this problem, and efficiently decreases the aspect number. In Fig.
5-1 (a), the blue circles represents 2D views of a human posture, and the black human
postures with the red and green lines connected to the blue circle represent the 2D
views belonging to the same aspect. In Fig. 5-1 (b), the black human postures are the
characteristic views of the aspects of human postures. The two aspects in Fig. 5-1 (b)

clearly contain two clusters of 2D views that are opposites.

The proposed method decreases computing time when updating the aspects with
new 2D views. Using the method proposed by Cyr and Kimia [1], an object with N
collected views requires a computing time of N(N +1)/2 to calculate the mutual
similarity distances between the (N+1) 2-D views and to extract the aspects and
characteristic views. However, the proposed. method requires only a computing time
of N times to calculate the similarity distance, between new incoming views and N
existing views via the proposed-method. However, as-the proposed method has a high

computation requirement, improvingits efficiency is a topic for future works.

(a) (b)
Figure 5-1 The aspect-graph representation of the first human posture listed in Fig.

4-8 via MAG only. (a)The similar 2D views of two aspects. (b)The characteristic

views of two aspects.
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5.2 Future Researches

To improve the current 3D object recognition system, this dissertation purposes
three possible further research directions. The first one is to combine a feature
predictor with the original framework (Fig. 1-3). Figure 5-2 illustrates the modified
3D object recognition system. The feature predictor provides supplementary
information to improve the robustness of extracted features based on statistics from
continuous image frames. After that, even if the extracted features are influenced with
noises, the feature predictor can fix errors or compensates the insufficient parts. For
example, object contour is adopted as a kind of feature in this work. While the object
edges are not determined in good condition, the object contour may converge to a
false shape. In such condition, feature predictor,should compensate the false part of

the extracted contour based on past experience or. some prior knowledge.

-1 Feature Predictor
( . L
3D Object Recognition
—_,—_———p—— e e e e e e ————— ~
| v Matching Procedure |
I I
Foreground | Feature Similarity Weighted |
Regions | 7| Extraction Measure Combination | >| Top 3 Matches
| ; |
R )
|  Building Procedure }
|
| Incremental |
| Similarity-Based A Main 3D I
™ Obi |
| Aspect-Graph Object Database
| (ISAG) :
‘- J
N\ J

Figure 5-2 3D object recognition system with a combination of a feature predictor and
the proposed method illustrated in Fig. 1-3.
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The second one is to investigate an efficient searching algorithm for finding top
three matches. For example, Dayan et al. [72] proposed an approach to transform a
multiclass recognition problem into a minimal binary classification problem using
Minimal Classification Method (MCM). Unlike prevalent one-versus-one strategy
that separates only two classes at each classification, their work has to separate two
groups of multiple classes. Figure 5-3 shows the flow chart of the modified
framework. As mentioned in Section 3.1, the accuracy of an object representation
increases with minimal growth of search space while collecting additional new object
views. However, the computing time increases while the number of objects in the
database increases. Moreover, only the 2D views concerning the pan motion of the
camera are collected for building the database. If we consider the 2D views sampled
from the tilt motion of a camera; the charactetistic views of an object increase.
Therefore, an efficient searching algorithm is-necessary while applying the proposed

method in practice.

An Efficient
Searching Algorithm
( . )
3D Object Recognition
-~ s s === ~N
| v Matching Procedure |
I I
Foreground | Feature Similarity Weighted | _
Regions I 7| Extraction Measure Combination | Top 3 Maches

| ! |
| )
| Building Procedure }
|
| Incremental |
| Similarity-Based A Main 3D I

™ Obi |
| Aspect-Graph Object Database
| (ISAG) :
‘- J

& J

Figure 5-3 3D object recognition system with an efficient searching algorithm.
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