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中文摘要 

 影像處理與電腦視覺技術的發展，近十年來在各種應用領域的期刊文獻上，發表了

許多針對不同目的所開發之系統，用於靜態影像切割、文件分析與辨識、智慧型運輸系

統、視訊監控等許多應用上。本論文將針對這些應用需求，發展一系列以影像處理與電

腦視覺技術為基礎的研究方法與應用系統。本論文主要分為六個章節，第一章我們對於

影像處理與電腦視覺在各領域的應用作一簡要介紹。而第二章至第五章，則分別探討簡

介本論文所提出之各個以影像處理與電腦視覺為基礎的研究方法與應用系統。 

 在第二章中，我們提出了一個快速且具高度可靠性的多重門檻值選擇機制，以針對

含有多個物件的灰階影像，加以將其中內含之物件分離，以利於後續之處理與分析。這

個機制包含了一個最佳化的分離度量測法則，可以確保所得之切割影像，具有統計特性

上的最大分離度，以此獲得最佳的切割效果。目前現有的門檻值選取演算法，多是為了

二值化切割而設計，少數具有多門檻值選取技術，其大多需要消耗相當多的運算能量，

以及多是設計於在具有某些特定特性的影像上才具有較高可靠度。而這個研究提出了一

個最佳化的分離度量測判定準則，據此所開發之自動多重門檻值選擇技術，可在多種不

同特性的影像上，皆可以極低的運算時間，判定影像上的物件個數，並決定門檻值加以

切割分離之，並經過多種實驗測試證明其高效率與可靠性。這個技術可應用於電腦與機

器視覺相關之系統開發，以此技術將具意義之物件加以從影像分離後，以利其後續之分
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析與辨識處理，如在文件影像分析與辨識、ITS 智慧型運輸系統之電腦視覺處理上之整

合運用，皆需要將有意義之物件從影像中擷取出，以利進行進一步的分析處理工作。 

 我們在第三章則提出了一套多平面影像切割演算法，以將文字從彩色圖文交疊的複

雜文件影像中完整萃取。由於在現今生活中常見的文件，因印刷排版技術的發展，使得

多媒體複合文件的大量出現，此類文件之文字大多印刷在複雜的背景內涵下。將文字從

文件影像中抽離是文件分析研究的重要一環，目前已經有許多學者在這個領域提出相關

文字切割技術。然而，先前的技術大多無法解決複雜文件影像抽離文字的困難。這個技

術可以解決許多由於文件影像背景日益複雜所衍生的相關問題。在實驗分析中，我們使

用了書本封面、平面廣告和雜誌等進行處理，實驗結果證明本論文所提出的方法，能夠

成功的將這些文件影像中的中英文文字字串加以成功萃取。這個研究的主要目的，是開

發一套以區域性切割演算法為基礎的文件影像切割技術，針對彩色圖文交疊的複雜文件

影像，將其中所包含的前景物件與背景物件分別分離，並再以一套文字萃取演算法，使

其中之文字資訊能夠完整的加以萃取，即使他們都被印刷在緩慢變化或快速變化的高度

複雜背景圖形中。 

 在第四章中，我們則提出了一個針對夜間行車駕駛輔助與車輛自動化駕駛需求的智

慧型高速夜間車輛偵測與辨識系統。該系統透過 CCD 影像擷取設備，結合電腦視覺處

理技術，以實現夜間車輛偵測、相對位置與距離判定、車輛標定與追蹤，並以此輔助駕

駛獲得前方之交通狀況資訊。以此可以提供一個有效的機制，以自動操控車上的相關裝

置設備，如運用於車輛頭燈的遠近光燈控制上，可以在偵測判斷前方車道的交通狀況

時，自動將車輛頭燈之遠光燈與近光燈調整至最佳狀態，防止炫光而影響前方來車駕駛

視線，避免因為遠光燈近距離照射造成目眩所困擾而導致之車禍危險性。並可以基於所

偵測獲得之本車前方交通狀況，如本車與前方道路上所出現車輛之相對運動關係，以提

供作為自動駕駛與自動巡航速度的上層控制機制。 

 第五章我們提出一個智慧型多通道錄影視訊監視控制系統，其對於影像壓縮速度的

提升，在於達成多通道錄影即時視迅壓縮編碼的高標準要求，同時又能保持極高的壓縮

影像品質與壓縮效率，加以為了達成現今軟體工程的主流，系統開發以實作微軟所提出

之 ActiveX 系統元件模型完成，以利於多媒體應用、網際網路應用與快速應用軟體程式

開發。再加上結合了網路伺服程式、影像擷取卡與 CCD 攝影機，發展成為一高效率的

多錄影通道智慧型監控系統，並擁有高效能、低成本與功能強大的特質。最後，在第六

章的部分，我們整理了本篇論文的結論與未來的研究展望。 
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Abstract 

 Image processing and computer vision are the studies of how computers can perceive 

and understand the interesting information about the world surrounding human beings by 

automatically extracting and analyzing observed images, image sets, or video sequences 

using theoretical and algorithmic computations. Object extraction and analysis is one of the 

important applications of image processing and computer vision. Among the applications of 

object extraction and analysis, document image analysis (DIA) is the one that provides many 

valuable applications in document analysis and understanding, such as optical character 

recognition, document retrieval, and compression. Vision-based techniques of driver 

assistance and autonomous vehicle navigation systems are emerging practical applications as 

well. It aims at detecting and recognition the vehicular objects in the road environment for 

driver assistance and autonomous vehicle guidance. As well as the security issues in modern 

life, digital video monitoring is also a promising application. In this dissertation, we will 

present several algorithmic, practical, and integrated methods and systems for the 

above-mentioned applications based on image processing and computer vision techniques.  
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 Firstly, Chapter 2 presents an efficient automatic multilevel thresholding method for 

image segmentation. An effective criterion for measuring the separability of the homogenous 

objects in the image, based on discriminant analysis, has been introduced to automatically 

determine the number of thresholding levels to be performed. Then, by applying this 

discriminant criterion, the object regions with homogeneous illuminations in the image can 

be recursively and automatically thresholded into separate segmented images. This proposed 

method is fast and effective in analyzing and thresholding the histogram of the image. In 

order to conduct an equitable comparative performance evaluation of the proposed method 

with other thresholding methods, a combinatorial scheme is also introduced to properly 

reduce the computational complexity of performing multilevel thresholding.  

 In Chapter 3, we propose a new method, namely the multi-plane segmentation approach, 

for segmenting and extracting textual objects from various real-life complex document 

images. The proposed multi-plane segmentation approach first decomposes the document 

image into distinct object planes to extract and separate homogeneous objects including 

textual regions of interest, non-text objects such as graphics and pictures, and background 

textures. This proposed approach processes document images regionally and adaptively 

according to their respective local features. Hence detailed characteristics of the extracted 

textual objects, particularly small characters with thin strokes, as well as gradational 

illuminations of characters, can be well-preserved. Moreover, this way also allows 

background objects with uneven, gradational, and sharp variations in contrast, illumination, 

and texture to be handled easily and well.  

 Next, an effective method for detecting vehicles in front of the camera-assisted car 

during nighttime driving is presented in Chapter 4. This proposed method detects vehicles 

based on detecting and locating vehicle headlights and taillights by using techniques of image 

segmentation and pattern analysis. First, to effectively extract bright objects of interest, a fast 

bright object segmentation process based on automatic multilevel histogram thresholding is 

applied on the grabbed nighttime road-scene images. This automatic multilevel thresholding 

approach can provide robustness and adaptability for the detection system to be operated well 
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on various illuminated conditions at night. Then the extracted bright objects are processed by 

a rule-based connected-component analysis procedure, to identify the vehicles by locating 

and analyzing their vehicle light patterns, and estimate the distance between the detected 

vehicles and the camera-assisted car.  

 In Chapter 5, we present a wavelet-based approach to compressing video, with high 

speed, high image quality and high compression ratio. Using the sequential characteristics of 

surveillance images, this method applies the low-complexity zero-tree coding, which costs 

low memory, to develop an algorithm for encoding and decoding video, which significantly 

improves the speeds of compression and decompression and maintains images of high quality. 

Based on this low-complexity and low-memory-cost wavelet-based coding scheme and 

motion compression strategy, the proposed video codec achieves high vision quality, high 

compression speed and high compression ratio. Then the ActiveX COM component 

technique is also implemented and integrated with the proposed video codec to realize 

multimedia, internet applications and many other video-intensive applications. Furthermore, 

an intelligent surveillance system, which integrates the proposed wavelet-based video codec, 

computer peripherals and mobile communication, is also presented in this chapter. Finally, we 

give a brief conclusion and future works in Chapter 6. 
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Chapter 1. INTRODUCTION 

 

 Image processing and computer vision are the studies of how computers can perceive 

and understand the interesting information about the world surrounding human beings by 

automatically extracting and analyzing observed images, image sets, or video sequences 

using theoretical and algorithmic computations [1]-[3]. Object extraction and analysis is one 

of the important applications of image processing and computer vision. Among the 

applications of object extraction and analysis, document image analysis (DIA) is the one that 

provides many valuable applications in document analysis and understanding, such as optical 

character recognition, document retrieval, and compression [4][5]. Vision-based techniques 

of driver assistance and autonomous vehicle navigation systems are emerging practical 

applications as well. It aims at detecting and recognition the vehicular objects in the road 

environment for driver assistance and autonomous vehicle guidance [6]-[9]. As well as the 

security issues in modern life, digital video monitoring is also a promising application. In this 

dissertation, we will present several algorithmic, practical, and integrated methods and 

systems for the above-mentioned applications based on image processing and computer 

vision techniques.  

 

1.1 Motivation 

 Extraction of objects from observed images using image thresholding techniques is 

useful for in the early processing stages of a vision system [10][11]. To-date, many 

researchers have developed valuable thresholding techniques [12]-[26] for applications that 

include image segmentation, pattern recognition and document analysis, among others. The 

conventional concept of most of these methods is that the thresholding is carried out as a 
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simple classification procedure that the pixels of the image are assigned to two classes, 

foreground object pixels and background pixels. Hence most of them were developed for 

effectively adoption on bi-level thresholding process. The surveys and comparative 

performance testing studies of these methods was presented in the remarkable works of 

Sahoo et al. [10] and Lee et al. [11]. Besides, in Trier and Jain’s work [27][28], a 

goal-directed evaluation methodology has been proposed for performance testing on the 

thresholding methods based on judgment of the recognition performance of conducting OCR 

process on the binarization results obtained by these methods. The conventional thresholding 

techniques are all based on finding the threshold value which achieves the optimal condition 

of the criterion functions. Indeed, they are effective in bi-level thresholding. However, when 

the number of desired thresholds increases, the computation needed to obtain the optimal 

threshold values is substantially increased and the search to achieve the optimal value of the 

criterion functions is particularly exhaustive. Another problem associated with the 

conventional methods is that the number of segments, into which the image should be 

segmented, cannot be suitably and automatically determined. Thus, we intend to develop a 

computationally fast and effective automatic multilevel thresholding approach to overcome 

the above-mentioned image segmentation issues associated with the conventional methods.  

 For document image analysis, the interesting objects in a document image are textual 

objects. Extracting textual objects from document images provides many useful applications 

in document analysis and understanding, such as optical character recognition, document 

retrieval, and compression [4][5]. To-date, many techniques were presented for extracting 

textual objects from monochromatic document images [29]-[32]. In recent years, owing to 

advances in multimedia publishing and printing technology have led to an increasing number 

of real-life documents in which stylistic character strings are printed with pictorial, textured, 

and decorated objects and colorful, varied background components. However, most of 
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conventional approaches cannot work well for extracting textual objects from real-life 

complex document images. Compared to monochromatic document images, text extraction in 

complex document images brings many difficulties associated with the complexity of 

background images, variety and shading of character illuminations, superimposing characters 

with illustrations and pictures, as well as other decorated background components. As a result, 

there is an increasing demand for a system that is able to read and extract the textual 

information printed on pictorial and textured regions in both colored images as well as 

monochromatic main text regions.  

 Since most textual objects show sharp and distinctive edge features, methods based on 

edge information [33]-[36] have been developed. Such methods utilize an edge detection 

operator to extract the edge features of textual objects, and then use these features to extract 

characters from document images. Such edge-based methods are capable of extracting textual 

objects in different homogeneous illuminations from graphic backgrounds. However, when 

the characters are adjoined or touched with graphical objects, texture patterns, or 

backgrounds with sharply varying contours, edge-feature vectors of non-text objects with 

similar characteristics may also be identified as text, and thus the characters in extracted 

textual regions are blurred by those non-text objects. Several conventional 

color-segmentation-based methods for text extraction from color document images have been 

proposed [37]-[41]. These methods utilize color clustering or quantization approaches for 

determining the prototype colors of documents so as to facilitate the detection of textual 

objects in these separated color planes. However, most of these methods have difficulties in 

extracting characters which are embedded in complex backgrounds or that touch other 

graphical objects. This is because the prototype colors are determined in a global view, so that 

appropriate prototype colors cannot be easily selected for distinguishing textual objects from 

those touched graphical objects and complex backgrounds without sufficient contrast.  
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 For vision-based systems for driver assistance and autonomous vehicle guidance, many 

researchers have also developed valuable techniques for recognizing interesting vehicles and 

obstacles from images of road environments outside the car [6]-[9], to facilitate applications 

on the camera-assisted system that assists drivers in understanding possible hazards on the 

road, and automatically controlling the apparatus of vehicles, such as headlights, windshield 

wipers, etc. A vision-based vehicle and obstacle detection system is aiming at identification 

of vehicles, obstacles, traffic signs and other patterns on the road from grabbed image 

sequences by means of image processing and pattern recognition techniques. Until recently, 

researchers in this field still open new questions and concepts [42][43]. By adopting different 

concepts and definitions on interesting objects on the road, different techniques are applied 

on the grabbed image sequences to detect them as vehicles or obstacles. For locating vehicles 

in an image sequence, the task can be carried out by searching for specific patterns on the 

images based on typical features of vehicles, such as shape, symmetrization, or their 

surrounding bounding boxes [44]-[46].  

 Until recently, most of the conventional works focused on detecting vehicles under 

daytime road environments. However, under bad-illuminated conditions in nighttime road 

environments, those obvious features of vehicles which are effective for detecting vehicles in 

daytime become invalid in nighttime road environments. Thus, most of the above-mentioned 

conventional techniques cannot work well under such nighttime road environments. At night, 

as well as under dark illuminated condition in general, the only visual features of vehicles are 

their headlights and taillights. Headlights and taillights are visible if a vehicle lies in the 

visible range of the CCD camera mounted on a camera-assisted car. However, there are also 

many other illuminant sources coexisted with the vehicle lights in nighttime road 

environments, such as street lamps, traffic lights, and road reflector plates on ground. These 

non-vehicle illuminant sources cause many difficulties for detecting actual vehicles in 
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nighttime road scenes.  

 As for the applications on video surveillance systems, it is an emerging application of 

video compression and communication for security issues in modern life. However, 

conventional monitoring systems are mostly analog systems, which exploit many tapes and 

human effort, to replace the tapes frequently. The recording time and image quality of 

systems cannot compete with those of digital monitoring systems. In digital monitoring 

systems, transform coding techniques are the most popular for video recording applications. 

At the beginning of the development of this field, DCT-based (Discrete Cosine Transform) 

coding techniques were commonly used, and have since become an element of the JPEG 

image compression standard. Accordingly, its application can be seen in many electronic 

devices today. Over recent years, researchers have demonstrated that DWT-based (Discrete 

Wavelet Transform) transform coding ([47]-[50]) outperforms DCT-based methods. Hence, 

newly emerging image compression methods such as the video compression method standard 

MPEG-4 [51][52] and the still image compression standard JPEG2000 are using DWT-based 

methods [53][54]. Since multiple CCD camera systems are continuously heavily loaded with 

sequences of images, so the speed of image compression is critical in such systems. Presently, 

DWT-based compression techniques suffer from high computational complexity, and so 

cannot support multi-channel video recording with a high frame rate. A new, highly efficient 

DWT-based technique, which yields images of high visual quality, is a significant demand for 

such application.  
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1.2 The Proposed Approaches 

 In this dissertation, we will present several algorithmic, practical, or integrated methods 

and systems based on image processing and computer vision techniques to deal with the 

above-mentioned issues, including multilevel thresholding techniques for low-level image 

segmentation, text extraction for complex document image analysis, nighttime vehicle 

detection for driver assistance, and multi-channel video surveillance. They are briefly 

introduced in the following sub-sections.      

 

1.2.1 Multi-level thresholding approaches for image segmentation 

 For segmenting objects from a given image, different objects with homogeneous 

illuminations must be separated into different segmented images. However, most of the 

conventional thresholding techniques [12]-[26] were developed for effectively applying on 

bi-level thresholding cases, and when the number of desired thresholds increases, the 

computation costs needed to obtain the optimal threshold values is substantially increased. 

Another problem associated with these conventional methods is that the number of segments, 

into which the image should be segmented, cannot be suitably and automatically determined. 

For this purpose, the discriminant criterion, for measuring separability among the segmented 

images with different objects, is described in this section. By evaluating the separability 

criterion, the number of objects, into which the image should be segmented, can be 

automatically determined. Hence, an automatic multilevel thresholding method, based on this 

criterion, will be presented in this dissertation.  

 The concept of using discriminant analysis for classification problems was first 

introduced by Fisher [55] and was applied on image thresholding by Otsu [12]. It is attractive 

for the simplicity in computation, with which it measures the separability among segmented 
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images. In Chapter 2, we will analyze the properties of discriminant analysis and then 

propose an automatic multilevel thresholding method [56]. The proposed method applies the 

discriminant criterion for analyzing the separability among the gray levels in the image to 

automatically determine the optimal number of thresholded classes that the gray levels should 

be partitioned. A fast recursive selection strategy is also introduced for determining the 

optimal thresholds to segment objects of interest in complex images into separate thresholded 

images in a computationally fast way. Each threshold determined by this recursive selection 

strategy is ensured to achieve the maximum separation on the resultant thresholded images, 

and hence satisfactory thresholded results can be accomplished by means of the smallest 

number of thresholding levels. To conduct an equitable performance evaluation of the 

proposed method, when compared to other criterion-based methods (i.e. the between-class 

variance method [12], the entropy method [13] and the minimum error method [14]), we also 

will introduce a efficient combinatorial scheme [57] to properly reduce the computation 

complexity of performing multilevel thresholding by these methods.  

 

1.2.2 A multi-plane segmentation approach for text extraction in complex document 

images 

 For extracting textual objects from complex document images involves several 

difficulties. These difficulties arise from the following properties of complex documents: 1) 

Character strings in complex document images may have different illuminations, sizes, and 

font styles, and are overlapped with various background objects with uneven, gradational, 

and sharp variations in contrast, illumination, and texture, such as illustrations, photographs, 

pictures or other background textures. 2) These documents may comprise small characters 

with very thin strokes as well as large characters with thick strokes, and may be influenced by 

image shading.  
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 Hence, we will propose effective region-based approaches for extracting textual objects 

from these complex document images [58]-[62], and resolving the above issues associated 

with the complexity of their backgrounds. The document image is processed by the proposed 

multi-plane segmentation technique to decompose it into separate object planes. The 

proposed multi-plane segmentation technique comprises two stages: automatic localized 

histogram multilevel thresholding, and multi-plane region matching and assembling 

processing. After the multi-plane segmentation technique has been carried out, homogeneous 

objects including textual blocks, other non-text objects, and background textures are 

separated into individual object planes. The text extraction process is then performed on the 

resultant planes to detect and extract textual objects with different characteristics in the 

respective planes. The document image is processed regionally and adaptively according to 

local features by the proposed method. This allows detailed characteristics of the extracted 

textual objects to be well-preserved, especially the small characters with thin strokes, as well 

as the gradational illuminations of characters. This also allows for characters adjoined or 

touched with graphical objects and backgrounds with uneven, gradational, and sharp 

variations in contrast, illumination, and texture to be handled easily and well.  

 

1.2.3 Vision-based nighttime vehicle detection for driver assistance 

 For the issues of nighttime driver assistance and the development of autonomous 

camera-assisted vehicles, an efficient technique for effectively detection and recognition of 

moving vehicles in nighttime road-scene image sequences is practically a necessary demand. 

Besides, this way provides beneficial information for the driver to perceive surrounding 

traffic conditions outside the vehicle during nighttime driving, and can also be applied to a 

versatile control scheme for the apparatus of vehicles. For example, the use of high-beam and 

low-beam states of headlights can be intelligently controlled according to the detection results 
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of presence of oncoming and preceding vehicles, and thus many hazards during nighttime 

driving, such as headlight dazzler, can be efficiently prevented.  

 Therefore, we will present an effective nighttime vehicle detection method [63]-[65] for 

identifying vehicles by locating and analyzing their headlights and taillights. This proposed 

method comprises of the following processing stages. First, a fast bright object segmentation 

process based on automatic multilevel histogram thresholding is performed to extract pixels 

of the bright objects from the grabbed image sequences of nighttime road scenes. The 

advantage of this automatic multilevel thresholding approach is its robustness and 

adaptability for dealing with various illuminated conditions at night. Then a 

connected-component analysis procedure is applied on the bright pixels obtained by the 

previous bright object segmentation stage, to locate the connected-components of these bright 

objects. These bright components are then grouped by a projection-based spatial clustering 

process to obtain potential pairing headlights of oncoming vehicles, and taillights of 

preceding vehicles. Accordingly, a set of identification rules are applied on each group of 

bright objects to determine whether it represents an actual vehicle. Finally, the distance 

between each of the detected vehicles and the camera-assisted car can be estimated and 

reported.  

 

1.2.4 Real-time wavelet-based video compression approach for video surveillance 

 For the purpose of developing a digital surveillance system fulfilling the requirements of 

real-time multi-channel video compression, and ensuring the high quality of restored images 

and the efficiency of compression and decompression of images, we will present a real-time 

wavelet-based video compression technique and an intelligent multi-channel surveillance 

system [66]. Based on the low-complexity and low-memory-cost wavelet-based coding 
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scheme and motion compression strategy, the proposed video codec achieves high vision 

quality, high compression speed and high compression ratio. Then the ActiveX COM 

component technique is also implemented and integrated with the proposed video codec to 

realize multimedia, internet applications and many other video-intensive applications. 

Furthermore, an intelligent surveillance system, which integrates the proposed wavelet-based 

video codec, computer peripherals and mobile communication, is also developed in this study. 

Therefore, the future e-Home with controlled home electronics, managed video/audio 

systems and home security will be realized.  

 

1.3 Organization 

 The rest of this dissertation is organized as follows. Chapter 2 presents an automatic 

multilevel thresholding method for image segmentation. A region-based segmentation 

approach for text extraction from complex document images will be proposed in Chapter 3. 

In Chapter 4, we will propose a vision system to detect and recognize of vehicles for 

nighttime driver assistance. A real-time wavelet-based video codec for intelligent 

multi-channel monitoring system will be presented in Chapter 5. Finally, some conclusions 

and future research perspectives will be stated in Chapter 6.  
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Chapter 2. MULTI-LEVEL THRESHOLDING APPROACHES FOR 

IMAGE SEGMENTATION 

  

 In this chapter, we will present a combinatorial scheme for reducing the computation 

timings of fixed-level multilevel thresholding process, and an efficient automatic multilevel 

thresholding method for image segmentation. As for fixed-level multilevel thresholding, by 

applying the proposed combinatorial scheme on conventional criterion-based multilevel 

thresholding, not only the redundant evaluation of threshold sets can be effectively avoided, 

but the computation cost for each evaluation of each potential threshold set can also be 

substantially suppressed, and thereby the computation timings for obtaining the optimal set of 

thresholds can be significantly reduced. Besides, this proposed combinatorial scheme can 

also achieve the parameterization of the desired number of thresholds. For automatic 

multilevel thresholding, an effective criterion for measuring the separability of the 

homogenous objects in the image, based on discriminant analysis, has been introduced to 

automatically determine the number of thresholding levels to be performed. Then, by 

applying this discriminant criterion, the object regions with homogeneous illuminations in the 

image can be recursively and automatically thresholded into separate segmented images. 

Both the two proposed multilevel approaches are fast and effective in analyzing and 

thresholding the histogram of the image.  

 

2.1 Introduction 

 In image processing, objects must usually be segmented from an image in order to 

facilitate further processing. Accordingly, many researchers have developed valuable 

thresholding techniques [12]-[26] for applications that include image segmentation, pattern 
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recognition and document analysis, among others. The conventional concept of most of these 

methods is that the thresholding is carried out as a simple classification procedure that the 

pixels of the image are assigned to two classes, foreground pixels and background pixels. 

Hence most of them were developed for effectively adoption on bi-level thresholding process. 

Most of these methods were developed for adoption on bi-level thresholding. The surveys 

and comparative performance testing studies of these methods was presented in the 

remarkable works of Sahoo et al. [10] and Lee et al. [11]. Besides, in Trier and Jain’s work 

[27][28], a goal-directed evaluation methodology has been proposed for performance testing 

on the thresholding methods based on judgment of the recognition performance of conducting 

OCR process on the binarization results obtained by these methods.  

 The concept of using discriminant analysis for classification problems was first 

introduced by Fisher [55] and was firstly applied on the gray-level histogram distributions for 

image thresholding by Otsu [12]. This method is carried out by maximizing the separability 

of the resultant thresholded classes using the between-class variance criterion associated with 

them. It is attractive for the simplicity in computation, with which it measures the separability 

among segmented images. Besides, from the alternative viewpoint of gray-level histogram 

distributions, Kittler and Illingworth [14] developed an approach that based on the 

assumption that the probability distributions of gray levels of objects in an image (i.e. 

foreground object and background) are Gaussianly distributed. Hence they proposed the 

minimum error thresholding method to determine the optimal threshold which minimizes the 

error rate of the resultant thresholded classes with the desired mixtures of Gaussian 

distributions. Selecting the optimal threshold using the information theoretic concept is 

another master stream of thresholding methods. Kapur et al. [13] developed a method using 

the concept of the maximum entropy principle of a histogram in order to determine a suitable 

threshold. This method is performed by separating the histogram of gray level probabilities 
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into two distributions, where one is associated with the foreground, and the other one with the 

background of the image. The entropy of the two distributions is then combined, and the gray 

value with the maximal combined entropy is selected as the threshold value. In the maximum 

entropic correlation method proposed by Chang et al. [15], the distributions of the object and 

background classes are formulated by a entropic correlation criterion function, and the 

optimal threshold is determined by maximizing the entropic correlation criterion between the 

two distributions. This method can provide relatively simplifier computation cost than that of 

Kapur et al.’s maximum entropy method. Similar to the concept of the above-mentioned two 

entropic methods, Sahoo et al. [16] proposed a threshold selection method using an 

alternative formulated entropic criterion function using Renyi’s entropy. This entropic 

criterion function gives a generalization formulation form including the maximum entropy 

criterion and the maximum entropic correlation criterion, and can yield a more effective 

threshold for the image. However, this criterion function costs much more computation 

timing for determining the optimal threshold than those of the above-mentioned two entropic 

criterion functions.  

 Recently, based on the concept of the fuzzy set theory integrated with the maximum 

entropy principle, several fuzzy entropic thresholding methods are developed [17]-[19]. They 

are performed by selecting the optimal threshold which maximizes the fuzzy entropy of the 

distributions of the object and background classes. Cheng et al. [18] applied the concept of 

fuzzy set theory into the principle of maximizing the objective entropy function for 

determining the optimal threshold. Besides, a unified formulation for the criterion functions 

used in the methods of Otsu [12], Kittler and Illingworth [14], and Huang and Wang [17] was 

introduced in Yan’s work [20]. Most of these above-mentioned criterion-based thresholding 

methods are mostly based on finding the threshold value which achieves the optimal 

condition of the criterion functions. Indeed, they are effective in bi-level thresholding. 
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However, when the number of desired thresholds increases, the computation needed to obtain 

the optimal threshold values is substantially increased, and the search for achieving the 

optimal value of the criterion functions becomes particularly exhaustive.  

 To perform multilevel thresholding in a more computationally frugal way, Tsai [21] 

developed a method using moment-preserving to threshold an image into a specific number 

of object images. This approach is fast and convincing when the number of thresholds is less 

than or equal to four. However, some complex numerical methods may be required when the 

number of thresholds exceeds four. In Reddi et al.’s work [22], an efficient implementation 

scheme for performing multilevel thresholding of the between-class variance criterion in a 

more computationally frugal way was presented. However, this method can be adequately 

performed only on exactly three or fewer thresholding levels. For segmenting dark characters 

in document images with multiple illuminated objects, Chereit et al. [23] extended Otsu’s 

approach by repeatedly performing bi-level thresholding to segment the bright object away at 

each recursion, and leaving the darkest character-like objects in the given resultant image. 

This method is effective on extracting dark characters from document images with bright 

homogeneous background, especially for bank checks. Tsai [24] presented a method using 

Gaussian kernel smoothing to repeatedly perform on the histogram of the image until the 

histogram being divided into desired number of classes. When the desired number of classes 

is much lower than the number of peaks in the original histogram, the computation time to 

find the solutions of threshold values is expensive. Fleury et al. [26] proposed a running 

entropic method that can reduce the computation cost for performing multilevel thresholding 

of the maximum entropy criterion [13]. This method has also been implemented in a 

parallelization computation form on a parallel workstation. However, this method cannot 

adapt to the changes of different desired number of thresholds, that is, once the number of 

desired thresholds is changed, its computational implementation must be re-programmed for 
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performing on the new desired number of thresholding levels. Besides, the main problem 

associated with the aforementioned methods is that the number of segments, into which the 

gray-level image should be segmented, cannot be automatically determined.  

 In this study, we propose two approaches for fast and automatic implementation of 

multi-level thresholding process. First, we present a combinatorial scheme to reduce the 

computation cost of determining the optimal threshold values in multilevel thresholding. This 

proposed scheme comprises of two elements – a combinatorial search scheme for efficiently 

and sequentially producing sets of potential threshold values to be evaluated, as well as a fast 

implementation scheme of the criterion functions for speedy evaluation of the potential 

threshold sets. This scheme effectively avoids evaluating redundant threshold sets, 

substantially suppresses the computation cost for each evaluation of each potential threshold 

set, and thereby significantly reduces the computation timings of obtaining the optimal set of 

threshold values. Moreover, the proposed scheme also provides the parameterization for the 

number of desired thresholds, and hence the implementation of the proposed scheme can 

provide adaptation to be performed on any different number of thresholding levels. We will 

apply the proposed scheme on multilevel thresholding using the criterion functions of the 

three most well-known methods - Otsu’s between-class variance criterion [12], Kapur et al’s 

maximum entropy criterion [13], and the Kittler and Illingworth’s minimum error 

thresholding criterion [14].  

 Furthermore, based on the extension of this concept, we analyze the properties of 

discriminant analysis and then propose an automatic multilevel thresholding method. This 

proposed method applies the discriminant criterion for analyzing the separability among the 

gray levels in the image to automatically determine the optimal number of thresholded 

classes that the gray levels should be partitioned. A fast recursive selection strategy is also 

introduced for determining the optimal thresholds to segment objects of interest in complex 
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images into separate thresholded images in a computationally fast way. Each threshold 

determined by this recursive selection strategy is ensured to achieve the maximum separation 

on the resultant thresholded images, and hence satisfactory thresholded results can be 

accomplished by means of the smallest number of thresholding levels. To conduct an 

equitable performance evaluation of the proposed method, when compared to other 

criterion-based methods which are improved by the combinatorial scheme as mentioned 

before. The results of these three modified criterion-based methods with combinatorial 

scheme, and this proposed method are compared using several images with different 

characteristics and complexity. The experimental results demonstrate the feasibility and 

computational efficiency of these two proposed methods on multilevel thresholding. 

 

2.2 Review of Conventional Image Thresholding Criterion Functions 

 In this section, we describe three well-known criterion functions utilized in the 

thresholding methods - the between-class variance criterion [12], the maximum entropy 

criterion [13], and the minimum error criterion [14]. The multilevel thresholding computation 

forms of these criterion functions are also in turn described.  

 

2.2.1 The between-class variance thresholding criterion 

 The classical method of discriminant analysis, to classify two class cases, was first 

introduced by Fisher [27], and extended to multiple class cases by Rao [67]. This method 

sought the set of variables which maximized the ratio of the between-class variance and 

within-class variance of the resultant classes. These discriminant criteria, used by image 

thresholding, to extract foreground objects from the background, were presented by Otsu [12]. 

In his work, three possible discriminant criterion functions, based on within-class, 
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between-class and total variance ratios were presented, all of which were equivalent, for 

evaluation of an optimal thresholding process. Among the above three criterion functions, the 

between-class variance is the simplest one to compute. This method is performed by finding 

an optimal threshold, for which the between-class variance between dark and bright regions 

of the image is maximized.  

 Let fi denote the observed occurrence frequencies (histogram) of pixels in a given image 

I, with a given gray level i, and N denotes the total amount of pixels in the image I, and can 

be given by N = f0+f1+…+fL-1, where L is the number of gray values in the histogram. Hence, 

the normalized probability Pi of one pixel having a given gray level i can be denoted as, 

= i
i

fP
N

,       (2.1) 

where 0≥iP , 
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=
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P       (2.2) 

For the bi-level thresholding process, an image I is classified into two classes, C0 and C1 (e.g. 

foreground and background) using an optimal gray-level threshold t, where C0 = { }0,1,..., 1−t  

and C1 = { }, 1,..., 1+ −t t L . This method finds the optimal threshold for which the 

between-class variance is maximized. The between-class variance, denoted by vbc, is an 

effective criterion for evaluating the separability of the two classes, and is defined as, 

2 2 2
0 0 1 1 0 1 1 0( ) ( ) ( ) ( )μ μ μ μ μ μ= − + − = −bc T Tv t w w w w   (2.3) 

The within-class variance, denoted by wcv , of all segmented classes of pixels is computed as, 

2 2
0 0 11( ) σ σ= +wc wv t w       (2.4) 

where w0 and w1 denotes the cumulative probability mass function of the classes C0 and C1, 
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respectively; μ0, μ1, 0σ , and 1σ  denotes the mean and the standard deviation of pixels in 

class C0 and C1, respectively. They are defined as 
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And the total variance vT and the overall mean μT of pixels in the image I are computed as, 

1
2

0
( )μ

−

=

= −∑
L

T T i
i

v i P ,  and 
1

0

μ
−

=

=∑
L

T i
i

iP          (2.8) 

The criterion function used to select the optimal threshold for providing the best separability 

between the classes C0 and C1 is: 

( )( )ψ = bc
BCV

T

v tt
v

       (2.9) 

The determination of the optimal threshold ( BCVt ) for achieving maximal separability between 

two classes, can be performed by maximizing the criterion function, 

0
( )ψ

≤ <
=BCV BCVt L

t Arg Max t .       (2.10) 

 We then extend this procedure to a multilevel thresholding case. For multilevel 

thresholding with k thresholds to partition the image into k+1 classes, pixels of the image I 

are segmented by applying a threshold set T, which is composed of k thresholds, where T = 

{t1,..., tn,…, tk} . These classes are represented by C0 = { }10,1,..., t ,…, Cn= 

{ }11, 2,..., ++ +n n nt t t ,…, Ck = { }1, 2,..., 1+ + −k kt t L . First, the between-class variance can be 
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derived from Eq. (2.3) and is computed as,  

2 2 2
0 0( ) ( ) ... ( ) ... ( )μ μ μ μ μ μ= − + + − + + −BC T n n T k k Tv w w wT   (2.11) 

Then the within-class variance for multilevel thresholding can also be derived from Eq. (2.4) 

and is computed as, 

2 2 2
0 0( ) ... ...σ σ σ= + + + +WC n n k kv w w wT          (2.12) 

where k is the number of selected thresholds to segment pixels into k+1 classes; wn is the 

cumulative probability mass function of class Cn; μn and σ n  represent the mean and the 

standard deviation of pixels in class Cn, respectively. They are defined as, 

1

0
0=

= ∑
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where a dummy threshold t0 = 0 is utilized for simplifying the expression of equation terms. 

Thus, the optimal threshold set ( BCVT ) can be determined by maximizing the following 

extended discriminant criterion function: 

0
( )ψ

≤ <
=BCV BCVL

Arg Max
T

T T , ( )( )ψ = BC
BCV

T

v
v

TT    (2.16) 

 

2.2.2 The maximum entropy thresholding criterion 

 In entropy-based thresholding, the optimal threshold is obtained by applying information 
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theory. As derived from Kapur et al.’s work [13], the original gray level distribution of the 

image is divided into a number of classes of probability distributions in the multilevel 

thresholding case. Then the entropies associated with these distributions are computed as, 

( ) ( )
1 1

log
+ −

=
= − ∑

n

n

n i n i n

t

i t
H P w P w      (2.17) 

where n = 0, 1, …, k; and the threshold set T, and their corresponding probability mass 

functions wn are computed similar to the ones utilized in the computation of the 

between-class variance criterion as described in the previous subsection. Then the optimal 

threshold set ( EntT ) is the threshold set which maximizes the entropy criterion, and is 

computed as, 

0
( )ψ

≤ <
=Ent EntL

Arg Max
T

T T ,     (2.18) 

where  
0

( )ψ
=

=∑
k

Ent n
n

HT      (2.19) 

 

2.2.3 The minimum error thresholding criterion 

 In the concept of minimum error thresholding [14], the gray level histogram of the 

image is thought of as an estimate of the probability density function p(i) of the mixture 

distribution, comprising the gray levels of several classes (i.e. objects and background). It is 

assumed that each of these class distributions ( | )p i n  of the mixture follows a normal 

distribution, with a class standard deviation of nσ , a class mean of μn and an a priori 

probability of wn; hence, the histogram can be approximated as, 

2 2(( ) 2 )

0
( )

2
μ σ

σ π
− −

=

=∑ n n

k
in

n n

wp i e      (2.20) 
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After re-arranging the nature log of both sides, the optimal threshold ( MET ) can be determined 

by solving the resultant quadratic equation with respect to i: 

2 2
0

0 02 2
0

2

2

( ) ( )2log( ) 2log( ) ... 2 log( ) 2log( )

( )... 2 log( ) 2log( )

μ μσ σ
σ σ

μ σ
σ

− −
+ − = = + −

−
= + −

n
n n

n

k
k k

k

i iw w

i w

   (2.21) 

However, the parameters wn, μn, and σ n  of the mixture density function ( )p i  associated 

with the image are unknown. In order to overcome the difficulties of estimating the unknown 

parameters, Kittler and Illingworth [14] presented a criterion function ( )ψME T , which is 

given by, 

[ ]
0

( ) 1 2 log( ) log( )σψ
=

= + +∑
k

ME n n n
n

w wT ,       (2.22) 

And wn, μn and σ n  are respectively obtained as Eqs. (2.13), (2.14), and (2.15) which are 

similar to those in the computation of the between-class variance criterion. Hence, the 

optimal threshold set ( MET ) can be determined by minimizing the criterion function ( )ψME T : 

0
( )ψ

≤ <
=ME MEL

Arg Min
T

T T      (2.23) 

 

2.3 The Proposed Fast Combinatorial Scheme for Efficient Selection of 

Multiple Thresholds 

2.3.1 The Combinatorial Search Scheme of Optimal Threshold Set Selection 

 To obtain the optimal threshold set T = {t1,..., tn,…, tk}, it is necessary to evaluate all the 

possible threshold sets to optimize the aforementioned criterion functions ( )ψ T . 

Traditionally, one can obtain the optimal threshold set by a simple and iterative, but 

exhaustive search procedure. The values of all thresholds in T are iteratively incremented and 
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evaluated till the maximum or minimum ( )ψ T  is obtained, and is performed as the pseudo 

code procedure presented in Figure 2.1.  

 

_ 0Max ψ ← ;  ( _Min ψ ←∞ ; for using the Minimum Error criterion)  

_Optiaml ← 0T  
for (t1 = 0 to L-1) do { 

. 
. 

for (tk = k-1 to L-1) do { 
Evaluate ( )ψ T ; (of ( )BCVψ T , ( )Entψ T  or ( )MEψ T  ) 

If ( ) _Max ψψ >T  then   (using ( ) _Min ψψ <T  when using the Minimum Error 
criterion) 
{ 

_ ( )Max ψ ψ← T ; ( _ ( )Min ψ ψ← T  when using the Minimum Error criterion) 

_Optiaml ←T T ; 
}  

 }  
   … 
}  

Figure 2.1. Conventional search procedure of optimal ( )ψ T  

 

It is obvious that the exhaustive search for finding the optimal ( )ψ T  is very time 

consuming. In order to obtain the optimal threshold set with k thresholds, 

!( 1) ( 2)... ( 1)
( )!

LL L L L k
L k

× − × − × − + =
−

 possible threshold sets must be evaluated! Thus, 

for example, when the number of thresholds is k = 3, and the number of gray levels L = 256, 

the number of potential threshold sets for which the criterion function ( )ψ T  must be 

evaluated is 16581120. This is because many equivalent threshold sets are repeatedly 

evaluated. In addition, this implementation is not scalable and parameterizable for variable 

amount of thresholds in multilevel thresholding, that is, the thresholding procedure cannot be 
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adapted to the changing of the number of desired thresholds k.  

To overcome these above mentioned drawbacks which arise from extending bi-level 

thresholding to multilevel thresholding cases, we introduce a combinatorial scheme to 

suppress the computation complexity, and to accomplish the parameterization of a desired 

threshold number k. The iterative procedure of evaluating all potential threshold sets for 

determining the optimal threshold set can be viewed as a combinatorial problem [69]. So we 

implement an efficient combinatorial generation procedure to obtain all potential threshold 

sets T. This combinatorial scheme avoids duplicate evaluation of equivalent threshold sets, 

and significantly reduces the amount of computation required.  

Looking at it as a combinatorial problem, the multilevel thresholding for selecting a set 

with k thresholds can be regarded as an “L choose k” problem, i.e. ( )L
k . The combination of 

a potential threshold set is denoted as a k-subset of the set of L gray levels. There are 

( ) !
!( )!

L
k L k

L
k =

−
 k-subsets possible in L gray levels. The task now of the multilevel 

thresholding is to find all these possible threshold combinations and determine the 

appropriate threshold set which achieves the optimal condition of the criterion function.  

In this study, we employ the Twiddle algorithm [70] to obtain all candidate combinations 

of thresholds. The Twiddle algorithm is a simple and efficient method for generating a 

threshold set. It has several features: 1) at each stage, only one element of the combination, 

i.e. C[z] as mentioned below, is altered for generating a new successive combination of 

numbers (threshold values), 2) this algorithm is order preserving in the sense that the 

elements of each threshold combination generated in each stage are strictly increasing with 

respect to the order of the set of L gray levels.  

We implement this algorithm using the C++ programming language, including several 
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necessary modifications for utilization in the C++ environment. Let the array G[0…L-1] store 

all elements of the set of L gray levels; and let the successive combinations be stored in the 

array C[0…k-1]. Consequently, one consecutive k-subset of combinations of thresholds is 

stored in this array in each stage of performing the Twiddle,. Then the auxiliary integer array 

p[0…L+1] is utilized to store the states of the Twiddle procedure. The auxiliary array p is 

initialized as follows: p[0] is set equal to L+1; p[1] through p[L-k] are set equal to 0; 

p[L-k+1] through p[L] are set equal to 1 through k, respectively, and p[L+1] is set equal to -2. 

When the Twiddle procedure is performed, three indexing numbers x, y, z are utilized to alter 

the states of the auxiliary array p and produce new successive combinations. A Boolean 

variable “finish” is employed as a return value of the Twiddle procedure to reflect if there are 

still new successive combination that can be produced. Initially, the “finish” is set equal to 

false, and the elements of the first combination C[0] through C[k-1] are set equal to G[L-k] 

through G[L-1], respectively. Hence the Twiddle procedure is called upon, and is performed 

repeatedly to produce consecutive combinations by setting C[z] equal to G[x], until the 

“finish” is toggled to be true. The pseudo code procedure of the Twiddle is presented in 

Figure 2.2.  

 

procedure Twiddle(x, y, z, p, finish): 
{ 
 i ← 0, j ← 0, and k ← 0; 
 while ( [ ] 0p j ≤ ) do { 

  j ← j + 1; 
 }  
 
 If ( [ 1] 0p j − = ) then { 

  For ( 1i j← −  step -1 until 1i = ) do { 
   [ ] 1p i ← − ; 

  } 
  [ ] 0p j ← ; 
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  0x ← , 0z ←  and 1y j← − ; 
  [1] 1p ← ;  

 } 
 Else then { 
  If (j > 1) then { 
   [ 1] 0p j − ← ; 

  } 
  While ( [ ] 0p j > ) do { 

   j ← j + 1; 
  } 
   
  k ← j – 1, and i ← j ; 
   
  while ( [ ] 0p i = ) do { 
   [ ] 1p i ← − , then i ← i + 1;    

  } 
 
  If ( [ ] 1p i = − ) then { 
   [ ] [ ]p i p k← ; 
   [ ] 1z p k← − ; 
   1x i← − , and 1y k← − ;    
   [ ] 1p k ← − ; 

  } 
  Else then { 
   If ( [0]i p= ) then { 

finish ←true; (All combinations have been produced. Then the Twiddle 
procedure should be terminated by toggling “finish”) 

Return (finish = true);  
   } 
   Else then { 
    [ ] [ ]p j p i← ; 
    [ ] 1z p i← − ; 
    [ ] 0p i ← ; 
    1x j← − , and 1y i← − ;     

   } 
  } 
 } 

 finish ←false; (there are still more successive combinations to be produced.) 
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 return (finish = false);  
}  
 

Figure 2.2. The pseudo code of the Twiddle procedure 

 

 Hence, the optimal threshold set can be obtained by recursively performing the Twiddle 

procedure. The potential threshold sets are successively produced by Twiddle .They are then 

evaluated until the maximum or minimum ( )ψ T  is achieved, and can be performed as the 

pseudo code procedure shown in Figure 2.3.  

 

G[0…L-1] stores the set of L gray levels 
_ 0Max ψ ← ;  ( _Min ψ ←∞ ; for using the Minimum Error criterion)  

_Optiaml ← 0T ; 

C[0]…[k-1] ← G[L-k] …G[L-1], respectively; (Initialize combination array C [0…k-1]) 
x ← 0, y ← 0, and z ← 0; 
p[0] ← L+1; p[1]…p[L-k] ← 0; p[L-k+1]…p[L] ← 1…k; p[L+1] ← -2; (Initialize auxiliary 
array p[0…L+1]) 

finish ←false; 
While (finish = false) do { 

Perform Twiddle (x, y, z, p, finish);  
[ ] [ ]C z G x← ; (to produce a new combination and store in array C) 

←T C ; (assign the combination to the current threshold set to be evaluated) 
Evaluate ( )ψ T ; (of ( )BCVψ T , ( )Entψ T  or ( )MEψ T  ) 
If ( ) _Max ψψ >T  (using ( ) _Min ψψ <T  when performing the Minimum Error method) 

then  
{ 

_ ( )Max ψ ψ← T ;  ( _ ( )Min ψ ψ← T  when using the Minimum Error criterion) 

_Optiaml ←T T ; 

}  
}  

Figure 2.3. Improved search procedure of optimal ( )ψ T  using the combinatorial scheme 
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 Consequently, the amount of evaluations of potential threshold sets that obtain the 

optimal threshold set using the combinatorial scheme is 1 !k  of those using the original 

exhaustive search scheme. For example, when performing in the case of quarter-level 

thresholding with three thresholds as previously mentioned, only 2763520 threshold sets are 

needed to be evaluated for determining the optimal one using the combinatorial scheme, 

which reduces 3! 6=  times of evaluations compared with those using the exhaustive search 

scheme. Consequently the amount of evaluating values of the criterion function can be 

significantly reduced. Furthermore, this combinatorial scheme also parameterizes the number 

of desired thresholds. This means that by using this procedure the thresholding process can be 

adopted, without any changes, on a variable desired number of thresholds. 

 

2.3.2 Fast Implementation of Criterion Functions for Multilevel Thresholding 

Methods 

As described in the previous section, it can be seen that finding one evaluation value of a 

certain criterion function ( ( )ψ BCV T , ( )ψ Ent T  or ( )ψME T ) of one threshold set T requires 

the computation of some class statistics of prospective threshold partitions, i.e. nw , μn , σ n , 

and nH  in Eqs. (2.13), (2.14), (2.17), and (2.15), respectively. These class statistics involve 

summations which are performed on each position of gray values on the histogram to obtain a 

certain value of them. Most of calculations of these summations are repeatedly performed 

many times using their original computation forms in Eqs. (2.13), (2.14), (2.17), and (2.15), 

and most of these calculations are redundant and time consuming. It can be found that 

complete summations of the above-mentioned class statistics are not necessarily performed 

for obtaining each criterion function value of a given threshold set T. To further reduce the 
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computation timing for obtaining one evaluation value of a certain threshold set T, such 

redundant computations can be avoided by using pre-computed look-up tables of these 

summation terms of the class statistics involved in the thresholding criterion functions. By 

observing the computation equations of nw , μn , σ n , and nH , it can be seen that these class 

statistics comprise of summations of the zeroth moment, the first moment, the a priori entropy, 

and the second moment, respectively, as viewed in the following expansion forms of their 

computation equations. In here, the summation terms of the zeroth moment, the first moment, 

the second moment, and the a priori entropy which are calculated on an interval ta - tb formed 

by two thresholds of T, i.e. the summation is performed from ta -position to tb-position on the 

histogram, are denoted as ( , )a bZ t t , ( , )a bF t t , ( , )a bS t t , and ( , )a bE t t , respectively. They are 

derived from aforementioned computation equations of nw , nμ , nσ , and nH , and are 

defined as: 

1 1

1( , 1)
+ −
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=
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t
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=
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and  ( , ) log( )=∑
b

a

t

a b i i
t

E t t P P        

As observed from above descriptions, it can be found that the values of ( , )a bZ t t , 

( , )a bF t t , ( , )a bS t t , and ( , )a bE t t  are repeatedly involved in obtaining each of the criterion 

function values. The re-calculation of the complete summations of them can be avoided in 

obtaining each criterion function value by using the following pre-computed tables for storing 

all potential values of ( , )a bZ t t , ( , )a bF t t , ( , )a bS t t , and ( , )a bE t t  with respect to all 

possible intervals of ta - tb on the histogram, and hence the computation cost of these 

summations can be significantly saved. The pre-computed tables of Z, F, S, and E are 

depicted in Table 2.1 – Table 2.4. In here, the ta - tb intervals are bounded within 

0 1≤ ≤ ≤ −a bt t L .  
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Table 2.1. The values of the zeroth moment ( , )a bZ t t  of intervals ta - tb on the histogram 

tb 
ta 

0 1 … b … L-1 

0 Z(0,0) Z(0,1) … Z(0,b) … Z(0,L-1) 

1 0 Z(1,1) … Z(1,b) … Z(1,L-1) 

… 0 0 … … … … 

a 0 0 0 Z(a,b) … Z(a,L-1) 

… 0 0 0 0 … … 

L-1 0 0 0 0 0 Z(L-1,L-1) 

 

 

 

Table 2.2. The values of the first moment ( , )a bF t t  of intervals ta - tb on the histogram 

tb 
ta 

0 1 … b … L-1 

0 F(0,0) F(0,1) … F(0,b) … F(0,L-1) 

1 0 F(1,1) … F(1,b) … F(1,L-1) 

… 0 0 … … … … 

a 0 0 0 F(a,b) … F(a,L-1) 

… 0 0 0 0 … … 

L-1 0 0 0 0 0 F(L-1,L-1) 
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Table 2.3. The values of the second moment ( , )a bS t t  of intervals ta - tb on the histogram 

tb 
ta 

0 1 … b … L-1 

0 S(0,0) S(0,1) … S(0,b) … S(0,L-1) 

1 0 S(1,1) … S(1,b) … S(1,L-1) 

… 0 0 … … … … 

a 0 0 0 S(a,b) … S(a,L-1) 

… 0 0 0 0 … … 

L-1 0 0 0 0 0 S(L-1,L-1) 

 

 

 

Table 2.4. The values of the a priori entropy ( , )a bE t t  of intervals ta - tb on the histogram 

tb 
ta 

0 1 … b … L-1 

0 E(0,0) E(0,1) … E(0,b) … E(0,L-1) 

1 0 E(1,1) … E(1,b) … E(1,L-1) 

… 0 0 … … … … 

a 0 0 0 E(a,b) … E(a,L-1) 

… 0 0 0 0 … … 

L-1 0 0 0 0 0 E(L-1,L-1) 
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To rapidly construct the necessary tables for evaluating the criterion functions, we apply 

the recursively accumulative property of ( , )a bZ t t , ( , )a bF t t , ( , )a bS t t , and ( , )a bE t t  for 

saving the amounts of “additions” for obtaining their summation terms during computing 

their values for consecutive (ta - tb) intervals. Their recursively accumulative computation 

forms can be obtained as, 

1

0
(0, ) (0, 1)

−

=

= + = − +∑
b

b b

t

b i t b t
i

Z t P P Z t P ,    (2.28) 

and 
1

0 0
( , ) (0, ) (0, 1)

−

= =

= − = − −∑ ∑
b at t

a b i i b a
i i

Z t t P P Z t Z t    (2.29) 

Similarly, the computation forms of F, S, and E can be obtained as 

(0, ) (0, 1)= − +
bb b b tF t F t t P ,      (2.30) 

and ( , ) (0, ) (0, 1)= − −a b b aF t t F t F t      (2.31) 

2(0, ) (0, 1)= − +
bb b b tS t S t t P ,       (2.32) 

and ( , ) (0, ) (0, 1)= − −a b b aS t t S t S t      (2.33) 

(0, ) (0, 1) log( )= − +
b bb b t tE t E t P P ,      (2.34) 

and ( , ) (0, ) (0, 1)a b b aE t t E t E t= − −        (2.35) 

 

Hence, by using the above computation forms, the look-up tables of ( , )a bZ t t , ( , )a bF t t , 

( , )a bS t t , and ( , )a bE t t  can be rapidly constructed by using the following two steps: 

Step 1. For the values of the first rows of Table 2.1 – Table 2.4, the recursively accumulative 

forms of in Eqs. (2.28), (2.30), (2.32), and (2.34) are utilized for obtaining the values of 

(0, )bZ t , (0, )bF t , (0, )bS t , and (0, )bE t , respectively. 
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Step 2. Then, for the rest rows of the tables, the values of ( , )a bZ t t , ( , )a bF t t , ( , )a bS t t , and 

( , )a bE t t  are obtained using Eqs. (2.29), (2.31), (2.33), and (2.35), respectively.  

Hence, the class statistics nw , nμ , nσ , and nH  terms in the criterion functions, 

( )ψ BCV T  (applying Z and F), ( )ψ Ent T  (applying Z and E), and ( )ψME T  (applying Z, F, 

and S) can be rapidly computed by using index operations with the look-up tables of Z, F, S, 

and E, as depicted in Table 2.1 – Table 2.4 and Eqs. (2.24) – (2.27). By integrating the fast 

look-up table scheme with the combinatorial scheme based search procedure, the 

computation timing for obtaining the optimal threshold set T can be dramatically reduced.  

 

2.4 The Proposed Automatic Multilevel Thresholding Method 

 When segmenting objects from a given image, different objects with homogeneous 

illuminations must be separated into different segmented images. For this purpose, the 

discriminant criterion, for measuring separability among the segmented images with different 

objects, is described in this section. By evaluating the separability criterion, the number of 

objects, into which the image should be segmented, can be automatically determined. Hence, 

an automatic multilevel thresholding method, based on this criterion, is proposed as follows.  

 The discriminant criterion functions mentioned in Section 2.2 can be considered a 

measure of separability, among all existing classes, decomposed from the original image I. 

We introduce this concept as a criterion of automatic image segmentation, denoted by the 

“separability factor” – SF  in this study, which is defined as, 

( )BC

T

v
v

T
SF =        (2.36) 

where Tv  is the total variance of the gray-level values of the image I and serves as the 
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normalization factor in this equation. The SF  value measures the separability among all 

existing classes, and the SF  value lies within the range 0 1≤ ≤SF . Maximizing the SF 

value is the objective, to optimize the segmentation result. This property is more obvious 

when using an alternative expression of this measure: 

( ) ( )1= −BC WC

T T

v v
v v

T T
SF =      (2.37) 

This can be supported by the property of the total variance is equivalent to the sum of the 

between class-variance and the within-class variance. This property is obtained by, 
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In the above derivation, the dummy threshold 0 0=t  is utilized for convenience in 

simplifying the expression of equation terms. Through observation of the terms comprising 

( )WCv T , if the pixels in each class are broadly spread, i.e. the contribution of the class 

variance 2σ n  is large, then the corresponding SF  measure becomes small. Hence, when 

SF  approaches 1.0, all classes of gray levels decomposed from the original image I are 

ideally and completely separated. This property also satisfies the concept of uniformity of the 

segmented regions, as presented by Levein and Nazif [68].  
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Accordingly, based on this efficient discriminant criterion on measuring the separability 

of the object regions of homogenous gray levels, an automatic multilevel thresholding 

method can be developed to recursively segment homogeneous objects from the image I, 

regardless of the number of objects and the complexity of the image. The multilevel 

thresholding process can be recursively performed on the gray levels of the image I until the 

SF  measure is large enough, i.e. SF  approaches 1.0, to reflect that the appropriate 

discrepancy among the resultant classes of gray levels is achieved so that the homogeneous 

objects are completely segmented into separate thresholded images.  

 Through the aforementioned properties, this objective can be reached by minimizing the 

total within-class variance ( )WCv T . This can be achieved by the scheme that selects the class 

with the maximal contribution ( 2σn nw ) of the total within-class variance for performing the 

bi-level thresholding procedure to partition it into two more classes in each recursion. Thus, 

the SF  measure will most rapidly achieve the maximal increment to satisfy sufficient 

separability among the resultant classes of gray levels. Furthermore, objects with 

homogeneous gray levels, will be well-separated. 

Based on the above definitions, a new automatic multilevel thresholding method is 

developed. The details of the proposed method are presented below. 

Step 1: In the beginning, compute the histogram of gray values of the image I, and all the 

gray values in I are assigned to one initial class C0. Let q denote the number of currently 

determined thresholds in the threshold set T, which classify the gray values into q+1 classes; 

Initially, T comprise of no thresholds and q = 0. 

Step 2: In current recursion, q thresholds have been determined, i.e. T = {t1, ..., tn, …, tq}, 

which partition the gray values of the image I into q+ 1 classes (C0, …, Cn, …, Cq). Compute 

the class-mean μn, the cumulative probability mass function wn, and the standard deviation 
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σ n  of each existing class Cn using Eqs. (2.13) – (2.15), respectively, where n denotes the 

index of the present classes and n = 0 ~ q.  

Step 3: From all classes Cn, determine the class Cp with the maximal contribution ( 2σn nw ) of 

the total within-class variance WCv , which is to be partitioned in the following step to achieve 

the maximal increment of SF .  

Step 4: Determine the optimal threshold *
St  to partition pC : { }11, 2,..., ++ +p p pt t t  into two 

classes 0pC  and 1pC  which comprise the subsets of gray values decomposed from pC . The 

*
St  is obtained by maximizing the between-class variance ′BCv  of partitioned 0pC  and 1pC  

with respect to tS, and is computed as, 

1

*( )
+< ≤

′ ′=
p S p

BC S BC St t t
v t Max v (t )        (2.39) 

2 2
0 0 1 1( ) ( )μ μ μ μ′ = − + −BC S p p p p p pv (t ) w w ,     (2.40) 

0
1= +

= ∑
S

p

t

p i
i t

w P , 
1

1
1

+

= +

= ∑
p

S

t

p i
i t

w P       (2.41) 

0 0
1

μ
= +

= ∑
S

p

t

p i p
i t

iP w , 
1

1 1
1

μ
+

= +

= ∑
p

S

t

p i p
i t

iP w       (2.42) 

1

1

+

= +

= ∑
p

p

t

p i
i t

w P , 
1

1
μ

+

= +

= ∑
p

p

t

p i p
i t

iP w      (2.43) 

where wp and μp are the class-probability and class-mean of Cp, respectively. 

Then *
St  is put into the threshold set T, and is applied to partition pC  into 0pC  and 1pC , i.e. 

0 :pC { }*1, 2,...,+ +p p St t t , and 1 :pC { }* *
11, 2,..., ++ +S S pt t t . Hence the gray values of the image 
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I are then divided into q+ 1 classes. Then re-label all the thresholds in T and let q = q+ 1.  

Step 5: Computed the SF  measure of all currently obtained classes using Eq. (2.36). If the 

following “Objective Condition” is satisfied,  

≥ SFThSF        (2.44) 

then go to Step 6; otherwise, go back to Step 2 to perform further partition process on the 

obtained classes.  

Step 6: Deliver the obtained threshold set T, and then classify the pixels into q+ 1 separate 

classes C0, C1,…, Cq using to the resultant threshold values t1,  t2, …, tq; and terminate the 

thresholding procedure.  

As pointed out in the above-mentioned derivations in Eqs. (2.37)-(2.38), it can be seen 

that the intensity of the SF  measure reflects whether if the obtained classes of gray levels 

(homogenous objects) have sufficient discrepancies, and are well-separated with each other. 

Hence, at each recursion in the proposed automatic multilevel thresholding procedure, one 

optimal threshold is determined to partition the class which comprises of the most divergent 

distribution of gray levels, i.e. with the maximal contribution ( 2σn nw ) of the ( )WCv T , to 

achieve maximum increment of the SF  measure. This way can accomplish the satisfactory 

thresholded results by means of the smallest number of thresholding levels. In plain words, 

the number of thresholding levels is determined by the number of the necessary times of 

recursions for partitioning the gray levels of the image into appropriate number of classes so 

that the resultant SF  measure can satisfy the above-mentioned objective condition. Here the 

parameter THSF is the pre-defined threshold to determine whether the thresholded objects are 

sufficiently separated to satisfy the objective condition. This study employs 0.92=SFTh , 

which is determined from the training using numerous images, such that all existing classes 
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are satisfactorily separated. Consequently, we obtain q+1 thresholded classes of gray levels, 

0 ... ...= U U U Un qC C CI         

where each class Cn represents one homogeneous object decomposed from the original image 

I.  

Besides, the proposed multilevel thresholding method can also be modified to be 

performed on the demand for thresholding the gray levels of the image into a desired number 

of classes. To accomplish this demand, the only necessary change is to replace the objective 

condition in Eq. (2.44) in Step 5 of the algorithm by the following one: 

= Kq        (2.45) 

where K is the desired number of thresholds ( 1≥K ) to divide the gray levels of the image 

into K+1 classes. Hence, the thresholds can be determined one by one in each recursion until 

the desired number of thresholding levels is achieved, and each determined threshold is 

ensured to achieve the maximum separation on the obtained thresholded images.  

 

2.5 Experimental Results 

In this section, the performance of the two proposed methods are evaluated and 

compared to the three most well-known and widely applied thresholding methods, which 

have been used in cases performing a supervised number of thresholding levels. We utilized 

two photographs - “Road” and “Lena” - and a real-life document image - “Advertisement” - 

as plotted in Figure 2.4(a)-Figure 2.6(a), respectively. They were transformed into gray-scale 

images with L=256 gray-levels. The proposed combinatorial scheme is implemented on the 

multilevel versions of the three above-mentioned thresholding criterion functions – 
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( )ψ BCV T , ( )ψ Ent T , and ( )ψ ME T . Then multilevel thresholding experiments were 

performed, using the above-mentioned three thresholding criterion methods – the 

between-class variance method [12], the entropy method [13], and the minimum error method 

[14], the improved versions of these three criterion methods by the proposed combinatorial 

scheme, Fleury et. al’s running entropic method [26] for the maximum entropy criterion, and 

the proposed automatic multilevel thresholding method, in order to analyze and evaluate their 

performances. These methods were implemented on a Pentium-4-based personal computer 

using C++ programming language. As well as using subjective visual analysis, we adopted 

the “uniformity measure” from Levein and Nazif’s literature [68] to objectively evaluate the 

segmentation performance of these methods. If an image is well-segmented, the uniformity 

measure score should be close to 1. Besides, as for the experimental data, the computation 

timings of the proposed combinatorial scheme combined with the three thresholding criterion 

functions includes the construction time of their necessary corresponding class statistics 

tables.  

 The first test image, “Road”, a photograph taken in Hsinchu, is shown in Figure 2.4(a). 

After the proposed automatic multilevel thresholding method had been performed, two 

suitable thresholds were automatically determined, as listed in Table 2.5. Then the other three 

fixed-level methods were performed, by setting the number of desired thresholds to that 

determined by the proposed method. The performance results of these three fixed-level 

methods, as well as the proposed method, are shown in Figure 2.4 and Table 2.5. In this 

image, the light foreground objects, lanes and sky, are most interesting. As shown in Figure 

2.4(b), (d), (f) and (h), only the proposed method and the between-class variance method 

correctly segments the lanes and sky, while the other two methods are unable to select 

adequate threshold values to obtain satisfactory thresholded images. In Figure 2.4(c), (e), (g) 

and (i), the gray levels (0, 127, and 255) have been utilized as representative gray levels of 
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the three segmented intervals to enhance the contrast of the combined thresholded images, 

derived by the three methods, respectively. Hence in this case, it is obvious that the proposed 

method and the between-class variance method obtain satisfactory thresholded images, as 

well as similar uniformity scores. As seen from the computational experimental information 

for each method listed in Table 2.5, the proposed automatic multilevel thresholding method 

saves a great deal of computational time achieves fastest computation performance among all 

methods, and it can also be seen that the proposed combinatorial scheme and Fleury et. al’s 

running entropic method save a significant amount of computation timings compared to the 

corresponding original methods of these criterion functions.  

 

 
Table 2.5. Experimental data of performing thresholding on Figure 2.4(a), “Road”, by our 

proposed automatic multilevel thresholding method (AMT), Between-class variance method 
(BCV), Entropy method (ENT) and Minimum Error method (ME) 

Computation time (seconds) 
Criterion 
Method 

 
Threshold 

levels 

 
Selected threshold 

values 

 
Uniformity

measure
Original 
method 

with Fleury 

et al.’s 
method 

with our 
combinatorial 

scheme 

AMT 3 96(2), 174(1) 0.942 0.00063 - - 

BCV 3* 96, 185 0.943 0.438 - 0.015 

ENT 3* 44, 98 0.417 1.156 0.032 0.031 

ME 3* 252, 253 0.738 0.656 - 0.047 
“*” denotes the number of thresholding levels is given by supervision 

(n) denotes the order of the threshold been determined by the proposed method 
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(a) Original image 

(b) The light object image derived by the 
proposed method 

(c) The combined thresholded image derived by 
the proposed method 

(d) The light object image derived by 
Between-class variance method 

(e) The combined thresholded image derived by 
Between-class variance method 
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(f) The light object image derived by Entropy 
method 

(g) The combined thresholded image derived by 
Entropy method 

(h) The light object image derived by Minimum 
Error method 

(i) The combined thresholded image derived by 
Minimum Error method 

Figure 2.4. Result of segmenting the test image 1, “Road” (image size=720×480) 
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 Figure 2.5 and Table 2.6 show the results for the second test image, “Lena”. After 

performing the proposed method, three thresholds were automatically determined, as listed in 

Table 2.6. Then the other three methods were performed by setting the desired number of 

thresholds the same as determined by the proposed method. In the “Lena” image, the dark 

foreground objects, the frame of the mirror, her hat decoration and her eyes and hair, are most 

interesting. As shown in Figure 2.5(b), (d), (f) and (h), the three fixed-level methods and the 

proposed method provided acceptable dark foreground object images with some differences. 

In Figure 2.5(c), (e), (g) and (i), the combined thresholded images, derived by the four 

methods, are plotted by utilizing the gray levels (0, 85, 170, and 255) as the representative 

gray levels. Hence, in this case, some of the fixed-level thresholding methods (such as the 

between-class variance method and the entropy method) can provide results as good as the 

proposed method, in both visual effect and uniformity scores. However, they require much 

more computational time to obtain the optimal threshold sets. From the corresponding 

information in Table 2.6, we can find that the proposed combinatorial scheme’s advantages 

on savings of computation timings on the thresholding criterion methods are more obvious as 

the number of desired thresholds is growing larger, and the proposed automatic multilevel 

thresholding method provides even more savings on computational costs.  

 

 

 

 

 

 



 

 44

 

 

 

 

 
Table 2.6. Experimental data of performing thresholding on Figure 2.5(a), “Lena”, by our 
automatic multilevel thresholding method (AMT), Between-class variance method (BCV), 

Entropy method (ENT), and Minimum Error method (ME) 

Computation time (seconds) 
 

Criterion 
Method 

 
Threshold 

levels 

 
Selected 

threshold values

 
Uniformity

measure 
Original 
method 

with Fleury et 
al.’s method 

with our 
combinatorial 

scheme 

AMT 4 
80(3), 118(1), 

166(2) 
0.926 0.00078 - - 

BCV 4* 83, 126, 169 0.930 42.192 - 0.328 

ENT 4* 88, 129, 176 0.927 131.442 1.110 0.609 

ME 4* 68, 246, 247 0.472 66.936 - 1.218 
“*” denotes the number of thresholding levels is given by supervision 

(n) denotes the order of the threshold been determined by the proposed method 
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(a) Original image 

  
(b) The dark foreground object image derived 
by the proposed method 

(c) The combined thresholded image derived by 
the proposed method 

  
(d) The dark foreground object image derived 
by Between-class variance method 

(e) The combined thresholded image derived by 
Between-class variance method 
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(f) The dark foreground object image derived by 
Entropy method 

(g) The combined thresholded image derived by 
Entropy method 

  
(f) The dark foreground object image derived by 
Minimum Error method 

(g) The combined thresholded image derived by 
Minimum Error method 

Figure 2.5. Result of segmenting the test image 2, “Lena” (image size=512×512) 
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For the document image analysis case, one should focus on the text extraction effect. 

Figure 2.6(a) shows a real-life, full-page, complex document image, “Advertisement”. It 

comprises several character strings, which are overlapped by a highly complex background, 

with several decorated objects and textures. By evaluating the processing results of this 

complex document image, the proposed method’s outstanding performance is more obviously 

demonstrated. The results of performing penta-level thresholding, for these four methods, are 

shown in Figure 2.6 and Table 2.7; the extraction of characters was the main focus in this 

experiment. As shown in Figure 2.6(b), after the proposed method had been performed, the 

dark characters were successfully and clearly segmented from the decorated non-text objects, 

with different illuminations and background textures, which they overlap. The other three 

methods were then performed, under the same number of thresholding levels as determined 

by the proposed method. Figure 2.6(d), (f) and (h) show the darkest thresholded image, which 

are expected to retain the characters, obtained by the other three fixed-level methods. 

However, only the between-class variance method can provide an acceptable thresholded 

result for characters extraction, as shown in Figure 2.6(d); the characters in Figure 2.6(f), 

obtained by the entropy method, suffer serious broken stokes, and, as shown in Figure 2.6(h), 

the minimum error method fails to separate characters from background objects. To observe 

the combined thresholded images derived by three methods, Figure 2.6(c), (e), (g) and (i) 

utilize the gray values (0, 63, 127, 191 and 255) as representative gray levels of the divided 

intervals of the thresholded images. Notably, the minimum error criterion method cannot 

obtain acceptable results, on multilevel thresholding, in most tests in this study. This is 

because the minimum error method assumes the histogram is comprised of a desired number 

(k) of Gaussian distributions; hence, it fails when the actual histogram of the image cannot 

match this assumption. For the computational issues, as presented in Table 2.7, we can find 

that, although the uniformity score of the proposed automatic multilevel thresholding method 

is not the highest among all methods, it yields the best thresholded image for the extraction of 
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characters. Moreover, the computation time of the proposed automatic multilevel 

thresholding method just mildly increases for penta-level thresholding, while the computation 

costs of all other three fixed-level methods of the criterion functions tremendously increase. 

Herein, from Table 2.7, we can see that the proposed combinatorial scheme saves a very great 

deal of computation timings compared to the corresponding original methods of these 

criterion functions, and this proposed combinatorial scheme can also provide faster 

computation performance for the entropic method than Fleury et. al’s running entropic 

method.  

 

 

Table 2.7. Experimental data of performing thresholding on Figure 2.6(a), “Advertisement”, 
by our automatic multilevel thresholding method (AMT), Between-class variance method 

(BCV), Entropy method (ENT), and Minimum Error method (ME) 
Computation time (seconds) 

 
Criterion 
Method 

 
Threshold 

levels 

 
Selected threshold

values 

 
Uniformity

measure 
Original 
method 

with Fleury et 
al.’s method 

with our 
combinatorial 

scheme 

AMT 5 
59(4), 98(2), 

148(1), 187(3)
0.925 0.00094 - - 

BCV 5* 
82, 127, 163, 

194 
0.936 10342.68 

- 
 

31.641 

ENT 5* 
44 , 89 , 135 , 

180 
0.913 29805.37 90.906 67.219 

ME 5* 
194 , 195 , 196 , 

197 
0.412 16408.43 - 111.257 

“*” denotes the number of thresholding levels is given by supervision 

(n) denotes the order of the threshold been determined by the proposed method 
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(a) Original image 

  
(b) The dark foreground object image derived by 
the proposed method 

(c) The combined thresholded image derived by 
the proposed method 
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(d) The dark foreground object image derived by 
Between-class variance method 

(e) The combined thresholded image derived by 
Between-class variance method 

  
(f) The dark foreground object image derived by 
Entropy method 

(g) The combined thresholded image derived by 
Entropy method 
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(h) The dark foreground object image derived by 
Minimum Error method 

(i) The combined thresholded image derived by 
Minimum Error method 

Figure 2.6. Result of segmenting the test image 3, “Advertisement”  
(scanned by 300dpi, image size=1842×3310) 

 

 As shown by the above experimental results, the proposed automatic multilevel 

thresholding method can automatically determines a suitable number of thresholding levels 

and selects appropriate threshold values that yield fine visual effects of thresholded images, 

with the segmented objects being sufficiently distinct for further processing, and the proposed 

objective uniformity evaluation also demonstrates its effectiveness. As well as the proposed 

combinatorial scheme can significantly reduce the computation timings of performing 

multilevel thresholding process in fixed-level cases based on the above-mentioned criterion 

functions.  

 As for the computational issues of the proposed combinatorial scheme, its computation 

timings in the tri-level thresholding cases are mostly dominated by the computation of 

construction of necessary class statistics tables. Therefore, the advantage on savings of the 
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computation timings of the proposed scheme becomes more obvious as the number of desired 

thresholds is growing larger. Additionally, it is notably that when the original computation 

methods of the criterion functions are performed, the computation time of the maximum 

entropy criterion is larger than the minimum error criterion; but when the proposed scheme is 

applied, the minimum error criterion’s computation time is contrarily larger than that of the 

maximum entropy criterion. This is because when the proposed scheme is applied, the 

computation timings of the criterion functions are dominated by calculation of their 

non-summative terms, and hence the calculation of two logarithms and one square root 

evaluation for each class contribution of the minimum error criterion obviously costs more 

computation timing than the other criterion functions.  

 Notably, it can also be found that, under the same thresholding levels, the obtained 

thresholded results are as well as those obtained by the between-class variance method, but 

the computation time of the proposed automatic multilevel thresholding method is 

substantially faster. The computational time of the proposed automatic thresholding method 

increases moderately, when more thresholds are necessary as the complexity of the image 

increases. In contrast, the fixed-level criterion-based thresholding methods have to perform 

evaluations on all possible threshold sets. Thus, when the desired number of thresholding 

levels increases, their computational time increases exponentially; even though this is 

significantly improved by performing the proposed combinatorial scheme. From the 

experimental results, it can be concluded that the proposed automatic multilevel thresholding 

method performs satisfactorily in computational efficiency issues, as well as both subjective 

and objective evaluations of thresholded results, on all the tests in this study.  
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Chapter 3. MULTI-PLANE SEGMENTATION APPROACH FOR 

COMPLEX DOCUMENT IMAGES 

  

 This chapter presents a new method, namely the multi-plane segmentation approach, for 

segmenting and extracting textual objects from various real-life complex document images. 

The proposed multi-plane segmentation approach first decomposes the document image into 

distinct object planes to extract and separate homogeneous objects including textual regions 

of interest, non-text objects such as graphics and pictures, and background textures. This 

process consists of two stages - automatic localized histogram multilevel thresholding, and 

multi-plane region matching and assembling. Then a text extraction procedure is applied on 

the resultant planes to detect and extract textual objects with different characteristics in the 

respective planes. The proposed approach processes document images regionally and 

adaptively according to their respective local features. Hence detailed characteristics of the 

extracted textual objects, particularly small characters with thin strokes, as well as gradational 

illuminations of characters, can be well-preserved. Moreover, this way also allows 

background objects with uneven, gradational, and sharp variations in contrast, illumination, 

and texture to be handled easily and well. Experimental results on real-life complex 

document images demonstrate that the proposed approach is effective in extracting textual 

objects with various illuminations, sizes, and font styles from various types of complex 

document images.  
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3.1 Introduction 

 Extraction of textual information from document images provides many useful 

applications in document analysis and understanding, such as optical character recognition, 

document retrieval, and compression [4][5]. To-date, many techniques were presented for 

extracting textual objects from monochromatic document images [29]-[32]. In recent years, 

owing to advances in multimedia publishing and printing technology have led to an 

increasing number of real-life documents in which stylistic character strings are printed with 

pictorial, textured, and decorated objects and colorful, varied background components. 

However, most of current approaches cannot work well for extracting textual objects from 

real-life complex document images. Compared to monochromatic document images, text 

extraction in complex document images brings many difficulties associated with the 

complexity of background images, variety and shading of character illuminations, 

superimposing characters with illustrations and pictures, as well as other decorated 

background components. As a result, there is an increasing demand for a system that is able 

to read and extract the textual information printed on pictorial and textured regions in both 

colored images as well as monochromatic main text regions.  

 Several newly developed global thresholding methods are useful in separating textual 

objects from non-uniform illuminated document images. Liu and Srihari [71] proposed a 

method based on texture features of character patterns, while Cheriet et al. [23] proposed a 

recursive thresholding algorithm extended from Otsu’s optimal criterion [12]. Both these 

methods classify pixels in the original image as foreground objects (particularly textual 

objects of interest) or as background ones according to their gray intensities in a global view, 

and are attractive because of computational simplicity. However, binary images obtained by 

global thresholding methods are subject to noise and distortion, especially because of uneven 

illumination and the spreading effect caused by the image scanner. Parker [72] proposed a 
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local gray intensity gradient thresholding technique which is effective for extracting textual 

objects in badly illuminated document images. Because this method is based on the 

assumption of binary document images, its application is limited to extracting character 

objects from backgrounds no more complex than monotonically changing illuminations. A 

local and adaptive binarization method was proposed by Ohya et al. [73]. This method 

divides the original image into blocks of specific size, determines an optimal threshold 

associated with each block to be applied on its center pixel, and uses interpolation for 

determining pixel-wise thresholds. It can effectively extract textual objects from images with 

complex backgrounds on condition that the illuminations are very bright compared with those 

of the textual objects.  

 Some other methods support a different viewpoint for extracting texts by modeling the 

features of textual objects and backgrounds. Kamel and Zhao [74] proposed the logical level 

technique to utilize local linearity features of character strokes, while Venkateswarlu and 

Boyle’s average clustering algorithm [75] utilizes local statistical features of textual objects. 

These methods apply symmetric local windows with a pre-specified size, and several 

pre-determined thresholds of prior knowledge on the local features, and so that characters 

with stroke widths that are substantially thinner or thicker than the assumed stroke width, or 

characters in varying illumination contrasts with backgrounds may not be appropriately 

extracted. Ye et al.’s hybrid extraction method [76] integrates global thresholding, local 

thresholding and the double-edge stroke feature extraction techniques to extract textual 

objects from document images with different complexities. The double-edge technique is 

useful in separating characters whose stroke widths are within a specified size from uneven 

backgrounds. Some recently presented methods [77][78] utilized the sub-image concepts to 

deal with the extraction of textual objects under different illumination contrasts with 

backgrounds. Dawoud and Kamel's [77] proposed a multi-model subimage thresholding 
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method that considers a document image as a collection of pre-determined regions, i.e. 

sub-images, and then textual objects contained in each sub-image are segmented using 

statistical models of the gray-intensity and stroke-run features. In Amin and Wu's multi-stage 

thresholding approach [78], Otsu's global thresholding method is firstly applied, and then a 

connected-component labeling process is applied on the thresholded image to determine the 

sub-images of interest, and these sub-images are undergone another thresholding process to 

extract textual objects. The extraction performance of the above two methods highly rely on 

the adequate determination of sub-image regions. Thus, in case of the textual objects 

overlapped on pictorial or textured backgrounds in poor and varying contrasts, suitable 

sub-images are hard to be determined to yield satisfactory extraction results.  

 Since most textual objects show sharp and distinctive edge features, methods based on 

edge information [33]-[36] have been developed. Such methods utilize an edge detection 

operator to extract the edge features of textual objects, and then use these features to extract 

texts from document images. Wu et al.’s Textfinder system [34] uses nine second-order 

Gaussian derivative filters to obtain edge-feature vectors of each pixel at three different scales, 

and applies the K-means algorithm on these edge-feature vectors to identify corresponding 

textual pixels. Hasan and Karam [35] introduced a method that utilizes a morphological edge 

extraction scheme, and applies morphological dilation and erosion operations on the extracted 

closure edges to locate textual regions. Edge information can also be treated as a measure for 

detecting the existence of textual objects in a specific region. In Pietikainen and Okun’s work 

[36], edge features extracted by the Sobel operator are divided into non-overlapping blocks, 

and then these blocks are classified as text or non-text according to their corresponding 

values of the edge features. Such edge-based methods are capable of extracting textual 

objects in different homogeneous illuminations from graphic backgrounds. However, when 

the textual objects are adjoined or touched with graphical objects, texture patterns, or 
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backgrounds with sharply varying contours, edge-feature vectors of non-text objects with 

similar characteristics may also be identified as textual ones, and thus the characters in 

extracted textual regions are blurred by those non-text objects. Moreover, when textual 

objects do not have sufficient contrasts with non-text objects or backgrounds to form 

sufficiently strong edge features, such textual objects cannot be easily extracted with 

edge-based methods.  

 In recent years, several color-segmentation-based methods for text extraction from color 

document images have been proposed. Zhong et al. [37] proposed two methods and a hybrid 

approach for locating texts in color images, such as in CD jackets and book covers. The first 

method utilizes a histogram-based color clustering process to obtain connected-components 

with uniform colors, and then several heuristic rules are applied to classify them as textual or 

non-textual objects, as well as the second method locates textual regions based on their 

distinctive spatial variance. To more effectively detect textual regions, both methods are 

combined into a hybrid approach. Although the spatial variance method still suffers from 

drawbacks of the edge-based methods mentioned previously, the color connected-component 

method moderately compensates for these drawbacks. However, this approach still cannot 

provide acceptable results when the illuminations or colors of characters in large textual 

regions are shaded. Several recent techniques utilize color clustering or quantization 

approaches for determining the prototype colors of documents so as to facilitate the detection 

of character objects in these separated color planes. In Jain and Yu’s work [38], a color 

document is decomposed into a set of foreground images on the RGB color space using a 

bit-dropping quantization and the single-link color clustering algorithm. Strouthopoulos et 

al.’s adaptive color reduction technique [39] utilizes an unsupervised neural network 

classifier and a tree-search procedure to determine prototype colors. Some alternative color 

spaces are also adopted to determine prototype colors for finding textual objects of interest. 
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Yang and Ozawa [40] make use of the HSI color space to segment homogenous color regions 

for extracting bibliography information from book covers, while Hase et al. [41] apply a 

histogram-based approach to select prototype colors on the CIE Lab color space to obtain 

textual regions. However, most of the aforementioned methods have difficulties in extracting 

texts which are embedded in complex backgrounds or that touch other pictorial and graphical 

objects. This is because the prototype colors are determined in a global view, so that 

appropriate prototype colors cannot be easily selected for distinguishing textual objects from 

those touched pictorial objects and complex backgrounds without sufficient contrasts. 

Besides, such problems also limit the reliability of such methods on handling uneven 

illuminated document images.  

 In a word, extracting texts from complex document images involves several difficulties. 

These difficulties arise from the following properties of complex documents: 1) Character 

strings in complex document images may have different illuminations, sizes, and font styles, 

and are overlapped with various background objects with uneven, gradational, and sharp 

variations in contrast, illumination, and texture, such as illustrations, photographs, pictures or 

other background textures. 2) These documents may comprise small characters with very thin 

strokes as well as large characters with thick strokes, and may be influenced by image 

shading. An approach for extracting black texts from such complex backgrounds to facilitate 

compression of document images has been proposed in our previous work [79].  

 In this study, we propose an effective method, namely the multi-plane segmentation 

approach, for segmenting and extracting textual objects of interest from these complex 

document images, and resolving the above issues associated with the complexity of their 

backgrounds. The proposed multi-plane segmentation approach decomposes the document 

image into separate object planes by applying the two processing stages: automatic localized 

histogram multilevel thresholding, and multi-plane region matching and assembling. Figure 1 
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illustrates a flow diagram of the proposed approach. In the first stage, distinct objects 

embedded in block regions are decomposed into separate “sub-block regions” by performing 

the localized histogram multilevel thresholding process. Afterward, in the second stage, the 

multi-plane region matching and assembling process is applied on these obtained sub-block 

regions to arrange them into homogeneous object planes. Consequently, homogeneous 

objects including textual regions of interest, non-text objects such as graphics and pictures, 

and background textures are extracted and separated into distinct object planes. The text 

extraction procedure is then performed on the resultant planes to detect and extract the textual 

objects with different characteristics in the respective planes. The proposed approach 

processes document images regionally and adaptively by means of their local features. This 

way allows detailed characteristics of the extracted textual objects to be well-preserved, 

especially the small characters with thin strokes, as well as characters in gradational and 

shaded illumination contrasts. Thus, textual objects adjoined or touched with pictorial objects 

and backgrounds with uneven, gradational, and sharp variations in contrast, illumination, and 

texture can be handled easily and well. Experimental results demonstrate that the proposed 

approach is capable of extracting textual objects with different illuminations, sizes, and font 

styles from different types of complex document images. As compared with other existing 

techniques, our proposed approach exhibits feasible and effective performance on text 

extraction from various real-life complex document images.  

 The rest of this chapter is organized as follows. In Section 3.2 and Section 3.3, the two 

stages of the proposed multi-plane segmentation approach, the localized histogram multilevel 

thresholding procedure, and the multi-plane region matching and assembling process, are 

respectively presented. Then, a simple text extraction procedure is described in Section 3.4. 

Next, Section 3.5 illustrates comparative performance evaluation results.  
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Figure 3.1. Block diagram of the proposed multi-plane segmentation approach 

 



 

 61

3.2 Localized Histogram Multilevel Thresholding 

 The multi-plane segmentation process, if necessary, begins by applying a 

color-to-grayscale transformation on the RGB components of image pixels in a color 

document image, to obtain its illumination image Y . After the color transformation is 

performed, the illumination image Y  still retains the texture features of the original color 

image, as pointed out in [34], and thus the character strokes in their original color are still 

well-preserved. Then the obtained illumination image Y  will be divided into 

non-overlapping rectangular block regions with dimension MH×MV, as shown in Fig. 2(a). 

Thus the mission is to extract objects with homogeneous characteristics from these 

rectangular block regions into different sub-block regions to facilitate further analysis in the 

following stage. For this purpose, the discriminant criterion is useful for measuring 

separability among the decomposed regions with different objects. Its application on bi-level 

global thresholding to extract foreground objects from the background was first presented by 

Otsu [12]. This method is ranked as the most effective bi-level threshold selection method 

[27][28]. However, when the number of desired thresholds increases, the computation needed 

to obtain the optimal threshold values is substantially increased and the search to achieve the 

optimal value of the criterion function is particularly exhaustive. To perform multilevel 

thresholding using discriminant criterion in a more computationally frugal way, Reddi et al. 

[22] presented an efficient method for thresholding an image into a specified number of 

objects. However, this method is adequately performed only when the image contains exactly 

three or fewer objects, and thus it cannot completely and effectively segment all objects of 

interest from a given image comprised of an uncertain number of objects.  

     Hence, an effective multilevel thresholding technique is needed for automatically 

determining the suitable number of thresholds for segmenting the block region into different 

decomposed object regions. By using the properties of discriminant analysis, we have 
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proposed an automatic multilevel global thresholding technique for image segmentation [56]. 

This technique extends and applies the concept of discriminant criterion on analyzing the 

separability among the gray levels in the image. It automatically determines the suitable 

number of thresholds, and utilizes a fast recursive selection strategy for selecting the optimal 

thresholds to segment the image into separate objects with similar characteristics in a 

computationally frugal way. In this study, we utilize this multilevel threshold selection 

technique and make necessary modifications to adapt it for segmenting block regions into 

different objects with similar characteristics. This process is described as follows.  

 Let gf  denote the observed frequencies (histogram) of gray illumination intensities of 

pixels in a certain block region, denoted by ℜ , with a given gray illumination intensity g, 

and thus the total amount of pixels in ℜ  can be given by N = f0+f1+…+fU-1, where U is the 

number of gray intensities in the histogram. Hence, the normalized probability of one pixel 

having a given gray intensity can be computed as, 

= g
g

f
P

N
,  and 0≥gP ,  

1

0
1

−

=

=∑
U

g
g

P     (3.1) 

In order to segment textual objects, foreground objects and background components from a 

given region ℜ , the pixels of ℜ  must be partitioned into a suitable number of classes. For 

multilevel thresholding, with n thresholds to partition the pixels in the region ℜ  into n+1 

classes, gray intensities of pixels in ℜ  are segmented by applying a threshold set T, which 

is composed of n thresholds, where T = { }1,...,=kt k n  . These classes are represented by 

{ }0 10,1,...,=C t ,…, { }11, 2,..., += + +k k k kC t t t ,…, { }1, 2,..., 1= + + −n n nC t t U . The 

between-class variance of the gray intensities of pixels in the region ℜ , denoted by BCv , an 

effective criterion for evaluating segmentation results, is utilized to measure the separability 

among all classes, and is expressed as,  
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where μℜ  is the overall mean of the gray intensities in ℜ . Then the within-class variance 

and total variance, denoted by WCv  and ℜv , respectively, of all segmented classes of gray 

intensities are respectively computed as, 
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where kw  is the cumulative probability mass function of class Ck; μk  and 2σ k  represent 

the mean and the standard deviation of the gray intensities in class Ck, respectively . They are 

defined as, 
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Here, a dummy threshold 0 0t =  is utilized for the sake of convenience in simplifying the 

expression of equation terms.  

 The aforementioned criterion functions can be considered as a measure of separability 

among all existing classes decomposed from the original region ℜ . We utilize this concept 

as a criterion of automatic segmentation of objects in a region, denoted by the “separability 

factor” – SF  in this study, which is defined as, 

( ) ( )1
ℜ ℜ

= = −BC WCv v
v v

T T
SF     (3.5) 

where ℜv  serves as the normalization factor in this equation. The SF  value represents the 

separability measure among all existing classes, and lies within the range [ ]0,1∈SF ; the 
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lower bound is approached when the region ℜ  comprises a uniform gray intensity, while 

the upper bound is achieved when the region ℜ  consists of exactly n+1 gray intensities. 

The objective is to maximize the SF  value so as to optimize the segmentation result. This 

concept is supported by the property that ℜv  is equivalent to the sum of BCv  and WCv . By 

observing the terms comprising ( )WCv T , if the gray intensities of the pixels belonging to 

most existing classes are widely distributed, i.e. the contribution values of their class 

variances 2σ k  are large, then the value of the corresponding SF  measure becomes low. 

Accordingly, when SF  approximates 1.0, all resultant classes of gray intensities Ck (k = 

0,…,n), which are decomposed from the original region ℜ , are ideally and completely 

separated.  

 Therefore, based on this efficient discriminant criterion, an automatic multilevel 

thresholding can be applied for recursively segmenting the block region ℜ  into different 

objects of homogeneous illuminations, regardless of the number of objects and image 

complexity of the region ℜ . It can be performed until the SF  measure is large enough to 

show that the appropriate discrepancy among the resultant classes has been obtained. 

Through these aforementioned properties, this objective can be achieved by minimizing the 

total within-class variance ( )WCv T . This can be achieved by the scheme that selects the class 

with the maximal contribution ( 2σk kw ) to the total within-class variance for performing the 

bi-class partition procedure in each recursion. Thus, the SF  measure will most rapidly reach 

the maximal increment to satisfy sufficient separability among the resultant classes of pixels. 

As a result, objects with homogeneous gray intensities will be well-separated.  

 The class having the maximal contribution of within-class variance 2σk kw  is denoted 

by Cp, and it comprises a subset interval of gray intensities represented by 

:pC { }1,...,2,1 +++ ppp ttt . Then a simple effective bi-class partition procedure, as described in 

[56], is performed on each determined Cp in each recursion until the separability among all 
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classes becomes satisfactory, i.e. the condition where the SF  measure approximates a 

sufficiently large value. The class Cp will be divided into two classes Cp0 and Cp1 by applying 

the optimal threshold *
St  determined by the localized histogram based selection procedure as 

described in [56]. The resultant classes Cp0 and Cp1 comprise the subsets of gray intensities 

derived from Cp and can be represented as: :0pC { }*,...,2,1 Spp ttt ++ , and 

:1pC { }1
** ,...,2,1 +++ pSS ttt . The threshold values determined by this recursive selection strategy 

is ensured to achieve maximum separation on the resultant segmented classes of gray 

intensities, and hence satisfactory segmentation results of objects can be accomplished by 

means of the smallest amount of thresholding levels.  

 Furthermore, if a region ℜ  is comprised of a set of pixels with homogeneous gray 

intensities, such as parts of a large background region, then it should not be partitioned and 

should keep its original components. For example, Figure 3.2(b) is the block region with 

these characteristics. Therefore, before performing the first partition procedure on the region 

ℜ , an investigation of the homogeneity of ℜ  should be conducted in advance. This 

circumstance can be determined by evaluating the following two statistical features: 1) the 

bi-class SF  measure, denoted as bSF , which is the SF  value obtained by performing the 

initial bi-class partition procedure on region ℜ , i.e. the SF  value associated with the 

determined threshold *
St ; and 2) the illumination variance, ℜv  of the pixels in the entire 

region ℜ . According to the aforementioned properties, the bSF  value reflects the 

separability of the statistical distribution of gray intensities of pixels in the entire region ℜ , 

and the lower the bSF  value is, the more indistinct the distribution is. The illumination 

variance ℜv  represents whether the distribution of gray intensities in ℜ  is widely dispersed 

or narrowly aggregated. Therefore, if both the bSF  and ℜv  features reveal lesser values, this 

means that the distribution of the region ℜ  is concentrated within a compact range, and thus 

the ℜ  comprises a set of homogeneous pixels that represent a simple object or parts thereof. 
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On the other hand, if bSF  is small but ℜv  is large, the region ℜ  may consist of many 

indistinct object regions with low separability, and should undergo a repeated partition 

process to separate all objects. Based on the above-mentioned phenomenon, the following 

homogeneity condition is utilized for determining the situation where both the bSF  and ℜv  

features are sufficiently low:  

0τ≤b hSF  , and  1τℜ ≤ hv      (3.6) 

where 0τ h  and 1τ h  are pre-defined thresholds. Therefore, if the homogeneity condition is 

satisfied, the region ℜ  is recognized as a homogeneous region, and does not need to 

undergo the partition process and hence keeps its pixels of homogeneous objects unchanged 

to be processed by the next stage. The values of the two thresholds 0τ h  and 1τ h  are chosen 

as 0.6 and 120, respectively. They are obtained from our experimental set of real-life complex 

documents to appropriately maintain the organized pixels of homogeneous block regions, and 

thus the integrity of associated larger characters or objects can be preserved well.  

 Based on the above-mentioned concepts, the localized automatic multilevel thresholding 

process is performed as the following steps:  

Step 1: To begin, the illumination image Y  with size Wimg×Himg is divided into rectangular 

block regions ,i jℜ  with dimension MH×MV, as shown in Fig. 2(a). Here ( , )i j  are the 

location indices, and 0,..., Hi N=  and 0,..., Vj N= , where ( )1H img HN W M⎡ ⎤= −⎢ ⎥  and 

( )1V img VN H M⎡ ⎤= −⎢ ⎥ , which represent the numbers of divided block regions per row and per 

column, respectively. If the illumination image Y  cannot be exactly divided into 

rectangular regions such that all of them are with dimension MH×MV, then the dimensions of 

the boundary rectangular regions, i.e. those in the right column and the bottom row, are with 

dimensions smaller than the other rectangular regions, as shown in Figure 3.3(b).  
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Step 2: For each block region ,i jℜ , compute the histogram of pixels in ,i jℜ , and then 

determine its associated illumination variance - ,i jvℜ  and the bi-class separability measure 

bSF ; initially, there is only one class ,
0
i jC ; let q represent the present amount of classes, and 

thus set q = 1. If the homogeneity condition, i.e. Eq. (3.6), is satisfied, then skip the localized 

thresholding process for this region ,i jℜ  and go to step 7; else perform the following steps.  

Step 3: Currently, q classes exist, having been decomposed from ,i jℜ . Compute the class 

probability ,i j
kw , the class mean ,i j

kμ , and the standard deviation ,i j
kσ , of each existing class 

,i j
kC  of gray intensities decomposed from ,i jℜ , where k denotes the index of the present 

classes and n = 0, …, q-1.  

Step 4: From all classes ,i j
kC , determine the class ,i j

pC  which has the maximal contribution 

( , , 2i j i j
k kw σ ) of the total within-class variance ,i j

WCv  of ,i jℜ , to be partitioned in the next step 

in order to achieve the maximal increment of SF .  

Step 5: Partition , :i j
pC { }, , ,

11, 2,...,i j i j i j
p p pt t t ++ +  into two classes ,

0 :i j
pC { }, , , *1, 2,...,i j i j i j

p p St t t+ + , 

and ,
1 :i j

pC { }, , ,
1

* *1, 2,...,i j i j i j
S S pt t t ++ + , using the optimal threshold , *i j

St  determined by the 

bi-class partition procedure. Consequently, the gray intensities of the region ,i jℜ  are 

partitioned into q+1 classes, ,
0

i jC , …, ,
0
i j

pC , ,
1
i j

pC , …, ,
1

i j
qC − , and then let q = q+1 update the 

record of the current class amount.  

Step 6: Compute the SF  value of all currently obtained classes using Eq. (3.5), if the 

objective condition, τ≥ SFSF , is satisfied, then perform the following Step 7; otherwise, go 

back to Step 3 to conduct further partition process on the obtained classes.  

Step 7: Classify the pixels of the block region ,i jℜ  into separate sub-block regions, , ,0i jSR , 

, ,1i jSR , …, , , 1i j qSR − , corresponding to the partitioned classes of gray illumination intensities, 
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,
0

i jC , ,
1

i jC , …, ,
1

i j
qC − , respectively, where the notation , ,i j kSR  represents the k-th SR 

decomposed from the region ,i jℜ . Consequently, we obtain 

1
, , ,

0

−

=

= ℜU
q

i j k i j

k

SR , and 1 2

1 2

, , , , φ
≠

=Ii j k i j k

k k

SR SR      

Then, finish the localized thresholding process on ,i jℜ  and go back to step 2 and repeat 

Steps 2~6 to process the remaining block regions; if all block regions have been processed, 

go to step 8.  

Step 8: Terminate the segmentation process and deliver all obtained sub-block regions of the 

corresponding block regions.  

 

 The value of the separability measure threshold τ SF  is chosen as 0.92 according to the 

experimental analysis described in [56] to yield satisfactory segmentation results on the block 

regions. With regard to the dimension parameters ×H VM M  of each block region, in order 

for the localized thresholding process to be more adaptive on the steep gradation situation, 

and to extract the foreground objects in greater detail, smaller dimension block regions are 

desirable. In this way the small objects can be more clearly segmented, but at the cost of 

greater computation so as to yield the final results when performing the subsequent 

multi-plane region matching and assembling process. Therefore, suitable larger values of the 

parameters HM  and VM  should be chosen to moderately localize and accommodate the 

features of the allowable character size, and so that the contained textual objects in the 

images can be clearly segmented. Besides, given an input document image, HM  and VM  

should also be automatically determined with respect to its scanning resolution RES (pixels 

per inch). Based on the analysis of typical characteristics of character sizes as described in 

[80] and the practice that typical resolutions for scanning most real-life document images 
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may range from 200 dpi to 600 dpi, the dimension parameters HM  and VM  are reasonably 

determined according to the typical allowable character sizes with respect to the scanning 

resolutions RES. They are obtained by,  

0.4= = ⋅H VM M RES       (3.7) 

In this way, the dimension of each block region is determined as about 210 10 mm×  in 

different scanning resolutions, such as 80= =H VM M , 120= =H VM M , and 240= =H VM M  

in 200 dpi, 300 dpi, and 600 dpi scanning resolutions, respectively. These parameters are 

determined by conducting experiments involving numerous real-life document samples with 

various characteristics in our experimental set, so that nearly all foreground and textual 

objects in various document images can be appropriately separated in the preliminary 

experiments.  

 Figure 3.2 shows an example of performing the localized automatic multilevel 

thresholding procedure on several block regions. Figure 3.2(a) is part of the test sample 

image in Figure 3.3(a). Figure 3.2(b), (d), (g) and (l) are the four adjacent block regions 

chosen to illustrate the localized thresholding procedure. Figure 3.2(b) is a homogenous block 

region, and is properly detected by the homogenous conditions, and therefore its pixels are 

kept intact in Figure 3.2(c). Figure 3.2(d), (g) and (l) are the block regions comprised of two 

or three homogeneous objects. After the localized histogram multilevel thresholding 

procedure has been performed, different objects in these block regions are distinctly 

segmented into separate SRs from darkest to lightest, as shown in Figure 3.2(c), Figure 

3.2(e)-(f), Figure 3.2(h)-(k), and Figure 3.2(m)-(o), respectively.  
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(a). Part of the partitioned block regions of the image “Calibre” in Figure 3.3(a), where the block 
regions enclosed by yellow ink are employed for the following examples of the localized multilevel 
thresholding procedure. 

  

 

(b). The upper-left 
block region, 1 1,ℜi j  

(c). 1 1, ,0i jSR  derived form 1 1,ℜi j , 
which is a homogenous block 
region 

 

   

  

(d). The upper-right 
block region 2 1,ℜi j  

(e). 2 1, ,0i jSR  
derived form 

2 1,ℜi j  

(f). 2 1, ,1i jSR  
derived form 

2 1,ℜi j  
  

     
(g). The Bottom-left 
block  region 

1 2,ℜi j  

(h). 1 2, ,0i jSR  
derived form 

1 2,ℜi j  

(i). 1 2, ,1i jSR  
derived form 

1 2,ℜi j  

(j). 1 2, ,2i jSR  
derived form 

1 2,ℜi j  

(k). 1 2, ,3i jSR  
derived form 

1 2,ℜi j  

    

 

(l). Bottom-right 
block region 2 2,ℜi j  

(m). 2 2, ,0i jSR  
derived form 

2 2,ℜi j  

(n). 2 2, ,1i jSR  
derived form 

2 2,ℜi j  

(o). 2 2, ,2i jSR  
derived form 

2 2,ℜi j  
 

Figure 3.2. Example of the results by the localized multilevel thresholding procedure 
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3.3 Multi-plane Region Matching and Assembling Process 

 After all block regions are segmented into several separate classes of pixels using the 

localized multilevel thresholding procedure introduced in the preceding section, various 

objects embedded or superimposed in different background objects and textures are 

respectively separated into relevant SRs, and then these obtained SRs are collected into a 

hypothetical “Pool” for further classifying and assembling process. Based on the 

contemporary concepts of region-based image segmentation [1][81], we present a multi-plane 

region matching and assembling process, to classify and assemble these obtained SRs to 

compose a set of object planes of homogeneous features, especially textual regions of interest. 

This proposed multi-plane region matching and assembling process is conducted by 

recursively performing the following three phases – the initial plane selection phase, the 

matching phase and the plane construction phase, as described in the following subsections.  

 To facilitate the matching and assembling process of the SRs obtained from the previous 

procedure, several concepts and definitions on statistical and spatial features of these SRs are 

introduced as follows. One SR may comprise several connected object regions of pixels 

decomposed from its associated block region ℜ . Thus the pixels that belong to the object 

regions of a certain SR are said to be object pixels of this SR, while other pixels in this SR are 

non-object pixels. The set of the object pixels in one SR is defined as follows, 

( ) { }, , , , , ,( , , ) ( , )i j k i j k i j kSR g SR x y The pixel at x y is an object pixel in SR=OP ,   

where , ,( , , )i j kg SR x y  is the gray intensity of the pixel at location (x, y) in , ,i j kSR , and the 

range of x is within [ ]0, 1HM −  and y is within [ ]0, 1VM − . As well as the total number of 

object pixels in , ,i j kSR , i.e. the amount of object pixels in ( ), ,i j kSROP , is represented by 

( ), ,i j k
opN SR .  
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 The concept 4-adjacent refers to the situation in which each SR has four sides that 

border the top, the bottom, the left or the right boundary of its adjoining SRs. The SRs which 

are comprised of objects with homogeneous features are assembled to form an object plane, 

denoted by P . An object plane P  represents a set of matching SRs, and for each pair of 

SRs in P , there are some finite chains of SRs that connect them so that each successive pair 

of SRs is 4-adjacent. We describe further details of the multi-plane region matching and 

assembling process in the following subsections.  

 

3.3.1 Initial Plane Selection Phase 

 In the first processing phase, for the purpose of improving the speed and accurateness of 

the final convergence of the multi-plane region matching and assembling process, the 

mountain, or subtractive clustering technique [82][83] can be applied to determine the SRs 

with the most prominent and representative gray intensity features, and these SRs are selected 

as seeds to establish a set of initial planes. The mountain method is a fast, one-pass algorithm, 

which utilizes the density of features to determine the most representative feature points. 

Here we consider SRs as feature points in the mountain method.  

 First, given the localized multilevel thresholding process to segment the image into r 

SRs in the Pool, the mean , ,( )i j kSRμ  associated with each of these obtained SRs is also 

obtained. Here , ,( )i j kSRμ  is the mean of gray intensities of object pixels comprised by 

, ,i j kSR , and is equivalent to ,i j
kμ  obtained in the localized multilevel thresholding process. 

Then the region dissimilarity measure, denoted by DRM, between two SRs, denoted by 

1 1 1, ,i j kSR  and 2 2 2, ,i j kSR , can be computed as,  

1 1 1 2 2 2 1 1 1 2 2 2, , , , , , , ,( , ) ( ) ( )μ μ= −i j k i j k i j k i j k
RMD SR SR SR SR ,    (3.8) 
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The range of the DRM is within [ ]0, 255 . The lower the computed value of DRM, the stronger 

the similarity among two SRs. Therefore, the mountain function at an SR can be computed as, 

 ( ) ( ), , , ,

, ,

,, ,
0

α ′ ′ ′−′ ′ ′

∀ ∈

= ∑
i j k i j k

RM

i j k

D SR SRi j k

SR Pool

M SR e       (3.9) 

where α  is a positive constant. A higher value of the mountain function reflects that 

, ,i j kSR ′ ′ ′  possesses more homogenous SRs in its vicinity. Therefore, it is sensible to select a 

, ,i j kSR ′ ′ ′  with a sufficiently high value of mountain function as a representative seed to 

establish a plane. Let 0M ∗  be the maximal value of the mountain function values, and 0SR ∗  

be the SR whose mountain value is 0M ∗ : 

 ( ) ( ), ,

, ,
0 0 0max

′ ′ ′

′ ′ ′∗ ∗ ⎡ ⎤= ⎣ ⎦i j k

i j k

SR
M SR M SR        (3.10) 

Thus, 0SR ∗  is selected as the first seed of the first initial plane.   

 After computing the mountain function of each SR in the Pool, the following 

representative seeded SRs are determined by respectively destructing the mountains. Since 

the SRs whose gray intensity features close to 0SR ∗  also have high mountain values, it is 

necessary to eliminate the effects of the identified seeded SRs before determining the 

follow-up seeded SRs. Toward this purpose, the updating equation of the mountain function, 

after eliminating the previous (m-1)th seeded SR - 1mSR ∗
− , is computed by, 

( ) ( ) ( ) ( ), ,
1

1

,, , , ,
1 1

β ∗
−

−

−′ ′ ′ ′ ′ ′ ∗ ∗
− −= −

i j k
RM m

m

D SR SRi j k i j k
m m mM SR M SR M SR e      (3.11) 

where the parameter β  determines the neighborhood radius that provide measurable 

reductions in the updated mountain function. Accordingly, through recursively performing the 

discount process of the mountain function given by Eq. (3.11), new suitable seeded SRs can 

be determined in the same manner, until the level of the current maximal 
1m

M
−

∗  falls bellow a 
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certain level compared to that of the first maximal mountain 0M ∗ . The terminative criterion 

of this procedure is defined as, 

 ( )1 0 δ
−

∗ ∗ <
m

M M       (3.12) 

where δ  is a positive constant less 1. Here the parameters are selected as 5.4α = , 1.5β =  

and 0.45δ =  as suggested by Pal and Chakraborty [84]. Consequently, this process 

converges to the determination of resultant N seeded SRs: { }, 0 : 1mSR m N∗ = − , and they are 

utilized to establish N initial planes for performing the following matching phase. 

 

3.3.2 Matching Phase 

 In the matching phase, each of the unclassified SRs in the Pool is respectively compared 

their connectedness and similarity with the already existing planes, to determine its best 

belonging plane. For this purpose, we employ two forms of "matching grades", the single-link 

matching grade, and the centroid-link matching grade, to evaluate their related connectedness 

and similarity. The single-link matching grade examines the degree of connectedness between 

a pair of two neighboring SRs, an unclassified SR and its neighboring classified SRs that 

already have belonging planes; while the centroid-link matching grade represents the degree 

of similarity between an unclassified SR and an already existing plane. Then the two 

matching grades are combined to provide an effective criterion to determine the best 

belonging plane for this unclassified SR among the existing planes. If an unclassified SR can 

obtain its best belonging plane during the current matching phase recursion, i.e. this SR 

reflects sufficient similarity and connectedness with one of the existing planes after 

examining their mutual matching grade, then this SR is classified and assembled into this best 

belonging plane and removed from the Pool afterward; otherwise, if there is no suitable 
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matching plane for an unclassified SR at this time, then this SR will remain in the Pool. Since 

new potential planes will be created in the following recursion of the plane constructing 

phase, SRs which cannot find matching planes in the current matching phase recursion will be 

re-analyzed in subsequent recursions until their best matching planes are determined.  

 The single-link matching grade is utilized for examining the degree of connectedness 

between an unclassified , ,i j kSR  and an already existent plane in a local manner. It is 

determined by applying a connectedness measure on , ,i j kSR  and its 4-adjacent SRs already 

belonging to this existent plane. To facilitate the computation of the single-link matching 

grade, two measures for evaluating the continuity and similarity between two 4-adjacent 

SRs – the side-match measure, denoted as DSM, and the region dissimilarity DRM, as computed 

using Eq. (3.8), are employed. Then both DSM and DRM measures are jointly considered to 

determine the single-link matching grade of a pair of two 4-adjacent SRs.  

 The side-match measure - DSM, which reveals the dissimilarity of the touching boundary 

between the two 4-adjacent SRs, is described as follows. Suppose that two SRs are 4-adjacent, 

they may have one of the two types of touching boundaries: 1) a vertical touching boundary 

mutually shared by two horizontally adjacent SRs, or 2) a horizontal boundary shared by two 

vertically adjacent SRs. For a pair of two horizontally adjacent SRs – 1 1 1, ,i j kSR  on the left, and 

2 2 2, ,i j kSR  on the right, the pixel values on the rightmost side of 1 1 1, ,i j kSR  and the leftmost side 

of 2 2 2, ,i j kSR  can be described as: 1 1 1, ,( , 1, )i j k
Hg SR M - y  and 2 2 2, ,( ,0, )i j kg SR y , respectively.  

 The sets of object pixels on the rightmost side and the leftmost side of an SR, denoted by 

, ,( )i j kSRRS  and , ,( )i j kSRLS , respectively, are defined as follows,  

{ }, , , , , , , ,( ) ( , 1, ) ( , 1, ) ( ), and 0 1i j k i j k i j k i j k
H H VSR g SR M y g SR M y SR y M= − − ∈ ≤ ≤ −RS OP ,  

and { }, , , , , , , ,( ) ( ,0, ) ( ,0, ) ( ), and 0 1i j k i j k i j k i j k
VSR g SR y g SR y SR y M= ∈ ≤ ≤ −LS OP   
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To facilitate the following descriptions of the side-match features, the denotations of 1 1 1, ,i j kSR  

and 2 2 2, ,i j kSR are simplified as lSR  and rSR , respectively. The vertical touching boundary of 

lSR  and rSR , denoted as ( , )l rSR SRVB , is represented by a set of side connections formed 

by pairs of object pixels that are symmetrically connected on their associated rightmost and 

leftmost sides, and is defined as follows,  

( ){ }
( , )

( , 1, ), ( ,0, ) ( , 1, ) ( ), and ( ,0, ) ( )H H

l r

l r l l r r

SR SR

g SR M y g SR y g SR M y SR g SR y SR

=

− − ∈ ∈

VB

RS LS
 

Similarly, in the case that 1 1 1, ,i j kSR  and 2 2 2, ,i j kSR  are vertically adjacent (suppose that 

1 1 1, ,i j kSR  is on the top and 2 2 2, ,i j kSR  is on the bottom, and their denotations are also simplified 

as tSR  and bSR , respectively), their horizontal touching boundary can be represented as,  

( ){ }
( , )

( , , 1), ( , ,0) ( , , 1) ( ), and ( , ,0) ( )v v

b

b b b

t

t t t

SR SR

g SR x M g SR x g SR x M SR g SR x SR

=

− − ∈ ∈

HB

BS TS
 

where ( )tSRBS  and ( )bSRTS  represent the bottommost side and the topmost side of tSR  

and bSR , respectively, and are defined as, 

{ }, , , , , , , ,( ) ( , , 1) ( , , 1) ( ), and 0 1i j k i j k i j k i j k
v v HSR g SR x M g SR x M SR x M= − − ∈ ≤ ≤ −BS OP ,  

and { }, , , , , , , ,( ) ( , ,0) ( , ,0) ( ), and 0 1i j k i j k i j k i j k
HSR g SR x g SR x SR x M= ∈ ≤ ≤ −TS OP   

Also, the number of side connections of the touching boundary, i.e. the amount of connected 

pixel pairs in 1 1 1 2 2 2, , , ,( , )i j k i j kSR SRVB  or 1 1 1 2 2 2, , , ,( , )i j k i j kSR SRHB , should also be considered 

for the connectedness of the two 4-adjacent SRs, and is denoted by 1 1 1 2 2 2, , , ,( , )sc
i j k i j kN SR SR . 

Therefore, based on the above-mentioned side-match features of two 4-adjacent SRs, the 

side-match measure, DSM, of them when they are horizontally adjacent and vertically adjacent 

can be respectively computed as,  
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( )( , 1, ), ( ,0, ) ( , )

( , 1, ) ( ,0, )

( , )
( , )

− ∈
− −

=

∑
H

l r l r
H

g SR M y g SR y SR SR

SM
sc

l r

l r
l r

g SR M y g SR y

D SR SR
N SR SR

VB
,   

and ( )( , , 1), ( , ,0) ( , )

( , , 1) ( , ,0)

( , )
( , )

− ∈
− −

=

∑
v

t b t b
v

g SR x M g SR x SR SR

SM
sc

b

b
b

t

t
t

g SR x M g SR x

D SR SR
N SR SR

HB
 (3.13) 

The range of DSM values is within [ ]0,255 . If the DSM value of two 4-adjacent SRs is 

sufficiently low, then these two SRs are homogeneous with each other, and should belong to 

the same object plane P . 

 Accordingly, the DSM measure can reflect the continuity of two 4-adjacent SRs, and the 

DRM value, as obtained by Eq. (3.8), assesses the similarity between them. Hence the 

homogeneity and connectedness of two 4-adjacent SRs can be evaluated by considering the 

dominant effect of the DSM and the DRM values.  Therefore, based on the above definitions, 

the single-link matching grade of two 4-adjacent SRs, denoted by sm , is determined as,  

( )
( )
1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

, , , , , , , ,
, , , ,

s , , , ,

max ( , ), ( , )
( , )

max ( ) ( ), 1σ σ
=

+

i j k i j k i j k i j k
SM RMi j k i j k

i j k i j k

D SR SR D SR SR
SR SR

SR SR
m     (3.14) 

where , ,( )i j kSRσ  is the standard deviation of gray intensities of all object pixels associated 

with , ,i j kSR , and is equivalent to ,i j
kσ  obtained in the localized histogram multilevel 

thresholding process. Here the denominator term ( )1 1 1 2 2 2, , , ,max ( ) ( ), 1i j k i j kSR SRσ σ+  in Eq. 

(3.14) serves as the normalization factor. Besides, it must be noted that the DSM measure 

becomes invalid when 1 1 1 2 2 2, , , ,( , ) 0sc
i j k i j kN SR SR = . Therefore, in the determination of the 

single-link matching grade in Eq. (3.14), the DSM can be disabled by setting the DSM to zero 

using the “max” operation, so as to allow the DRM having the dominant effect.  

 Next, we describe the centroid-link matching grade to assess the degree of similarity 

between , ,i j kSR  and an already existing plane qP  in a global manner. Let ( )qμ P  and 
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2 ( )qσ P  denote the mean and variance of the existing plane qP , respectively, and they are 

given by,  

, ,

, , , ,( ) ( )
( )

( )
PP

P

μ
μ

′ ′ ′

′ ′ ′ ′ ′ ′

∈

⋅

=
∑

i j k
q q

i j k i j k
op q q

SR
q

op q

N SR SR

N
,     (3.15) 

and 

, ,

2, , , ,

2

( ) ( ) ( )
( )

( )
P

P

P
P

μ μ
σ

′ ′ ′

′ ′ ′ ′ ′ ′

∈

⋅ −

=
∑

i j k
q q

i j k i j k
op q q q

SR
q

op q

N SR SR

N
  (3.16) 

where ( )op qN P  denotes the amount of pixels in qP , and is given by,  

, ,

, ,( ) ( )
P

P
′ ′ ′

′ ′ ′

∈

= ∑
i j k

q q

i j k
op q op q

SR

N N SR      (3.17) 

Accordingly, the centroid-link matching grade of , ,i j kSR  and qP  can be computed by, 

( )
, ,

, ,
c , ,

( ) ( )
( , )

max ( ) ( ), 1

P
P

P

μ μ

σ σ

−
=

+

i j k
qi j k

q i j k
q

SR
SR

SR
m     (3.18) 

 If , ,i j kSR  is finally determined to be merged into the plane qP , then the mean ( )qμ P  

and variance 2 ( )qσ P  of qP  should be updated after taking in , ,i j kSR . The new mean and 

variance of qP  are respectively computed by,  

( )
( )

, , , ,

, ,

( ) ( ) ( ) ( )
( )

( ) ( )

P P
P

P

μ μ
μ

⋅ + ⋅
=

+

prev prev i j k i j k
op q q opnew

q prev i j k
op q op

N N SR SR

N N SR
   (3.19) 

and 
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( )

2

2 22 , , , ,

, ,

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

P

P P P P P P

P

σ

σ μ μ μ μ

=

⎡ ⎤⋅ + ⋅ − + ⋅ −⎢ ⎥⎣ ⎦
+

new
q

prev prev i j k i j k new prev new prev
op q q op q op q q q

prev i j k
op q op

N N SR SR N

N N SR

(3.20) 

where new
qP  denotes the newly expanded plane qP , while prev

qP  denotes the previous one; 

and ( )new
qμ P  and 2 ( )new

qσ P  represent the updated mean and variance of qP , respectively, 

while ( )prev
qμ P  and 2 ( )prev

qσ P  represent the previous ones.  

 The above-mentioned two matching grades are then combined to form a composite 

matching grade, denoted by , ,( , )i j k
qSR PM , to complimentarily evaluate the degree of 

connectedness and similarity of an unclassified SR and an already existing plane in both local 

and global manners. As a result, this composite matching grade can provide a more effective 

criterion for determining the best belonging plane for each of the unclassified SRs. 

Accordingly, in each recursion of the matching phase, each of the unclassified SRs, i.e. 

, ,i j kSR  in the Pool, is analyzed by evaluating the composite matching grade of , ,i j kSR  

associated with each of its neighboring existent planes qP , to seek for the best matching 

plane into which , ,i j kSR  should be grouped.  

 Since the evaluating process of the composite matching grades of , ,i j kSR  is performed 

on its neighboring planes, a plane qP  must have at least one of its own SRs 4-adjacent to 

, ,i j kSR , to compete for the belonging of , ,i j kSR . Here the SRs which have already been 

grouped into one of the current existing planes are denoted as , ,′ ′ ′i j k
qSR , where the subscript q 

represents that , ,′ ′ ′i j k
qSR  belongs to the q-th plane qP . Therefore, to facilitate the computation 

of the composite matching grade of , ,i j kSR  and a plane qP , the processing set 
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, ,( , )i j k
qSR PAS  is utilized for storing the qSR s  which are belonging to qP  and 4-adjacent to 

, ,i j kSR  as well, and is defined by,  

{ }, , , , , , , ,( , ) is 4 toP P′ ′ ′ ′ ′ ′= ∈ −i j k i j k i j k i j k
q q q qSR SR SR adjacent SRAS    

Then the composite matching grade M of , ,i j kSR  associated with the plane qP , which 

reveals how well , ,i j kSR  matches with qP , can be determined by,  

( ) , , , ,

, ,

, , , , , ,

( , )

( , )

( , ) min ( , )
P

P

P
′ ′ ′

′ ′ ′

∀ ∈

=

⎛ ⎞+ ⎜ ⎟
⎝ ⎠i j k i j k

q q

i j k
q

i j k i j k i j k
c q s q

SR SR

SR

w SR w SR SR
ASc s

M

m m
 (3.21) 

where cw  and sw  are the weighting factors to control the weighted contributions of the 

centroid-linkage and single-linkage strengths of the composite matching grade, respectively, 

and 1c sw w+ = . By applying the weighting factors cw  and sw  in the composite matching 

grade, the centroid-linkage and single-linkage can be combined by taking advantage of their 

related strengths. Because textual regions mostly reveal obvious spatial connectedness, we 

reasonably strengthen the single-linkage weight of the composite matching grade, and thus 

the values of the weighting factors are chosen as 0.45cw =  and 0.55sw = , respectively. 

Besides, if , ,i j kSR  has no neighboring qSR s  in qP , i.e. , ,( , )i j k
qSR φ=AS P , then qP  is 

excluded from the consideration for matching with , ,i j kSR , that is, the evaluation process of 

their composite matching grade is skipped.  

 As a result, the best candidate belonging plane for , ,i j kSR , i.e. the plane having the 

lowest composite matching grade associated with , ,i j kSR  among all existing planes, denoted 

by mP , can be determined by,   

, , , ,( , ) min ( , )
P

P P
∀

=
q

i j k i j k
qSR SRmM M     (3.22) 
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If the determined value of , ,( , )Pi j kSR mM  is too large, , ,i j kSR  is not likely to have 

sufficient connectedness and similarity to mP . The following matching criterion is applied to 

check whether the currently selected candidate plane mP  and , ,i j kSR  are sufficiently 

matched, and then the suitability of , ,i j kSR  for belonging to mP  can be determined well. 

This matching criterion is defined as follows,  

, ,( , )P τ≤i j kSR m mM       (3.23) 

where τm  is a predefined threshold which represents the acceptable tolerance of 

dissimilarity for , ,i j kSR  to be grouped into mP . The matching criterion has a moderate effect 

on the number of resultant object planes, and the value choice of 1.2τ =m  is experimentally 

determined to obtain sufficiently distinct planes and avoid excessive splitting of planes.  

 Accordingly, if , ,i j kSR  and its associated mP  satisfy the matching criterion, then 

, ,i j kSR  is merged into mP , and removed from the Pool. If the matching criterion cannot be 

satisfied, this reflects that , ,i j kSR  is distinct from all its existent adjoining planes, and there 

is no appropriate belonging plane for , ,i j kSR  during this current matching phase recursion. 

Therefore, , ,i j kSR  will remain in the Pool, until its suitable matching plane emerges or it 

begins its own plane in the following recursions of the plane construction phase. After a 

belonging determination has been made for , ,i j kSR , the matching process is in turn applied 

on the subsequent unclassified SRs in the Pool, until all the rest unclassified SRs have been 

processed one time in the current matching phase recursion.  

 

3.3.3 Plane Construction Phase 

 After performing the previous matching phase recursion, if there are unclassified SRs 

remaining and the Pool is not drained as well, these unclassified SRs must be analyzed to 
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determine whether it is necessary to establish a new object plane to assemble the SRs with 

such features into this new plane to form another homogeneous object region. The textual 

regions and homogeneous objects may contain several connected regions. However, all 

similar and connected SRs comprised of them may not be completely assembled into 

appropriate planes in the previous matching phase recursion. This situation can be resolved 

by detecting and expanding the existent planes having sufficient close distances in gray 

intensity and spatial location features with unclassified SRs to take in such unclassified SRs. 

Therefore, in the next matching phase recursion, the follow-up unclassified SRs having 

homogeneous features with these planes can be successively assembled into them to prevent 

the split of homogeneous object regions. The plane construction phase determines whether to 

1) create and initialize a new plane by selecting the unclassified SR “farthest away” from all 

existing planes as an initial seed, or 2) enlarge one suitably selected plane by merging one 

unclassified SR “closest” to this plane. The determination is made according to the analysis of 

the following gray intensity and spatial location features.  

 The dissimilarity between one unclassified SR, which is not adjoined to any one of 

currently existing planes in the previous matching phase recursion, and a certain object plane 

qP , can be determined by their value of the centroid-link matching grade, as computed by Eq. 

(3.18). Then the plane which is most similar to , ,i j kSR  in gray intensity among all presently 

existing planes, i.e. the plane has the least value of the centroid-link matching grade 

associated with , ,i j kSR , denoted by ( )i j k
S SR , ,P , is obtained by, 

( ) ( ), , , , , ,
c c, ( ) min ( , )

P
P P

∀
=

q

i j k i j k i j k
S qSR SR SRm m     (3.24) 

Here ( ), , , ,
c , ( )i j k i j k

SSR SRPm  also represents the measure of the least dissimilarity between 

, ,i j kSR  and all already existing planes. If , ,i j kSR  can find a plane ( )i j k
S SR , ,P  having 
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sufficiently low dissimilarity with , ,i j kSR  in gray intensity, and they are also locatively 

closed as well, then this condition reveals that , ,i j kSR  is sufficiently homogeneous with 

( )i j k
S SR , ,P , even if it is not currently 4-adjacent to ( )i j k

S SR , ,P .  

 To determine this situation, the locative distance between , ,i j kSR  and a plane qP , 

denoted as , ,( , )i j k
E qD SR P , is computed by the Euclidean distance between , ,i j kSR  and its 

closest qSR  among all qSR s  associated with the plane qP ; and is determined as, 

( ) ( ), , , , , ,, min ,
P

P ′ ′ ′

∀ ∈
=

q q

i j k i j k i j k
E q e qSR

D SR D SR SR ,      (3.25) 

where ( ), , , , ' 2 ' 2, ( ) ( ) )′ ′ ′ = − + −i j k i j k
qeD SR SR i i j j        (3.26) 

If , ,i j kSR  and its ( )i j k
S SR , ,P  are homogeneous in gray intensity and also locatively close to 

each other, i.e. both ( ), , , ,
c , ( )i j k i j k

SSR SRPm  and ( ), , , ,, ( )i j k i j k
E SD SR SRP  values are 

sufficiently low, then , ,i j kSR  should join the plane ( )i j k
S SR , ,P , rather than establish a new 

independent plane, so as to prevent a textual region or homogeneous object to be split into 

more than one plane. Otherwise, if no such planes are found, a new plane should be created to 

aggregate those SRs with distinct features.  

 In order to ensure that the new plane contains distinct features with the current existent 

planes, a scheme for selecting a suitable SR as the representative seed for constructing a new 

plane is given as follows,  

( ) ( ), ,

, , , ,
c c, ( ) max , ( )P P

∀ ∈
=

i j k

i j k i j k
NP S NP S

SR
SR SR SR SR

Pool
m m   (3.27) 

In this way, this determined seeded SR, denoted by NPSR , is the one which is most dissimilar 

in gray intensities to any already existing planes, and thus NPSR  will begin its own new 
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plane to aggregate those SRs whose features are distinct from other existing planes but 

homogenous with NPSR .  

 By means of the definitions given above, the plane construction phase is performed 

according to the following steps: 

Step 1: First, the unclassified SRs which have sufficiently low ( ), , , ,
c , ( )i j k i j k

SSR SRPm  values 

are selected into the set SRS using the following operation: 

( ){ }, , , , , ,
c , ( )P τ= ∈ ≤i j k i j k i j k

S SSR Pool SR SRSSR m    (3.28) 

where Sτ  is a predefined threshold for determining whether one SR is sufficiently 

homogeneous with any one of existing planes. If none of the unclassified SRs satisfy the 

above condition to be selected into SSR , i.e. φ=SSR , then go directly to Step 3 for 

constructing a new plane; otherwise, perform the following Step 2.  

Step 2: The set SRS now contains the SRs which are significantly homogeneous with the 

already existing planes, but are not 4-adjacent with them, and thus remain unclassified in the 

previous matching phase recursion. The SR locatively nearest to its associated ( )i j k
S SR , ,P , 

denoted by PSR , is determined as follows,  

( ) ( ), ,

, , , ,, ( ) min , ( )P P
∀ ∈

=
i j k

i j k i j k
E P S P E SSR

D SR SR D SR SR
SISR

  (3.29) 

If PSR  and its associated ( )i j k
S SR , ,P  are sufficiently close to each other, i.e. the condition 

( ), ( )E P S P LD SR SR τ≤P  is satisfied, then PSR  is determined to be merged with ( )i j k
S SR , ,P  

to enlarge its influential area on nearby SRs, and proceeds to Step 4. Otherwise, perform Step 

3 for constructing a new plane.  

Step 3: The NPSR , the SR most dissimilar to any currently existing planes, is determined by 
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using Eq. (3.27). Thus, NPSR  is employed as a seeded SR to establish a new plane newP , and 

then continues to perform Step 4.   

Step 4: Finish the plane construction phase, and then conduct the next matching phase 

recursion. 

 The threshold Sτ  utilized in Eq. (3.28) moderately influences the number of resultant 

planes. If the value of Sτ  is low, then the number of resultant planes will be increased and a 

homogeneous region may be disjoined into more than one plane, although its influence on 

text extraction is not serious. If the value is large however, then the number of planes is 

reduced, and some objects may be merged to a certain degree. Reasonably, its value should 

be tighter than the value of τm , which is utilized in the matching criterion in Eq. (3.23), to 

ensure that the determined PSR  is sufficiently homogeneous with its associated ( )i j k
S SR , ,P , 

and thus ( )i j k
S SR , ,P  can appropriately attract homogeneous SRs near the extended 

influential area benefited from participation with PSR . Therefore, in our experiments, the 

value of τ S  is chosen as 0.8τ τ= ⋅S m . Normally, text-lines or text-blocks usually occupy 

perceptible area of the image, and thus their width or height should be in appreciable 

proportion to those of the whole image. Therefore, ( )min , 4L H VN Nτ =  is used for 

experiments, where HN  and VN  are the numbers of block regions per row and per column, 

respectively.  

 

3.3.4 Overall Process 

 Based on the three above-mentioned processing phases, the region matching and 

assembling process begins by applying the initial plane selection phase on all unclassified 

SRs in the Pool to determine the representative seeded SRs { }, 1:∗ =mSR m N  for setting up 
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N initial planes. Thus, the matching phase can subsequently apply on the rest of SRs in the 

Pool and the initial planes 0P , …, 1N−P . Then the matching phase and the plane construction 

phase are recursively performed in turns on the rest of unclassified SRs in the Pool and 

emerging planes, until each SR has been classified and associated with a particular plane, and 

the Pool is eventually cleared. As a result, after completing the multi-plane region matching 

and assembling process, the whole illumination image Y  is segmented into a set of separate 

object planes }{ 0 1 1, , ...,P P P −L , each of which consists of homogenous objects with 

connected and similar features. Consequently, we obtain, 

1

0

P
−

=

=U
L

q
q

Y ,  with  
1 2

1 2

P P φ
≠

=Iq q
q q

     

where L is the number of the resultant planes obtained.   

 We use Figure 3.3 as an example of the proposed multi-plane segmentation approach. 

The sample image in Figure 3.3(a) consists of three different colored textual regions printed 

on a varying and shaded background. Moreover, the black characters are superimposed on the 

white characters. First, as shown in Figure 3.3(b), the original image is transformed into 

grayscale, and is divided into block regions. The block regions are then processed by the 

localized multilevel thresholding procedure, and are decomposed into SRs according to the 

number of contained objects and their feature complexity. Next, these obtained SRs are 

processed by the initial plane selection phase, and four initial planes having most 

representative features are created, and they forms the resultant planes 0 4P - P , as shown in 

Figure 3.3(c)-(f). Then the rest SRs in the Pool and the initial planes 0 4P - P  are analyzed and 

assembled by recursively applying the matching phase and the plane construction phase. As a 

result, there are seven major resultant object planes 0 6P - P  (while those insignificant planes 

are discarded) obtained after performing the multi-plane segmentation process, as depicted in 



 

 87

Figure 3.3(c)-(i). Within these planes, the planes 1P , 3P  and 4P  in Figure 3.3(d), (f), and 

(g), respectively, contains textual objects of interest.  

(a). Original Image (b). Sectored regions corresponding 
to the original image 

(c). Object plane 0P  

(d). Object plane 1P  (e). Object plane 2P  (f). Object plane 3P  

(g). Object plane 4P  (h). Object plane 5P  (i). Object plane 6P  
Figure 3.3. An example of the test image, “Calibre”, and the object planes obtained by the 

multi-plane segmentation (image size = 1929 x 1019) 

 

 Accordingly, the homogeneous objects in which all textual objects and background 

textures are segmented into several separate object planes can be effectively analyzed in 

detail. By observing these obtained planes, we can see that three textual regions with different 

characteristics are distinctly separated. Thus, extraction of textual objects from each binarized 

plane in which objects are well separated can be easily performed by some contemporarily 

developed text extraction techniques. The following section describes a simple procedure for 

locating and extracting textual objects from these resultant object planes. 
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3.4 Text Extraction 

 After performing the multi-plane segmentation, the entire image is decomposed into 

various object planes. Each object plane may consist of various considerable objects, such as 

characters, graphical and pictorial objects, background textures or other objects. Each 

individual object plane qP  will be binarized by setting its object pixels to black, and setting 

other non-object pixels to white, and hence a “binarized plane”, denoted as qBP , is created 

corresponding to each plane qP . The text location and extraction process will be performed 

on each individual binary plane qBP  to obtain the textual objects of interest. To obtain the 

character-like components from each binary plane qBP , a fast connected-component 

extraction technique [85] is first carried out to locate the connected-components of the black 

pixels in qBP . These connected-components may represent the character components, 

graphical and pictorial objects, or background textures. By extracting the 

connected-components, the location and dimension of each connected-component are 

obtained as well. The location and dimension of a connected-component are represented by 

the bounding box enclosing it.   

 In this study, based on the concepts of the recursive XY-cut techniques for 

connected-component projections [86], [87], we develop a recursive XY-cut spatial clustering 

process for grouping the connected-components into meaningful sets in each of the binarized 

planes. We are interested in looking for horizontal text-lines, and hence the XY-cut spatial 

clustering process is conducted to cluster the connected-components into several sets in 

horizontal direction. A resultant set of connected-components may comprise a character string, 

a larger graphical object, or a group of isolated background components inside the character 

strings. Each of these connected-component sets, denoted as CS, is then processed by the text 
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identification process to determine whether they are actual text-lines.  

First, the definitions used in the text detection and extraction process are: 

(a). Ci denotes a connected-component of the current qBP , and the bounding box which 

encloses Ci is denoted as ( )iB C .  

(b). jCS denotes a group of connected-components, { }: 0,1, 2,..., ( )= =j i cc jC i NCS CS , 

where the number of connected-components contained in jCS  is denoted as 

( )cc jN CS , and the bounding box which enclose all the connected-components 

belonging to jCS  is denoted as ( )jB CS . A group jCS  represents a preliminary 

general text line. Note that the simplified denotation B represents a bounding box of a 

connected-component Ci, or a group of connected-components jCS , respectively in the 

following descriptions for the spatial clustering process.  

(c). The location of the bounding boxes of Cs or CSs employed in the spatial clustering 

process are their top and left coordinates, and they are denoted as ( )t B  and ( )l B ,  

respectively.  

(d). The width and height of the bounding boxes are denoted as ( )W B  and ( )H B , 

respectively. 

(e). The horizontal and vertical distances between two bounding boxes are defined as 

 ( , ) max ( ), ( ) min ( ), ( )⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦h i j i j i jD B B l B l B r B r B ,         (3.30) 

and ( , ) min ( ), ( ) max ( ), ( )⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦v i j i j i jD B B b B b B t B t B       (3.31) 

If the two bounding boxes are overlapping in the horizontal or vertical direction, then the 
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value of ( , ) or ( , )h i j v i jD B B D B B  will be a negative value.  

(f). The measures of overlap between the horizontal and vertical projections of the two 

bounding boxes are defined as 

   
( , )( , )

min ( ), ( )
−

=
⎡ ⎤⎣ ⎦

h i j
h i j

i j

D B BP B B
W B W B

       (3.32) 

and  
( , )( , )

min ( ), ( )
−

=
⎡ ⎤⎣ ⎦

v i j
v i j

i j

D B BP B B
H B H B

       (3.33) 

Based on the functions and notation defined above, the connected-component clustering 

process is detailed as follows. The XY-cut clustering process is conducted by recursively 

performing the horizontal clustering procedure, X-cut procedure, and the vertical clustering 

procedure, Y-cut procedure on the bounding boxes of the contained connected-components of 

the current processing binary plane qBP .  

 The horizontal clustering procedure - X-cut( inCS ) (where the subscript “in” refers to 

“the original input group of connected-components”) is applied as follows: 

Step 1: Project all the bounding boxes of the connected-components contained in inCS  

horizontally onto the vertical y-axis. 

Step 2: Sort all the connected-components iC  in the inCS  with respect to their 

corresponding t(Ci), where all ∈i inC CS . Then scan the horizontal projections of their 

bounding boxes on the y-axis, and determine their “projection overlapping segments” on 

the y-axis. The bounding boxes that are said to share the same projection overlapping 

segment must be comprised of bounding boxes that overlap on the y-axis when projected 

horizontally. For example, if two components C1 and C2 overlap with each other, then they 
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should satisfy the overlapping condition, i.e. 1 2( ( ), ( )) 0>vP B C B C .  

Step 3: For the connected-components sharing the same projection overlapping segments, 

cluster the connected-components which are aligned with each other into respective groups 

jCS . Since for character components in a text line, their corresponding bounding boxes of 

connected-components should be well-aligned with each other, we use the 

alignment-condition to determine the alignment among the connected-components which 

share the same projection overlapping segments, and the alignment-condition is defined as, 

( ) ( )
( )

− ∩
<s s T

a
s

H B H B B T
H B

     (3.34) 

where sB  is the shorter among the two bounding boxes 1( )B C  and 2( )B C , and TB  is the 

taller one; Ta is a pre-defined threshold with the value 0.33 being used in this study. The left 

term of this condition can be simplified as, 

1 2
( ) ( ) 1 ( , )

( )
− ∩

= −s s L
v

s

H B H B B P C C
H B

    (3.35) 

In other words, if the non-overlapping part of the projection (i.e. the part of the projection 

which does not overlap with the taller bounding box) of the shorter bounding box is less 

than one-third of its height, then it should be merged into the same group.  

Step 4: After the above steps are performed, several groups of connected-components, 

kCS , are obtained; where 0,1,2,..., 1= −k K , and K is the number of resultant groups 

obtained in this recursion of the X-cut procedure. If only one resultant group 0CS  is 

obtained, then stop the procedure; otherwise, for each group kCS , conduct the vertical 

clustering procedure Y-cut( kCS ).  

Then the vertical clustering procedure Y-cut( inCS ) is conducted as follows: 

Step 1: Project all the bounding boxes of the contained connected-components of the input 
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group inCS  vertically onto the x-axis. 

Step 2: Sort all the connected-components iC  in the inCS  with respect to their 

corresponding l(Ci). Then, scan the vertical projections of their bounding boxes onto the 

x-axis and determine the projection overlapping segments. The connected-components 

whose vertical projections on the x-axis share the same overlapping segment can be 

detected when the overlapping condition 1 2( ( ), ( )) 0>hP B C B C  is satisfied. 

Step 3: For each projection overlapping segment, cluster the connected-components that 

are covered by the same overlapping segment into the associated group jCS .  

Step 4: For each determined group jCS , if the following horizontal space condition among 

adjacent groups is satisfied, then merge them into a single group. The horizontal space 

condition of two adjacent groups 1kCS  and 2kCS  is defined as:  

( ) 1 2
1 2

1 2

( ( )) ( ( ))( ), ( ) max ,
( ) ( )

⎛ ⎞
< ⎜ ⎟

⎝ ⎠
k k

h k k
cc k cc k

W B W BD B B
N N

CS CSCS CS
CS CS

     (3.36) 

where the term ( ( ))
( )cc

W B
N

CS
CS

 reflects the average width of all connected-components that 

belong to the group CS . The horizontal space condition states that if the horizontal space 

between the adjacent groups is sufficiently small, then the adjacent groups 1kCS  and 

2kCS  are joined.  

Step 5: After the above steps have been performed, several resultant groups lCS , are 

obtained, where l = 0, 1, 2,…,L-1, and L is the number of resultant groups obtained in this 

recursion of Y-cut procedure. If only one resultant group 0CS  is obtained, then stop the 

procedure; otherwise, for each group lCS , perform the horizontal clustering procedure 

X-cut ( lCS ). 
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 Initially, the initial group inCS  comprises all the connected-components of the current 

processing binary plane qBP . Accordingly, based on the above-mentioned two procedures, 

the connected-component clustering process is started by performing the X-cut procedure on 

the initial group inCS . If the first recursion of performing the X-cut procedure cannot divide 

the initial group inCS  into more than one group, then perform the Y-cut procedure on inCS . 

The clustering process is performed by recursively applying the X-cut and Y-cut procedures 

until the resultant connected-component groups cannot be divided into more sub-groups.  

 Figure 3.4 depicts the text extraction process. As shown in Figure 3.4(a), for the 

corresponding connected-components of characters in the binary plane 4BP  (corresponding 

to the plane 4P  in Figure 3.3(g)), there are five resultant CSs obtained after the X-cut 

procedure is performed. The Y-cut procedure is in turn performed on these five CSs. For 

instance, as shown in Figure 3.4(b), the Y-cut procedure is performed on the CS at the top of 

the five CSs obtained from the X-cut procedure, and then one resultant CS is obtained. This 

is because the connected-components in Figure 3.4(b) are all close to each other, and hence 

are clustered into a single resultant CS. After the XY-cut connected-component clustering 

process on a binary plane is completed, several final CSs are obtained, representing 

candidates of actual text-lines, as shown in Figure 3.4(c). Accordingly, the CSs associated 

with the remaining binary planes are also obtained after the XY-cut process is in turn 

performed on all binary planes.  

 The text identification process is then conducted to distinguish whether each one of 

these obtained CSs comprises actual text-lines or non-text objects. Before distinguishing and 

extracting text-lines, we first identify halftone pictorial objects and background regions using 

the normalized correlation features [88]. For each one of these CSs, its associated normalized 
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correlation features are computed on the bounding box region covered by its contained 

components. If these normalized correlation features of one CS meet the discrimination rules 

of halftone pictorial objects as suggested in [88], then it is determined to be a pictorial object 

or a background region.  

 After pictorial objects and background regions are identified and eliminated, the text 

identification is then performed on the rest of CSs. If a CS actually comprises a text-line, it 

may have the following distinguishing characteristics: 1) its contained connected-components 

should be respectively aligned, and the number of them should also be in proportion to the 

width of the CS; 2) the contained object pixels in the enclosing region of this CS show 

distinctive spatial variation. For the first characteristic, the identification strategies of the 

statistical features of connected-components [38] can be applied on each of the CSs, as well 

as the second characteristic can be determined by applying the discrimination rules of 

transition features on the object pixels contained in each of the CSs [89]. Both are 

independent of font types, lengths and sizes of text strings.  

 Based on the above-mentioned concepts, the text identification process employs the 

following heuristic rules 1 5R R−  determines whether the CSs contain text lines or non-text 

objects. A CS is identified as a real text-line if all of the following decision rules are satisfied. 

First, the ratio of the width W and the height H of the enclosing box of the CS must satisfy 

the condition,  

1 : 2.0≥WR H                (3.37) 

The number of contained connected-components ccN  of the CS must satisfy the conditions, 

2 : 0.5( ) 8.0( )≤ ≤ccR W H N W H ,  and  2≥ccN          (3.38) 

The ratio of the total area of the bounding boxes of the CS's contained connected-components 

of to the area of its enclosing box must satisfy the condition, 
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3

( )
: 0.5 0.95∈≤ ≤

×

∑
i

i
C

A C
R

W H
CS       (3.39) 

where ( )iA C  is the area of the bounding box of the i-th contained connected-component of 

the CS. Then the identification rules based on the statistical features of the contained pixels 

of the CS are introduced as follows. Considering that “0” represents object pixels and “1” 

background pixels, the number of transition pixels pT   in the enclosing box of the CS is 

determined by calculating the number of “0” to “1” and “1” to “0” transmissions. Hence the 

horizontal transition pixel ratio of the CS must satisfy the condition, 

4 : 1.2 3.6≤ ≤p ColR T N ,           (3.40) 

where ColN  is the number of the column lines in which the object pixels are present. In 

addition, the density of object pixels in the CS must also satisfy the condition, 

5

( )
: 0.2 0.8∈≤ ≤

×

∑
i

p i
C

O C
R

W H
CS              (3.41) 

where ( )p iO C  is the number of object pixels of the i-th connected-component of the CS.  

 Accordingly, a CS is identified as an actual text-line if it satisfies both of the above 

characteristics. The above-mentioned decision rules are obtained by analyzing many 

experimental results of processing document images having text strings with various types, 

lengths and sizes. The constant values utilized under the above decision rules are determined 

experimentally and yield good performance in most general cases. After the text 

identification process has been conducted on all object planes, the text-lines extracted from 

these planes are then collected into a resultant text plane, as shown in Figure 3.4(d).  
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(a). Example of performing X-cut on connected-components in the binary plane 4BP  of 
Figure 3.3(g).  

(b). Example of performing Y-cut on the top connected-component group, which is the first 
group among five groups obtained from X-cut procedure on 4BP . 

 
(c). The resultant candidate text-lines obtained by the XY-cut spatial clustering process. 

 
(d). The resultant text plane obtained by performing text extraction process on all planes 
derived from Figure 3.3(a) 

Figure 3.4. Examples of the text location and extraction process 

   

 



 

 97

3.5 Experimental Results 

 In this section, the performance of the proposed multi-plane approach is evaluated and 

compared to several other well-known text extraction techniques, namely Jain and Yu’s 

color-quantization-based method [38], and Pietikainen and Okun’s edge-based method [36]. 

A set of 54 real-life complex document images was employed for experiments on 

performance evaluation of text extraction. These test images include a variety of book covers, 

book and magazine pages, advertisements, and other real-life documents at the scanning 

resolution of 200 dpi to 300 dpi. These images are comprised of textual objects in various 

colors or illuminations, font styles and sizes, including sparse and dense textual regions, 

adjoined or overlapped with pictorial, watermarked, textured, shaded, or uneven illuminated 

objects and background regions.  

 

(a). Representative color image 1  (b). Representative color image 2 

(c). Representative color image 3 (d). Representative color image 4 

Figure 3.5. Representative color images of Figure 3.3(a) after performing Jain and Yu's 
method.  
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(a). Text extraction results by Jain and Yu’s method 
(b). Text extraction results by Pietikainen and Okun’s 
method 

Figure 3.6. Text extraction results of Fig. 3(a) by Jain and Yu’s method and Pietikainen and 
Okun’s method. 

 

 First, the comparative experiments are conducted on the aforementioned sample image 

of Figure 3.3(a). Figure 3.5 and Figure 3.6 show the processing results and text extraction 

results produced by Jain and Yu’s color-quantization-based method [38], and Pietikainen and 

Okun’s edge-based method [36]. Here the text extraction results of Pietikainen and Okun’s 

method depicted in Figure 3.6(b) and the later figures are converted into masked images 

where the black mask was adopted to display the non-text regions. As a comparative 

experiment of document image decomposition, the decomposition results depicted in Figure 

3.5(a)-(d) are four representative color images after performing Jain and Yu’s color 

quantization method [38]. As can be seen from the second representative color image in 

Figure 3.5(b), the caption characters superimposed on the shaded background are blurred and 

cannot be appropriately separated. Besides, as shown in Figure 3.5(d), the bottom text-line 

"what now?" is occulted in the fourth representative color image by reason of the insufficient 

contrast for color quantization process. As a result, these two textual regions are missed in the 

resultant text extraction results, as shown in Figure 3.6(a). As seen from Figure 3.6(b), 

Pietikainen and Okun’s method extracts most characters of the body text, but many caption 

characters are fragmented and characters of the text-line "what now?" are also lost due to the 

low contrast with the background.   
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 Figure 3.7(a) and Figure 3.7(b) are two typical test images of A4 full-size complex 

scanning documents. The test image shown in Figure 3.7(a) contains background objects with 

sharp illumination variations across textual regions, and some of these also possess similar 

colors and illuminations to those characters touched with them, so that their illuminations are 

influenced and have gradational variations due to the scanning process; while the test image 

in Figure 3.7(b) has a large portion of the main body text printed on a large shaded and 

textured background region, and thus the contrasts between the characters and this textured 

background region is extremely degraded.  

 Figure 3.8 and Figure 3.9 depict the decomposition results of Figure 3.7(a) produced by 

the proposed multi-plane approach and Jain and Yu’s color-quantization-based method. As 

shown in Figure 3.8(a) – (h), the proposed approach clearly segment the homogenous objects 

into respective object planes. These planes comprise of the textual objects of interest 

including the large bright characters near the gray boundary blocks in Figure 3.8(b) and (e), 

the characters "SIEMENS" below the man in black in Figure 3.8(c), the white main body text 

close to the mobile phone's shell in Figure 3.8(d), and the rest of small characters in Figure 

3.8(g) and (h). Comparatively, textual objects of the caption and the main body text in Figure 

3.9(b), 9(e) and 9(f) of the representative color images decomposed by Jain and Yu’s method 

are visibly fade or blurred with pictorial objects due to the influence of those background 

objects during the color quantization process. Figure 3.10(a) – (c) illustrate the text extraction 

results of Figure 3.7(a) by the proposed approach, Jain and Yu’s method, and Pietikainen and 

Okun’s method. As shown in Figure 3.10(a), the text extraction results by the proposed 

approach demonstrate that the majority of the textual objects are successfully extracted from 

the sharply varying backgrounds. By comparison, as shown in Figure 3.10(b), Jain and Yu’s 

method is unsuccessful to extract the large caption characters and many characters in the 

main body text by reason of the above-mentioned unsatisfactory decomposition results of the 
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color quantization process. Pietikainen and Okun’s method extracts most textual objects 

except some broken large characters and several missed small characters, as shown in Figure 

3.10(c); however, several pictorial objects with sharply varying contours are also identified as 

textual objects, and thus the characters in extracted textual regions are blurred.  

 

 

 

(a). Test image 2 (size: 2333 × 3153) (b). Test image 3 (size: 2405 × 3207) 

Figure 3.7. Original images of the test images 2 and 3 
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(a). Decomposed object plane 1 (b). Decomposed object plane 2 (c). Decomposed object plane 3 

   
(d). Decomposed object plane 4 (e). Decomposed object plane 5 (f). Decomposed object plane 6 

   
(g). Decomposed object plane 7 (h). Decomposed object plane 8 (i). Decomposed object plane 9 

Figure 3.8. Decomposed object planes of Figure 3.7(a) after performing the proposed 
multi-plane segmentation 
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(a). Representative color image 1 (b). Representative color image 2 (c). Representative color image 3 

   

(d). Representative color image 4 (e). Representative color image 5 (f). Representative color image 6 

Figure 3.9. Representative color images of Figure 3.7(a) after performing Jain and Yu's 
method. 
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(a). Text extraction results by the 
proposed approach 

(b). Text extraction results by Jain and 
Yu’s method 

(c). Text extraction results by 
Pietikainen and Okun’s method 

Figure 3.10. Text extraction results of Figure 3.7(a) by the proposed approach, Jain and Yu’s 
method, and Pietikainen and Okun’s method.  
 

 In the test image shown in Figure 3.7(b), the textual region of interest are the caption 

characters "you see" on the top-left, the main body texts on the right, and the white characters 

"technology perfectly" on the bottom-left. Figure 3.11 - Figure 3.13 illustrate the 

decomposition and text extraction results on the test image in Figure 3.7(b) obtained by the 

proposed approach, Jain and Yu’s method, and Pietikainen and Okun’s method. As shown in 

Figure 3.11(b), the proposed approach correctly separate the main body texts printed on 

shaded and textured background regions in highly degraded contrasts. By comparison, textual 

regions of the main body texts in Figure 3.12(a) of the representative color image obtained by 

Jain and Yu’s method are apparently smeared with the background regions. Accordingly, as 

can be seen from Figure 3.13(a), the characters in three different textual regions are 

successfully extracted by the proposed approach; whereas both Jain and Yu’s method, and 

Pietikainen and Okun’s method could not perform well on extracting textual objects from the 

shaded and textured backgrounds in degraded contrasts, as shown in Figure 3.13(b) and 

Figure 3.13(c), respectively.  
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(a). Decomposed object plane 1 (b). Decomposed object plane 2 (c). Decomposed object plane 3 

  

 

(d). Decomposed object plane 4 (e). Decomposed object plane 5  

Figure 3.11. Decomposed object planes of Figure 3.7(b) after performing the proposed 
multi-plane segmentation 
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(a). Representative color 
image 1 

(b). Representative color 
image 2 

(c). Representative color 
image 3 

(d). Representative color 
image 4 

  

 

(e). Representative color 
image 5 

(f). Representative color 
image 6 

(g). Representative color 
image 7 

 

Figure 3.12. Representative color images of Figure 3.7(b) after performing Jain and Yu's 
method. 
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(a). Text extraction results by the 
proposed approach 

(b). Text extraction results by Jain and 
Yu’s method 

(c). Text extraction results by 
Pietikainen and Okun’s method 

Figure 3.13. Text extraction results of Figure 3.7(b) by the proposed approach, Jain and Yu’s 
method, and Pietikainen and Okun’s method. 

 

 

(a). Test image 4 (size: 2864 × 3658) (b). Test image 5 (size: 2427 × 3166) (c). Test image 6 (size: 2469 × 3535)

Figure 3.14. Original images of the test images 4 - 6 
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 Figure 3.14(a) – (c) are three test images with several notable characteristics. The test 

image in Figure 3.14(a) has multiple-colored text-lines printed on several shaded background 

regions in indistinct contrasts, while the test images in Figure 3.14(b) and (c) comprise 

textual regions overlapped with numerous character-like objects with similar contrasts and 

textural features to those of actual textual objects. To facilitate the visual observation of 

bright characters, the text extraction results of Jain and Yu’s method and the proposed 

approach in Figure 3.15(a)-(b), Figure 3.16(a)-(b), and Figure 3.17(a)-(b) are illustrated in the 

binarized form. Figure 3.15(a), Figure 3.16(a), and Figure 3.17(a) exhibit that the proposed 

approach correctly segment and extract the textual objects with different sizes, types, and 

colors under various difficulties associated with the complexity of background images. As 

shown in Figure 3.15(b), Figure 3.16(b), and Figure 3.17(b), Jain and Yu’s method could not 

perform well on extracting several text-lines of interest, and some extracted textual regions 

are also blurred or degraded. As illustrated in Figure 3.15(c), Figure 3.16(c), and Figure 

3.17(c), Pietikainen and Okun’s method can extract most textual objects, but some shaded 

textual objects such as the caption characters "to the Real Essay" in Figure 3.15(c) are missed, 

and many background textures and contoured objects are also identified as textual objects, 

and so that many extracted textual regions are blotted by these spurious detections.  
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(a). Binarized text extraction results by 
the proposed approach 

(b). Binarized text extraction results by 
Jain and Yu’s method 

(c). Text extraction results by 
Pietikainen and Okun’s method 

Figure 3.15. Text extraction results of Figure 3.14(a) by the proposed approach, Jain and Yu’s 
method, and Pietikainen and Okun’s method. 

 

 
(a). Binarized text extraction results 
by the proposed approach 

(b). Binarized text extraction results 
by Jain and Yu’s method 

(c). Text extraction results by 
Pietikainen and Okun’s method 

Figure 3.16. Text extraction results of Figure 3.14(b) by the proposed approach, Jain and Yu’s 
method, and Pietikainen and Okun’s method. 
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(a). Binarized text extraction results by 
the proposed approach 

(b). Binarized text extraction results 
by Jain and Yu’s method 

(c). Text extraction results by 
Pietikainen and Okun’s method 

Figure 3.17. Text extraction results of Figure 3.14(c) by the proposed approach, Jain and Yu’s 
method, and Pietikainen and Okun’s method.  

 

 

 

Table 3.1. Experimental data of Jain and Yu’s method and our 
proposed approach  

Method Recall Rate Precision Rate 

Jain and Yu’s method 79.8% 95.2% 

Our approach 99.1 % 99.3% 

 

 

 

 



 

 110

For the quantitative evaluation of text extraction performance, two measures, the recall 

rate and the precision rate, which are commonly used for evaluating performance in 

information retrieval, are adopted. They are respectively defined as, 

.
.

=
No of correctly extracted charactersrecall rate

No of actual characters
, and   (3.42) 

 .
.

=
−

No of correctly extracted charactersprecision rate
No of extracted character like components

  (3.43) 

We compute the recall and precision rates for text extraction results of test images in this 

study by manually counting the number of actual characters of the document image, total 

extracted character-like connected-components, and the correctly extracted characters, 

respectively. The experiments of quantitative evaluation were performed on our test database 

of 54 complex document images with totaling 22791 visible characters. From the text 

extraction viewpoint, the recall rate reveals the percentage of correctly extracted characters as 

opposed to all actual characters within each processed document image, while the precision 

rate represents the percentage of correctly extracted characters as opposed to all extracted 

character-like connected-components. Since these quantitative evaluation criteria are 

performed on the extracted connected-components, the results of Pietikainen and Okun’s 

method is inappropriate for evaluation using these criteria, and were not involved in the 

quantitative evaluation. Table 1 depicts the results of quantitative evaluation of Jain and Yu’s 

method and the proposed approach. By observing Table 1, we can see that the proposed 

approach provides better text extraction performance as compared to that of Jain and Yu’s 

method.  
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(a). Original Image (a). Original Image (a). Original Image 

  
(b). Text extraction results by the 
proposed approach 

(b). Text extraction results by the 
proposed approach 

(b). Text extraction results by the 
proposed approach 

Figure 3.18. Results of test image 
7 (size: 1829 × 2330) 

Figure 3.19. Results of test image 
8 (size: 3147 × 4536) 

Figure 3.20. Results of test image 
9 (size: 1859 × 2437) 
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(a). Original Image (a). Original Image (a). Original Image 

 
(b). Text extraction results by the 
proposed approach 

(b). Text extraction results by the 
proposed approach 

(b). Binarized text extraction 
results by the proposed method 

Figure 3.21. Results of test image 
10 (size: 1344 × 1792) 

Figure 3.22. Results of test image 11 
(size: 2309 × 2829) 

Figure 3.23. Results of test 
image 12 (size: 2469 × 3535) 
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Figure 3.18 – Figure 3.23 show some further examples of the proposed approach on 

extracting textual objects from complex document images, and more results of test samples in 

the experimental set are shown in. Although a few non-text components with character-like 

characteristics are detected as textual objects, and a few small punctuation marks are missed 

because of their small sizes and non-alignment with other characters contained in text-lines, 

the overwhelming majority of the textual objects are correctly obtained. By observing the 

results obtained, even if textual objects comprised of various illuminations, sizes, and styles, 

are overlapped with pictorial objects and backgrounds with uneven, gradational, and sharp 

variations in contrast, illumination, and texture, almost all the textual objects are effectively 

detected and extracted by the proposed approach.  

 The proposed approach was implemented on a 2.4 GHz Pentium-IV personal computer 

using C++ programming language. The computation time spent on processing an input 

document image depends on the size and complexity of the image. Most of the computation 

time was spent on the multi-plane region matching and assembling process. For a typical 

A4-sized document page scanned at 300 dpi resolution, the average image size is 2408 pixels 

by 3260 pixels, with an average of 1.12 seconds processing time. 
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Chapter 4. NIGHTTIME VEHICLE DETECTION FOR DRIVER 

ASSISTANCE 

 

 This chapter presents an effective method for detecting vehicles in front of the 

camera-assisted car during nighttime driving. The proposed method detects vehicles based on 

detecting and locating vehicle headlights and taillights by using techniques of image 

segmentation and pattern analysis. First, to effectively extract bright objects of interest, a fast 

bright object segmentation process based on automatic multilevel histogram thresholding is 

applied on the grabbed nighttime road-scene images. This automatic multilevel thresholding 

approach can provide robustness and adaptability for the detection system to be operated well 

on various illuminated conditions at night. Then the extracted bright objects are processed by 

a rule-based connected-component analysis procedure, to identify the vehicles by locating 

and analyzing their vehicle light patterns, and estimating the distances, relative positions, and 

tracking the relative motion between the detected vehicles and the camera-assisted car. 

 

4.1 Introduction 

 A vision-based system for detecting the road environment for driver assistance and 

autonomous vehicle guidance is an emerging research area. Accordingly, many researchers 

have developed valuable techniques for recognizing interesting vehicles and obstacles from 

images of road environments outside the car [6]-[9], to facilitate applications on the 

camera-assisted system that assists drivers in understanding possible hazards on the road, and 

automatically controlling the apparatus of vehicles, such as headlights, windshield wipers, 

etc.  

 A vision-based vehicle and obstacle detection system is aiming at identification of 
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vehicles, obstacles, traffic signs and other patterns on the road from grabbed image sequences 

by means of image processing and pattern recognition techniques. Until recently, researchers 

in this field still open new questions and concepts [42][43]. By adopting different concepts 

and definitions on interesting objects on the road, different techniques are applied on the 

grabbed image sequences to detect them as vehicles or obstacles. For locating vehicles in an 

image sequence, the task can be carried out by searching for specific patterns on the images 

based on typical features of vehicles, such as shape, symmetrization, or their surrounding 

bounding boxes [44]-[46]. Until recently, most of these works focused on detecting vehicles 

under daytime road environments.  

 However, under bad-illuminated conditions in nighttime road environments, those 

obvious features of vehicles which are effective for detecting vehicles in daytime become 

invalid in nighttime road environments. Thus, most of the above-mentioned techniques 

cannot work well under such nighttime road environments. At night, as well as under dark 

illuminated condition in general, the only visual features of vehicles are their headlights and 

taillights. Headlights and taillights are visible if a vehicle lies in the visible range of the CCD 

camera mounted on a camera-assisted car. However, there are also many other illuminant 

sources coexisted with the vehicle lights in nighttime road environments, such as street lamps, 

traffic lights, and road reflector plates on ground. These non-vehicle illuminant sources cause 

many difficulties for detecting actual vehicles in nighttime road scenes.  

 Recently, some techniques based on optical sensor are presented [90][91], for detecting 

the lights of preceding and oncoming vehicles during nighttime driving. For this purpose, an 

optical sensor array system is set up on the vehicle, then lighting objects appeared in the 

viewable area ahead of the vehicle are imaged on the lighting sensor array. Then a set of 

pre-determined thresholds are utilized to retrieve and label pixels of bright spots having gray 

intensities above the first threshold value, subsequently another threshold value is applied to 
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determine whether a bright spot is a light of the preceding or oncoming vehicle, shining 

reflection of a vehicle’s lighting, or a lighting source of other circumstances other than that of 

a vehicle light. However, although such techniques can effectively detect the appearance of 

incoming vehicles approaching ahead or preceding vehicles driving on the same lane, yet it is 

still unable to further determine and demarcate their relative positions and the amount of the 

preceding and incoming vehicles to gain more interesting information of traffic conditions 

ahead. Furthermore, because these techniques use a set of fixed threshold values configured 

beforehand, they are unable to adaptively adjust the selection of threshold values aimed at 

different conditions of nighttime lighting, so the reliability of them on handling the 

circumstance where road environments have different lighting conditions is limited.  

 Therefore, an efficient technique for identification of actual vehicle lights to correctly 

detect and locate moving vehicles in nighttime road-scene image sequences is practically a 

necessary demand for issues of driver assistance and the development of autonomous 

camera-assisted vehicles. Besides, this way provides beneficial information for the driver to 

perceive surrounding traffic conditions outside the vehicle during nighttime driving, and can 

also be applied to a versatile control scheme for the apparatus of vehicles. For example, the 

use of high-beam and low-beam states of headlights can be intelligently controlled according 

to the detection results of presence of oncoming and preceding vehicles, and thus many 

hazards during nighttime driving, such as headlight dazzler, can be efficiently prevented.  
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Figure 4.1. Block diagram of the proposed method 
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 In this study, we propose an effective nighttime vehicle detection method for identifying 

vehicles by locating and analyzing their headlights and taillights. This proposed method 

comprises of the following processing stages. First, a fast bright object segmentation process 

based on automatic multilevel histogram thresholding is performed to extract pixels of the 

bright objects from the grabbed image sequences of nighttime road scenes. The advantage of 

this automatic multilevel thresholding approach is its robustness and adaptability for dealing 

with various illuminated conditions at night. Then a connected-component analysis procedure 

is applied on the bright pixels obtained by the previous bright object segmentation stage, to 

locate the connected-components of these bright objects. These bright components are then 

grouped by a projection-based spatial clustering process to obtain potential pairing headlights 

of oncoming vehicles, and taillights of preceding vehicles. Accordingly, a set of identification 

rules are applied on each group of bright objects to determine whether it represents an actual 

vehicle. Next, the distances, relative positions, and motion directions between each of the 

detected target vehicles appeared ahead and the camera-assisted car are estimated and tracked. 

Figure 4.1 sketches the flow diagram of the proposed nighttime vehicle detection method. 

Experimental results demonstrate that the proposed method is feasible and effective on 

vehicle detection in various nighttime road environments.  

 

4.2 Bright Object Extraction 

 The input image sequences grabbed from the vision system, which is mounted behind 

the windshield inside the camera-assisted car. These grabbed frames reflect nighttime road 

environments appeared in front of the car. The image sequences are grabbed with the 

720x480 resolution with 24-bit true colors. Figure 4.2 shows one sample nighttime road 
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scene taken from the vision system. In this sample scene, there are two vehicles appeared on 

the road, where the left one is approaching in the opposite direction on the neighboring lane, 

and the right one is moving in the same direction with the camera-assisted car. The left 

approaching car shows its bright headlights, while the front moving one shows its smaller and 

slightly gloomier taillights. In addition to the headlights and taillights of the vehicles, some 

lamps, traffic lights and signs are also the visible illuminant appeared in the image sequences 

of the nighttime environment.  

 

 

Figure 4.2. An example of nighttime road environment 
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Figure 4.3. Bright object plane extracted from Figure 4.2 after 
performing the bright object segmentation process 

 

Hence, the first task is to extract these bright objects from the road scene image to 

facilitate further rule-based analysis. To save the computation cost on extracting bright 

objects, we firstly extracted the grayscale image, i.e. the Y-channel, of the grabbed image by 

performing a RGB to Y transformation. For extracting these bright objects from a given 

transformed gray-intensity image, pixels of bright objects must be separated from other 

object pixels of different illuminations. Thus, an effective multilevel thresholding technique 

is needed for automatically determining the appropriate number of thresholds for segmenting 

bright object regions from the road-scene image. For this purpose, we have already proposed 

an automatic multilevel thresholding technique for image segmentation in Chapter 2. This 

technique extends and adopts the properties of discriminant analysis on multilevel 

thresholding. By evaluating the separability using the discriminant criterion, the number of 

homogeneous objects of interest, into which a road-scene image should be segmented, can be 
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automatically determined. As a result, bright objects can be appropriately extracted from 

other objects contained in the nighttime road-scene. As shown in Figure 4.3, pixels of bright 

objects in Figure 4.2 are successfully separated into the thresholded object plane after 

performing the segmentation process. 

 

4.3 Spatial Clustering Process for Bright Objects 

 To obtain potential vehicle-light components from the bright obtained object plane, a 

connected-component extraction process [85] is then performed on the bright object plane to 

label and locate the connected-components of the bright objects. By extracting the connected- 

components, meaningful features of the location, dimension, and pixel distribution associated 

with each connected-component are also obtained as well. The location and dimension of a 

connected-component can be represented by the bounding box which encloses it. We are 

interested in looking for the horizontal-aligned vehicle lights; hence a spatial clustering 

process is applied on the connected-components to cluster them into several meaningful 

groups. A resultant group is comprised of a set of connected-components, and it may be 

consisted of vehicle-lights, traffic lights, road signs, and some other illuminant objects which 

are commonly appeared in nighttime road environments. These connected-component groups 

are then processed by the vehicle light identification process to obtain the actual moving 

vehicles. 

First, the definitions used in the projection-based spatial clustering process are described 

as follows, 

1). iC  denotes one certain bright connected-component to be processed. 

2). kCG  denotes a group of bright components, { }, 0,1,...,= =k iCG C i p , the total 
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number of connected-components contained in kCG  is denoted as ( )cc kN CG .  

3). The location of the bounding boxes of a certain component iC  employed in the 

spatial clustering process are their top, bottom, left and right coordinates, and they are 

denoted as ( )it C , ( )ib C , ( )il C , and ( )ir C ,  respectively. 

4). The width and height of a bright component iC  are denoted as ( )iW C  and ( )iH C , 

respectively. 

5). The horizontal distance hD  and vertical distance vD  between two bright 

components are defined as, 

( , ) max ( ), ( ) min ( ), ( )⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦h i j i j i jD C C l C l C r C r C     (4.1) 

( , ) max ( ), ( ) min ( ), ( )⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦v i j i j i jD C C t C t C b C b C     (4.2) 

If the two bright components are overlapping in the horizontal or vertical direction, then 

the value of the ( , )h i jD C C  or ( , )v i jD C C  will be a negative value. 

6). Hence the measure of overlapping between the vertical projections of the two bright 

components can be computed as, 

( , )( , )
min ( ), ( )

−
=

⎡ ⎤⎣ ⎦
v i j

v i j
i j

D C CP C C
H C H C

    (4.3) 

To preliminarily screen out non-vehicle illuminant objects such as street lamps and 

traffic lights, we firstly filter out the bright components which are located above the one-third 

of the vertical y-axis, i.e. only the bright components located under the constraint line as 

shown in Figure 4.4 will be taken into account. This is because the vehicles which are located 

at the distant place on the road become very small light “points”, and will “converge” into a 

virtual horizon. Hence we utilize the constraint line in Figure 4.4 as this virtual horizon.  
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Figure 4.4. The processing area determined by the virtual horizon and the 
bright components of interest 

  

 Next, for the purpose of determining the moving directions of the detected vehicles, it is 

necessary to distinguish the bright components into potential headlights and taillights for 

performing respective analysis. Since the headlights have much more variation in colors and 

sizes then those of the taillights, so that we can utilize some distinguishable characteristics of 

taillights to distinguish them from potential vehicle lights. The distinguishable characteristic 

of the taillights is that they mostly are red illuminated lights. However, when the preceding 

vehicles are near to the camera-assisted car, i.e. within 30 meters, their taillights cause 

“blooming effects” in CCD cameras, and are usually too bright to appear as white objects in 

the grabbed images. This is because all R, G, B intensities of central pixels in these objects 

are very close to the full intensities, i.e. 255.  As a result, only the pixels that are located 

around the components of potential taillights have distinguishable red appearance. Hence the 

following red-light criterion is utilized to check if a bright component contains a potential 



 

 124

taillight object, and this criterion is determined by,  

( ) both ( ) and ( )p i red p i p iR C T G C B C− >       (4.4) 

where redT  is a pre-determined threshold; ( )p iR C , ( )p iG C , and ( )p iB C  respectively 

represent the average intensities of the R, G, and B color frames of the pixels which are 

located at the peripheral of a given bright component iC . Here the value of redT  is chosen 

as 10, to appropriately discriminate the potential taillight components and other bright 

components. If a bright component iC  satisfies the red-light criterion, then iC  is tagged as 

a red-light component; otherwise, it is tagged as a non-red-light component.  

Based on the functions and notations addressed above, the connected-components of 

bright objects are recursively merged and clustered into bright component groups kCG  if 

they have the same light tags, are horizontally close to each other, vertically overlapped, and 

aligned. In other words, if two neighboring bright components satisfy the following 

conditions, they are merged with each other and clustered as the same group CG: 

1). They have the same tags, i.e. both of them are red-light components, or both are 

non-red-light components.  

2). They are horizontally close to each other, i.e.: 

( )( , ) max ( ), ( )< ×h i j d i jD C C T H C H C     (4.5) 

3). They are highly overlapped in vertical projection profiles, i.e.: 

( , ) >v i j pP C C T        (4.6) 

4). They have similar heights, i.e.: 

( ) ( ) >S L hH C H C T            (4.7) 
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where SC  is the one with the smaller height among the two bright components iC  and 

jC , while LC  is the larger one.  

Here dT , pT , and hT  are the pre-determined thresholds to respect the pairing 

characteristics of vehicle lights, and the values of them are reasonably chosen as 3.0, 0.8, 0.7, 

respectively.  

 

 
Figure 4.5. The spatial clustering process of bright components 

 

Figure 4.5 illustrates the spatial clustering process of bright connected-components. 

After performing the spatial clustering process, several groups of bright components are 
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obtained, and they are called candidate vehicle light groups. As shown in Figure 4.5, the 

meaningful bright components are grouped into two candidate vehicle light groups, the left 

one contains the headlights of the oncoming vehicle, and the right one contains the taillights 

of the preceding vehicle. Then a rule-based vehicle identification process stated in the 

following section is conducted on these candidate groups to identify and locate actual 

vehicles appeared in road scene images.  

 

4.4 Rule-Based Vehicle Identification 

 A rule-based identification process is then applied on each of the candidate vehicle-light 

groups (i.e. the obtained CGs) to determine whether it comprises of actual vehicle lights or 

other illuminated objects. This identification process is based on the statistical features of 

their contained bright components. If a certain candidate group kCG  contains a set of actual 

vehicle lights representing a vehicle, then the following heuristic discriminating rules must be 

satisfied,  

1). The enclosing bounding box of the candidate vehicle light group must form a 

horizontal rectangular shape, i.e. the size-ratio feature of the enclosing bounding box of kCG  

must satisfy the following condition, 

( ) ( ) τ≥k k rW CG H CG       (4.8) 

where the threshold τ r  on the size-ratio condition is selected as 2.0 for suitably reflecting 

rectangular-shaped appearance of pairing vehicle lights.   

2). The number of its contained bright components should also be within a reasonable 

range, because the vehicle lights are mostly appeared in symmetrical pairs, and some types of 

compound vehicular light set may comprise of at most four lights, so that the light amount 
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condition is defined as, 

( )1 2τ τ≤ ≤n cc k nN CG       (4.9) 

where the values of 1τ n  and 2τ n  are chosen as 2 and 4, respectively, to appropriately reflect 

the pairing characteristic of vehicle lights.  

3). Moreover, its contained bright components should be well-aligned, and thus the 

number of these components should be in reasonable proportion to the size of the size-ratio 

feature of its enclosing bounding box, thus, the following alignment condition must be 

satisfied,  

( )1 2
( ) ( )
( ) ( )

τ τ
⎛ ⎞ ⎛ ⎞

≤ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

k k
a cc k a

k k

W CG W CGN CG
H CG H CG

   (4.10) 

where the thresholds 1τ a  and  2τ a  are determined as 0.4 and 2.0, respectively, according to 

our analysis of typical visual characteristics of most vehicles during nighttime driving.  

The above-mentioned discriminating rules are obtained by analyzing many experimental 

results of videos on real nighttime road environments having vehicle lights appeared in 

different shapes, sizes, directions and distances. The values of thresholds utilized for these 

discriminating rules are determined to yield good performance in most general cases of 

nighttime road environments.  

 

4.5 Vehicle Distance and Position Estimation 

 After obtaining each vehicle position represented by vehicle-light group, on the basis of 

its approximate y coordinate height location of the vehicle body on the image, applying a 

distance estimation rule with perspective image modeling as base, to carry out vehicle real 
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space distance and position determining procedure, so as to gain estimation of its 

corresponding Z-distance of the coordinate system on imaginary and real world.  

 To estimate the real-world distance between the camera-assisted car and detected 

vehicles, we apply the perspective range estimation model of the CCD camera as introduced 

in [92]. The origin of the virtual vehicle coordinate system is placed at the central point of the 

camera lens. The X and Y-coordinate axes of the virtual vehicle coordinate are parallel to the 

x and y-coordinates of the grabbed images, and the Z-axis is placed along the optical axis and 

perpendicular to the plane formed by the X and Y axes. A vehicle on the road at a distance Z 

in front of the camera-assisted car will project to the image at a vertical coordinate y. Thus a 

perspective range estimation model can be utilized for estimating the Z-distance in meters 

between the camera-assisted car and one detected vehicle by using the equation,  

⋅
= ⋅

f HZ k
y

       (4.11) 

where k is a given factor for converting from pixels to millimeters for the CCD camera which 

is mounted on the car at the height H, and f is the focal length in meters. 

  Then the real vehicle body width W of the detected target vehicle, by the way of the 

perspective imaging model using the above-mentioned Z-distance value, can be respectively 

converted and computed. Let the pixel width that appeared in the image, of the detected target 

vehicle at time t be represented by w(t), then its corresponding relation using the perspective 

image model and Z-distance, Z(t) at that time can be computed by, 

( )
( )

W Z t
w t k f

=
⋅ , and ( )

( )
f ww t k
Z t
⋅

= ⋅     (4.12) 

Wherein, the pixel width of the target vehicle ( ) ( ) - ( )= r lw t x t x t , ( )lx t  and ( )rx t  are 

separately the location of the pixel coordinates at time t of the preceding detected target 
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vehicle’s left-hand boundary (the vehicle light at left hand boundary) and right-hand 

boundary (the vehicle light at right-hand boundary) in the image. Hence, at a certain time slot 

1 0t t tΔ = − , the relative motion velocity v of the vehicle in concern and a detected target 

vehicle in front can be gained by way of derivation operation below, 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

1 0 1 0

1 0 1 0

0 1 0 1
0

0 1 1

1 0

⋅ ⋅ ⋅ ⋅
−

−Δ
= = =
Δ − −

− −
⋅ ⋅ ⋅ ⋅

⋅
= =

− Δ

k f W k f W
Z t Z t w t w tZv

t t t t t
w t w t w t w t

k f W Z t
w t w t w t

t t t

    (4.13) 

Hence, if desired to compute the relative velocity v between the vehicle in concern and the 

detected target vehicle in front, it can be obtained by way of the product relationship of the 

Z-distance, ( )0Z t  detected at a certain point of time 0t , and the changing rate of the pixel 

width w of the detected target vehicle in front, i.e. ( )0 1 1( ) ( ) ( )−w t w t w t .  

 By the way of the perspective model, from the corresponding relationship between the 

pixel’s coordinate location ( )lx t  and ( )rx t  (as shown in Figure 4.6) of the preceding 

detected target vehicle’s left-hand boundary and right-hand boundary in the image and 

Z-distance Z(t), the real relative lateral positions ( )lX t  and ( )rX t  between it and the 

vehicle in concern on the lane can be respectively derived and computed. Suppose at time t, a 

certain position ( )X t  is at a distance Z(t) meters from the vehicle in concern on the lane, its 

corresponding relative position ( )X t  of the pixel coordinates in the image will have the 

corresponding conversion relationship, 

( ) ( )
( )

=
⋅

X t Z t
x t k f

, and 
( ) ( )( ) ⋅

=
⋅

x t Z tX t
k f

    (4.14) 

 Based on the above mentioned equations it can be learned that the left-hand boundary, 



 

 130

( )lX t  and right-hand boundary, ( )rX t  of the preceding detected target vehicle can be 

respectively computed as, 

( ) ( )( ) ⋅
=

⋅
l

l
x t Z tX t

k f
, and 

( ) ( )( ) ⋅
=

⋅
r

r
x t Z tX t

k f
   (4.15) 

 

Figure 4.6. The illustration of the lateral positions of the detected vehicle bodies in the 
image coordinates 

  

 By means of the above-mentioned equations, the motion information about distances, 

relative velocities, and relative lateral positions et cetera between the vehicle in concern and 

the preceding detected target vehicle on the lane can be obtained. In this way, the driver can 

be assisted for learning about the information of relative positions and motion between the 

vehicle in concern and preceding vehicles so as to adopt correct driving actions and prevent 

nighttime vehicle accidents from happening, more further application of this detection 
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information is to use it as an automated control mechanism of vehicle cruise velocity and 

driving route, so as to increase the safety of nighttime driving. 

 

4.6 Vehicle Tracking Process 

 After obtaining the motion information of the nominated vehicle light object groups in 

each consecutive image frame, a tracking procedure of these vehicle light groups can be 

applied, aimed at the vehicle light groups discriminated in each continuous image frames, 

with regard to the direction they are advancing, to track and detect so as to appropriately 

determine the information of their moving directions and actions, position, and relative 

velocity of every vehicle entering the area under surveillance, in this way the driver can be 

more perfectly assisted to determine the traffic conditions ahead of the vehicle.  

 With regard to the vehicle light object groups appearing at a length, as demarcated in the 

video, they respectively represent oncoming vehicles on the opposite lane and preceding 

vehicles on the same lane appearing on the preceding lane of the vehicle in concern, after 

conducting the above-mentioned procedure of real vehicle distances and positions 

determination to compute and determine the relative space positions (Z-distance Z(t), 

positions of left-hand boundary ( )lX t  and positions of right-hand boundary ( )rX t ) of them 

on the real lane, the motion trajectories of the detected target vehicles are analyzed and 

looked for in a series of images, until any of them disappear in the line of sight ahead of the 

vehicle in concern. When a target vehicle i at time t (tth frame of the video image) appears at 

the preceding space position in front of the vehicle is represented by t
iP , and is defined as: 

( ( ), ( ))=t
i i iP X t Z t       (4.16) 

where ( )iX t  represents the horizontal midpoint position of the target vehicle i at time t 
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appearing on the lane. ( )iX t  can be obtained through the operation given below, 

( )( ( ) ( )
2
+l rX t X t

       (4.17) 

Accordingly, adopting the smallest path coherence function algorithm to compute and obtain 

the trajectory of each target vehicle appearing in each image frame, and on this account to 

compute the information of relative direction of motion, relative position, relative velocity et 

cetera of each vehicle appearing in front of the vehicle in concern at each point of time.  

 Firstly, a trajectory vector Ti is used to represent the tracking trajectory vector of vehicle 

i, it represents a sequence of positions of the target vehicle appeared in the visible area in 

front of the vehicle in concern, the trajectory formed by space position of the whereabouts in 

order of the ith target vehicle in a continuous time slot 0-t (0th to tth image), and is defined as: 

0 1, ,..., ,...,= t n
i i i i iT P P P P      (4.18) 

Thus, let t
id  represents the path deviation value of ith vehicle at tth image frame in time, 

which is, 

1 1 1 1( , , ) ( , )φ φ− + − += =t t t t t t t t
i i i i i i i id P P P P P P P    (4.19) 

 

Wherein the function φ  is the path coherence function and vector 1−t t
i iP P  represents the 

position changing vector of vehicle i’s motion from 1−t
iP  to t

iP . The path coherence function 

φ  can be gained by calculations from the relationship formula between motion vectors 

1−t t
i iP P  and 1+t t

i iP P , the path coherence function φ  has two main terms, the former term 

represents the deviation of motion direction formed by 1−t t
i iP P  and 1+t t

i iP P , the latter term 
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represents its change in velocity of motion, the concept is based mainly on the preservation of 

a definite smoothness by the motion trajectory, hence its direction of motion and velocity of 

motion should react a definite standard of smoothness, for this reason the path coherence 

function can be derived and computed as, 
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1 1

1 2 1 1

1
1 1
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Hence, the path deviation of vehicle i corresponding to its trajectory vector, denoted as 

( )i iD T , can be computed and obtained by, 

1

2

( )
−

=

=∑
n

t
i i i

t

D T d       (4.21) 

Going a step further, when m number of vehicles appears within the video image in a time 

slot, the overall trajectory deviation D of the motion trajectory vector of these m number of 

vehicles can be obtained from the calculations below, 

1=

=∑
m

i
i

DD        (4.22) 

 By means of the evaluation process of the overall trajectory deviation D defined above, 

through finding a minimal value of overall trajectory deviation, to obtain the optimal 

multiple-vehicle tracking trajectory, and then appropriately obtain the information of relative 

motion directions, relative positions, relative velocities et cetera of the detected target 

vehicles appearing ahead of the vehicle in concern.  
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4.7 Experimental Results 

 In this section, we describe the implementation of the proposed method on our 

experimental camera-assisted car, and conduct various representative real-time experiments 

to make the performance evaluation of the proposed method.  

 

4.7.1 Implementation 

 The proposed system is implemented on a Pentium-4 2.4 GHz platform which is set up 

on our experimental camera-assisted car – TAIWAN iTS-1, as shown in Figure 4.7. The 

vision system for acquiring input image sequences of road environments, as shown in Figure 

4.8, is mounted behind the windshield inside the experimental camera-assisted car. The frame 

rate of the proposed vision system is 30 frames per second and the size of each frame of 

grabbed image sequences is 720 pixels by 480 pixels per frame.  

 

 

Figure 4.7. The experimental camera-assisted car – TAIWAN iTS-1 
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Figure 4.8. The vision system mounted in the experimental car 

 

4.7.2 Performance Evaluation 

 The proposed system has been tested on several videos of real nighttime road scenes in 

various conditions. Figure 4.9 – Figure 4.11 exhibit the most representative ones of the 

experimental samples on performance evaluation. As shown in Figure 4.9, the oncoming 

vehicle is correctly detected by locating its headlight pair, although some other non-vehicle 

illuminated objects also coexist with the vehicle in this scene. The distance between this 

oncoming vehicle and the camera-assisted car is estimated as about 21 meters by the 

proposed system, which is close to the actual distance obtained by manual measurement.  
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Figure 4.9. Result of vehicle detection on the nighttime road scene with 
one oncoming vehicle 

 

 

 
Figure 4.10. Result of vehicle detection on the nighttime road scene with 
both oncoming and preceding vehicles 
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Figure 4.11. Result of vehicle detection on the nighttime road scene 
comprised of vehicles and many other non-vehicle lights 

 

Figure 4.10 exhibits a sample of the condition when two vehicles appeared in the scene. 

Here the headlight set comprised of four headlights at the left is determined as an oncoming 

vehicle, and its distance to the experimental car is estimated as 9.4 meters. Although some 

other illuminant objects are coexisted with the taillights of the right vehicle on its body, the 

taillight pair is still correctly located and identified as a preceding vehicle, and its distance is 

estimated as 10.7 meters. As shown in Figure 4.11, a more complicated scene is illustrated. 

The vehicle lights of the two vehicles are very close to each other in this scene. As well as a 

series of lamps appears above the left oncoming vehicle and many small illuminated light 

objects occur above and near to the right preceding vehicle. Although interfered by many 

non-vehicle illuminant objects in this scene, the proposed method still successfully detect 

these two vehicles by locating their vehicle light pairs. The distances of the left oncoming 
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vehicle and the right preceding vehicle to the experimental car are estimated as about 23 

meters and 10 meters, respectively.  

 We utilize 4150 real nighttime road-scene images for evaluating the vehicle detection 

performance of our proposed system. The detection rate in vehicle detection of the proposed 

system is 93.8% within 40 meters. The computation time spent on processing one input frame 

depends on the road scene complexity of the frame. Most of the computation time is spent on 

the connected-component analysis and the projection-based spatial clustering process on 

bright objects. For an input video sequence with 720x480 pixels per frame, the proposed 

system takes an average of 24 milliseconds processing time per frame. Thus, this frugal 

computation cost ensures that the proposed system can effectively satisfy the demand of 

real-time processing with 30 frames per second. As can be seen from the experimental results 

of our numerous outdoor tests on many different road environments at night, the proposed 

system demonstrates that it can provide fast, real-time, and effective nighttime vehicle 

detection performance.  
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Chapter 5. REAL-TIME WAVELET-BASED VIDEO COMPRESSION 

APPROACH TO VIDEO SURVEILLANCE SYSTEMS 

 

 In this chapter, we will present a wavelet-based approach to compressing video, with 

high speed, high image quality and high compression ratio. Using the sequential 

characteristics of surveillance images, this method applies the low-complexity zero-tree 

coding, which costs low memory, to develop an algorithm for encoding and decoding video, 

which greatly improves the speeds of compression and decompression and maintains images 

of high quality. The method provides good quality and smoothness even under multi-channel 

surveillance, and so is of great value to companies that develop multi-channel surveillance 

systems. The ActiveX technique is used to implement the algorithm to take advantage of 

multimedia, the internet and visual rapid-application-development. The versatile and 

intelligent surveillance system includes peripheral computer hardware and mobile 

communication. Incorporating IA, this system is not just a surveillance system but is, rather, 

an intelligent home manager that can control electronic appliances, video/audio systems and 

home security in an “e-Home”. 

 

5.1 Introduction 

 Real-time video compression and transmission techniques have been very popular 

research topics in recent years. MSN video chat real-time is one of the most interesting 

applications. Security issues also become more important in modern life, so the surveillance 

system is an emerging application of video compression and communication. However, the 

conventional surveillance system is an analog system, which uses many tapes and human 

effort, to replace the tapes frequently. The recording time and image quality of systems 
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cannot compete with those of digital surveillance systems. The real-time wavelet-based video 

compression method and the intelligent multi-channel surveillance system presented in this 

work fulfill the requirements of real-time multi-channel video compression, while ensuring 

the high quality of restored images and the efficiency of compression and decompression of 

the images. The ActiveX technique, from the main stream of software engineering, is used to 

implement the system. ActiveX supports it’s the rapid development of multi-media and 

internet applications.  

 The transform coding technique is the most popular method for compressing images. At 

the beginning of the development of this field, DCT-based (Discrete Cosine Transform) 

coding was commonly used, and has since become an element of the JPEG image 

compression standard. Accordingly, its application can be seen in many electronic devices 

today. Over recent years, researchers have demonstrated that DWT-based (Discrete Wavelet 

Transform) transform coding ([47]-[50]) outperforms DCT-based methods. Hence, newly 

emerging image compression methods such as the video compression method standard 

MPEG-4 [51][52] and the still image compression standard JPEG2000 are using DWT-based 

methods [53][54].  

 The lifting scheme [53] almost halves the time taken to perform the calculations 

required in DWT, and so it has been proposed for incorporation into the DWT-based image 

compression techniques. The zero-tree coding method ([49][50][93]) is the most efficient and 

simplest approach to DWT-based transform coding.  

 In 1993, Shapiro proposed the earliest zero-tree wavelet algorithm [49], which was 

named the embedded zero-tree wavelet algorithm. This algorithm offers several advantages. 

For example, it does not require a pre-loaded tanning table, or statistical information about 

the image, and it can generate fully embedded codes. It can decompress a coded image at 

various bit-rates according to varying transmission bandwidth from an image compressed at a 
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single bit-rate. Said and Pearlman’s SPIHT method [50], “Set Partitioning In Hierarchical 

Trees”, further improves upon the execution performance of EZW. SPHIHT provides high 

compressive quality and speed, and has been adopted as part of the MPEG-4 standard [52] in 

visual texture mode.  

 Multi CCD camera systems are continuously heavily loaded with sequences of images, 

so the speed of image compression is critical in such systems. Presently, DWT-based 

compression techniques suffer from high computational complexity, and so cannot support 

multi-channel video recording with a high frame rate. A new, highly efficient DWT-based 

algorithm, which yields images of high visual quality, must be developed. Su and Wu [95], as 

well as Zhao, Chan and Gao [96] developed suitable zero-tree entropy coding methods with 

low-complexity and low-memory characteristics for compressing images. This work 

simplifies and improves upon these algorithms, and combines them with the motion picture 

interpolation technique to meet the aforementioned high performance requirements. 

 Software component techniques are commonly used in current software engineering. 

Microsoft developed the COM [97] technique to solve the software development problems 

associated with version control, cross-platform conflicts, the reusability of cods, and other 

issues. Microsoft Windows is built on COM components. The COM components that support 

“Automation” are called ActiveX Controls [98], and can be easily reused by other 

programmers to develop their own applications. The application developers can directly and 

seamlessly embed the ActiveX COM video codec component into their developed 

video-intensive software and web-based application. This video codec component accelerates 

technical transfer across various applications under development.  

 By combining the aforementioned techniques, and with the help of an internet server 

program, a video capture adapter and CCD cameras, a powerful multi-channel intelligent 

surveillance system is constructed at low cost and with excellent performance. The rest of 
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this chapter is organized as follows. In Section 5.2, a high speed wavelet-based video 

compression method is introduced; experimental results of the proposed method are shown in 

Section 5.3; the ActiveX video codec component implementation is described in Section 5.4; 

and the implementation on intelligent surveillance system with mobile carriers is presented in 

Section 5.5.  

 

5.2 The Proposed Fast Wavelet-Based Video Compression Technique 

 Most surveillance systems are normally used to survey a designated area for a long 

continuous time. Using a perfect still image compression method, such as JPEG2000 [53] at 

all times wastes much storage space. Using standard motion image compression techniques, 

such as MPEG-4 [51][52], involves huge computational complexity. Neither approach can 

meet the high frame rate requirement of a multi-channel surveillance system. Hence, this 

work proposes a simplified video compression method with a high compression ratio and 

speed.  

 Figure 5.1 depicts the structure of encoding and decoding flow of the proposed video 

compression method. Since the decoding flow is the inverse operation of the encoding flow, 

hence the encoder and decoder can be described together. As shown in Figure 5.1(a) and (b), 

the function blocks of the encoding flow (Figure 5.1(a)) and the decoding flow (Figure 

5.1(b)): forward/inverse component transform, forward/inverse DWT, coefficient 

quantization and de-quantization, LLZC (low-complexity and low-memory zero-tree entropy 

coder) encoding and decoding, inter-frame difference extraction, difference compensation 

and bidirectional frame interpolation. The step size parameter is the size of the step applied 

by the quantizer. Its value controls the compression ratio of the encoded frame.  
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 (a). Encoding flow 

 (b). Decoding flow 
Figure 5.1. Structure of the coding and decoding flow of the proposed method 

 

 The inter-frame correlations in a sequence of surveillance images are crucial to reducing 

the storage space and computational cost of coding. The residue obtained by taking the 

difference between two successive frames includes information about the motion of objects. 

Higher quantity of residue implies the larger image changes, and contains much information. 

So, more bits are required to encode these changes. The inter-frame difference characteristics 

are considered to optimize the allocation of bits by the proposed method, and to save 

transmission bandwidth in channels, without sacrificing the quality of the images. 
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5.2.1 Forward/Inverse Component Transform 

 The forward component transformation eliminates the correlation between color 

components, and improves the compression ratio. The compression method involves the 

reversible color transform, like that of JPEG2000 [53]. This transform is defined as, 

0
2
4

+ +⎡ ⎤= ⎢ ⎥⎣ ⎦
R G BY , 1 = −Y B G , and 2 = −Y R G     (5.1) 

where the symbol [x] represents the nearest integer which is lower then the floating number x. 

The inverse transform of RCT is defined as, 

2 1
0 4

+⎡ ⎤= − ⎢ ⎥⎣ ⎦
Y YG Y , 2= +R Y G , and 1= +B Y G     (5.2) 

The obtained color components of each of the three color planes are sampled after the RCT 

transformation is applied to enhance the processing speed of compression. The 4:2:0 

sampling method is applied in this study. As depicted in Figure 5.2, the color components of 

the three color planes are processed by taking the four-point-average in the Y1 and Y2 planes 

and keeping Y0 unchanged yields a data size ratio, Y0:Y1:Y2 , of 4:1:1. 

 

Y
0
  sample Y

1
 and Y

2
 sample

 

Figure 5.2. Illustration of the 4:2:0 sampling process 
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5.2.2 Forward/Inverse DWT 

 In image processing, most of the power associated with natural image signals tends to be 

in the low frequency band. Accordingly, the analysis of the low frequency band must be more 

extensive than that of the high frequency band. In practical applications, the low frequency 

band, decomposed from DWT is further analyzed through second level DWT processing to 

yield more detail of the analysis signal at the lower frequency band. Such analysis is referred 

to as multi-resolution. The DWT calculation has two parts - analysis and synthesis. The 

analysis part decomposes the signals into two frequency band using Eqs. (5.3) and (5.4). 

Figure 5.1(a) depicts the corresponding block diagram. The synthesis part reconstructs these 

two frequency bands back into the original signal, in a process called inverse DWT (IDWT), 

using Eq. (5.5). Figure 5.1(b) depicts the corresponding block diagram.  

∑ −=
k

knakhna ]2[][][ 01 ;                       (5.3) 

∑ −=
k

knakgnd ]2[][][ 01 ;                       (5.4) 

∑ ∑ −+−=
k k

kdkngkaknhna ][]2[~][]2[~][ˆ 110 .          (5.5) 

where 0[ ]a n : the original input signals, 0 ≤ ≤n N , and N is the length of the input signal; 

1[ ]a n  and 1[ ]d n  denote the low and high frequency bands of 0[ ]a n  after DWT is 

performed, respectively, and [ ]h n  and [ ]g n  represent the low-pass and high-pass filter of 

FDWT, respectively. In Eq. (5.5), [ ]%h n  and [ ]%g n  denote the low-pass and high-pass filter 

of IDWT, respectively, and 0ˆ [ ]a n  represents the signal reconstructed from 1[ ]a n  and 

1[ ]d n . 

 Haar’s Wavelet Transform is used to increase the speed of execution of the wavelet 

transform. The two-dimensional DWT is applied as a one-dimensional DWT in the horizontal 
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direction and then another in the vertical direction. The IDWT is then performed in the 

reverse order – in the vertical direction followed by the horizontal direction. 

 The one-dimensional Haar DWT is, 

 The equation of transformation to decompose the low frequency band is,  

1 0 0
1 1[ ] [2 ] [2 1]
2 2

= + +a n a n a n ;    (5.6) 

and, to decompose the low frequency band, is,  

1 0 0
1 1[ ] [2 ] [2 1]
2 2

= − +d n a n a n     (5.7) 

 The inverse transformations are,  

 0 1 1
1ˆ [2 ] ( [ ] [ ])
2

= +a n a n d n ,       (5.8) 

and  0 1 1
1ˆ [2 1] ( [ ] [ ])
2

+ = −a n a n d n      (5.9) 

 Figure 3(a) plots the corresponding locations of the images of the frequency bands 

decomposed by 2-D DWT. Figure 3(c) shows the results obtained using the “Lena” image, 

displayed in Fig. 3(b), after three levels of FDWT processing. 

 The computational effort of encoding and decoding is an important factor in concerning 

the compression speed. Hence, the above equations include multiplications by 1 2 , applied 

after horizontal and vertical DWT, as well as a right-shifting operation instead of real 

multiplication operations, to reduce the calculation time. 
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(a). Fequency bands after 
three-level DWT 
decomposition 

(b).Lena image (c).Three-level DWT 
decomposition of Lena image 

Figure 5.3. Examples of Wavelet Transform 

 

5.2.3 Quantization/De-quantization 

 The proposed quantization is scalar with a dead-zone. The only parameter of the 

quantizer is the step size. The step size determines the error and the quality of the 

reconstructed images. A larger step size leads to poorer visual quality of the reconstructed 

image, but a smaller file size and shorter encoding/decoding period. The coefficients obtained 

following quantization are encoded using a lossless compression algorithm, the 

low-complexity and low-memory zero-tree entropy coder, as described in the following 

subsection. Consequently, the de-quantized values can be obtained directly by multiplying the 

decoded coefficients by the step size. 

 

5.2.4 Low-Complexity and Low-Memory Zero-tree Entropy Coder (LLZC 

Encoder/Decoder) 

 Single-pass zero-tree coding and Golomb-Rice code [96] are the two key elements of 

this encoder. Single-pass zero-tree coding can identify the region in which significant 

coefficients are distributed; the G-R code encodes these coefficients. G-R code is one type of 
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variable length code. For applications of DCT-based transform coding, LLZC coding can 

replace look-up-table Huffman coding procedure in JPEG because the coding involves 

simpler computations. In DWT-based transform coding, the LLZC coding method is much 

faster than the SPIHT method. 

 The tree structure is defined before the coding algorithm is further elucidated. Figure 5.4 

plots the three-level, two-dimensional frequency-band coefficient distribution after the 

wavelet transformation has been applied. Two letters, L and H, and a subscript specify the 

frequency-band. The first letter represents the horizontal frequency-band, and the second 

represents the vertical frequency-band. The subscript indicates the nth level of DWT 

processing. For example, HL2 means that the image-band has a high frequency-band in the 

horizontal direction, a low frequency-band in the vertical direction, and is generated by 

second-level DWT processing. LL3 is the lowest frequency-band, thus its coefficients can 

represent as the dc coefficients of the image after DWT processing, as shown in the top-left 

shaded area of Figure 5.4. The root of the tree structure is corresponding to the highest level 

of frequency-bands generated by DWT processing, ex. HL3, LH3, HH3 are the roots of 

three-level DWT transform as shown in Figure 5.4, and the frequency-bands with same 

letters and located in the same direction, ex. HL3, HL2 and HL1, forms a branch of the tree 

structure. The directions of the arrows in the figure indicate the directions of the descendants. 

Each node has four direct descendants except those located in the level one, as depicted on 

the grids shown in HH3 and HH2 in Figure 5.4; and then Figure 5.5 presents the pseudo codes 

of the coding procedure. 
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LL3 HL3 HL2

HL1
LH3 HH3

LH2 HH2

HH1LH1

 
Figure 5.4. Tree structure of the distribution of 
wavelet coefficients 

 

 

 

Figure 5.5. Coding procedure of LLZC 

 

 

(1) Use DPCM scheme to code the DC coefficients. 
(2) For each tree k, EncodeTree(k){ 

G-R_FS(k); 
  If at least one descendant of k is not zero{ 
     Output 1 in 1 bit; 
     For each sub-tree of k: s, EncodeTree(s); 
  } 

     else 
        Output 0 in 1 bit; 
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 The DPCM scheme [96] encodes the first dc value using G-R_FS coding, and then 

encodes the dc value and current dc value minus previous dc value, for the subsequent 

coefficients. The magnitudes of these coefficients are categorized into several specified 

classes, as listed in Table 5.1. Then the G-R_FS coding method is as follows.  

(1) Step 1: Determine the class of coefficient, x, with reference to Table 5.1. If x is in 

class n, then output will be (n+1) bits, where the first n bits are 0 and the last bit is 

1.  

(2) Step 2: If n > 0, the output code is the last (n-1) bits of the binary code from the 

absolute value of x. Finally, the sign bit of x is the output - 0 for positive and 1 for 

negative. 

 For example, the value of x is -12. In step 1, the output is 00001, because -12 is in class 

4. In step 2, first, output the coded bits 100, which is the last 3 bits of the binary code for 12 

(1100), the absolute value of x, and then append the sign bit, 1 for negative value. Combining 

the aforementioned two steps, the output code for the coefficient value -12 is 000011001.  

 Decoding is the inverse of encoding. First, the class of x is identified by the G-R_FS 

inverse operation. The class of x can be obtained by counting 0s until 1 is encountered using 

the bit-by-bit reading from the bit stream. Then, the absolute value of x is the value of the 

next (n-1) bits plus 12 −n . Finally, the sign bit is read, and the coefficient x is recovered. For 

example, when the aforementioned code for -12 is decoded, four zeros are read before the 1 is 

encountered. Accordingly, the class of the code is 4. Reading 3 more bits reveals the code 100, 

implying the decimal value 4. Adding 32  to 4 yields 12. Finally, the sign bit, 1, is read so the 

final value of the coefficient is determined to be -12.  
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Table 5.1. Classes of coefficients 

class Coefficients 

0 0 

1 -1,1 

2 -3~-2, 2~3 

3 -7~-4, 4~7 

4 -15~-8, 8~15 

5 -31~-16, 16~31 

6 -63~-32, 32~63 

7 -127~-64, 64~127 

8 -255~-128, 128~255 

9 -511~-256, 256~511 

10 -1023~-512, 512~1023 

11 -2047~-1024, 1024~2047 

12 -4095~-2048, 2048~4095 

13 -8191~-4096, 4096~8191 

 

5.2.5 Inter-Frame Difference Extraction / Difference Compensation and Bidirectional 

Frame Interpolation 

 The inter-frame correlations of a series of continuous surveillance frames are essential to 

reducing the computational complexity of coding and the storage space. The residue is the 

difference of the power associated with two consecutive frames. These residues contain 

information about the motion of objects. A higher power associated with the residue frame 

implies greater changes among frames, and therefore more informational content. Hence, 

more bits must be allocated to encode the contents. This method utilizes inter-frame 

differences. A series of frames are divided into a series of frame groups, each of which 
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contains ten consecutive frames. The ten consecutive frames are further converted into I, an 

initial frame, P, residual frames, and B, bidirectional interpolation frames. One of two modes 

of the frame group encoding procedure can be applied – fast mode and turbo mode – as 

determined by the required rate of compression. The two modes of the encoding procedure 

are applied to process the frames in each frame group as depicted in the following diagrams, 

Figure 5.6 and Figure 5.7.  

 

 

Figure 5.6. Frame sequence encoding in Fast Mode 

 

 

Figure 5.7. Frame sequence encoding in Turbo Mode 

 I-frame is a reference frame and so is directly encoded referred to the original input 

frame, and thus more bits are allocated for the I-frame to preserve its information. The 

P-frame is generated by calculating the inter-frame difference using the frame store buffer. 

These residue frames are then encoded and sent to receivers consecutively. In the decoding 

process, the I-frame is directly decoded from the first frame received. As shown in 

corresponding flow in Figure 5.1(b), the P-frame is then decoded by performing the 

inter-frame difference compensation with the current inter-frame difference image and the 

previous I-frame buffered in the frame store. Then, inter-frame difference compensation and 

bidirectional interpolation are applied to reconstruct the B-frame. The transmission band 

width can be reduced using this decoding sequence, while maintaining the good quality of the 

image frames. 
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5.3 Experimental Results 

 This section uses a set of real surveillance-recorded images and standard testing images 

of different sizes to evaluate the performance of the proposed system. Two well-known 

commercial video compression methods and the proposed method are tested on a PC-based 

system with a 1.5 GHz AMD Athlon CPU and 512 MB memory. Image quality, compression 

ratio and compression speed are emphasized in evaluating the performance of all tested 

compression methods.  

 First, the quality of an image compressed using the commercially available JPEG-based 

surveillance video recording system was compared to that of one compressed using the 

proposed method. Figure 5.8(a) displays a representative surveillance image with 24-bit true 

color, which is of a crime evident in a house. The only evidence of the crime is the recorded 

surveillance image. The characteristics of the thief’s face must be recognized to enable him to 

be arrested. Figure 5.8(b) to (e) show the results of compressing Figure 5.8(a) by the 

JPEG-based system and the proposed method with different compression ratios. However, in 

Figure 5.8(b), the facial characteristics of the thief are severely blurred, so the surveillance 

image cannot serve as good evidence in solving the crime. In contrast, even though the image 

was compressed at a high compression ratio by the proposed method, Figure 5.8(c) preserves 

distinct and recognizable facial characteristics. These experimental results indicate that for a 

given same compression ratio, the proposed method has a higher PSNR and yields images of 

much better visual quality.  
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(a). Original image (size: 640 x 480) 

 
 (b). Compression result by JPEG  
(compression ratio: 100 and PSNR: 27.25 dB) 

 (c). Compression result by the proposed method 
(compression ratio: 100 and PSNR: 29.09 dB) 

 
(d). Compression result by JPEG (compression 
ratio: 50, and PSNR: 31.12 dB) 

(e). compression result by the proposed method 
(compression ratio: 50, and PSNR: 34.78 dB) 

Figure 5.8. Comparative results of JPEG and the proposed method 
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 The results shown in Figure 5.8 also reveal that although the image is compressed by the 

proposed method at more than double of the compression ratio of that by the JPEG-based 

system, the visual quality of the compressed image by the proposed method (Figure 5.8(c)) 

can still retain similar visual quality with that by the JPEG-based system (Figure 5.8(d)). 

Hence we can find that under the requirement of similar visual quality of the compressed 

surveillance video sequence, the proposed method only needs less than a half of the needed 

storage capacity for storing similar time period of the surveillance video sequence using the 

JPEG-based system. For instance, we utilize one hard disk with 120GB capacity to compare 

the usage of storage space between the JPEG-based system and the proposed method. For the 

uncompressed QVGA format (320 × 240 pixels) true color (three bytes per pixel), real-time 

(30 frames per second) video sequence, the storage space needed per second is: 320 × 240 × 

3 × 30 = 6912000 bytes, and the storage period needed per day in seconds is: 60 × 60 × 24 = 

86400 seconds, and hence total storage space needed per day for uncompressed QVGA, true 

color, real-time video sequence is 597 giga-bytes. Hence, as shown in Table 5.2, the proposed 

method can store double time period of surveillance video sequence compared with the 

JPEG-based system under similar visual quality.  

 

Table 5.2. Comparisons of the need of storage space between the 
JPEG-Based system and the proposed method under similar visual quality 
(QVGA format, 320*240) 

Method Compression Ratio 
120GB storage space 

can store 

JPEG 100 20 days 

Proposed method 200 40 days 
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 (a). Original image “Akiyo”  (b). Compressed image by MPEG-4 with 
compression ratio: 184 

 (c). Compressed image by proposed method of 
Fast mode with compression ratio: 176 

 (d). Compressed image by proposed method of 
Turbo mode with compression ratio: 257 

Figure 5.9. Results of compressing the standard testing clip – “Akiyo” (CIF format, 352*288) 

 

 

 MPEG-4 [51][52] was also compared with the proposed system by application to two 

standard testing video clips, “Akiyo” and “Foreman”, from the MPEG organization. The 

“M9073” version of the MPEG-4 standard evaluation program, developed by National 
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Chiao-Tung University, is used as a reference system to test and compare its compression 

performance with the proposed method. The standard tested video clips “Akiyo” and 

“Foreman” are 24-bit true-color and 100 frames long; “Akiyo” is of CIF format (352 × 288 

pixels) and “Foreman” is of QCIF format (176 × 144 pixels). The data are measured on the 

same testing platform. Table 5.3 and Table 5.4 compare the compression performance of 

MPEG-4 and the proposed method.  

 

 

  
(a) Original Foreman (b). Compressed image by MPEG-4 

with compression ratio: 47 

  
 (c) Compressed image by 
proposed system of Fast mode with 
compression ratio: 39 

 (d) Compressed image by proposed 
system of Turbo mode with 
compression ratio: 66 

Figure 5.10. Results of compressing the standard testing clip – “Foreman” 
(QCIF format, 176*144) 
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Table 5.3. Comparisons of performance between proposed method and MPEG-4 
(Akiyo, CIF format, 352*288) 

Method Settings Frame rate (fps) Compression Ratio

MPEG-4 Bit-rate: 384K bits 19.9 184 

Proposed method Fast mode 99 176 

Proposed method Turbo mode 122 257 

 

 

Table 5.4. Comparisons of performance between proposed method and MPEG-4 
(Foreman, QCIF format, 176*144) 

method Settings Frame rate (fps) Compression Ratio

MPEG-4 Bit-rate: 384K bits 65 47 

Proposed method Fast mode 394 39 

Proposed method  Turbo mode 491 66 

 

 Figure 5.11, Table 5.3, and Table 5.4 reveal that, for a given compression ratio and 

arbitrary video format with images of various sizes, the proposed method achieves a frame 

rate that is about five times higher than that of the MPEG-4 system. Therefore, the proposed 

method exhibits extremely high efficiency of compression. Figure 5.9 and Figure 5.10 show 

that the two systems yield very similar visual results. Restated, the proposed method of 

compression provides is effective for developing digital surveillance systems, and can also 

yield smoothly flowing images in multi-channel surveillance systems. 
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Figure 5.11. Comparison of compression speeds between MPEG-4 
method and the proposed method 

 

 

5.4 Video Codec Software Component 

 The video codec is implemented as an ActiveX COM [97] component so that it can be 

efficiently and easily embedded into various multimedia applications. This component is 

implemented with dual interfaces - IDispatch and IVCodecX. These properties, and the 

application of methods rapidly to develop application software, including network 

applications, greatly facilitate development. Using IPictureDisp image pointer, created by 

Microsoft, each frame is encoded and decoded according to the compAddFrame and 

decompExtFrame methods in the proposed ActiveX COM-based video codec component. A 

series of codes from compressed frames is then stored by the compToFile method. The codes 

played back from the storage media using the decompFromFile method. The storage and 
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playback processes also include two data stream methods, compToArray and 

decompFromArray, for network surveillance system applications on the server side and the 

client side. Besides, some properties are provided for performance tuning and frame 

synchronization. Figure 5.12 illustrates the above methods and their corresponding 

applications.  

 

 

Figure 5.12. Video codec component and its applications 

 

 In this work, the video codec component is implemented using Visual C++ .Net using 

Microsoft ATL [98]. The main advantage of ATL is its lightweight, particularly crucial to the 

distribution of the COM component via the Internet. The component can be embedded into 

web pages so the web surveillance can be easily performed. Besides, the ActiveX component 

itself can be easily used in a visual software developing environment, including Visual Basic. 

Figure 5.13 presents the Visual Basic environment for developing a simple surveillance 

application.  

 The smallness of this component allows it to be downloaded fast over the Internet. For 
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example, as presented in Figure 5.14, a web-based surveillance system can be developed by 

integrating this codec component with Microsoft Internet application development tools. It 

can thereby be applied in surveillance systems, video conferencing, video phones, and 

long-distance education. 

 

 

Figure 5.13. Visual Basic environment for developing surveillance applications 

 

 

Figure 5.14. Example of web-surveillance application 

 



 

 162

 

5.5 Implementation of an Intelligent Video Surveillance System 

 The proposed video codec, which was developed for surveillance systems and mobile 

carriers, as shown in Figure 5.16, is integrated with our intelligent surveillance system to 

extent its range of applications. As presented in Figure 5.15, a multi-channel surveillance 

system was developed using the proposed video compression codec, to capture four channels 

of video in real-time and to record a total of 120 frames (with CIF format) per second at 

full-speed video compression on a system with a 2.4 GHz Pentium CPU and 512 MB RAM. 

As presented in Figure 5.15(c), this system also supports surveillance recording and random 

time-slot playback. 

 Figure 5.16 shows that the mobile carrier incorporates a CCD camcorder and wireless 

image transmission capability using RF module. The mobility of the carrier ensures that an 

image can be captured of the entire surveillance area. This system can also perform remote 

monitoring via the Internet, and can remotely control the mobile carrier in the same way, to 

capture images of the area of interest. The control signal is transmitted via a wireless system 

from the server side of the surveillance system to the mobile carrier. The monitoring user 

controls the forward, backward and rotational motion of the carrier using buttons on the web 

page. The CCD camcorder is placed on a rotating mechanism. The user can change the 

camcorder’s viewing angle by controlling this mechanism. Selecting viewing angle is 

especially important when some of the surveyed area is obscured by furniture, as depicted in 

Figure 5.17. 
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(a). Prototype of our intelligent surveillance system 

 
(b). Operation on real-time multi-channel surveillance 

 
(c). Operation on random time-slot playback 

Figure 5.15. Implementation of Intelligent surveillance system 
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Figure 5.16. Mobile carrier with a CCD camcorder 

 

 

Figure 5.17. The controlling interface of the monitoring user 
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Chapter 6. CONCLUSIONS AND FUTURE WORKS 

 

 In this chapter, we state a brief conclusion of this dissertation and present some 

directions for future works on the research studies presented in this dissertation. 

 

6.1 Multi-level thresholding approaches for image segmentation 

 This study has developed an efficient combinatorial scheme for reducing the 

computation timings and parameterizing the desired number of thresholds in multilevel 

thresholding, and an effective automatic multilevel thresholding method for image 

segmentation. This proposed combinatorial scheme can effectively avoid evaluating 

redundant threshold sets, substantially suppress the computation timings for obtaining each 

criterion function value of the potential threshold sets, and thereby significantly reduces the 

computation timings of obtaining the optimal set of threshold values. We apply the proposed 

combinatorial scheme on multilevel thresholding using three well-known thresholding 

criterion functions - the between-class variance criterion, the maximum entropy criterion, and 

the minimum error thresholding criterion, and then compare the objective and subjective 

evaluations, and computation costs of their performance. For automatic multilevel 

thresholding, an effective discriminant-analysis-based measure is utilized for determining the 

separability among the thresholded classes of gray levels, and is able to simplify the problem 

of determining the number of object images that should be segmented. The image is then 

recursively thresholded into more detailed segmented object images, until the separability 

measure is satisfied. Accordingly, all the objects of interest can be thresholded into separate 

segmented images, and they are ensured to be well-separated. The proposed automatic 

multilevel thresholding method is found to be effective in analyzing and thresholding the 
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histogram of the image. It is also computationally simple and efficient for automatically 

determining the appropriate number of thresholding levels and performing thresholding on 

the image. Moreover, when applied to real-life complex document images, the proposed 

automatic multilevel thresholding method can successfully extract text strings, with various 

illuminations from overlaying non-text objects or complex backgrounds. This can also 

facilitate further text extraction for document analysis. From the experimental results, and our 

comparisons to other fixed-level criterion-based methods, we have demonstrated the 

effectiveness and advantages of the proposed multilevel thresholding approaches.  

 To achieve more effective and satisfactory performance for image segmentation issues, 

the future research directions of this study may be: (1) to extend the proposed algorithms on 

color models for applying on color image segmentation, it might be useful to integrate color 

space reduction concepts, such as the use of the moment-preserving techniques [99], and 

color contrast information for better fitting of human's visual perception [100]. (2) To more 

accurately determine the number of homogeneous objects for segmentation, it may be of use 

to analyze and detect the modes on the histogram of images in a more accurate way by 

applying the concepts of mean-shift approaches [101][102].  

6.2 A multi-plane segmentation approach for text extraction in complex 

document images 

 In this study, a new technique for segmenting and extracting textual objects from 

real-life complex document images is presented in this study. The proposed approach first 

segregates textual regions, non-text objects such as graphics and pictures, and background 

textures from the document image by decomposing it into distinct object planes. This 

decomposition process consists of two stages: automatic localized histogram multilevel 

thresholding, and multi-plane region matching and assembling. The first stage applies the 

localized histogram multilevel thresholding procedure to discriminate different textual 
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objects, non-textual objects, and background components in each block region into separate 

sub-block regions. In the second stage, the multi-plane region matching and assembling 

process organizes these obtained sub-block regions into object planes according to their 

respective features. A text extraction procedure is then applied on the resultant planes to 

extract textual objects with different characteristics in the corresponding planes. The 

document image is processed regionally and adaptively according to its local features, and 

thus detailed characteristics of extracted textual objects can be well-preserved, especially 

small characters with thin strokes. It also allows textual objects that touch graphical and 

pictorial background objects with uneven, gradational, and sharp variations in contrast, 

illumination, and texture to be well handled. When applied to real-life complex document 

images, the proposed approach exhibit its robustness on extracting textual objects of various 

illuminations, sizes, and font styles from complex backgrounds. From the experimental 

results and comparisons to other existing works, the proposed approach demonstrates its 

effectiveness and advantages.  

 To enhance our proposed complex document image analysis system on more versatile 

applications, future works on this study may focus on: (1) develop a more sophisticated text 

layout analysis technique to handle text-lines with various shapes, orientations, and layout, 

and thus more extensive types of real-life documents can be handled. (2) To process the color 

complex document images, it is necessary to extend the proposed multi-plane segmentation 

approach to adopt on color document images by adopting the concepts of color space analysis 

techniques [103], or fuzzy connectedness concepts on the space of color features on 

segmented block regions [104]. (3) To develop a versatile document content analysis and 

archive system, it is needed to develop and integrate the document content storage and 

retrieval techniques.  
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6.3 Vision-based nighttime vehicle detection for driver assistance 

 This study has presented an efficient nighttime vehicle detection method for identifying 

the vehicles by locating their pairing headlights and taillights in nighttime road environments. 

An effective object segmentation technique based on automatic multilevel histogram 

thresholding is applied for extracting illuminant bright objects of interest, especially vehicle 

lights. This technique demonstrates its robustness and adaptability for dealing with various 

illuminated conditions at night. Then, by utilizing the symmetrization, alignment and pairing 

characteristics of vehicle lights, discriminating pairing headlights and taillights to locate 

actual vehicles can be achieved by the projection-based spatial clustering and rule-based 

identification methods. Finally, the distances, relative positions, and motion directions 

between each of the detected target vehicles appeared ahead and the camera-assisted car are 

estimated and tracked. Experimental results demonstrate that the proposed system can 

effectively detect vehicles in front of the camera-assisted car in various nighttime road 

environments. This system provides beneficial information for assisting the driver to perceive 

surrounding traffic conditions outside the car during nighttime driving, and can also be 

applied to a versatile control scheme for the apparatus of vehicles to facilitate autonomous 

driving.  

 To enhance our proposed system to be a more efficient vision-based intelligent driver 

assistance system, future studies on this study may possibly focus on: (1) for the purpose of 

autonomous driving, it is essential to develop a intelligent control scheme of in-vehicle 

apparatus for autonomous driving, collision avoidance and automatic cruise speed control 

systems. (2) An automatic calibration approaches for CCD cameras of the vision system is 

also necessary for the effectiveness and feasibility for estimating distances, positions and 

relative motion information of the detected target vehicles.  

 



 

 169

6.4 Real-time wavelet-based video compression approach for video 

surveillance 

 In this study, we have presented a new real-time wavelet-based video compression 

method for use in intelligent video surveillance systems. Based on the low-complexity and 

low-memory-cost wavelet-based coding scheme and motion compression strategy, the 

proposed video codec achieves high vision quality, high compression speed and high 

compression ratio. Experimental results on video compression performance demonstrate the 

effectiveness and efficiency of the proposed video codec. Then the ActiveX COM component 

technique is also implemented and integrated with the proposed video codec to realize 

multimedia, internet applications and many other video-intensive applications. Furthermore, 

an intelligent surveillance system, which integrates the proposed wavelet-based video codec, 

computer peripherals and mobile communication, is also developed in this study. Therefore, 

the future e-Home with controlled home electronics, managed video/audio systems and home 

security will be realized. 

 For the purpose of enhance the functions of the proposed video surveillance study, our 

future works should focus on: (1) develop and integrate the object detection, classification, 

recognition, and tracking techniques. (2) To achieve more effectively content-based coding of 

the surveillance video frames, an efficient region-of-interest ROI coding techniques is 

necessary for adopting on interesting objects, such as human beings for home security 

applications, and target vehicles for traffic surveillance applications.  
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