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Robust Reference-signal-based Speaker’s

Location Detection and Speech Purification

Graduate Student: Chieh-Cheng Cheng Advisor: Dr. Jwu-Sheng Hu

Department of Electrical and Control Engineering
National Chiao-Tung University

Abstract

The use of microphone array to enhance speech reception and speaker localization
is very important. The objective of this work is to locate speakers of interest and then
provide satisfactory speech recognition rates using a linear microphone array. The
proposed approaches utilize a reference-signal-based architecture to indirectly solve a
practical issue, microphone mismatch problem. Additionally, the proposed speaker’s
location detection method utilizes: Gaussian mixture model (GMM) to model a
corresponding phase difference distribution for each specific location of the speaker.
The proposed localization approach is useful in the presence of background noise and
reverberations. Even under near-filed and non-line-of-sight environments, the
approach can still provide high detection accuracy.

In terms of effectiveness, the proposed beamformers, soft penalty
frequency-domain block beamformer (SPFDBB) and frequency-domain adjustable
block beamformer (FDABB) are designed in the frequency domain. However, due to
the fact that the convolution relation between channel and speech source in
time-domain cannot be modeled accurately as a multiplication in the frequency
domain with a finite window size, the proposed beamformers put several frames into a

block to approximate the transformation. Furthermore, to put different emphases on

vi



channel recovery and noise suppression, a parameter named soft penalty is designed.
Note that for a highly variant environment, it is not suitable to allocate too many
frames into one block. Therefore, the SFPDBB is extended to the FDABB with a
measurement index, named CBVI, which enables the FDABB to automatically adjust
the number of frames. An H, adaptation criterion is also investigated and applied to
enhance the robustness to the modeling error. Finally, the results from simulations and
practical experiments are provided as proof of the effectiveness and usefulness of

these proposed approaches.
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Chapter 1

Introduction

Intelligent electronic devices for office, home, car, and personal applications are
becoming increasingly popular. It is generally believed that the interface between
human and electronic devices-should not be restricted to keyboard, push-button,
mouse or remote controller, touch panel;-but nature language instead. One of the
demands for intelligence is to enhance’‘the convenience of operation, e.g.,
human-computer interaction (HCI) interfaces using speech communication. The
speech-based HCI interface can be applied to robots, car computers, and
teleconferencing applications. Moreover, the interface is particularly important when
the use of hands and eyes puts the user in danger. For example, given concerns over
driving safety and convenience, electronic systems in vehicles such as mobile phone,
global positioning system (GPS), CD or VCD player, air conditioner, etc. should not

be accessed by hands while driving.

However, speech communication, unlike push-button operation, suffers from
unreliable problems because of environmental noises and channel distortion. The poor

speech quality, acoustic echo of the far-end and near-end speech, and environmental



noises degrade the recognition performance, resulting in a low acceptance of hands free
technology by consumers. Most speech acquisition system depends on the user to be
physically close to the microphone to achieve satisfactory speech quality. In this case,
this near-end speech significantly simplifies the acquisition problem by putting more
emphasis on the desired speech signal than on environmental noises and other sound
sources, and by reducing the channel effect on the desired speech signal. However, this
limitation restricts the scope of applications, explaining why noise suppression
approaches using single channel [1-2] and multiple microphones (i.e., microphone
array) have been introduced to purify speech signals in noisy environments.
Microphone-array-based approaches attempt to obtain a high speech quality without
requiring the speaker to talk directly to a close-talking microphone or talk loudly to the
microphone at a distance. In récent years, the microphone-array-based speech
enhancement has received considerable attention as a means for improving the

performance of traditional single-microphone-systems.

The goal of this work is to locate speakers of interest and then provide satisfactory
speech recognition rates and robustness to background noise and channel effects under
both line-of-sight conditions and non-line-of-sight conditions using a uniform linear
microphone array. The two main components of the general microphone-array-based
speech enhancement systems are illustrated in Fig. 1-1 and the following two sections

of this chapter present a brief introduction to each of them.
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Figure 1-1 Block diagram of the general microphone-array-based speech

enhancement system



1.1 Overview of Direction of Arrival Algorithms

Figure 1-2 shows the layout of a uniform linear microphone array consisting of M

microphone with K incident signals from a set of arrival angles, {9],-~~6’K}. The
incident signals can be regarded as plane waves (far-field) or spherical waves

(near-field). The definition of the far-field and the near-filed can refer to [3].
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Figure 1-2 Microphone array configuration for plane or spherical wave hypothesis

where I, is the radial distance from the ith sound source to the reference point of an

arbitrary microphone array, L denotes the size of array.

Almost all microphone-array-based speech acquisition problems require a reliable
active sound source location detection. Knowing the speaker’s location (i.e., speaker
localization) not only improves the purification results of a noisy speech signal, but
also provides assistance to speaker identification. For speech enhancement applications,
accurate location information of the speaker of interest or the interference sources is
necessary to effectively steer the beampattern and enhance a desired speech signal,
while suppressing interference and environmental noises simultaneously. Consequently,
the speaker location detection is an integral part of the microphone-array-based speech

enhancement system.



Location information can also be used as a guide for discriminating individual
speakers in a multiple speakers’ scenario. With this information available, it would be
possible to automatically focus on and track a speaker of interest. Of particular interest
recently is the video-conferencing system in which the speaker location is estimated for

aiming a camera or series of cameras [4].

Existing microphone-array-based sound source localization algorithms may be
loosely divided into three generally categories: steered-beamformer-based localization
algorithms, high-resolution spectral-estimation-based localization algorithms, and

time-difference of arrival (TDOA) based algorithms.

The steered-beamformer-based localization algorithms [5-7] utilize a certain
beamformer to steer the array to various locations for obtaining the spatial responses
and then search for a peak in the derived:spatial responses. Hence, the location is
derived directly from a filtered and summed data of the speech signals received at the
multiple microphones. The task of.computing the Spatial responses for an appropriately
dense set of possible locations is computationally expensive and highly dependent upon

the spectral content of the sound source.

The high-resolution spectral-estimation-based localization algorithms [8-19]
(eigenstructure-based DOA estimation algorithms) are based on the data correlation
matrix R,, derived from the signals received at the M microphones,
{Xl(n) X,(N) - Xy (n)} . These algorithms separate the eigenvectors of data
correlation matrix into two parts - one is the signal subspace, and the other is the noise
subspace. The steering vector a(&) corresponds to sound source direction must be
orthogonal to the noise subspace, so the inner product of steering vector and the noise

subspace must be zero when it is consisted in the signal subspace. According to this

phenomenon, the locations of the multiple sound sources can be simultaneous detected.
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Figure 1-3 is a three-dimensional example which shows the relations between the
signal subspace, the noise subspaces, and the steering vectors. The high-resolution
algorithms suffer from a lack of robustness to the steering vector and environmental

situations, especially reverberations, and have seen little practical use for general

application.
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Figure:1-3° Relation of eigenspaces

The time-difference of arrival (TDOA). based procedures [20-27] locate sound
source from a set of delay estimations measured across various combination of
microphones. Generally, the TDOA-based procedures require the lowest computation
power in these three categories. Accurate and robust time delay estimation between
each microphone pair plays an important role in the effectiveness of this category.
These TDOA-based procedures are sensitive to the weights of each microphone pair
and various frequency bins. Notably, no mater what kinds of approaches are adopted,

these three approaches cannot be applied to the fully non-line-of-sight case.



1.2 Overview of Beamformers

The second stage of the general speech enhancement system is a beamformer which
deals with the suppression of interference signals and environmental noises. Normally,
a beamformer (i.e., spatial filter) which uses the spatial information can generate
directionally sensitive gain patterns that can be adjusted to increase sensitivity to the
speaker of interest and decrease sensitivity in the direction of competing sound sources,
interference signals and environmental noises. Consequently, beamformer can suppress

undesired speech signals and enhance desired speech signals at the same time.

For a narrowband assumption, a beamformer is a linear combiner that produces an

output by weighting and summing components of the snapshot of the received data, i.e.
M : H
§m) = > daxs ()= q" x(n) (1-1)
m=1

where x(n) is the snapshot of.the received data, the superscript H denotes the

Hermitian operation, and q is the filter coefficient vector givenby q=[q, - q,,] .

The diagram is shown in Fig. 1.4.
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Figure 1-4 Diagram of the beamformer



However, the application in which microphone array is used is different from that of
conventional array applications. This is because the speech signal has an extremely
wide bandwidth relative to its center frequency. Therefore, the conventional
narrowband beamformer is not suitable. Generally, for broadband signals or speech
signals, a finite impulse response (FIR) filter is used on each microphone and the filter
outputs are summed to generate a single-channel enhanced speech signal. For example,
if a microphone array contains M microphones, each including a P taps filter, then
there are MP free filter coefficients in time-domain wide-band beamformer

architectures.

Existing beamformers may be approximately divided into four categories:
fix-coefficients beamformers, post-filtering beamformers, subspace beamformers, and

adaptive beamformers.

1.2.1 Fix-coefficients beamformers

The first category called fix-coefficients beamformers including constant directivity
beamformer (CDB) [28-32] and superdirective beamformers [33-36], utilizes fixed
coefficients to achieve a desired spatial response. CDB is designed to keep a constant
beampattern over the all frequency bins of interest, e.g., the spatial response is
approximately the same over a wide frequency band. The drawback of CDB is that the
size of the microphone array is related to the lowest frequency bin and the number of
microphone is relatively high. Consequently, for speech recognition applications, CDB
and is impractical. Unlike CDB, superdirective beamformer attempts to minimize the
power of the filtered output signal y(n) while keeping an undistorted signal response
in the desired location with a finite array size. Moreover, the noise information, such as

the noises’ locations and noises’ models can be included to improve the noise



suppression performance. Fix-coefficient beamformers generally assume the desired
sound source, interference signals, and noises are slowly varying and at a known
location. Therefore, these algorithms are sensitive to steering errors which limit their
noises suppression performance and cause the desired signal distortion or cancellation.
Furthermore, these algorithms have limited performance at enhancing a desired signal

in highly reverberation environments.

1.2.2  Post-filtering beamformers

To enhance the noise suppression performance, post-filtering techniques [37-40]
have been proposed. Post-filtering techniques perform post-processing to the filtered
output signal y(n) by using a single channel filter, such as the Wiener filter and the
normalized least mean square (NEMS) adaptation criterion. Notably, the filtered output
signal is derived from a beamformer, including CDB, superdirective beamformer, and
so on. Consequently, if the desiréd signal distortion or cancellation exists in the filtered
output signal, the distortion or cancellation cannot be avoided even with a post-filtering

beamformer.

1.2.3  Subspace beamformers

Subspace beamformers [41-44] [126-127] are developed based on the form of the
optimal multidimensional Wiener filter. These algorithms utilize generalized singular
value decomposition (GSVD) or singular value decomposition (SVD) to decompose
the correlation matrix of the desired signal and the received signal when the desired
signal cannot be observed. Because of the unobservable desired signal, these

beamformers cannot deal with the channel distortion directly.



1.2.4  Adaptive beamformers

Instead of using fixed coefficients to suppress noises and interference signals, an
adaptive beamformer [45-64] can adaptively forms its directivity beampattern to the
desired signal and its null beampattern to the undesired signals. In the fix-coefficients
beamformers, the null beampattern only exits when the noise’s direction is known and
remains unchanged. Adaptive beamformers can release this limitation and perform a
better noise suppression performance than fix-coefficient beamformers. Although an
adaptive beamformer can adapt itself to the change of environmental noises, the
steering errors caused by microphone mismatch or DOA estimation errors deteriorate
the performance. To develop a robust adaptive beamformer to cope with the steering

errors is still an important issue in this field.

1.3 Outline of Proposed System

Figure 1-5 shows the block diagram®of the proposed reference-signal-based speech
enhancement system, which contains three main components: voice activity detection
(VAD) algorithm, robust reference-signal-based speaker’s location detection algorithm,

and reference-signal-based frequency-domain adaptive beamformer.

Microphone

Y

Speech

. Detection : Detection : Adaptive
Algorithm Beamformer Recognizer
M > > € > g

Array

16 - - Spealfer —  Frequency- Single-Channel .
Ml Chamnel . Voice Activity | Location : Domain Enhanced Speech Automatic
Sound Signal

KProposed Reference-signal-based Speech Enhancement System

Figure 1-5 Block diagram of proposed reference-signal-based speech enhancement

system

1.3.1 VAD Algorithm



An important issue in many speech processing applications is the determination of
presence of speech segments in a given sound signal. To deal with this requirement,
VAD was developed to detect silent and speech intervals. In the proposed
reference-signal-based speech enhancement system, the VAD result drives the overall
system to switch between two operational stages, the silent stage and the speech stage.
Therefore, this first component in the proposed system is to provide an accurate
silence detection mechanism. Figure 1-6 illustrates the flowchart of the fundamental
VAD algorithm which is a two-step procedure: feature extraction and classification

method.
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Figure 1-6  Flowchartiof the-fundamental VAD algorithm

Feature Extraction: Relevant features are extracted from the speech signal. To
achieve a good detection of speech segments, the chosen features have to show a
significant variation between speech and non-speech signals.

Classification Method: In general, a threshold is applied to the extracted features to
distinguish between the speech and non-speech segments. The threshold can be a
fixed value or an adjustable value. Moreover, decision rules using statistical properties

[65-66] were also implemented to deal with the classification problem.

These features normally represent the variations in energy levels or spectral
difference between noise and speech. There exist many discriminating features in
speech detection, such as the signal energy [67-69], LPC [70-71], zero-crossing rates

[72], the entropy [73-75], and pitch information [76]. Various features or feature vector,
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the combinations of features, have been adopted in VAD algorithms [77-78]. To adapt
to the changes of environmental noises or various noise characteristics, noise
estimation method during non-speech periods should be added into the fundamental
VAD algorithm [79-80]. The algorithm [81] is evaluated in Chapter 6 under vehicular
and indoor environments. Based on the experimental results, the VAD algorithm in
[81] is suitable for implementing the proposed reference-signal based speech

purification system.

1.3.2 Reference-signal-based Speaker’s Location Detection Algorithm

Because conventional sound source localization algorithms suffer from the
uncertainties of environmental complexity,and noise, as well as the microphone
mismatch, most of them are not.tobust injreal practice. Without a high reliability, the
acceptance of speech-based HCI would never be realized. This dissertation presents a
novel reference-signal-based spéaker’s.location detection approach and demonstrates
high accuracy within a vehicle cabinet and an office room using a single uniform linear

microphone array.

Firstly, to perform single speaker’s location detection, the proposed approach utilize
Gaussian mixture models (GMM) to model the distributions of the phase differences
among the microphones caused by the complex characteristic of room acoustic and
microphone mismatch. The individual Gaussian component of a GMM represents some
general location-dependent but content and speaker-independent phase difference
distributions. Moreover, according to the experimental results in Chapter 6, the scheme
performs well not only in non-line-of-sight cases, but also when the speakers are

aligned toward the microphone array but at difference distances from it. This strong
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performance can be achieved by exploiting the fact that the phase difference

distributions at different locations are distinguishable in a non-symmetric environment.

However, because of the limitation of VAD algorithm, an unmodeled speech signal
might trigger the algorithm and drive the system to a wrong stage. This unexpected
signal, which is not emitted from one of the modeled locations, may come from radio
broadcasting of the in-car audio system and the speaker’s voices from unmodeled
locations. Therefore, this dissertation proposes a threshold adaptation method to
provide high accuracy in locating multiple speakers and robustness to unmodeled

sound source locations.

1.3.3 Reference-signal-based Freguency-Domain Beamformer

This dissertation proposes two frequency-domain-beamformers based on reference
signals. They are soft penalty:frequency-domain block beamformer (SPFDBB) and
frequency-domain adjustable block beamformer-" (FDABB). Compared with the
conventional reference-signal-based time-domain adaptive beamformers using NLMS
adaptation criterion, these frequency-domain methods can significantly reduce the
computational effort in speech recognition applications. Like other
reference-signal-based techniques, SPFDBB and FDABB minimize microphone
mismatch, desired signal cancellation caused by reflection effects and resolution due to
the array’s position. Additionally, these proposed methods are appropriate for both
near-field and far-field environments. Generally, the convolution relation between
channel and speech source in time-domain cannot be modeled accurately as a
multiplication in the frequency- domain with a finite window size, especially in speech
recognition applications. SPFDBB and FDABB can approximate this multiplication by

treating several frames as a block to achieve a better beamforming result. Moreover,
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FDABB adjusts the number of frames in a block on-line to cope with the variation of
characteristics in both speech and interference signals. In Chapter 6, a better
performance is found to be achievable by combining SPFDBB or FDABB with a

speech recognition mechanism.

For a speech recognition application, another important issue in real-time
beamforming of microphone arrays is the inability to capture the whole acoustic
dynamics via a finite-length of data and a finite number of array elements. For example,
the source signal coming from the side-lobe through reflection presents a coherent
interference, and the non-minimal phase channel dynamics may require an infinite data
to achieve perfect equalization (or inversion). All these factors appear as uncertainties
or un-modeled dynamics in the receiying, signals. Therefore, the proposed system
attempts to adopt the H. adaptation  Eriterion, which does not require a priori
knowledge of disturbances and-is Tobust to‘the modeling error in a channel recovery
process. The H,, adaptation critérion s to-minimize the worst possible effects of the
disturbances including modeling errors‘and ‘additive noises on the signal estimation
error. Consequently, using the H, adaptation criterion can further improve the

recognition performance.

It should be emphasized that DOA and beamformer are generally treated as two
independent components and discussed respectively in general speech enhancement
systems. However, the proposed reference-signal-based speaker’s location detection
algorithm and frequency-domain beamformer can be potentially integrated because
they perform in the same operational architecture. Please refer to Chapter 7 for more

detail.
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1.4 Contribution of this Dissertation

The contribution of this dissertation is to propose and implement innovative
algorithms for sound source localization and speech purification. Although a
considerable number of studies have been made on these two fields over the past 40
years, only few attempts have so far been made at simultaneously targeting on
practical issues such as microphone mismatch, near-field and far-filed, channel
dynamics recovery, desired signal cancellation, and the resolution effect for speech
purification. Further, for the sound source localization, important issues in practice are
the non-line-of-sight and line-of-sight, reverberation, microphone mismatch, and
noisy environment. This dissertation proposes two frequency domain beamformers,
namely SPFDBB and FDABB, .and ‘speaker’s location detection approach to

simultaneously overcome the issues mentioned above.

1. SPFDBB and FDABB can flexibly adjust.the emphasis on the channel dynamics
recovery and noise suppression. *Mereover;, SPFDBB and FDABB reduce the
computational effort significantly, and deal with the problem that the convolution
relation between channel and speech source in time-domain cannot be modeled

accurately as a multiplication in the frequency domain with a finite window size.

2. To cope with the variation of room acoustics, a frame number adaptation method is

proposed using an index named CBVI in FDABB.

3. An H., adaptation criterion is applied to the proposed SPFDBB and FDABB to

reduce the effect of modeling error, which is common in the adaptive beamformers.

4. The proposed multiple speakers’ locations detection approach is able to provide the

suitable length of testing sequences and thresholds. Therefore, it can obtain the high
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accuracy on detecting speaker’s location and reduce the error caused by unmodeled

locations and the overlapped speech segments.

1.5 Dissertation Organization

This chapter provides a brief introduction to the general microphone-array-based
speech enhancement system, including the overviews of DOA algorithms, and
beamformers. This chapter also briefly discusses three main components in the
proposed reference-signal-based speech enhancement system. Chapter 2 introduces the
reference-signal-based time-domain adaptive beamformer using NLMS adaptation
criterion. Chapter 3 presents SPFDBB and FDABB using NLMS adaptation criterion
and analyzes the computational efforts of the twoproposed frequency-domain and the
time-domain beamformers. Chapter 4 studies the robustness of the H. adaptation
criterion. Chapter 5 presents the proposed-reference-signal-based speaker’s location
detection approach for single speaker’s.and-multiple speakers’ locations detection.
Chapter 6 shows the simulation as well as the experimental results in real environment.

Chapter 7 gives some concluding remarks and avenues for future research.
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Chapter 2

Reference-signal-based Time-domain
Adaptive Beamformer

2.1 Introduction

Speech enhancement systems-are how-becoming increasingly important, especially
with the development of automatic speech reeognition (ASR) applications. Although
various solutions have been proposed to reduce the desired signal cancellation,
particularly desired speech, in noisy environments, the recognition rate is still not
satisfactory. Earlier approaches, such as delay-and-sum (DS) beamformer [82], Frost
beamformer [45], and generalized sidelobe cancellation (GSC) [46], are only good in
ideal cases, where the microphones are mutually matched and the environment is a free
space. The causes of performance degradation include array steering vector
mismodeling due to imperfect array calibration [47], and the channel effect (e.g.,
near-field or far-field problem [83], environment heterogeneity [84] and source local
scattering [85]). To manage these limitations, the most common linearly constrained
minimum variance (LCMV)-based techniques [33] and [57] have been developed to

reduce uncertainty in the sound signal’s look direction. However, these approaches are
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limited by scenarios with look direction mismatch. Henry [58] employed the white
noise gain constraint to overcome the problem of arbitrary steering vector mismatch.
Unfortunately, no clear guidelines are available for choosing the parameters.
Hoshuyama et al. [59] proposed two robust constraints on blocking matrix design.
Cannot et al. [86] proposed a new channel estimation method for standard GSC
architecture in the frequency domain, but loud noises, and in particular circuit noise,
would heavily degrade its channel estimation accuracy. Sergiy A. et al. [60] proposed
an approach based on optimizing the worst-case performance to overcome an unknown
steering vector mismatch. However, a worst case is defined as a small random

perturbation, which may not suitable for general cases.

Dahl et al. [61] proposed the reference-signal-based time-domain adaptive
beamformer using NLMS adaptation '€riterion ‘to perform indirect microphone
calibration and to minimize the speech distortion due to the channel effect by using
pre-recorded speech signals and ‘a referencesignal. Moreover, Yermeche et al. [62] and
Low et al. [63] also utilized the reference signal to estimate the source correlation
matrix and calibration correlation vector. These methods in [61-63] are fundamentally
the same except that the works in [62-63] do not require a VAD. However, VAD is
useful for finding speaker’s location and enabling the speech purification system and
speech recognizer. Therefore, the methods in [62-63] cannot offer any profit in ASR

applications.

The following section describes the system architecture of the
reference-signal-based time-domain adaptive beamformer and the corresponding
dataflow. It also presents how to derive the pre-recorded and reference signals. Finally,

conclusions are given in Section 2.3.
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2.2 System Architecture

The architecture of the reference-signal-based time-domain adaptive beamformer is
shown in Fig. 2-1. A speech signal passing through multi-acoustic channels is
monitored at spatially separated sensors (a microphone array). Two kinds of signals,
the pre-recorded signal, {Sl(n) Sy (n)}, and the reference signal, r(n), are
necessary before executing the reference-signal-based time-domain adaptive
beamformer. Let M denotes the number of microphones. A set of pre-recorded
speech signals are collected by placing a loudspeaker or a person in the desired position,
and by letting the loudspeaker emit or the person speak a short sentence when the
environment is quiet. Therefore, the pre-recorded speech signals provide a priori
information between speakers and thé microphone array. Additionally, the reference
signal is acquired from the original speech source that emitted from the loudspeaker or
using another microphone located near the person to record the speech. In practice, the
loudspeaker or the person should move around the'desired position slightly to obtain an
effective recording. For example, Fig. 2-2 illustrates a vehicular environment with a
headset microphone and a microphone array. The person is right on the desired
location and speaks several sentences when the environment is quiet. The sentences
are simultaneously recorded by the headset microphone and the microphone array. The
speech signal collected by the headset microphone and the microphone array are called
the reference signal and pre-recorded speech signals individually. Notably, the user

does not need the headset microphone during the online applications.

After collecting the pre-recorded speech signals and the reference signal, the
complete procedures of the reference-signal-based time-domain beamformer are
divided in two stages, the silent stage and the speech stage, through the result of VAD

algorithm.
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Figure 2-1 System architecture of the reference-signal-based time-domain adaptive
beamformer
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Figure 2-2 Installation of the array and headset microphone inside a vehicle

In other words, the VAD result decides whether to switch the system to the silent
stage or speech stage. First, if VAD result equals to zero which means no speech signal
contains in the received signals, {Xl(n) o Xy (n)} (i.e. the received signals are
totally environmental noises denoted as {nl(n) Ny, (n)}), then the system is
switched to the first stage: the silent stage. Given that the environmental noises are

assumed to be additive, the acoustic behavior of the speech signal received when a
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speaker is talking in a noisy environment can be expressed as a linear combination of
the pre-recorded speech signal and the environmental noises. Therefore, in this stage,
the system combines the online recorded environmental noise, {nl n) - ny (n)} ,
with the pre-recorded speech database, {Sl(n) o Sy (n)}, to construct the training
signals, {Xl(n) e Xy (n)}, and to performs NLMS adaptation criterion to derive
the filter coefficient vectors. Notably, the filter coefficient vectors are updated via the

reference signal and the training signal thus implicitly solving the calibration.

Secondly, if the received sound signal is detected as containing speech signal, then
the system is switched to the second stage, called speech stage. In this stage, the filter
coefficient vectors obtained by the first stage are applied to the lower beamformer to
suppress noises and enhance the speech ,signal in the speech stage. Finally, the
single-channel purified speech signal y(n)is.transformed to the frequency domain
and then sent to the automatic speech recognizer.- Because the variation between
pre-recorded speech signals and ‘the reference-signal-contains useful information about
the dynamics of channel, electroniC®equipments uncertainties, and microphones’
characteristics, the method potentially outperforms other un-calibrated algorithms in
real applications. Figure 2-3 presents the flowchart of the reference-signal-based

time-domain adaptive beamformer.
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beamformer

While the speaker in the desired location is silent, the formulation of
referenced-signal-based time-domain beamformer can be expressed as the following

linear model:

r(n)=q"x(n)+e(n)=g" (s(n)+n(n))+e(n) (2-1)

where the superscripts T denotes the transpose operation and e(n) is the error signal
in the time domain. Notice that italics fonts represent scalars, bold italics fonts
represent vectors, and bold upright fonts represent matrices in this dissertation. Let the

parameter P denote the FIR taps of the each estimated filter, and then
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s(n) = [s1 (n) - sy (n)]T denotes the pre-recorded signal vector;

n(n)=[nl(n) oy, (n)]T denotes the MP x1 online recorded environmental
noise vector;

m=[%m) - %,(M] denotes the MP x1 training signal vector;

q= [q1 gy ]T denotes the MP x1 filter coefficient vector of the time-domain

beamformer that we intent to estimate.

The corresponding vectors of the signals defined above are,
fM=[xM) - KM-P+D]; s;(m=[s;(n) - s(n-P+D)];
mm=[m - n-P+D]; g =ldig;, bl

The well-known normalized-I.MS solution obtained by minimizing the power of
error signal is represented in Eqs(2-2)

x(n)
y +X(n)" x(n)

e(n) (2-2)

gn+1)=¢(n)+

where y is a small constant included to ensure that the update term does not become
excessively large when x(n)' x(n) temporarily become small. The purified signal can

be calculated by
§(n)=x"(n)g(n) (2-3)

where x(n)= [x1 (n)y - xy (n)]T is the MP x1online recorded noisy speech

signal vector acquired by the microphone array, and

x(M=[x0) - x0-P+D].
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2.3 Summary

This chapter presents the reference-signal-based system architecture which
implicitly contains the information of the channel effect and microphones’
characteristics. This architecture implicitly obtains the acoustic behavior from the
desired location to microphone array and reduces the efforts of directly performing
microphone calibration and channel inversion. Furthermore, it can be applied on both
near-field and far-field situations which offers a significant advantage in speaker
localization and beamformer algorithms. Extension of this idea to further improve the
ASR rates will be described in the following chapters. Moreover, a novel speaker’s
location detection algorithm based on the reference-signal-based architecture is also
proposed. In addition, Chaptern® 6 compares the performance of the
reference-signal-based time-domain adaptive ‘beamformer and other well-known
non-reference-signal-based beamformers to show the effectiveness of the proposed

method.
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Chapter 3

Reference-signal-based
Freguency-domain Adaptive Beamformer

3.1 Introduction

The required computational effort:could-be-large when applying a large FIR filter
coefficients, e.g., 256 to 512 taps in‘the.time-domain adaptive beamformer introduced
in the previous chapter. For subsequent ASR operation, another effort to compute
Discrete Fourier transform (DFT) is required. One possible way to simplify the
computational complexity is to compute the beamformer directly in the frequency
domain because ideally the large FIR taps can be replaced by a simple multiplication
at each frequency bin (e.g., the FIR filter with dimension of MP x 1 is represented by
filter coefficient vector M x1 in the frequency domain where M is the
microphone number and P denotes the FIR taps). Moreover, the purified speech
signal after a frequency-domain beamformer can be sent directly to the ASR. As
explained later in this chapter and Chapter 6, the saving of computational effort is quite

significant.
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In a reference-signal-based beamformer, coefficients adjustment has two objectives:
to minimize the interference signal and noises, and to equalize the channel effect (e.g.
room acoustics). Channel equalization is important for ASR since the channel

distortion may greatly reduce the recognition rate.

By formulating the same problem in the frequency domain, channel distortion can be
emphasized using a priori information. In this chapter, a penalty function is
incorporated into the performance index to calculate the filter coefficient vectors. This

proposed algorithm is called SPFDBB.

A real-time frequency-domain beamformer is necessary to apply the short time
Fourier transform (STFT). However, the corresponding window size of the STFT has
to be fixed by the training data settings in ASR. For an environment with longer
impulse response duration, the convolution relation between channel and speech source
in time-domain cannot be modeled accurately as a multiplication in the frequency-
domain with a finite window size.- Therefore, the finite window size may not provide
enough information for the coefficient adjustment and could not fit the assumptions
that filter coefficient vector and the error signal should be independent to the input
data in the NLMS adaptation criterion. In this case, SPFDBB takes the frame average
over several frames as a block to improve the approximation of the linear model shown
in Eq. (2-1). In other words, a block of windowed data is simultaneously adopted to
calculate the filter coefficient vectors in the SPFDBB algorithm. The number of frames
in a block is denoted as the frame number L. Intuitively, a large frame number could
enhance the accuracy of the filter coefficient estimation. However, if the room acoustic
dynamic changes suddenly, the channel response is difficult to be adjusted quickly
when taking a large frame number for the updating process. Furthermore, the

requirement of the length of the processed data would be too large when a large value
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of L is chosen. Therefore, SPFDBB is further enhanced by allowing the frame
number to be adapted on-line. A novel index called changing block values index (CBVI)
is defined as the basis for adjusting the frame number. The overall algorithm is called

FDABB.

The remainder of this chapter is organized as follows. Section 3.2 describes the
system architecture and the corresponding dataflow. Section 3.3 represents SPFDBB,
one of the reference-signal-based frequency-domain adaptive beamformers which
utilizes NLMS adaptation criterion. Section 3.4 introduces the other proposed method,
FDABB, and also analyzes the computing efforts of SPFDBB, FDABB and the
reference-signal-based time-domain beamformer. Two frequency-domain performance
indexes, the source distortion ratio (SDR),and the noise suppression ratio (NSR) are

defined in Section 3.5. Finally, conclusions are'given in Section 3.6.

3.2 System Architecture

Figure 3-1 shows the overall system architecture. The pre-recorded speech
signals, S, (@,k), --,S,, (@,k) , and the reference signal, R(®,k), can be recorded by the
same way described in Chapter 2 when the environment is quiet. After acquiring the
pre-recorded speech signal and the reference signal, the overall system automatically

executes between the silent and speech stages based on the VAD result.

If the result of VAD equals to zero which means no speech signal contained in the
received signal, {X1 n) - Xy (n)}, then the system is switched to the silent stage in
which the adaptation of FDABB or SPFDBB is turned on. The filter coefficient vectors
of FDABB or SPFDBB are adjusted through NLMS adaptation criterion in this stage.

Notably, SPFDBB is a part of FDABB and can be executed separately.
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On the other hand, if the received sound signal is detected as containing speech
signal, then the system is switched to the second stage called speech stage. In this stage,
the filter coefficient vectors obtained in the silent stage are applied to the lower

beamformer to suppress the interference signals and noises, and enhance the speech

signal. Finally, the purified speech signal YA(a), k) is directly sent to the ASR.

Automatic
Speech
Recognizer

Beamformer
/Silem Stage N
NLM_S £, (@,k)or &,(@,K)
Adaptation |«
. Criterion
S (@.kK) X, (@,k) /
Memory S,(w,k) & N X, (@,k) FDABB Yb(mik)
Pre-recorded . 'Y R or ” i
Speech Signal N N . FDBB R(w.K
Sy (@) % Xu(@k) (@k)
Memory
Reference Signal
K N, kN 0K) « - « [Ny () eference Signa j
Microphone Transfer New
N, (@,k) LT T T N [Trained Coefficients
» \
. | N [ I P s M S
: ! Silent Stage ! '/Speech Stage Y
> I I
Nu @K / ! |
X@k) | o= . L X(@k, 1
i T X, (@,K) ; |
| I I 2DK) 1 Lower Y (w,k) I
: O Speech Stage | | : Beamformer |
L 1 .
Xy (@,k) N 4 ! Xy (@,k) }
'\ j
VAD Tttt TTTTT T T T

Figure 3-1 Overall system structure

3.3 SPFDBB Using NLMS Adaptation Criterion

The linear model in Eq. (2-1) is transformed to the frequency domain by padding the
short-time Fourier transform of the error signal with zeros to make it twice as long as

the window length. The error signal at frequency @ and frame Kk is written as:

£, (0,k)=R(w,k)— Q" (0,k) X (,k) (3-1)
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where R(w,k) is the reference signal in the frequency domain, Q(w,k) denotes the

filter coefficient vector we intend to find, and X(w,k) = [)zl(a),k) e X " (a),k)]T

is the training signal vector at frequency @ and frame k. The optimal set of filter

coefficient vectors can be found using the formula:

n%ingX (0,K)e, (0,K)

5 . (3-2)
= minR(0.0)- 0" (@)X (@0 |R@10-0" @) X(@k)]
where the superscripts * denotes the complex conjugate.
The normalized LMS solution of Eq. (3-2) is given by:
KX (,k
Q(0k +1) = Qlir k) £ 1 GOT LX) (33)

r+ X" (@.k) X (0,k)

Consequently, the purified outpuit signal can-be-obtained by the following equation:

Y(0,k)=0" (0,k) X (0,k) (3-4)

where X(w,k)= [Xl(a),k) o X (a),k)] is the received signal vector which
contains speech source, interference and noise. From Eq. (3-1), the filter coefficient
vector equalizes the acoustic channel dynamics and also creates the null space for the

interference and noise.

As mentioned above, the filter coefficient vector Q(w,k) equalizes the channel
response and rejects interference signals and noises. To emphasize these two objectives

differently, a soft penalty function is added into the performance index as,
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ngngx(w,k)gx*(w,k)+ ue (0,K)e, (0,K) (3-5)
where 4 is the soft penalty parameter and
gs(a)ak): R(a)ok)_QH(a)vk)S(a)’k) (3_6)

Then, the iterative equation utilizing the NLMS adaptation criterion can be shown

as:

MG, (0.k) + 4G, (@.k)]
7+ X" (0,K)X(0,K)+ 1S (0,k)S (,k)

O(o,k+1)=0(w,k) + (3-7)

where
G (0.K)=¢ (0,K)X (0,k), Gw,k)=e(@k)S (wk) and A is the step size. If

the soft penalty is set to infinity; then the.system only focuses on minimizing the
channel distortion. On the other hand, the systemteturns to the formulation in Eq.

(3-2) when the soft penalty is set to zero.

The problem of Eq. (3-7) is the window size has to equal that in ASR to ensure
calculation accuracy. However, the window size may be too small for cases where the
acoustic channel response duration is long (e.g., long reverberation path). Because the
perturbation caused by channel model error is highly correlated to the reference signal
instead of the uncorrelated noise, the updating process will not converge to a fixed
channel response which is shown in Fig 6.3 and the relation between two sequential
frames is highly relative. Taking the frame average over several frames (denoted as L)
allows the channel response to be approximated; since information of channel response
which is not contained in one frame could be regarded as an external noise in the next

frame. Thus, the performance index can be written in a quadratic from as:
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. {V(w,lo}” {V(co,k)}
min A
Q | U(w,k) U(w,k)

= inn[VH (@0,K)A,V(0,K)+ V"™ (0,k)A,U(w,k)+U" (0,k)A,V(0,k)+U" (a),k)A4U(a),k)]

(3-8)

where

V(oK) =[R(o,k) - 0" (0)S(0.k) - R(ok+L-1)-0" (@)S(w,k+L-1)],

U(o.K)=[0" (@)N(@k) - 0" (@N@k+L-D],
and

A:|:A1 AZ

isa 2L x 2L matrix.
A, A,

The performance indexes denoted as Egs.:(3-2) and (3-5) are two special cases of Eq
(3-8) with A, =1, A,=A;==1, Ay =1, L=1and A, =1+u, A,=A,; =-1,
A, =1, L=1. Because of the long teverberation path and the fix window size, the

error signal between different frames should be taken into consideration. Therefore, the

soft penalty approach can be applied on several windows (frames) by choosing

1+ﬂ ﬂ oo ﬂ
l+u -,
A= T A= A=A =
ﬂ oo ﬂ 1+ﬂ

where I, is an identity matrix with dimension L. Significantly, when the channel
response is longer than the window size, the reference signal in previous windows is
added in the following windows of the received signal. A good estimation should

collect the information of several frames to eliminate this correlation effect. The
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choice of A, considers the cross-term as a factor to minimize this correlation effect.

Using the performance index as Eq. (3-8), the SPFDBB can be summarized as:

MH (0,K)+ 1E (0,K)P" (0,K)
y +5(H(w,k) ®X(w,k)+yPH(w,k)P(w,k)

O(w.k+1)=0(w,k)+ (3-9)

where Hx(a),k):f(*(a),k)ExT(a),k) and X(w,k)=lX(w,k) )A((a),k+L—1)J

is the training signal matrix with dimension M x L. The k th error signal vector can

be denoted as:

E (oK) =[e (k) - & (ok+L-1]=R(wk)-Y, (k) (3-10)

k+L—

E 0= > RG0S (@ )] (3-11)

j=k

where R(a),k)=[R(a),k) R(a),k+L—1)] is/ “the reference signal vector,

Y, (0.kK) = [Yb (0,k) - Y (o.k+L- 1)] 1s the purified signal vector of the SPFDBB,

and

X7 (0,k)® X(w,k)

. ) . . (3-12)
= X" (@,K)X(0,K)+ -+ X" (0,k +L—D)X(w,k +L—1)

where Eq. (3-12) means the sum of autocorrelations of the training signal at

k th block and

k+L-1

P(w,k)= D S(w,]) (3-13)

j=k

The purified speech signal at k th block can be represented as:
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Y(0,k)=0" (0,k)X(o,k) (3-14)

where ¥ (w,k) = [Y(w, k) - Y(o,k+L- l)J is the purified signal vector.

Notably, the step k is chosen as 0, L,2L,3L,--- to perform the adaptation process
every L frames. In this way, the relation between the two sequential block data may
be lower than the one by overlapping (L —1) frames to perform the next adaptation
process (e.g.k =0,1,2,3,---). Moreover, the approach which the step k is chosen as
0,1,2,3,--- significantly increases the computational effort and the memory
consumption as the value L increases. The goal of carrying out the beamformer in the
frequency domain couldn’t achieve. As a result, the proposed SPFDBB

(e.g.k=0,L,2L,3L,--) is a kind of:efficient approach to obtain low computational

effort in the frequency domain.

3.4 FDABB and Computational Effort Analysis

3.4.1 FDABB Using NLMS Adaptation Criterion

The number of frames L inthe SPFDBB greatly influences the performance shown
in Chapter 6. However, the bigger value of L needs more training data sequences. To
cope with the window size problem, an index-based algorithm is proposed to adjust the

value L automatically. Using Eq. (3-1), the error signal could be separated as:

£,(0,K) =R(w,k)— 0" (0,k) X (@,k)

(3-15)
=R(w,k) - 0" (0,k)(S(0,k) + N(w,k) )

Taking an frame average over L frames
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Ele (0, )N" (0.k)},

(3-16)
= ER(@.ON" (0.K)}, —0" (0.KE{S(@.)N" (0.k)+ (0. )N (0,k)},

If no correlation exists between speech source and interference signals or noises, the
first term and second term of the Eq. (3-16) could be zero. Consequently, this equation

can be rewritten as:

Ele, (0. )N" (0.K)], =—0" (@.K) E{N(@,K)N" (0,k)}, (3-17)

The optimal coefficient vectors should be the null space of E{N (0, K)N" (a),k)}L

and then the norm of Eq. (3-17) should be zero. The large norm of Eq. (3-17) indicates
a strong negative or positive correlation between the error signal and interference
signals or noises. In other words, the|darge norm of Eq. (3-17) means that the
interference signals or noises affect the.error significantly and that the convergence
period is not achieved with the ffame number L' If the norm of Eq. (3-17) is small,
then it means the present value L has lesser help for finding better coefficients.
Consequently, the value of L is increased to improve the performance of the
algorithm. Conversely, if the room acoustic varies temporarily, then the present norm of
Eq. (3-17) would become much larger than the last one. Then, the value of L should
be reset to the initial value to handle this sudden change. The CBVI at frequency @

and block i are defined in Eq. (3-18). The parameters in Eq. (3-18) are chosen as

a,=3, a,=2,and «, =1 to be an high pass filter to increase the sensitivity of the
0 s & , 2 ghp Yy

temporal variation of room acoustic and the convergence. Figure 3-2 summarizes the

proposed FDABB algorithm.
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CBVI(a,i)
=3 o ([Efe, (@i - DLN" @ L} - [Ele, (@i~ ]-DLN" (@, - ] —1>L>}LHf)

i=0

& [Ele (@iLN" (@b} | )+ (a, —a, )Q\E{gx (@,(i—-DLN" (a,(i —1)|_)}Luj)

(e |k (0.0 -20N " @020 e [ (0.6 -3V @30 [
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Figure 3-2 FDABB using NLMS adaptation criterion

3.4.2  Computational Effort Analysis

This section analyzes the computational effort of the reference-signal-based
time-domain adaptive beamformer, SPFDBB, and FDABB from two different
viewpoints: the coefficients adaptation phase and the lower beamformer phase. In the
coefficients adaptation phase, the speaker is silent and the coefficients are updated with
the iteration equation (2-2) for the reference-signal-based time-domain adaptive
beamformer, with Eq. (3-9) for SPFDBB, and with Egs. (3-9) and (3-18) for FDABB.

The computational effort is based on a one-second length input datum for each phase,

and is shown in Table 3-1. The sampling rate is denoted as f,, meaning that the

considered input data contains f, samples. The length of STFT is represented as B, ;
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the length of input data in a frame is represented as B, and the shift size of STFT is

represented as B, . The filter tap of the reference-signal-based time-domain adaptive

beamformer is assumed to be P, and the dimension of filter coefficient vector in the
time domain is given by MP x 1. The function 1(z) takes the integer part of z only.
With the increasing value of L, the computational efforts of SPFDBB and FDABB
decrease. The computational effort of STFT 1is estimated by using radix-2
decimation-in-frequency FFT [87]. Notably, the STFT of M microphones is
necessary for VAD and speaker’s location detection algorithm. Therefore, the
computational loading could be reasonably omitted to decrease the amount of real
multiplication requirement when the overall system architecture is considered.
Furthermore, SPFDBB and FDABB could be implemented with parallelism to decrease
the beamformer loading. Furthetmore, Chapter 6 lists the computational effort of the

proposed algorithms in the two simulations:

Table 3-1 Real Multiplication'Requirement in One Second Input Data

Multiplication Requirement

Adaptation Phase Lower Beamformer Phase
Time-domain adaptive _
P f.2MP +1) Mfsp+|[fs B, +1](B. +2)log, (B, +2)
beamformer s 2
(1I8ML +10M +7) ( f, - B B, f.—B, B,
s Ll —+1 4MI| = Ll —+1
FDABB T I B, i e B, i e
(14ML+8M +3) [ f, - B B, f. - B, B,
= L+l —+1 4MI| = Ll —+1
SPFDBB T B, i B, i e

3.5 Frequency-domain Performance Indexes

From Eq. (3-1), the filter coefficient vector should equalize the acoustic channel

dynamics and also creates the null space for the interference signals or noises. Two
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frequency-domain performance indices, SDR and NSR, are defined for these effects.
SDR means the decreased level of source distortion produced by inexact filter

coefficient vector estimation and NSR means the improved level of noise reduction.
Assuming that the true channel response is W (w) = [\/V1 (w) ... W, (a))]T , then the

source distortion can be represented as:

W, (@)R(@,k)
0" (0,K)S(,k)—R(w,k) =0" (o,k) : —R(w,k) (3-19)
W, (@)R(@,k)

Thus, the optimal filter coefficient vector should satisfy two equality equations:

0" (oW (w)=1 and, Q" (@)N(w,k)=0 (3-20)

The SDR is defined as:

H k _
SDR(w,k)=2010 ‘Q H(w’ Wi(e) 1‘ vk=1,.. (3-21)
0" (@)W ()~
and the NSR is defined as:
" (w,k k
NSR(&,k) = 20 1og[“QQH((w’ I;ziw’l))‘} Vk=1,. (3-22)
, ,

Since the denominators of Egs. (3-21) and (3-22) are initial reference values, SDR or
NSR represents the performance enhancement derived by comparing certain iteration
with the initial filter coefficient vector. Smaller values of SDR and NSR indicate

smaller source distortion and higher noise suppression performance.
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3.6 Summary

This chapter presents two novel reference-signal-based frequency-domain
beamformers, FDABB and SPFDBB, to overcome problems such as calibration,
near-field or far-field cases, resolution and desired signal cancellation etc. These
approaches not only reduce the computational effort significantly in the ASR-based
application as compared with the reference-signal-based time domain adaptive
beamformer, but also improve performance in a noisy environment. Moreover, FDABB
which can automatically adjust the frame number to different environments is

particularly suitable for practical applications.
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Chapter 4

H. Adaptation Criterion

4.1. Introduction

The NLMS adaptation criterion used in the preceding chapter does not make any
assumption about the pre-recoded signals and the disturbance, unlike the exact least
square algorithm such as recursive least square'(RLS). The solution of the NLMS
adaptation criterion recursively updates the filter coefficient vector along the direction
of the instantaneous gradient of the squared error. Therefore, the NLMS adaptation
criterion is more robust to disturbance variation than the RLS algorithm. For example,
it has been observed that the NLMS has better tracking capabilities than the RLS
algorithm in the presence of non-stationary inputs [88]. However, the performance of
the NLMS depends upon the properties of the modeling errors which may lead to large
coefficient vector estimation error. Consequently, it is necessary to design a robust
adaptive algorithm to guarantee that if the disturbance energy is small, the coefficient

vector estimation error will be small as well (in energy).

There has been an increasing interest in the mini-max estimation method [89-97]

called H,, algorithm which is more robust and less sensitive to model uncertainties and
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parameter variations than the H, adaptation criterion (such as the Kalman filter). This
is because no a priori knowledge of the disturbance statistics is required in the H
algorithm. It means that the H., algorithm can accommodate for all conceivable
disturbances which have a finite energy. Moreover, the estimation criterion of the H,
algorithm is to minimize the worst possible effects of the disturbances (modeling errors
and additive noises) on the signal estimation error. Actually, the NLMS adaptation
criterion is the central a posteriori H,, optimal filter [94]. However, it is the H., optimal
filter that minimizes the worst possible effects of the disturbances on the filtered output
error. But the goal of the reference-signal-based beamformer is to estimate the filter
coefficient vector itself instead of in minimizing the filtered output error. In this case,
the criterion of the H., optimal filter has to be modified to address the problem of filter

coefficient vector estimation (eg. minimizing the coefficient vector estimation error).

The remainder of this chapter is organized as follows. Section 4.2 describes the
definition of the H.-norm and“the recursive-solution of the time-domain adaptive
beamformers which utilizes H,, adaptation:criterion. Section 4.3 applies H., adaptation
criterion to the two proposed frequency-domain adaptive beamformers, SPFDBB and
FDABB as well as analyzes the computing effort of the two frequency-domain
beamformers and the time-domain beamformer using H,, adaptation criterion. Section
4.4 defines time-domain performance indices for the experiments in Chapter 6 to
measure the robustness of H., adaptation criterion. Finally, a conclusion is given in

Section 4.5.

4.2. Time-Domain Adaptive Beamformer Using H,, Adaptation

Criterion
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42.1 Definition of H,-norm

The H,-norm defines the worst case response of a system. If Z denotes a transfer

operator that maps an input causal sequence {ui } to an output causal sequence {yi } as

shown in Fig. 4-1, the Ho-norm of Z is defined as,

- )

where the notation |||| , denotes the 2-norm. Obviously, the H.-norm can be regards as

the maximum energy gain from the input U to the output Y.

fui iy Wi i

— z —

Figure 4-1 Transfer operator'Z from input {ui } to output {yi }

4.2.2  Formulation of Time-Domain Adaptive Beamformer

Figure 4-2 shows the overall architecture of the time-domain adaptive beamformer
using H,, adaptation criterion. The data flow and architecture are almost the same with
those introduced in the Chapter 2 except the H,, adaptation criterion is used. In the
silent stage (VAD = 0), the filter coefficient vectors are adapted through H., adaptation
criterion. In the speech stage (VAD = 1), the computed filter coefficient vectors are
applied to the lower beamformer to suppress the interference signals and noises, and

derive the purified speech signal.

Based on the system architecture shown in Fig. 4-2, the formulation of speech

enhancement system can be expressed as the following linear model:
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r(n)=x"(n)g +e(n) (4-2)

where r(n) is the reference signal and x(n)= [ﬁl(n) e Xy (n)]T isa MPx1
training signal vector. x;(n)= [)?i(n) -+ X(n-P +1)] is a 1xP training signal

vector and each component in the silent stage is constructed from the linear

combination of the pre-recorded speech signals and the online recorded interference

signals or noises as X;(n)=s;(N)+n,(n). M denotes the number of microphones and
P denotes the number of filter tap. Additionally,

q:[q11 R L TR qMP]T is the MP x1 unknown filter coefficient

vector in the time domain that we intent to estimate. e(n) is the unknown disturbance,

which may also include modeling'error.
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SN % (n) e(n)
Memory S, (DM ai )A(z (n) Yb (D
Pre-recorded : g Y . '“ -
Speech Signal . .
S (M) % %, () rn
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\_ nm[nm)| -« +| ny (M)
Microphone
Array  [—————o Transfer New
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x| i > \
> VAD=0 || - | Silent S w D it B SRS N
\ . > ilent Stage | ! Speech Stage \
et Y1) /! | !
777777 I i
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Figure 4-2 System Architecture of the time-domain adaptive beamformer using He,
adaptation criterion

The problem of the proposed speech enhancement system is how to use a strategy

called ¥(r(1), --- r(n); x(1), --- X(n)) to estimate the filter coefficient vector g
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using all the information available from time 1 to time n such that the H,, -norm from

the disturbances {;zo_% S {e(i)}i”:l} to the coefficient vector estimation error

q—4()

{tj(i)}i”:1 minimized, where ¢(1) denotes the initial guess for ¢ and g, is a positive

constant that reflects to how close ¢ is to the initial guess ¢(1). This transfer operator
shown in Fig. 4-3 is designate by T(¥). g(n) is the MPx1 coefficient vector

estimation error defined as:

qg(n)=q-4(n) (4-3)

where ¢(n) isthe MP x1 estimated filter coefficient vector.

o (g —4(1)
—>

e S [ T GOk,

Figure 4-3 Transfer operator from disturbances to coefficient vector estimation error

To apply the adaptive H., adaptation criterion, the linear model, as in Eq. (4-2), is

transformed into an equivalent state-space form:

{ an +1)=4(n) with g(1)=g¢ (4-4)

r(n)=x"(n)g(n) +e(n)

To find the optimal H,, estimation, the criterion in the sense of H.-based filtering is:

)30y
2 . 2 . i=1
Yo = 1gf||T (‘P)”w = 11\}}fsup (4-5)

' lg =) + Y el
i=1
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where ||2 denotes the square of the 2-norm. However, a closed form solution of Eq.
(4-5) is unavailable for general cases. Therefore, it is common in the literature to relax
the minimization condition and settle for a suboptimal solution. Given a scalar Vo> 0,
find a H, suboptimal estimation strategy called
g(n)="¥(r(1), -+~ r(n); %), -~ X(n)) thatachieves [T(¥)| <7, In other words,
the suboptimal solution is to find a strategy that achieves

n

2faf

i=1

sup i <4, for 1<i<n (4-6)
' lg—af + Y[l
i=1

4.2.3  Solution of suboptimal Hx,mAdaptation Criterion

Consider a time-variant state=space model of the form

{q(n . o with n>0 (4-7)

r(n) = H(n)q(n) +e(n)

where F(n)eC""™  G(n)eC", H(n) e C*™ are known matrices, u(n)eC’*
are unknown process noises, and r(n)eC®" are observations. In general, the

H.-formulation estimates some arbitrary linear combination of the states, say
d(n) = B(n)q(n) (4-8)

where B(n)eCM™ _ Let d(n)=¥(r(1), --- r(n)) denote the estimation of d(n)

given observations {r(i)}|",. Define the estimation error as
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d(n) =d(n)-B(n)q(n) (4-9)

Given a scalar y,>0 , find a suboptimal H, estimation strategy

ti(n) = ‘P(r(l), r(n)) that achieves "T (‘P)”w < 74 - In other words, find a strategy
that achieves
N~ 2
Dl i)
i=1

sup ! g <Va for 1<i<n (4-10)
S g =g + D u() M udiy+ D e
i=1 i=1

In this case, the suboptimal solution [96] is recursively computed as

g(n+1) = F(n)g(n) + K(n)(r(n) =H(n)g(m)) (4-11)

K(n)=F(n)P(n)H" (n)(l +H(n)P(MH" (n))‘1 (4-12)
P(n+1) = F(m[P" (n)+ H" (NH(")=7,"B" (B ' F* () +GMG" (n)  (4-13)

q()=0 and P(1)= I (4-14)

where P(n) is an MPxMP matrix, (-)"' denotes the matrix inverse operation, and

(-)" denotes the transpose operation. If the F(n) is invertible and g, >0, then the

following alternative condition can be used to guarantee the existence of Eq. (4-10)

P'(n)+H" (NH(n)-y;’B" (n)B(n) >0, for all n (4-15)

4.2.4  Solution of Time-domain Adaptive Beamformer
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Let’s apply Egs. (4-11), (4-12), (4-13), and (4-14) to the state-space model Eq. (4-4)
where F(n)=1I, G(n)=0, H(n)=x"(n), and B(n)=1. Thus the solution of §(n)

can be found by the following iterative equations:

G(n+1)=g(m+Km(r(m-£"(mg(n)) (4-16)
K(n) = PM&(m)(1+£" (Pn)&(n))’ (4-17)
P (n+1) =P (M) +x(n)x" (N)—y, "1 (4-18)
G(1)=0 and P(1)= g1 (4-19)

To ensure the existence of Eq. (4-6), y, should be chosen such that

P"(n)+:2(n)32T(n)—;/q_21>0 . .+For this's reason, yq_z is selected as

o xeig (P"1 (n)+x(n)x’ (n)) during.the iteration, where eig(z) denotes the minimum
eigenvalue of z. 0 is a positive-constant.and-lower than one to ensure that Eq. (4-18) is

positive definite.

The adaptation of the filter coefficient vector is performed in the silent stage. When
the system is switched to speech stage, the adaptation stops and the filter coefficient

vector is passed to lower beamformer. The purified speech signal can be calculated by

§(n)=x"(n)g(n) (4-20)
where x(n)= [x1 n) - xy (n)]T is the MP x1 online recorded noisy speech
signal vector acquired by the microphone array, where

x(M=[x() - x((-P+D)].
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4.3. SPFDBB, FDABB and Computational Effort Analysis

43.1 SPFDBB Using H, Adaptation Criterion

Figure 4-4 shows the overall architecture of the proposed speech enhancement using
H., adaptation criterion in the frequency domain. For the ASR application, the purified
spectrum data should be computed directly to save computational effort, since most
speech recognition algorithms are performed in the frequency domain. In this case, the
filter coefficient vectors can be updated on a block of data. Hence, the problem is
transformed into the frequency domain by using STFT. In conjunction with the
spectrum-based ASR, the window size in the STFT has to equal to that in ASR in order
to obtain a more accurate result. However, the window size may be too small to capture
the acoustic channel response. For this réasons Chapter 4 proposed an approach called
SPFDBB which takes the frame average over several-frames as a block improving the
approximation of the channel response.: The-number-of frames in a block is denoted as
the frame number L. In this chapter, the H,, adaptation criterion is adopted to improve

the performance further.

Beamformer
/Silcnt Stage o R
o0
Adaptation |«
N Criterion
Sy (@.k) X, (@.k) F
Memory S,(w,k) & X (,k) FDABB Yh(wik)
Pre-recorded . K R or i
Speech Signal : : 1
peech Sig M . FDBB
S, (@) % X (@,K) v Ria.k)
Memory
Reft ce Signal
\_ N, (@, K)YN, (@,K)| « « « [N, (@,k) el )
Mli‘rolthonc 77777 Transfer New
rray e Nk o ~ [Trained Coefficients
H >
XM vap=o0 1 . | Silent St | P D et B ~
\\\ /) : =} otlent sStage J ‘/ Speech Stage I
————- Ny (0.k) N el ___ g | |
T ~ !
/ D ~ L X (@.k) [ Automati
o 1 X, (@.K) 1 - | utomatic
ol VAD =1 } : ! Speech Stage ‘v X = Behg‘f,;eriner Y(@k) | Speech
L »! . ¢ i
X (M |1 B > ) L . | Recognizer
—_————— Xy (@,k) N s I Xy (@) |
\\ //
VAD TTTTTTT T T TS T T T T T T T

Figure 4-4 System Architecture of SPFDBB and FDABB using Heo adaptation

criterion

46




The strategy of the SPFDBB using H,, adaptation criterion can be formulated as:

>0
sup =] — <Vos for 1<i<k 4-21)
¢ Q@) - Qo) + Y |E(@)f

where Q(w) denotes the M x1 unknown filter coefficient vector at frequency @

and Q(w,l) is the initial guess. Q(a),k) is the M x1 coefficient vector estimation

error at kth block defined as:

0(0,k) = 0(w) - 0(@,k) (4-22)

where Q(w,k) is the M x1 estimated.filter coefficient vector in the frequency

domain. The energy of the disturbance |E (a),k)|2 is defined as:

V(@) TV (wk)
Flek) ‘Lf(w,k)} A{U(w,kj 2
where
V(a),k):[R(w,k)—SH(w,k)Q(m,k) R(a),k+L—l)—SH(w,k+L—1)Q(w,k)]T

and U(w.K)=[N"(@K)0@k) - N"(@k+L-DO@.k)] .

A, A, )
A= isa 2L x 2L matrix.
A, A,
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ﬂ cee ,Ll 1+,Ll

where I, is an identity matrix with dimension LxL and g is the soft penalty.
N(@,K)=[N,(@,k) - Ny (@,K]",S(@,k) =[S, (@,k) - S, (@k)]" , and

R(w,k) represent the frequency-domain online recorded environmental noise vector,

the pre-recorded speech signal vector, and the reference signal respectively.

Let’s apply Egs. (4-11), (4-12), (4-13), and (4-14) to the SPFDBB, where

F(o,k)=1, G(o,k)=0, H(a),k){f((a),k) o X(ok+L=1) ;ﬁkfsm,j) ,

=k
B(w,k)=1, and X (@,k) is thé training signal vector with dimension M x 1. Thus

the state space model can be represented by

{ O(w,k +1) = 0(w,k) with k>0 and Q(w,k)=0(w)

R (0,k)=H(w,k)0(o,k) + E(w,k)

.
| kL=l
where RL(a),k)={R(a),k) -+ R(o,k+L-1) u* ZR(a),j) . The solution of

j=k

A

Q(w,k) can be approximated by the iteration:

O(0.k +1) = 0(2,k) + K(, k)[R, (.K) — H(w,K)0(,K) | (4-24)
K(w,k) = P(w,k)H" (a),k)(l +H(a,K)P(0,k)H" (o, k))’1 (4-25)
P (0,k+1)=P ' (0,k)+ H" (0, k) H(w,k) — 7,1 (4-26)
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O(w)=0 and P™(w])=p,l (4-27)

The  value of  y, 2 during  the  iteration is chosen  as

é‘eig(P’1 (w,k)+H" (a),k)H(a),k)) where eig(z) denotes the minimum eigenvalue of
z. O 1s a positive constant and lower than one to ensure that Eq. (4-26) is positive

definite. Consequently, the purified speech signal at kth block can be obtained by the

following equation:

Y(0,k)=0"(0,k)X(@,k) (4-28)

where ¥(@,k) =V (@,k) - Y(o.ksik=1)] is the purified result and X(eK) is

the M x L online recorded noisy speech signal matrix. The step k is chosen as

0,L,2L,3L,--- to perform the adaptation-process every L frames.

4.3.2 FDABB Using H., Adaptation Criterion

The requirement of the length of the training data would be too large and the
SPFDBB could not respond to the change of room acoustics when a large value of L
is chosen. Therefore, the method called FDABB is proposed in Chapter 4 to further
enhance SPFDBB through the index CBVI to allowing the frame number to be
adapted on-line. In other words, CBVI defined in Eq. (3-18) is the basis for adjusting
the frame number. Figure 4-5 summarizes the proposed FDABB algorithm using H.,

adaptation criterion.
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Figure 4-5 FDABB using H,, adaptation criterion

4.3.3 Computational Effort Analysis

This section analyzes the computational efforts of the time-domain and the two
frequency-domain adaptive beamformers using “H,, adaptation criterion from two
different phases: the coefficients adaptation phase and the lower beamformer phase. In
the coefficients adaptation phase, the:désired-speaker is silent and the coefficients are
updated with the iteration equations from.(4-16) to (4-19) for the time-domain adaptive
beamformer, with Eqs. (4-24) to (4-27) for SPFDBB, and with Egs. (4-24) to (4-27) and
(3-18) for FDABB. The computational efforts are calculated according to a one-second
length input datum for each phase, and are shown in Table 4-1. The meanings of the
parameters are defined in Section 3.4.2. Notably, the computational effort of a matrix

inversion was given in [98]. On the other hand, the eigenvalue must be found to

determine the value of y, or y, . However, the computation of eigenvalues is
complex and the computational effort varies with the precision required. To ensure a
steady performance, a general method based on Householder method and the shifted

QR algorithm is considered; the computational effort associated with finding the

eigenvalues is given in [99-100].
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Table 4-1 Real Multiplication Requirement in One Second Input Data

Multiplication Requirement

Adaptation Phase Lower Beamformer Phase
Time-domain 2p2 R
(2M3P3+9M P +13MP+10jfs MfsP+I[fS B, +1](Bl+2)log2(Bl+2)
beamformer 4 s 2
FDABB ((L+1)3+5M3+16M(L+1)2+4M2(L+%)+4M(L+i)+7)l[%+l)(%+l}/L 4MI(fSB_Bi +IJ(B'+1]
SPFDBB [(L+1)3+5M3 +16M(L+1)° +4|v|2(|_+‘51r)+4|v|(|_+‘11r)+7j|(fSE;Bi +1J(BZ'+1)/L 4M|(fSE;Bi +1j(2'+1]

4.4. Time-domain Performance Indexes

In this section, six time-domain performance indexes are defined. The first two
parameters, SDR and NSR, instead of SNR'aredefined to evaluate the performances of
the NLMS and H, adaptation’criterions..This is".because a lower SNR may not
correspond to a higher ASR rate and these two indexes facilitate to directly separate

two main issues: the inverse issue -and noise suppression issue. SDR is defined as:

r(n)—s" ()g(m)
g v

SDR(n)=201o i (4-29)
— > Ir(n
v le (n)
and NSR is defined as
1§ (Myn(n)
NSR(n) =201og v (4-30)

1 \
WHZ:; 1 |ni(n)|
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where V denotes the length of signals in both equations. SDR represents the degree of
source distortion that caused by channel effect and noises. Moreover, NSR is the degree

of noise reduction.

To observe different characteristics between the NLMS and H. adaptation
criterion, four performance indexes named filtered output error e(n), reference
signal estimation error €.(n), filter coefficient estimation error ratio, and filtered
output error ratio are defined in Egs. (4-31), (4-32), (4-33), and (4-34) individually.

e;(n)=x"(n)g—x" (N)g(n) (4-31)
e.(n)=r(n)—x" (nN)g(n) (4-32)

Zli(i)lz

. (4-33)
#5'la=a (O + G

> lesof

=l (4-34)

3 lg Q) +Z|e(i)|2

where ¢q(n) is the coefficient vector estimation error defined in Eq. (4-3).

4.5. Summary

In this chapter, the H,, adaptation criterion is investigated to enhance the robustness
to the modeling error caused by an inadequate window size to capture the acoustic
channel dynamics. This chapter utilizes the H. adaptation criterion to replace the
NLMS in the reference-signal-based time-domain adaptive beamformer. However,

due to the intensive computational effort requirement in the time domain, SPFDBB
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and FDABB, using H., adaptation criterion are proposed to significantly reduce the
computational effort which is analyzes in Section 4.3.3. As shown in Chapter 6, H,
adaptation criterion outperforms the NLMS with the same filter order in terms of SDR,

NSR and ASR results.
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Chapter 5

Reference-signal-based Speaker’s
Location Detection

5.1 Introduction

A speech enhancement system using mictophone array usually requires a speaker’s
location estimation capability. With:the.information of the desired speaker’s location,
the speech enhancement system can suppress the interference signals and noises from
the other locations. For example, in vehicle applications, a driver may wish to exert a
particular authority in manipulating the in-car electronic systems through spoken
language. Consequently, a better receiving beam using a microphone array can be
formed to suppress the environmental noises and enhance the driver’s speech signal if

the driver’s location is known.

In a highly reflective or scattering environment, conventional delay estimation
methods such as GCC-based (TDOA-based) algorithms [21-23] or previous works
[24-25] do not yield satisfactory results. Although Brandstein et al. [101] proposed

Tukey’s Biweight to redefine the weighting function to deal with the reflection effect; it
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is not suitable for a noisy environment. To overcome this limitation, Nikias et al. [102]
adopted the alpha-stable distribution, instead of a single Gaussian model, to model
ambient noise and to obtain a robust speaker’s location detection in advance. In recent
years, several works have introduced probability-based methods to eliminate the
measurement errors caused by uncertainties, such as those associated with
reverberation or low energy segments. Histogram-based TDOA estimators such as time
histograms [20] and weighted time-frequency histograms [26-27] have been proposed
to reduce direction-of-arrival root-mean square errors. The algorithm in [27] performs
well especially under low SNR conditions. Moreover, Potamitis et al. [103] proposed
the probabilistic data association (PDA) technique with the interacting multiple model
(IMM) estimator to conquer these measurement errors. Ward et al. [7] developed a
particle filter beamforming (steeredbeamformer-based location approach) in which the
weights and particles can be-updated using a. likelihood function to solve the
reverberation problem. Although these statistical based methods [7], [20], [26-27] and
[103] can improve the estimation accuracy. further, they cannot distinguish from the
locations using a single linear microphone array under a totally non-line-of-sight

condition which is common in vehicular environments.

Another approach (spectral-estimation-based location approach), proposed by Balan
et al. [8], explores the eigenstructure of the correlation matrix of the microphone array
by separating speech signals and noise signals into two orthogonal subspaces. The
DOA is then estimated by projecting the steering vectors onto the noise subspace.
MUSIC [9-10] combined with spatial smoothing [11] and [104] is one of the most
popular methods for eliminating the coherence problem. However, as the experiment in

Chapter 6 indicates, its robustness is still poor in a vehicular environment when the
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SNR is low. Furthermore, the near-field effect [105-107] should also be considered in

applications in real environments.

In some environments, especially in vehicular environments, the line-of-sight
condition may not be available because, for example, barriers may exist between the
speaker and the microphone array. Therefore, when a single linear array is employed,
the aforementioned methods cannot distinguish speakers under non-line-of-sight
conditions. Hence, multiple microphone arrays must be considered [108-109]. Further,
the microphone mismatch problem often arises when such methods as
steered-beamformer-based, GCC-based or spectral-estimation-based algorithms are
used since these methods require the microphones to be calibrated in advance. Several
sound source localization works [110-111] also mentioned the importance of
calibration and the influence of.microphone-mismatch problem. However, accurate
calibration is not easy to obtain-since the characteristics of microphones vary from the

sound source directions.

The relationship between a sound source and a receiver (microphone) in a
complicated enclosure is almost impossible to characterize with a finite-length data in
real-time applications (such as in frame-based calculations). According to the
investigation of room acoustics [112], the number of eigen-frequencies with an upper

limit of f,/2 kHz can be obtained by the following equation:

4z [ f, ?
TB(;) (5-1)

where f, denotes the sampling frequency, v represents the sound velocity

( v~340m/s ) and B is the geometrical volume. This equation indicates that the
number of poles is too high when the frequency is high, and that the transient response
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occurs in almost any processing duration when the input signal is a speech signal. For
example, the number of poles is about 96435 when the sampling frequency is 8 kHz and
the volume is 14.1385 m’. Hence, the non-stationary characteristics of speech signals
make the phase differences between the signals received by two elements of a single
linear microphone array from a fixed sound source vary among data sets. Moreover, the
stochastic nature of the phase difference is more prominent when the sound source is
moving slightly and environmental noises are present. Consequently, the proposed
method in this dissertation does not explicitly utilize the information of direct path from
sound source to microphones to detect speaker’s location, nor attempt to suppress the
effect of reverberations, interference signals, and noises. Instead, this proposed method
utilizes the sound field features obtained when the speaker is at different location in an
indoor environment. In other words, this dissertation proposes the use of the
distributions of phase differences, rather than their.actual values, to locate the speaker,
because the phase difference- distributions—vary ~among locations and can be
distinguished by pattern matching metheds. Previous researches [113-114] also showed
that common acoustic measures vary significantly with small spatial displacements of

the sound source or the microphone.

The experimental results in Chapter 6 indicate that the GMM [115] is very suitable
for modeling these distributions. Furthermore, the model training uses the distributions
of phase differences among microphones as a location-dependent but content and
speaker-independent sound field feature. In this case, the geometry of the microphone
array should be considered to cope with the aliasing problem and maximize the phase
difference of each frequency band to detect the speaker’s location accurately.
Consequently, the microphone array can be decoupled into several pairs with various

distances between the microphones to deal with different frequency bands. The location
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detector integrates the overall probability information from different frequency bands

to detect the speaker’s location.

The reminder of this chapter is organized as follows. The next section introduces the
overall system architecture and data flow. Section 5.3 presents the design of the
location model and the model parameters estimation approach. Section 5.4 presents the
proposed reference-signal-based single speaker’s location detection criterion. Section
5.5 discusses an approach to find each location’s testing sequence length and threshold.
Section 5.6 describes the proposed reference-signal-based multiple speakers’ locations
detection criterion using the information of testing sequence length and threshold of

each location. Conclusions are made in Section 5.7.

5.2 System Architecture

5.2.1  System Architecture

Figure 5-1 illustrates the overall system architecture. A voice activity detector
divides the system into two stages, the silent stage and the speech stage. Before the
proposed system is training online, a set of pre-recorded speech signals can be required
via the description in Chapter 2 to obtain a priori information between speakers and the
microphone array. The pre-recorded speech database can represent the acoustical
characteristic of each location. After collecting the pre-recorded speech signals, the
system switches automatically between the silent and speech stages according to the

VAD result.

The first stage is called the silent stage in which speakers are silent. In this stage,

environmental noises without speech are recorded online. The system combines the
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online recorded environmental noise, N, (®),---,N,, (@), with the pre-recorded speech
database, S,(w),:-,S,, (®), to construct training signals, X (@), -, X v (@) . After that,

the GM location models are derived via the location model training procedure
described in Section 5.3 or 5.5. Since the environmental noise alters, the GM location
models that contain the characteristics of environmental noise are updated to ensure the
detection accuracy and robustness in this stage. The second stage is the speech stage, in
which the parameters of GM location models derived from the first stage are duplicated

into the location detector to detect the speaker’s location.

Speech Stage
X, (@) | _
X, (@) > Detection
i Result
—* Speech Detected Location Detector >
Xy (@)’

VAD=1 ul(@) >
&
= Digitalized
2 Data Voice Activity
E_ Detector - * Model Parameters
5 Silent Stage
=

N, (@) o X ((ul
VAD=0 N.@) § oy Xa(op]
. Non-Speech ; ; Location Model
Detected 4 Training Procedure
Nu (@) » ()
S@]s, @] TSM (@)
Pre-recorded
Speech Database

Figure 5-1 Proposed reference-signal-based speaker’s location detection system

architecture

5.2.2 Frequency Band Divisions based on a Uniform Linear

Microphone Array

The phase difference of the received signal becomes more significant as the distance
between microphones increases. However, the aliasing problem occurs when this

distance exceeds half of the minimum wavelength of the received signal [116]. The
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distance between pairs of microphones should be chosen based on the selected
frequency band to obtain clear phase difference data to enhance the accuracy of

location detection and prevent aliasing.

Figure 5-2 illustrates a uniform microphone array with M microphones and the
distance of d . According to the geometry, the training frequency range is divided into

(M —1) bands listed in Table 5-1, where m denotes the mth microphone; b
represents the band number, v denotes the sound velocity, and J; is the number of

microphone pairs in the band of b . The phase differences measured by the microphone
pairs at each frequency component, @ (belonging to a specific band, b) are utilized

to generate a GM location model with the dimension of J, .

M

D)

(M-1)d

Figure 5-2 Microphone array geometry

Table 5-1 Relationship of Frequency Bands to the Microphone Pairs

Frequency Band Microphone Pairs The Number of Microphone Pair ~ The Range of Frequency Band
Band 1 (b=1) (m,m+M —1)with m=1 Jp=13J,=1 0<w<—"

2(M -1d
Band2 (b=2) (m,m+M —2)with 1<m<2 J,=J,=2 v v

<w<
2(M = 1d 2(M —2)d

Band M -1 (b=M -1) (m,m+1) with 1<m<M -1 J,=Jy,=M-1 Y ocw<

5.3 Location Model Description and Parameters Estimation
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5.3.1 GM Location Model Description

If the GM location model at location | is represented by the parameter
M) = {M@,,1),--,M@,M = 1,1)}, then a group of L GM location models can be
represented by the parameters, {A(1),---,A(L)}. A Gaussian mixture density in the band
b at location | can be denoted as a weighted sum of N Gaussian component

densities:

N

Gb(PX (,b,1)] k(a),b,l))= zpi (,b,1)g, (Px (a),b,l)) (5-2)

i=1

where P, (a),b,l):[P>2 (o,1) - P, (co,\]b,l)]T is a J, -dimensional training phase

difference vector derived from the training signals, )Zl(a)),- -, X u(@). pi (a),b,l) is

the ith mixture weight and each component of the training phase difference vector

can be obtained as follows:

P, (w,m,1)= phase()? oMb (a),b,l))— phase()zm(a),b,l)) with 1<m<b (5-3)

where X, (w,b,l) denotes constructed training signal of mth microphone in the band

b at location |. The GM location model parameter in the band b at location
I,k(a), b,I), is constructed by the mean matrix, covariance matrices and mixture

weights vector from N Gaussian component densities:
Mao,b,1) = {p(@,b,1),n(w,b,1), X(w,b,1)} (5-4)

where

plo.b,)=[p,(@,b,1) -+ p,(@,b,1)] denotes the mixture weights vector in the
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band b atlocation |.

n(w,b,1)=[n,(@,b,1) - py(ob,1)] denotes the mean matrix in the band b at
location 1.
X(w,b,1)=[Z,(@,b,1) - Z(@,b,1)] denotes the covariance matrix in the band

b atlocation I.

The ith corresponding vector and matrix of the parameters defined above are

m(@bl)=[g(@Ll) - (@3, )] and

oX(@l,1) 0 0
X (@bl)=| 0 0
0 0 o(@J,.))

gi(P)2 (a),b,l)) denotes the ith Gaussian .component density in the band b at

location |:

exp(— ; [P, (0.0.1)~ g, (0.0, =, (@.b,1)" [P, (@.b,1) - , (. b,.)]j

g, (P (wb.1))= (27) [z (@b.l)

(3-5)

Notably, the mixture weight must satisfy the constraint that

> pil@bl)=1 (5-6)

N
i=1

The covariance matrix, X, (a), b,l), is selected as a diagonal matrix. Although the

phase differences of the microphone pairs may not be statistically independent of each
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other, GMMs with diagonal covariance matrices have been observed to be capable of

modeling the correlations within the data by increasing mixture number [117].

5.3.2  Parameters Estimation via EM Algorithm

The purpose is to determine the L GM location models, {A(1),---,A(L)}, from the
measured phase differences between each microphone pair in band b . Several
techniques are available for estimating A(l), of which the most popular is the EM
algorithm [115] that estimates the parameters by using an iterative scheme to maximum
the log-likelihood function. The EM algorithm can guarantee a monotonic increase in
the model’s log-likelihood value, and its iteration equations corresponding to frequency

band selection can be arranged as:

Expectation step:

@b, (P, (b))

G, i 12, (@b, M. b1))=—
;pi (.0.1)g, (P, (@.0.1)

(5-7)

where G, (i | P, ©(@,0,1), M, D, )) is a  posteriori  probability  and

P, (a),b,l): {PX(I)(c(),b,I),n-,P)Z (T)(a),b,l)} is a sequence of T input phase difference

vectors.

Maximization step:

(1). Estimate the mixture weights:

p.(,b,1)= ZG( P,V (@.b,1).h(w.b,1)) (5-8)
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(i1). Estimate the mean vector:

(bt} ZCell P @D b )P, (b))
o > G,li1 P,V (@b, A (@b.]))

(5-9)

(ii1). Estimate the variances:

Telilp.® 020
S TINUNTP
Zt:le (I |PX (CO, b,l),)»(a),b,l))

where i:{l,---,N} and j={1,---,Jb}.

However, the EM algorithm only:guarantees to find a local maximum log-likelihood

model. A different choice of initialmodel A4(@,b;1)-leads to various local maximum

models. This work considered two:initialization methods to find out the initial model.
K-means [118] is by far the most widely-used method. Elkan [119] proposed an
accelerated K-means algorithm which utilizes the triangle inequality to decrease
significantly the computational effort. Charles’ method is also suitable for finding a
good initial model to lower the iteration number of the EM algorithm. The first method
utilizes the accelerated K-means clustering method. The second method separates
phase difference range, {— 72,77}, into N segments to obtain a fixed initial mean

model since the phase difference range is small enough. Consequently, the initial mean

model is {— T E-r E—-moee 72'} . The location detection performances of the

two initial approaches have slightly different performance and no one is always the

best.
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Location Model Training Procedure
. Phase Difference Extraction Location models Estimation
X, (o
- (1 (2)
N {PX (CU, b,l) P){ (CO, b’l) h } Location 1
~ and 1
X, (w) MoLll) - MoM -1}
) 2
Band 2 {PX ' (@, b,2) PX ) (@, b,2) N } Location 2
. Mald) - MoM-12)
o [ ] [
° L[]
(N 2)
{PX (C(),b, L) PX (a)’ b’ L) B } Location L
A Band (M-1)
Xul@) Moll) - Mo,M-1L)}

Figure 5-3  Location model training procedure with the total location number L

5.4 Single Speaker’s Location Detection Criterion

The location is determined by finding thé: GM location model which has the

maximum posteriori probabilityfor a given observation sequences:

. M-I
I = argmax Zlog[Gb (1,0, 1)1 Py (@, b))]

G, (P (@:b)[ M(@.b.1)p(1(@.b.1))

TR Z toe p(Py («.b))

(5-11)

where P, (o, b)={ P, (w,b),, P, (Q)(a),b)} is a phase difference testing sequence

derived from X, (w),--,X,,(®), and Q denotes the length of the testing sequence. If
the probability densities at all locations are equally likely, then p(k(a),b, I )) could be
chosen as 1/L. The probability p(P, (e,b)) is the same for all location models and

the detection rule can be rewritten as:

M -1

Q
— (a)
| =arg gmax 2 qg_l logG, (P (o,b)| (@, b, |)) (5-12)
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5.5 Testing Sequence Lengths and Thresholds Estimation

First, the work in Section 5.4 assumed that the speech signals are emitted from one of
the previously modeled locations. Consequently, an unmodeled speech signal which is
not emitted from one of the modeled locations, such as the radio broadcasting from the
in-car audio system and the speaker’s voices from unmodeled locations, degrades the
performance. The unmodeled speech signal could trigger the VAD, resulting in an
incorrect detection of the speaker location. Therefore, a method that can prevent the
detection errors without modifying the VAD approach is necessary. Second, the work in
Section 5.4 cannot detect multiple speakers’ locations. If the speech signals from
various modeled locations are mixed together, then the derived phase difference
distribution becomes an unmodeled distribution;deading to a detection error. Figure 5-4
shows the example of the phase difference distribution from two simultaneously
speaking passengers at locations No.| 1.and 2 which is not similar to the one from

location No. 1 or 2, and thus may‘lead to a detection error.

80 : 80
0 0
& &
50 50
5 5
Bao Fao
£ £
30 30

10 10
o awﬂmm o Lm |ILI ‘—II-J-IJ-!

1 2 3 “+ ) 2 -1 4

[}
Phase Dufference (rad)

(a). Location No. 1 (frequency = 0.9375 kHz)  (b). Location No. 2 (frequency = 0.9375 kHz)
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Figure 5-4 The histograms of phase differences at locations No. 1, 2, and | and 2

between the third and the sixth microphones at a frequency of 0.9375 kHz.

Moreover, how to find a suitable length of testing sequence that could significantly
affect the location detection performance is not'discussed in Section 5.4. This section
proposes a new threshold-based location detection approach that utilizes the training
signals and the trained GM location model-parametersto determine the length of testing
sequence and then obtain a threshold of the a posteriori probability for each location to

resolve the two issues mentioned above.

Since conversational speech contains many short pauses, Potamitis et al. [103]
locates multiple speakers by detecting the direction of individual speaker when the
frame is originated from a single speaker. For example, Fig. 5-5 shows a two people
conversation condition. Based on this concept, this dissertation proposes a
threshold-based location detection approach to determine whether a speech frame
originates from a single speaker or from simultaneously active speakers. This approach
identifies the frames in which probably only one speaker is talking, and returns a valid
location detection result. Moreover, because each location has specific acoustical

characteristics, the threshold at each location can be used to determine whether it
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represents the radio broadcasting or speech signals coming from unmodeled or

modeled locations.

Sl Mixed . Mixed

Speaker 2

N
B

Figure 5-5 A two people conversation condition
The lengths of testing sequences and thresholds can be derived using the estimated
parameters of the L GM location models. The most suitable length of testing
sequences at location | is denoted,as Q(I), the threshold at location | is denoted as
Thd (I ), and the possible searching range of the length of the testing sequence is set to

[QLO,QUPJ. T is the total length: of jthe=training phase difference sequence.

P)Z’Q(a),b,l,t)={PA(t)(a),b,l),-~-,Px(t+Q_1)(a),b,|)} is a sequence of Q training phase

X

difference vectors, where 1<t<T—-Q+1. Q(1) and Thd(l) can be obtained using

the following criterions:

A

Q(l)=arg_max {C(Q)} (5-13)

QLo=Q=Qy,

where

C(Q)=e|Loli(1).P, (1).Q)-Up(x(1).P, (1).Q)]
+ ﬁg |[Lou(1). P, (1.Q)-Up((i). B, (1).Q)]+ rLola(1). P, (1).Q)

izl
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with a+f+y =1 (5-14)

and

Thd (1) = Lola(1), P, (1), §(1))/S() (5-15)
. k ifk>0
where a, [, y are weights, and 1(k) = {_ o it k<0

Up()»(l ),P)2 (I ),Q) and Lo(k(l ),P)Z (I),Q) denote the probability upper bound and

lower bound when the length of the training phase difference sequence is Q . They are

derived from the following equations:

Up(i(1).P, (1.Q)= max ':Z_:llog[Gb(k(a),b,l))| P, (@b,].0) (5-16)
Lo, (11.Q)= min “:z'llog[eb(x(w,b,l DIP,  (@b1.0) (5-17)

where

G, [Py o (@.b,1,1) h(@,b,1)Jp(R(e,b,1))
p(P, . (@.b,1.t))

log[Gb ()»(a),b,l)| P, 0 (a),b,l,t)) =log

The term p(A(@,b,1)) could be eliminated because p(A(w,b,1)) is independent to

t and the probability p(P)2 Q(a),b,l,t)) is the same for all t. Therefore, Egs. (5-16)

and (5-17) can be rewritten as:

M-1Q-1

Up(2(1),P, (1),Q)= max zQz_long (P, (a,b,1) | 1(e.b,1)) (5-18)

vt =l

o
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M-1Q-1

Lo((1).P, (1.Q)=min ¥ ¥ logG, (P, " (a.b,1) | 1(e.b,1)) (5-19)

vt =

o

The first term of Eq. (5-14) represents the negative maximum probability variation of
the trained model when the length of the training phase difference sequence is Q. As
the value of this term increases, the corresponding selection of Q yields a more robust
result under the trained GM location model. The second term of Eq. (5-14) is the sum of
the probability differences of the location | versus other locations and a larger value
means the corresponding selection of Q has a higher discrimination level between the
location | and the other trained GM locations. Finally, a high discrimination level
between the location | and other unmodeled locations can be achieved if the third term
of Eq. (5-14) is large. Figure 5-6 shows the GMlocation model training procedure with

the total location number L .

Location Model Training Procedure

. Phase Difference Extraction Location Models Estimation Thresholds and Testing Sequence
X 1 (a) > { o o } Lengths Estimation
. Band 1 PX (a)’b’l) PX ([0, b’l) Location 1 > Location 1
X,(0) foll) - MoM-1D} {00) 1hd (1)f
(O] (2)
Band 2 {P' (@,b.2) PX (@b2) - } Location 2 > Location 2
. Mald) - MaM-12) [6@)Thd2)}
L] . 0
. .
(0] (2)
N Band (M-1) {PX (a)’ b’ L) PX (w’ b’ L) N } Location L > Location L
Xy(@)| Meoll) -~ MoM-LL)} [a(L) Tha (L)}

Figure 5-6 Location model training procedure with testing sequence length and

thresholds estimation

5.6 Multiple Speakers’ Locations Detection Criterion

The location is detected as,
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n 1 M -1

| =argmax - > log[G, (k(e2,b,1)| P, (e,b,1))]

= argmax ZIOg G (PX (a),b, ! )’ k(a),b, ! ))p(k(a),b, | ))

e Q()p(Py (w.b.1))

M-1
1fThd(argmax ) Zlog a)bl)]P (w,b,1) ]
)b

M-1

(Ma,b,1)| P, (0,b,1))]

b:I

(5-20)
where P, (@,b,1)= {P D(@,b), -, P, (Q('»(a),b)} is a testing sequence derived from
X, (@), -, X}, (w) . If the probability densities at all locations are equally likely, then

p(Ma@,b,1)) could be chosen as 1/L. The probability p(P, (w,b,l)) is the same for

all location models and then the detection rule can be rewritten as

1Q0)

| = arg maxL 221046 (P @ (@,b) | Ma,b; I))]
1<'<"Q()b 1g=1
if Thd| arg maxL ZZIOAG (P @ (@, b)| M b, I))]j < max* ZZIOAG ( @ (w,b) | M, I))]
1<I<"Q(l)b 1g=1 1<I<I‘Q b=1g=1
(5-21)
M-1() A
If the value of max ZZlog[Gb (Px(q)(a),b)| k(a),b,l))] Q(1) is not larger than the
b=1 g=1

corresponding threshold, then the frames may contain speech components that come

simultaneously from multiple modeled locations or from unmodeled locations.

5.7 Summary

This chapter proposes reference-signal-based single speaker’s location and multiple
speakers’ locations detection methods. The GM location models which are constructed
by the location dependent features, phase differences. The proposed methods can

overcome practical issues, such as the microphone mismatch, near-field effect, local
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scattering, and coherence problems. The proposed methods are found out to work even
under non-line-of-sight conditions and when speakers are in the same direction but

different distances from the microphone array.

Additionally, the proposed threshold adaptation approach computes a suitable length
of testing sequence and a threshold for each modeled location. Experimental results in
Chapter 6 show that the speaker’s location detection approach with these two adapted
parameters performs well on detecting multiple speakers’ locations and reducing the

average error rates caused by the unmodeled locations at various SNRs.
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Chapter 6

Experimental Results

This chapter provides simulation and practical environmental results to assess the
capability of the reference-signal-based adaptive beamformers and speaker’s location
detection approaches proposed in this dissertation. In-these experiments, the sampling
frequency is set to 8 kHz and the amplified-microphone signals are digitized by 16-bit
AD converters. The processed frame window for STFT contained 256 zero padding
samples and 32ms speech signals, totaling 512 samples. Figure 6-1 illustrates the
processed frame window and the overlapping condition. The pre-recorded speech
signals are acquired by locating a loudspeaker on the speech location and the reference

signal is obtained from the original speech source that emitted from the loudspeaker.

Processed frame
512 Samples

Input Data Zero padding

256 Samples 256 Samples
<. Input Data Zero padding
256 Samples 256 Samples

Shift 10ms>
80 samples

Figure 6-1 Processed frame window and overlapping condition
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The remainder of this chapter is organized as follows. Section 6.1 utilizes the ASR
rates and the two frequency-domain performance indexes introduced in Chapter 3 to
show the advantages of the proposed reference-signal-based frequency-domain
beamformer, SPFDBB and FDABB. Section 6.2 compares the robustness of the
NLMS and H,, adaptation criterions in the time domain through the simulation results.
Section 6.2 also utilizes the ASR rates in both vehicular and indoor environments to
prove the advantages of H,, adaptation criterion. The experimental results containing
the location detection performance in single and multiple speakers’ cases, and the cases
of radio broadcasting and speech from unmodeled locations are discussed in Section

6.3. Finally, conclusions are made in Section 6.4

6.1 Adaptive Beamformers UsingNLMS Adaptation Criterion

6.1.1 Simulation Results

In this simulation, a speech source and two noises, a white noise and a music signal
are considered and the linear array contains six microphones. The speech source
comes from 0 relative to the linear array, and the white noise and the music signal
come from -30" and 60" respectively. Figure 6-2 illustrates the arrangement of the
microphone array and the sources. The value of y is 10 and the step size A of
0.4 is selected. Two simulations are shown: the first one is performed to compare the
performance among different parameters, and the second one is performed to observe
the adaptation performance of FDABB in a sudden change of the noise channel,
which the noise moves from -30° to -60°. Moreover, the two simulations are executed
in three environments specified by different channel response durations: 1024, 2048,

and 3072 taps.

74



Uniform Microphone Array
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Figure 6-2 Arrangement of microphone array, noies and speech source in simulation

experiments

In the first simulation, the locations of the speech source and the noises are fixed in
the overall training data length. The soft penalty parameter x has three options, which
are 0, 2, and 4. The frame number L _in a.block varies from 10 to 20, and 20 to 30
corresponding to different soft penalty parametérs and channel response durations. Two
frequency-domain performanceé indexes, NSR and SDR, of the most significant
frequency, 410Hz, are shown in"Tables:6-1;6-2, and 6-3. The values shown in Tables
6-1, 6-2, and 6-3 are computed by averaging the last 120 frames. The notation ADL
indicates that the value of L is adjusted by the CBVI with a lower threshold of 0.02, an
upper threshold of 1.2, and the initial frame number 10. In other words, if the CBVI is
smaller than 0.02, the value of L will be increased. On the contrary, if the CBVI is
larger than 1.2, the value of L will be reset to the initial frame number. Additionally,
Table 6-1 summarizes the related parameters of FDABB. Figure 6-3 depicts the NSR
and the SDR from C6 to C9 with channel response duration 1024 shown in Table 6-2.
Figure 6-3 shows that the measurement index in the condition with L =1 varies
heavily than the one in the conditions with L =10, L=20, and L =30; that is, the
performance of the NSR and the SDR cannot be guaranteed even when the algorithm is

run for a long time. From Tables 6-1 to 6-3, the SDR and the NSR become worse as the
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channel response duration grows, but the proposed beamformer with a larger value of

L would have smaller performance decay and have better convergence performance.

The SDRs of SPFDBB with L =10, L=20, and L=30 in the condition of x =2

has decreased from about 1.84dB to 4.52dB as compared with those in the conditions

of u=0. Although the NSR increases at the same time as the SDR fell, the SDR

decreasing rate is more important for ASR applications when the NSR is very low,

especially when a larger value of L is chosen.

Table 6-1 The First Simulation Experiment: Soft Penalty Parameter is 0

Channel response Channel response Channel response
duration 1024 duration 2048 duration 3072
Condition L NSR(dB) SDR(dB) NSR(dB) SDR(dB) NSR(dB) SDR(dB)
Cl L=1 -73.88 -46.67 -60.92 -42.97 -57.55 -16.97
C2 L=10 -102.82 -47.98 -91.53 -46.33 -90.60 -45.37
C3 L=20 -111.00 -48:85 -98.45 -47.28 -97.12 -46.08
C4 L=30 -122.92 =50.39 ~112.57 -49.60 -105.32 -48.69
C5 ADL -122.40 -50.10 -113.42 -49.87 -106.32 -48.50

Table 6-2 The First Simulation Experiment: Soft Penalty Parameter is 2

Channel response Channel response Channel response
duration 1024 duration 2048 duration 3072
Condition L NSR(dB) SDR(dB) NSR(dB) SDR(dB) NSR(dB) SDR(dB)
C6 L=1 -65.03 -44.20 -45.77 -42.35 -46.96 -14.50
Cc7 L=10 -97.97 -49.82 -89.67 -49.80 -92.87 -47.59
C8 L=20 -110.32 -51.16 -100.32 -50.62 -96.25 -48.96
C9 L=30 -120.92 -52.80 -109.27 -52.24 -105.24 -52.13
C10 ADL -125.34 -52.31 -110.27 -52.21 -105.07 -52.11

Table 6-3 The First Simulation Experiment: Soft Penalty Parameter is 4

Channel response Channel response Channel response
duration 1024 duration 2048 duration 3072
Condition L NSR(dB) SDR(dB) NSR(dB) SDR(dB) NSR(dB) SDR(dB)

Cl1 L=1 -46.08 -29.40 -42.91 -27.39 -37.27 3.06
C12 L=10 -93.07 -50.06 -85.35 -49.85 -91.03 -48.08
CI13 L=20 -109.65 -52.54 -95.39 -52.01 -96.00 -50.37
Cl4 L=30 -120.56 -54.02 -102.04 -53.87 -105.18 -53.21
Cl15 ADL -121.71 -53.97 -102.62 -53.92 -105.59 -53.59
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Table 6-4 Parameters of the FDABB

Length of STFT 512 Samples
Length of Input data in a frame 256 Samples
Shift of STFT 80 Samples
Window function Hamming
Initial block value 10
Block value increment 10
Threshold of cBviI 0.02 and 1.2
20
L
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Figure 6-3 NSR and SDR form C6 to C9 with channel response duration 1024. The
dash-dot line represents C6 (L =1), the dot line represents C7 (L =10), the straight
line represents C8 (L =20 ), and the dash line represents C9 (L =30)

In the first simulation, FDABB adjusts the frame number twice from 10 to 30; first

at frame 261 and then at frame 621. Figure 6-4 illustrates the adaptation of CBVI.
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Figure 6-5 shows the NSR and the SDR from C7 to C10 with channel response
duration 1024 shown in Table 6-2. Since the initial frame number of FDABB is 10,
the SDR and the NSR of FDABB are equivalent to the dash line in the first 261
samples. Obviously, the FDABB could not only perform well in a shorter adaptation
process but could also obtain a good convergence result. Since SPFDBB adopts the
soft penalty, it emphasize on the SDR improvement than the NSR. Consequently, the
SDR of L=30 is better than the SDR of L =10 after frame 300 and the

convergence period of the SDR is shorter than that of the NSR.
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Figure 6-4 CBVI in the first simulation experiment
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Figure 6-5 NSR and SDR form C7 to C10 with channel response duration 1024. The
dash-dot line represents C10 ( ADL ), the dot line represents C7 (L =10), the straight
line represents C8 (L =20 ), and the dash line represents C9 (L =30)

In the second simulation, the location of white noise varies from -30° to -60° during

the training data sequence. As shown in the Figs. 6-6 and 6-7, CBVI and the NSR both

exhibit a big jump at frame 601 in response to the noise channel variation. Since the

impulse response of the speech source is fixed;the SDR has a little variation. After this

sudden change is detected, FDABB resets the value of L to the initial frame number

to perform advanced adaptation of the noise channel and changes the frame number at

frame 771 and frame 851 to maintain convergence.
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Figure 6-6 CBVI in the second simulation experiment
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Figure 6-7 NSR and SDR in the second simulation experiment. The dash-dot line
represents C10 ( ADL ), the dot line represents C7 (L =10), the straight line
represents C8 (L =20), and the dash line represents C9 (L =30)

Table 6-5 shows the number of multiplications ratios of FDABB and SPFDBB to the

reference-signal-based time-domain adaptive beamformer. Significant saving of

computing power can be achieved as these data indicated.

Table 6-5 Real Multiplication Requirement Ratio

Multiplication Requirement Ratio

Adaptation Phase =~ Lower Beamformer Phase
FDABB with 4 =2 in the first simulation case 1:8.57 1:20.72
FDABB with ;=2 in the second simulation case 1:8.48 1:20.72
SPFDBB with | =10 1:10.69 1:20.72
SPFDBB with | =20 1:11.04 1:20.72
SPFDBB with | =30 1:11.17 1:20.72
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6.1.2 Indoor Environment

A uniform, linear array using 6 microphones is constructed for this experiment with
microphones spaced 0.07 m apart. The array is mounted on an easel which is one meter
in height and two meters to the nearest wall. The environmentisa20 mx ISmx4m
room full of office furniture to simulate a practical environment and its reverberation
time at 1000 Hz is around 0.52 second. The interference signals in this experiment are
mutually uncorrelated white noise. The speech signal comes from 0° or 30° with a

distance of 1.5 m and the configuration is shown as Fig. 6-8.

Uniform Microphone Array

PUPPRTTIT I — . 0 oM L

P4 -~ -

.

.....

.o ~.

Figure 6-8 Arrangement of microphone array, noises and speech source in a noisy

environment

This experiment utilizes the ASR rates to measure the performances of FDABB,
SPFDBB, the reference-signal-based time-domain adaptive beamformer, DS
beamformer, GSC, robust adaptive beamformer, and minimum variance beamformer
(MV) under a fixed speech source and different number of interference signals. To
measure the ASR rate, 500 pairs of the vehicle identification numbers pronounced in
Chinese are used. An HTK software package [120] is adopted as a speech recognizer.

Here, the FDABB parameters are the same as those in Table 6-4 except that the soft
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penalty is set at a constant value 2. The value of » is 107°. Table 6-6 shows the ASR

system parameters. The filter tap of the reference-signal-based time-domain adaptive

beamformer is chosen as 2560.

Table 6-6 Parameters of the ASR

Recognition kernel HTK ver.3.0

Model HMM

Feature Vector 12™ order MFCC + 12" order AMFCC

Training data Set 1001 clean pairs of the vehicle identification numbers
Recognition Task 500 pairs of the vehicle identification numbers

Figures 6-9 and 6-10 present the ASR rates of two different speech sources and the
notations used in the two figures are shown in Table 6-7. Figure 6-9 shows that the ASR
rate decreases as the number of intérference source increases (see Table 6-7). Because
DS beamformer, GSC, robust adaptive beamformer, and MV beamformer do not take
the calibration problem into considerations-theimproved ASR rates of speech source in
30° are lower than in 0°. For example, these traditional beamformers perform better in
CI1-C3 than in C4-C6. On the other hand, the proposed methods, SPFDBB with
L=20 and L=30, and FDABB with u=2, and the reference-signal-based
time-domain adaptive beamformer shown in Fig. 6-10 can overcome this effect. For
example, the improved ASR rate of SPFDBB with L =20 in C4, 32.23%, is better
than that in C1, 29.57%. These experimental results in Figs. 6-9 and 6-10 show that the
value of L could affect the recognition rate. In this experiment, the FDABB with the
4 =2 has the best performance in all conditions and the SPFDBB with L =30

performs better than the reference-signal-based time-domain adaptive beamformer.
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Figure 6-9 ASR rates of different kinds of beamformer outputs versus different

experiment conditions
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Figure 6-10 ASR rates of SPFDBB and FDABB versus different experiment

conditions

Table 6-7 Meaning of Notations in Figs 6-9 and 6-10

Cl Speech source in 0°and noise source in -60°

C2 Speech source in 0°and noise source in 60°and -30°

C3  Speech source in 0°and noise source in 60°, -30°, and -60°

C4  Speech source in 30°and noise source in 60

C5  Speech source in 30°and noise source in 60°and -30°

C6 Speech source in 30°and noise source in 60°, -30° , and -60°

83



6.1.3 Vehicular Environment

The experiment is performed on passenger seat of a mini-van vehicle instead of the
driver’s seat due to the driving safety consideration. A uniform linear microphone array
of six un-calibrated microphones with 0.05 m spacing is mounted in front of the
passenger seat. Additionally, the distance between the microphone array and the
speaker in the passenger seat is about 0.62 m. During the experiment, all windows are
closed to prevent the microphones from saturating and the cabinet temperature is set to
be 24°C using the in-car air conditioner. Off-the-shelf, low-cost and non-calibrated
microphones are used for the array. The performance of the proposed approaches is
evaluated by ASR rates with the parameters shown in Table 6-6 under ten conditions
(CI1-C10 of Table 6-8). Table 6-8 shows, the average SNRs in the ten conditions. A
music piece containing vocal sound is played répeatedly from six build-in loudspeakers
when the in-car audio system ds turned on. This experiment utilizes the ASR rates
shown in Fig. 6-11 to measure the performances of FDABB, SPFDBB, and the
reference-signal-based time-domain” “ ‘adaptive beamformer. In the vehicular
environment, the FDABB does not always outperform the SPFDBB with L =30.
However, the FDABB with the soft penalty parameter of 2 and the SPFDBB with

L =30 outperform the reference-signal-based time-domain adaptive beamformer.

Table 6- 8 Ten Experimental Conditions and Isolated Average SNRs

Condition Power of Average Condition Power of Average

Number Speed In-car Audio SNR Number Speed In-car Audio SNR
System (dB) System (dB)

Cl 20 km/h Off 4.20 C6 20 km/h On -0.08

C2 40 km/h Off 2.84 Cc7 40 km/h On -2.19

C3 60 km/h Off 2.72 C8 60 km/h On -2.28
C4 80 km/h Off -1.90 Cc9 80 km/h On -4.75

C5 100 km/h Off -3.04 Cl10 100 km/h On -5.40
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Figure 6-11 ASR rates of reference-signal-based time-domain beamformer,

SPFDBB and FDABB

6.2 Comparison of NLMS.and H,, Adaptation Criterions

6.2.1 Simulation Results

6.2.1.1 Single-channel Case

The four time-domain performance indexes: filtered output error e,(n) in Eq.

(4-31), reference signal estimation error €,(n) in Eq. (4-32), filter coefficient
estimation error ratio in Eq. (4-33), and filtered output error ratio in Eq. (4-34) are
utilized in this case. The simulation signal is constructed through the linear model

shown in Eq. (4-2). To reflect the modeling error, the unknown disturbance e(n) is

constructed as:

e(n) = p|(&" (M) +v(m)]

—+ Time-Domain Adaptive Beamformer
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where {V(n)} is a white noise sequence and p is a scalar that can produce various

SNR simulation cases. Therefore, the linear model can be rewritten as,

r(n) = %" (Mg +p|(& (n)g) +v(n)] 6-2)

The tap number of the single channel, P, is chosen to be 10 and 20, x, issetto I,
o0 1issetto 0.001, and there are a total of seven SNRs, denoted from C1 to C7, as shown
in Table 6-9. Figure 6-12 illustrates the filtered output error ratio obtained by executing
NLMS adaptation criterion at C7. The filtered output error ratio of the H,, adaptation
criterion at C7 is presented in Fig 6-13. Obviously, the filtered output error ratio derived
via the NLMS adaptation criterion never exceed one which fits the fact that the NLMS
adaptation criterion guarantees the energy of the filtered output error will never exceed
the energy of disturbance. Furthermore, :the ‘filtered output error, coefficient vector
estimation error, and reference ‘signal estimation error versus seven conditions shown
in Figs. 6-14, 6-15, and 6-16 are ‘derived from averaging the last one thousand runs of
the total adaptation runs of 30000. Although the NLMS adaptation criterion is robust to
the disturbance, the filtered output error and coefficient vector estimation error of H,
adaptation criterion still outperform those of the NLMS adaptation criterion in this
simulation. Notably, because the basic concept of the NLMS and H., adaptation
criterions are to minimize the energy of the reference signal estimation error, €.(n),

the reference signal estimation errors of the two adaptation criterion are similar.

Table 6-9 Seven Kinds of SNRs

Condition Cl C2 C3 C4 Cs C6 C7

Average SNR  5.53 dB 1.99dB -0.57dB -247dB -4.09dB -542dB -6.56dB
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Figure 6-12
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Figure 6-14 Filtered output error versus seven conditions
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Figure 6-16 Reference signal estimation error versus seven conditions

Although the H,, adaptation criterion can guarantee Eq. (4-6) holds when the Riccati

recursion P_l(n)+£(n)£T(n)—7/q_ZI is larger than 0, how to find a most suitable

value of y, is still an issue. According to Eq. (4-6), a smaller value of yq2 can

guarantee a smaller upper bound of Eq. (4-6) under the same disturbances. It means

that a smaller value of 7q2 limits the maximum filter coefficient estimation error ratio
to a smaller value. However, a smaller value of 7q2 does not always achieve a better
performance. In this simulation, three different values of y, are compared at C2 with

the SNR of 1.99dB to prove that the selection of y, could affect the estimation
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performance. P is set to 10. }/q_z in the three cases are selected
as eig(P'(n)+x(Mx"(n)x107 , eigP'(n)+x(Mx"(n)x10™* | and
eig(P~'(n) + %(n)x"(n))x10~ individually. Notably, the three values of y, satisfy
P'(n)+x(n)x"(n)— }/qul >0, so the upper bound of Eq. (4-6) exists. Table 6-10 lists

the corresponding minimum values of 7q2 , filter output errors, and coefficient

estimation errors in three cases from averaging the last one thousand runs. Figure 6-17
illustrates the filter coefficient estimation error ratios in three cases. Clearly, the filter

coefficient estimation error ratios in three cases do not exceed the minimum value of

v, - Although, case one has the smallest filter coefficient estimation error ratio and the

fastest convergence rate, it does not converge to a.smaller coefficient estimation error

as compared with case two.

Table 6-10 Experimental Results in Three Different Selection Cases of qu

Case One Case Two Case Three
Minimum value of 7q2 629.08 2837.90 14220
Filtered output error (dB) -53.48 dB -55.31 dB -51.78 dB
Coefficient Estimation error (dB) -12.27 dB -16.98 dB -11.37 dB

Filter Coefficient Estimation Error Ratio (Case One)
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Figure 6-17 Filter coefficient estimation error ratios in three cases
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6.2.1.2 Multiple-channel Case

To simulate a noisy environment, a speech source and a white noise are passed
through each individual channel to the six microphones and the channel response
duration is set to 30 taps. The tap number of the estimated coefficient vector has three
selections of 10, 20, and 30 taps which can simulate the conditions under which the
filter order is lower than or equal to the channel response duration. The time-domain
SDR and NSR defined in Egs. (4-29) and (4-30) are adopted as performance
measurements in this section. Table 6-11 depicts the values of the SDR and the NSR
versus the number of taps. Notably, the total adaptation runs is 30000 and the values of
time-domain SDR and NSR are derived from averaging the last one thousand runs.
Clearly, the H,, adaptation criterion outperforms the NLMS adaptation criterion. In
Table 6-11, the performance of SDR andNSR'degrades with the decrease of the filter
order, especially for the H,, adaptation critérion. Although increasing the filter order
enlarges the degree of freedom, the improvement provided by NLMS adaptation
criterion is insignificant, since the approachicontinuous to suffer from the modeling
error problem. On the contrary, the H,, adaptation criterion provides the robustness to
modeling error, and thus can utilize the same increment of the degree of freedom to

provide higher performance improvements.

Table 6-11 SDR and NSR at the SNR of -5.16 dB

P=10 P=20 P=30
SDR NSR SDR NSR SDR NSR
NLMS adaptation criterion -5291dB -58.79dB -54.50dB -60.21dB -5549dB -61.21 dB
Hoo adaptation criterion -67.50dB  -85.62dB -7590dB -116.51dB -79.09dB -119.73 dB

6.2.2 Indoor environment
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The indoor environment is arranges as Fig. 6-8 and the parameters of ASR is shown
in Table 6-6. The FDABB parameters are the same as those in Table 6-4 and the soft
penalty is 2. Figure 6-18 presents the ASR rates of SPFDBB and FDABB using NLMS
and H., adaptation criterions in an indoor environment. Clearly, H., adaptation criterion
outperforms the NLMS adaptation criterion in this case. Notably, although FDABB
can adjust the frame number, L, this is not to say that the performance of FDABB is
always better than the one of SPFDBB. For example, under the H.. adaptation

criterion, the ASR rates of SPFDBB are better than those of FDABB in C3 and C6.

ASR Rate (%)

=¥ Polluted Signal

—}— SPFDEB using NLMS adaptation criterion (L =30)
40 |- =@ FDABB using NLMS adaptation criterion

=~ SPFDBEB using H infinity adaptation criterion (L =30)
=3 FDABB using H infinity adaptation criterion

35

30‘\\/‘\‘\'
% ' ' ' ' ' : ' : '

<2 <3 <4 5 CE

Figure 6-18 ASR rates of SPFDBB and FDABB using NLMS and H., adaptation

criterions in an indoor environment

6.2.3 Vehicular Environment

The experiment conditions are described in Section 6.1.3. Figure 6-19 shows the
ASR rates of SPFDBB and FDABB using NLMS and H., adaptation criterions in a
vehicular environment. Obviously, the observation of that H, adaptation criterion

outperforms the NLMS remains true in a vehicular environment.
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Figure 6-19 ASR rates of SPFDBB and FDABB using NLMS and H., adaptation

criterions in a vehicular environment

6.3 Reference-signal-based Speaker’s Location Detection

6.3.1. Vehicular Environment

The experiment is performed i a mini-van vehicle with six separated seats [121].
Figure 6-20 presents the locations of the seats. During the experiment, the speakers at
these locations slightly move around to mimic real usage scenarios. A uniform linear
array of six microphones with 0.05 m spacing is mounted in front of location No. 2. The
experiment is performed in various noisy environments. The environmental noise
signals changed at various speeds. Table 6-12 lists the SNR ranges at various speeds,
corresponding to the six locations. Table 6-13 presents the frequency bands that

correspond to the pairs of microphones.
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Figure 6-20 Seat number and microphone array position

Table 6-12 The SNR Ranges at Various Speeds

Speed Speed =0 km/h Speed =20 km /h
The SNR Range (dB) 10.8204 ~ 17.2664 4.1762 ~ 10.6222

Speed Speed =40 km/h Speed = 60 km/h
The SNR Range (dB) -4.5320~1.9140 -6.2526 ~ 0.1934

Speed Speed = 80 km/h Speed = 100 km/h
The SNR Range (dB) -8.4709 ~ -2.0249 -13.0531 ~ -6.6071

Table 6-13 The Frequency Bands Correspond to the Microphone Pairs

Frequency Band Microphone Pairs The Number of Microphone Pair ~ The Range of Frequency Band
Band 1 (b=1) (1,6) J, =1 0< f <680Hz
Band2 (b=2) (1,5); (2,6) J,=2 680Hz < f <850Hz
Band3(b=3) (1,4); (2,5); (3,6) J,=3 850Hz < f <1100Hz
Band 4 (b=4) (1,3); (2,4); (3,5); (4,6) J, =4 1100Hz < f <1700Hz
Band 5(b=5) (1,2); (2,3); (3,4); (4,5); (5.6) J; =5 1700Hz < f < 3400Hz

6.3.1.1 MUSIC Algorithm - Single Speaker’s Location Detection

A wideband incoherent MUSIC algorithm [10] with arithmetic mean is implemented
and the results are compared with those of the proposed approach. Ten major

frequencies, ranging from 0.1 kHz to 3.4 kHz, are adopted for the MUSIC algorithm.
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Outliers are removed from the estimated angles by utilizing the method provided in
[122]. Moreover, the angle errors needed for outlier rejection is derived from the
estimated angles and real angles. Locations No. 2, 4 and 6 had the same DOA to the
microphone array. Therefore, only locations No. 1, 2, 3 and 5 are considered for online
testing. A frequently used classification method KNN (K-nearest-neighbor
classification rule [123]) is used to construct a flexible boundary to improve the
accuracy of detection to cope with the slight movement of the source, microphone
mismatch, transient response and environmental noise. The estimated angles following
outlier rejection are used as reference data in online location detection to illustrate
further the performance of the MUSIC algorithm in the car cabinet. Suppose that the

I th location contains f, estimated angles and that Z B, =/ is the reference data
|

set. Assume that the | th location €ontains= K points in the K —nearest results of a

new estimate f derived from MUSIC .with outlier rejection. The a posteriori

probability is then given as

o - Ko ]
pal 7= (6-3)

To minimize the probability of a false classification of f, the estimated location,

denoted as rMUSIC , 1s decided by using following equation:

A

lusic = arg,ﬂlfﬁ p(l | ) (6-4)

Notably, the new estimate will not be classified if it is an outlier. The parameters are

set to S, =200, | = {1,2,3,5}, L =800and K =30 and the number of trials is 100.

Table 6-14 presents the correct rate after KNN classification with outlier rejection. The
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correct rates at locations No. 3 and 5 are too low to be useful. In summary, these
experimental results demonstrate that the MUSIC algorithm is not sufficiently reliable
in a vehicle environment, even a classification method is applied and outliers are

rejected to cope with the uncertainties.

Table 6-14 Correct Rate of MUSIC Method Utilizing KNN with Outlier Rejection

The correct rates at various speeds (km/h)

LOCATION Speed Speed Speed Speed Speed Speed
0 km/h 20 km/h 40 km/h 60 km/h 80 km/h 100 km/h

1 94 % 85% 74 % 79 % 84 % 91 %
2 93 % 90 % 92 % 89 % 81 % 89 %
3 60 % 44 % 63 % 70 % 36 % 52%
4 X X X X X X
5 59 % 46 % 17 % 26 % 78 % 22 %
6 x x x X x x

6.3.1.2 Proposed Single Speaker’s Location Detection Approach

The proposed approach is applied under the same experimental conditions as Section
6.3.1.1 to detect the speaker’s location. The second initial approach mentioned in
section 5.3.2 is utilized to initialize the mean values. The covariance update may lead to

numerical difficulties, as the covariance matrices become nearly singular. Consequently,

the practical solution is to limit the minimum variance o’ . In this experiment, the

value of o is set to 0.02. The lengths of the training sequence T and the testing
sequence Q are set to 200 and 50; in other words, a two-second length input datum is
set for training, and a half-second length input datum is set for testing. The mixture
number of GMM model has ten choices, from one to ten. Figure 6-21 plots the

experimental result of the correct rate versus the mixture numbers at 100 km/h. As

shown in Fig. 6-21 (a), a single Gaussian distribution (where the mixture number is one)
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could not yield a satisfactory experimental performance. The correct rates are 100% at
all locations with the mixture number is ten. This finding justifies the assumption that
GMM is suitable for this application. Although the experimental performance
improved as the mixture number increased, the improvement in performance is not
significant when the mixture number exceeded five. Table 6-15 lists the experimental
results with a mixture number of five. Clearly, the proposed method outperforms the
MUSIC algorithm. Even at locations No. 4 and 6, the proposed method could
distinguish them with significant accuracy. Figure 6-22 shows the histograms of phase
differences at locations No. 2, 4, and 6 between the third and the sixth microphones at a
frequency of 0.9375 kHz and between the fourth and the sixth microphones at a
frequency of 1.5 kHz, e.g., in third and fourth frequency bands. The speed that
corresponds to this figure is 100 km/h. Although the locations had the same angle to the
microphone array, their phase difference distributions are quite different, as indicated
by several research reports [113-114]."Additienally, the proposed method combined
five frequency bands, each of which contained-different phase difference distributions.
As aresult, the proposed method is able to distinguish all of the locations by exploiting
their implicit diversities. Moreover, under low SNR conditions, the proposed approach

still yielded a high correct rate and is robust against in-vehicle noise.

Table 6-15 Experimental Result of the Proposed Method with a Mixture Number of

Five
The correct rates at various speeds (km/h)
Location Speed Speed Speed Speed Speed Speed
0 km/h 20 km/h 40 km/h 60 km/h 80 km/h 100 km/h

1 99 % 100 % 99 % 99 % 99 % 98 %
2 99 % 100 % 99 % 99 % 97 % 98 %
3 100 % 100 % 99 % 100 % 100 % 100 %
4 99 % 99 % 99 % 98 % 98 % 98 %
5 100 % 100 % 100 % 100 % 100 % 100 %
6 99 % 99 % 98 % 99 % 98 % 97 %
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Figure 6-22 The histograms of phase differences at locations No. 2, 4, and 6
between the third and the sixth microphones at a frequency of 0.9375 kHz and
between the fourth and the sixth microphones at'a frequency of 1.5 kHz, e.g., in third
and fourth frequency bands (speed = 100 km/h)

6.3.1.3 Proposed Multiple Speakers’ Locations Detection Approach

Figure 6-23 shows the locations of the six in-car loudspeakers, and the locations that
are tested for the experiment. The first six locations correspond to modeled locations,
and the radio broadcasting emits from the six in-car loudspeakers, locations no. 7, 8§,

and 9 correspond to unmodeled locations. The total length of the training phase

difference sequence T is set to 300 (3-second duration). The values of Q,,, Qu, @,

f,and y aresetto 10, 35, 0.3, 0.4, and 0.3 respectively.
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Table 6-16 lists the SNR ranges at various speeds. The mixture number of GMM
model has six choices, 1, 3, 5, 7, 9, and 11. The trial number for localization detection is
300 for each mixture number at each speed. For the condition of a single speaker, Fig.
6-24 plots the average correct rates versus mixture numbers, and indicates that a single
Gaussian distribution, M =1, could not yield a satisfactory performance, and that

increasing the mixture number improves the performance.
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Figure 6-23 “: Locations number of the seats

Table 6-16 SNR Ranges at Various Speeds

SNR Ranges (dB)
Speed (km/h) Multiple Speakers at Radio Single Speaker  Single Speaker  Single Speaker
locations no. 1 to 6 broadcasting at locationno. 7 at locationno. 8  at location no. 9
Speed = 0 km/h 10.81-18.15dB 13.10dB 14.96 dB 13.18 dB 17.31dB
Speed = 20 km/h 5.62—12.96 dB 7.20 dB 10.15 dB 9.37dB 11.50 dB
Speed = 40 km/h 0.19-7.54dB 2.18dB 4.53dB 2.76 dB 6.89 dB
Speed = 60 km/h -0.54-6.81dB 1.75 dB 3.81dB 2.03dB 5.16 dB
Speed = 80 km/h -5.32-2.02dB -3.04 dB -0.98 dB -2.76 dB 1.37dB
Speed = 100 km/h -7.28-0.07 dB -5.99 dB -2.93 dB -4.71dB -0.58 dB
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Figure 6-24  Average correct rates versus the mixture numbers

Fifteen possible combinations, such as locations No. 1 and 2, and locations No. 1 and
3, exist with two speakers talking. Three, four, and five speakers talking yield 20, 15,
and 6 possible combinations respectively. Table 6-17 lists the average error rates of
these conditions with a mixture number of 11. Notably, an error is defined as a detection
result that does not give the location of any of these speakers. For example, if the
speech signals come from locations No. 2 and 3, then an error occurs when the
detection result is neither 2 nor 3. Table 6-18 lists the average error rates of radio
broadcasting and the speech signals coming from locations No. 7, 8, and 9 with a

mixture number of 11. The error in the table is defined as the detection result pointing to
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one of the modeled locations. The experimental results indicate that the proposed

method can successfully deal with multiple speakers and unmodeled speech sources.

Table 6-17 Average Error Rates at Various Speeds under Multiple Speakers’

Conditions
Average Error Rates (%)
Speaker
Speed Speed Speed Speed Speed Speed
Number
0 km/h 20 km/h 40 km/h 60 km/h 80 km/h 100 km/h
2 0.67 % 1.11 % 0.44 % 0.67 % 1.56 % 1.78 %
3 0.50 % 1.00 % 0.67 % 0.50 % 1.17 % 1.83 %
4 0.89 % 0.89 % 0.66 % 0.44 % 1.11 % 1.56 %
5 0.11 % 0.05 % 0 % 0% 0.05 % 0.11 %

Table 6-18 Average Error Rates of Unmodeled Locations at Various Speeds

Average Error Rates (%)

Speed (km/h) Radio Single Speakerat. Single Speaker at  Single Speaker at
broadcasting Location No. 7. Location No. 8 Location No. 9

Speed = 0 km/h 0.22 % 0 % 0.06 % 0.22 %
Speed =20 km/h 0.28 % 0% 0.17 % 0%

Speed = 40 km/h 0% 0% 0% 0%

Speed = 60 km/h 0.06 % 0% 0% 0.33 %
Speed = 80 km/h 0.28 % 0.33 % 0.33 % 0.33 %
Speed = 100 km/h 0.33% 0% 0.39 % 0.67 %

6.3.2. Indoor Environment

The dimensions of the experimental room and the arrangement of microphone array

are the same with those in the Section 6.1.2.

6.3.2.1 Proposed Single Speaker’s Location Detection Approach

Figure 6-25 presents the real configuration. The four speech signals are located at
different angles, 0°, 30°, and —60°, with various distances to the array. Noises are
located at 60°, —30° and —60°. Notably, speeches No. 1 and 3, and speech No. 4 and
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noise No. 1 have the same DOA to the microphone array. All of the speech signals
and noises are played by loudspeakers during the experiment. The interference signals
in this experiment are white Gaussian noises and mutually uncorrelated. The distances
between the microphone array and the noises are all 1.5 m. There are a total of twelve

experimental conditions, denoted from C1 to C12, as shown in Table 6-19.

Uniform Microphone Array
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Figure 6-25 Configuration of microphone array, noises and speech sources in noisy

environment

Table 6-19 Twelve Kinds of Experimental Conditions

Condition SNR (dB)
Cl1 Speech No. 1 and noise No. 1 15.46 dB
C2 Speech No. 2 and noise No. 1 16.45 dB
C3 Speech No. 3 and noise No. 1 13.93 dB
C4 Speech No. 4 and noise No. 1 15.67 dB
C5 Speech No. 1, noises No. 1 and 2 10.08 dB
C6 Speech No. 2, noises No. 1 and 2 11.07 dB
C7 Speech No. 3, noises No. 1 and 2 8.55dB
C8 Speech No. 4, noises No. 1 and 2 10.28 dB
C9 Speech No. 1, noises No. 1, 2, and 3 5.95dB
C10 Speech No. 2, noises No. 1, 2, and 3 6.93 dB
Cl11 Speech No. 3, noises No. 1, 2, and 3 4.42 dB
C12 Speech No. 4, noises No. 1, 2, and 3 6.15dB
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The lengths of the training sequence T and the testing sequence Q are set to 300
and 50; in other words, a three-second length input datum is set for training, and a
half-second length input datum is set for testing. The mixture number of GMM model
has six choices, 1, 3, 5, 7, 9, and 11. The trial number for localization detection is 250
for each mixture number at each condition. Figure 6-26 plots the experimental result of
the correct rates versus the mixture numbers under various conditions. Although the
speech No. 4 and noise No. 1 come from the same direction, speech No. 4 still can be
distinguished in C4, C8, and C12 with a higher mixture number. Generally, the correct
rates in the indoor environment are lower than those in the vehicular environment when
the mixture number is low, such as 1, 3, and 5. This phenomenon means that the phase
difference distributions of different locations in the vehicular environment are more

distinguishable.
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Figure 6-26 Correct rates versus the different mixture numbers

6.3.2.2 Proposed Multiple Speakers’ Locations Detection Approach

Figure 6-27 presents the real configuration. Clearly, three unmodeled speech signals,
speeches No. 5, 6, and 7, are added in the experiment. It means that speeches No, 5, 6,
and 7 can be regard as undesired speech signals or interference signals. The total length
of the training phase difference sequence T is set to 300 (3-second duration). The

values of Q,,, Q,, a, B, and y are set to 10, 35, 0.3, 0.4, and 0.3 respectively.

Table 6-20 lists the SNR ranges at three different noisy environments. The mixture
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number of GMM model also has six choices, 1, 3, 5, 7, 9, and 11. The trial number for
localization detection is 250 for each mixture number. For the condition of a single

speaker, Fig. 6-28 plots the average correct rates versus mixture numbers.

Uniform Microphone Array

.
cemdemaan

Noise2 >

30

S

o Speech 1 »

Figure 6-27 Configuration of microphone array, noises and speech sources in noisy

environment

Table 6-20 SNR Ranges at Three Different Noisy Environments

SNR Ranges (dB)
Noisy Environments ~ Multiple Speakers at #_Single Speech Signal ~ Single Speech Signal ~ Single Speech Signal
Speeches No. 1 to 4 at.Speech No. 5 at Speech No. 6 at Speech No. 7
Noise No. 1 13.93 -26.9 dB 14.97 dB 18.17 dB 16.00 dB
Noises No. 1 and 2 8.55-21.54dB 9.57dB 12.78 dB 10.62 dB
Noises No. 1,2, and 3 4.42 - 15.66 dB 3.68 dB 6.88 dB 4.71 dB

Correct Rate (%)

=3 Speech No. 1
-3 Speech No. 2
=¥~ Speech Mo, 3
| B Speech No. 4

0 L 1 1 1 '
1 3 5 7 k] 11

Mixture Mumber

Figure 6-28 Average correct rates versus the mixture numbers
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Six possible combinations, such as speeches No. 1 and 2, and locations No. 1 and 3,
exist with two speakers talking. Three speakers talking yield four possible
combinations respectively. Table 6-21 lists the average error rates of these conditions
and Table 6-22 lists the average error rates of the speech signals coming from speeches
No. 5, 6, and 7 with a mixture number of 11. Notably, speeches No. 1, 3 and 6 and
speeches No. 2 and 5 have the same DOA to the microphone array. The experimental
results indicate that the proposed method can also successfully deal with multiple

speakers and unmodeled speech signals.

Table 6-21  Average Error Rates at Three Noisy Environments under Multiple

Speakers’ Conditions

Speaker Average Error Rates (%)

Number Noise No. 1 Noises No. 1 and 2 Noises No. 1, 2, and 3
2 2.93 % 1233 % 0.87 %
3 0.1 % 01 % 0%

Table 6-22  Average Error Rates of Unmodeled Locations at Three Noisy

Environments

Average Error Rates (%)

Noisy Environments  Single Speech Signal at  Single Speech Signal at  Single Speech Signal at

Speech No. 5 Speech No. 6 Speech No. 7
Noise No. 1 0.8 % 0% 0%
Noises No. 1 and 2 0% 0% 0.2 %
Noises No. 1, 2, and 3 0.3% 0.4 % 0.2 %

6.4 Summary

This chapter evaluates the proposed SPFDBB, FDABB, and speaker’s location
detection approaches through simulation and real experimental results. Section 6.1
proves the proposed SPFDBB and FDABB not only outperform the

reference-signal-based time-domain adaptive beamformer and several famous
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beamformers, but also reduce the computational effort. Section 6.2 simulates the
single-channel and multiple-channel cases, while performing vehicular environment
and indoor environment experiments, to show the robustness of the H,, adaptation
criterion. Moreover, Section 6.3 executes the proposed speaker’s location detection
approach in noisy vehicular and indoor environments to prove the high detection

accuracy and the robustness to the unmodeled or unexpected speech sources.
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Chapter 7

Conclusions and Future researches

7.1. Conclusions

This dissertation presents reference=signal-based methods of sound source
localization and speech putification.~using " microphone array. Specifically,
frequency-domain adaptive beamformers, namely SPFDBB and FDABB, are proposed
to cope with the computation issues in real-time. Under the architecture, the proposed
approaches can be applied to both near-field and far-field environments and overcome

microphone mismatch problem.

Other than the advantages mentioned above, SPFDBB and FDABB can minimize
the channel effects, the desired signal cancellation, and the resolution effect due to the
array’s position. FDABB and SPFDBB not only reduce the computational effort, but
also deal with the problem of inaccurate channel representation. That is to say, the
convolution relation between channel and speech source in time-domain cannot be
modeled accurately as a multiplication in the frequency domain with a finite window
size. According to the computational effort analysis in Chapters 4, 5, and 6, FDABB or

SPFDBB requires a lower computational effort as compared with the
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reference-signal-based time-domain adaptive beamformer. Additionally, FDABB
utilizes an index named CBVI to adjust the frame number L automatically, so it is
more suitable than SPFDBB for applications with a small training data length or

variations of the channel dynamics.

FDABB and SPFDBB attempt to simultaneously suppress the noise signals and
recover the channel dynamics. However, according to Eq. (5-1), the finite filter
coefficient vectors are not sufficient to perform the perfect equalization in general
environments, thus leading to the modeling error. To reduce the effect of modeling error,
this dissertation further studies the robustness of H,, adaptation criterion and applies the

criterion to the proposed FDABB and SPFDBB.

To overcome the non-line-of-sight problem in the sound source localization field,
this dissertation proposes an approach utilizing GMM to model the distributions of the
phase differences among the microphones caused by the complex characteristic of
room acoustic and microphone mismatch. According to the experimental results in
Chapter 6, the scheme performs well not only in non-line-of-sight cases, but also when
the speakers are aligned toward the microphone array but at difference distances from it.
However, an unmodeled speech signal which is not emitted from one of the modeled
locations degrades the detection performance. Therefore, this dissertation further
proposes multiple speakers’ location detection approach to provide an accurate

localization of multiple speakers and robustness to unmodeled sound source locations.

7.2. Future researches

To improve the current speech enhancement system, this dissertation proposes two

possible further research directions; the first one is to combine SPFDBB or FDABB
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with the speech recognizer, and the second one is to combine multiple speakers’

location detection approach with the proposed SPFDBB or FDABB.

Currently, the proposed reference-signal-based frequency-domain beamformers are
performed in two independent phases: speech purification and then recognition as
shown in Figs. 1-5, 3-1 and 4-2. The proposed beamformers designed to reduce the
speech distortion and suppress the noise effects assume that improving the quality of
the speech waveform will result in better recognition performance and are independent
of the recognition system. Although the proposed beamformers can conquer many
practical issues, the beamformers still cannot compete with the microphone in a close
distance in terms of the ASR rates. Generally, a speech recognizer is a statistical
pattern classifier that operates on a sequence.of features derived from the waveform. To
increase the recognition accuracy:in distant-talking.environments, the architecture of
connecting the proposed beamformers and the speech recognizer as shown in Fig. 7-1 is
worth a further study in the further. “This‘architecture enables the beamformer to use
the data transmitted from the recognizer:and ensures the beamformer enhances those
signal components important for ASR. In other words, this architecture enables the

designed filters not to undue emphasis on unimportant components.

For example, Seltzer et al. [124-125] proposed a likelihood-maximizing beamformer
(LIMABEAM) that integrates the speech recognition system into the filter design
process. They proved that incorporating the statistical models of the recognizer into the
array processing stage can improve the ASR rates. The goal of the LIMABEAM is not
to generate an enhanced output waveform but rather to generate a sequence of features
which maximizes the likelihood of generating the correct hypothesis. In other words,
the filter coefficient vectors are chosen to maximize the likelihood of the training signal

as measured by the recognizer, rather than to improve its SNR or perceptual quality.
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Nishiura et al. [128] also proposed a method which combines HMM model and

microphone to enhance the speech recognition further.
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Figure 7-1 Speech enhancement system with a combination of beamformer and

recognizer

Furthermore, under the same architecture, it is highly possible to combine the
proposed speaker’s location detection approach and SPFDBB or FDABB to
significantly reduce the possibility of:the wrong eperation of SPFDBB or FDABB. The
wrong operation means that the®unmodeled or unexpected speech signal triggers the
VAD to switch the beamformers to the speech stage,’and thus obtain an error output.
According to the system architectute of frequency-domain beamformers in Chapters 3
and 4, this wrong operation is unavoidable due to the limitation of VAD. However, the
proposed multiple speakers’ locations detection approach in Chapter 5, which can
detect the unmodeled sound signals, is highly possible to avoid the wrong operation.
Therefore, the unmodeled speech signal could hardly cause the error output under the
new system architecture in Fig. 7-2. Based on the system architecture, both the VAD
result and speaker’s location detection system are combined to decide the stage of the
SPFDBB or FDABB. It means that if the received sound signal is detected as
containing speech signal and coming from one of the desired locations, then the system
is switched to the speech stage. Consequently, it is also worthwhile to study how to
construct the two components with a suitable integration procedure. Figure 7-3 shows

the flowchart of the integrated architecture.
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