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摘 要 

現今之交通運輸系統不再是以「大規模的建設」來解決所有的運

輸問題，而是朝向一個更細緻化、對環境更友善且能夠永續經營的

方式。智慧型運輸系統，整合了電子、通訊、資訊處理等技術，希

望能夠透過有效之管理方式來減少交通擁擠狀況。於智慧型運輸系

統當中的先進交通管理系統，則需要即時交通狀況之資訊，才能據

以進行分析與控制。因此，本研究發展一路徑基礎之動態交通量指

派模式，並據此推估路網現況。 
大多數動態交通量指派之研究，均專注於探討使用者均衡或系統

最佳狀態。但路網現況是否滿足使用者均衡，仍有許多學者存疑。

是故，本研究不以使用者均衡指觀點描述交通量指派問題，而是透

過線性動態系統構建路徑基礎之動態交通量指派模式。由最基礎之

非時變且不考慮旅行時間之模式，逐漸放鬆成為時變且考量旅行時

間之模式。過去針對此種動態系統所構建之模式，大多需要歷史之

起迄流量資訊、路徑選擇矩陣或狀態轉移矩陣；但在現實環境中，

這些資訊不一定能夠順利取得。本研究透過貝氏方法以及卡門濾波

兩者之結合，放鬆上述之假設條件，並且提出一整合型演算法求解

此模式。為確認此演算法之收斂，本研究亦提出一平行數列收斂性

確認方式，作為此演算法之收斂停止條件。由於此演算法需要大量

之計算，為增進計算效率，本研究將此演算法以通訊量最小化的目

標進行平行化，並執行於平行電腦上。透過真實路網流量資訊，本

研究得以驗證此模式之估計與執行效率。 
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ABSTRACT 
Transportation system nowadays is no longer “extraordinary 

construction” but becomes more elegant, environmental-friendly, and 
sustainable.  Intelligent Transportation System (ITS) integrates the 
telecommunications, automation, electronics, and information processing 
system, is considered possessing the potential to solve the traffic 
congestion problem. Advanced Traffic Management Systems (ATMS), 
requires real-time traffic condition, is one of the key issues of ITS. 
Therefore, we suggest a path-based traffic assignment model to describe 
the network flow status. 

Most existing research works on dynamic traffic assignment focus 
on the user-equilibrium or system optimal. Nevertheless, the existence of 
such assumption in real world network is questionable to many 
researchers. An approach without these assumptions while keeping the 
basic traffic relationship might be useful facing the disequilibria issue. 
Therefore, we model the dynamic traffic assignment problem with 
dynamic system approach. Existing researches with this approach 
usually assume the prior information of O-D matrix, link-proportion 
matrix, or state transition matrix. In this paper, we relax such assumption 
by combining Gibbs sampler and Kalman filter in a state space model. A 
solution algorithm with parallel chain convergence control is proposed 
and implemented.  To enhance its efficiency, a parallel structure is 
suggested with efficiency and speedup demonstrated using PC-cluster. 
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Chapter 1 

Introduction 

 

 Transportation systems play an important role in the development of a country. It 

provides a source of mobility by the extensive network of freeways, expressways, and 

streets. In recent years, the mobility has been greatly obstructed by delays due to the 

congestion on overloaded transportation networks. The economy suffers a great loss 

owing to the worsening of traffic congestion. Dynamic traffic management is an 

efficient tool to control traffic congestion, and this tool requires information of traffic 

states. Traditional static methods are not suitable for this dynamic traffic management 

task. Therefore, a new assignment model that gives proper information to fulfill the 

need is worth to develop. In the introduction, we will discuss motivations, objectives, 

overview, and contributions of this research.  

 

1.1 Research Motivations 

 Transportation system nowadays is no longer “extraordinary construction” but 

becomes more elegant, environmental-friendly, and sustainable. Building new 

highways is no longer a suitable option for every situation due to the prohibitively 

high costs involved, as well as social, political and environmental concerns. 

Intelligent Transportation System (ITS) integrates the telecommunications, 

automation, electronics, and information processing system, is considered possessing 

the potential to solve the traffic congestion problem. Advanced Traffic Management 

Systems (ATMS) is one of the key issues of ITS. Proper information, i.e. link flows, 
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and origin-destination (O-D) demands, is a requirement to management the traffic 

system effectively. Information of can be obtained by comprehensive deployment of 

surveillance system, but the costs of extensive installation is nearly unbearable. Hence, 

estimate these precious information with reasonable amount of detectors is a research 

that worth some attention.  

  

1.2 Research Objectives 

The fundamental objective of this dissertation is to address a dynamic stochastic 

path-based assignment model. Utilizing link traffic counts, this model can give an 

overview of the network. Existing research works concerning this problem usually 

assume the existence of user-equilibrium or system optimal condition. Nevertheless, 

the existence of such assumption in real world network is questionable (Friesz, 

Bernstein, Mehta, Tobin and Ganhalizadeh, 1994; Friesz and Shah, 2001). An 

approach without these assumptions while keeping the basic traffic relationship (i.e., 

path-link incidence matrix) might be useful facing the disequilibria issue. A statistical 

approach will be introduced in this dissertation to relax such behavioral assumption. 

Issues concerning the objective include: 

1. Development of a path-base assignment model without user behavior 

assumptions. 

2. Modeling the path-base assignment problem with linear time-varying 

coefficient dynamic system, that addresses the time-dependent path flows. 

3. Present a solution algorithm with parallel computing capability to improve 

computing efficiency. 
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4. Demonstrate the path-base assignment model with real network data. 

1.3 Research Overview 

 This dissertation is organized as follows. First, the introduction chapter gives an 

overview of the motivation, research objectives, and overview of this dissertation. 

Second, a literature review of related researches in the relevant areas. The literature 

review chapter concerns about topics include: i) Static Trip distribution models and ii) 

dynamic trip assignment models.  

 A path-base assignment model with time-invariant coefficient dynamic system is 

proposed in chapter 3. Essential algorithms for solving this model, including Kalman 

Filter and Gibbs Sampler, are discussed. Macroscopic traffic flow model that 

represent the link dynamics is introduced along with finite difference scheme that 

solve it numerically. In chapter 4, a time-varying coefficient dynamic model with 

rolling horizon structure addressing the transition matrix is introduced.  

 Gibbs sampler, a powerful simulation method, draws values of a random variable 

from a sequence of distribution that converges to a desired target distribution. If used 

naively, it might give a misleading answer. Therefore, convergence assessments of the 

Gibbs Sampler with single chain method and multiple chain method are discussed in 

chapter 5. Gibbs sampler requires tremendous iteration during computation. To make 

the model more suitable for real-time use, parallel computing is also introduced in 

chapter 5 to increase the performance. Numerical examples with real data are also 

discussed in chapter 6. The last chapter presents the conclusions and perspectives of 

this study. The overview of the dissertation are illustrated in Figure 1.1. 
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Figure 1.1 Overview of the dissertation. 

 

1.4 Research Contributions 

 The principal contributions of this study are as follows: 

1. Development of a dynamic path-base assignment model with no user 

behavior assumptions.  
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2. Existing research works on time-dependent origin-destination (O-D) 

estimation focus on the surveillance data and usually assume the prior 

information of the O-D matrix (or transition matrix) is know (or at least 

partially known). In this paper, we relax such assumption by combining 

Gibbs sampler and Kalman filter in a state space model. 

3. A solution algorithm with parallel structure is proposed and implemented. 

With its efficiency and speedup demonstrated using real network data. 
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Chapter 2 

Literature Review 

 

 This chapter provides literature reviews relevant to the formulation and solution 

algorithm of trip assignment problem. The following sections are organized as (i) 

static trip assignment models, (ii) dynamic trip assignment models, and (iii) summary 

and discussion. 

 Traditional four-step travel demand modeling decomposes the demand prediction 

problem in order to deal with its multi-dimensional character. These steps include trip 

generation, trip distribution, mode split, and trip assignment. It is a way to simplify 

the models for estimation and forecasting. Trip generation is the prediction of the 

number of trips produced by and attracted to each zone, which means, the number of 

trip ends “generated” within the area. That is, the trip generation phase of the analysis 

predicts total flows into and out of each zone in the study area, but it does not predict 

where these flows are coming from or going to. Trip ends are classified as being either 

a production or attraction. The variables are usually based on mathematical 

relationships between trip ends and socioeconomic or activity characteristics of the 

land use generating or attracting the trips.  

In the traditional four stage aggregate approach, traffic assignment may not be 

viewed as strictly a demand model. It is the last stage of the model in which 

pre-determined origin-destination flows are assigned to links in the network. Various 

methods have been devised for assigning trips to network link, but have significant 

limitations.  
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2.1 Static Trip Assignment Models 

Static assignment models assume that link flows and link trip times remain 

constant over the planning horizon of interest. Hence, a static origin-destination (O-D) 

matrix is given and assigned to the network links, results a link flow pattern that is 

intended to replicate the actual flow based on some behavior assumption. The static 

equilibrium assignment models are adequate for long-term planning analysis. Studies 

have shown that these formulations fail to capture the essential features of traffic 

congestion, including queue, departure time shift, traffic propagations, and etc. 

(Herman and Lam, 1974; Lisco, 1983; Hendrickson and Planck, 1984). Early attempts 

ignored congestion and the equilibrium issue, assigning all trips between any given 

O-D pairs to the shortest travel cost path (all-or-nothing assignment). Refined 

approaches resulted from recognition of the need to incorporate congestion effects 

(Sheffi, 1985; Matsoukis, 1986) 

 

User Equilibrium Concept 

 The first mathematical programming formulation for the static user equilibrium 

(UE) problem with fixed demand as an equivalent optimization problem is introduced 

by Beckmann et al. (1956). This formulation allows the derivation of existence and 

uniqueness properties of the solution, satisfying the Wardropian UE condition. While 

Wardrop’s UE condition indicates no user can improve his/her travel time/cost by 

unilaterally switching routes (Wardrop, 1952). The static UE flow pattern is obtained 

by solving the Beckmann equivalent optimization problem, stated as the following 

mathematical program: 
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( )∑∫=
a

x

a
a dtZ

0
)(min ωωx          (2.2a) 

subject to 

 srqf
k

rs
rs

k ,∀=∑            (2.2b) 

srkf rs
k ,,0 ∀≥            (2.2c) 

∑∑∑ ∀=
r s k

rs
ka

rs
ka afx ,δ          (2.2d) 

where x  is the vector of link flows, ax  represents the flow on link a, and ( )•at  is 

the link performance function for link a that specifies the link travel time as a function 

of the flow on the link. The link performance function, often refer to the BPR function, 

is a positive, increasing, and convex curve, as illustrated in Figure 2.1. The typical 

link performance function does not consider queued vehicles in the traffic stream nor 

the propagation of the traffic flow. 

 

 

 

 

 

Figure 2.1 Typical Link Performance Function ta(xa) 

  The O-D demand between origin r and destination s is denoted by rsq  and the 

flow for O-D pair r-s assigned to path k is represented by rs
kf . The static link-path 

incidence matrix relating path flows to link flows (equation 2.2d) are defined using 
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link-path incidence variable rs
ka ,δ  as follows: 

 
⎩
⎨
⎧ −

=
otherwise ,0

pair  D-Obetween  path on  is link  if,1
,

srkars
kaδ     (2.2e) 

 The objective function )(xZ , which is the sum over all arcs of the integrals of 

the link performance functions, does not have an intuitive economic or behavioral 

interpretation and is viewed strictly as a mathematical construct to solve equilibrium 

problems. Equation 2.2b indicates the set of flow conservation constraint which imply 

that all O-D demand have to be assigned to the network. The non-negativity 

conditions (equation 2.2c) ensure the solution of the program is physically meaningful. 

The network structure enters the formulation through the link-path incidence 

relationship (equation 2.2d) that relates the link-based objective function to the 

path-based constraint set. 

 Sheffi gives a comprehensive treatment of the static UE problem, addressing the 

conceptual, mathematical, algorithmic and computational aspects of the problem 

(Sheffi, 1985). A more difficult problem with asymmetric link interactions is 

addressed by Dafermos, and Fisk and Boyce by using variational inequality (VI) 

techniques (Dafermos, 1980, 1982; Fisk and Boyce, 1983). Nagurney, Mahmassani 

and Mouskos, and Patricksson address computational issues related to the VI problem 

(Nagurney, 1984,1986; Mahmassani and Mouskos, 1988, 1989). 

 

System Optimal Concept 

 The other major class of assignment is system optimal (SO) formulation. The SO 

seeks a flow pattern that achieves some system-wide objectives. The static SO 
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assignment problem can be formulated as follows: 

∑=
a

aaa xtxZ )()(min x          (2.3a) 

subject to 

 srqf
k

rs
rs

k ,∀=∑            (2.3b) 

srkf rs
k ,,0 ∀≥            (2.3c) 

∑∑∑ ∀=
r s k

rs
ka

rs
ka afx ,δ          (2.3d) 

 The objective function is the only difference from UE formulation with the 

interpretation of total system travel cost. The SO flow pattern does not always 

represent an equilibrium solution, as individual travelers may reduce their travel time 

by switching their routes. Hence, the SO flow pattern is not expected to hold without 

some control strategy such as road pricing or restriction. Consequently, the SO flow 

pattern is not an appropriate descriptive model of actual user behavior. It can be 

treated as a performance index of the network. The solution procedures for SO are 

identical to those of UE except that they differ in the specification of link cost 

functions (average cost function in UE; marginal cost function in SO).  

 Ben-Akiva enumerates the shortcomings of using static models in modeling 

congestions (Ben-Akiva, 1985). The static assignment has a major shortcoming of 

inadequately link congestion model. As discussed earlier in the thesis, the congestion 

is presented by a link performance function which gives the average trip time as a 

function of the average link flow. The average link flow can even exceed the actual 

capacity of the road section which is unrealistic for the control purpose. Another 

major problem lies on the description of traffic propagation. The static volume-delay 
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curve cannot describe the propagation of traffic flow, especially in high flow levels. 

Thereby, static assignment models are inappropriate for real-time traffic control 

application, especially for congested networks. 

2.2 Dynamic Trip Assignment Models 

 Dynamic network assignment is under intensive research, for both user 

equilibrium and system optimal problems. One common feature of these researches is 

that they differ from the standard static assignment assumptions to deal with 

time-varying flows. Another feature shared by these researches is that none presently 

provides a universal solution for general networks. 

The first attempt to formulate the DTA problem as a mathematical program is 

introduced by Merchant and Nemhauser (1978a, 1978b). The model (referred to as the 

M-N model) is limited to the fixed-demand, single-destination, deterministic, system 

optimal scenario. A link exit function is utilized to propagate traffic and a static link 

performance function is introduced to present the travel cost as a function of link flow. 

It results a flow-based, discrete time, non-convex non-linear programming 

formulation. The global solution can be derived by solving a piecewise linear version 

of the model. 

 

System Optimal Concept 

Carey (1987) reformulates the M-N model as a convex nonlinear program by the 

manipulation of exit function, which gives mathematical advantage over the original 

M-N model. The formulation differs from M-N model mainly in the consideration of 

multiple destinations, and the exit function )(•ag . 
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where t
ax  represents the number of vehicles on link a at the beginning of interval t. 

( )t
a

t
a xh  represents the travel cost incurred by the volume t

ax  and assumed to be 

continuous, convex, nondecreasing and nonnegative. The variable t
ab  and t

ad  

denote the number of vehicle exiting and entering link a in interval t, respectively. 

t
kF  is referred to the exogenous demand at node k in period t. aE  is the initial 

volume on arc a. ( )kB  and )(kC  respectively represent the set of links incident 

from and to node k. )(•ag  the exit function define the maximum number of vehicles 

that can exit from link a and is a function of traffic conditions on the link; it is 

assumed to be a continuous, non-negative, non-decreasing, and concave function. 

Figure 2.2 illustrates a possible shape of such link exit function. 
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Figure 2.2 A possible shape of link exit function 

 Although after the manipulation of exit function, the formulation is convex, but 

it remains problematic by the non-convexity issues arising from first-in first-out 

(FIFO) requirement. The FIFO violation implies some traffic physically jumps over 

another to reduce system cost which is inconsistent with traffic realism. The FIFO 

requirement is easily satisfied in single destination formulation. While facing general 

networks, the FIFO requirement would introduce additional constraints that yield a 

non-convex constraint set and increasing the computational burden severely (Carey, 

1992). As SO flow patterns, it may often be advantageous to favor certain traffic 

movement over others to minimize system-wide travel cost. For example, traffic at 

minor approach of an intersection may be holding back in favor of the major approach. 

That means vehicles may be artificially delayed for a time that might be considered as 

unfair or unreasonable; and the flow pattern may not be acceptable for real-world 

operation. Ziliaskopoulos introduces a linear programming formulation for the single 

destination system optimal DTA problem based on the cell transmission model 

(Ziliaskopoulos, 2000; Daganzo, 1994). This model circumvents the need for link 

performance function as the flow propagates according to the cell transmission model, 

hence is more sensitive to traffic realities. 
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User Equilibrium Concept 

 The user equilibrium formulation is generalized from the Wardrop condition for 

the static problem; it becomes the equilibration of the experienced path travel times of 

users. Janson represents one of the earliest attempts at modeling the UE dynamic 

traffic assignment problem as a mathematical program (Janson, 1991). The link-based 

UE model formulated as a mathematical program as follows: 

( ) ( )∑∑∫=
t a

x t
a

t
a dZ

0
min ωωλx          (2.5) 

subject to 

 Equation (2.4b) – (2.4f) 

The t
aλ  represents the cost of traveling link a at the beginning of interval t when 

there exist t
ax  vehicles on the link.  

 Birge and Ho extend the M-N model to the stochastic case by relaxing the 

assumption that O-D demands are known for the entire planning horizon (Birge and 

Ho, 1993). It assumes a finite number of scenarios, defined as a possible combination 

of past O-D demands in every time interval, while assignment decisions are 

independent of future O-D demands.  

Another approach is modeling dynamic traffic assignment problem in a 

continuous manner. The O-D demands are assumed to be known continuous functions 

of time; link flows are treated as continuous functions of time. Constraints of optimal 

control formulations are analogous to those of the mathematical programming 

formulations, but they are defined in a continuous-time manner. Friesz et al. discuss 

link-based optimal control formulation for both SO and UE objectives for the single 
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destination case (Friesz, Luque, Tobin, and Wie, 1989). The model assumes that 

changes from one system state to another may occur concurrently as the network 

conditions change; that implies the routing decision are made based on current 

network conditions, and can be continuously modified as conditions change. The SO 

model is represented as follows: 

( ) ( )∑∫=
a

T

aa dtxCZ
0

min x           (2.6a) 

subject to 

 ( ) ( ) ( )[ ] [ ]TtAatxgtux
dt

tdx
aaaa

a ,0, ∈∈∀−=≡ &       (2.6b) 

 ( ) ( )
( )

( )[ ]
( )

[ ]TtMktxgtutS
kBa

aa
kAa

ak ,0, ∈∈∀−= ∑∑
∈∈

      (2.6c) 

 ( ) Aaxx aa ∈∀≥= 00 0            (2.6d) 

 ( ) [ ]TtAatua ,0,0 ∈∈∀≥           (2.6e) 

 

Equation 2.5b describe the rate of change of traffic volume with respect to time for 

link a will be considered as the difference of the flow entering link a, ( )tua , and the 

flow exiting link a, ( )[ ]txg aa . In equation 2.6c, ( )tSk  represents the traffic flow 

generated at node k, which is assumed to be a nonnegative and continuous function of 

time. ( )kA  and )(kB  respectively represent the set of links incident to and from 

node k. The nonnegative constraints of both traffic volume on the link and traffic 

volume entering the link are indicated in equation (2.6d) and (2.6e).  As for the UE 

case, the objective function is illustrate as follows, 
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( ) ( ) ( )∑∫ ∫ ′=
a

T x

aaaaa
a dtdgcZ

0 0
min ωωωx        (2.7) 

subject to 

 equation (2.6b)-(2.6e). 

The model proves that at the optimal solution, the instantaneous flow marginal 

costs on the used paths for an O-D pair are identical and less than or equal to the ones 

on the unused paths. As for the UE case, the model is in the form of equilibration of 

instantaneous user path costs. 

 Ran et al. use the optimal control approach to obtain a convex model for the 

instantaneous UE dynamic traffic assignment problem by defining link inflows and 

outflows to be control variables (Ran, Boyce, and LeBlanc, 1993) They recognize the 

inability of the usual cost functions to account for dynamic queuing and congestion 

costs, and propose splitting the link travel cost into moving and queuing parts. Boyce 

et al. proposed a methodology to solve the above model using Frank-Wolfe algorithm, 

but no implementations are illustrated (Boyce, Ran, and LeBlanc, 1995). 

Because of the limitations of obtaining analytic mathematical properties, 

researchers focused on analytical DTA models have gradually migrated toward the 

variational inequality (VI) formulations. Variational inequality provides a general 

formulation platform for several different problems. Variational inequality approach is 

first introduced to the static traffic equilibrium by Dafermos (1980). Friesz et al. 

introduce the VI formulation into network design problem and suggest a sensitivity 

analysis based heuristic algorithm (Friesz, Tobin, Cho, Mehta, 1990; Friesz, Cho, 

Mehta, Tobin, Anandalingam, 1992). Friesz et al. is the first to show there is a 

variational inequality formulation of dynamic user equilibrium with simultaneous 

route choice and departure time decisions (Friesz, Bernstein, Smith, Tobin, Wie, 
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1993). Wie et al. formulate the dynamic network user equilibrium problem as a 

variational inequality problem in discrete time in terms of unit path cost functions 

(Wie, Tobin, Friesz, Bernstein, 1995). They also demonstrate that, assuming certain 

regularity conditions hold, discrete time dynamic network user equilibrium is 

guaranteed to exist. They define the time varying flow pattern *h  and associated 

minimum cost *μ  is a discrete time dynamic network user equilibrium if the 

following conditions are satisfied: 

( ) ( )[ ] TtJjIiPphhtcth ijijpp ,...,1,0,,,0,)( *** =∈∈∈∀=− μ     (2.8a) 

 ( ) ( ) TtJjIiPphhtc ijijp ,...,1,0,,,0, ** =∈∈∈∀≥− μ      (2.8b) 

 JjIiQth
ijPp

ij

T

t
p ∈∈∀=∑∑

∈ =

,)(
0

*          (2.8c) 

 TtJjIiPpth ijp ,...,1,0,,,0)(* =∈∈∈∀≥        (2.8d) 

In equation 2.8, i and j are the origin and the destination node respectively. ijP  

denotes the set of all possible paths between origin i and destination j. )(thp  is the 

number of vehicles entering the first link on path p in period t, and 

[ ]TtPpthh p ,...,1,0,:)( =∈= . ( )htcp ,  is the nonnegative unit travel cost incurred by 

travelers departing their origin in period t and choosing path p to their destination. 

( ) ( )[ ]JjIihh ij ∈∈= ,:μμ  is the vector of minimum unit travel costs. ijQ  is the total 

fixed O-D demand between i and j during time interval Tt ≤≤0 . Since a complete 

path enumeration is required, an efficient method to identify a possible path set should 

be introduced to relief the computation burden. 

Ran and Boyce propose a link-based discretized VI formulation SO DTA model 

with fixed departure time (Ran and Boyce, 1996). They equilibrate the experience 
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travel time, the same as Friesz (1993). A queuing delay component is introduced in 

the model, but the capacity and oversaturation constraints increase the computation 

complexity significantly. Chen and Hsueh propose a link-based VI formulation UE 

DTA model and a nested diagonalization solution algorithm (Chen and Hsueh, 1998). 

The constraint set of the model is nonlinear and nonconvex, and multiple local 

solutions might exist. The variational inequality approach gives greater analytical 

flexibility and convenience than other analytical approaches. Although it brings 

mathematical advantages, the variational inequality approach is much more 

computationally intensive, especially facing the complete path enumeration for 

path-based formulation. 

 Simulation based models are mostly based on the mathematical programming 

models, but the critical constraints that describe the traffic flow propagation (i.e. flow 

conservation, vehicular movement) are addressed through simulation instead of 

analytical representation. With the traffic simulation, these models can address the 

traffic flow more realistic. However, the theoretical insights cannot derive analytically, 

which is the key issue of simulation-based models. A deterministic DTA model, with 

both SO and UE solutions, is proposed by Mahmassani and Peeta (1993). A 

meso-scopic traffic simulator is used as part of an iterative algorithm, with complete 

priori information of O-D demands for the entire planning horizon. Ghali and Smith 

propose a deterministic SO DTA model with congestion arises exclusively at specified 

bottlenecks modeled as deterministic queues (Ghali and Smith, 1995). Simulation 

based models can describe the traffic flow more realistic, which is troublesome in 

analytical formulations. However, the limitation lies on the inability to derive the 

associated mathematical properties.  

More recently, Ashok and Ben-Akiva introduced stochasticity to map the 
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assignment matrix between time-dependent O-D flows and link volumes both in 

off-line and real-time application (Ashok and Ben-Akiva, 2002). Ben-Akiva et al. 

propose DynaMIT, a meso-scopic simulator, as a dynamic traffic assignment system 

to estimate and predict current and future traffic conditions (Ben-Akive, 

Koutsopoulos, Mishalani, Yang, 1997). The model considers both historical 

information and drivers’ response to information, supply and demand simulators work 

together to generate UE route guidance. Nie and Zhang proposed a relaxation 

approach for estimating static O-D matrix that minimizes a distance metric between 

measured and estimated traffic condition while the condition satisfies user equilibrium 

(Nie and Zhang 2008).  

2.3 Summary and Discussion 

To design and manage a transportation system, there is a need for efficient 

analyzing tool to describe the usage of the system. The traditional static method, 

four-stage planning process, includes trip generation, trip distribution, modal split, 

and trip assignment. Traditional sequential four-stage method is not suitable in the 

operation perspective. Since the travel costs used in the trip distribution stage are 

functions of the trip assignment outcomes; that is, the stages have to be repeated. 

From the literature review, estimate the network flows directly from time-series of 

link flows seems to be a reasonable candidate for real-time traffic operation aspect. 

This chapter has reviewed several topics relevant to the trip assignment problems. 

Most existing research works assumed the existence of user-equilibrium or 

system-optimal conditions. However, the existence of equilibrium states in real traffic 

networks is questionable; an alternative approach to relax the assumption of 

user-equilibrium or system optimal might worth be established.  
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Chapter 3 

A Path-base Assignment Model with Time-invariant 

Coefficient Dynamic System 

 In this chapter, some essential concepts of the path-base assignment model with 

time-invariant coefficient dynamic systems are discussed. Begin with the brief 

introduction to dynamic system models, the model assumption and notation is 

addressed in section 3.1. A state space approach that modeled the path estimation is 

illustrated in section 3.2. Link dynamics that describe the propagation of traffic flows 

is introduced, in section 3.3, to modify the proposed model.  

 

3.1 Assumption and Notation  

Existing research works on traffic assignment usually assume the existence of 

user equilibrium status or pursuit some system optimal situation. However, it is 

questionable whether such equilibrium state really exists or not. In this study, we relax 

such assumption by some statistical approaches.  

The basic assumption in this research is the existence of unknown relationship 

between consecutive path-flows; the assumption is similar to that of Okutani. While 

Okutani assumed a time invariant relation between time-series O-D flow exists; and 

this relationship can be estimated by some prior information. In this study, we do not 

estimate the relationship by prior information; the relationship is estimated 

simultaneously with path flows.  

For convenience, we use the following notations in this chapter: 
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Table 3.1 Notations of Time-invariant State Space Model 

 

3.2 Estimation of Path Flow by State Space Model without 

Prior Information 

 Isaac Newton introduced the differential equations in the 17th century and 

provided mathematical models for many dynamic systems. Given a finite number of 

initial conditions, one can uniquely determine the system status for all time. The finite 

dimensional representation of a problem is the basic idea for the state-space approach 

to the representation of dynamic systems. The dependent variables of the equations 

are the state variable of the dynamic systems. The principal dynamic system models 

are listed in Table 3.2 below. 

 

 

Notation Descriptions 

F  a pp×  path flow transition matrix 

tψ  a 1×p  network path flows on time t 

ty  a 1×q  link traffic observation vector on time t 

H  a pq×  zero-one matrix which denotes the path-link incidence matrix 

p number of elements in path set P 

q number of observations in the target network 

tt γσ ,  independently and identically distributed Gaussian noise terms 

T  The transport of a matrix is mark by superscript T . 
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Table 3.2 Principal dynamic system models 

Reference: [Grewal & Andrews, 1993] 

We focused on the discrete dynamic systems in this dissertation. In the dynamic 

model, F  is a nn×  dynamic coefficient matrix. The matrix  

[ ]Tnt tttt )()()()( 321 ψψψψψ L= is called the state vector, where )(tnψ  

denotes the nth state variable in time t. The n-dimensional domain of the state vector is 

called the state space of the dynamic system. The state variables are related to the 

system outputs by a system of linear equations that can be represented in vector form, 

as follows. 

ttt Hy γψ +=  

where 

[ ]Tlt tytytytyy )()()()( 321 L=  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nllll

n

n

n

hhhh

hhhh
hhhh
hhhh

H

L

MOMMM

L

L

L

321

3333231

2232221

1131211

 

The ty  is a l-vector called the measurement vector (also called observation vector) 

Model Continuous Discrete 
Time-invariant   
Linear )()()( tCutt +Φ= ψψ& ttt uF Γ+=+ ψψ 1  

General ( ))(),()( tutft ψψ =& ( )ttt uf ,1 ψψ =+  
Time-varying   
Linear )()()()()( tutCttt +Φ= ψψ& ttttt uF Γ+=+ ψψ 1  
General ( ))(),(,)( tuttft ψψ =& ( )ttt utf ,,1 ψψ =+  
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of the system. The matrix H is a measurement sensitivity matrix with measurement 

sensitivities nlh  measures the scale of thl output to thn  state variable. 

Real world problems tend to have some kind of unpredictability in behaviors, 

due to some unknown exogenous inputs. Furthermore, output-measuring process with 

physical sensors will always introduce some amount of sensor noise, which will cause 

errors in the estimation process. While facing real world problems, using a statistical 

approach that taking uncertainties into account instead of deterministic would be a 

better approach. These dynamic systems with uncertainties are characterized by 

statistical parameters such as means, correlations, and covariances. 

 

3.2.1 Modeling 

In this section, only the most basic modeling is introduced. The transition matrix 

that describe the relationship among path-flows in different time period is assumed to 

be fixed. The link travel time, which is an important issue, is not considered. Although 

the above strict assumption are made in this section, but they will be relaxed in the 

following section.  

State space model is introduced to estimate path flows from link traffic counts. 

The state space model is coupled with two parts: transition equations and observation 

equations. First, the state equation which assumed that the path flows at time 1+t  

can be related to the path flows at time t  by the following autoregressive form, 

ntF ttt ,...,3,2,1,1 =+= − σψψ           (3.1) 

where tψ  is the state vector which is unobservable, F  is a random transition 

matrix, ( )Σ,0~ pt Nσ  is independently and identically distributed noise term, where 
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pN  denotes the p-dimensional normal distribution, Σ is the corresponding 

covariance matrix. ψ , the 1×p  state vector, is defined to be the path flows 

belonging to O-D pairs. 

Next, the observation equation, 

ntHy ttt ,...3,2,1, =+= γψ           (3.2) 

where ty  is the 1×q  observation vector which means there are q  detectors on the 

network. The number of paths is denoted by p . H  is a pq×  zero-one matrix, 

which denotes the path-observation incidence matrix. The path-observation is 

pre-determined by generating possible path set and given travel time on each link. tγ  

is also a noise term that ( )Γ,0~ qt Nγ . Both ψ  and F  are unobservable, thus 

Kalman filter is not suitable to directly estimate and forecast the state vector. Hence, 

Gibbs sampler is used to tackle the problem of simultaneous estimation of F  and 

ψ  by available information. 

There are two major elements to be incorporated in the solution method, 1) 

filtering states by observations, and 2) sampling scheme of transition matrix, F , and 

state vector, ψ . Since the observations, ty , are not used in the conditional distribution, 

the Kalman filter and the Gibbs sampler must be combined. After the estimation of 

state vector, O-D flows can be calculated by the summation of path flows. 

 

3.2.2 Kalman Filter 

 Kalman filter is an estimator for the linear-quadratic-Gaussian problem, which 

estimates the instantaneous state of a linear dynamic system perturbed by Gaussian 

white noise. It utilizes measurements, corrupted by Gaussian white noise, linearly 
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related to the state and gives a statistically optimal estimator with respect to quadratic 

function of estimation error.  The Kalman filter does not only provide a means for 

inferring missing information from indirect and noisy measurements, but also used for 

predicting the likely future trends of dynamic systems. The structure of the filter can 

be derived in a Bayesian framework as follows. 

The first stage (i.e. t =1), there’s no observation exists, thus the state vector 0ψ  

must be generated by a prior distribution that ),(~ 000 VN p μψ , where 0μ  is the mean 

and 0V  is the covariance matrix. By using equation (3.1), the distribution for the state 

vector in the first stage will be normal with parameters 

[ ] 11|1| −−− == ttttt FyE μμψ           (3.3) 

[ ] Σ+== −−−
T

ttttt FFVVyVar 11|1|ψ          (3.4) 

where 1−ttμ  denotes the expect value of tψ  and 1| −ttV  denotes the variance of tψ  

when 1−ty  is observed. By the above information, the forecast observation would be 

normal distribution with parameters 

[ ] 1|1 ˆ| −− == ttttt HyyyE μ            (3.5) 

[ ] Γ+== −−
T

ttttt HHVMyyVar 1|1|          (3.6) 

The above equation (3.3)-(3.6) holds for any t. 

As the new observation ty  become available, the parameter vector would be 

updated according to Baye’s rule, 

( ) ( ) ( )1||| −∝ tttttt ypypyp ψψψ . 
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By using Bayes’ rule and standard Bayesian theory, the posterior distribution will be 

normal with parameters 

( )1|
1

1|1|| −
−

−− −+= tttt
T

tttttt HyMHV μμμ         (3.7) 

1|
1

1|1|| −
−

−− −= ttt
T

tttttt HVMHVVV          (3.8) 

The algorithm of Kalman filter is illustrated as follows, 

Algorithm Kalman Filter 

Input: ,, 00 Vμ  sequencenobservatioyt =:  

Output: Filtered μ  and V 

Begin 

FOR each time step of the observation sequence 

Generate prediction of the new observation by 

1ˆ −⋅⋅= tt FHy μ  

( ) Γ+Σ+⋅⋅= −
TT

ttt HFVFHM 1|  

Update the parameter by 

( )1|
1

1|1|| −
−

−− −+= tttt
T

tttttt HyMHV μμμ  

1|
1

1|1|| −
−

−− −= ttt
T

tttttt HVMHVVV  

END FOR 

END 
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3.2.3 Gibbs Sampler  

Gibbs sampler is a technique for generating random variables from a distribution 

indirectly, without having to calculate the density. In this paper, we make the 

following assumptions, (i) The initial ( )000 ,~ VN μψ , (ii) The covariance matrix Σ  

and Γ  are known, and (iii) Given F, the distribution tψ  is Gaussian. 

The state equation can be written 

ntF T
t

TT
t

T
t ,,3,2,1,1 L=+= − σψψ          (3.9) 

that is 
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⎥
⎥
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The following notation is used for simplification. 
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T
i

TT FFFF LL1=  

where T
iF  denotes the thi  column vector of TF . Then the equation (3.9) can be 

re-written as 

n
T

nn F σψψ += −1  

Consider the element of S , the pp ×  covariance matrix being used to estimate the 

variance-covariance matrix of F ,  

( ) ( ){ }T
j

T
iij

T FFSFS ,=  
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where ijS  denotes the ),( ji  element of the matrix. ijS  can be calculated by the 

following equation. 

( ) ( )
( )( ) ( ) ( )T

j
T
j

T
nn

T
i

T
i

T
j

T
n

T
jn

T
i

T
n

T
in

T
j

T
n

T
jn

TT
i

T
n

T
inij

FFFFFF

FFS
ˆˆˆˆ

ˆ

111)(1)(

1)(1)(

−−+−−=

−−=

−−−−

−−

ψψψψψψ

ψψψψ
  (3.10) 

where ( ) T
inn

T
nn

T
iF )(1

1
11

ˆ ψψψψ −

−

−−=  is the least square estimate of T
iF , and )(inψ  is the 

thi  column vector of nψ . Consequently, 

( ) ( ) ( )TTT
nn

TTTT FFFFAFS ˆˆ
11 −−+= −−ψψ        (3.11) 

where A is a pp×  matrix. { }ijaA = , where ija  is the ),( ji elements of A, with 

( ) ( )̀ˆˆ
1)(1)(

T
j

T
n

T
jn

TT
i

T
n

T
inij FFa −− −−= ψψψψ .        (3.12) 

That means A is proportional to the sample covariance matrix. From the general result 

in the Gaussian model, the posterior distribution of TF  is then 

( ) ( )

( ) ( ) 2

11

2

ˆˆ

,|
n

TTT
nn

TTT

T
n

TT

FFFFA

FFSFp
−

−−

−

−−+=

∞<<∞−∝

ψψ

ψ
      (3.13) 

The distribution in equation (3.13) is a matrix-variate generalization of the 

t-distribution. The following sampler for generating TF  and ψ  is then proposed. 

The sampling scheme generate from the conditional distributions 

 a. ( )ΣΣ −− ,~,,| 11 ttt FNF ψψψ  

 b. ( )[ ] ( ) 2/

11

2/

11
2/1,,~,|

nTT
nn

pT
nn

pnT FFAAppnkF
−

−−−−
−− +Σ ψψψψψ  

The above sampling scheme would be the key component of the Gibbs sampler. 

The Gibbs sampler is a Markovian updating scheme that proceeds as follows. Given 
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an arbitrary starting set of values },...,,,{ )0()0(
3

)0(
2

)0(
1 kZZZZ , and then draw 

 ],...,[~ )0()0(
3

)0(
21

)1(
1 kZZZZZ ,  

 ],...,[~ )0()0(
3

)0(
12

)1(
2 kZZZZZ ,  

 ],...,[~ )0()0(
2

)0(
13

)1(
3 kZZZZZ , … 

 ],...,[~ )0(
1

)0(
2

)0(
1

)1(
−kkk ZZZZZ .  

Each variable is visited in the natural order and a cycle requires k random variate 

generations. After i iterations we have ),...,,,( )()(
3

)(
2

)(
1

i
k

iii ZZZZ . Under mild conditions, 

the following results hold (Geman and Geman, 1998) 

 

Result 1: Convergence 

As the iteration continue, [ ]k
i

k
iii ZZZZZZZZ ,...,,,),...,,,( 321

)()(
3

)(
2

)(
1 → . Hence, for each 

sequence s, ][)(
s

i
s ZZ →  as ∞→i .  

 

Result 2: Rate 

Using the sup norm, the joint density of ),...,,,( )()(
3

)(
2

)(
1

i
k

iii ZZZZ  converges to the true 

density at a geometric rate, under visiting in the natural order. 

 

Result 3: Ergodic theorem 

For any measurable function T of kZZZZ ,...,,, 321  whose expectation exists, 

( )( )k

i

l

l
k

lll

i
ZZZZTEZZZZT

i
,...,,),...,,,(1lim 321

1

)()(
3

)(
2

)(
1 →∑

=
∞→

. 

Then for every function T on the possible configurations of the system and for every 

starting configuration holds with probability one.  
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Analytical convergence rates for Gibbs sampler applied to state space models 

are further discussed by Pitt and Schephard in 1996 and Robert (Pitt and Schephard, 

1996;  Robert, 1998) 

As Gibbs sampling through m replications of the aforementioned i iterations 

produces i independent and identically distributed k tuples ,,...,,, )()(
3

)(
2

)(
1

i
kj

i
j

i
j

i
j ZZZZ  

mj ,...,3,2,1=  , which the proposed density estimate for [ ]sZ  having form  

[ ] [ ]∑ =
≠=

m

j
j

rss srZZ
m

Z
1

)( ,1ˆ . 

The above Gibbs sampling scheme on a random transition matrix and state 

vector forms the center part of the algorithm. In the process of generate state vectors, 

Kalman filtering mechanism is added. While a simple monitoring of the chain (Zs) can 

only expose strong non-stationarities, it is more relevant to consider the cumulated 

sums, since they need to stabilize for convergence to be achieved. The convergence 

control of Gibbs sampler is discussed in chapter 5. 

 

Algorithm Gibbs Sampler 

Input: matrixincidencenobservatiopathH −=: , sequencenobservatioyt =:  

Output: F̂,ψ̂  

Begin 

Initialize 

pIF =:)0( , pI=Σ : , pI=Γ :  

{ }φ=storeψ , { }φ=storeF  

SET GibbsCount (g) to 0 

WHILE not Converge 
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Generate ( )VNg ,~)( μψ  

Append )( gψ  to storeψ  

CALL Kalman Filter with μ ,V , and observation sequence 

Generate )(gTF  by 

{ })()( g
ij

g aA = , ( ) ( ))()(
1

)(
)(

)()(
1

)(
)(

ˆˆ gT
j

gT
n

gT
jn

TgT
i

gT
n

gT
inij FFa −− −−= ψψψψ  

Generate ( )pnXWishartw gT
n

g
n −−− ,~ )(

1
)(
1ψ  

Generate ( )T
p

TTT zzzzZ ,...,,, 321= , ( ))(,0~ g
p

iid

k ANz  

COMPUTE ZwF
T

gT

1

2
1

)(

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

APPEND )( gTF  to storeF  

INCREMENT GibbsCount 

END WHILE 

READ last k items from storeψ  and put in nψ  

COMPUTE ∑= nk
ψψ 1ˆ  

READ last k items from storeF  and put in nF  

COMPUTE ∑= nF
k

F 1ˆ  

 END 

 

3.2.4 Solution Framework 

In this section, the solution framework of applying Gibbs sampler and Kalman 

filter to the state space model is illustrated. The solution framework that combines the 

algorithm in both section 3.2.2 and 3.2.3 is demonstrated in figure 3.1. The solution 
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framework is an iterative estimation of state vectors and transition matrix; the 

iteration counts are denoted as g . It first filters the state vector by given transition 

matrix, path-observation incidence matrix (some may refer as mapping matrix), and 

observation vector; and then turns to estimate the transition matrix by filtered state 

vector. During the Kalman filter stage of the framework, transition matrix and 

mapping matrix are fixed; while in the transition matrix estimating stage, the state 

vector is fixed. As the algorithm reach convergence, the transition matrix, F̂ , and 

state vector, ψ̂ , can be estimated.  

 After deriving transition matrix and state vector, the prediction of state vector 

can be represent as, 

11ˆ ++ +⋅= ttt F σψψ .            (3.14) 

And the estimation of ht+ψ̂  is 

( )
( )( )( )( ) hththttt

hththt

hththt
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+−+−++

+−+−+

+−++

++++⋅⋅⋅⋅=
++⋅⋅=

+⋅=

σσσσψ
σσψ

σψψ

121

12

1

ˆ
ˆˆ

LL

    (3.15) 

Since the expectation value of σ  is zero. The estimate of ht+ψ̂  can be written as 

 t
h

ht F ψψ =+ˆ .             (3.16) 
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Figure 3.1 The solution framework of state space model 
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3.3 Estimation of Path Flow Considering Link Travel Time 

 Travel time is an important issue while facing transportation problems. It is no 

exception in path flow estimation. We relax the assumption of zero travel time in this 

section. To describe the flow propagation from its origin to destination, travel time on 

each links should be considered. A macroscopic traffic continuum model, the PW 

model, is introduced to describe the link dynamics. Notations increased or changed in 

the section is shown in table 3.3. 

Table 3.3 Notations of Time-invariant State Space Model considering Link Travel Time 

 

3.3.1 Modeling 

 The model in this section had been modified from the previous section (section 

3.2) to consider travel time effect. The state transition equation is the same as in  

Notation Descriptions 

lag
tψ  a 1)1( ×+MaxLagp  matrix composed of series of path flows 

)(itψ  thi component of the vector tψ  

tH  a )1( +× MaxLagpq  zero-one matrix which denotes the path-link 

incidence matrix at time t  

tΔ  uniform width of time mesh for link dynamic model 

n
jk  density at time density at time tnt Δ+0  and space xjΔ  

n
ju  speed at time density at time tnt Δ+0  and space xjΔ  

n
jg  net entering or leaving rate of vehicle at time density at time tnt Δ+0

and space xjΔ  
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previous section, but the observation equation had been modified as follows. 

ntF ttt ,...,3,2,1,1 =+= − σψψ           (3.17) 

ntHy t
lag
ttt ,...3,2,1, =+= γψ          (3.18) 

The state variable, lag
tψ  , is modified here to take the travel time into account. It is a 

1)1( ×+MaxLagp  matrix composed of series of state vectors, 

 { }TT
MaxLagt

T
t

T
t

T
t

lag
t −−−= ψψψψψ L21 . 

Let the element in tψ , a 1×p  vector, be represent as 
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The term MaxLag  denotes the maximum time lag that path flow can be observed on 

observation sites at time t . The path-observation incidence matrix, tH , is a zero-one 

)1( +× MaxLagpq  matrix at time t . If the path flow of a certain time can be 

observed at detector q , then the corresponding element in tH  is one; else, it is zero. 

The incidence matrix can be generated by the interaction with link dynamics that is 

described in the next section. 
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3.3.2 Link Dynamics 

Traffic simulation techniques appeared in the early 1950s in the field of 

transportation science. Computer-based traffic simulation tools, mostly developed in 

the past few decades, exist as a cost-effective assisting tool for researchers and 

practitioners to verify and evaluate traffic management strategies. Traffic simulation 

models can be characterized as microscopic, mesoscopic or macroscopic. The 

microscopic models simulate every vehicle in the network; mainly include three 

behaviors, accelerating, decelerating and lane changing. This kind of models, try to 

describe the actions and reactions of the vehicle that make up the traffic as accurately 

as possible, are the so-called car-following model. In order to achieve accuracy in 

modeling traffic, it leads to a simulation model with high degree of parameters (50 

parameters is common). The simulation time heavily depends on the number of 

vehicle that exist simultaneously in the simulated network, that make it hard to meet 

the requirements of simulating large-scale congested traffic networks for ITS 

applications, especially at real-time level (Yang and Koutsopoulos, 1996). 

The macroscopic approach, based on an analogy between traffic flow and a real 

fluid flow, is also called continuum traffic-flow model. These models mainly based on 

traffic density, volume and speed have been widely analyzed in the past (Lighthill and 

Witham, 1955; Payne, 1979; Leo and Pretty, 1990; Helbing, 1995). Macroscopic 

models usually involve partial differential equations defined on appropriate domains 

with boundary conditions describing traffic phenomena. The models present a higher 

level of abstraction than the microscopic model and lead to some computing 

advantages. The computing time required for a macroscopic model do not increase 

with the number of existing vehicle on the simulation network, and this advantage 

makes it easier to implement on a large-scale network. 
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Macroscopic traffic continuum models had been classified into first-order 

continuum models, such as Lighthill, Whitham and Richards’ well-known flow 

conservation model (LWR model), and high-order continuum models, such as Payne’s 

momentum conservation models (PW model). The models are composed of one or 

several partial differential equations (PDEs) defined on appropriate domains with 

initial and boundary conditions.. The LWR model consists of the fundamental 

conservation principle in the form of a PDE, 

( ) ( ) ( )txg
x
kq

t
txk ,,

=
∂

∂
+

∂
∂            (3.19) 

together with standard definition of flux function 

 ( ) ( ) ( )kutxkkq ×= ,             (3.20) 

It is assumed that the empirical u-k relationships follow the Greenshields traffic 

stream model 

 ( ) ⎟
⎠
⎞⎜

⎝
⎛ −×=

b
f k

kuku 1            (3.21) 

where uf denote the free flow speed and kb the density with vehicles bumper to 

bumper. 

 Although the LWR model is widely cited in researches, it is also known to have 

some deficiencies. The steady state velocity assumption, which means that velocity 

changes instantaneously as density change is certainly not valid in traffic flow. Payne 

used a motion equation to obtain a more complex equation to describe speed 

dynamics (Payne, 1979), 

 ( ) ( )( ) ( )( )ukukP
k

uu
t
u

ee −+∇−=∇+
∂
∂

τ
11        (3.22) 
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where ( )kue  is an equilibrium speed-density relation and τ  is the relaxation time. 

Since it is difficult to find the analytical solution of the traffic continuum model, 

numerical methods, such as Lax or Upwind method, had been used by researchers to 

simulate the numerical solutions for traffic continuum model. Lax-F finite difference 

method is used in solution scheme.  

Lax-F scheme transfer PDEs to finite difference equations by using centered 

difference skill. The Lax-F difference equation or PW continuum model can be 

written as, 
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After the computation of the Lax-F scheme, densities on each mesh can be obtained. 

In this dissertation, a link travel time estimation method for the continuum traffic 

models proposed by Hwang and Cho is used (Hwang and Cho, 2006).  

 

3.3.3 Solution Framework 

 A solution framework that combines the link dynamics to address travel time 

issue of the state space model is suggested. It first set the travel time on each link to 

be the free-flow travel time and generate a initial path-link incidence matrix, tH . The 

path-link incidence matrix is then used in the path flow estimation. After the 

estimation of path flows, the path flows are transformed into link flows and the link 

dynamics are incorporated to give a travel time estimation of certain link. The link 
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travel time is then used to generate the path-link incidence matrix for the next 

iteration. The algorithm terminates while the difference of path flows in consecutive 

iterations are less than ε . The solution framework is illustrated in figure 3.2. 

 

 

Figure 3.2 The solution framework of time-invariant coefficient state space model 
considering link travel time 

 

Initialize 
Set travel time on each link to 

be the free-flow travel time 

Generate tH  by  
travel time on each link 

Estimate path flow by 
state space model 

Multiply path-flow with path-link 
incidence matrix 

Setup adequate boundary condition 
for link dynamics 

Solve link dynamics by finite 
difference scheme 

Estimate travel time 
on each link 

Convergence 

Output path flows 

tH  matrix 

Densities on each 
time-space mesh 

YES 

NO

Travel Time 
on Each Link

Boundary  
conditions 
of traffic model 
on each link 

Link flows

Path Flows

Link Dynamics



 

40 
 

Chapter 4  

A Path-base Assignment Model with Time-varying 

Coefficient Dynamic System 

 

  Chapter 3 introduced the path-base assignment model with time-invariant 

coefficient dynamic systems. That model assumes a time-invariant relationship among 

path flows in different times. In reality, the characteristic of traffic is different from 

time to time, i.e., peak hours and non-peak hours, trips heading to work or going 

home. This chapter tries to relax such time-invariant assumption by introduce a 

time-varying coefficient state space model.  

 

4.1 Assumptions 

 In chapter3, the transition matrix assumed to be time-invariant. We relax such 

assumption by introducing a rolling horizon structure and Wiener process to address 

the transition matrix. Wiener process (often called Brownian motion) is a stochastic 

process plays an important role in both pure and applied mathematics. It is very useful 

in modeling a trend with random walk. The basic assumption in this chapter is the 

change of time-varying transition matrix can be represented by Wiener process. 

Notations increased or changed in the section is shown in table 4.1. 
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Table 4.1 Notation of time-varying state space model 

 

4.2 Estimation of Path Flow by Time-varying Coefficient 

State Space Model 

 In this section, we estimate the path flows by time-varying coefficient state space 

model. The modeling is introduced in section 4.2.1 with a rolling horizon structure. 

Section 4.2.2 briefly introduces the Wiener process that addresses the time-varying 

character of transition matrix. The solution algorithm is discussed in section 4.2.3.  

 

4.2.1 Modeling 

Time-varying coefficient state space model is introduced to estimate path flow 

from link traffic counts. In this model, transition matrix at time t  can be related to 

transition matrix at time 1−t  with an additive form, 

ttt FWF ρ++= −1             (4.1) 

where W  is the drift term and tρ  is a noise term.  

Notation Descriptions 

W a pp×  drift matrix that describe the relation between tF  and 1+tF  

tF  a pp×  path flow transition matrix on time t 

tρ  Independently and identically distributed Gaussian noise terms with 

variance-covariance matrix of ρ  

tΨ  is a )1( +× mp  matrix composed of 1+m  state vectors at time t  

tσ  Is a )1( +× mp  matrix composed of 1+m  random term tσ  
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 The transition equation is represented as equation 4.2 with a rolling horizon 

manner.  

nmmmtF tttt ,...,2,1,,11 ++=+Ψ=Ψ −− σ        (4.2) 

where [ ]tmtmtt ψψψ ,,, 1 L+−−=Ψ  is a )1( +× mp  matrix composed of 1+m  state 

vectors. Let the element in tψ , a 1×p  vector, be represent as 

1
)(

)2(
)1(

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

pt

t

t

pψ

ψ
ψ

M
. Then, 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )11

1

1

222
111

+×+−−

+−−

+−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Ψ

mptmtmt

tmtmt

tmtmt

t

ppp ψψψ

ψψψ
ψψψ

L

MOMM

L

L

.  

The term m  is the number of periods in a rolling stage with 1−> pm  due to the 

degree of freedom requirement in the computation stage. The 

[ ]tmtmtt σσσ ,,, 1 L+−−=σ  is composed of 1+m  noise vectors. 

The third equation is the observation equation, 

ntHy ttt ,...3,2,1, =+= γψ .          (4.3) 

This observation equation, describe the relationship between path flow and 

observation, is identical to eq. 3.2 in section 3.2. 

The rolling horizon structure can be expressed as follows, 
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Solution algorithms, including Kalman Filter and Gibbs Sampler, mentioned in 

section 3.2 are applied to each rolling stage. After the estimation, state vectors of the 

same time in each stage will be averaged to give an estimated value. 

 

4.2.2 Wiener Process 

 Wiener process is a continuous-time stochastic process, often called Brownian 

motion. A Wiener process tZ  is characterized by 

1. 00 =Z . 

2. tZ  is almost surely continuous. 

3. tZ  has independent increments with distribution ( )stNZZ st −− ,0~ . 

As in discrete form, 
1−

−=Δ
kk tt ZZZ , 1−−=Δ kk ttt , ( ) ⎟

⎠
⎞⎜

⎝
⎛ ΔΔ

2
,0~ tNZ . 

The generalized Wiener process tt ZAt ρ+=Ω  is called a Wiener process with drift 

A  and variance 2ρ . In this case, ( ) ⎟
⎠
⎞⎜

⎝
⎛ ΔΔ⋅Ω

2
,~ tbtANt .  

 From equation 4.1, the expectation value of [ ] [ ] WWEFFE ttt =+=− − ρ1 . The 

drift term W  can be estimated by least square method, that 
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− .        (4.5) 

The ρ  can be estimated by the sample covariance matrix of tF , where its 

variance-covariance matrix is 

 ( )( )
Tn

t
itiiti FFFF

n∑=
−−=

1

1ρ          (4.6) 

where tiF  is the thi  row vector of tF . 

 

4.2.3 Solution Framework 

 A rolling horizon structure is incorporated in the solution framework. The 

solution procedure first takes observations from 1~1 += mt  into account, and 

utilize the solution framework presented in section 3.2 to estimate the state vectors, 

1+Ψm , and transition matrix, 2+mF . Second, the procedure continues to use the 

observations from 2~2 += mt  to estimate their corresponding variables. The 

solution procedure will keep rolling until it reaches its final stage. State vectors of the 

same time in each rolling stage, i.e. 2ψ  would exists in stage 1 and 2, will be 

averaged to give an estimated value. 

After deriving tF  by rolling horizon method. The estimation of htF +  can be 

computed by 
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Since the expectation value of tρ  equals to zero, the estimation of htF +  is  
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tht FhWF +=+
ˆ .            (4.8) 

The prediction of state vector at 1+t  can be represent as,  

( ) ( ) tttttttt FWFWF ψψρψψ ⋅+=⋅++=⋅=+
ˆˆ 1 .      (4.9) 

And the prediction of state vector at 2+t  can be represent as, 
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The prediction of state vector at ht +  can be generalized as, 
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4.3 Estimation of Path Flow Considering Link Travel Time 

 In the previous section (section 4.2), we relax the assumption of fixed transition 

matrix by introducing time-varying coefficient dynamic system. However, travel time 

is not addressed in that section. The travel time issue can be easily taking into 

consideration in this section. Notations used in this section is the same as that of 

section 3.2, 3.3, and 4.2.  

 The time-varying coefficient state space model considering travel time effect is 

shown as follows. 
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ttt FWF ρ++= −1             (4.12) 

nmmmtF tttt ,...,2,1,,11 ++=+Ψ=Ψ −− σ        (4.13) 

ntHy t
lag
ttt ,...3,2,1, =+= γψ          (4.14) 

Equation 4.12 that describe the relationship of time-dependent coefficient is the same 

as equation 4.2 in the previous section (section 4.2). The transition equation 4.13 is 

also the same as equation 4.3 in the previous; while equation 4.14 the describe the 

link observation considering time lag effect is introduced in section 3.3.  

 The model proposed in this section is developed from models proposed in 

previous chapters. Therefore, solution framework can be straight forward derived by 

combining solution frameworks discussed in the previous chapters. The solution 

framework is illustrated in figure 4.1. 

 

Figure 4.1 The Solution framework of Time-varying coefficient state space model 

considering travel time effect. 
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Chapter 5  

Convergence Control of Gibbs Sampler and  

Parallel Implementation 

  

In this chapter, the convergence control method of Gibbs Sampler and parallel 

implementation of solution framework are discussed. Begin with the convergence 

assessment for single chain in section 5.1, parallel chain method is then illustrated in 

section 5.2. Finally, Parallel computing technique and its implementation is addressed 

in section 5.3. 

 

5.1 Single Chain Convergence Assessments 

 Gibbs sampler, an example of a Markov Chain Monte Carlo method, is an 

algorithm that generate sequences of samples from a joint probability distribution. It 

has been used to tackle a wide variety of statistical problems. If the method had been 

used naively without convergence control, it might result a misleading answer. 

Properties of applying Gibbs Sampler to state space model can be referred to 

Frühwirth-Schnatter (1994), Carter and Kohn (1994), Gamerman (1998), and 

Jungbacker and Koopman (2007); while analytic convergence rates for Gibbs sampler 

applied to uni-variate state space model can be referred to Pitt and Shephard (1996). 

 Theoretical guarantee of convergence is different from the practical requirement. 

It is thus necessary to develop a tool that determines whether the chain is converged 

or not. Monitoring the chain that Gibbs sampler produce is a reasonable method. 
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However, monitoring the elements in a chain would only expose strong 

non-stationarities. Therefore, it is more relevant to consider the cumulated averages; 

since they need to stabilize for convergence to be achieved. Let the number of Gibbs 

iterations be denoted as g , and the corresponding element )( gx . The difference 

between cumulated averages should be less than ε ,  

 ε≤
−

− ∑∑
−1

)()(

1
11

g

g

g

g x
g

x
g

.          (5.1) 

Possible alternatives to empirical averages would be importance sampling, conditional 

expectations, or Riemann approximation techniques. However, the average may only 

correspond to the exploration of a single mode of the distribution by the chain; the 

single chain methods can never guarantee that the whole support of target distribution 

has been explored (Robert and Cellier, 1998). 

 

5.2 Multiple Chain Convergence Assessments 

The main idea of Gibbs sampler, an iterative simulation method, is to draw 

values of a random variable x from a sequence of distributions that converge to a 

desired target distribution of x. Single chain (sequence) methods hardly bring 

information on the regions of the space it does not visit. Parallel chain methods try to 

overcome such defect by generating parallel chains, aiming at eliminating the 

dependence on initial conditions. The convergence control is most often based on the 

comparison of the estimations of different quantities for the parallel chains. More 

precisely, the criterion is based on the difference between a weighted estimator of 

variance for each chain and the variance of the estimators on the different chains. The 

estimation method composed of two steps. First, create an estimate of the target 
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distribution, centered about its mode (or modes), and over-dispersed in the sense of 

being more variable than the target distribution. The approximate distribution is then 

used to start several independent chains of the iterative simulation. The second step is 

to analyze the multiple chains to form a distributional estimate of the target random 

variable. 

 The monitor of convergence of the iterative simulation is to estimate the factor 

by which the scale of the current distribution for the target distribution might be 

reduced if the simulations were continued to the limit ∞→n . This potential scale 

reduction can be estimated by 
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R̂  declines to 1 as ∞→n . R̂  is the ratio of the current variance estimate,V̂ , to the 

within–chain variance, W. n is the count of iterations, Sm are the standard deviation of 

each chain, B is the between-chain variance and the M is the number of parallel chains. 

The between- and within-chain variances, B and W, are defined as follows. 
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where )(i
mξ  is the i-th element in chain m.  

Once R̂  is near 1, it is conclude that each set of the simulated values is close 

to the target distribution. In practice, the potential scale reduction is chosen to be 10% 

( 1.1ˆ ≤R ). After it converges, we can calculate the desired sample value (the state 

vector) based on the empirical distribution of the n simulated iterates for each 

simulated chain. 

 Some Gibbs Sampler estimation examples are demonstrated in this section. In 

the following examples, four parallel chains with different random seeds are 

illustrated. Example in Figure 5.1 converged ( 1.1ˆ ≤R ) after 51092.1 ×  iterations, and 

the estimated value is 75.23 ; example in Figure 5.2 converged after 51012.4 ×  

iteration, and the estimated value is 0.11. 
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Figure 5.1 Example 1 of four parallel chains. 
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Figure 5.2 Example 2 of four parallel chains. 

 

Another example of eight parallel chains is shown in Figure 5.3.  
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Figure 5.3 Example of eight parallel chains. 

 

These chains converged ( 1.1ˆ ≤R ) after 4105.5 ×  iterations, and the estimated value 

is 57.68 . 
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5.3 Parallel Implementation 

Gibbs sampler, a particular type of Markov Chain Monte Carlo method, requires 

tremendous iterations during computation; normally, there would be tens of thousands 

iterations in the proposed algorithm. To achieve real-time information requirement, 

parallel computing technique is introduced to increase the performance. The solution 

algorithm should be modified to adopt the parallel implementation. Consider the 

Gibbs sampler algorithm in section 3.3.2, the algorithm is separated into several 

computing parts at the WHILE-LOOP. With different random seed, each computing 

part will lead to a different solution chain. The chain in each computing part will then 

be gathered to check the convergence. In this situation, communication between 

computing nodes is minimum, and computing power can be easily increased without 

communication bandwidth limitation. Figure 5.4 describes the parallel architecture. 

The parallel environment of this PC-cluster consists of 16 computing nodes; each 

contains 2 processors equivalent to Intel XEON 3.2 GHz and 1GB memory. Nodes 

are connected with a Gigabits Ethernet switch for MPI protocol and a 100 Mbits PCI 

fast Ethernet switch for Network File System (NFS) and Network Information System 

(NIS). 
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Figure 5.4 The Parallel computation structure. 

   

In the server node, parameters used in our algorithm are initialized, so does the 

necessary input data. When assign jobs, these input data are been sent to computing 

nodes existing in the cluster through TCP/IP base intranet with Message Passing 

Interface (MPI) Library through gigabit switch. The computational procedure for the 

parallel process consists of: 

1. Load input data and parameters. Initialize MPI environment. 

2. Count the computing nodes exists in the cluster environment. Send data to each 

computing nodes. 

3. Each computing nodes generate its own ψ̂  and F̂ ′  sequences by given input 

data. These results were sending to the server for convergence check. 

Server Node
2  ×  3.2GHz processors 

2 Gb Memory 
Task: 
1. Load Network Data. 
2. Assign Jobs to Computing Nodes. 
3. Check Convergence. 
4. Final Estimation of ψ and F from 

multiple chains after convergent.

Computing Node 1 
2  ×  3.2GHz processors 

1 Gb Memory 
Task: 
1. Receive Job from Server Node. 
2. Calculate Single Sequence of ψ 

and F. 
3. Send Local Computation Result 

to Server Node. 

MPI  Data  Bus  (Gigabits  Switch)

NFS & NIS Data Bus (Fast Ethernet) 

…

Computing Node 16 
2  ×  3.2GHz processors 

1 Gb Memory 
Task: 
1. Receive Job from Server Node. 
2. Calculate Single Sequence of ψ 

and F. 
3. Send Local Computation Result 

to Server Node. 
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4. The server check the convergence of each ψ̂  and F̂ ′ . If 1.1ˆ >R , the computing 

nodes will continue step 3. As 1.1ˆ ≤R , the server estimate the global ψ̂  and 

F̂ ′  by sequences generated by each computing nodes. 

5. Stop MPI environment. Output data. 

 

Figure 5.5 shows the speedups and efficiencies of the proposed algorithm, where the 

speedups is the ratio of the code execution time on a single processor to that on 

multiple processors and efficiency is defined as the speedup divided by the number of 

processors. As shown in Figure 5.5, the parallel scheme has efficiency of 72.5% in a 

32 processors environment. 

 

 

Figure 5.5 Speedups and efficiencies for the parallel computing. 
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Chapter 6  

Numerical Examples 

 In this section, the proposed models are tested with real networks to discuss their 

performance. These networks include i) Taipei Mass Rapid Transit Network in section 

6.1 and ii) Taiwan Freeway Network with Electronic Toll Collection information in 

section 6.2. 

 

6.1 Examples 1 (Taipei Mass Rapid Transit Network) 

 A real network of Taipei MRT is tested in this section. The test network consists 

of 9 stations in Nangkang line, the topology of test network is demonstrated in figure 

6.1. Real path-flow data is not likely to derive on a real road network, but it is 

possible in the MRT network. Therefore, MRT information is used here to give a 

measurement of model performance. 

 

 

Figure 6.1 The MRT test network. 

  

Real path-flow data are the numbers of passengers traverse between stations 

from 18:05~20:00 in five-minute interval; for example, there are 30 persons travel 
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from Ximen to Taipei Main Station in the time-period of 18:00~18:35. Eight paths are 

included in this example defined as travelers toward Taipei Main Station from the rest 

of stations. These paths are demonstrated in Table 6.1.  

Table 6.1 Path set of example MRT network. 

Path Origin-Destination Link Set 

( )1ψ  A  C a , b 

( )2ψ  B  C b 

( )3ψ  D  C c 

( )4ψ  E  C d, c 

( )5ψ  F  C e, d , c 

( )6ψ  G  C f, e , d , c 

( )7ψ  H  C g, f , e , d ,c 

( )8ψ  I  C h, g , f , e , d , c 

 

 In the MRT test, travel time is not considered. Therefore, link flows can be easily 

obtained by the summation path flows on them, i.e., flow on link c is equal to 

( ) ( ) ( ) ( ) ( ) ( )876543 ψψψψψψ +++++ , and the flow on link e is equal to 

( ) ( ) ( ) ( )8765 ψψψψ +++ . The time-dependent link flows are illustrated in Table 6.2. 

Link flows on b and c are treated as the observation vector, ty , in this test. Both 

time-invariant and time-varying coefficient dynamic model proposed in chapter 3 and 

4 are conducted in this test. 
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Table 6.2 Time-dependent link flows of MRT network 

   

 

6.1.1 Time-invariant coefficient model 

 In the time-invariant coefficient model, transition matrix is assumed to be fixed. 

The estimated path flows compare to real path flows are demonstrated in Figure 6.2. 

The black line indicates the real O-D data derived from the Taipei Mass Rapid Transit 

company, and the grey line indicates the estimation result of the proposed algorithm. 

 

Time 
Interval 

Link 
flow a 

Link 
flow b 

Link 
flow c 

Link 
flow d 

Link 
flow e 

Link 
flow f 

Link 
Flow g 

Link 
Flow h 

1 1 12 31 27 27 17 13 7 
2 3 14 116 108 103 50 30 23 
3 0 12 85 84 77 39 14 9 
4 6 15 82 77 72 33 21 11 
5 5 25 74 69 63 42 16 10 
6 2 10 71 69 65 34 17 11 
7 3 33 115 108 101 56 28 12 
8 3 26 62 58 56 29 12 7 
9 6 29 62 59 58 34 23 15 

10 1 28 84 81 71 45 21 10 
11 3 19 80 72 65 28 15 7 
12 3 29 113 107 103 63 31 20 
13 7 35 129 119 110 51 25 17 
14 2 18 50 45 44 18 7 7 
15 6 39 128 121 113 58 20 12 
16 6 35 97 91 83 43 15 11 
17 1 12 107 100 93 58 35 25 
18 3 16 108 101 97 50 25 15 
19 0 22 76 76 71 32 19 8 
20 4 29 69 66 63 26 13 7 
21 1 17 101 100 96 63 18 12 
22 2 9 41 40 37 29 10 5 
23 2 6 59 57 55 35 14 8 
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Figure 6.2 The comparison of real and estimated data on MRT network by 

time-invariant coefficient model. 

The correlation between real and estimated data is 0.816, which indicates a 

medium to strong association between real and estimated data. The mean absolute 

error (MAE) is 4.78, and the mean absolute percentage error (MAPE) is 49%.  
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 To evaluate the prediction result of this model, observations at the last 

time-period is deducted from the observation vector. After applying the proposed 

model to the rest of observation vector, estimated transition matrix, F̂ , and state 

vector at time-period 22, 22ψ̂ , are obtained. The predicted path flows at time-period 

23 can be calculated by 2223 ˆˆˆ ψψ F= . The mean absolute error of the prediction is 

5.43; and the mean absolute percentage error is 51.3%. The comparisons of real and 

predicted path flows are demonstrated in figure 6.3. The predicted path flows are 

indicated as dash lines.  
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Figure 6.3 The comparison of real and predicted data on MRT network by 

time-invariant coefficient model. 

6.1.2Time-varying coefficient model 

 This subsection demonstrates the result of proposed time-varying coefficient 

model. The path flow estimation is based on a rolling horizon concept; in this 

example, there are nine states in a horizon period, is illustrated on table 6.3.  

To evaluate the estimation and prediction result of this model, same procedures 

are conducted as that of time-invariant coefficient model. The correlation between 

real and estimated data is 0.969, which indicates a strong association between real and 

estimated data. The mean absolute error is 1.57, and the mean absolute percentage 

error is 15.1%. Six out of eight path flows, without path 5 and 8, pass the chi-square 

test of 95% confidence interval. From the solution framework, we know the first 

time-period of estimation tends to have larger error, because the 0ψ  is generated 

randomly. If the estimation of path flows in first time-period are deducted from the 

dataset, all of the path flows pass the chi-square test of 95% confidence interval.  

  The predicted path flows at time-period 23 can be calculated by 222223 ˆˆˆ ψψ F= . 

The mean absolute error of the prediction is 3.54; and the mean absolute percentage 

error is 72.2%. The comparison of real, estimated and predicted path flows are 

demonstrated in figure 6.4.  
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Table 6.3 An example of rolling horizon estimation (9 elements in a horizon period). 

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Real Path 11 11 12 9 20 8 30 23 23 27 16 26 28 16 33 29 11 13 22 25 16 7 4 

Estimated 
Path 

 10.5  15.0  14.9  21.1 9.2 26.3 27.1 23.6 27.8 17.0 24.0  29.9 20.9 32.2 27.6 11.3 12.5 21.5 23.6 14.8 5.6  0  

Period 1  10.5  13.4  9.2  20.5 8.9 31.1 24.8 23.7 28.2              

Period 2   16.6  20.0  23.6 13.0 22.0 29.9 20.8 34.6 16.2             

Period 3    15.5  19.2 9.9 23.3 26.2 18.0 31.7 13.2 28.0             

Period 4     21.2 4.9 24.8 19.1 22.8 23.2 15.6 22.9  28.2           

Period 5      9.2 26.7 34.5 19.0 28.1 18.5 17.3  31.3 29.5          

Period 6       29.7 31.2 18.5 28.6 17.7 21.2  28.6 22.5 38.1         

Period 7        23.9 32.9 24.4 16.6 23.7  29.8 23.0 28.5 25.9        

Period 8         32.8 24.2 16.4 23.3  29.6 23.0 28.4 25.4 12.1       

Period 9          27.3 20.2 26.7  37.2 26.3 34.1 27.1 14.7 12.5      

Period 10           18.5 28.1  30.3 18.1 35.2 30.5 14.3 15.0 25.2     

Period 11            24.9  26.9 14.7 31.9 27.6 10.5 11.8 21.2 23.9    

Period 12             26.9 14.7 31.7 27.3 10.2 11.5 21.0 23.8 14.4   

Period 13              16.8 33.4 29.8 11.0 13.6 22.2 25.4 16.6 7.5   

Period 14               28.9 27.4 6.4 10.3 17.9 21.1 13.4 3.8  0  
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Figure 6.4 The comparison of real, estimated, and predicted path flows on MRT 

network by time-varying coefficient model with 9 states in a horizon period. 
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6.1.3 Discussion of MRT network example 

 From the numerical example of MRT test network, we could discover a 

significant improvement comparing the time-varying coefficient model to the 

time-invariant coefficient mode. As for the estimation, the time-invariant model has a 

MAE of 4.78 and MAPE of 49%; while the time-varying model has a MAE 1.57 of 

and MAPE of 15.1%. As for the prediction, the time-varying coefficient model also 

has smaller mean absolute error. However, the mean absolute percentage error of 

time-varying coefficient model is larger.  

  

6.2 Examples 2 (Taiwan Freeway Network) 

 Models considering travel time effect are demonstrated in this section. The test 

network is a real freeway network with Electronic Toll Collection (ETC) information. 

ETC can provide where and when the particular vehicle appeared, this information 

can help us tracing a particular vehicle. The test network consists of northern part of 

Taiwan freeway network, including part of freeway No.1, No. 2, and No. 3. The 

network is illustrated as figure 6.5.  
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Figure 6.5 The freeway test network. 

 The test network consists of 22 O-D pairs and 30 paths, demonstrated in Table 

6.4. Path flow data are the number of vehicles depart from their origin toll station to 

their destination toll station, only vehicles with ETC equipment and travel longer than 

two toll stations will be count. Since ETC information provides when and where a 

particular vehicle appears, travel time between every two stations can be calculated. 

Therefore, link flow on certain time can be obtained by the summation of 

corresponding path flows departs from their origin on a particular time. For example, 

flow on link e  at time t  can be calculated by the summation of path 2, 4, 6, 8, 10 at 

time 2−t  and path 12, 14, 16, 18, 20 at time 1−t .  
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Table 6.4 Path set of example freeway network. 

Path Origin-Destination Link Set 

( )1ψ  B  D b 
( )2ψ  B  C b, d ,e 
( )3ψ  B  E b, f, h, i 
( )4ψ  B  E b, d, e, g, i 
( )5ψ  B  G b, f, h, i, k 
( )6ψ  B  G b, d, e, g, i, k 
( )7ψ  B  F b, f, h, j 
( )8ψ  B  F b, d, e, g, j 
( )9ψ  B  H b, f, h, j, l 
( )10ψ  B  H b, d, e, g, j, l 
( )11ψ  A  D a, c, f 
( )12ψ  A  C a, e 
( )13ψ  A  E a, c, f, h, i 
( )14ψ  A  E a, e, g, i 
( )15ψ  A  G a, c, f, h, i, k 
( )16ψ  A  G a, e, g, i, k 
( )17ψ  A  F a, c, f, h, j 
( )18ψ  A  F a, e, g, j 
( )19ψ  A  H a, c, f, h, j, l 
( )20ψ  A  H a, e, g, j, l 
( )21ψ  D  E h, i 
( )22ψ  D  G h, i, k 
( )23ψ  D  F h, j 
( )24ψ  D  H h, j, l 
( )25ψ  C  E g, i 
( )26ψ  C  G g, i, k 
( )27ψ  C  F g, j 
( )28ψ  C  H g, j, l 
( )29ψ  E  G k 
( )30ψ  F  H l 
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6.2.1 Time-invariant coefficient model considering travel time effect 

 Time-invariant coefficient model considering travel time effect is discussed in 

this subsection. In this subsection, transition matrix is assumed to be fixed, while 

path-link incidence matrix, tH , is generated by real data. The observation vector is 

time-dependent link flows on the network, aggregated as 30-minute interval. The 

estimated path flows compare to real path flows are demonstrated in Figure 6.6 as 

follows.  
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Figure 6.6 The comparison of real and estimated data on freeway network by 

time-invariant coefficient model considering travel time effect. 

 

It is observed from the data, there exists nearly zero flows on path 4, 6, 8, 10, 13, 

15, 17, and 19. These paths are excluded from the MAE and MAPE calculation, 

therefore, only 22 paths are considered in the calculation. 

The correlation between real and estimated data is 0.982, which indicates a 

strong association between real and estimated data. The mean absolute error is 2.48, 

and the mean absolute percentage error is 31.6%. Eight out of 22 paths pass the 

paired-sample T test of 90% confidence interval; we further test the rest 14 paths, 10 

out of them pass the chi-square test of 90% interval. 
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6.2.2 Time-varying coefficient model considering travel time effect 

 This subsection demonstrated the result of proposed time-varying coefficient 

model considering travel time effect on the test freeway network. The estimation of 

path flow is also based on a rolling horizon concept as the MRT network, except of 33 

states in a horizon period. The estimated path flows compare to real path flows are 

illustrated in figure 6.7.  
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 Figure 6.7 The comparison of real and estimated data on freeway network by 

time-varying coefficient model considering travel time effect. 

  

Same as section 6.2.1, path 4, 6, 8, 10, 13, 15, 17, and 19 are excluded from the 

MAE and MAPE calculation with their nearly zero flows. The correlation between 

real and estimated data is 0.989, which indicates a strong association between real and 

estimated data. The mean absolute error is 1.66, and the mean absolute percentage 

error is 13.29%. Nine out of 22 paths pass the paired-sample T test of 90% confidence 

interval; we further test the rest 13 paths, 10 out of them pass the chi-square test of 

90% confidence interval. 

In the numerical example of freeway test network, the time-varying model also 

has a better performance compared to time-invariant model in estimation. However, 

the difference between these models is not as significant as that of MRT example.  

Some of the paths in this numerical example have zero or very little flows during the 
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whole estimation period, i.e. path 4, 6, 8, 10 and so on. Neither time-invariant nor 

time-varying model are able to describe those paths.  

 

6.2.3 Comparison with Predetermined Transition Matrix Method 

 Existing researches concerning time-dependent O-D estimation usually assume 

the prior information of the O-D matrix (or transition matrix) is know (or at least 

partially known). This section compares the algorithm proposed in this study with 

predetermined transition matrix method. The example is based on the freeway 

network as previous section. However, the proposed algorithm no longer generates the 

transition matrix; it is now calculated by historical data. The transition matrix in this 

example is a time-dependent diagonal matrix that 
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where tx )1(  denotes the path flow of 1st path on time t. 

 The comparison of predetermined transition matrix and algorithm proposed in 

this research is demonstrated in Figure 6.8; only path 1 to 4 are illustrated for 

simplicity. In figure 6.8, the real path flow, flow estimated by predetermined transition 

matrix, and flow estimated by the proposed model are indicated in black, dash, and 

grey lines respectively. 

 



 

75 
 

  

  

Figure 6.8 The result comparison with predetermined transition matrix. 

 

The mean absolute error is 4.79, and the mean absolute percentage error is 61.87%. 

Predetermined transition matrix tends to preserve the O-D pattern of historical data; 

however, the O-D pattern may vary from day to day. Although predetermined 

transition matrix might have the advantage of preserving O-D pattern, but it might 

sometimes misleading the results. 

 

(a) Path Flow 1 (b) Path Flow 2 

(c) Path Flow 3 (d) Path Flow 4 
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Chapter 7  

Conclusions and Perspectives 

 

 In this chapter, some conclusions and perspective of this study is made. Network 

flow information is a fundamental input of the Advanced Traffic Management System 

(ATMS). To meet the need of ATMS, it is necessary to develop a suitable model that 

estimate network status based on partial information provided by surveillance system 

installed on networks. Existing works that address this problem often involves user 

equilibrium behavior or system optimal status. User equilibrium is a way to describe 

flow on network; however, the existence of such status is questionable. Therefore, this 

study suggests a statistic approach, rather than a behavior approach, to estimate path 

flows on network. In this closing chapter, the conclusions are mentioned in section 7.1, 

and the future researches of this study are suggested in section 7.2. 

 

7.1 Conclusions 

 The main objective of this study is to develop a path-base assignment model by 

linear dynamic system with Bayesian Approach. Results of this study are summarized 

as follows. 

(1) Path-base assignment model with linear dynamic system. 

This study formulates the path-base assignment problem by both time-invariant 

and time-varying coefficient state space model. The model is capable to estimate 

time-dependent path flows with partially observed link flows without prior 
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information. Most existing works on path-flow (or O-D flow) estimation focused 

on surveillance data usually assume the prior information of O-D matrix (or 

transition matrix) is known (or at least partially known). In this study, we relax 

such assumption by combining Gibbs sampler and Kalman filter in the solution 

algorithm.  

 

(2) Convergence assessment of Gibbs sampler 

Gibbs sampler, a particular type of Markov Chain Monte Carlo method, is a 

powerful tool that being widely applied in many discipline. However, if the 

method had been used naively without convergence control, it might misleading 

the answer. Most single chain convergence control method focused on monitoring 

whether the cumulative sum of sequence is stable or not. Although the concept of 

single chain methods are straight forward, but they cannot bring information on 

regions it does not visit. Parallel chain methods try to overcome such defect by 

generating multiple chains, aiming at eliminating the dependence on initial 

conditions. The convergence control of parallel chain is then based on the 

comparison of the estimations of different quantities for the parallel chains.  

In this study, we suggest a method to monitor the convergence by estimate the 

factor by which the scale of the current distribution to the target distribution might 

be reduced if the simulations were continued to the infinity.  

 

(3) Parallel implementation 

Gibbs sampler requires tremendous iterations to reach convergence; normally, 

there would be tens of thousands iterations in the proposed algorithm. To enhance 

the performance, a parallel computing technique is introduced in this research. 
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The parallel technique is combined with the parallel chain convergence control; 

each computing nodes accounts for a unique chain, while the server node monitors 

their convergence. Since every computing node generates its own chain, only 

initial data and computed outputs are transferred between served node and 

computing nodes. Therefore, communication between computing nodes are 

minimum; that means computing power can be easily increased without 

communication bandwidth limitation.  

 

7.2 Perspectives 

 This study suggests dynamic systems to estimate the time-dependent path flows; 

both time-invariant and time-varying coefficient dynamic systems are discussed. The 

original motivation of this research is to develop a path-base assignment model that is 

capable to provide real-time network flow information. Therefore, it can provide 

real-time information for both ATIS and ATMS to enhance the network performance. 

The long-term objective of this research is to develop a dynamic traffic management 

system that can manage the traffic in real-time. However, this study is only the 

beginning; the roadmap of future researching topics is illustrated as figure 7.1. Future 

research areas can be categorized as modeling development and implementation 

issues. The further development of the model is mentioned as follows. 

(1) Path-set generation 

The path-observation incidence matrix mentioned in this study, H , is artificially 

given. To make the assignment model more applicable for general network, a path 

generation model must be proposed. 
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(2) Considering the continuous dynamic systems. 

The path-base assignment combined model in this study is based on the discrete 

dynamic system. However, the path flows and transition matrix might be 

considered changing smoothly in time. Therefore, consider a dynamic system that 

continuous in time but partially observed might be a suitable extension of the 

original model. 

 

(3) Multiple user class 

Travelers in this research are assumed similar in their characteristics; however, to 

obtain more realistic models, travelers are often divided into classes with different 

characteristics. An example of the classification is dividing the travelers into buses, 

passenger cars, and trucks. In real world, some vehicle detectors could provide 

vehicle type information while other could not. A model that can handle both 

information sources should be developed. 

 

Secondly, implementation issues of real-time deployment is also in important work. 

According to the computation experience of this study, the computing time will 

increase rapidly when the possible path set becomes large. The traffic flow theories 

that describe the link dynamics to address the travel time is also an important issue. 

Thus, the perspectives of implementation issues are discussed as follows. 

(1) Different parallel schemes 

Different parallel schemes may be proposed to enhance the efficiency. Advanced 

partitioning method could also lead to a better solution. For example, partitioning 

on networks rather than generating parallel chains could reduce the dimension of 
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state vector. 

 

(2) Considering the intersection delays 

In the urban traffic network, intersection delays contribute most to the travel times. 

A model that describes intersection delays could be considered while 

implementing the assignment model in urban networks. 
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 Figure 7.1 Roadmap of future researching topics.
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