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以參考訊號架構為基礎之穩健語者定位

與語音純化法 

研究生：鄭价呈        指導教授：胡竹生 博士 

國立交通大學電機與控制工程學系(研究所)博士班 

摘要 
 使用麥克風陣列來改善語音擷取的品質以及偵測語者方位在語音介面相關

研究上非常重要。本研究的目的在於利用ㄧ組線性麥克風陣列以及參考訊號來定

位某些特定所需之語者，並且提升語音辨識的正確性。本篇論文中所提出之方法

皆是利用參考訊號為基礎的系統架構來間接地解決麥克風間匹配性問題。本篇論

文所提出的語者定位法則利用高斯混合模型來針對每個位置所獨具的特徵(相位

差分布)作出模型化的動作。此語者定位方法可以抵抗背景雜音與反射效應，並

於近場與遮蔽的環境中提供準確的語者定位結果。 

 為了減低運算複雜度，本篇論文提出了兩種頻域語音純化法(SPFDBB 與

FDABB)。有ㄧ法則為：若在時域中語音訊號與通道之間的關係為捲積，則對應

於頻域中這兩者的關係則變為一般的乘積。但是此法則並不適用於時域的濾波器

階數大於轉換到頻域所取用的窗長度之情況中。因此，本論文所提出的語音純化

法便將多個窗的資料結合在一起共同處理，以期能盡可能的逼近以上之法則。此

外，還提出了一個參數以提供使用者可針對通道補償以及雜訊抑制來訂定不同的

權重。提供上述功能的語音純化法稱之為 SPFDBB。但若同時將太多個窗之資料

統一處理，則此語音純化法便不適用於一會經常性變動的環境中。因而本論文又

更進ㄧ步地提出新參數稱為 CBVI 來自動調整窗之個數。結合此 CBVI 參數與

SPFDBB 之語音純化法則稱之為 FDABB。除了上述幾個議題外，模型化誤差亦

為ㄧ重要課題。對此，本論文針對一著名理論稱之為 H∞ 理論做出相關研究，進

而將其套用於所提出之兩種語音純化法中。最終，本論文利用模擬以及實際環境

下的實驗結果來說明所提出方法的可行性。 
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Robust Reference-signal-based Speaker’s 

Location Detection and Speech Purification 

Graduate Student: Chieh-Cheng Cheng      Advisor: Dr. Jwu-Sheng Hu 

Department of Electrical and Control Engineering 
National Chiao-Tung University 

Abstract 
The use of microphone array to enhance speech reception and speaker localization 

is very important. The objective of this work is to locate speakers of interest and then 

provide satisfactory speech recognition rates using a linear microphone array. The 

proposed approaches utilize a reference-signal-based architecture to indirectly solve a 

practical issue, microphone mismatch problem. Additionally, the proposed speaker’s 

location detection method utilizes Gaussian mixture model (GMM) to model a 

corresponding phase difference distribution for each specific location of the speaker. 

The proposed localization approach is useful in the presence of background noise and 

reverberations. Even under near-filed and non-line-of-sight environments, the 

approach can still provide high detection accuracy.  

In terms of effectiveness, the proposed beamformers, soft penalty 

frequency-domain block beamformer (SPFDBB) and frequency-domain adjustable 

block beamformer (FDABB) are designed in the frequency domain. However, due to 

the fact that the convolution relation between channel and speech source in 

time-domain cannot be modeled accurately as a multiplication in the frequency 

domain with a finite window size, the proposed beamformers put several frames into a 

block to approximate the transformation. Furthermore, to put different emphases on 
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channel recovery and noise suppression, a parameter named soft penalty is designed. 

Note that for a highly variant environment, it is not suitable to allocate too many 

frames into one block. Therefore, the SFPDBB is extended to the FDABB with a 

measurement index, named CBVI, which enables the FDABB to automatically adjust 

the number of frames. An H∞ adaptation criterion is also investigated and applied to 

enhance the robustness to the modeling error. Finally, the results from simulations and 

practical experiments are provided as proof of the effectiveness and usefulness of 

these proposed approaches. 
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Chapter 1 

Introduction 

Intelligent electronic devices for office, home, car, and personal applications are 

becoming increasingly popular. It is generally believed that the interface between 

human and electronic devices should not be restricted to keyboard, push-button, 

mouse or remote controller, touch panel, but nature language instead. One of the 

demands for intelligence is to enhance the convenience of operation, e.g., 

human-computer interaction (HCI) interfaces using speech communication. The 

speech-based HCI interface can be applied to robots, car computers, and 

teleconferencing applications. Moreover, the interface is particularly important when 

the use of hands and eyes puts the user in danger. For example, given concerns over 

driving safety and convenience, electronic systems in vehicles such as mobile phone, 

global positioning system (GPS), CD or VCD player, air conditioner, etc. should not 

be accessed by hands while driving. 

However, speech communication, unlike push-button operation, suffers from 

unreliable problems because of environmental noises and channel distortion. The poor 

speech quality, acoustic echo of the far-end and near-end speech, and environmental 
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noises degrade the recognition performance, resulting in a low acceptance of hands free 

technology by consumers. Most speech acquisition system depends on the user to be 

physically close to the microphone to achieve satisfactory speech quality. In this case, 

this near-end speech significantly simplifies the acquisition problem by putting more 

emphasis on the desired speech signal than on environmental noises and other sound 

sources, and by reducing the channel effect on the desired speech signal. However, this 

limitation restricts the scope of applications, explaining why noise suppression 

approaches using single channel [1-2] and multiple microphones (i.e., microphone 

array) have been introduced to purify speech signals in noisy environments. 

Microphone-array-based approaches attempt to obtain a high speech quality without 

requiring the speaker to talk directly to a close-talking microphone or talk loudly to the 

microphone at a distance. In recent years, the microphone-array-based speech 

enhancement has received considerable attention as a means for improving the 

performance of traditional single-microphone systems. 

The goal of this work is to locate speakers of interest and then provide satisfactory 

speech recognition rates and robustness to background noise and channel effects under 

both line-of-sight conditions and non-line-of-sight conditions using a uniform linear 

microphone array. The two main components of the general microphone-array-based 

speech enhancement systems are illustrated in Fig. 1-1 and the following two sections 

of this chapter present a brief introduction to each of them.  

M M

 

Figure 1-1  Block diagram of the general microphone-array-based speech 
enhancement system 
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1.1 Overview of Direction of Arrival Algorithms 

Figure 1-2 shows the layout of a uniform linear microphone array consisting of M  

microphone with K  incident signals from a set of arrival angles, { }Kθθ L,1 . The 

incident signals can be regarded as plane waves (far-field) or spherical waves 

(near-field). The definition of the far-field and the near-filed can refer to [3]. 

)(1 nx )(nxm )(nxM

L

1θ
2θ

Kθ−
1r

2r

Kr

 
Figure 1-2  Microphone array configuration for plane or spherical wave hypothesis 

where ir  is the radial distance from the thi sound source to the reference point of an 

arbitrary microphone array, L  denotes the size of array. 

Almost all microphone-array-based speech acquisition problems require a reliable 

active sound source location detection. Knowing the speaker’s location (i.e., speaker 

localization) not only improves the purification results of a noisy speech signal, but 

also provides assistance to speaker identification. For speech enhancement applications, 

accurate location information of the speaker of interest or the interference sources is 

necessary to effectively steer the beampattern and enhance a desired speech signal, 

while suppressing interference and environmental noises simultaneously. Consequently, 

the speaker location detection is an integral part of the microphone-array-based speech 

enhancement system.  
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Location information can also be used as a guide for discriminating individual 

speakers in a multiple speakers’ scenario. With this information available, it would be 

possible to automatically focus on and track a speaker of interest. Of particular interest 

recently is the video-conferencing system in which the speaker location is estimated for 

aiming a camera or series of cameras [4].  

Existing microphone-array-based sound source localization algorithms may be 

loosely divided into three generally categories: steered-beamformer-based localization 

algorithms, high-resolution spectral-estimation-based localization algorithms, and 

time-difference of arrival (TDOA) based algorithms.  

The steered-beamformer-based localization algorithms [5-7] utilize a certain 

beamformer to steer the array to various locations for obtaining the spatial responses 

and then search for a peak in the derived spatial responses. Hence, the location is 

derived directly from a filtered and summed data of the speech signals received at the 

multiple microphones. The task of computing the spatial responses for an appropriately 

dense set of possible locations is computationally expensive and highly dependent upon 

the spectral content of the sound source. 

The high-resolution spectral-estimation-based localization algorithms [8-19] 

(eigenstructure-based DOA estimation algorithms) are based on the data correlation 

matrix xxR  derived from the signals received at the M microphones, 

{ })()()( 21 nxnxnx ML . These algorithms separate the eigenvectors of data 

correlation matrix into two parts - one is the signal subspace, and the other is the noise 

subspace. The steering vector ( )θa  corresponds to sound source direction must be 

orthogonal to the noise subspace, so the inner product of steering vector and the noise 

subspace must be zero when it is consisted in the signal subspace. According to this 

phenomenon, the locations of the multiple sound sources can be simultaneous detected. 
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Figure 1-3 is a three-dimensional example which shows the relations between the 

signal subspace, the noise subspaces, and the steering vectors. The high-resolution 

algorithms suffer from a lack of robustness to the steering vector and environmental 

situations, especially reverberations, and have seen little practical use for general 

application. 
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Signal Space
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Noise Space
Eigenvector
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2
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Figure 1-3  Relation of eigenspaces 

The time-difference of arrival (TDOA) based procedures [20-27] locate sound 

source from a set of delay estimations measured across various combination of 

microphones. Generally, the TDOA–based procedures require the lowest computation 

power in these three categories. Accurate and robust time delay estimation between 

each microphone pair plays an important role in the effectiveness of this category. 

These TDOA-based procedures are sensitive to the weights of each microphone pair 

and various frequency bins. Notably, no mater what kinds of approaches are adopted, 

these three approaches cannot be applied to the fully non-line-of-sight case.  
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1.2 Overview of Beamformers 

The second stage of the general speech enhancement system is a beamformer which 

deals with the suppression of interference signals and environmental noises. Normally, 

a beamformer (i.e., spatial filter) which uses the spatial information can generate 

directionally sensitive gain patterns that can be adjusted to increase sensitivity to the 

speaker of interest and decrease sensitivity in the direction of competing sound sources, 

interference signals and environmental noises. Consequently, beamformer can suppress 

undesired speech signals and enhance desired speech signals at the same time. 

For a narrowband assumption, a beamformer is a linear combiner that produces an 

output by weighting and summing components of the snapshot of the received data, i.e. 

)()()(ˆ
1

* nnxqny H
M

m
mm xq==∑

=

     (1-1) 

where  )(nx  is the snapshot of the received data, the superscript H  denotes the 

Hermitian operation, and q  is the filter coefficient vector given by [ ]TMqq L1=q . 

The diagram is shown in Fig. 1.4. 
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Figure 1-4  Diagram of the beamformer 
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However, the application in which microphone array is used is different from that of 

conventional array applications. This is because the speech signal has an extremely 

wide bandwidth relative to its center frequency. Therefore, the conventional 

narrowband beamformer is not suitable. Generally, for broadband signals or speech 

signals, a finite impulse response (FIR) filter is used on each microphone and the filter 

outputs are summed to generate a single-channel enhanced speech signal. For example, 

if a microphone array contains M  microphones, each including a P  taps filter, then 

there are MP  free filter coefficients in time-domain wide-band beamformer 

architectures. 

Existing beamformers may be approximately divided into four categories: 

fix-coefficients beamformers, post-filtering beamformers, subspace beamformers, and 

adaptive beamformers. 

1.2.1 Fix-coefficients beamformers 

The first category called fix-coefficients beamformers including constant directivity 

beamformer (CDB) [28-32] and superdirective beamformers [33-36], utilizes fixed 

coefficients to achieve a desired spatial response. CDB is designed to keep a constant 

beampattern over the all frequency bins of interest, e.g., the spatial response is 

approximately the same over a wide frequency band. The drawback of CDB is that the 

size of the microphone array is related to the lowest frequency bin and the number of 

microphone is relatively high. Consequently, for speech recognition applications, CDB 

and is impractical. Unlike CDB, superdirective beamformer attempts to minimize the 

power of the filtered output signal )(ˆ ny  while keeping an undistorted signal response 

in the desired location with a finite array size. Moreover, the noise information, such as 

the noises’ locations and noises’ models can be included to improve the noise 
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suppression performance. Fix-coefficient beamformers generally assume the desired 

sound source, interference signals, and noises are slowly varying and at a known 

location. Therefore, these algorithms are sensitive to steering errors which limit their 

noises suppression performance and cause the desired signal distortion or cancellation. 

Furthermore, these algorithms have limited performance at enhancing a desired signal 

in highly reverberation environments. 

1.2.2 Post-filtering beamformers 

To enhance the noise suppression performance, post-filtering techniques [37-40] 

have been proposed. Post-filtering techniques perform post-processing to the filtered 

output signal )(ˆ ny  by using a single channel filter, such as the Wiener filter and the 

normalized least mean square (NLMS) adaptation criterion. Notably, the filtered output 

signal is derived from a beamformer, including CDB, superdirective beamformer, and 

so on. Consequently, if the desired signal distortion or cancellation exists in the filtered 

output signal, the distortion or cancellation cannot be avoided even with a post-filtering 

beamformer. 

1.2.3 Subspace beamformers 

Subspace beamformers [41-44] [126-127] are developed based on the form of the 

optimal multidimensional Wiener filter. These algorithms utilize generalized singular 

value decomposition (GSVD) or singular value decomposition (SVD) to decompose 

the correlation matrix of the desired signal and the received signal when the desired 

signal cannot be observed. Because of the unobservable desired signal, these 

beamformers cannot deal with the channel distortion directly. 
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1.2.4 Adaptive beamformers 

Instead of using fixed coefficients to suppress noises and interference signals, an 

adaptive beamformer [45-64] can adaptively forms its directivity beampattern to the 

desired signal and its null beampattern to the undesired signals. In the fix-coefficients 

beamformers, the null beampattern only exits when the noise’s direction is known and 

remains unchanged. Adaptive beamformers can release this limitation and perform a 

better noise suppression performance than fix-coefficient beamformers. Although an 

adaptive beamformer can adapt itself to the change of environmental noises, the 

steering errors caused by microphone mismatch or DOA estimation errors deteriorate 

the performance. To develop a robust adaptive beamformer to cope with the steering 

errors is still an important issue in this field. 

1.3 Outline of Proposed System  

Figure 1-5 shows the block diagram of the proposed reference-signal-based speech 

enhancement system, which contains three main components: voice activity detection 

(VAD) algorithm, robust reference-signal-based speaker’s location detection algorithm, 

and reference-signal-based frequency-domain adaptive beamformer. 

M MM

 

Figure 1-5  Block diagram of proposed reference-signal-based speech enhancement 
system 

1.3.1 VAD Algorithm 
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An important issue in many speech processing applications is the determination of 

presence of speech segments in a given sound signal. To deal with this requirement, 

VAD was developed to detect silent and speech intervals. In the proposed 

reference-signal-based speech enhancement system, the VAD result drives the overall 

system to switch between two operational stages, the silent stage and the speech stage. 

Therefore, this first component in the proposed system is to provide an accurate 

silence detection mechanism. Figure 1-6 illustrates the flowchart of the fundamental 

VAD algorithm which is a two-step procedure: feature extraction and classification 

method. 

 

Figure 1-6  Flowchart of the fundamental VAD algorithm 

Feature Extraction: Relevant features are extracted from the speech signal. To 

achieve a good detection of speech segments, the chosen features have to show a 

significant variation between speech and non-speech signals. 

Classification Method: In general, a threshold is applied to the extracted features to 

distinguish between the speech and non-speech segments. The threshold can be a 

fixed value or an adjustable value. Moreover, decision rules using statistical properties 

[65-66] were also implemented to deal with the classification problem. 

These features normally represent the variations in energy levels or spectral 

difference between noise and speech. There exist many discriminating features in 

speech detection, such as the signal energy [67-69], LPC [70-71], zero-crossing rates 

[72], the entropy [73-75], and pitch information [76]. Various features or feature vector, 
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the combinations of features, have been adopted in VAD algorithms [77-78]. To adapt 

to the changes of environmental noises or various noise characteristics, noise 

estimation method during non-speech periods should be added into the fundamental 

VAD algorithm [79-80]. The algorithm [81] is evaluated in Chapter 6 under vehicular 

and indoor environments. Based on the experimental results, the VAD algorithm in 

[81] is suitable for implementing the proposed reference-signal based speech 

purification system. 

1.3.2 Reference-signal-based Speaker’s Location Detection Algorithm 

Because conventional sound source localization algorithms suffer from the 

uncertainties of environmental complexity and noise, as well as the microphone 

mismatch, most of them are not robust in real practice. Without a high reliability, the 

acceptance of speech-based HCI would never be realized. This dissertation presents a 

novel reference-signal-based speaker’s location detection approach and demonstrates 

high accuracy within a vehicle cabinet and an office room using a single uniform linear 

microphone array. 

Firstly, to perform single speaker’s location detection, the proposed approach utilize 

Gaussian mixture models (GMM) to model the distributions of the phase differences 

among the microphones caused by the complex characteristic of room acoustic and 

microphone mismatch. The individual Gaussian component of a GMM represents some 

general location-dependent but content and speaker-independent phase difference 

distributions. Moreover, according to the experimental results in Chapter 6, the scheme 

performs well not only in non-line-of-sight cases, but also when the speakers are 

aligned toward the microphone array but at difference distances from it. This strong 
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performance can be achieved by exploiting the fact that the phase difference 

distributions at different locations are distinguishable in a non-symmetric environment.  

However, because of the limitation of VAD algorithm, an unmodeled speech signal 

might trigger the algorithm and drive the system to a wrong stage. This unexpected 

signal, which is not emitted from one of the modeled locations, may come from radio 

broadcasting of the in-car audio system and the speaker’s voices from unmodeled 

locations. Therefore, this dissertation proposes a threshold adaptation method to 

provide high accuracy in locating multiple speakers and robustness to unmodeled 

sound source locations.  

1.3.3 Reference-signal-based Frequency-Domain Beamformer 

This dissertation proposes two frequency-domain beamformers based on reference 

signals. They are soft penalty frequency-domain block beamformer (SPFDBB) and 

frequency-domain adjustable block beamformer (FDABB). Compared with the 

conventional reference-signal-based time-domain adaptive beamformers using NLMS 

adaptation criterion, these frequency-domain methods can significantly reduce the 

computational effort in speech recognition applications. Like other 

reference-signal-based techniques, SPFDBB and FDABB minimize microphone 

mismatch, desired signal cancellation caused by reflection effects and resolution due to 

the array’s position. Additionally, these proposed methods are appropriate for both 

near-field and far-field environments. Generally, the convolution relation between 

channel and speech source in time-domain cannot be modeled accurately as a 

multiplication in the frequency- domain with a finite window size, especially in speech 

recognition applications. SPFDBB and FDABB can approximate this multiplication by 

treating several frames as a block to achieve a better beamforming result. Moreover, 
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FDABB adjusts the number of frames in a block on-line to cope with the variation of 

characteristics in both speech and interference signals. In Chapter 6, a better 

performance is found to be achievable by combining SPFDBB or FDABB with a 

speech recognition mechanism. 

  For a speech recognition application, another important issue in real-time 

beamforming of microphone arrays is the inability to capture the whole acoustic 

dynamics via a finite-length of data and a finite number of array elements. For example, 

the source signal coming from the side-lobe through reflection presents a coherent 

interference, and the non-minimal phase channel dynamics may require an infinite data 

to achieve perfect equalization (or inversion). All these factors appear as uncertainties 

or un-modeled dynamics in the receiving signals. Therefore, the proposed system 

attempts to adopt the H∞ adaptation criterion, which does not require a priori 

knowledge of disturbances and is robust to the modeling error in a channel recovery 

process. The H∞ adaptation criterion is to minimize the worst possible effects of the 

disturbances including modeling errors and additive noises on the signal estimation 

error. Consequently, using the H∞ adaptation criterion can further improve the 

recognition performance. 

It should be emphasized that DOA and beamformer are generally treated as two 

independent components and discussed respectively in general speech enhancement 

systems. However, the proposed reference-signal-based speaker’s location detection 

algorithm and frequency-domain beamformer can be potentially integrated because 

they perform in the same operational architecture. Please refer to Chapter 7 for more 

detail. 
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1.4 Contribution of this Dissertation 

The contribution of this dissertation is to propose and implement innovative 

algorithms for sound source localization and speech purification. Although a 

considerable number of studies have been made on these two fields over the past 40 

years, only few attempts have so far been made at simultaneously targeting on 

practical issues such as microphone mismatch, near-field and far-filed, channel 

dynamics recovery, desired signal cancellation, and the resolution effect for speech 

purification. Further, for the sound source localization, important issues in practice are 

the non-line-of-sight and line-of-sight, reverberation, microphone mismatch, and 

noisy environment. This dissertation proposes two frequency domain beamformers, 

namely SPFDBB and FDABB, and speaker’s location detection approach to 

simultaneously overcome the issues mentioned above. 

1. SPFDBB and FDABB can flexibly adjust the emphasis on the channel dynamics 

recovery and noise suppression. Moreover, SPFDBB and FDABB reduce the 

computational effort significantly, and deal with the problem that the convolution 

relation between channel and speech source in time-domain cannot be modeled 

accurately as a multiplication in the frequency domain with a finite window size. 

2. To cope with the variation of room acoustics, a frame number adaptation method is 

proposed using an index named CBVI in FDABB.  

3. An H∞ adaptation criterion is applied to the proposed SPFDBB and FDABB to 

reduce the effect of modeling error, which is common in the adaptive beamformers. 

4. The proposed multiple speakers’ locations detection approach is able to provide the 

suitable length of testing sequences and thresholds. Therefore, it can obtain the high 
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accuracy on detecting speaker’s location and reduce the error caused by unmodeled 

locations and the overlapped speech segments. 

1.5 Dissertation Organization 

This chapter provides a brief introduction to the general microphone-array-based 

speech enhancement system, including the overviews of DOA algorithms, and 

beamformers. This chapter also briefly discusses three main components in the 

proposed reference-signal-based speech enhancement system. Chapter 2 introduces the 

reference-signal-based time-domain adaptive beamformer using NLMS adaptation 

criterion. Chapter 3 presents SPFDBB and FDABB using NLMS adaptation criterion 

and analyzes the computational efforts of the two proposed frequency-domain and the 

time-domain beamformers. Chapter 4 studies the robustness of the H∞ adaptation 

criterion. Chapter 5 presents the proposed reference-signal-based speaker’s location 

detection approach for single speaker’s and multiple speakers’ locations detection. 

Chapter 6 shows the simulation as well as the experimental results in real environment. 

Chapter 7 gives some concluding remarks and avenues for future research.
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Chapter 2 

Reference-signal-based Time-domain 
Adaptive Beamformer 

2.1 Introduction 

Speech enhancement systems are now becoming increasingly important, especially 

with the development of automatic speech recognition (ASR) applications. Although 

various solutions have been proposed to reduce the desired signal cancellation, 

particularly desired speech, in noisy environments, the recognition rate is still not 

satisfactory. Earlier approaches, such as delay-and-sum (DS) beamformer [82], Frost 

beamformer [45], and generalized sidelobe cancellation (GSC) [46], are only good in 

ideal cases, where the microphones are mutually matched and the environment is a free 

space. The causes of performance degradation include array steering vector 

mismodeling due to imperfect array calibration [47], and the channel effect (e.g., 

near-field or far-field problem [83], environment heterogeneity [84] and source local 

scattering [85]).  To manage these limitations, the most common linearly constrained 

minimum variance (LCMV)-based techniques [33] and [57] have been developed to 

reduce uncertainty in the sound signal’s look direction. However, these approaches are 
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limited by scenarios with look direction mismatch. Henry [58] employed the white 

noise gain constraint to overcome the problem of arbitrary steering vector mismatch. 

Unfortunately, no clear guidelines are available for choosing the parameters. 

Hoshuyama et al. [59] proposed two robust constraints on blocking matrix design. 

Cannot et al. [86] proposed a new channel estimation method for standard GSC 

architecture in the frequency domain, but loud noises, and in particular circuit noise, 

would heavily degrade its channel estimation accuracy. Sergiy A. et al. [60] proposed 

an approach based on optimizing the worst-case performance to overcome an unknown 

steering vector mismatch. However, a worst case is defined as a small random 

perturbation, which may not suitable for general cases. 

Dahl et al. [61] proposed the reference-signal-based time-domain adaptive 

beamformer using NLMS adaptation criterion to perform indirect microphone 

calibration and to minimize the speech distortion due to the channel effect by using 

pre-recorded speech signals and a reference signal. Moreover, Yermeche et al. [62] and 

Low et al. [63] also utilized the reference signal to estimate the source correlation 

matrix and calibration correlation vector. These methods in [61-63] are fundamentally 

the same except that the works in [62-63] do not require a VAD. However, VAD is 

useful for finding speaker’s location and enabling the speech purification system and 

speech recognizer. Therefore, the methods in [62-63] cannot offer any profit in ASR 

applications. 

The following section describes the system architecture of the 

reference-signal-based time-domain adaptive beamformer and the corresponding 

dataflow. It also presents how to derive the pre-recorded and reference signals. Finally, 

conclusions are given in Section 2.3. 



 18

2.2 System Architecture 

The architecture of the reference-signal-based time-domain adaptive beamformer is 

shown in Fig. 2-1. A speech signal passing through multi-acoustic channels is 

monitored at spatially separated sensors (a microphone array). Two kinds of signals, 

the pre-recorded signal, { })()(1 nsns ML ,  and the reference signal, )(nr , are 

necessary before executing the reference-signal-based time-domain adaptive 

beamformer. Let M  denotes the number of microphones. A set of pre-recorded 

speech signals are collected by placing a loudspeaker or a person in the desired position, 

and by letting the loudspeaker emit or the person speak a short sentence when the 

environment is quiet. Therefore, the pre-recorded speech signals provide a priori 

information between speakers and the microphone array. Additionally, the reference 

signal is acquired from the original speech source that emitted from the loudspeaker or 

using another microphone located near the person to record the speech. In practice, the 

loudspeaker or the person should move around the desired position slightly to obtain an 

effective recording. For example, Fig. 2-2 illustrates a vehicular environment with a 

headset microphone and a microphone array. The person is right on the desired 

location and speaks several sentences when the environment is quiet. The sentences 

are simultaneously recorded by the headset microphone and the microphone array. The 

speech signal collected by the headset microphone and the microphone array are called 

the reference signal and pre-recorded speech signals individually. Notably, the user 

does not need the headset microphone during the online applications. 

After collecting the pre-recorded speech signals and the reference signal, the 

complete procedures of the reference-signal-based time-domain beamformer are 

divided in two stages, the silent stage and the speech stage, through the result of VAD 

algorithm.  
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Figure 2-1  System architecture of the reference-signal-based time-domain adaptive 
beamformer 

 

Figure 2-2  Installation of the array and headset microphone inside a vehicle 

In other words, the VAD result decides whether to switch the system to the silent 

stage or speech stage. First, if VAD result equals to zero which means no speech signal 

contains in the received signals, { })()(1 nxnx ML  (i.e. the received signals are 

totally environmental noises denoted as { })()(1 nnnn ML ), then the system is 

switched to the first stage: the silent stage. Given that the environmental noises are 

assumed to be additive, the acoustic behavior of the speech signal received when a 
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speaker is talking in a noisy environment can be expressed as a linear combination of 

the pre-recorded speech signal and the environmental noises. Therefore, in this stage, 

the system combines the online recorded environmental noise, { })()(1 nnnn ML  , 

with the pre-recorded speech database, { })()(1 nsns ML , to construct the training 

signals, { })(ˆ)(ˆ1 nxnx ML , and to performs NLMS adaptation criterion to derive 

the filter coefficient vectors. Notably, the filter coefficient vectors are updated via the 

reference signal and the training signal thus implicitly solving the calibration.  

Secondly, if the received sound signal is detected as containing speech signal, then 

the system is switched to the second stage, called speech stage. In this stage, the filter 

coefficient vectors obtained by the first stage are applied to the lower beamformer to 

suppress noises and enhance the speech signal in the speech stage. Finally, the 

single-channel purified speech signal )(ˆ ny  is transformed to the frequency domain 

and then sent to the automatic speech recognizer. Because the variation between 

pre-recorded speech signals and the reference signal contains useful information about 

the dynamics of channel, electronic equipments uncertainties, and microphones’ 

characteristics, the method potentially outperforms other un-calibrated algorithms in 

real applications. Figure 2-3 presents the flowchart of the reference-signal-based 

time-domain adaptive beamformer. 
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Figure 2-3  Flowchart of the reference-signal-based time-domain adaptive 
beamformer 

While the speaker in the desired location is silent, the formulation of 

referenced-signal-based time-domain beamformer can be expressed as the following 

linear model: 

( ) )()()()()(ˆ)( nennnennr TT ++=+= nsqxq         (2-1) 

where the superscripts T  denotes the transpose operation and )(ne  is the error signal 

in the time domain. Notice that italics fonts represent scalars, bold italics fonts 

represent vectors, and bold upright fonts represent matrices in this dissertation. Let the 

parameter P  denote the FIR taps of the each estimated filter, and then 
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[ ]TM nnn )()()( 1 sss L=   denotes the pre-recorded signal vector;  

[ ]TM nnn )()()( 1 nnn L=  denotes the 1×MP  online recorded environmental 

noise vector;  

[ ]TM nnn )(ˆ)(ˆ)(ˆ 1 xxx L=  denotes the 1×MP  training signal vector; 

[ ]TMqqq L1=  denotes the 1×MP  filter coefficient vector of the time-domain 

beamformer that we intent to estimate. 

The corresponding vectors of the signals defined above are, 

[ ])1(ˆ)(ˆ)(ˆ +−= Pnxnxn iii Lx ; [ ])1()()( +−= Pnsnsn iii Ls ; 

[ ])1()()( +−= Pnnnnn iii Ln ; [ ]iPii qq L1=q . 

The well-known normalized LMS solution obtained by minimizing the power of 

error signal is represented in Eq. (2-2) 

)(
)(ˆ)(ˆ

)(ˆ
)()1( ne

nn
nnn T xx

xqq
+

+=+
γ

         (2-2) 

where γ  is a small constant included to ensure that the update term does not become 

excessively large when )(ˆ)(ˆ nn T xx  temporarily become small. The purified signal can 

be calculated by 

      )()()(ˆ nnny T qx=          (2-3) 

where [ ]TM nnn )()()( 1 xxx L=  is the 1×MP online recorded noisy speech 

signal vector acquired by the microphone array, and 

[ ])1()()( +−= Pnxnxn iii Lx . 
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2.3 Summary 

This chapter presents the reference-signal-based system architecture which 

implicitly contains the information of the channel effect and microphones’ 

characteristics. This architecture implicitly obtains the acoustic behavior from the 

desired location to microphone array and reduces the efforts of directly performing 

microphone calibration and channel inversion. Furthermore, it can be applied on both 

near-field and far-field situations which offers a significant advantage in speaker 

localization and beamformer algorithms. Extension of this idea to further improve the 

ASR rates will be described in the following chapters. Moreover, a novel speaker’s 

location detection algorithm based on the reference-signal-based architecture is also 

proposed. In addition, Chapter 6 compares the performance of the 

reference-signal-based time-domain adaptive beamformer and other well-known 

non-reference-signal-based beamformers to show the effectiveness of the proposed 

method.  
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Chapter 3 

Reference-signal-based 
Frequency-domain Adaptive Beamformer  

3.1 Introduction 

The required computational effort could be large when applying a large FIR filter 

coefficients, e.g., 256 to 512 taps in the time-domain adaptive beamformer introduced 

in the previous chapter. For subsequent ASR operation, another effort to compute 

Discrete Fourier transform (DFT) is required. One possible way to simplify the 

computational complexity is to compute the beamformer directly in the frequency 

domain because ideally the large FIR taps can be replaced by a simple multiplication 

at each frequency bin (e.g., the FIR filter with dimension of 1×MP  is represented by 

filter coefficient vector 1×M  in the frequency domain where M  is the 

microphone number and P  denotes the FIR taps). Moreover, the purified speech 

signal after a frequency-domain beamformer can be sent directly to the ASR. As 

explained later in this chapter and Chapter 6, the saving of computational effort is quite 

significant. 
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In a reference-signal-based beamformer, coefficients adjustment has two objectives: 

to minimize the interference signal and noises, and to equalize the channel effect (e.g. 

room acoustics). Channel equalization is important for ASR since the channel 

distortion may greatly reduce the recognition rate. 

By formulating the same problem in the frequency domain, channel distortion can be 

emphasized using a priori information. In this chapter, a penalty function is 

incorporated into the performance index to calculate the filter coefficient vectors. This 

proposed algorithm is called SPFDBB. 

A real-time frequency-domain beamformer is necessary to apply the short time 

Fourier transform (STFT). However, the corresponding window size of the STFT has 

to be fixed by the training data settings in ASR. For an environment with longer 

impulse response duration, the convolution relation between channel and speech source 

in time-domain cannot be modeled accurately as a multiplication in the frequency- 

domain with a finite window size. Therefore, the finite window size may not provide 

enough information for the coefficient adjustment and could not fit the assumptions 

that filter coefficient vector and the error signal should be independent to the input 

data in the NLMS adaptation criterion. In this case, SPFDBB takes the frame average 

over several frames as a block to improve the approximation of the linear model shown 

in Eq. (2-1). In other words, a block of windowed data is simultaneously adopted to 

calculate the filter coefficient vectors in the SPFDBB algorithm. The number of frames 

in a block is denoted as the frame number L . Intuitively, a large frame number could 

enhance the accuracy of the filter coefficient estimation. However, if the room acoustic 

dynamic changes suddenly, the channel response is difficult to be adjusted quickly 

when taking a large frame number for the updating process. Furthermore, the 

requirement of the length of the processed data would be too large when a large value 
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of L  is chosen. Therefore, SPFDBB is further enhanced by allowing the frame 

number to be adapted on-line. A novel index called changing block values index (CBVI ) 

is defined as the basis for adjusting the frame number. The overall algorithm is called 

FDABB.  

The remainder of this chapter is organized as follows. Section 3.2 describes the 

system architecture and the corresponding dataflow. Section 3.3 represents SPFDBB, 

one of the reference-signal-based frequency-domain adaptive beamformers which 

utilizes NLMS adaptation criterion. Section 3.4 introduces the other proposed method, 

FDABB, and also analyzes the computing efforts of SPFDBB, FDABB and the 

reference-signal-based time-domain beamformer. Two frequency-domain performance 

indexes, the source distortion ratio (SDR) and the noise suppression ratio (NSR) are 

defined in Section 3.5. Finally, conclusions are given in Section 3.6. 

3.2 System Architecture 

Figure 3-1 shows the overall system architecture. The pre-recorded speech 

signals, ),(,),,(1 kSkS M ωω L , and the reference signal, ),( kR ω , can be recorded by the 

same way described in Chapter 2 when the environment is quiet. After acquiring the 

pre-recorded speech signal and the reference signal, the overall system automatically 

executes between the silent and speech stages based on the VAD result. 

If the result of VAD equals to zero which means no speech signal contained in the 

received signal, { })()(1 nxnx ML , then the system is switched to the silent stage in 

which the adaptation of FDABB or SPFDBB is turned on. The filter coefficient vectors 

of FDABB or SPFDBB are adjusted through NLMS adaptation criterion in this stage. 

Notably, SPFDBB is a part of FDABB and can be executed separately.  
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On the other hand, if the received sound signal is detected as containing speech 

signal, then the system is switched to the second stage called speech stage. In this stage, 

the filter coefficient vectors obtained in the silent stage are applied to the lower 

beamformer to suppress the interference signals and noises, and enhance the speech 

signal. Finally, the purified speech signal ),(ˆ kY ω  is directly sent to the ASR. 

)(nxM

)(1 nx
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M

M
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M
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 Figure 3-1  Overall system structure 

3.3 SPFDBB Using NLMS Adaptation Criterion 

The linear model in Eq. (2-1) is transformed to the frequency domain by padding the 

short-time Fourier transform of the error signal with zeros to make it twice as long as 

the window length. The error signal at frequency ω  and frame k  is written as: 

),(ˆ),(),(),( kkkRk H
x ωωωωε XQ−=          (3-1) 
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where ),( kR ω  is the reference signal in the frequency domain, ),( kωQ  denotes the 

filter coefficient vector we intend to find, and [ ]TM kXkXk ),(ˆ),(ˆ),(ˆ
1 ωωω L=X  

is the training signal vector at frequency ω  and frame k . The optimal set of filter 

coefficient vectors can be found using the formula: 

[ ][ ]*
*

),(ˆ)(),( ),(ˆ)(),(min

),(),(min

kkRkkR

kk

HH

Q

xxQ

ωωωωωω

ωεωε

XQXQ −−=
     (3-2) 

where the superscripts ∗  denotes the complex conjugate. 

The normalized LMS solution of Eq. (3-2) is given by: 

),(ˆ),(ˆ
),(ˆ),(

),()1,(
*

kk
kk

kk x

ωωγ
ωωε

ωω
XX

X
QQ

H+
+=+            (3-3) 

Consequently, the purified output signal can be obtained by the following equation: 

),(),(),(ˆ kkkY H ωωω XQ=            (3-4) 

where [ ]),(),(),( 1 kXkXk M ωωω L=X  is the received signal vector which 

contains speech source, interference and noise. From Eq. (3-1), the filter coefficient 

vector equalizes the acoustic channel dynamics and also creates the null space for the 

interference and noise.  

As mentioned above, the filter coefficient vector ),( kωQ  equalizes the channel 

response and rejects interference signals and noises. To emphasize these two objectives 

differently, a soft penalty function is added into the performance index as, 
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),(),(),(),(min ** kkkk ssxxQ
ωεωμεωεωε +         (3-5) 

where μ  is the soft penalty parameter and 

),(),(),(),( kkkRk H
s ωωωωε SQ−=          (3-6) 

Then, the iterative equation utilizing the NLMS adaptation criterion can be shown 

as: 

{ }
),(),(),(),(

),( ),(),()1,(
kkkk

kkkk sx

ωωμωωγ
ωμωλ

ωω
SSXX

QQ HH ++
+

+=+
GG   (3-7) 

where 

),(ˆ),(),( * kkk xx ωωεω XG = , ),(),(),( * kkk ss ωωεω SG =  and λ  is the step size. If 

the soft penalty is set to infinity, then the system only focuses on minimizing the 

channel distortion. On the other hand, the system returns to the formulation in Eq. 

(3-2) when the soft penalty is set to zero. 

The problem of Eq. (3-7) is the window size has to equal that in ASR to ensure 

calculation accuracy. However, the window size may be too small for cases where the 

acoustic channel response duration is long (e.g., long reverberation path). Because the 

perturbation caused by channel model error is highly correlated to the reference signal 

instead of the uncorrelated noise, the updating process will not converge to a fixed 

channel response which is shown in Fig 6.3 and the relation between two sequential 

frames is highly relative. Taking the frame average over several frames (denoted as L ) 

allows the channel response to be approximated; since information of channel response 

which is not contained in one frame could be regarded as an external noise in the next 

frame. Thus, the performance index can be written in a quadratic from as: 
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where

[ ])1,()()1,(),()(),(),( −+−−+−= LkLkRkkRk HH ωωωωωωω SQSQV L , 

[ ]THH Lkkk )1,()(),()(),( −+= ωωωωω NQNQU L , 

and 

⎥
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43
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ΛΛ
ΛΛ

Λ  is a LL 22 × matrix.  

The performance indexes denoted as Eqs. (3-2) and (3-5) are two special cases of Eq 

(3-8) with 1=1Λ , 1−== 32 ΛΛ , 1=4Λ , 1=L  and μ+= 11Λ , 1−== 32 ΛΛ , 

1=4Λ , 1=L . Because of the long reverberation path and the fix window size, the 

error signal between different frames should be taken into consideration. Therefore, the 

soft penalty approach can be applied on several windows (frames) by choosing 

⎥
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1Λ , LIΛ4 =  and LIΛΛ 32 −==  

where LI  is an identity matrix with dimension L . Significantly, when the channel 

response is longer than the window size, the reference signal in previous windows is 

added in the following windows of the received signal. A good estimation should 

collect the information of several frames to eliminate this correlation effect. The 
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choice of 1Λ considers the cross-term as a factor to minimize this correlation effect. 

Using the performance index as Eq. (3-8), the SPFDBB can be summarized as: 

{ }
),(),(),(ˆ),(ˆ

),(),(),(),()1,(
*

kkkk
kkEkkk sx

ωωμωωγ
ωωμωλ

ωω
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PHQQ
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+
+=+

XX
   (3-9) 

where ),(),(ˆ),( * kkk T
xx ωωω EH X=  and [ ])1,(ˆ),(ˆ),(ˆ −+= Lkkk ωωω XX LX  

is the training signal matrix with dimension LM × . The th k error signal vector can 

be denoted as:  

[ ] ),(),()1,(),(),( kkLkkk bxxx ωωωεωεω YE R −=−+= L    (3-10) 
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where [ ])1,(),(),( −+= LkRkRk ωωω LR  is the reference signal vector,  

[ ])1,(),(),( −+= LkYkYk bbb ωωω LY  is the purified signal vector of the SPFDBB, 

and 

)1,(ˆ)1,(ˆ),(ˆ),(ˆ
),(ˆ),(ˆ
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XXXX
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where Eq. (3-12) means the sum of autocorrelations of the training signal at 

th k block and 

    ),(),(
1

∑
−+

=

=
Lk

kj

jk ωω SP           (3-13) 

The purified speech signal at th k  block can be represented as: 
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),(),(),(ˆ kkk H ωωω XQY =            (3-14) 

where [ ])1,(ˆ),(ˆ),(ˆ −+= LkYkYk ωωω LY  is the purified signal vector. 

Notably, the step k  is chosen as L,3 ,2 , ,0 LLL  to perform the adaptation process 

every L  frames. In this way, the relation between the two sequential block data may 

be lower than the one by overlapping )1( −L  frames to perform the next adaptation 

process (e.g. L,3 ,2 ,1 ,0=k ). Moreover, the approach which the step k  is chosen as 

L,3 ,2, 1 ,0  significantly increases the computational effort and the memory 

consumption as the value L  increases. The goal of carrying out the beamformer in the 

frequency domain couldn’t achieve. As a result, the proposed SPFDBB 

(e.g. L,3 ,2 , ,0 LLLk = ) is a kind of efficient approach to obtain low computational 

effort in the frequency domain. 

3.4 FDABB and Computational Effort Analysis 

3.4.1  FDABB Using NLMS Adaptation Criterion 

The number of frames L  in the SPFDBB greatly influences the performance shown 

in Chapter 6. However, the bigger value of L  needs more training data sequences. To 

cope with the window size problem, an index-based algorithm is proposed to adjust the 

value L  automatically. Using Eq. (3-1), the error signal could be separated as: 

( )   ),(),(),(),( 

),(ˆ),(),(),(

kkkkR

kkkRk
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H
x

ωωωω
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+−=
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Taking an frame average over L  frames 
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If no correlation exists between speech source and interference signals or noises, the 

first term and second term of the Eq. (3-16) could be zero. Consequently, this equation 

can be rewritten as: 

{ } { }L
H

Lx kkEkkkE ),(),(),(),(),( ωωωωωε HH NNQN −=        (3-17) 

The optimal coefficient vectors should be the null space of { }LkkE ),(),( ωω HNN  

and then the norm of Eq. (3-17) should be zero. The large norm of Eq. (3-17) indicates 

a strong negative or positive correlation between the error signal and interference 

signals or noises. In other words, the large norm of Eq. (3-17) means that the 

interference signals or noises affect the error significantly and that the convergence 

period is not achieved with the frame number L . If the norm of Eq. (3-17) is small, 

then it means the present value L  has lesser help for finding better coefficients. 

Consequently, the value of L  is increased to improve the performance of the 

algorithm. Conversely, if the room acoustic varies temporarily, then the present norm of 

Eq. (3-17) would become much larger than the last one. Then, the value of L  should 

be reset to the initial value to handle this sudden change. The CBVI  at frequency ω  

and block i  are defined in Eq. (3-18). The parameters in Eq. (3-18) are chosen as 

30 =α , 21 =α , and 12 =α  to be an high pass filter to increase the sensitivity of the 

temporal variation of room acoustic and the convergence. Figure 3-2 summarizes the 

proposed FDABB algorithm. 
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Figure 3-2  FDABB using NLMS adaptation criterion 

3.4.2  Computational Effort Analysis 

This section analyzes the computational effort of the reference-signal-based 

time-domain adaptive beamformer, SPFDBB, and FDABB from two different 

viewpoints: the coefficients adaptation phase and the lower beamformer phase. In the 

coefficients adaptation phase, the speaker is silent and the coefficients are updated with 

the iteration equation (2-2) for the reference-signal-based time-domain adaptive 

beamformer, with Eq. (3-9) for SPFDBB, and with Eqs. (3-9) and (3-18) for FDABB. 

The computational effort is based on a one-second length input datum for each phase, 

and is shown in Table 3-1. The sampling rate is denoted as sf , meaning that the 

considered input data contains sf  samples. The length of STFT is represented as lB ; 
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the length of input data in a frame is represented as iB  and the shift size of STFT is 

represented as sB . The filter tap of the reference-signal-based time-domain adaptive 

beamformer is assumed to be P , and the dimension of filter coefficient vector in the 

time domain is given by 1×MP . The function )(zI  takes the integer part of z  only. 

With the increasing value of L , the computational efforts of SPFDBB and FDABB 

decrease. The computational effort of STFT is estimated by using radix-2 

decimation-in-frequency FFT [87]. Notably, the STFT of M  microphones is 

necessary for VAD and speaker’s location detection algorithm. Therefore, the 

computational loading could be reasonably omitted to decrease the amount of real 

multiplication requirement when the overall system architecture is considered. 

Furthermore, SPFDBB and FDABB could be implemented with parallelism to decrease 

the beamformer loading. Furthermore, Chapter 6 lists the computational effort of the 

proposed algorithms in the two simulations.  

Table 3-1  Real Multiplication Requirement in One Second Input Data 

Multiplication Requirement 
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3.5 Frequency-domain Performance Indexes  

From Eq. (3-1), the filter coefficient vector should equalize the acoustic channel 

dynamics and also creates the null space for the interference signals or noises. Two 
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frequency-domain performance indices, SDR and NSR, are defined for these effects. 

SDR means the decreased level of source distortion produced by inexact filter 

coefficient vector estimation and NSR means the improved level of noise reduction. 

Assuming that the true channel response is [ ]TMWW )(...)()( 1 ωωω =W , then the 

source distortion can be represented as: 
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Thus, the optimal filter coefficient vector should satisfy two equality equations: 

1)()( =ωω WQ H  and 0),()( =kH ωω NQ        (3-20) 

The SDR is defined as: 
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and the NSR is defined as: 
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Since the denominators of Eqs. (3-21) and (3-22) are initial reference values, SDR or 

NSR represents the performance enhancement derived by comparing certain iteration 

with the initial filter coefficient vector. Smaller values of SDR and NSR indicate 

smaller source distortion and higher noise suppression performance. 
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3.6 Summary 

This chapter presents two novel reference-signal-based frequency-domain 

beamformers, FDABB and SPFDBB, to overcome problems such as calibration, 

near-field or far-field cases, resolution and desired signal cancellation etc. These 

approaches not only reduce the computational effort significantly in the ASR-based 

application as compared with the reference-signal-based time domain adaptive 

beamformer, but also improve performance in a noisy environment. Moreover, FDABB 

which can automatically adjust the frame number to different environments is 

particularly suitable for practical applications. 
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Chapter 4 

H∞ Adaptation Criterion 

4.1. Introduction 

The NLMS adaptation criterion used in the preceding chapter does not make any 

assumption about the pre-recoded signals and the disturbance, unlike the exact least 

square algorithm such as recursive least square (RLS). The solution of the NLMS 

adaptation criterion recursively updates the filter coefficient vector along the direction 

of the instantaneous gradient of the squared error. Therefore, the NLMS adaptation 

criterion is more robust to disturbance variation than the RLS algorithm. For example, 

it has been observed that the NLMS has better tracking capabilities than the RLS 

algorithm in the presence of non-stationary inputs [88]. However, the performance of 

the NLMS depends upon the properties of the modeling errors which may lead to large 

coefficient vector estimation error. Consequently, it is necessary to design a robust 

adaptive algorithm to guarantee that if the disturbance energy is small, the coefficient 

vector estimation error will be small as well (in energy). 

There has been an increasing interest in the mini-max estimation method [89-97] 

called H∞ algorithm which is more robust and less sensitive to model uncertainties and 
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parameter variations than the H2 adaptation criterion (such as the Kalman filter). This 

is because no a priori knowledge of the disturbance statistics is required in the H∞ 

algorithm. It means that the H∞ algorithm can accommodate for all conceivable 

disturbances which have a finite energy. Moreover, the estimation criterion of the H∞ 

algorithm is to minimize the worst possible effects of the disturbances (modeling errors 

and additive noises) on the signal estimation error. Actually, the NLMS adaptation 

criterion is the central a posteriori H∞ optimal filter [94]. However, it is the H∞ optimal 

filter that minimizes the worst possible effects of the disturbances on the filtered output 

error. But the goal of the reference-signal-based beamformer is to estimate the filter 

coefficient vector itself instead of in minimizing the filtered output error. In this case, 

the criterion of the H∞ optimal filter has to be modified to address the problem of filter 

coefficient vector estimation (eg. minimizing the coefficient vector estimation error). 

The remainder of this chapter is organized as follows. Section 4.2 describes the 

definition of the H∞-norm and the recursive solution of the time-domain adaptive 

beamformers which utilizes H∞ adaptation criterion. Section 4.3 applies H∞ adaptation 

criterion to the two proposed frequency-domain adaptive beamformers, SPFDBB and 

FDABB as well as analyzes the computing effort of the two frequency-domain 

beamformers and the time-domain beamformer using H∞ adaptation criterion. Section 

4.4 defines time-domain performance indices for the experiments in Chapter 6 to 

measure the robustness of H∞ adaptation criterion. Finally, a conclusion is given in 

Section 4.5. 

4.2. Time-Domain Adaptive Beamformer Using H∞ Adaptation 

Criterion 
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4.2.1 Definition of H∞ -norm 

The H∞-norm defines the worst case response of a system. If Z  denotes a transfer 

operator that maps an input causal sequence { }iu  to an output causal sequence { }iy  as 

shown in Fig. 4-1, the H∞-norm of Z  is defined as, 

       
2

2

0
sup

u
y

Z
u≠

∞
=        (4-1) 

where the notation 2.  denotes the 2-norm. Obviously, the H∞-norm can be regards as 

the maximum energy gain from the input u  to the output y . 

Z
{ }n

iiy 1={ }n
iiu 1=

 

Figure 4-1  Transfer operator Z from input { }iu  to output { }iy  

4.2.2 Formulation of Time-Domain Adaptive Beamformer  

Figure 4-2 shows the overall architecture of the time-domain adaptive beamformer 

using H∞ adaptation criterion. The data flow and architecture are almost the same with 

those introduced in the Chapter 2 except the H∞ adaptation criterion is used. In the 

silent stage (VAD = 0), the filter coefficient vectors are adapted through H∞ adaptation 

criterion. In the speech stage (VAD = 1), the computed filter coefficient vectors are 

applied to the lower beamformer to suppress the interference signals and noises, and 

derive the purified speech signal. 

Based on the system architecture shown in Fig. 4-2, the formulation of speech 

enhancement system can be expressed as the following linear model: 
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      e(n)nnr T += qx )(ˆ)(          (4-2) 

where )(nr  is the reference signal and [ ]TM nnn )(ˆ)(ˆ)(ˆ 1 xxx L=  is a 1×MP  

training signal vector.  [ ])1(ˆ)(ˆ)(ˆ +−= Pnxnxn iii Lx  is a P×1  training signal 

vector and each component in the silent stage is constructed from the linear 

combination of the pre-recorded speech signals and the online recorded interference 

signals or noises as )()()(ˆ nnnsnx iii += . M  denotes the number of microphones and 

P  denotes the number of filter tap. Additionally, 

[ ]TMPMP qqqq LLL 1111=q  is the 1×MP  unknown filter coefficient 

vector in the time domain that we intent to estimate. )(ne  is the unknown disturbance, 

which may also include modeling error.  
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Figure 4-2  System Architecture of the time-domain adaptive beamformer using H∞ 
adaptation criterion 

The problem of the proposed speech enhancement system is how to use a strategy 

called ( ))(ˆ),1(ˆ);(),1( nnrr xx LLΨ  to estimate the filter coefficient vector q  
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using all the information available from time 1 to time n such that the H∞ -norm from 

the disturbances { }{ }n
iie 120 )(,)1(ˆ2

1

=
− − qqμ  to the coefficient vector estimation error 

{ }n
ii 1)(~
=q  minimized, where )1(q̂  denotes the initial guess for q  and 0μ  is a positive 

constant that reflects to how close q  is to the initial guess )1(q̂ . This transfer operator 

shown in Fig. 4-3 is designate by ( )ΨT . )(~ nq  is the 1×MP  coefficient vector 

estimation error defined as: 

       )(ˆ)(~ nn qqq −=          (4-3) 

where )(ˆ nq  is the 1×MP  estimated filter coefficient vector. 

( )ΨT
{ }n

ii 1)(~
=q

( ))1(ˆ2
1

0 qq −−μ

{ }n
iie 1)( =

 

Figure 4-3  Transfer operator from disturbances to coefficient vector estimation error 

To apply the adaptive H∞ adaptation criterion, the linear model, as in Eq. (4-2), is 

transformed into an equivalent state-space form:  

⎩
⎨
⎧

+=
=+

)()()(ˆ)(
)()1(

nennnr
nn

T qx
qq

  with qq =)1(     (4-4) 

To find the optimal H∞ estimation, the criterion in the sense of H∞-based filtering is: 
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where 2⋅  denotes the square of the 2-norm. However, a closed form solution of Eq. 

(4-5) is unavailable for general cases. Therefore, it is common in the literature to relax 

the minimization condition and settle for a suboptimal solution. Given a scalar 0>qγ , 

find a H∞ suboptimal estimation strategy called 

( ))(ˆ),1(ˆ);(),1()(ˆ nnrrn xxq LLΨ=  that achieves ( ) qT γ<Ψ
∞

. In other words, 

the suboptimal solution is to find a strategy that achieves 

2

1

221
0

1

2

 , )()1(ˆ

)(~

sup qn

i

n

i

e ie

i
γ

μ
<

+− ∑

∑

=

−

=

qq

q

q
,  for ni ≤≤1      (4-6) 

4.2.3 Solution of suboptimal H∞  Adaptation Criterion 

Consider a time-variant state-space model of the form 

⎩
⎨
⎧

+=
+=+

)()()()(
)()()()()1(

nennn
nnnnn

qr
uqq

H
GF

  with 0≥n     (4-7) 

where MPMPCn ×∈)(F , JMPCn ×∈)(G , MPBCn ×∈)(H are known matrices, 1)( ×∈ JCnu  

are unknown process noises, and 1)( ×∈ BCnr  are observations. In general, the 

H∞-formulation estimates some arbitrary linear combination of the states, say 

       )()()( nnn qd B=            (4-8) 

where MPNCn ×∈)(B . Let ( ))(),1()(ˆ nrrn LΨ=d  denote the estimation of )(nd  

given observations { } n
iir 1|)( = . Define the estimation error as 
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)()()(ˆ)(~ nnnn qdd B−=        (4-9) 

Given a scalar 0>dγ , find a suboptimal H∞ estimation strategy 

( ))(),1()(ˆ nrrn LΨ=d  that achieves ( ) dT γ<Ψ
∞

. In other words, find a strategy 

that achieves 
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uuqq

d

u q,
,  for ni ≤≤1  (4-10) 

  In this case, the suboptimal solution [96] is recursively computed as 

( ))(ˆ)()()()(ˆ)()1(ˆ nnnnnnn qrqq HKF −+=+        (4-11) 

( ) 1)()()()()()()( −
+= nnnnnnn HH HPHIHPFK        (4-12) 

[ ] )()()()()()()()()()1( 121 nnnnnnnnnn HH
d

H GGFBBHHPFP * +−+=+
−−− γ  (4-13) 

0q  )1(ˆ =  and IP 0)1( μ=            (4-14) 

where )(nP  is an MPMP×  matrix, 1)( −⋅  denotes the matrix inverse operation, and 

*)(⋅ denotes the transpose operation. If the )(nF  is invertible and 00 >μ , then the 

following alternative condition can be used to guarantee the existence of Eq. (4-10) 

0)()()()()( 21 >−+ −− nnnnn H
d

H BBHHP γ , for all n   (4-15) 

4.2.4 Solution of Time-domain Adaptive Beamformer 



 45

Let’s apply Eqs. (4-11), (4-12), (4-13), and (4-14) to the state-space model Eq. (4-4) 

where IF =)(n , 0G =)(n , )(ˆ)( nn Tx=H , and IB =)(n . Thus the solution of )(ˆ nq  

can be found by the following iterative equations: 

( ))(ˆ)(ˆ)()()(ˆ)1(ˆ nnnrnnn T qxqq −+=+ K     (4-16) 

( ) 1)(ˆ)()(ˆ1)(ˆ)()( −
+= nnnnnn T xxx PPK      (4-17) 

IPP 211 )(ˆ)(ˆ)()1( −−− −+=+ q
T nnnn γxx           (4-18) 

0q  )1(ˆ =  and IP 0)1( μ=        (4-19) 

To ensure the existence of Eq. (4-6), qγ should be chosen such that 

0)(ˆ)(ˆ)( 21 >−+ −− IP q
T nnn γxx . For this reason, 2−

qγ is selected as 

( ))(ˆ)(ˆ)(1 nnneig Txx+× −Pδ  during the iteration, where ( )zeig  denotes the minimum 

eigenvalue of z. δ  is a positive constant and lower than one to ensure that Eq. (4-18) is 

positive definite. 

The adaptation of the filter coefficient vector is performed in the silent stage. When 

the system is switched to speech stage, the adaptation stops and the filter coefficient 

vector is passed to lower beamformer. The purified speech signal can be calculated by 

)(ˆ)()(ˆ nnny T qx=         (4-20) 

where [ ]TM nnn )()()( 1 xxx L=  is the 1×MP  online recorded noisy speech 

signal vector acquired by the microphone array, where 

[ ])1()()( +−= Pnxnxn iii Lx .  
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4.3. SPFDBB, FDABB and Computational Effort Analysis 

4.3.1  SPFDBB Using H∞  Adaptation Criterion 

Figure 4-4 shows the overall architecture of the proposed speech enhancement using 

H∞ adaptation criterion in the frequency domain. For the ASR application, the purified 

spectrum data should be computed directly to save computational effort, since most 

speech recognition algorithms are performed in the frequency domain. In this case, the 

filter coefficient vectors can be updated on a block of data. Hence, the problem is 

transformed into the frequency domain by using STFT. In conjunction with the 

spectrum-based ASR, the window size in the STFT has to equal to that in ASR in order 

to obtain a more accurate result. However, the window size may be too small to capture 

the acoustic channel response. For this reason, Chapter 4 proposed an approach called 

SPFDBB which takes the frame average over several frames as a block improving the 

approximation of the channel response. The number of frames in a block is denoted as 

the frame number L . In this chapter, the H∞ adaptation criterion is adopted to improve 

the performance further. 
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Figure 4-4  System Architecture of SPFDBB and FDABB using H∞ adaptation 
criterion 



 47

The strategy of the SPFDBB using H∞ adaptation criterion can be formulated as: 
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where )(ωQ  denotes the 1×M  unknown filter coefficient vector at frequency ω  

and )1,(ˆ ωQ  is the initial guess. ),(~ kωQ  is the 1×M  coefficient vector estimation 

error at th k  block defined as: 

),(ˆ)(),(~ kk ωωω QQQ −=      (4-22) 

where ),(ˆ kωQ  is the 1×M  estimated filter coefficient vector in the frequency 

domain. The energy of the disturbance 2),( kωE  is defined as: 
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where

[ ]THH kLkLkRkkkRk ),(ˆ)1,()1,(),(ˆ),(),(),( ωωωωωωω QSQSV −+−−+−= L

and [ ]THH kLkkkk ),(ˆ)1,(),(ˆ),(),( ωωωωω QNQNU −+= L . 
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Λ  is a LL 22 × matrix.  
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where LI  is an identity matrix with dimension LL×  and μ  is the soft penalty. 

[ ] T
M kNkNk  ),(),(),( 1 ωωω L=N , [ ] T

M kSkSk  ),(),(),( 1 ωωω L=S  , and 

),( kR ω  represent the frequency-domain online recorded environmental noise vector, 

the pre-recorded speech signal vector, and the reference signal respectively. 

Let’s apply Eqs. (4-11), (4-12), (4-13), and (4-14) to the SPFDBB, where 

IF =),( kω , 0G =),( kω , 
H
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SXX ωμωωω LH , 

IB =),( kω , and  ),(ˆ kωX  is the training signal vector with dimension 1×M . Thus 

the state space model can be represented by 
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ωμωωω LR . The solution of 

),(ˆ kωQ  can be approximated by the iteration: 

[ ]),(ˆ),(),(),(),(ˆ)1,(ˆ kkkkkk L ωωωωωω QRQQ HK −+=+    (4-24) 

( ) 1),(),(),(),(),(),( −
+= kkkkkk HH ωωωωωω HPHIHPK    (4-25) 

IHHPP 211 ),(),(),()1,( −−− −+=+ Q
H kkkk γωωωω        (4-26) 
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0Q  )1,(ˆ =ω  and IP 0
1 )1,( μω =−          (4-27) 

The value of 2−
Qγ  during the iteration is chosen as 

( )),(),(),(1 kkkeig H ωωωδ HHP +−  where )(zeig  denotes the minimum eigenvalue of 

z. δ  is a positive constant and lower than one to ensure that Eq. (4-26) is positive 

definite. Consequently, the purified speech signal at th k  block can be obtained by the 

following equation: 

     ),(),(ˆ),(ˆ kkk H ωωω XQY =         (4-28) 

where [ ])1,(ˆ),(ˆ),(ˆ −+= LkYkYk ωωω LY  is the purified result and ),( kωX  is 

the LM ×  online recorded noisy speech signal matrix. The step k  is chosen as 

L,3 ,2 , ,0 LLL  to perform the adaptation process every L  frames. 

4.3.2  FDABB Using H∞  Adaptation Criterion 

The requirement of the length of the training data would be too large and the 

SPFDBB could not respond to the change of room acoustics when a large value of L  

is chosen. Therefore, the method called FDABB is proposed in Chapter 4 to further 

enhance SPFDBB through the index CBVI  to allowing the frame number to be 

adapted on-line. In other words, CBVI  defined in Eq. (3-18) is the basis for adjusting 

the frame number. Figure 4-5 summarizes the proposed FDABB algorithm using H∞ 

adaptation criterion. 
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Figure 4-5  FDABB using H∞ adaptation criterion 

4.3.3  Computational Effort Analysis 

This section analyzes the computational efforts of the time-domain and the two 

frequency-domain adaptive beamformers using H∞ adaptation criterion from two 

different phases: the coefficients adaptation phase and the lower beamformer phase. In 

the coefficients adaptation phase, the desired speaker is silent and the coefficients are 

updated with the iteration equations from (4-16) to (4-19) for the time-domain adaptive 

beamformer, with Eqs. (4-24) to (4-27) for SPFDBB, and with Eqs. (4-24) to (4-27) and 

(3-18) for FDABB. The computational efforts are calculated according to a one-second 

length input datum for each phase, and are shown in Table 4-1. The meanings of the 

parameters are defined in Section 3.4.2. Notably, the computational effort of a matrix 

inversion was given in [98]. On the other hand, the eigenvalue must be found to 

determine the value of qγ or Qγ . However, the computation of eigenvalues is 

complex and the computational effort varies with the precision required. To ensure a 

steady performance, a general method based on Householder method and the shifted 

QR algorithm is considered; the computational effort associated with finding the 

eigenvalues is given in [99-100].  
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Table 4-1  Real Multiplication Requirement in One Second Input Data 

Multiplication Requirement 
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4.4. Time-domain Performance Indexes 

In this section, six time-domain performance indexes are defined. The first two 

parameters, SDR and NSR, instead of SNR are defined to evaluate the performances of 

the NLMS and H∞ adaptation criterions. This is because a lower SNR may not 

correspond to a higher ASR rate and these two indexes facilitate to directly separate 

two main issues: the inverse issue and noise suppression issue. SDR is defined as: 
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and NSR is defined as 
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where V  denotes the length of signals in both equations. SDR represents the degree of 

source distortion that caused by channel effect and noises. Moreover, NSR is the degree 

of noise reduction. 

 To observe different characteristics between the NLMS and H∞ adaptation 

criterion, four performance indexes named filtered output error (n)e f , reference 

signal estimation error (n)er , filter coefficient estimation error ratio, and filtered 

output error ratio are defined in Eqs. (4-31), (4-32), (4-33), and (4-34) individually. 

)(ˆ)(ˆ)(ˆ nnn(n)e TT
f qxqx −=       (4-31) 
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where )(~ nq  is the coefficient vector estimation error defined in Eq. (4-3). 

4.5. Summary 

In this chapter, the H∞ adaptation criterion is investigated to enhance the robustness 

to the modeling error caused by an inadequate window size to capture the acoustic 

channel dynamics. This chapter utilizes the H∞ adaptation criterion to replace the 

NLMS in the reference-signal-based time-domain adaptive beamformer. However, 

due to the intensive computational effort requirement in the time domain, SPFDBB 
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and FDABB, using H∞ adaptation criterion are proposed to significantly reduce the 

computational effort which is analyzes in Section 4.3.3. As shown in Chapter 6, H∞ 

adaptation criterion outperforms the NLMS with the same filter order in terms of SDR, 

NSR and ASR results.  
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Chapter 5 

Reference-signal-based Speaker’s 
Location Detection 

5.1 Introduction 

A speech enhancement system using microphone array usually requires a speaker’s 

location estimation capability. With the information of the desired speaker’s location, 

the speech enhancement system can suppress the interference signals and noises from 

the other locations. For example, in vehicle applications, a driver may wish to exert a 

particular authority in manipulating the in-car electronic systems through spoken 

language. Consequently, a better receiving beam using a microphone array can be 

formed to suppress the environmental noises and enhance the driver’s speech signal if 

the driver’s location is known. 

In a highly reflective or scattering environment, conventional delay estimation 

methods such as GCC-based (TDOA-based) algorithms [21-23] or previous works 

[24-25] do not yield satisfactory results. Although Brandstein et al. [101] proposed 

Tukey’s Biweight to redefine the weighting function to deal with the reflection effect; it 
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is not suitable for a noisy environment. To overcome this limitation, Nikias et al. [102] 

adopted the alpha-stable distribution, instead of a single Gaussian model, to model 

ambient noise and to obtain a robust speaker’s location detection in advance. In recent 

years, several works have introduced probability-based methods to eliminate the 

measurement errors caused by uncertainties, such as those associated with 

reverberation or low energy segments. Histogram-based TDOA estimators such as time 

histograms [20] and weighted time-frequency histograms [26-27] have been proposed 

to reduce direction-of-arrival root-mean square errors. The algorithm in [27] performs 

well especially under low SNR conditions. Moreover, Potamitis et al. [103] proposed 

the probabilistic data association (PDA) technique with the interacting multiple model 

(IMM) estimator to conquer these measurement errors. Ward et al. [7] developed a 

particle filter beamforming (steered-beamformer-based location approach) in which the 

weights and particles can be updated using a likelihood function to solve the 

reverberation problem. Although these statistical based methods [7], [20], [26-27] and 

[103] can improve the estimation accuracy further, they cannot distinguish from the 

locations using a single linear microphone array under a totally non-line-of-sight 

condition which is common in vehicular environments. 

Another approach (spectral-estimation-based location approach), proposed by Balan 

et al. [8], explores the eigenstructure of the correlation matrix of the microphone array 

by separating speech signals and noise signals into two orthogonal subspaces. The 

DOA is then estimated by projecting the steering vectors onto the noise subspace. 

MUSIC [9-10] combined with spatial smoothing [11] and [104] is one of the most 

popular methods for eliminating the coherence problem. However, as the experiment in 

Chapter 6 indicates, its robustness is still poor in a vehicular environment when the 
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SNR is low. Furthermore, the near-field effect [105-107] should also be considered in 

applications in real environments.  

In some environments, especially in vehicular environments, the line-of-sight 

condition may not be available because, for example, barriers may exist between the 

speaker and the microphone array. Therefore, when a single linear array is employed, 

the aforementioned methods cannot distinguish speakers under non-line-of-sight 

conditions. Hence, multiple microphone arrays must be considered [108-109]. Further, 

the microphone mismatch problem often arises when such methods as 

steered-beamformer-based, GCC-based or spectral-estimation-based algorithms are 

used since these methods require the microphones to be calibrated in advance. Several 

sound source localization works [110-111] also mentioned the importance of 

calibration and the influence of microphone mismatch problem. However, accurate 

calibration is not easy to obtain since the characteristics of microphones vary from the 

sound source directions. 

The relationship between a sound source and a receiver (microphone) in a 

complicated enclosure is almost impossible to characterize with a finite-length data in 

real-time applications (such as in frame-based calculations). According to the 

investigation of room acoustics [112], the number of eigen-frequencies with an upper 

limit of 2/sf  kHz can be obtained by the following equation: 
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⎛
ν

π sfB         (5-1) 

where sf  denotes the sampling frequency, ν  represents the sound velocity 

( sm /340≈ν  ) and B  is the geometrical volume. This equation indicates that the 

number of poles is too high when the frequency is high, and that the transient response 
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occurs in almost any processing duration when the input signal is a speech signal. For 

example, the number of poles is about 96435 when the sampling frequency is 8 kHz and 

the volume is 3 1385.14 m . Hence, the non-stationary characteristics of speech signals 

make the phase differences between the signals received by two elements of a single 

linear microphone array from a fixed sound source vary among data sets. Moreover, the 

stochastic nature of the phase difference is more prominent when the sound source is 

moving slightly and environmental noises are present. Consequently, the proposed 

method in this dissertation does not explicitly utilize the information of direct path from 

sound source to microphones to detect speaker’s location, nor attempt to suppress the 

effect of reverberations, interference signals, and noises. Instead, this proposed method 

utilizes the sound field features obtained when the speaker is at different location in an 

indoor environment. In other words, this dissertation proposes the use of the 

distributions of phase differences, rather than their actual values, to locate the speaker, 

because the phase difference distributions vary among locations and can be 

distinguished by pattern matching methods. Previous researches [113-114] also showed 

that common acoustic measures vary significantly with small spatial displacements of 

the sound source or the microphone. 

The experimental results in Chapter 6 indicate that the GMM [115] is very suitable 

for modeling these distributions. Furthermore, the model training uses the distributions 

of phase differences among microphones as a location-dependent but content and 

speaker-independent sound field feature. In this case, the geometry of the microphone 

array should be considered to cope with the aliasing problem and maximize the phase 

difference of each frequency band to detect the speaker’s location accurately. 

Consequently, the microphone array can be decoupled into several pairs with various 

distances between the microphones to deal with different frequency bands. The location 
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detector integrates the overall probability information from different frequency bands 

to detect the speaker’s location. 

The reminder of this chapter is organized as follows. The next section introduces the 

overall system architecture and data flow. Section 5.3 presents the design of the 

location model and the model parameters estimation approach. Section 5.4 presents the 

proposed reference-signal-based single speaker’s location detection criterion. Section 

5.5 discusses an approach to find each location’s testing sequence length and threshold. 

Section 5.6 describes the proposed reference-signal-based multiple speakers’ locations 

detection criterion using the information of testing sequence length and threshold of 

each location. Conclusions are made in Section 5.7. 

5.2 System Architecture 

5.2.1 System Architecture 

Figure 5-1 illustrates the overall system architecture. A voice activity detector 

divides the system into two stages, the silent stage and the speech stage. Before the 

proposed system is training online, a set of pre-recorded speech signals can be required 

via the description in Chapter 2 to obtain a priori information between speakers and the 

microphone array. The pre-recorded speech database can represent the acoustical 

characteristic of each location. After collecting the pre-recorded speech signals, the 

system switches automatically between the silent and speech stages according to the 

VAD result. 

The first stage is called the silent stage in which speakers are silent. In this stage, 

environmental noises without speech are recorded online. The system combines the 
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online recorded environmental noise, )(,),(1 ωω MNN L , with the pre-recorded speech 

database, )(,),(1 ωω MSS L , to construct training signals, )(ˆ,),(ˆ
1 ωω MXX L . After that, 

the GM location models are derived via the location model training procedure 

described in Section 5.3 or 5.5. Since the environmental noise alters, the GM location 

models that contain the characteristics of environmental noise are updated to ensure the 

detection accuracy and robustness in this stage. The second stage is the speech stage, in 

which the parameters of GM location models derived from the first stage are duplicated 

into the location detector to detect the speaker’s location.  

)(1 ωN
)(2 ωN

)(ωMN

)(1 ωS )(2 ωS )(ωMS

)(1 ωX
)(2 ωX

)(ωMX

)(ˆ
2 ωX

)(ˆ ωMX

)(ˆ
1 ωX

 

Figure 5-1  Proposed reference-signal-based speaker’s location detection system 
architecture 

5.2.2 Frequency Band Divisions based on a Uniform Linear 

Microphone Array 

The phase difference of the received signal becomes more significant as the distance 

between microphones increases. However, the aliasing problem occurs when this 

distance exceeds half of the minimum wavelength of the received signal [116]. The 
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distance between pairs of microphones should be chosen based on the selected 

frequency band to obtain clear phase difference data to enhance the accuracy of 

location detection and prevent aliasing.  

Figure 5-2 illustrates a uniform microphone array with M  microphones and the 

distance of d . According to the geometry, the training frequency range is divided into 

)1( −M  bands listed in Table 5-1, where m  denotes the th m  microphone; b  

represents the band number, ν  denotes the sound velocity, and bJ  is the number of 

microphone pairs in the band of b . The phase differences measured by the microphone 

pairs at each frequency component, ω  (belonging to a specific band, b ) are utilized 

to generate a GM location model with the dimension of bJ . 

 

Figure 5-2  Microphone array geometry 

Table 5-1  Relationship of Frequency Bands to the Microphone Pairs 

Frequency Band Microphone Pairs The Number of Microphone Pair The Range of Frequency Band

Band 1 ( 1=b ) )1,( −+ Mmm with 1=m  11 == JJb
 

dM )1(2
0

−
≤≤

ν
ω

 

Band 2 ( 2=b ) )2,( −+ Mmm with 21 ≤≤ m 22 == JJb
 

dMdM )2(2)1(2 −
≤<

−
ν

ω
ν  

M  M  M  
M  

Band 1−M  ( 1−= Mb ) )1,( +mm  with 11 −≤≤ Mm  11 −== − MJJ Mb
 

dd 24
ν

ω
ν

≤<  

5.3 Location Model Description and Parameters Estimation 
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5.3.1 GM Location Model Description 

If the GM location model at location l  is represented by the parameter 

( ) ( ) ( ){ }lMll ,1,,,,1, −= ωω λλλ L , then a group of L  GM location models can be 

represented by the parameters, ( ) ( ){ }Lλλ ,,1 L . A Gaussian mixture density in the band 

b  at location l  can be denoted as a weighted sum of N  Gaussian component 

densities: 

( ) ( )( ) ( ) ( )( )lbglblblbG Xi

N

i
iXb ,,,,,,|,, ˆ

1
ˆ ωωρωω PP ∑

=

=λ       (5-2) 

where ( ) ( ) ( )[ ]TbXXX lJPlPlb ,,,1,,, ˆˆˆ ωωω L=P  is a bJ -dimensional training phase 

difference vector derived from the training signals, )(ˆ,),(ˆ
1 ωω MXX L . ( )lbi ,,ωρ  is 

the th i  mixture weight and each component of the training phase difference vector 

can be obtained as follows: 

( )( ) ( )( )lbXphaselbXphaselmP mbMmX ,,ˆ,,ˆ),,(ˆ ωωω −= −+  with bm ≤≤1   (5-3) 

where ( )lbX m ,,ˆ ω  denotes constructed training signal of th m microphone in the band 

b  at location l . The GM location model parameter in the band b  at location 

l , ( )lb,,ωλ , is constructed by the mean matrix, covariance matrices and mixture 

weights vector from N  Gaussian component densities: 

( ) ( ) ( ) ( ){ }lblblblb ,,,,,,,,,, ωωωω Σμλ ρ=      (5-4) 

where 

( ) ( ) ( )[ ]lblblb N ,,,,,, 1 ωρωρω L=ρ  denotes the mixture weights vector in the 
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band b  at location l . 

( ) ( ) ( )[ ]lblblb N ,,,,,, 1 ωωω μμμ L=  denotes the mean matrix in the band b  at 

location l . 

( ) ( ) ( )[ ]lblblb N ,,,,,, 1 ωωω ΣΣΣ L=  denotes the covariance matrix in the band 

b  at location l . 

The th i corresponding vector and matrix of the parameters defined above are 

( ) ( ) ( )[ ]Tbiii lJllb ,,,1,,, ωμωμω L=μ  and 

( )
( )

( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
lJ

l
lb

bi

i

i

,,00
00
00,1,

,,
2

2

ωσ

ωσ
ω OΣ . 

( )( )lbg Xi ,,ˆ ωP  denotes the th i Gaussian component density in the band b at 

location l : 

( )( )
( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( )
             

,,2

,,,,,,,,,,
2
1exp

,, 22/

ˆ
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ˆ
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X
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Xi
ωπ

ωωωωω
ω

i

iii

Σ

Σ ⎟
⎠
⎞

⎜
⎝
⎛ −−−

=

− μPμP
P

                  (5-5) 

Notably, the mixture weight must satisfy the constraint that 

( ) 1,,
1

=∑
=

lb
N

i
i ωρ        (5-6) 

The covariance matrix, ( )lbi ,,ωΣ , is selected as a diagonal matrix. Although the 

phase differences of the microphone pairs may not be statistically independent of each 
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other, GMMs with diagonal covariance matrices have been observed to be capable of 

modeling the correlations within the data by increasing mixture number [117]. 

5.3.2 Parameters Estimation via EM Algorithm 

The purpose is to determine the L  GM location models, ( ) ( ){ }Lλλ ,,1 L , from the 

measured phase differences between each microphone pair in band b . Several 

techniques are available for estimating ( )lλ , of which the most popular is the EM 

algorithm [115] that estimates the parameters by using an iterative scheme to maximum 

the log-likelihood function. The EM algorithm can guarantee a monotonic increase in 

the model’s log-likelihood value, and its iteration equations corresponding to frequency 

band selection can be arranged as: 

Expectation step: 

( ) ( )( ) ( ) ( )( )
( ) ( )( )lbglb

lbglb
lblbiG

t
Xi

N

i
i

t
Xiit

Xb

,,,,

,,,,
,,,,,|

)(
ˆ

1

)(
ˆ)(

ˆ

ωωρ

ωωρ
ωω

P

P
P

∑
=

=λ     (5-7) 

where ( ) ( )( )lblbiG t
Xb ,,,,,| )(
ˆ ωω λP  is a posteriori probability and 

( ) ( ) ( ){ }lblblb T
XXX ,,,,,,,, )(
ˆ

)1(
ˆˆ ωωω PP L=P  is a sequence of T  input phase difference 

vectors. 

Maximization step: 

(i). Estimate the mixture weights: 

( ) ( ) ( )( )∑
=

=
T

t

t
Xbi lblbiG

T
lb

1

)(
ˆ ,,,,,|1,, ωωωρ λP     (5-8) 
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(ii). Estimate the mean vector: 

( )
( ) ( )( ) ( )

( ) ( )( )∑
∑

=

== T

t
t
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X
t
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ˆ

1
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(iii). Estimate the variances: 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )lj
lblbiG

ljPlblbiG
lj iT

t
t

Xb

T

t
t

X
t

Xb
i ,,

,,,,,|

,,,,,,,|
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1
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ˆ

1

2)(
ˆ

)(
ˆ2 ωμ

ωω

ωωω
ωσ −=

∑
∑

=

=

λ

λ

P

P
 (5-10) 

where { }Ni ,,1 L=  and { }bJj ,,1 L= .  

However, the EM algorithm only guarantees to find a local maximum log-likelihood 

model. A different choice of initial model ( )lb,,ω0λ  leads to various local maximum 

models. This work considered two initialization methods to find out the initial model. 

K-means [118] is by far the most widely-used method. Elkan [119] proposed an 

accelerated K-means algorithm which utilizes the triangle inequality to decrease 

significantly the computational effort. Charles’ method is also suitable for finding a 

good initial model to lower the iteration number of the EM algorithm. The first method 

utilizes the accelerated K-means clustering method. The second method separates 

phase difference range, { }ππ ,− , into N  segments to obtain a fixed initial mean 

model since the phase difference range is small enough. Consequently, the initial mean 

model is { }ππππ ππ L−−− −− 1
4

1
2

NN . The location detection performances of the 

two initial approaches have slightly different performance and no one is always the 

best.  
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Figure 5-3   Location model training procedure with the total location number L  

5.4 Single Speaker’s Location Detection Criterion 

The location is determined by finding the GM location model which has the 

maximum posteriori probability for a given observation sequences: 

( ) ( )( )[ ]

( ) ( )( ) ( )( )
( )( )bp

lbplbbG

blbGl

X

Xb
M

bLl

Xb

M
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,
,,,,|,logmaxarg    
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1
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ω
ωωω

ωω

P
λλP
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∑

∑
−
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≤≤

−

=
≤≤

=

=
   (5-11) 

where ( ) ( ) ( ){ }bbb Q
XXX ,,,,, )()1( ωωω PP L=P  is a phase difference testing sequence 

derived from )(,),(1 ωω MXX L , and Q  denotes the length of the testing sequence. If 

the probability densities at all locations are equally likely, then ( )( )lbp ,,ωλ  could be 

chosen as L/1 . The probability ( )( )bp X ,ωP  is the same for all location models and 

the detection rule can be rewritten as: 

( ) ( )( )∑∑
−

= =
≤≤

=
1

1 1

)(

1
,,|,logmaxarg ˆ

M

b

Q

q

q
XbLl

lbbGl ωω λP       (5-12) 
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5.5 Testing Sequence Lengths and Thresholds Estimation  

First, the work in Section 5.4 assumed that the speech signals are emitted from one of 

the previously modeled locations. Consequently, an unmodeled speech signal which is 

not emitted from one of the modeled locations, such as the radio broadcasting from the 

in-car audio system and the speaker’s voices from unmodeled locations, degrades the 

performance. The unmodeled speech signal could trigger the VAD, resulting in an 

incorrect detection of the speaker location. Therefore, a method that can prevent the 

detection errors without modifying the VAD approach is necessary. Second, the work in 

Section 5.4 cannot detect multiple speakers’ locations. If the speech signals from 

various modeled locations are mixed together, then the derived phase difference 

distribution becomes an unmodeled distribution, leading to a detection error. Figure 5-4 

shows the example of the phase difference distribution from two simultaneously 

speaking passengers at locations No. 1 and 2 which is not similar to the one from 

location No. 1 or 2, and thus may lead to a detection error.  

 

(a). Location No. 1 (frequency = 0.9375 kHz) (b). Location No. 2 (frequency = 0.9375 kHz) 
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(c). Locations No. 1 and 2 (frequency = 0.9375 kHz) 

Figure 5-4  The histograms of phase differences at locations No. 1, 2, and 1 and 2 

between the third and the sixth microphones at a frequency of 0.9375 kHz. 

Moreover, how to find a suitable length of testing sequence that could significantly 

affect the location detection performance is not discussed in Section 5.4. This section 

proposes a new threshold-based location detection approach that utilizes the training 

signals and the trained GM location model parameters to determine the length of testing 

sequence and then obtain a threshold of the a posteriori probability for each location to 

resolve the two issues mentioned above.  

Since conversational speech contains many short pauses, Potamitis et al. [103] 

locates multiple speakers by detecting the direction of individual speaker when the 

frame is originated from a single speaker. For example, Fig. 5-5 shows a two people 

conversation condition. Based on this concept, this dissertation proposes a 

threshold-based location detection approach to determine whether a speech frame 

originates from a single speaker or from simultaneously active speakers. This approach 

identifies the frames in which probably only one speaker is talking, and returns a valid 

location detection result. Moreover, because each location has specific acoustical 

characteristics, the threshold at each location can be used to determine whether it 
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represents the radio broadcasting or speech signals coming from unmodeled or 

modeled locations. 

 

Figure 5-5  A two people conversation condition 

The lengths of testing sequences and thresholds can be derived using the estimated 

parameters of the L  GM location models. The most suitable length of testing 

sequences at location l  is denoted as ( )lQ̂ , the threshold at location l  is denoted as 

( )lThd , and the possible searching range of the length of the testing sequence is set to 

[ ]UpLo QQ , . T  is the total length of the training phase difference sequence. 

( ) ( ) ( ){ }lblbtlb Qt
X

t
XQX ,,,,,,,,, )1(

ˆ
)(

ˆ,ˆ ωωω −+= PP LP  is a sequence of Q  training phase 

difference vectors, where 11 +−≤≤ QTt . ( )lQ̂  and ( )lThd  can be obtained using 

the following criterions: 
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     with 1=++ γβα           (5-14) 

and 

( ) ( ) ( ) ( )( ) ( )lQlQllLolThd X
ˆˆ,, ˆPλ=      (5-15) 

where γβα  , , are weights, and 
⎩
⎨
⎧

<∞−
≥

=
0 
0 

)(
kif
kifk

kI .  

( ) ( )( )QllUp X ,, ˆPλ  and ( ) ( )( )QllLo X ,, ˆPλ  denote the probability upper bound and 

lower bound when the length of the training phase difference sequence is Q . They are 

derived from the following equations: 
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The term ( )( )lbp ,,ωλ  could be eliminated because ( )( )lbp ,,ωλ  is independent to 

t  and the probability ( )( )tlbp QX ,,,,ˆ ωP  is the same for all t . Therefore, Eqs. (5-16) 

and (5-17) can be rewritten as: 
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The first term of Eq. (5-14) represents the negative maximum probability variation of 

the trained model when the length of the training phase difference sequence is Q . As 

the value of this term increases, the corresponding selection of Q  yields a more robust 

result under the trained GM location model. The second term of Eq. (5-14) is the sum of 

the probability differences of the location l  versus other locations and a larger value 

means the corresponding selection of Q  has a higher discrimination level between the 

location l  and the other trained GM locations. Finally, a high discrimination level 

between the location l  and other unmodeled locations can be achieved if the third term 

of Eq. (5-14) is large. Figure 5-6 shows the GM location model training procedure with 

the total location number L . 
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Figure 5-6  Location model training procedure with testing sequence length and 
thresholds estimation 

5.6 Multiple Speakers’ Locations Detection Criterion 

The location is detected as, 
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where ( ) ( ) ( ){ }bblb lQ
XXX ,,,,,, ))(ˆ()1( ωωω PP L=P  is a testing sequence derived from 

)(,),(1 ωω MXX L . If the probability densities at all locations are equally likely, then 

( )( )lbp ,,ωλ  could be chosen as L/1 . The probability ( )( )lbp X ,,ωP  is the same for 

all location models and then the detection rule can be rewritten as 

If the value of ( ) ( )( )[ ]( )
( )lQlbbG

M

b
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q

q
XbLl

ˆ,,|,logmax
1

1

ˆ

1

)(

1 ∑∑
−

= =
≤≤

ωω λP  is not larger than the 

corresponding threshold, then the frames may contain speech components that come 

simultaneously from multiple modeled locations or from unmodeled locations. 

5.7 Summary 

This chapter proposes reference-signal-based single speaker’s location and multiple 

speakers’ locations detection methods. The GM location models which are constructed 

by the location dependent features, phase differences. The proposed methods can 

overcome practical issues, such as the microphone mismatch, near-field effect, local 
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scattering, and coherence problems. The proposed methods are found out to work even 

under non-line-of-sight conditions and when speakers are in the same direction but 

different distances from the microphone array. 

Additionally, the proposed threshold adaptation approach computes a suitable length 

of testing sequence and a threshold for each modeled location. Experimental results in 

Chapter 6 show that the speaker’s location detection approach with these two adapted 

parameters performs well on detecting multiple speakers’ locations and reducing the 

average error rates caused by the unmodeled locations at various SNRs.  
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Chapter 6 

Experimental Results 

This chapter provides simulation and practical environmental results to assess the 

capability of the reference-signal-based adaptive beamformers and speaker’s location 

detection approaches proposed in this dissertation. In these experiments, the sampling 

frequency is set to 8 kHz and the amplified microphone signals are digitized by 16-bit 

AD converters. The processed frame window for STFT contained 256 zero padding 

samples and 32ms speech signals, totaling 512 samples. Figure 6-1 illustrates the 

processed frame window and the overlapping condition. The pre-recorded speech 

signals are acquired by locating a loudspeaker on the speech location and the reference 

signal is obtained from the original speech source that emitted from the loudspeaker. 

 

Figure 6-1  Processed frame window and overlapping condition 
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The remainder of this chapter is organized as follows. Section 6.1 utilizes the ASR 

rates and the two frequency-domain performance indexes introduced in Chapter 3 to 

show the advantages of the proposed reference-signal-based frequency-domain 

beamformer, SPFDBB and FDABB. Section 6.2 compares the robustness of the 

NLMS and H∞ adaptation criterions in the time domain through the simulation results. 

Section 6.2 also utilizes the ASR rates in both vehicular and indoor environments to 

prove the advantages of H∞ adaptation criterion. The experimental results containing 

the location detection performance in single and multiple speakers’ cases, and the cases 

of radio broadcasting and speech from unmodeled locations are discussed in Section 

6.3. Finally, conclusions are made in Section 6.4 

6.1 Adaptive Beamformers Using NLMS Adaptation Criterion 

6.1.1 Simulation Results 

In this simulation, a speech source and two noises, a white noise and a music signal 

are considered and the linear array contains six microphones. The speech source 

comes from 0° relative to the linear array, and the white noise and the music signal 

come from -30° and 60° respectively. Figure 6-2 illustrates the arrangement of the 

microphone array and the sources. The value of γ  is 610−  and the step size λ  of 

0.4 is selected. Two simulations are shown: the first one is performed to compare the 

performance among different parameters, and the second one is performed to observe 

the adaptation performance of FDABB in a sudden change of the noise channel, 

which the noise moves from -30° to -60°. Moreover, the two simulations are executed 

in three environments specified by different channel response durations: 1024, 2048, 

and 3072 taps.  
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Figure 6-2  Arrangement of microphone array, noies and speech source in simulation 
experiments 

In the first simulation, the locations of the speech source and the noises are fixed in 

the overall training data length. The soft penalty parameter μ  has three options, which 

are 0, 2, and 4. The frame number L  in a block varies from 10 to 20, and 20 to 30 

corresponding to different soft penalty parameters and channel response durations. Two 

frequency-domain performance indexes, NSR and SDR, of the most significant 

frequency, 410Hz, are shown in Tables 6-1, 6-2, and 6-3. The values shown in Tables 

6-1, 6-2, and 6-3 are computed by averaging the last 120 frames. The notation ADL 

indicates that the value of L  is adjusted by the CBVI with a lower threshold of 0.02, an 

upper threshold of 1.2, and the initial frame number 10. In other words, if the CBVI is 

smaller than 0.02, the value of L  will be increased. On the contrary, if the CBVI is 

larger than 1.2, the value of L  will be reset to the initial frame number. Additionally, 

Table 6-1 summarizes the related parameters of FDABB. Figure 6-3 depicts the NSR 

and the SDR from C6 to C9 with channel response duration 1024 shown in Table 6-2. 

Figure 6-3 shows that the measurement index in the condition with 1=L  varies 

heavily than the one in the conditions with 10=L , 20=L , and 30=L ; that is, the 

performance of the NSR and the SDR cannot be guaranteed even when the algorithm is 

run for a long time. From Tables 6-1 to 6-3, the SDR and the NSR become worse as the 
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channel response duration grows, but the proposed beamformer with a larger value of 

L  would have smaller performance decay and have better convergence performance. 

The SDRs of SPFDBB with 10=L , 20=L , and 30=L  in the condition of 2=μ  

has decreased from about 1.84dB to 4.52dB as compared with those in the conditions 

of 0=μ . Although the NSR increases at the same time as the SDR fell, the SDR 

decreasing rate is more important for ASR applications when the NSR is very low, 

especially when a larger value of L  is chosen. 

Table 6-1  The First Simulation Experiment: Soft Penalty Parameter is 0 
 Channel response 

duration 1024 

Channel response 

duration 2048 

Channel response 

duration 3072 
Condition L NSR(dB) SDR(dB) NSR(dB) SDR(dB) NSR(dB) SDR(dB)

C1 L = 1 -73.88 -46.67 -60.92 -42.97 -57.55 -16.97 

C2 L = 10 -102.82 -47.98 -91.53 -46.33 -90.60 -45.37 

C3 L = 20 -111.00 -48.85 -98.45 -47.28 -97.12 -46.08 

C4 L = 30 -122.92 -50.39 -112.57 -49.60 -105.32 -48.69 

C5 ADL -122.40 -50.10 -113.42 -49.87 -106.32 -48.50 

Table 6-2  The First Simulation Experiment: Soft Penalty Parameter is 2 
 Channel response 

duration 1024 

Channel response 

duration 2048 

Channel response 

duration 3072 
Condition L NSR(dB) SDR(dB) NSR(dB) SDR(dB) NSR(dB) SDR(dB)

C6 L = 1 -65.03 -44.20 -45.77 -42.35 -46.96 -14.50 

C7 L = 10 -97.97 -49.82 -89.67 -49.80 -92.87 -47.59 

C8 L = 20 -110.32 -51.16 -100.32 -50.62 -96.25 -48.96 

C9 L = 30 -120.92 -52.80 -109.27 -52.24 -105.24 -52.13 

C10 ADL -125.34 -52.31 -110.27 -52.21 -105.07 -52.11 

Table 6-3  The First Simulation Experiment: Soft Penalty Parameter is 4 

 Channel response 

duration 1024 

Channel response 

duration 2048 

Channel response 

duration 3072 
Condition L NSR(dB) SDR(dB) NSR(dB) SDR(dB) NSR(dB) SDR(dB)

C11 L = 1 -46.08 -29.40 -42.91 -27.39 -37.27 3.06 

C12 L = 10 -93.07 -50.06 -85.35 -49.85 -91.03 -48.08 

C13 L = 20 -109.65 -52.54 -95.39 -52.01 -96.00 -50.37 

C14 L = 30 -120.56 -54.02 -102.04 -53.87 -105.18 -53.21 

C15 ADL -121.71 -53.97 -102.62 -53.92 -105.59 -53.59 



 77

Table 6-4  Parameters of the FDABB 

Length of STFT 512 Samples 

Length of Input data in a frame 256 Samples 

Shift of STFT 80 Samples 

Window function Hamming 

Initial block value 10 

Block value increment 10 

Threshold of CBVI  0.02 and 1.2 

 

(a) NSR 

 
(b) SDR 

Figure 6-3  NSR and SDR form C6 to C9 with channel response duration 1024. The 
dash-dot line represents C6 ( 1=L ), the dot line represents C7 ( 10=L ), the straight 
line represents C8 ( 20=L ), and the dash line represents C9 ( 30=L ) 

In the first simulation, FDABB adjusts the frame number twice from 10 to 30; first 

at frame 261 and then at frame 621. Figure 6-4 illustrates the adaptation of CBVI. 
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Figure 6-5 shows the NSR and the SDR from C7 to C10 with channel response 

duration 1024 shown in Table 6-2. Since the initial frame number of FDABB is 10, 

the SDR and the NSR of FDABB are equivalent to the dash line in the first 261 

samples. Obviously, the FDABB could not only perform well in a shorter adaptation 

process but could also obtain a good convergence result. Since SPFDBB adopts the 

soft penalty, it emphasize on the SDR improvement than the NSR. Consequently, the 

SDR of 30=L  is better than the SDR of 10=L  after frame 300 and the 

convergence period of the SDR is shorter than that of the NSR. 

 
Figure 6-4  CBVI  in the first simulation experiment 

 

      (a) NSR 
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     (b) SDR 

Figure 6-5  NSR and SDR form C7 to C10 with channel response duration 1024. The 
dash-dot line represents C10 ( ADL ), the dot line represents C7 ( 10=L ), the straight 
line represents C8 ( 20=L ), and the dash line represents C9 ( 30=L ) 

In the second simulation, the location of white noise varies from -30° to -60° during 

the training data sequence. As shown in the Figs. 6-6 and 6-7, CBVI and the NSR both 

exhibit a big jump at frame 601 in response to the noise channel variation. Since the 

impulse response of the speech source is fixed, the SDR has a little variation. After this 

sudden change is detected, FDABB resets the value of L  to the initial frame number 

to perform advanced adaptation of the noise channel and changes the frame number at 

frame 771 and frame 851 to maintain convergence. 

   

Figure 6-6  CBVI  in the second simulation experiment 
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(a) NSR 

 
(b) SDR 

Figure 6-7  NSR and SDR in the second simulation experiment. The dash-dot line 
represents C10 ( ADL ), the dot line represents C7 ( 10=L ), the straight line 
represents C8 ( 20=L ), and the dash line represents C9 ( 30=L ) 

Table 6-5 shows the number of multiplications ratios of FDABB and SPFDBB to the 

reference-signal-based time-domain adaptive beamformer. Significant saving of 

computing power can be achieved as these data indicated. 

Table 6-5  Real Multiplication Requirement Ratio 

Multiplication Requirement Ratio  
Adaptation Phase Lower Beamformer Phase

FDABB with 2=μ  in the first simulation case 1 : 8.57 1 : 20.72 
FDABB with 2=μ  in the second simulation case 1 : 8.48 1 : 20.72 
SPFDBB with 10=L 1 : 10.69 1 : 20.72 
SPFDBB with 20=L 1 : 11.04 1 : 20.72 
SPFDBB with 30=L 1 : 11.17 1 : 20.72 
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6.1.2 Indoor Environment 

A uniform, linear array using 6 microphones is constructed for this experiment with 

microphones spaced 0.07 m apart. The array is mounted on an easel which is one meter 

in height and two meters to the nearest wall. The environment is a 20 m x 15 m x 4 m 

room full of office furniture to simulate a practical environment and its reverberation 

time at 1000 Hz is around 0.52 second. The interference signals in this experiment are 

mutually uncorrelated white noise. The speech signal comes from 0° or 30° with a 

distance of 1.5 m and the configuration is shown as Fig. 6-8.  

 

Figure 6-8  Arrangement of microphone array, noises and speech source in a noisy 
environment 

This experiment utilizes the ASR rates to measure the performances of FDABB, 

SPFDBB, the reference-signal-based time-domain adaptive beamformer, DS 

beamformer, GSC, robust adaptive beamformer, and minimum variance beamformer 

(MV) under a fixed speech source and different number of interference signals. To 

measure the ASR rate, 500 pairs of the vehicle identification numbers pronounced in 

Chinese are used. An HTK software package [120] is adopted as a speech recognizer. 

Here, the FDABB parameters are the same as those in Table 6-4 except that the soft 



 82

penalty is set at a constant value 2. The value of γ  is 610− . Table 6-6 shows the ASR 

system parameters. The filter tap of the reference-signal-based time-domain adaptive 

beamformer is chosen as 2560. 

Table 6-6  Parameters of the ASR 

Recognition kernel HTK ver.3.0 

Model HMM 

Feature Vector 12 th order MFCC + 12th order ΔMFCC 

Training data Set 1001 clean pairs of the vehicle identification numbers 

Recognition Task 500 pairs of the vehicle identification numbers 

Figures 6-9 and 6-10 present the ASR rates of two different speech sources and the 

notations used in the two figures are shown in Table 6-7. Figure 6-9 shows that the ASR 

rate decreases as the number of interference source increases (see Table 6-7). Because 

DS beamformer, GSC, robust adaptive beamformer, and MV beamformer do not take 

the calibration problem into consideration, the improved ASR rates of speech source in 

30° are lower than in 0°. For example, these traditional beamformers perform better in 

C1-C3 than in C4-C6. On the other hand, the proposed methods, SPFDBB with 

20=L  and 30=L , and FDABB with 2=u , and the reference-signal-based 

time-domain adaptive beamformer shown in Fig. 6-10 can overcome this effect. For 

example, the improved ASR rate of SPFDBB with 20=L  in C4, 32.23%, is better 

than that in C1, 29.57%. These experimental results in Figs. 6-9 and 6-10 show that the 

value of L  could affect the recognition rate. In this experiment, the FDABB with the 

2=μ  has the best performance in all conditions and the SPFDBB with 30=L  

performs better than the reference-signal-based time-domain adaptive beamformer. 
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Figure 6-9  ASR rates of different kinds of beamformer outputs versus different 
experiment conditions 

 

Figure 6-10  ASR rates of SPFDBB and FDABB versus different experiment 
conditions 

Table 6-7  Meaning of Notations in Figs 6-9 and 6-10 

C1 Speech source in 0°and noise source in -60° 

C2 Speech source in 0°and noise source in 60°and -30° 

C3 Speech source in 0°and noise source in 60°, -30°, and -60° 

C4 Speech source in 30°and noise source in 60° 

C5 Speech source in 30°and noise source in 60°and -30° 

C6 Speech source in 30°and noise source in 60°, -30° , and -60° 
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6.1.3 Vehicular Environment 

The experiment is performed on passenger seat of a mini-van vehicle instead of the 

driver’s seat due to the driving safety consideration. A uniform linear microphone array 

of six un-calibrated microphones with 0.05 m spacing is mounted in front of the 

passenger seat. Additionally, the distance between the microphone array and the 

speaker in the passenger seat is about 0.62 m. During the experiment, all windows are 

closed to prevent the microphones from saturating and the cabinet temperature is set to 

be 24ºC using the in-car air conditioner. Off-the-shelf, low-cost and non-calibrated 

microphones are used for the array. The performance of the proposed approaches is 

evaluated by ASR rates with the parameters shown in Table 6-6 under ten conditions 

(C1-C10 of Table 6-8). Table 6-8 shows the average SNRs in the ten conditions. A 

music piece containing vocal sound is played repeatedly from six build-in loudspeakers 

when the in-car audio system is turned on. This experiment utilizes the ASR rates 

shown in Fig. 6-11 to measure the performances of FDABB, SPFDBB, and the 

reference-signal-based time-domain adaptive beamformer. In the vehicular 

environment, the FDABB does not always outperform the SPFDBB with 30=L . 

However, the FDABB with the soft penalty parameter of 2 and the SPFDBB with 

30=L  outperform the reference-signal-based time-domain adaptive beamformer. 

Table 6- 8  Ten Experimental Conditions and Isolated Average SNRs 

Condition 
Number Speed 

Power of 
In-car Audio 

System 

Average 
SNR 
(dB) 

Condition 
Number Speed 

Power of 
In-car Audio 

System 

Average 
SNR 
(dB) 

C1 20 km/h Off 4.20 C6 20 km/h On -0.08 
C2 40 km/h Off 2.84 C7 40 km/h On -2.19 
C3 60 km/h Off 2.72 C8 60 km/h On -2.28 
C4 80 km/h Off -1.90 C9 80 km/h On -4.75 
C5 100 km/h Off -3.04 C10 100 km/h On -5.40 
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Figure 6-11  ASR rates of reference-signal-based time-domain beamformer, 
SPFDBB and FDABB  

6.2 Comparison of NLMS and H∞ Adaptation Criterions 

6.2.1 Simulation Results 

6.2.1.1  Single-channel Case 

The four time-domain performance indexes: filtered output error (n)e f  in Eq. 

(4-31), reference signal estimation error (n)er  in Eq. (4-32), filter coefficient 

estimation error ratio in Eq. (4-33), and filtered output error ratio in Eq. (4-34) are 

utilized in this case. The simulation signal is constructed through the linear model 

shown in Eq. (4-2). To reflect the modeling error, the unknown disturbance e(n)  is 

constructed as: 

( )[ ])()(ˆ 3 nvne(n) T += qxρ        (6-1) 
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where { })(nv  is a white noise sequence and ρ  is a scalar that can produce various 

SNR simulation cases. Therefore, the linear model can be rewritten as, 

( )[ ])()(ˆ)(ˆ)( 3 nvnnnr TT ++= qxqx ρ       (6-2) 

The tap number of the single channel, P , is chosen to be 10 and 20, 0μ  is set to 1, 

δ  is set to 0.001, and there are a total of seven SNRs, denoted from C1 to C7, as shown 

in Table 6-9. Figure 6-12 illustrates the filtered output error ratio obtained by executing 

NLMS adaptation criterion at C7. The filtered output error ratio of the H∞ adaptation 

criterion at C7 is presented in Fig 6-13. Obviously, the filtered output error ratio derived 

via the NLMS adaptation criterion never exceed one which fits the fact that the NLMS 

adaptation criterion guarantees the energy of the filtered output error will never exceed 

the energy of disturbance. Furthermore, the filtered output error, coefficient vector 

estimation error, and reference signal estimation error versus seven conditions shown 

in Figs. 6-14, 6-15, and 6-16 are derived from averaging the last one thousand runs of 

the total adaptation runs of 30000. Although the NLMS adaptation criterion is robust to 

the disturbance, the filtered output error and coefficient vector estimation error of H∞ 

adaptation criterion still outperform those of the NLMS adaptation criterion in this 

simulation. Notably, because the basic concept of the NLMS and H∞ adaptation 

criterions are to minimize the energy of the reference signal estimation error, (n)er , 

the reference signal estimation errors of the two adaptation criterion are similar. 

Table 6-9  Seven Kinds of SNRs 

Condition C1 C2 C3 C4 C5 C6 C7 

Average SNR 5.53 dB 1.99 dB -0.57 dB -2.47 dB -4.09 dB -5.42 dB -6.56 dB
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Figure 6-12  Filtered output error ratios of NLMS adaptation criterion with the tap 
number of 10 and 20 

 

Figure 6-13  Filtered output error ratios of H∞ adaptation criterion with the tap 
number of 10 and 20 

 

Figure 6-14  Filtered output error versus seven conditions 



 88

 

Figure 6-15  Coefficient vector estimation error versus seven conditions 

 

Figure 6-16  Reference signal estimation error versus seven conditions 

Although the H∞ adaptation criterion can guarantee Eq. (4-6) holds when the Riccati 

recursion I21 )(ˆ)(ˆ)( −− −+ q
T nnn γxxP  is larger than 0, how to find a most suitable 

value of qγ  is still an issue. According to Eq. (4-6), a smaller value of 2
qγ  can 

guarantee a smaller upper bound of Eq. (4-6) under the same disturbances. It means 

that a smaller value of 2
qγ  limits the maximum filter coefficient estimation error ratio 

to a smaller value. However, a smaller value of 2
qγ  does not always achieve a better 

performance. In this simulation, three different values of qγ  are compared at C2 with 

the SNR of 1.99dB to prove that the selection of qγ  could affect the estimation 
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performance. P is set to 10. 2−
qγ  in the three cases are selected 

as 31 10))(ˆ)(ˆ)((eig −− ×+ nnn TxxP , 41 10))(ˆ)(ˆ)((eig −− ×+ nnn TxxP , and 

51 10))(ˆ)(ˆ)((eig −− ×+ nnn TxxP  individually. Notably, the three values of qγ  satisfy 

0)(ˆ)(ˆ)( 21 >−+ −− Iq
T nnn γxxP , so the upper bound of Eq. (4-6) exists. Table 6-10 lists 

the corresponding minimum values of 2
qγ , filter output errors, and coefficient 

estimation errors in three cases from averaging the last one thousand runs. Figure 6-17 

illustrates the filter coefficient estimation error ratios in three cases. Clearly, the filter 

coefficient estimation error ratios in three cases do not exceed the minimum value of 

2
qγ . Although, case one has the smallest filter coefficient estimation error ratio and the 

fastest convergence rate, it does not converge to a smaller coefficient estimation error 

as compared with case two. 

Table 6-10  Experimental Results in Three Different Selection Cases of 2
qγ  

 Case One Case Two Case Three 
Minimum value of 2

qγ  629.08 2837.90 14220 
Filtered output error (dB) -53.48 dB -55.31 dB -51.78 dB 
Coefficient Estimation error (dB) -12.27 dB -16.98 dB -11.37 dB 

 
Figure 6-17  Filter coefficient estimation error ratios in three cases 
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6.2.1.2  Multiple-channel Case 

To simulate a noisy environment, a speech source and a white noise are passed 

through each individual channel to the six microphones and the channel response 

duration is set to 30 taps. The tap number of the estimated coefficient vector has three 

selections of 10, 20, and 30 taps which can simulate the conditions under which the 

filter order is lower than or equal to the channel response duration. The time-domain 

SDR and NSR defined in Eqs. (4-29) and (4-30) are adopted as performance 

measurements in this section. Table 6-11 depicts the values of the SDR and the NSR 

versus the number of taps. Notably, the total adaptation runs is 30000 and the values of 

time-domain SDR and NSR are derived from averaging the last one thousand runs. 

Clearly, the H∞ adaptation criterion outperforms the NLMS adaptation criterion. In 

Table 6-11, the performance of SDR and NSR degrades with the decrease of the filter 

order, especially for the H∞ adaptation criterion. Although increasing the filter order 

enlarges the degree of freedom, the improvement provided by NLMS adaptation 

criterion is insignificant, since the approach continuous to suffer from the modeling 

error problem. On the contrary, the H∞ adaptation criterion provides the robustness to 

modeling error, and thus can utilize the same increment of the degree of freedom to 

provide higher performance improvements.  

Table 6-11  SDR and NSR at the SNR of -5.16 dB 

 P = 10 P = 20 P = 30 

 SDR NSR SDR NSR SDR NSR 

NLMS adaptation criterion -52.91 dB -58.79 dB -54.50 dB -60.21 dB -55.49 dB -61.21 dB

H∞ adaptation criterion -67.50 dB -85.62 dB -75.90 dB -116.51 dB -79.09 dB -119.73 dB

6.2.2 Indoor environment 
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The indoor environment is arranges as Fig. 6-8 and the parameters of ASR is shown 

in Table 6-6. The FDABB parameters are the same as those in Table 6-4 and the soft 

penalty is 2. Figure 6-18 presents the ASR rates of SPFDBB and FDABB using NLMS 

and H∞ adaptation criterions in an indoor environment. Clearly, H∞ adaptation criterion 

outperforms the NLMS adaptation criterion in this case. Notably, although FDABB 

can adjust the frame number, L, this is not to say that the performance of FDABB is 

always better than the one of SPFDBB. For example, under the H∞ adaptation 

criterion, the ASR rates of SPFDBB are better than those of FDABB in C3 and C6.  

 

Figure 6-18  ASR rates of SPFDBB and FDABB using NLMS and H∞ adaptation 
criterions in an indoor environment 

6.2.3 Vehicular Environment 

The experiment conditions are described in Section 6.1.3. Figure 6-19 shows the 

ASR rates of SPFDBB and FDABB using NLMS and H∞ adaptation criterions in a 

vehicular environment. Obviously, the observation of that H∞ adaptation criterion 

outperforms the NLMS remains true in a vehicular environment. 
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Figure 6-19  ASR rates of SPFDBB and FDABB using NLMS and H∞ adaptation 
criterions in a vehicular environment 

6.3 Reference-signal-based Speaker’s Location Detection 

6.3.1. Vehicular Environment 

The experiment is performed in a mini-van vehicle with six separated seats [121]. 

Figure 6-20 presents the locations of the seats. During the experiment, the speakers at 

these locations slightly move around to mimic real usage scenarios. A uniform linear 

array of six microphones with 0.05 m spacing is mounted in front of location No. 2. The 

experiment is performed in various noisy environments. The environmental noise 

signals changed at various speeds. Table 6-12 lists the SNR ranges at various speeds, 

corresponding to the six locations. Table 6-13 presents the frequency bands that 

correspond to the pairs of microphones. 
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Figure 6-20  Seat number and microphone array position 

Table 6-12  The SNR Ranges at Various Speeds 

Speed Speed = 0 km/h Speed = 20 km /h 
The SNR Range (dB) 10.8204 ~ 17.2664 4.1762 ~ 10.6222 

Speed Speed = 40 km/h Speed = 60 km/h 

The SNR Range (dB) -4.5320 ~ 1.9140 -6.2526 ~ 0.1934 

Speed Speed = 80 km/h Speed = 100 km/h 

The SNR Range (dB) -8.4709 ~ -2.0249 -13.0531 ~ -6.6071 

Table 6-13  The Frequency Bands Correspond to the Microphone Pairs 

Frequency Band  Microphone Pairs The Number of Microphone Pair The Range of Frequency Band

Band 1 ( 1=b ) (1,6) 11 =J  Hzf 6800 ≤≤  

Band 2 ( 2=b ) (1,5); (2,6) 22 =J  HzfHz 850680 ≤<  

Band 3 ( 3=b ) (1,4); (2,5); (3,6) 33 =J  HzfHz 1100850 ≤<  

Band 4 ( 4=b ) (1,3); (2,4); (3,5); (4,6) 44 =J  HzfHz 17001100 ≤<  

Band 5 ( 5=b ) (1,2); (2,3); (3,4); (4,5); (5,6) 55 =J  HzfHz 34001700 ≤<  

6.3.1.1 MUSIC Algorithm - Single Speaker’s Location Detection  

A wideband incoherent MUSIC algorithm [10] with arithmetic mean is implemented 

and the results are compared with those of the proposed approach. Ten major 

frequencies, ranging from 0.1 kHz to 3.4 kHz, are adopted for the MUSIC algorithm. 
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Outliers are removed from the estimated angles by utilizing the method provided in 

[122]. Moreover, the angle errors needed for outlier rejection is derived from the 

estimated angles and real angles. Locations No. 2, 4 and 6 had the same DOA to the 

microphone array. Therefore, only locations No. 1, 2, 3 and 5 are considered for online 

testing. A frequently used classification method KNN (K-nearest-neighbor 

classification rule [123]) is used to construct a flexible boundary to improve the 

accuracy of detection to cope with the slight movement of the source, microphone 

mismatch, transient response and environmental noise. The estimated angles following 

outlier rejection are used as reference data in online location detection to illustrate 

further the performance of the MUSIC algorithm in the car cabinet. Suppose that the 

 thl  location contains lβ  estimated angles and that ββ =∑
l

l  is the reference data 

set. Assume that the  thl  location contains lK  points in the nearestK −  results of a 

new estimate r̂  derived from MUSIC with outlier rejection. The a posteriori 

probability is then given as 

K
K

rlp l=)ˆ|(            (6-3) 

To minimize the probability of a false classification of r̂ , the estimated location, 

denoted as MUSICl̂ , is decided by using following equation: 

)ˆ|(maxargˆ
5,3,2,1

rlpl
lMUSIC =

=       (6-4) 

Notably, the new estimate will not be classified if it is an outlier. The parameters are 

set to 200=lβ , { }5,3,2,1=l , 800=β and 30=K  and the number of trials is 100. 

Table 6-14 presents the correct rate after KNN classification with outlier rejection. The 
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correct rates at locations No. 3 and 5 are too low to be useful. In summary, these 

experimental results demonstrate that the MUSIC algorithm is not sufficiently reliable 

in a vehicle environment, even a classification method is applied and outliers are 

rejected to cope with the uncertainties. 

Table 6-14  Correct Rate of MUSIC Method Utilizing KNN with Outlier Rejection 

The correct rates at various speeds (km/h) 

LOCATION Speed 

0 km/h 

Speed 

20 km/h 

Speed 

40 km/h 

Speed 

60 km/h 

Speed 

80 km/h 

Speed 

100 km/h 

1 94 % 85 % 74 % 79 % 84 % 91 % 

2 93 % 90 % 92 % 89 % 81 % 89 % 

3 60 % 44 % 63 % 70 % 36 % 52 % 

4 × × × × × × 

5 59 % 46 % 17 % 26 % 78 % 22 % 

6 × × × × × × 

6.3.1.2 Proposed Single Speaker’s Location Detection Approach 

The proposed approach is applied under the same experimental conditions as Section 

6.3.1.1 to detect the speaker’s location. The second initial approach mentioned in 

section 5.3.2 is utilized to initialize the mean values. The covariance update may lead to 

numerical difficulties, as the covariance matrices become nearly singular. Consequently, 

the practical solution is to limit the minimum variance 2
minσ .  In this experiment, the 

value of 2
minσ  is set to 0.02. The lengths of the training sequence T  and the testing 

sequence Q  are set to 200 and 50; in other words, a two-second length input datum is 

set for training, and a half-second length input datum is set for testing. The mixture 

number of GMM model has ten choices, from one to ten. Figure 6-21 plots the 

experimental result of the correct rate versus the mixture numbers at 100 km/h. As 

shown in Fig. 6-21 (a), a single Gaussian distribution (where the mixture number is one) 
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could not yield a satisfactory experimental performance. The correct rates are 100% at 

all locations with the mixture number is ten. This finding justifies the assumption that 

GMM is suitable for this application. Although the experimental performance 

improved as the mixture number increased, the improvement in performance is not 

significant when the mixture number exceeded five. Table 6-15 lists the experimental 

results with a mixture number of five. Clearly, the proposed method outperforms the 

MUSIC algorithm. Even at locations No. 4 and 6, the proposed method could 

distinguish them with significant accuracy. Figure 6-22 shows the histograms of phase 

differences at locations No. 2, 4, and 6 between the third and the sixth microphones at a 

frequency of 0.9375 kHz and between the fourth and the sixth microphones at a 

frequency of 1.5 kHz, e.g., in third and fourth frequency bands. The speed that 

corresponds to this figure is 100 km/h. Although the locations had the same angle to the 

microphone array, their phase difference distributions are quite different, as indicated 

by several research reports [113-114]. Additionally, the proposed method combined 

five frequency bands, each of which contained different phase difference distributions. 

As a result, the proposed method is able to distinguish all of the locations by exploiting 

their implicit diversities. Moreover, under low SNR conditions, the proposed approach 

still yielded a high correct rate and is robust against in-vehicle noise. 

Table 6-15  Experimental Result of the Proposed Method with a Mixture Number of 
Five 

The correct rates at various speeds (km/h) 
Location Speed 

0 km/h

Speed 

20 km/h 

Speed 

40 km/h

Speed 

60 km/h

Speed 

80 km/h 

Speed 

100 km/h
1 99 % 100 % 99 % 99 % 99 % 98 % 
2 99 % 100 % 99 % 99 % 97 % 98 % 
3 100 % 100 % 99 % 100 % 100 % 100 %
4 99 % 99 % 99 % 98 % 98 % 98 % 
5 100 % 100 % 100 % 100 % 100 % 100 %
6 99 % 99 % 98 % 99 % 98 % 97 % 
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(a). The location number is chosen from 1 to 3 

 

 (b). The location number is chosen from 4 to 6 

Figure 6-21  Correct rate versus the different mixture numbers in 100 km/h 

 
(a). Location No. 2 (frequency = 0.9375kHz) (b). Location No. 4 (frequency = 0.9375kHz) 
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(c). Location No. 6 (frequency = 0.9375 kHz) (d). Location No. 2 (frequency = 1.5 kHz) 

 
(e). Location No. 4 (frequency = 1.5 kHz)  (f). Location No. 6 (frequency = 1.5 kHz) 

Figure 6-22  The histograms of phase differences at locations No. 2, 4, and 6 
between the third and the sixth microphones at a frequency of 0.9375 kHz and 
between the fourth and the sixth microphones at a frequency of 1.5 kHz, e.g., in third 
and fourth frequency bands (speed = 100 km/h) 

6.3.1.3 Proposed Multiple Speakers’ Locations Detection Approach 

Figure 6-23 shows the locations of the six in-car loudspeakers, and the locations that 

are tested for the experiment. The first six locations correspond to modeled locations, 

and the radio broadcasting emits from the six in-car loudspeakers, locations no. 7, 8, 

and 9 correspond to unmodeled locations. The total length of the training phase 

difference sequence T  is set to 300 (3-second duration). The values of LoQ , UPQ , α , 

β , and γ  are set to 10, 35, 0.3, 0.4, and 0.3 respectively. 
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Table 6-16 lists the SNR ranges at various speeds. The mixture number of GMM 

model has six choices, 1, 3, 5, 7, 9, and 11. The trial number for localization detection is 

300 for each mixture number at each speed. For the condition of a single speaker, Fig. 

6-24 plots the average correct rates versus mixture numbers, and indicates that a single 

Gaussian distribution, 1=M , could not yield a satisfactory performance, and that 

increasing the mixture number improves the performance.  

 

Figure 6-23  Locations number of the seats 

Table 6-16  SNR Ranges at Various Speeds 

SNR Ranges (dB) 

Speed (km/h) Multiple Speakers at 

locations no. 1 to 6 

Radio 

broadcasting 

Single Speaker  

at location no. 7

Single Speaker  

at location no. 8 

Single Speaker  

at location no. 9

Speed = 0 km/h 10.81 – 18.15 dB 13.10 dB 14.96 dB 13.18 dB 17.31 dB 

Speed = 20 km/h 5.62 – 12.96 dB 7.20 dB 10.15 dB 9.37 dB 11.50 dB 

Speed = 40 km/h 0.19 – 7.54 dB 2.18 dB 4.53 dB 2.76 dB 6.89 dB 

Speed = 60 km/h -0.54 – 6.81 dB 1.75 dB 3.81 dB 2.03 dB 5.16 dB 

Speed = 80 km/h -5.32 – 2.02 dB -3.04 dB -0.98 dB -2.76 dB 1.37 dB 

Speed = 100 km/h -7.28 – 0.07 dB -5.99 dB -2.93 dB -4.71dB -0.58 dB 
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(a). Locations number 1 to 3 

 

 (b). Locations number 4 to 6 

Figure 6-24  Average correct rates versus the mixture numbers 

Fifteen possible combinations, such as locations No. 1 and 2, and locations No. 1 and 

3, exist with two speakers talking. Three, four, and five speakers talking yield 20, 15, 

and 6 possible combinations respectively. Table 6-17 lists the average error rates of 

these conditions with a mixture number of 11. Notably, an error is defined as a detection 

result that does not give the location of any of these speakers. For example, if the 

speech signals come from locations No. 2 and 3, then an error occurs when the 

detection result is neither 2 nor 3. Table 6-18 lists the average error rates of radio 

broadcasting and the speech signals coming from locations No. 7, 8, and 9 with a 

mixture number of 11. The error in the table is defined as the detection result pointing to 
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one of the modeled locations. The experimental results indicate that the proposed 

method can successfully deal with multiple speakers and unmodeled speech sources. 

Table 6-17  Average Error Rates at Various Speeds under Multiple Speakers’ 
Conditions 

Average Error Rates (%) 
Speaker 

Number 
Speed  

0 km/h 

Speed  

20 km/h 

Speed  

40 km/h 

Speed 

60 km/h 

Speed 

80 km/h 

Speed 

100 km/h 

2 0.67 % 1.11 % 0.44 % 0.67 % 1.56 % 1.78 % 

3 0.50 % 1.00 % 0.67 % 0.50 % 1.17 % 1.83 % 

4 0.89 % 0.89 % 0.66 % 0.44 % 1.11 % 1.56 % 

5 0.11 % 0.05 % 0 % 0 % 0.05 % 0.11 % 

Table 6-18  Average Error Rates of Unmodeled Locations at Various Speeds 

Average Error Rates (%) 

Speed (km/h) Radio 

broadcasting 

Single Speaker at 

Location No. 7 

Single Speaker at 

Location No. 8 

Single Speaker at 

Location No. 9 

Speed = 0 km/h 0.22 % 0 % 0.06 % 0.22 % 

Speed = 20 km/h 0.28 % 0 % 0.17 % 0 % 

Speed = 40 km/h 0 % 0 % 0 % 0 % 

Speed = 60 km/h 0.06 % 0 % 0 % 0.33 % 

Speed = 80 km/h 0.28 % 0.33 % 0.33 % 0.33 % 

Speed = 100 km/h 0.33 % 0 % 0.39 % 0.67 % 

6.3.2. Indoor Environment 

The dimensions of the experimental room and the arrangement of microphone array 

are the same with those in the Section 6.1.2.  

6.3.2.1 Proposed Single Speaker’s Location Detection Approach 

Figure 6-25 presents the real configuration. The four speech signals are located at 

different angles, 0°, 30°, and −60°, with various distances to the array. Noises are 

located at 60°, −30° and −60°. Notably, speeches No. 1 and 3, and speech No. 4 and 
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noise No. 1 have the same DOA to the microphone array. All of the speech signals 

and noises are played by loudspeakers during the experiment. The interference signals 

in this experiment are white Gaussian noises and mutually uncorrelated. The distances 

between the microphone array and the noises are all 1.5 m. There are a total of twelve 

experimental conditions, denoted from C1 to C12, as shown in Table 6-19. 

 

Figure 6-25  Configuration of microphone array, noises and speech sources in noisy 
environment 

Table 6-19  Twelve Kinds of Experimental Conditions 

Condition SNR (dB) 
C1 Speech No. 1 and noise No. 1 15.46 dB 

C2 Speech No. 2 and noise No. 1 16.45 dB 

C3 Speech No. 3 and noise No. 1 13.93 dB 

C4 Speech No. 4 and noise No. 1 15.67 dB 

C5 Speech No. 1, noises No. 1 and 2 10.08 dB 

C6 Speech No. 2, noises No. 1 and 2 11.07 dB 

C7 Speech No. 3, noises No. 1 and 2 8.55 dB 

C8 Speech No. 4, noises No. 1 and 2 10.28 dB 

C9 Speech No. 1, noises No. 1, 2, and 3 5.95 dB 

C10 Speech No. 2, noises No. 1, 2, and 3 6.93 dB 

C11 Speech No. 3, noises No. 1, 2, and 3 4.42 dB 

C12 Speech No. 4, noises No. 1, 2, and 3 6.15 dB 
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The lengths of the training sequence T  and the testing sequence Q  are set to 300 

and 50; in other words, a three-second length input datum is set for training, and a 

half-second length input datum is set for testing. The mixture number of GMM model 

has six choices, 1, 3, 5, 7, 9, and 11. The trial number for localization detection is 250 

for each mixture number at each condition. Figure 6-26 plots the experimental result of 

the correct rates versus the mixture numbers under various conditions. Although the 

speech No. 4 and noise No. 1 come from the same direction, speech No. 4 still can be 

distinguished in C4, C8, and C12 with a higher mixture number. Generally, the correct 

rates in the indoor environment are lower than those in the vehicular environment when 

the mixture number is low, such as 1, 3, and 5. This phenomenon means that the phase 

difference distributions of different locations in the vehicular environment are more 

distinguishable. 

 

(a). Conditions one to four 
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(b) Conditions five to eight 

 
 (c) Conditions nine to twelve 

Figure 6-26  Correct rates versus the different mixture numbers 

6.3.2.2 Proposed Multiple Speakers’ Locations Detection Approach 

Figure 6-27 presents the real configuration. Clearly, three unmodeled speech signals, 

speeches No. 5, 6, and 7, are added in the experiment. It means that speeches No, 5, 6, 

and 7 can be regard as undesired speech signals or interference signals. The total length 

of the training phase difference sequence T  is set to 300 (3-second duration). The 

values of LoQ , UPQ , α , β , and γ  are set to 10, 35, 0.3, 0.4, and 0.3 respectively. 

Table 6-20 lists the SNR ranges at three different noisy environments. The mixture 
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number of GMM model also has six choices, 1, 3, 5, 7, 9, and 11. The trial number for 

localization detection is 250 for each mixture number. For the condition of a single 

speaker, Fig. 6-28 plots the average correct rates versus mixture numbers. 

 

Figure 6-27  Configuration of microphone array, noises and speech sources in noisy 
environment 

Table 6-20  SNR Ranges at Three Different Noisy Environments 

SNR Ranges (dB) 

Noisy Environments Multiple Speakers at 

Speeches No. 1 to 4 

Single Speech Signal 

at Speech No. 5 

Single Speech Signal 

at Speech No. 6 

Single Speech Signal 

at Speech No. 7 

Noise No. 1 13.93 – 26.9 dB 14.97 dB 18.17 dB 16.00 dB 

Noises No. 1 and 2 8.55 – 21.54 dB 9.57 dB 12.78 dB 10.62 dB 

Noises No. 1, 2, and 3 4.42 – 15.66 dB 3.68 dB 6.88 dB 4.71 dB 

 
Figure 6-28  Average correct rates versus the mixture numbers 
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Six possible combinations, such as speeches No. 1 and 2, and locations No. 1 and 3, 

exist with two speakers talking. Three speakers talking yield four possible 

combinations respectively. Table 6-21 lists the average error rates of these conditions 

and Table 6-22 lists the average error rates of the speech signals coming from speeches 

No. 5, 6, and 7 with a mixture number of 11. Notably, speeches No. 1, 3 and 6 and 

speeches No. 2 and 5 have the same DOA to the microphone array. The experimental 

results indicate that the proposed method can also successfully deal with multiple 

speakers and unmodeled speech signals. 

Table 6-21  Average Error Rates at Three Noisy Environments under Multiple 
Speakers’ Conditions 

Average Error Rates (%) Speaker 

Number Noise No. 1 Noises No. 1 and 2 Noises No. 1, 2, and 3 

2 2.93 % 1.33 % 0.87 % 

3 0.1 % 0.1 % 0 % 

Table 6-22  Average Error Rates of Unmodeled Locations at Three Noisy 
Environments 

Average Error Rates (%) 

Noisy Environments Single Speech Signal at

 Speech No. 5 

Single Speech Signal at 

Speech No. 6 

Single Speech Signal at 

Speech No. 7 

Noise No. 1 0.8 % 0 % 0 % 

Noises No. 1 and 2 0 % 0 % 0.2 % 

Noises No. 1, 2, and 3 0.3 % 0.4 % 0.2 % 

6.4 Summary 

This chapter evaluates the proposed SPFDBB, FDABB, and speaker’s location 

detection approaches through simulation and real experimental results. Section 6.1 

proves the proposed SPFDBB and FDABB not only outperform the 

reference-signal-based time-domain adaptive beamformer and several famous 
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beamformers, but also reduce the computational effort. Section 6.2 simulates the 

single-channel and multiple-channel cases, while performing vehicular environment 

and indoor environment experiments, to show the robustness of the H∞ adaptation 

criterion. Moreover, Section 6.3 executes the proposed speaker’s location detection 

approach in noisy vehicular and indoor environments to prove the high detection 

accuracy and the robustness to the unmodeled or unexpected speech sources.  
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Chapter 7 

Conclusions and Future researches 

7.1.  Conclusions 

This dissertation presents reference-signal-based methods of sound source 

localization and speech purification using microphone array. Specifically, 

frequency-domain adaptive beamformers, namely SPFDBB and FDABB, are proposed 

to cope with the computation issues in real-time. Under the architecture, the proposed 

approaches can be applied to both near-field and far-field environments and overcome 

microphone mismatch problem.  

Other than the advantages mentioned above, SPFDBB and FDABB can minimize 

the channel effects, the desired signal cancellation, and the resolution effect due to the 

array’s position. FDABB and SPFDBB not only reduce the computational effort, but 

also deal with the problem of inaccurate channel representation. That is to say, the 

convolution relation between channel and speech source in time-domain cannot be 

modeled accurately as a multiplication in the frequency domain with a finite window 

size. According to the computational effort analysis in Chapters 4, 5, and 6, FDABB or 

SPFDBB requires a lower computational effort as compared with the 
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reference-signal-based time-domain adaptive beamformer. Additionally, FDABB 

utilizes an index named CBVI to adjust the frame number L  automatically, so it is 

more suitable than SPFDBB for applications with a small training data length or 

variations of the channel dynamics. 

FDABB and SPFDBB attempt to simultaneously suppress the noise signals and 

recover the channel dynamics. However, according to Eq. (5-1), the finite filter 

coefficient vectors are not sufficient to perform the perfect equalization in general 

environments, thus leading to the modeling error. To reduce the effect of modeling error, 

this dissertation further studies the robustness of H∞ adaptation criterion and applies the 

criterion to the proposed FDABB and SPFDBB. 

To overcome the non-line-of-sight problem in the sound source localization field, 

this dissertation proposes an approach utilizing GMM to model the distributions of the 

phase differences among the microphones caused by the complex characteristic of 

room acoustic and microphone mismatch. According to the experimental results in 

Chapter 6, the scheme performs well not only in non-line-of-sight cases, but also when 

the speakers are aligned toward the microphone array but at difference distances from it. 

However, an unmodeled speech signal which is not emitted from one of the modeled 

locations degrades the detection performance. Therefore, this dissertation further 

proposes multiple speakers’ location detection approach to provide an accurate 

localization of multiple speakers and robustness to unmodeled sound source locations. 

7.2.  Future researches 

To improve the current speech enhancement system, this dissertation proposes two 

possible further research directions; the first one is to combine SPFDBB or FDABB 
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with the speech recognizer, and the second one is to combine multiple speakers’ 

location detection approach with the proposed SPFDBB or FDABB.  

Currently, the proposed reference-signal-based frequency-domain beamformers are 

performed in two independent phases: speech purification and then recognition as 

shown in Figs. 1-5, 3-1 and 4-2. The proposed beamformers designed to reduce the 

speech distortion and suppress the noise effects assume that improving the quality of 

the speech waveform will result in better recognition performance and are independent 

of the recognition system. Although the proposed beamformers can conquer many 

practical issues, the beamformers still cannot compete with the microphone in a close 

distance in terms of the ASR rates. Generally, a speech recognizer is a statistical 

pattern classifier that operates on a sequence of features derived from the waveform. To 

increase the recognition accuracy in distant-talking environments, the architecture of 

connecting the proposed beamformers and the speech recognizer as shown in Fig. 7-1 is 

worth a further study in the further. This architecture enables the beamformer to use 

the data transmitted from the recognizer and ensures the beamformer enhances those 

signal components important for ASR. In other words, this architecture enables the 

designed filters not to undue emphasis on unimportant components. 

For example, Seltzer et al. [124-125] proposed a likelihood-maximizing beamformer 

(LIMABEAM) that integrates the speech recognition system into the filter design 

process. They proved that incorporating the statistical models of the recognizer into the 

array processing stage can improve the ASR rates. The goal of the LIMABEAM is not 

to generate an enhanced output waveform but rather to generate a sequence of features 

which maximizes the likelihood of generating the correct hypothesis. In other words, 

the filter coefficient vectors are chosen to maximize the likelihood of the training signal 

as measured by the recognizer, rather than to improve its SNR or perceptual quality. 
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Nishiura et al. [128] also proposed a method which combines HMM model and 

microphone to enhance the speech recognition further. 

M MM

 

Figure 7-1  Speech enhancement system with a combination of beamformer and 
recognizer 

Furthermore, under the same architecture, it is highly possible to combine the 

proposed speaker’s location detection approach and SPFDBB or FDABB to 

significantly reduce the possibility of the wrong operation of SPFDBB or FDABB. The 

wrong operation means that the unmodeled or unexpected speech signal triggers the 

VAD to switch the beamformers to the speech stage, and thus obtain an error output. 

According to the system architecture of frequency-domain beamformers in Chapters 3 

and 4, this wrong operation is unavoidable due to the limitation of VAD. However, the 

proposed multiple speakers’ locations detection approach in Chapter 5, which can 

detect the unmodeled sound signals, is highly possible to avoid the wrong operation. 

Therefore, the unmodeled speech signal could hardly cause the error output under the 

new system architecture in Fig. 7-2. Based on the system architecture, both the VAD 

result and speaker’s location detection system are combined to decide the stage of the 

SPFDBB or FDABB. It means that if the received sound signal is detected as 

containing speech signal and coming from one of the desired locations, then the system 

is switched to the speech stage. Consequently, it is also worthwhile to study how to 

construct the two components with a suitable integration procedure. Figure 7-3 shows 

the flowchart of the integrated architecture. 
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Figure 7-2  Overall system structure which integrates the speaker’s location 
detection approach and SPFDBB or FDABB 

Start

End ?

END

Yes

No

VAD = 0Decision Rule
VAD Result?

VAD = 1

Silent stage of 
the  multiple 

speaker location 
detection system

Silent stage of 
SFPDBB or 

FDABB

Speech stage of the multiple 
speaker location detection system

The speech signal 
comes from one of the 

desired location?

Yes

Speech stage of SPFDBB or 
FDABB

Automatic speech recognizer

Silent stage of 
SPFDBB or 

FDABB

No

 

Figure 7-3  Flowchart of the architecture which integrates the speaker’s location 
detection approach and SPFDBB or FDABB 
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