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ABSTRACT

Transportations system - nowadays ‘is.-no -longer “extraordinary
construction” but,.becomes-more elegant, environmental-friendly, and
sustainable. Intelligent Transportation.~System (ITS) integrates the
telecommunications, automation, electronics, and information processing
system, is considered paossessing..the potential itor solve the traffic
congestion problem. Advanced Traffic. Management Systems (ATMS),
requires real-time traffic. condition, is one of the key issues of ITS.
Therefore, we suggest a path=based traffic:assignment model to describe
the network flow status.

Most existing research works on dynamic traffic assignment focus
on the user-equilibrium or system optimal. Nevertheless, the existence of
such assumption in real world network is questionable to many
researchers. An approach without these assumptions while keeping the
basic traffic relationship might be useful facing the disequilibria issue.
Therefore, we model the dynamic traffic assignment problem with
dynamic system approach. Existing researches with this approach
usually assume the prior information of O-D matrix, link-proportion
matrix, or state transition matrix. In this paper, we relax such assumption
by combining Gibbs sampler and Kalman filter in a state space model. A
solution algorithm with parallel chain convergence control is proposed
and implemented. To enhance its efficiency, a parallel structure is
suggested with efficiency and speedup demonstrated using PC-cluster.
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Chapter 1

Introduction

Transportation systems play an important role in the development of a country. It
provides a source of mobility by the extensive network of freeways, expressways, and
streets. In recent years, the mobility has been greatly obstructed by delays due to the
congestion on overloaded transportation networks. The economy suffers a great loss
owing to the worsening of trafficicongestion.sDynamic traffic management is an
efficient tool to control traffic congestion, and this tool requires information of traffic
states. Traditional statiC methods are not suitable for this dynamic traffic management
task. Therefore, a new assignment model that gives proper information to fulfill the
need is worth to develop. In the introduction, we will discuss motivations, objectives,

overview, and contributions of this researeh:

1.1 Research Motivations

Transportation system nowadays is no longer “extraordinary construction” but
becomes more elegant, environmental-friendly, and sustainable. Building new
highways is no longer a suitable option for every situation due to the prohibitively
high costs involved, as well as social, political and environmental concerns.
Intelligent Transportation System (ITS) integrates the telecommunications,
automation, electronics, and information processing system, is considered possessing
the potential to solve the traffic congestion problem. Advanced Traffic Management

Systems (ATMS) is one of the key issues of ITS. Proper information, i.e. link flows,
1



and origin-destination (O-D) demands, is a requirement to management the traffic
system effectively. Information of can be obtained by comprehensive deployment of
surveillance system, but the costs of extensive installation is nearly unbearable. Hence,
estimate these precious information with reasonable amount of detectors is a research

that worth some attention.

1.2 Research Objectives

The fundamental objective of this dissertation is to address a dynamic stochastic
path-based assignment model. Utilizing link traffic counts, this model can give an
overview of the network. Existing. research werks.concerning this problem usually
assume the existence of user-equilibrium or system' optimal condition. Nevertheless,
the existence of such assumption in real-world network is:questionable (Friesz,
Bernstein, Mehta, Tobin and; Ganhalizadeh, 1994; Friesz and Shah, 2001). An
approach without these"assumptions while keeping the.basic traffic relationship (i.e.,
path-link incidence matrix)'might-be useful facing-the disequilibria issue. A statistical
approach will be introduced in this dissertation to relax such behavioral assumption.

Issues concerning the objective include:

1. Development of a path-base assignment model without user behavior

assumptions.

2.  Modeling the path-base assignment problem with linear time-varying

coefficient dynamic system, that addresses the time-dependent path flows.

3. Present a solution algorithm with parallel computing capability to improve

computing efficiency.



4. Demonstrate the path-base assignment model with real network data.

1.3 Research Overview

This dissertation is organized as follows. First, the introduction chapter gives an
overview of the motivation, research objectives, and overview of this dissertation.
Second, a literature review of related researches in the relevant areas. The literature
review chapter concerns about topics include: i) Static Trip distribution models and ii)

dynamic trip assignment models.

A path-base assignment model with time-invariant coefficient dynamic system is
proposed in chapter 3. Essential algorithms for solving this model, including Kalman
Filter and Gibbs Sampler, are discussed. Macroscopic traffic flow model that
represent the link dynamics is introduced along with:finite ‘difference scheme that
solve it numerically.. In chapter 4, a time=varying coefficient:dynamic model with

rolling horizon structure iaddressing.the-transition matrix is introduced.

Gibbs sampler, a pawerful simulation method, draws values of a random variable
from a sequence of distribution that converges to a desired target distribution. If used
naively, it might give a misleading answer. Therefore, convergence assessments of the
Gibbs Sampler with single chain method and multiple chain method are discussed in
chapter 5. Gibbs sampler requires tremendous iteration during computation. To make
the model more suitable for real-time use, parallel computing is also introduced in
chapter 5 to increase the performance. Numerical examples with real data are also
discussed in chapter 6. The last chapter presents the conclusions and perspectives of

this study. The overview of the dissertation are illustrated in Figure 1.1.
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Figure 1.1 Overview of the dissertation.

1.4 Research Contributions

The principal contributions of this study are as follows:

1. Development of a dynamic path-base assignment model with no user

behavior assumptions.



Existing research works on time-dependent origin-destination (O-D)
estimation focus on the surveillance data and usually assume the prior
information of the O-D matrix (or transition matrix) is know (or at least
partially known). In this paper, we relax such assumption by combining

Gibbs sampler and Kalman filter in a state space model.

A solution algorithm with parallel structure is proposed and implemented.

With its efficiency and speedup demonstrated using real network data.




Chapter 2

Literature Review

This chapter provides literature reviews relevant to the formulation and solution
algorithm of trip assignment problem. The following sections are organized as (i)
static trip assignment models, (ii) dynamic trip assignment models, and (iii) summary

and discussion.

Traditional four-step travel.demand modeling decomposes the demand prediction
problem in order to deal,with its multi-dimensional character. These steps include trip
generation, trip distribution, mode-split, and trip. assignment. It is a way to simplify
the models for estimation and forecasting. Irip-generation isithe prediction of the
number of trips produced by and attracted to each zone, which means, the number of
trip ends *“generated” within the'area. That is, the trip generation phase of the analysis
predicts total flows into and out of each zone in the study area, but it does not predict
where these flows are coming from or going,to. Trip-ends are classified as being either
a production or attraction. The variables are usually based on mathematical
relationships between trip ends and socioeconomic or activity characteristics of the

land use generating or attracting the trips.

In the traditional four stage aggregate approach, traffic assignment may not be
viewed as strictly a demand model. It is the last stage of the model in which
pre-determined origin-destination flows are assigned to links in the network. Various
methods have been devised for assigning trips to network link, but have significant

limitations.



2.1 Static Trip Assignment Models

Static assignment models assume that link flows and link trip times remain
constant over the planning horizon of interest. Hence, a static origin-destination (O-D)
matrix is given and assigned to the network links, results a link flow pattern that is
intended to replicate the actual flow based on some behavior assumption. The static
equilibrium assignment models are adequate for long-term planning analysis. Studies
have shown that these formulations fail to capture the essential features of traffic
congestion, including queue, departure time shift, traffic propagations, and etc.
(Herman and Lam, 1974; Lisco, 1983; Hendrickson and Planck, 1984). Early attempts
ignored congestion and the equilibrium issue, assigningall trips between any given
O-D pairs to the shortest travel cost path (all-or-nothing assignment). Refined
approaches resulted “from recognition of the.need to incorporate congestion effects

(Sheffi, 1985; Matsoukis, 1986)

User Equilibrium Concept

The first mathematical programming formulation for the static user equilibrium
(UE) problem with fixed demand as an equivalent optimization problem is introduced
by Beckmann et al. (1956). This formulation allows the derivation of existence and
uniqueness properties of the solution, satisfying the Wardropian UE condition. While
Wardrop’s UE condition indicates no user can improve his/her travel time/cost by
unilaterally switching routes (Wardrop, 1952). The static UE flow pattern is obtained
by solving the Beckmann equivalent optimization problem, stated as the following

mathematical program:



min  Z(x)=Y["t,(0)o (2.2a)

subject to
> =g, Vrs (2.2b)
k
fo>0 Vk,r,s (2.2c)

X, =2 > > {765 va (2.2d)
r s k

where x is the vector of link flows, x, represents the flow on link a, and t,(e) is
the link performance function for'link a that specifiesithe link travel time as a function
of the flow on the link. The link performance function, often refer to the BPR function,
is a positive, increasing, and convex curve;. as Hlustrated in Figure 2.1. The typical

link performance funetion does not consider gueued vehicles inithe traffic stream nor

the propagation of the traffic flow:

At.(x,)

Link Travel Time

v

Link Flow Xa
Figure 2.1 Typical Link Performance Function t,(x,)
The O-D demand between origin r and destination s is denoted by q,, and the

flow for O-D pair r-s assigned to path k is represented by f,*. The static link-path

incidence matrix relating path flows to link flows (equation 2.2d) are defined using

8



link-path incidence variable &, as follows:

(2.2e)

ak —

« _ JLif linkaison path k between O - D pairr —s
0, otherwise

The objective function Z(x), which is the sum over all arcs of the integrals of
the link performance functions, does not have an intuitive economic or behavioral
interpretation and is viewed strictly as a mathematical construct to solve equilibrium
problems. Equation 2.2b indicates the set of flow conservation constraint which imply
that all O-D demand have to be assigned to the network. The non-negativity
conditions (equation 2.2c) ensure'the solution of the program is physically meaningful.
The network structure,.enters the formulation. through, the link-path incidence
relationship (equation 2.2d) that relates the link-based ‘objective function to the

path-based constraint:set!

Sheffi gives a comprehensive treatment of the'static UE problem, addressing the
conceptual, mathematical,  algorithmic and“computational ‘aspects of the problem
(Sheffi, 1985). A more difficult problem with-"asymmetric link interactions is
addressed by Dafermos, and Fisk and Boyce by using variational inequality (V1)
techniques (Dafermos, 1980, 1982; Fisk and Boyce, 1983). Nagurney, Mahmassani
and Mouskos, and Patricksson address computational issues related to the VI problem

(Nagurney, 1984,1986; Mahmassani and Mouskos, 1988, 1989).

System Optimal Concept

The other major class of assignment is system optimal (SO) formulation. The SO

seeks a flow pattern that achieves some system-wide objectives. The static SO



assignment problem can be formulated as follows:

min = Z(x) =%t (x,) (2.3a)
subject to

> ff=q, Vrs (2.3b)

k

fo>0 Vk,r,s (2.3c)

X, =2 > > {765 va (2.3d)
r s k

The objective function”is the only difference from UE formulation with the
interpretation of total ,System travel cost. The SO flow pattern does not always
represent an equilibrium solution, as individual travelers may reduce their travel time
by switching their routes. Hence, the SO flow patternis not expected to hold without
some control strategy such as road.prieing or restriction. Consequently, the SO flow
pattern is not an appropriate 'descriptive model of actual user behavior. It can be
treated as a performance index of the network. The selution procedures for SO are
identical to those of UE except that ‘they differ in the specification of link cost

functions (average cost function in UE; marginal cost function in SO).

Ben-Akiva enumerates the shortcomings of using static models in modeling
congestions (Ben-Akiva, 1985). The static assignment has a major shortcoming of
inadequately link congestion model. As discussed earlier in the thesis, the congestion
is presented by a link performance function which gives the average trip time as a
function of the average link flow. The average link flow can even exceed the actual
capacity of the road section which is unrealistic for the control purpose. Another

major problem lies on the description of traffic propagation. The static volume-delay

10



curve cannot describe the propagation of traffic flow, especially in high flow levels.
Thereby, static assignment models are inappropriate for real-time traffic control

application, especially for congested networks.

2.2 Dynamic Trip Assignment Models

Dynamic network assignment is under intensive research, for both user
equilibrium and system optimal problems. One common feature of these researches is
that they differ from the standard static assignment assumptions to deal with
time-varying flows. Another feature shared by these researches is that none presently

provides a universal solution for.general networks.

The first attempt to formulate the DTA problem as a mathematical program is
introduced by Merchant and Nemhauser (1978a, 1978b). The model (referred to as the
M-N model) is limited to the fixed-demand, single-destination, deterministic, system
optimal scenario. A link exit function is utilized to-propagate traffic and a static link
performance function is introduced to present the‘travel.cost as a function of link flow.
It results a flow-based,” discrete time, non-convex non-linear programming
formulation. The global solution canbe derived by solving a piecewise linear version

of the model.

System Optimal Concept

Carey (1987) reformulates the M-N model as a convex nonlinear program by the
manipulation of exit function, which gives mathematical advantage over the original
M-N model. The formulation differs from M-N model mainly in the consideration of

multiple destinations, and the exit function g, (e).

11



min Z(x) = 3" 3 ht(x¢ ¢ (2.43)

subject to
g.(x)=b! vat (2.4b)
by =x, —x"+d! Va,t (2.4¢c)
ddi=F +> b VatbeB(k)ceC(k) (2.4d)
: :
x)=E, Va (2.4¢)
by,d},x. >0 Vat (2.4f)

where x; represents the number of vehicles-on link a at the beginning of interval t.

h;(xt) represents the.travel cost incurred by the Volume x. and assumed to be

a
continuous, convex, nonhdecreasing and nonnegative.»The variable b, and d.
denote the number of vehicle exiting and entering link a in interval t, respectively.
F. is referred to the exogenous demand at node k in period t. E, is the initial

volume on arc a. B(k) and C(k) respectively represent the set of links incident
from and to node k. g, (e) the exit function define the maximum number of vehicles
that can exit from link a and is a function of traffic conditions on the link; it is
assumed to be a continuous, non-negative, non-decreasing, and concave function.

Figure 2.2 illustrates a possible shape of such link exit function.

12



Number of vehicle

exiting

»
>

t
Number of vehicles on link Xa

Figure 2.2 A possible shape of link exit function

Although after the manipulation of exit function, the formulation is convex, but
it remains problematic by the.non-convexity issues, arising from first-in first-out
(FIFO) requirement. The FIFO violation implies.some traffic physically jumps over
another to reduce system cost which is inconsistent with traffic realism. The FIFO
requirement is easilyssatisfied in single destination formulations While facing general
networks, the FIFO requirement jwould introduce additional constraints that yield a
non-convex constraint set and.incréasing the computational burden severely (Carey,
1992). As SO flow patterns, it .may often be advantageous to favor certain traffic
movement over others to minimize system-wide travel cost. For example, traffic at
minor approach of an intersection may be holding back in favor of the major approach.
That means vehicles may be artificially delayed for a time that might be considered as
unfair or unreasonable; and the flow pattern may not be acceptable for real-world
operation. Ziliaskopoulos introduces a linear programming formulation for the single
destination system optimal DTA problem based on the cell transmission model
(Ziliaskopoulos, 2000; Daganzo, 1994). This model circumvents the need for link
performance function as the flow propagates according to the cell transmission model,

hence is more sensitive to traffic realities.

13



User Equilibrium Concept

The user equilibrium formulation is generalized from the Wardrop condition for
the static problem; it becomes the equilibration of the experienced path travel times of
users. Janson represents one of the earliest attempts at modeling the UE dynamic
traffic assignment problem as a mathematical program (Janson, 1991). The link-based

UE model formulated as a mathematical program as follows:
minz(x)= Y. 3 [* 4 (0)do (2.5)
T a
subject to
Equation (2.4b) — (2.4f)

The A, represents the cost of -traveling link a ‘at the. beginning of interval t when

there exist x; vehiéeles on the link.

Birge and Ho extend the M-N model ito the stochastic case by relaxing the
assumption that O-D demands.are known for the entire planning horizon (Birge and
Ho, 1993). It assumes a finite number of scenarigs, defined as a possible combination
of past O-D demands in every time interval, while assignment decisions are

independent of future O-D demands.

Another approach is modeling dynamic traffic assignment problem in a
continuous manner. The O-D demands are assumed to be known continuous functions
of time; link flows are treated as continuous functions of time. Constraints of optimal
control formulations are analogous to those of the mathematical programming
formulations, but they are defined in a continuous-time manner. Friesz et al. discuss

link-based optimal control formulation for both SO and UE objectives for the single

14



destination case (Friesz, Luque, Tobin, and Wie, 1989). The model assumes that
changes from one system state to another may occur concurrently as the network
conditions change; that implies the routing decision are made based on current
network conditions, and can be continuously modified as conditions change. The SO

model is represented as follows:

min Z(x)=3" [ C, (x, )it (2.6a)
subject to
%5, —u,0)- 0. )] vacateloT] 2b)
S, (t)= ;(kl;a(t)— ;(kga[xa(t)] vk e M, te[0T] (2.6¢)
x,(0)=x{>0 VaeA (2.6d)
u,(t)>0 vacAte[o,T] (2.6e)

Equation 2.5b describe the rate of change of traffic volume with respect to time for

link a will be considered as the difference of the flow entering link a, u,(t), and the
flow exiting link a, g,[x,(t)]. In equation 2.6c, S, (t) represents the traffic flow
generated at node k, which is assumed to be a nonnegative and continuous function of
time. A(k) and B(k) respectively represent the set of links incident to and from
node k. The nonnegative constraints of both traffic volume on the link and traffic
volume entering the link are indicated in equation (2.6d) and (2.6e). As for the UE

case, the objective function is illustrate as follows,

15



min Z(x)=3"[ [ ¢, (@, )i (@, do,dt 2.7)
subject to
equation (2.6b)-(2.6e).

The model proves that at the optimal solution, the instantaneous flow marginal
costs on the used paths for an O-D pair are identical and less than or equal to the ones
on the unused paths. As for the UE case, the model is in the form of equilibration of

instantaneous user path costs.

Ran et al. use the optimal control approach to obtain a convex model for the
instantaneous UE dynamic traffic assignment problem by defining link inflows and
outflows to be control, variables (Ran,-Boyce, and LeBlanc, 1993) They recognize the
inability of the usual:cost. functions to account for dynamic gueuing and congestion
costs, and propose splitting the link travel cost into moving and; queuing parts. Boyce
et al. proposed a methodology to solve-the;above-model using Frank-Wolfe algorithm,

but no implementations are illustrated (Boyce, Ran, and-LeBlanc, 1995).

Because of the limitations ;of obtaining  analytic mathematical properties,
researchers focused on analytical DTA models have gradually migrated toward the
variational inequality (VI) formulations. Variational inequality provides a general
formulation platform for several different problems. Variational inequality approach is
first introduced to the static traffic equilibrium by Dafermos (1980). Friesz et al.
introduce the VI formulation into network design problem and suggest a sensitivity
analysis based heuristic algorithm (Friesz, Tobin, Cho, Mehta, 1990; Friesz, Cho,
Mehta, Tobin, Anandalingam, 1992). Friesz et al. is the first to show there is a
variational inequality formulation of dynamic user equilibrium with simultaneous

route choice and departure time decisions (Friesz, Bernstein, Smith, Tobin, Wie,
16



1993). Wie et al. formulate the dynamic network user equilibrium problem as a
variational inequality problem in discrete time in terms of unit path cost functions
(Wie, Tobin, Friesz, Bernstein, 1995). They also demonstrate that, assuming certain
regularity conditions hold, discrete time dynamic network user equilibrium is
guaranteed to exist. They define the time varying flow pattern h* and associated
minimum cost x* is a discrete time dynamic network user equilibrium if the

following conditions are satisfied:

he e, t.h")-z,(h7)]=0 vpeP,iel,jed,t=01...T (2.82)

c,(th")-p,(h")20 VpeP, iekjedt=0L..T (2.8b)
T *

D3 ht)=Q, Wiel jel (2.8¢)

peP; t=0

h(t)>0 VpdRiielyjed,t=01..T (2.8d)

In equation 2.8, i and j are the origin and the destination=node respectively. P

denotes the set of all possible paths between origin'i and destination j. h (t) is the

number of vehicles entering  the first -link- on path p in period t, and

h=|h,(): peP,t=0L..,T|. c,(th) isthe nonnegative unit travel cost incurred by

travelers departing their origin in period t and choosing path p to their destination.

p(h)=|u;(h):ie1, je ] is the vector of minimum unit travel costs. Q; is the total

fixed O-D demand between i and j during time interval 0<t<T . Since a complete
path enumeration is required, an efficient method to identify a possible path set should

be introduced to relief the computation burden.

Ran and Boyce propose a link-based discretized VI formulation SO DTA model

with fixed departure time (Ran and Boyce, 1996). They equilibrate the experience
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travel time, the same as Friesz (1993). A queuing delay component is introduced in
the model, but the capacity and oversaturation constraints increase the computation
complexity significantly. Chen and Hsueh propose a link-based VI formulation UE
DTA model and a nested diagonalization solution algorithm (Chen and Hsueh, 1998).
The constraint set of the model is nonlinear and nonconvex, and multiple local
solutions might exist. The variational inequality approach gives greater analytical
flexibility and convenience than other analytical approaches. Although it brings
mathematical advantages, the variational inequality approach is much more
computationally intensive, especially facing the complete path enumeration for

path-based formulation.

Simulation based ;models are mostly based on the mathematical programming
models, but the critical constraints that describe the traffic flow propagation (i.e. flow
conservation, vehicular movement) are addressed through -simulation instead of
analytical representation, With. the .traffic simulatien, these models can address the
traffic flow more realistic. However; the theoretical insights cannot derive analytically,
which is the key issue of simulation-based models:"A deterministic DTA model, with
both SO and UE solutions, is proposed by Mahmassani and Peeta (1993). A
meso-scopic traffic simulator is used as part of an iterative algorithm, with complete
priori information of O-D demands for the entire planning horizon. Ghali and Smith
propose a deterministic SO DTA model with congestion arises exclusively at specified
bottlenecks modeled as deterministic queues (Ghali and Smith, 1995). Simulation
based models can describe the traffic flow more realistic, which is troublesome in
analytical formulations. However, the limitation lies on the inability to derive the

associated mathematical properties.

More recently, Ashok and Ben-Akiva introduced stochasticity to map the
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assignment matrix between time-dependent O-D flows and link volumes both in
off-line and real-time application (Ashok and Ben-Akiva, 2002). Ben-Akiva et al.
propose DynaMIT, a meso-scopic simulator, as a dynamic traffic assignment system
to estimate and predict current and future traffic conditions (Ben-Akive,
Koutsopoulos, Mishalani, Yang, 1997). The model considers both historical
information and drivers’ response to information, supply and demand simulators work
together to generate UE route guidance. Nie and Zhang proposed a relaxation
approach for estimating static O-D matrix that minimizes a distance metric between
measured and estimated traffic condition while the condition satisfies user equilibrium

(Nie and Zhang 2008).

2.3 Summary and Discussion

To design andemanage a transportation' system, there is a need for efficient
analyzing tool to describe the usage:of-the system. The traditional static method,
four-stage planning process, includes trip generation, trip distribution, modal split,
and trip assignment. Traditional. sequential four-stage method is not suitable in the
operation perspective. Since the travel costs used in the trip distribution stage are
functions of the trip assignment outcomes; that is, the stages have to be repeated.
From the literature review, estimate the network flows directly from time-series of

link flows seems to be a reasonable candidate for real-time traffic operation aspect.

This chapter has reviewed several topics relevant to the trip assignment problems.
Most existing research works assumed the existence of user-equilibrium or
system-optimal conditions. However, the existence of equilibrium states in real traffic
networks is questionable; an alternative approach to relax the assumption of

user-equilibrium or system optimal might worth be established.
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Chapter 3

A Path-base Assignment Model with Time-invariant

Coefficient Dynamic System

In this chapter, some essential concepts of the path-base assignment model with
time-invariant coefficient dynamic systems are discussed. Begin with the brief
introduction to dynamic system models, the model assumption and notation is
addressed in section 3.1. A state space approach that modeled the path estimation is
illustrated in section 3.2. Link dynamics that deseribe the propagation of traffic flows

is introduced, in section 3,3; to modify the proposed model,

3.1 Assumption and Notation

Existing research*works on traffic assignment usually assume the existence of
user equilibrium status or /pursuit some system optimal situation. However, it is
questionable whether such equilibrium state really exists or not. In this study, we relax

such assumption by some statistical approaches.

The basic assumption in this research is the existence of unknown relationship
between consecutive path-flows; the assumption is similar to that of Okutani. While
Okutani assumed a time invariant relation between time-series O-D flow exists; and
this relationship can be estimated by some prior information. In this study, we do not
estimate the relationship by prior information; the relationship is estimated

simultaneously with path flows.

For convenience, we use the following notations in this chapter:
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Table 3.1 Notations of Time-invariant State Space Model

Notation Descriptions

F a pxp path flow transition matrix

78 a px1 network path flows on time t

Y, a gx1 link traffic observation vector on time t

H a gx p zero-one matrix which denotes the path-link incidence matrix
p number of elements in path set P

q number of observations in the target network

O 14 independently and. identically distributed/Gaussian noise terms

T The transport.of @ matrix is;mark-by superscriptsT .

3.2 Estimation of Path Flow by State Space Model without

Prior Information

Isaac Newton introduced the ‘differential equations in the 17" century and
provided mathematical models for many dynamic systems. Given a finite number of
initial conditions, one can uniquely determine the system status for all time. The finite
dimensional representation of a problem is the basic idea for the state-space approach
to the representation of dynamic systems. The dependent variables of the equations
are the state variable of the dynamic systems. The principal dynamic system models

are listed in Table 3.2 below.
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Table 3.2 Principal dynamic system models

Model Continuous Discrete ‘
Time-invariant

Linear w(t) =Dy (t)+Cu(t) Wea=Fy +1U,

General v (t) = fw(t).u) vea= flyu,)
Time-varying

Linear y(t) =0ty (t)+CHult) v, =Fy +Iy,

General v (t) = fty @) u) v, = fty,u)

Reference: [Grewal & Andrews, 1993]

We focused on the discrete dynamic systems in this dissertation. In the dynamic
model, F is a nxny' dynamic = coefficient matrix. The matrix
v, =lw, @) w,t) w,) - w,(t)]wisscalled: the state vector, where ,(t)

denotes the n™ state variable in time t. The n-dimensional domain of the state vector is
called the state space of the dynamic system. The state variables are related to the
system outputs by a System of linear-equations that-can be represented in vector form,

as follows.
Y. =Hy, +7,

where

Ve =[y:0) v.®) v, - y,@®f

h11 h12 h13 hln

21 22 23 7 2n

H = 31 32 33 77 3n
_hll hp P o h|n_

The vy, is a l-vector called the measurement vector (also called observation vector)
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of the system. The matrix H is a measurement sensitivity matrix with measurement

sensitivities h,, measures the scale of |™outputto n" state variable.

Real world problems tend to have some kind of unpredictability in behaviors,
due to some unknown exogenous inputs. Furthermore, output-measuring process with
physical sensors will always introduce some amount of sensor noise, which will cause
errors in the estimation process. While facing real world problems, using a statistical
approach that taking uncertainties into account instead of deterministic would be a
better approach. These dynamic systems with uncertainties are characterized by

statistical parameters such as means; correlationsyand covariances.

3.2.1 Modeling

In this section, only the most basic.modeling is introduceds The transition matrix
that describe the relationship among path=flows-in-different time period is assumed to
be fixed. The link travel:time, which is an important issue, is'not considered. Although
the above strict assumption are made-in.this-section, but they will be relaxed in the
following section.

State space model is introduced to estimate path flows from link traffic counts.
The state space model is coupled with two parts: transition equations and observation
equations. First, the state equation which assumed that the path flows at time t+1

can be related to the path flows at time t by the following autoregressive form,
v,=Fy +0o, t=123..n (3.1)

where y, is the state vector which is unobservable, F is a random transition

matrix, o, ~ Np(O,Z) Is independently and identically distributed noise term, where
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N, denotes the p-dimensional normal distribution, X is the corresponding

covariance matrix. y, the px1 state vector, is defined to be the path flows
belonging to O-D pairs.

Next, the observation equation,
Y, =Hwy, +y, t=123.n (3.2)

where vy, isthe gqx1 observation vector which means there are q detectors on the
network. The number of paths is denoted by p. H is a qxp zero-one matrix,
which denotes the path-observation incidence matrix. The path-observation is

pre-determined by generating pessible path set and given travel time on each link. y,

is also a noise term that y; ~ Nq(O,l“). Both .#z and .F are unobservable, thus

Kalman filter is not suitable to directly estimate and forecast the state vector. Hence,
Gibbs sampler is used to tackle the problem.of simultaneous-estimation of F and
w by available information.

There are two major elements ‘to be“incorporated in the solution method, 1)
filtering states by observations, and 2) sampling scheme of transition matrix, F, and
state vector, y . Since the observations,y,, are not used in the conditional distribution,
the Kalman filter and the Gibbs sampler must be combined. After the estimation of

state vector, O-D flows can be calculated by the summation of path flows.

3.2.2 Kalman Filter

Kalman filter is an estimator for the linear-quadratic-Gaussian problem, which
estimates the instantaneous state of a linear dynamic system perturbed by Gaussian

white noise. It utilizes measurements, corrupted by Gaussian white noise, linearly
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related to the state and gives a statistically optimal estimator with respect to quadratic
function of estimation error. The Kalman filter does not only provide a means for
inferring missing information from indirect and noisy measurements, but also used for
predicting the likely future trends of dynamic systems. The structure of the filter can

be derived in a Bayesian framework as follows.

The first stage (i.e. t =1), there’s no observation exists, thus the state vector
must be generated by a prior distribution thaty, ~ N, (4,,V,) , where , is the mean

and V, isthe covariance matrix. By using equation (3.1), the distribution for the state

vector in the first stage will be normal'with parameters
E['//t | yt—l]: Hy g = Fu q (3.3)
Varly, |y ]=Vi, =FV,FT +2 (3.4)

where 7 denotes_the expect value“of v, and "V, , denotes the variance of v,

when vy, , is observed.;By the above information, the foreeast observation would be

normal distribution with parameters
E[yt | yt—l]: 9t = H/ut\t—l (3.9)
Var[yt | yt—l]: Mt = HthHHT +T (3-6)

The above equation (3.3)-(3.6) holds for any t.

As the new observation y, become available, the parameter vector would be

updated according to Baye’s rule,
P | ye) e (Y, 1w )Py | ¥es)-
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By using Bayes’ rule and standard Bayesian theory, the posterior distribution will be

normal with parameters
Hye = Hya +Vt|t—lH ™ t_l (yt - H:utlt—l) (3.7)
Vt|t = Vt|t—l _Vt|t—1H ™ t_l HVt|t—l (3-8)

The algorithm of Kalman filter is illustrated as follows,
Algorithm Kalman Filter
Input: 14,,V,, Y, = observation sequence
Output: Filtered x# and ¥
Begin
FOR each time:step of the observation.sequence
Generate prediction of the:newsobservation-by
Ye=H-F-p,
M, =H(F -V, ,-FT+Z)HT+T
Update the parameter by

Hygp = Hy +Vt|t—lH ™ t_l (yt - H/ut|t—l)

V

tit

=V,

tit-1

-V

tit-1

H™M,*HV

tit-1

END FOR

END
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3.2.3 Gibbs Sampler

Gibbs sampler is a technique for generating random variables from a distribution
indirectly, without having to calculate the density. In this paper, we make the
following assumptions, (i) The initial w, ~ N(,uO,VO), (if) The covariance matrix X

and I" are known, and (iii) Given F, the distribution v, is Gaussian.

The state equation can be written

1//tT =wl1FT +atT, t=123,---,n (3.9
that is
v | | v, oy
O IS [ LS
‘//: '//rT—l G:

The following notation Is used for simplification.

A 7 T
A I R R et i o o [ S A A
WrT V/I—l O'rT

where F denotes the i" column vector of F'.Then the equation (3.9) can be

re-written as

'/In :l//n—llzT +O—n

Consider the element of S, the px p covariance matrix being used to estimate the

variance-covariance matrix of F

S(FT ): {Sij (FiT d FJT )}
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where S; denotesthe (i, j) element of the matrix. S;; can be calculated by the

following equation.

S = (Wl(.) A )T (WTT(J)

j ) (3.10)
('//n(.) —y R X’r”nm ~youF/ )

7 )

( FM-F )anlV’rTfl(FjT - 'EjT)

where F :('//n—ly/r-:—l)ill//n—ll//rr(i) is the least square estimate of F',and y, is the

i" column vector of . Consequently,

S(FT)=A+(FT—ﬁT)T'//n_lt//I_l(FT—ﬁT) (3.11)

where Aisa px p matrix. A:{aij},where a; isthe (i, j)elements of 4, with

= ('//:(i) _W:—lﬁiT )T (‘/’:(j) _V/:-llij ) (3.12)

That means A is proportional to the sample covariance matrix..From the general result

in the Gaussian modet; the posterior distribution of F' isthen

(F 1y)oc[s(F™) 2, “oa s Fl<ao
=‘A+(FT _IET)T'//n—l'//:—l(FT —IETX_% (3.13)

The distribution in equation (3.13) is a matrix-variate generalization of the
t-distribution. The following sampler for generating F™ and y is then proposed.

The sampling scheme generate from the conditional distributions

a vy |Fy.,2~ N(Fl//t_l,Z)

-n/2

b. F" |y, =~ [k(n, p,p)"|A" " " A+ Fy, il FT

n-1¥na
The above sampling scheme would be the key component of the Gibbs sampler.

The Gibbs sampler is a Markovian updating scheme that proceeds as follows. Given
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an arbitrary starting set of values {2%,z{”,z{? ...z}, and then draw
z0 ~12,2,25,..2,7]
Z;) ~12,2,25,..2"]

zW~12,129,2,.2", ...

zP ~12,2,°.2,,..23].
Each variable is visited in the natural order and a cycle requires k random variate
generations. After i iterations we have (z",z{",z{",...,.z"). Under mild conditions,

the following results hold (Geman and Geman, 1998)

Result 1: Convergence

As the iteration continue, (Z2”,2%,20,.... 20)= [2,,Z,.Z,,., 2, ]. Hence, for each

sequences, Z —[Z] as i oo

Result 2: Rate
Using the sup norm, the joint density of (2,z{",z®,...,z") converges to the true

density at a geometric rate, under visiting in the natural order.

Result 3: Ergodic theorem

For any measurable function T of Z,,Z,,Z,,...,Z, whose expectation exists,

|im712T(zf”,zg",zg",...,z§") - E(T(2,,2,,Z,,..2,)).

i | =

Then for every function T on the possible configurations of the system and for every

starting configuration holds with probability one.
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Analytical convergence rates for Gibbs sampler applied to state space models
are further discussed by Pitt and Schephard in 1996 and Robert (Pitt and Schephard,
1996; Robert, 1998)

As Gibbs sampling through m replications of the aforementioned i iterations

produces i independent and identically distributed k tuples z{,z{,z{ .., Z9,

j=123,...,m , which the proposed density estimate for [Zs] having form

Z,“),r;ts].

AR

The above Gibbs sampling scheme on a random transition matrix and state
vector forms the center part of‘the algorithm. In the process of generate state vectors,
Kalman filtering mechanism is added. While-assimple monitoring of the chain (Z;) can
only expose strong non-stationarities, it-is more  relevant to consider the cumulated
sums, since they need to stabilize for convergence to be achieved. The convergence

control of Gibbs sampler is discussed.in ehapter 5.

Algorithm Gibbs Sampler

Input: H = path—observation incidence matrix, vy, :=observation sequence

~

Output: w,F
Begin
Initialize

=1

p’ ' p

FO=1,, Z:=I

Wstore = {¢}’ FS'[OI’E = {¢}
SET GibbsCount (g) to 0

WHILE not Converge
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Generate @ ~ N(u,V)
Append w9 to v,
CALL Kalman Filter with x,V , and observation sequence
Generate F™@ by
A9 _ {aﬁg)}, a, = (,/,I(i()g) —'//nT_(lg)'fiT(g))T ('//nT((f)’) _,/,I_gg)lfjng))

Generate W~Wishart( X9 - p)

Generate Z =(z/,z

1\ -
COMPUTE FT‘Q):&W?J] Z

APPEND FI9 to.F

store

INCREMENT:GibbsCount

END WHILE

READ last k items from @y, ancput-ine=ys
COMPUTE &z%ng

READ last k items from F

store

and putin F,
~ 1
COMPUTE F =—k§ F,

END

3.2.4 Solution Framework

In this section, the solution framework of applying Gibbs sampler and Kalman
filter to the state space model is illustrated. The solution framework that combines the

algorithm in both section 3.2.2 and 3.2.3 is demonstrated in figure 3.1. The solution
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framework is an iterative estimation of state vectors and transition matrix; the
iteration counts are denoted as g. It first filters the state vector by given transition
matrix, path-observation incidence matrix (some may refer as mapping matrix), and
observation vector; and then turns to estimate the transition matrix by filtered state
vector. During the Kalman filter stage of the framework, transition matrix and
mapping matrix are fixed; while in the transition matrix estimating stage, the state
vector is fixed. As the algorithm reach convergence, the transition matrix, F, and
state vector, , can be estimated.

After deriving transition matrix and state vector, the prediction of state vector
can be represent as,

ia=F -y +0u,, (3.14)
And the estimation of "y, is

l/;t+h =F ‘l/}t+h—1 + O
= F ’ (F ’ l/}t+h—2 - O-t+h—1)+ O-t+h (315)

=F- (F '(F ) (F (F Wit O-t+1)"')+ O-t+h—2)+ o-t+h—l)+ Otih
Since the expectationvalue of ‘o IS zero. The estimate of 'y, can be written as

Ve = F v (3.16)
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Initialize F® =1, w, ~ N(z,V,)
v
» g=g+1 g=0
v v

Generate (¥ from N(u,,V,)

Kalman Filter

» t=t+1 =1
v ¥
Generate w, |y ¥, ~ N(F(g)l//ég),Z)
v
Estimation
L = Fut s, Vs =FV,, FT+3
v

Prediction New State
9t = H:utlt—l’ Mt = HVtIt—lHT +I

v

Update of parameter with Observation

Hy = Hya +Vt\t—lH ! Mtil(yt - qutlt—l )v
vV, =V, -V HTMt_lHV

tit tit—1 tit—1 tit—1

NoO

Calculate

BT = (i) ). A =iy}

e T@) _ T@ET@ Y [y, T (@ T ET(9)
q; —('/’n(i) -v.a K )(’/’n(j) VYo Fj )
v
Generate

W~ Wishart(t//n(?fl//;_(f_) N — p)

Z :(zf,z;,-n,z;)T,zk I'I~'~d'N(0,A(9))

FT@>=£(W%JTJ12

No

Converge?
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3.3 Estimation of Path Flow Considering Link Travel Time

Travel time is an important issue while facing transportation problems. It is no
exception in path flow estimation. We relax the assumption of zero travel time in this
section. To describe the flow propagation from its origin to destination, travel time on
each links should be considered. A macroscopic traffic continuum model, the PW
model, is introduced to describe the link dynamics. Notations increased or changed in

the section is shown in table 3.3.

Table 3.3 Notations of Time-invariant State Space Model considering Link Travel Time

Notation Descriptions

120 a p(MaxLag+1)x1 matrix.composed.of series,of path flows
t
A0 i" component of the vector
H, a qx p(MaxLag +1) zero-one matrix which ‘denotes the path-link
incidence matrix at time .t
At uniform width_ of time mesh for link dynamic model
K" density at time density at time-t;=+nAt and space jAX
]
u’ speed at time density at time t, + nAt and space jAx
g" net entering or leaving rate of vehicle at time density at time t, + nAt
J
and space jAX
3.3.1 Modeling

The model in this section had been modified from the previous section (section
3.2) to consider travel time effect. The state transition equation is the same as in

34



previous section, but the observation equation had been modified as follows.

v,=Fy _ +o, t=123,..n (3.17)

Y, =Hw® +y, t=123..n (3.18)

The state variable,*® , is modified here to take the travel time into account. It is a

p(MaxLag +1) x1 matrix composed of series of state vectors,

a T
v =l vl v W)
v (D)
: y, (2)
Let the element iny,, a px1 vector, be represent as - . Then,
l//t(p) px1

v =lv @ i@ - w(p)l., and

v ={ln @ - EIa® vl
[‘//t—MaxLag+1(1) '//t-MaxLag+1(p)][‘//t—MaxLag (@) '//t—MaXLag(p)]}Ix p(MaxLagﬂ).

The term MaxLag denotes the maximum time lag that path flow can be observed on
observation sites at time t. The path-observation incidence matrix, H,, is a zero-one
gx p(MaxLag +1) matrix at time t. If the path flow of a certain time can be
observed at detector q, then the corresponding element in H, is one; else, it is zero.
The incidence matrix can be generated by the interaction with link dynamics that is

described in the next section.
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3.3.2 Link Dynamics

Traffic simulation techniques appeared in the early 1950s in the field of
transportation science. Computer-based traffic simulation tools, mostly developed in
the past few decades, exist as a cost-effective assisting tool for researchers and
practitioners to verify and evaluate traffic management strategies. Traffic simulation
models can be characterized as microscopic, mesoscopic or macroscopic. The
microscopic models simulate every vehicle in the network; mainly include three
behaviors, accelerating, decelerating and lane changing. This kind of models, try to
describe the actions and reactions of the vehicle that make up the traffic as accurately
as possible, are the so-called'car-following model. In order to achieve accuracy in
modeling traffic, it leads to a simulation model with high degree of parameters (50
parameters is common). The| simulation time heavily. depends on the number of
vehicle that exist simultaneously in the simulated netwerk, that make it hard to meet
the requirements of simulating" large-scale congested traffic networks for ITS

applications, especially-at real-time level (Yangand Koutsopoulos, 1996).

The macroscopic approach, based-on.an-analogy: between traffic flow and a real
fluid flow, is also called continuum traffic-flow model. These models mainly based on
traffic density, volume and speed have been widely analyzed in the past (Lighthill and
Witham, 1955; Payne, 1979; Leo and Pretty, 1990; Helbing, 1995). Macroscopic
models usually involve partial differential equations defined on appropriate domains
with boundary conditions describing traffic phenomena. The models present a higher
level of abstraction than the microscopic model and lead to some computing
advantages. The computing time required for a macroscopic model do not increase
with the number of existing vehicle on the simulation network, and this advantage

makes it easier to implement on a large-scale network.
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Macroscopic traffic continuum models had been classified into first-order
continuum models, such as Lighthill, Whitham and Richards’ well-known flow
conservation model (LWR model), and high-order continuum models, such as Payne’s
momentum conservation models (PW model). The models are composed of one or
several partial differential equations (PDEs) defined on appropriate domains with
initial and boundary conditions.. The LWR model consists of the fundamental

conservation principle in the form of a PDE,

k(x,t) . aq(k)
ot OX

=g(xt) (3.19)
together with standard definition of flux function
q(k)=k(x,t)xu(k) (3.20)

It is assumed that the empirical u-k relationships follow, the Greenshields traffic

stream model

u(k)=u, x(l—%b) (3.21)

where u; denote the free flow speed-and- ks the density with vehicles bumper to

bumper.

Although the LWR model is widely cited in researches, it is also known to have
some deficiencies. The steady state velocity assumption, which means that velocity
changes instantaneously as density change is certainly not valid in traffic flow. Payne
used a motion equation to obtain a more complex equation to describe speed

dynamics (Payne, 1979),

(V) == V(R0 + = (u,K)-v) (3.22)
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where u,(k) is an equilibrium speed-density relation and z is the relaxation time.
Since it is difficult to find the analytical solution of the traffic continuum model,
numerical methods, such as Lax or Upwind method, had been used by researchers to
simulate the numerical solutions for traffic continuum model. Lax-F finite difference

method is used in solution scheme.

Lax-F scheme transfer PDEs to finite difference equations by using centered
difference skill. The Lax-F difference equation or PW continuum model can be

written as,

k', +k', At Q) +054 0 At
n+l +1 1 +1 i n n
= K25 _&%Jr?(ghﬁgj_l), (3.23)
and
u'-u?, 1 v ki =k]
Ut =ul - AR L2 2t g (k)L 3.24
i j { i AX Z_{ i e( J) k? AX ( )

After the computationof the Lax-F.scheme, densities on each mesh can be obtained.
In this dissertation, a link-travel time estimation method forthe continuum traffic

models proposed by Hwang and Cheo is used (Hwang and Cho, 2006).

3.3.3 Solution Framework

A solution framework that combines the link dynamics to address travel time
issue of the state space model is suggested. It first set the travel time on each link to
be the free-flow travel time and generate a initial path-link incidence matrix, H,. The
path-link incidence matrix is then used in the path flow estimation. After the
estimation of path flows, the path flows are transformed into link flows and the link

dynamics are incorporated to give a travel time estimation of certain link. The link
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travel time is then used to generate the path-link incidence matrix for the next
iteration. The algorithm terminates while the difference of path flows in consecutive

iterations are less than &. The solution framework is illustrated in figure 3.2.

Path Flows
Initialize v
Set travel time on each link to Multiply path-flow with path-link
be the free-flow travel time incidence matrix
Link flows

! N _Link Dynamics

y

Generate H, by
travel time on each link

A 4

Setup adequate boundary condition
for link dynamics

Boundary
conditions

of traffic model
on each link
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I
|
|
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|
1
|
|
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|
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difference scheme

Densities on each
time-space mesh

Convergence

y

Estimate travel time
on each link

Output path flows

Travel Time
on Each Link

Figure 3.2 The solution framework of time-invariant coefficient state space model
considering link travel time
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Chapter 4

A Path-base Assignment Model with Time-varying

Coefficient Dynamic System

Chapter 3 introduced the path-base assignment model with time-invariant
coefficient dynamic systems. That model assumes a time-invariant relationship among
path flows in different times. In reality, the characteristic of traffic is different from
time to time, i.e., peak hourssand non-peak hours;:trips heading to work or going
home. This chapter tries to relax such._time-invariant assumption by introduce a

time-varying coefficient state space model.

4.1 Assumptions

In chapter3, the transition matrix assumed tobe time-invariant. We relax such
assumption by introducing a rolling horizon structure and Wiener process to address
the transition matrix. Wiener process (often called Brownian motion) is a stochastic
process plays an important role in both pure and applied mathematics. It is very useful
in modeling a trend with random walk. The basic assumption in this chapter is the
change of time-varying transition matrix can be represented by Wiener process.

Notations increased or changed in the section is shown in table 4.1.
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Table 4.1 Notation of time-varying state space model

Notation Descriptions

W a pxp drift matrix that describe the relation between F, and F_;
F, a pxp path flow transition matrix on time t
yoX Independently and identically distributed Gaussian noise terms with

variance-covariance matrix of p

Y, isa px(m+1) matrix composed of m+1 state vectors at time t
c, Isa px(m+1) matrix composed of m+1 random term o,

4.2 Estimation of Path Flow_by Time-varying Coefficient

State Space Model

In this section, we estimate the path flows by time-varying-coefficient state space
model. The modeling_is introduced.in Section 4,21 with a rolling horizon structure.
Section 4.2.2 briefly introduces the Wiener process-that addresses the time-varying

character of transition matrix. The solution-algorithm‘is discussed in section 4.2.3.

4.2.1 Modeling

Time-varying coefficient state space model is introduced to estimate path flow
from link traffic counts. In this model, transition matrix at time t can be related to

transition matrix at time t—1 with an additive form,
F=W+F_+p (4.1

where W isthe drifttermand p, isa noise term.
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The transition equation is represented as equation 4.2 with a rolling horizon

manner.
Y, =F,¥Y,+0, t=mm+lm+2..n (4.2)

where W, =y, . W, ] iSa px(m+1) matrix composed of m+1 state

v, (1)

v, (2)

vectors. Let the elementiny,,a px1 vector, be represent as . Then,

vi(P)],a

V/t—m(l) V/t—m+1(1) V/t(l)

v, = Vin(2) ¥ina (2 9094(2)

V/t—m(p) ‘//t—m+1(p) '/’t(p) px(m+1)

The term m is thesaumber of periods in a rolling stage withs m> p—1 due to the

degree of freedom' requirement, " in the computation stage. The

6, =[0, T 0] s composed of [m+1 noise vectors:
The third equation is the observation equation,
y,=Hy, +y, t=123..n. 4.3)

This observation equation, describe the relationship between path flow and

observation, is identical to eq. 3.2 in section 3.2.

The rolling horizon structure can be expressed as follows,
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Vi Vo = Wa VYaa Ve 0 Vieina Vo 0 Vo VW

Transition with F, ;

Vi ¥, 0 Ve Vo Ve 7 VYana VYo 0 Voa W,

Transition with F,,, ,

(4.4)
Vi Vo = Va VYVoa Ve 7 Vi Vom0 Vo W,
Transition with F,_;
Vi Vo = Va VYo Ve 7 Vama Vo 0 Vo Vi

Transition with F,

Solution algorithms, including Kalman Filter and Gibbs Sampler, mentioned in
section 3.2 are applied to each rolling stage. After the estimation, state vectors of the

same time in each stage will be averaged to give an estimated value.

4.2.2 Wiener Process

Wiener process:is a continuous-time stochastic process, often called Brownian

motion. A Wiener process Z, is characterized by
1. 7,=0.
2. Z, isalmost surely continuous.
3. Z, hasindependent increments with distribution Z, —Z, ~ N(0,t —s).

Asindiscrete form, AZ=27, -2, , At=t, -t ,, AZ~ N(O,(\/E)Zj.

The generalized Wiener process Q, = At+ pZ, is called a Wiener process with drift

A and variance p°. In this case, Q, ~ N(A-At,(b\/ﬂ)z).

From equation 4.1, the expectation value of E[F, —F_,]=EW + p,]=W . The

drift term W can be estimated by least square method, that
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A1 1
=23 F)-(F-F). 43

t=1
The p can be estimated by the sample covariance matrix of F,, where its

variance-covariance matrix is

T

1SR -F)F.-F) (4.6)

t=1

3|I—‘

where F,, isthe i" row vector of F,.

4.2.3 Solution Framework

A rolling horizon ,structure is incorporated. in the .solution framework. The
solution procedure first takes observations from t=1~m+1 into account, and

utilize the solution framework presented in section 3.2 to estimate the state vectors,

b d and transition. matrix, Fj.,..Second, the procedure. continues to use the

m+1 7
observations from t=2~m-+2 .to estimate: their corresponding variables. The
solution procedure will keep rolling until it reaches.its final stage. State vectors of the

same time in each rolling stage, i.e. w, would exists in stage 1 and 2, will be

averaged to give an estimated value.

After deriving F, by rolling horizon method. The estimation of F,,, can be

computed by

Ft+h W + I:t+h -1 + pt+h
=W + (W + F+h 2t Pun 1)+ Prin (4.7)

= hW + Ft +Zpt+i

i=1
Since the expectation value of p, equals to zero, the estimation of F_, is
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F.,=hW+F,. (4.8)
The prediction of state vector at t+1 can be represent as,
V;t+1:Ft'V/t:(W+Ft+pt)"//t:(W+Ft)'l//t- (4.9)

And the prediction of state vector at t+2 can be represent as,

~

lﬁuz Fii Win = (\N + ﬁm +pt+1)"/;t+1 = (\N Ft+1) Via

A

:( I+1) W"'F) V/t] (4.10)
=[w (W+F)]-[(W+Ft)-l//t]
=(2W +FR)W+FR) v,

The prediction of state vegtorat t+h can be generalized.as,

Wt+h = =) ‘//t+h =
( +F)((h=2W +F)-(h—2W +F)---W +F,)-y,] (4.11)

%

4.3 Estimation of Path Flow Considering Link Travel Time

In the previous section (section 4.2), we relax the assumption of fixed transition
matrix by introducing time-varying coefficient dynamic system. However, travel time
is not addressed in that section. The travel time issue can be easily taking into
consideration in this section. Notations used in this section is the same as that of

section 3.2, 3.3, and 4.2.

The time-varying coefficient state space model considering travel time effect is

shown as follows.
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F=W+F_+p (4.12)

Y, =F,¥_,+0,, t=mm+1m+2..n (4.13)

Y, =Hw® +y, t=123..n (4.14)

Equation 4.12 that describe the relationship of time-dependent coefficient is the same
as equation 4.2 in the previous section (section 4.2). The transition equation 4.13 is
also the same as equation 4.3 in the previous; while equation 4.14 the describe the

link observation considering time lag effect is introduced in section 3.3.

The model proposed in thisysection 'is developed from models proposed in
previous chapters. Therefare; solution framework can be straight forward derived by
combining solution frameworks discussed in the previous.chapters. The solution

framework is illustrated in.figure 4.1.

Rolling Horizon
Structure
Path Flows
Gibbs Sampler » Path - Link flow
Transformation
Kalman
Filter < Link
Time- Dynamics
dependent
path-link
incidence
matrix

Figure 4.1 The Solution framework of Time-varying coefficient state space model

considering travel time effect.
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Chapter 5

Convergence Control of Gibbs Sampler and

Parallel Implementation

In this chapter, the convergence control method of Gibbs Sampler and parallel
implementation of solution framework are discussed. Begin with the convergence
assessment for single chain in section 5.1, parallel chain method is then illustrated in
section 5.2. Finally, Parallel computing technigue and its implementation is addressed

in section 5.3.

5.1 Single Chain Convergence Assessments

Gibbs sampler, an example of ‘a Markov ‘Chain. Monte Carlo method, is an
algorithm that generate sequences.of samples from'a joeint probability distribution. It
has been used to tackle a wide variety of statistical problems. If the method had been
used naively without convergence control, it might result a misleading answer.
Properties of applying Gibbs Sampler to state space model can be referred to
Frihwirth-Schnatter (1994), Carter and Kohn (1994), Gamerman (1998), and
Jungbacker and Koopman (2007); while analytic convergence rates for Gibbs sampler

applied to uni-variate state space model can be referred to Pitt and Shephard (1996).

Theoretical guarantee of convergence is different from the practical requirement.
It is thus necessary to develop a tool that determines whether the chain is converged

or not. Monitoring the chain that Gibbs sampler produce is a reasonable method.
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However, monitoring the elements in a chain would only expose strong
non-stationarities. Therefore, it is more relevant to consider the cumulated averages;
since they need to stabilize for convergence to be achieved. Let the number of Gibbs
iterations be denoted as g, and the corresponding element x‘®. The difference

between cumulated averages should be less than &,

Iyyo 1 syolc, (5.1)
g g g_lg—l

Possible alternatives to empirical averages would be importance sampling, conditional
expectations, or Riemann approximation technigues. However, the average may only
correspond to the exploration of-a single mode of-the distribution by the chain; the
single chain methods can never guarantee that the whole support of target distribution

has been explored (Robert.and Cellier, 1998).

5.2 Multiple Chain Convergence Assessments

The main idea of Gibbs sampler, an iterative simulation method, is to draw
values of a random variable x from a sequence of distributions that converge to a
desired target distribution of x. Single chain (sequence) methods hardly bring
information on the regions of the space it does not visit. Parallel chain methods try to
overcome such defect by generating parallel chains, aiming at eliminating the
dependence on initial conditions. The convergence control is most often based on the
comparison of the estimations of different quantities for the parallel chains. More
precisely, the criterion is based on the difference between a weighted estimator of
variance for each chain and the variance of the estimators on the different chains. The

estimation method composed of two steps. First, create an estimate of the target
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distribution, centered about its mode (or modes), and over-dispersed in the sense of
being more variable than the target distribution. The approximate distribution is then
used to start several independent chains of the iterative simulation. The second step is
to analyze the multiple chains to form a distributional estimate of the target random

variable.

The monitor of convergence of the iterative simulation is to estimate the factor
by which the scale of the current distribution for the target distribution might be
reduced if the simulations were continued to the limit n —oo. This potential scale

reduction can be estimated by

Vo df n+1 M+1B
5.2
TR - W df <2 \/(n Mn W)df—2 5.2)

where

df =3 MLl o g (53)
2.Sn . Sq
m=1 m=1
n’(n-1)

A A

R declinesto1las n—o.R is theratio of the current variance estimate,\7 , to the
within—chain variance, W. n is the count of iterations, S, are the standard deviation of
each chain, B is the between-chain variance and the M is the number of parallel chains.

The between- and within-chain variances, B and W, are defined as follows.

13~ v

B=m21(§m -EF, (5.4)
R QPRI I o & QTN

W_M;Sm—M;nlﬂ(@Zm gV, (5.5)

with
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L-oYeh E-2Y, (5.6)

where &£ s the i-th element in chain m.

A

Once R isnear 1, it is conclude that each set of the simulated values is close

to the target distribution. In practice, the potential scale reduction is chosen to be 10%

(ﬁsl.l). After it converges, we can calculate the desired sample value (the state

vector) based on the empirical distribution of the n simulated iterates for each

simulated chain.

Some Gibbs Sampler estimation' examplesyare demonstrated in this section. In
the following examples,. four -parallel chains withdifferent random seeds are
illustrated. Example in.Figure 5.1 converged (Ii <1.1) after 1.92x10° iterations, and
the estimated valueis: 23.75; example in -Figure 5.2.converged after 4.12x10°

iteration, and the estimated valueis 0.11.
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Figure 5.1 Example 1 of four parallel chains.
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Figure 5.2 Example 2 of four parallel chains.

Another example of eight
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Figure 5.3 Example of eight parallel chains.

These chains converged (ﬁ <1.1) after 5.5x10* iterations, and the estimated value

is 68.57.
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5.3 Parallel Implementation

Gibbs sampler, a particular type of Markov Chain Monte Carlo method, requires
tremendous iterations during computation; normally, there would be tens of thousands
iterations in the proposed algorithm. To achieve real-time information requirement,
parallel computing technique is introduced to increase the performance. The solution
algorithm should be modified to adopt the parallel implementation. Consider the
Gibbs sampler algorithm in section 3.3.2, the algorithm is separated into several
computing parts at the WHILE-LOOP. With different random seed, each computing
part will lead to a different solution:chain. The chain in each computing part will then
be gathered to check the'convergence. In this situation, communication between
computing nodes is minimum, and computing power. can be easily increased without
communication bandwidth.limitation. Figure 54 describes the parallel architecture.
The parallel environment of this PC-cluster consists of 16 cemputing nodes; each
contains 2 processors equivalent:to_IntelXEON=3:2: GHz/'and 1GB memory. Nodes
are connected with a Gigabits Ethernet switch for MPLprotoecol and a 100 Mbits PCI
fast Ethernet switch for Network File System (NFS) and Network Information System

(NIS).
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Task:
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Check Convergence.
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2. Calculate Single Sequence of o 2. Calculate Single Sequence of
and F. and F.

3. Send Local Computation Result 3. Send Local Computation Result
to Server Node. to Server Node.

Figure 5.4 The'Parallel.computation structure.

In the server node, parameters used in our-algorithm are initialized, so does the
necessary input data. When assign jobs, these input data are been sent to computing
nodes existing in the cluster through TCP/IP base intranet with Message Passing

Interface (MPI) Library through gigabit switch. The computational procedure for the

parallel process consists of:
1. Load input data and parameters. Initialize MPI environment.

2. Count the computing nodes exists in the cluster environment. Send data to each

computing nodes.

3. Each computing nodes generate its own  and = sequences by given input

data. These results were sending to the server for convergence check.
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4. The server check the convergence of each y and F'.If R>1.1, the computing

nodes will continue step 3. As R <1.1, the server estimate the global v and

= by sequences generated by each computing nodes.

5. Stop MPI environment. Output data.

Figure 5.5 shows the speedups and efficiencies of the proposed algorithm, where the
speedups is the ratio of the code execution time on a single processor to that on
multiple processors and efficiency is defined as the speedup divided by the number of
processors. As shown in Figure 5.5, the parallel scheme'has efficiency of 72.5% in a

32 processors environment.
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Figure 5.5 Speedups and efficiencies for the parallel computing.
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Chapter 6

Numerical Examples

In this section, the proposed models are tested with real networks to discuss their
performance. These networks include i) Taipei Mass Rapid Transit Network in section
6.1 and ii) Taiwan Freeway Network with Electronic Toll Collection information in

section 6.2.

6.1 Examples 1 (Taipei Mass Rapid Transit Network)

A real network of Taipei MRT is-tested in this Section. The test network consists
of 9 stations in Nangkang.line, the topology of test network is‘demonstrated in figure
6.1. Real path-flow data is not likely to derive on a real read network, but it is
possible in the MRT network. ThereforepsMRT=information is used here to give a

measurement of model performance.

Xi Shandao Zhongxiao Sun Yat-Sun
imen Temple Fuxing Memorial Hall
a e M f~f &) g My _h
O O e O e ) e O e G O, H——0
Longshan Taipei Main Zhongxiao Zhongxiao City Hall
Temple Station Xinshena Dunhua

Figure 6.1 The MRT test network.

Real path-flow data are the numbers of passengers traverse between stations

from 18:05~20:00 in five-minute interval; for example, there are 30 persons travel
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from Ximen to Taipei Main Station in the time-period of 18:00~18:35. Eight paths are
included in this example defined as travelers toward Taipei Main Station from the rest

of stations. These paths are demonstrated in Table 6.1.

Table 6.1 Path set of example MRT network.

Path Origin-Destination Link Set
w(1) A>C a,b

w(2) B>C b

w(3) D>C c

w(4) E>C d, c

w(5) F>C e, d,c
w(6) G>C fe.d,c
w(7) H>C 9.f,e,dc
w(8) 1> C h,g,f,esd,c

In the MRT test, travel time is.not considered. Therefore, link flows can be easily
obtained by the summation path flows on them, i®.,flow on link c is equal to
w(3)+w(4)+w(5)+w(6)+w(7)+w(8), and the flow on link e is equal to
w(5)+w(6)+w(7)+w(8). The time-dependent link flows are illustrated in Table 6.2.
Link flows on b and c are treated as the observation vector, vy,, in this test. Both
time-invariant and time-varying coefficient dynamic model proposed in chapter 3 and

4 are conducted in this test.
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Table 6.2 Time-dependent link flows of MRT network

Time Link Link Link Link Link Link Link Link
Interval flow a flow b flow ¢ flow d flow e flow f Flow g Flow h
1 1 12 31 27 27 17 13 7
2 3 14 116 108 103 50 30 23
3 0 12 85 84 77 39 14 9
4 6 15 82 77 72 33 21 11
5 5 25 74 69 63 42 16 10
6 2 10 71 69 65 34 17 11
7 3 88 115 108 101 56 28 12
8 3 26 62 58 56 29 12 7
9 6 29 62 59 58 34 23 15
10 1 28 84 81 71 45 21 10
11 8 19 80 72 65 28 15 7
12 3 29 113 107 103 63 31 20
13 7 35 129 119 110 51 25 17
14 2 18 50 45 44 18 7 7
15 6 39 128 121 113 58 20 12
16 6 35 97 91 83 43 15 11
17 1 12 107 100 93 58 35 25
18 3 16 108 101 97 50 25 15

19 0 22 76 76 71 32 19
20 4 29 69 66 63 26 13
21 1 17 101 100 96 63 18 12
22 2 41 40 37 29 10
23 2 59 57 55 35 14

6.1.1 Time-invariant coefficient model

In the time-invariant coefficient model, transition matrix is assumed to be fixed.
The estimated path flows compare to real path flows are demonstrated in Figure 6.2.
The black line indicates the real O-D data derived from the Taipei Mass Rapid Transit

company, and the grey line indicates the estimation result of the proposed algorithm.
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Figure 6.2 The comparison of real and estimated data on MRT network by

time-invariant coefficient model.

The correlation between real and estimated data is 0.816, which indicates a
medium to strong association between real and estimated data. The mean absolute

error (MAE) is 4.78, and the mean absolute percentage error (MAPE) is 49%.
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To evaluate the prediction result of this model, observations at the last
time-period is deducted from the observation vector. After applying the proposed
model to the rest of observation vector, estimated transition matrix, F, and state
vector at time-period 22, ,,, are obtained. The predicted path flows at time-period

23 can be calculated by w,, = Ify}zz. The mean absolute error of the prediction is

5.43; and the mean absolute percentage error is 51.3%. The comparisons of real and
predicted path flows are demonstrated in figure 6.3. The predicted path flows are

indicated as dash lines.
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Figure 6.3 The comparison of real and predicted data on MRT network by

time-invariant coefficient model.

6.1.2Time-varying coefficient model

This subsection demonstrates:ithe result of proposed time-varying coefficient
model. The path flow estimation is based on a-rolling horizon concept; in this

example, there are ning states in-a horizon period, Is illustrated on table 6.3.

To evaluate thesestimation and prediction result of this model, same procedures
are conducted as that of time-invariant.coefficient model. The correlation between
real and estimated data'is 0.969, which indicates a-strong association between real and
estimated data. The mean absolute error is 1.57, and the“mean absolute percentage
error is 15.1%. Six out of eight path flows, without path 5 and 8, pass the chi-square
test of 95% confidence interval. From the solution framework, we know the first
time-period of estimation tends to have larger error, because the w, is generated
randomly. If the estimation of path flows in first time-period are deducted from the

dataset, all of the path flows pass the chi-square test of 95% confidence interval.

The predicted path flows at time-period 23 can be calculated by ,, = Ifzzt/}zz.

The mean absolute error of the prediction is 3.54; and the mean absolute percentage
error is 72.2%. The comparison of real, estimated and predicted path flows are

demonstrated in figure 6.4.
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Table 6.3 An example of rolling horizon estimation (9 elements in a horizon period).

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

EStI mated . 15.0 14.9 21.1 9.2 26.3 27.1 23.6 27.8 17.0 24.0 29.9 20.9 32.2 27.6 11.3 125 215 23.6 14.8 5.6 0
Path

Period 2 16.6

212 49 :Fflﬂrhﬂ
: ——— -
i 7 el

Period 4
Period 6
Period 8

W5 109 B I

143 150 252

Period 10
il

Period 12 269 147 317 273 102 115 210 238 144

Period 14 289 274 64 103 179 211 134 38 0
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Figure 6.4 The comparison of real, estimated, and predicted path flows on MRT

network by time-varying coefficient model with 9 states in a horizon period.
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6.1.3 Discussion of MRT network example

From the numerical example of MRT test network, we could discover a
significant improvement comparing the time-varying coefficient model to the
time-invariant coefficient mode. As for the estimation, the time-invariant model has a
MAE of 4.78 and MAPE of 49%; while the time-varying model has a MAE 1.57 of
and MAPE of 15.1%. As for the prediction, the time-varying coefficient model also
has smaller mean absolute error. However, the mean absolute percentage error of

time-varying coefficient model is larger.

6.2 Examples 2.(Taiwan Freeway Network)

Models considering travel time effect are demonstrated in this section. The test
network is a real freeway network with Electronic Toll Collection (ETC) information.
ETC can provide where -@nd when the particular vehicle “appeared, this information
can help us tracing a particular vehicle. The test,network consists of northern part of
Taiwan freeway network, including part of freeway No.1, No. 2, and No. 3. The

network is illustrated as figure 6.5.
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Taishan Toll
Station

Yangmei Toll
Station

Houlong Toll
Station

Dajia Toll
Station

Figure 6.5 The freeway test network.

time t—2 and path 12, 14, 16, 18, 20 at time t-1.
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Shulin Toll
Station

Longtan Toll
Station

Zaociao Toll
Station

Houli Toll
Station

The test network consists. of 22 O-D.pairs'and 30 paths, demonstrated in Table
6.4. Path flow data are the number of vehicles depart from their origin toll station to
their destination toll station, only vehicles with ETC equipment and travel longer than
two toll stations will be count. Since ETC information provides when and where a
particular vehicle appears, travel time between every two stations can be calculated.
Therefore, link flow on certain time can be obtained by the summation of
corresponding path flows departs from their origin on a particular time. For example,

flow on link e attime t can be calculated by the summation of path 2, 4, 6, 8, 10 at



Table 6.4 Path set of example freeway network.

Origin-Destination Link Set
B->D b
B->C b,d.e
B>E b,f h,i
B>E b,d, e g,i
B->G b,f h, ik
B->G b,d e g, ik
B>F b, f h,j
B>F b,d,e0,j
B>H b, f, h,j, |
B->H b,d eq,jl
A->D a,cf
A->C a, e
A->E a,cfhi
A>E a,eq,i
A=>G a, ¢ fhik
A>G a,e g,i,k
A->F a,c fhj
A>F a,e0,]
A2>H a,cfhjl
A->H a,ea0jl
D>E h,i
D>G h, i, k
D>F h, j
D->H h, j, I
C—>E g, i
C>6G g, i,k
C>F g,]
C>H 9,1
E>G k
F>H I
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6.2.1 Time-invariant coefficient model considering travel time effect

Time-invariant coefficient model considering travel time effect is discussed in

this subsection. In this subsection, transition matrix is assumed to be fixed, while

path-link incidence matrix, H,,

IS generated by real data. The observation vector is

time-dependent link flows on the network, aggregated as 30-minute interval. The

estimated path flows compare to real path flows are demonstrated in Figure 6.6 as
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Figure 6.6 The comparison of real and estimated data on.freeway network by

time-invariant coefficient model considering. traveltime effect.

It is observed from the data, there exists nearly zero flows on path 4, 6, 8, 10, 13,

15, 17, and 19. These paths are excluded from the: MAE and MAPE calculation,

therefore, only 22 paths are considered in the calculation.

The correlation between real and estimated data is 0.982, which indicates a
strong association between real and estimated data. The mean absolute error is 2.48,
and the mean absolute percentage error is 31.6%. Eight out of 22 paths pass the
paired-sample T test of 90% confidence interval; we further test the rest 14 paths, 10

out of them pass the chi-square test of 90% interval.
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6.2.2 Time-varying coefficient model considering travel time effect

This subsection demonstrated the result of proposed time-varying coefficient
model considering travel time effect on the test freeway network. The estimation of
path flow is also based on a rolling horizon concept as the MRT network, except of 33
states in a horizon period. The estimated path flows compare to real path flows are

illustrated in figure 6.7.
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Figure 6.7 The comparison of real and estimated data on, freeway network by

time-varying coefficient model considering travel time effect.

Same as section 6.2.1, path 4,6, 8, 10,-13; 15, 17, and 19 are excluded from the
MAE and MAPE calculation with their nearly zero.flows. The correlation between
real and estimated data is 0.989, which indicates a strong association between real and
estimated data. The mean absolute error is 1.66, and the mean absolute percentage
error is 13.29%. Nine out of 22 paths pass the paired-sample T test of 90% confidence
interval; we further test the rest 13 paths, 10 out of them pass the chi-square test of

90% confidence interval.

In the numerical example of freeway test network, the time-varying model also
has a better performance compared to time-invariant model in estimation. However,
the difference between these models is not as significant as that of MRT example.

Some of the paths in this numerical example have zero or very little flows during the
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whole estimation period, i.e. path 4, 6, 8, 10 and so on. Neither time-invariant nor

time-varying model are able to describe those paths.

6.2.3 Comparison with Predetermined Transition Matrix Method

Existing researches concerning time-dependent O-D estimation usually assume
the prior information of the O-D matrix (or transition matrix) is know (or at least
partially known). This section compares the algorithm proposed in this study with
predetermined transition matrix method. The example is based on the freeway
network as previous section. Hewever, the proposed algorithm no longer generates the
transition matrix; it is new calculated by historical data. The transition matrix in this

example is a time-dependent diagonal matrix that

_7(1)”1 0 0
XD,
F=| Ogilh: RO (6.1)
O 0 X(p)t+l
] X(P) |

where X(1), denotes the path flow of 1* path on time t.

The comparison of predetermined transition matrix and algorithm proposed in
this research is demonstrated in Figure 6.8; only path 1 to 4 are illustrated for
simplicity. In figure 6.8, the real path flow, flow estimated by predetermined transition
matrix, and flow estimated by the proposed model are indicated in black, dash, and

grey lines respectively.
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Chapter 7

Conclusions and Perspectives

In this chapter, some conclusions and perspective of this study is made. Network
flow information is a fundamental input of the Advanced Traffic Management System
(ATMS). To meet the need of ATMS, it is necessary to develop a suitable model that
estimate network status based on partial information provided by surveillance system
installed on networks. Existing works that address this problem often involves user
equilibrium behavior or system optimal status. User equilibrium is a way to describe
flow on network; howgver, the existence of such status is questionable. Therefore, this
study suggests a statistic approach, rather than.a behavior approach, to estimate path
flows on network. In.this closing chapter; the conclusions are mentioned in section 7.1,

and the future researches of this study-are-suggested-in section 7.2.

7.1 Conclusions

The main objective of this study is to develop a path-base assignment model by
linear dynamic system with Bayesian Approach. Results of this study are summarized

as follows.

(1) Path-base assignment model with linear dynamic system.
This study formulates the path-base assignment problem by both time-invariant
and time-varying coefficient state space model. The model is capable to estimate

time-dependent path flows with partially observed link flows without prior
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information. Most existing works on path-flow (or O-D flow) estimation focused
on surveillance data usually assume the prior information of O-D matrix (or
transition matrix) is known (or at least partially known). In this study, we relax
such assumption by combining Gibbs sampler and Kalman filter in the solution

algorithm.

(2) Convergence assessment of Gibbs sampler

Gibbs sampler, a particular type of Markov Chain Monte Carlo method, is a
powerful tool that being widely applied in many discipline. However, if the
method had been used _naively without convergence, control, it might misleading
the answer. Most single chain convergence control method focused on monitoring
whether the cumulative sum of sequence is stable or not. Although the concept of
single chain methods are straight forward; but they cannot: bring information on
regions it does not visit. Parallel chain-methods try to ‘overcome such defect by
generating multiple chains;: "aiming “at “eliminating: the' dependence on initial
conditions. The convergence..control of parallel .chain is then based on the
comparison of the estimations of different quantities for the parallel chains.

In this study, we suggest a method to monitor the convergence by estimate the
factor by which the scale of the current distribution to the target distribution might

be reduced if the simulations were continued to the infinity.

(3) Parallel implementation
Gibbs sampler requires tremendous iterations to reach convergence; normally,
there would be tens of thousands iterations in the proposed algorithm. To enhance

the performance, a parallel computing technique is introduced in this research.
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The parallel technique is combined with the parallel chain convergence control;
each computing nodes accounts for a unique chain, while the server node monitors
their convergence. Since every computing node generates its own chain, only
initial data and computed outputs are transferred between served node and
computing nodes. Therefore, communication between computing nodes are
minimum; that means computing power can be easily increased without

communication bandwidth limitation.

7.2 Perspectives

This study suggests dynamic systems to estimate the time-dependent path flows;
both time-invariant and time-varying coefficient dynamic systems are discussed. The
original motivation of this research is to develop a path-base assignment model that is
capable to provide real-time netwark-flow information. Therefore, it can provide
real-time information for both ATIS and ATMS to"enhance.the network performance.
The long-term objective of‘this research is to develop a dynamic traffic management
system that can manage the traffic in' real-ttme. However, this study is only the
beginning; the roadmap of future researching topics is illustrated as figure 7.1. Future
research areas can be categorized as modeling development and implementation

issues. The further development of the model is mentioned as follows.
(1) Path-set generation

The path-observation incidence matrix mentioned in this study, H, is artificially
given. To make the assignment model more applicable for general network, a path

generation model must be proposed.
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(2) Considering the continuous dynamic systems.
The path-base assignment combined model in this study is based on the discrete
dynamic system. However, the path flows and transition matrix might be
considered changing smoothly in time. Therefore, consider a dynamic system that
continuous in time but partially observed might be a suitable extension of the

original model.

(3) Multiple user class

Travelers in this research_are ‘assumed similar. instheir characteristics; however, to
obtain more realistic.models, travelers,are often divided.into classes with different
characteristics. An example of the classification-is dividing the travelers into buses,
passenger cars, and trucks. In real world; some vehicle detectors could provide
vehicle type information while other could not. A model that can handle both

information sources should be developed.

Secondly, implementation issues of real-time deployment is also in important work.
According to the computation experience of this study, the computing time will
increase rapidly when the possible path set becomes large. The traffic flow theories
that describe the link dynamics to address the travel time is also an important issue.

Thus, the perspectives of implementation issues are discussed as follows.

(1) Different parallel schemes
Different parallel schemes may be proposed to enhance the efficiency. Advanced
partitioning method could also lead to a better solution. For example, partitioning

on networks rather than generating parallel chains could reduce the dimension of
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state vector.

(2) Considering the intersection delays
In the urban traffic network, intersection delays contribute most to the travel times.
A model that describes intersection delays could be considered while

implementing the assignment model in urban networks.
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