
 1

國 立 交 通 大 學

電機與控制工程學系

博 士 論 文

分子類神經網路於數位影像處理的應用

Applications of Cellular Neural Networks in
digital image processing

 研 究 生：壽 宇 文

 指導教授：林 進 燈

中 華 民 國 九 十 五 年 六 月

 2

分子類神經網路於影像處理的應用
Applications of Cellular Neural Networks in

digital image processing

研 究 生：壽宇文 Student：Yu-Wen Shou

指導教授：林進燈 博士 Advisor：Dr. Chin-Teng Lin

國 立 交 通 大 學

電 機 與 控 制 工 程 學 系

博 士 論 文

A Dissertation
Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Electrical and Control Engineering
June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

 i

分子類神經網路於數位影像處理

的應用
研究生： 壽宇文 指導教授： 林進燈 博士

國立交通大學電機與控制工程學系(研究所)博士班

摘 要

 在這篇論文裡，我們將分子類神經網路(Cellular Neural Networks)應用於複雜
且具有代表性地數位影像處理；分子類神經網路一直在學術界有著其特殊且不可

取代的地位，其原因主要在於其具備了完整的理論基礎以及在實用時穩定性

(stability)和堅固性(robustness)的易於操控，當然最吸引人地莫過於分子類神經網

路可硬體實現化的優勢，不過由於硬體實現可能性的考量，分子類神經網路中樣

版(template)的設計往往是愈單純愈容易達到硬體實現的目的，但此一設計限制

卻和一般數位影像處理演算法的需求大異其逕，也因此使得在過去的文獻裡分子

類神經網路只侷限於應用在一些簡單的影像處理技術，為了突破此一瓶頸，我們

所提出的這篇論文不但清楚詳細地討論分子類神經網路於高階影像處裡的可能

應用演算法更提出實際案例來證明分子類神經網路應用的可能性，所以我們所提

出的方法不僅可以解決過去一些高階影像處理的問題，同時也為未來種種數位影

像處理於硬體實現的可能提供了一個完整及實際的實現策略。
這篇論文主要可以分為三大部分：在第一部份裡，我們會詳細地說明並討論

在過去到現在大部分將分子類神經網路應用於影像處理的相關文獻及未來所有

可能的發展和技術，另外也將分子類神經網路作一完整的介紹，除此之外，我們

也會特別著重於分子類神經網路在影像處理相關應用理論的討論以及其硬體實

現化的考量；在第二部分裡，我們提出了一個將分子類神經網路應用於影像辨識

處理的基礎分析—紋路分析(Texture Analysis)，這是由於紋路分析的複雜性和普

遍性會使得分子類神經網路於高階影像處理的應用不會只侷限在單一的影像處

理技術，其中我們也提出了一個相當有用的空間特徵(spatial feature)，此一特徵
不但可以使複雜地高階影像處理能夠應用分子類神經網路，也為影像辨識技術提

供了一個很好的辨識機制；在最後一部分裡，我們也將文件影像分析做了一個完

整的剖析，並以文件影像的去網點為例來說明在實際情況下的分子類神經網路的

應用，如此演算法的開發也為文件影像處理提供了更多實際的應用，更考量了文

件影像處理若以軟體實現時的計算量負荷，而對未來高階數位影像處理能夠以硬

體實現來提高處理速度提供了無限的可能。

 ii

Applications of Cellular Neural Networks
in digital image processing

Student: Yu-Wen Shou Advisor: Dr. Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract
This dissertation tackles the all-time challenging research field of digital image

processing by using Cellular Neural Network as means of its application. As we all

know, Cellular Neural Network has been critically acclaimed by the academia for its

impeccable theoretical structure and the stability and robustness its applications speak

for. Aside from these advantages it presents, Cellular Neural Network appears to be

compelling in that it can be practically realized for hardware compilation. However,

this does not mean Cellular Neural Network is without limitations. When it comes to

hardware compilation of Cellular Neural Network, decent and satisfactory results only

come with easy and simple template design, which on the contrary contradicts the

algorithmic expectations we have for image processing. This explains why, for years,

among all those respectable academic papers and researches, Cellular Neural Network

has been applied only for simple, low-level image processing technology. In this

dissertation, I will not only dig into the possible algorithms of applications of Cellular

Neural Network in higher-level image processing, but use practical case study to

justify how these applications may turn out with unexpectedly outstanding

performance. In such doing, this dissertation serves as a step stone for papers of its

counterparts to come, and, more importantly, it proposes a strategic alternative to the

 iii

realization of models for image processing.

This dissertation consists of three major parts. In the first part, detailed

discussions and delicate analyses of academic papers on Cellular Neural Network will

be provided in the hope of helping us see the potentiality of Cellular Neural Network

in the applications of image processing. I will focus on the aforementioned limitations

on hardware compilation as well. In the second part, I will put forth “texture analysis”

as one basic model of analysis when we apply Cellular Neural Network to image

processing. In this so-called texture analysis, a useful “spatial feature” is especially

drawn to help us overcome possible problems of more complicated Cellular Neural

Network applications in image processing. “Spatial feature” also serves as a

well-functioning mechanism for technology of image identification. In the last part of

this thesis, I will look into a case study, where Cellular Neural Network is applied to

help de-screen document image. Using it as an example, we will see how algorithms

of Cellular Neural Network may be of marvelous use in applications in document

image processing, since it would reduce a great deal of calculation and computation

when applied to software compilation, yet opens up unlimited possibilities for

higher-speed hardware compilation of high-level image processing.

 iv

Acknowledgment
 這篇論文的完成除了要特別謝謝我的父母及家人在我的博士求學期間所給

予我的所有經濟上以及精神上的幫助，當然我也要在這裡特別謝謝我的指導教授

林進燈博士所給予我的所有指導，謝謝他在我的博士求學期間提供了一個獨立及

自由的研究空間，由於他的啟發與指導激發了我在研究討論的空間裡更多的創新

想法及不同於傳統的思考模式，沒有他們不會有這篇論文的完成，另外在這裡我

也要特別謝謝我的好友陳德良和沈聿德，他們在我的求學期間也給予了我很多精

神上及實質上的幫忙與支持，最後我也要對所有曾經幫忙過我的朋友、同學及實

驗室裡的學弟妹們至上我最深的謝意，由於他們的無私幫忙使得我可以在沒有顧

慮的情況下做研究，因而促進了此篇論文的完成。

 v

Contents
摘 要 ..i
Abstract...ii
Acknowledgment...iv
Contents ..v
List of Figures...vii
List of Tables ..x

1. Introduction..1
1.1 Motivation..1
1.2 Related Works ..2

1.2.1 Cellular Neural Networks ...2
1.2.2 Texture Analysis..4
1.2.3 Genetic Algorithms ...6
1.2.4 Image Documentation...8
1.2.5 Genetic Algorithm based Cellular Neural Network....................10

1.3 Contributions..12
1.4 Concluding Remarks..16

2. Fundamentals of Cellular Neural Network and Genetic Algorithm18
2.1 The Fundamental Architecture of CNN...18

2.1.1 Basic CNN formula...20
2.1.2 General CNN model ...21

2.2 CNN Templates for Digital Image Processing.......................................22
2.2.1 Edge Detection CNN Template...23
2.2.2 Color Inverse CNN Template ...24
2.2.3 Image Thresholding CNN Template ...25
2.2.4 Low-pass Filtering CNN Template ...26
2.2.5 Laplacian CNN Template..27
2.2.6 Half-toning CNN Template...28

2.3 CNN Justifications ...29
2.4 Concluding Remarks of CNN..31
2.5 Genetic Algorithm (GA) ..32
2.6 Essentials in GA...34
2.7 Discussions of GA ...38

2.7.1 Parameter settings ...38
2.7.2 Global optimization ..39
2.7.3 Fitness Function..40

 vi

2.8 Concluding Remarks of GA...42
3. Image Descreening based on GA-CNN Texture Classification..........................43

3.1 Introduction..43
3.2 The Proposed System Architecture..44
3.3 Screening Texture Classification ...47

3.3.1 Screening-Texture Patterns ...48
3.3.2 Smooth Indices for Screening-Texture Block Detection50

3.4 Design of CNN Templates for Screening Texture Classification by GA
..52

3.4.1 The Settings of CNN Templates ...53
3.4.2 Parameter Adjustments in GA ..54
3.4.3 CNN Template Design by GA ..55

3.5 Selection of Descreening Filters ..61
3.6 Adaptive Determination of Arguments in the Chosen Descreening Filter
..63
3.7 Experimental Results ...65

3.7.1 The Training Phase ...65
3.7.2 The Testing (Descreening) Phase..68

3.8 Concluding Remarks..73
4. Texture Discrimination based on GA-CNN proliferation structure75

4.1 Introduction..75
4.2 The Proposed System Architecture ..76
4.3 Transition Bit String (TBS)..79
4.4 The Characteristics of Texture Patterns from CNN’s84

4.4.1 The Settings of CNN Templates ...85
4.4.2 The Overview of Texture Patterns Based on CNN’s86

4.5 Design of Characteristic Templates Optimized by Genetic Algorithms
(GA’s)...89

4.5.1 The Design Rules on GA by TBS ...89
4.6 Texture Classification Mechanism...96
4.7 Experimental Results ...98
4.8 Concluding Remarks..106

5. Conclusions and Perspectives ...108
Bibliography ... 112

 vii

List of Figures
Fig. 2.1_1 Expression of an isolated cell...20
Fig. 2.2.1_1 Edge detection example by some specified template for (a) the binary
image (b) the gray-level image (Left: the original image, Right: the processed
image) ..24
Fig. 2.2.2_1 Inverse operation example by some specified template for (a) the
binary image (b) the gray-level image (Left: the original image, Right: the
processed image) ..25
Fig. 2.2.3_1 Thresholding example by some specified template (Left: the original
image, Right: the processed image) ..26
Fig. 2.2.4_1 Low-pass filtering example by some specified template (Left: the
original image, Right: the processed image)..27
Fig. 2.2.5_1 Laplacian operation example by some specified template for (a) the
binary image (b) the gray-level image (Left: the original image, Right: the
processed image) ..28
Fig. 2.2.6_1 Image half-toning by some specified template for (a) the natural
gray-level image (b) the human gray-level image (Left: the original image, Right:
the processed image) ..29
Fig. 2.4_1 Flow chart of the systematical GA structure ...34
Fig. 2.5_1 Illustrating figure for one-point crossover ...36
Fig. 2.5_2 Illustrating figure for two-point crossover...37
Fig. 2.5_3 Illustrating figure for masking crossover...37
Fig. 2.6.3_1 Illustrating figure for linear scaling...41
Fig. 3.2_1. Flowchart of the training phase of the proposed GA-CNN-based
texture classification scheme. ..45
Fig. 3.2_2. Flowchart of the proposed image descreening technique.46
Fig. 3.3.1_1 Three example screened images. Images (a) – (c) contain different
types of screening patterns. ...49
Fig. 3.3.1_2 Screening Example 1 ...50
Fig. 3.3.1_3 Screening Example 2 ...50
Fig. 3.3.2_1 Partition in the screening pattern for calculating the smooth indices
..51
Fig. 3.4.3_1 Mapping function from the cost function g(.) to the fitness function
f(.)...56
Fig. 3.4.3_2 The encoding process of chromosomes in the GA-CNN training
phase..58
Fig. 3.4.3_3 The GA designed CNN’s templates for screening textures

 viii

classification..60
Fig. 3.4.3_4 (a) The variation of the fitness values during the evolutions of GAs
by 200, 400, and 500 generations, respectively. (From left to right) (b) The testing
screening pattern for texture classification in gray scales and its binary desired
output. (c) The simulated results after texture classification during the evolutions
of GAs by 100, 200, 300, 400, and 500 generations, respectively. (From left to
right)..61
Fig. 3.4.3_5 The convergence curve for mean squared errors of the fitness
function. ..61
Fig. 3.6_1 An x projection function of the screening pattern.................................64
Fig. 3.7.1_1 One defined screening type. (a) The original screening pattern. (b)
The screening pattern in gray scales. (c) The desired classification result. (d) Our
experimental classification result. ..67
Fig. 3.7.1_2 The other defined screening type. (a) The original screening pattern.
(b) The screening pattern in gray scales. (c) The desired classification result. (d)
Our experimental classification result. ..67
Fig. 3.7.1_3 The mixed screening type. (a) The original screening pattern. (b) The
screening pattern in gray scales. (c) The desired classification result. (d) Our
experimental classification result. ..67
Fig. 3.7.1_4 An illustrative image for the extraction of screening patterns by
smooth indices. ...68
Fig. 3.7.2_1 A testing image for descreening using the Gaussian filter. (a) The
original image. (b) The descreened image. ..70
Fig. 3.7.2_2 A testing image for descreening using the Gaussian filter. (a) The
original image. (b) The descreened image. ..71
Fig. 3.7.2_3 A testing image for descreening using the median filter. (a) The
original image. (b) The descreened image. ..71
Fig. 3.7.2_4 The comparison to other famous methods. (a) The descreened images
by our approach. (b) The descreened images by wavelet filtering method. (c) The
descreened images by Gaussian filtering method. (d) The descreened images by
Medium filtering method. (The images in each row represent various processed
images in our database) ...73
Fig. 4.2_1 The GA-CNN based proliferating system (a) Feature extraction phase
(b) The recognition phase ..79
Fig. 4.3_1 Illustrations for TBS plots (a) The ideal texture patterns in various
frequencies and orientations (b) The corresponding TBS plots orderly arranged
from left to right, and top to bottom (corresponding to (a.1) ~ (a.6)).83
Fig. 4.4.2_1 Illustration Figure for Feature Mapping based on CNN’s by (a)

 ix

Non-overlapping condition and (b) Overlapping condition...................................88
Fig. 4.4.2_2 Illustration Figure for the distribution in features projected from
different CNN templates..88
Fig. 4.5.1_1 Optimized CNN template set for all sixteen texture patterns94
Fig. 4.5.1_2 GA training process for our defined CNN template (a) The
misclassified texture patterns in the first run (b) The evolved feature maps
during the training phase by GA (c) The corresponding fitness function for the
best, average, and poorest populations after 50, 100, and 200 generations
accordingly..95
Fig. 4.5.1_3 The convergence curve by GA trainings ...95
Fig. 4.7_1 Texture representation for four texture case (a) the original texture
patterns (b) feature maps (c) TBS. ...102
Fig. 4.7_2 Texture representation for eight texture case (a) the original texture
patterns (b) feature maps (c) TBS. ...103
Fig. 4.7_3 Texture representation for eight texture case based on another CNN
template illustrated by (a) feature maps (b) TBS in the horizontal direction (c)
TBS in the vertical direction. ..103
Fig. 4.7_4 The convergence condition by GA for (a) The general CNN template
(19 optimized parameters) (b) Our predefined CNN template............................104

 x

List of Tables
Table 3.7.1_1 Comparison of the smooth indices with respect to three screening
patterns in distinct smoothness, (a), (b), and (c) accordingly.68
Table 3.7.1_2 Comparison of the classification error for screening patterns by
ROB, TE (or gray level average), and our introduced parameters (one
determinative index and two screening estimates) in terms of different output
formats (Binary/Gray scale)..68
Table 3.7.2_1 Comparison of descreening performance and screening extent in
human’s observation by credits and discredits halved in 5 (normally we have
three different ranges: low for degree 1-3, medium for degree 4-7, high for degree
8-10)...73
Table 4.7_1 Numerical Comparison for texture discrimination ability based on
Fig.4.7_2 and 4.7_3...104
Table 4.7_2 Comparison in the classification outcome based on various features
..105
Table 4.7_3 Experimental results for different rotations of texture patterns.....105
Table 4.7_4 Experimental results for different sizes of texture patterns105
Table 4.7_5 Experimental results for different TBS (vertical and horizontal)...105
Table 4.7_6 Experimental results for tenfold cross-validation testing model.....106
Table 4.7_7 Experimental results for the case when the number of clusters is not
known..106

 1

1. Introduction

 In this chapter, we will introduce the related surveys in the applications based on

Cellular Neural Networks (CNN’s), the applied image processing techniques in

particular. We mainly propose the methodology based on CNN’s for some image

processing techniques in this thesis. In this section, we shall begin with what

motivated this thesis, and then introduce state-of-the-art in the related areas of the

main content of this thesis. In addition, we explicitly define our contributions of the

proposed methodology at the end of this section, which might enhance the readability

of this thesis.

1.1 Motivation

In the past studies, CNN’s have been well-known for its hardware

implementability and the well-connected interactions between the corresponding cells.

The basic theory and foundation of CNN’s is not the only issue for most researchers,

but how to apply CNN to any industrial or academic areas is yet more interesting and

significant. Therefore, the characteristics of CNN’s in hardware implementations and

digital image processing motivate us to produce the works related to the discussions

in high-order image processing techniques. As we know, the applications of CNN’s

are always restricted since we have to take into consideration the hardware

implementations and chip design in the development of our algorithms for more

complicated applications. In this way, the design of CNN structure has to be as simple

as possible. That is the reason that the current status of CNN’s focuses on the chip

design for simpler image files like binary ones. It is obvious that most problems in

image processing are difficult and unpredictable. In order to avoid using CNN’s too

theoretically, we have been dedicated to searching for more possibilities in many

image processing applications by CNN’s. Besides, we need to find more solutions for

 2

enhancing the image processing performance and speeding up the algorithms in more

complicated images and issues, image documentation in particular. We thus try to

carry out all the above requirements and inspire more ideas for readers by this thesis.

1.2 Related Works

1.2.1 Cellular Neural Networks

We shall introduce the interesting topics and various applied fields of CNN’s in

this section. In the beginning of developing CNN structure, the studies of the basic

theory and the distinguished characteristics in CNN’s are the most important issues in

its related research areas. It is surely that most works related to CNN’s cannot

simulate its reactions without regarding the stability and robustness of CNN’s [1] ~

[2]. However, the equivalent accounts will be beyond the scope of this thesis. We do

not need to highly stress on this issue simply because the problems of hardware

implementations can be overcome if the CNN template can be optimized in the

restricted range. In addition, the discussions of the steady and transient responses

attract the attention of most researchers. When it comes to the applications of CNN’s,

the transient response especially matters since it can reflect the connected relationship

of corresponding cells of the specific location in the input signal. As for the related

applications of CNN, how to determine a better CNN template is quite a critical topic.

Apparently the intuitive design and the learning process both lead to the technical

approach for deciding a specific CNN template. We have broadly two kinds of

approaches in search of CNN templates in the past literature, including analytical and

learning methods. The analytical approaches should be composed of a set of local

rules which characterize the dynamics of a cell, depending on its neighboring cells.

And the operating templates can be obtained correctly by an affine set of inequalities

from the transformed local rules [3] ~ [4]. According to different ways of training, the

 3

learning approaches can be classified as local and global learning algorithms. The

local learning algorithms [5] ~ [6] take advantage of the neural-based training process

like neural networks in back propagation while the global ones [7] ~ [8] optimize

CNN templates in a stochastic form like genetic algorithms or simulated annealing

approaches.

The difficulty of CNN template design lies in the fulfillment of a given task with

implementable templates. As what we mentioned above, the analytical approaches

indeed provide a systematical way to look for a better template more simply and

directly [9] ~ [10]. Nevertheless, a simpler approach must not give a satisfactory

performance or results for complex tasks. There also exist some useful learning

approaches such as genetic algorithms [11] or combined strategy for finding robust

and stable CNN templates. For the hybrid methods, they combined stochastic

optimization schemes with hill climbing algorithms [12]. The combined strategy can

solve some specified problems as long as its design fits the requirements of a given

issue in advance, but the design would be sometimes more complicated and result in

the betray of CNN kernel concept. Thus and so, we need to find not only a

systematical and standard approach but also a flexible algorithm for determining CNN

templates in an easier fashion. That is the reason that we would adopt genetic

algorithms to optimize a better template for any given task. No doubt, this kind of

learning methods like genetic algorithms have been studied in the past researches,

which makes the related material more sufficient and the researching timing more

mutual.

CNN templates can be regarded as coupled or uncoupled by the center element

of the control template. In fact, the uncoupled template has ensured the center cell to

be free from the surrounding influence. Hence most techniques based on CNN’s for

digital image processing would be defined in the CNN template library by this right

 4

kind of template form. Take the applications in shadow projection, global

connectivity detection, and connected component scanning for instance, the form of

the relative CNN template would be distributed more regularly [13]. As the

counterpart, the distribution of template would be irregular if the defined local rules

cannot describe the dynamic behavior of input signals. Since the form of template

cannot be indicated by its regularity, we would rather simulate our required CNN

template by the learning algorithms in this thesis.

1.2.2 Texture Analysis

In this section, we will survey the related material in texture analysis. For texture

characterization and classification, statistical approaches have the major impact on the

advanced studies of texture analysis. Texture classification has long been one of the

most difficult problems to tackle in image processing in terms of the characteristics of

various texture patterns, say, uniformity, regularity, coarseness, just to name a few of

it. Therefore, many different approaches have been put forth to solve the problems of

texture classifications. To carry out a better performance and more comprehensive

results in classifying different textures, a great amount of solutions to the analyses of

texture patterns are proposed to in the hope of revealing some inherent natures of

these patterns and being proven useful for further applications to the higher level

processing. There totally exist eight kinds of analytical approaches, inclusive of

optical and digital transforms, high-frequency-component analysis, autocorrelation

functions, structural elements, co-occurrence probabilities and run length

measurement by spatial gray toning, and autoregressive models [14]. Among these

approaches, some of them directly or indirectly estimate the spatial frequency of

image textures and some of them make use of the structural methods. This is because

texture patterns in the different uniformity could be sensitive to different ranges of

spatial frequency band. The structural approaches introduced in [15] ~ [16] generally

 5

take the matching procedure to detect the spatial regularity of shapes called structural

elements in a binary image, and the descriptions of auto–correlated textures could be

carried out by more complicated texture patterns. The co-occurrence probabilities of

textures can be described by spatial gray toning, and this approach utilizes various

changes of distances between different textures. Also, the approach by measuring run

lengths in different gray scales can characterize coarser or finer textures as more or

less dominant pixels in a fixed gray toning run length. As to the autoregressive model,

it estimates the gray toning proportion of any given pixel in the predefined

neighborhood for the representative texture patterns. It can be easily observed that the

distribution of coefficients has a very large variation for different image textures.

These approaches naturally have different pros and cons and can be made up for each

other. For the details of related comparison, [17] concludes that spatial frequency

approaches generally have worse performance than the other approaches, and the

structural approaches can only apply to the binary images. Besides, the co-occurrence

approach can describe the spatial within-relationship of textural patterns by gray

toning and can be less influential by monotonic gray toning transformations. The

defection of this approach is the inability of describing the shape aspects for tonal

primitives, which makes it hard to work well in texture patterns composed of

large-area primitives. Finally, the auto-regression model by a given linear estimator

can synthesize texture patterns more correctly, so it is more representative for

macro-textures. On the other hand, this approach will complicate the analyzed texture

patterns by micro-textured segments.

As the popular models and approaches which we have stressed on, it is not an

easy task for researchers to find an absolute solution for texture classification and

discrimination. And it is uneasy to develop a set of useful features for texture

representation. This thesis hence strives itself for finding an analyzing feature set for

 6

texture analysis in addition to working on the practical applications based on CNN’s.

As the matter of fact, texture analysis can be seen as the fundamental research to any

other image processing techniques. That is to say not only the structure presented in

texture analysis can motivate the methodology of other issuing problems but also the

developed features for texture representation may be applied to the proper processing

approaches of related academic fields. We here try our best to look for more

applications based on CNN’s for future possibilities in hardware, and in pursuit of

solving these significant problems more useful tools and corresponding features have

to be developed to fit the requirements of them.

1.2.3 Genetic Algorithms

In the past, genetic algorithms (GAs) could be characterized by the practical

applications, robust optimization and search methods. Many researchers applied this

learning algorithm to various areas such as genetic synthesis, chip design, strategy

planning, machine learning, image and speech processing. The search methods by GA

come from the mechanism of evolution and the combination of natural genetics [18].

The evolution of GA began from the heuristic search approach to simulated annealing

algorithm. Simulated annealing algorithm takes thermodynamics into consideration

and annealing here can be used as the optimization process for mathematical

simulation [19] ~ [20]. Actually, simulated annealing and genetic algorithms are

similar in the sense that they use the probabilities for searching the maximum or

minimum of functions. However, genetic algorithms would be much different and

superior for generating a sequence of populations by using selection, crossover and

mutation. For extending the nature of GA, only the individuals with proper

chromosomes can be well adapted to competition and survive, so adapting to a

changing environment is essential for the survival of each species. The characteristics

of genes can be dominated by the respective genetic content if the survival capability

 7

is characterized by the features of corresponding individuals. In some defined case,

the observed features can be controlled by a bottom unit like the role of a gene, and

the set of genes dominates the features observed from the chromosomes. The

evolution process though manifests itself as a succession of changes in sensing the

variation of features, and its driving force causes the joint reaction of genetic

reproduction mainly coming from the recombination of each other and the appropriate

selection. As to the principle regulations of GA, only the fittest individuals can

survive and reproduce, and this kind of natural phenomenon can be described as “the

survival of the fittest” which truly reflects how GA can be related to the way of

genetic combination. As a result, the genes of the fittest survive while the weaker ones

fade away. Natural selection implies the survival of the fittest genes, and

simultaneously the reproduction process generates diverse choices in the gene pool.

The first step of evolution usually combines the chromosomes from the parent

generation for reproduction, and then a new combination of genes as well as a new

gene pool will be generated. For the combined genes with a worse representative

power, the exchange of genetic chromosomes called crossover provides a better

combination of genes. Finally, the iterative selection and crossover keep on the

evolution process of this gene pool and the generation of competitive individuals will

make the learning process terminate properly. Hence, GA can be applied to some

problems like optimization or local max/min searching since solving these analytical

problems is equivalent to finding the best numerical solution by GA. The reference

[21] illustrates the standard form of GA which represents a binary alphabet as the

strings of bits in the encoding process and provides the necessary driving power for

better solutions to survive in the selection process. The evolved genetic chromosomes

should be associated with the higher fitness value, and then could be compared with

other reproduced generation. The higher the fitness values of the produced population,

 8

the higher chances of survival for the competitive genes. Also, the crossover operation

exchanges the proportion of transferred bits between strings to enhance the

performance of reproduction. The mutation operation in GA causes sporadic and

random alteration of the bits of strings, and it also implies a direct connection with

outer world. Mutation hence at times helps to look for the better combination of

chromosomes especially in the difficulty of getting the optimized solution.

We have introduced the related studies and the fundamental concept of GA in

this section. As what we described above, GA is not only an adaptive learning

algorithm but also a deterministic approach for global optimization. In this thesis, we

use GA as the training tool for looking for the related parameters in CNN settings. GA

here plays an important role in the design of templates when no a-priori information

can be given in advance. The nature of GA makes the processed results from the

optimized template approach the desirable ones of our applications. Therefore, GA

indeed provides a better solution for us to optimize an arbitrary CNN template in the

specific field of applications.

1.2.4 Image Documentation

Image documentation can be regarded as one significant step of image

preprocessing before dealing with any complicated applications. As we know, there

are many key topics in this field such as noisy background removal, image

descreening, image deskewing, auto-cropping, and so forth. Each of them has some

crucial influence on some issues in the related research fields. We take image

descreening for example to illustrate how we can handle this difficult problem by

hardware orientated CNN’s. More complex issues in image documentation can also be

solved by the generalized approach. In fact, image descreening takes an important part

in the analysis of document images. It could make much easier the following

 9

processes of document images such as texture or graphic separation. The existence of

screening signals will make it harder to handle and analyze the document images, and

the specific kind of problems in dealing with document images are the general ones

for photo preprocessing or image enhancement.

There exist many methods for image documentation such as wavelet transforms,

thresholding techniques, and the statistical analysis methods, etc. Wavelet transforms

use the decomposition analysis of different levels to remove these undesirable

screening signals. Its key point lies on the choice of basis functions. From the papers

[22] ~ [24], we could find the applications restricted by using wavelet transforms with

common basis functions such like Haar function and Daubetch spline function. In

addition, the quality of documental images may suffer degradation during

transformation from a scanned halftoned image to electronic formats through the

introduction of artifacts such as morie patterns [25] ~ [27]. Numerous inverse

halftoning or descreening methods have been used to eliminate these artifacts

regardless of the causes for generation of screening noisy patterns [27] ~ [29]. In most

studies, (inverse) halftoning techniques can be generally classified into two categories:

frequency [30] and spatial [31] domain approaches. As a matter of fact, frequency

domain approaches could keep more textured information in the screened images;

whereas spatial domain approaches retain more properties for the spread of locations

of screenings. That is also the reason that most papers tend to use such frequency

domain methods like FFT, wavelet, or even Gabor filtering methods. Unfortunately,

their descreening results are still restricted even if complex filters are used through

time consuming procedures. This mainly results from that no fixed filter could be

successfully employed in every kind of screened images. Thus, in chapter 3, we

introduce a unique mechanism including two parts: the classification of screening

 10

textures and the descreening procedure by the selected adaptive lowpass filter based

on the classified screening textures. We hence propose a new strategy for image

descreening in image documentation based on an innovative analyzing model in this

thesis. It consists of the design of CNN structure and studies of characteristics in

document images. Due to the different intensity of screening signals in different

images, the screenings can be detected and processed by the proper solutions. And

also, our proposed scheme for an optimal selection of filters can remove the screening

signals more efficiently. We demonstrate our experimental results with a large number

of various document images to show the robustness and stability of the proposed

method. In the chapter 3, we will give the details of our proposed methods in the

design of CNN structure for the representative topic in image documentation – image

descreening.

1.2.5 Genetic Algorithm based Cellular Neural Network

In this section, we would like to survey the related applications of CNN by GA.

Especially, we would focus on the topics introduced in this thesis, texture analysis and

image descreening. Like neural networks [32] ~ [35], CNN is a large-scale nonlinear

analog circuit, which processes signals in real time. CNN is made of a massive

aggregate of regularly spaced circuit clones, called cells, which communicate each

other directly only through its nearest neighbors [13]. To avoid the results from being

confined and thus leading to an unsatisfactory outcome as shown in [36], [37], GA is

therefore preferred to solve the problems of stability and adaptation in CNN’s for two

reasons. First, GA here carries with itself a dual function in deciding template

elements for CNN: it serves to minimize the objective function, the optimization

while avoiding the occurrence of oscillation and chaos when testing the pros and cons

of working templates for CNN, that is, adaptation. Second, the design of template

elements for CNN based on GA is no longer subject to the types of objective

 11

functions and minima, i.e., differentiability of the cost function and the existence of

local, global, separate, multiple minima, etc. Another advantage is the fact that GA not

only applies itself to single layer CNN, but also can be used for the parametric design

of multilayer CNN. Like what is mentioned in [38], the template design of multilayer

CNN is necessary at times for complex problems that cannot be solved or realized in

the easier manner of single layer CNN particularly. Selecting CNN templates by GA,

therefore, has been widely adopted in every field of applications, regardless of single-

or multilayer CNN, and shown to be powerful and robust in theory and practice [38] ~

[41]. Stochastic learning approaches, GA in particular, have become a crucial

alternative to deterministic ones, which replace the classical methods by using the

independent properties of initial conditions and the domain of applications combined

with the implicit parallelism [39]. And the detailed descriptions about GA for

choosing template elements of multilayer CNN have been given in reference [42]

where only the global responses to the input images of the system would be available.

The multilayer CNN design is certainly employed in the near future if the texture

patterns were much more complicated than those we expected or no a prior

information about the structure of the system had been given, or the separate

operation of every layer had been in need. In [43], three different CNN templates

trained by GA were proposed and carried out to give us a comparative index for

performance of the system in different combinations of evolutional ways among

generations, i.e. the average, inverse, and time-interpolated templates. Also, a

modified assumption of parameters in GA like crossover or mutation rate in [43]

made it practical to push the responses out of the way giving rise to the difficulty of

convergence. Beside of the changes of fitness functions in GA, GA could be amended

in other evaluation forms like the penalty functions mentioned in [39], [42] to give a

punishment assessment between layers of CNN if the structure of multilayer CNN is

 12

required. Now that the precise adjustment of parameters in our CNN template design

based on GA is not necessary for our screening pattern classification in the

descreening process, some slight changes about GA like the adaptation of fitness

functions, how to set the parameters in the evolutional flows, etc. would be very

useful and applicable to the issue of image descreening addressed in the chapter 3.

Besides, the advanced studies on GA based CNN will be given in chapter 4 in more

details.

1.3 Contributions

 We will organize this thesis by giving our contributed parts and the whole

constructed structure of our strategic approach in this section. This thesis contributes

to applying CNN’s in digital image processing. CNN’s have been only used in the

simple and direct operations of image processing techniques. In this thesis, we try to

see CNN’s in various realized simulations for image analysis. More clearly, this thesis

deals with image processing problems by a separate mechanism which makes use of

CNN architecture and original information extracted from image data. At this place,

CNN plays an important role in image analysis – feature extraction. CNN is not only

distinguished in its hardware implementability but also reveals some information of

digital images in some sense by placing different CNN templates. To be more

systematically, we shall firstly introduce our structure of CNN and our significant

contributions in two aspects.

A. Image analysis

CNN has been used in many areas including digital image processing. Since

using CNN is subject to the relationship between the original image files and CNN

parameters, the image processing techniques by CNN should be simple and the

convolved results from CNN should be reflected directly. This thesis pursues using

 13

CNN to analyze the information of image data. Later in the chapter 3 of this thesis, we

demonstrated how to use CNN in some high-level image processing like image

documentation. CNN here is a classifier for specific predefined patterns to determine

the following strategy after classification where we have referred the CNN structure

as one part of the whole software simulations and algorithm development.

Simultaneously, CNN is used to decide the related arguments that could reflect the

linking relationship between image data and CNN parameter setting. This thesis thus

introduces a complete strategic approach to understand the image natures for image

analysis. We then explicitly list the main contributions in this identified category

which have been made by our proposed structure as follows.

A.1 Image preprocessing

CNN used to handle some simple image applications, so many studies only

focused on the preprocessing steps of digital image processing. In this thesis, we have

clearly defined the range of space that CNN could be applied to and the corresponding

adjustments and critical points in CNN parameter setting. That is, our applications in

image processing by CNN would focus on algorithm development rather than

hardware implementation only because the lack of CNN applications makes it hard to

use the advantages of CNN structure well.

A.2 Image documentation

We applied CNN to image documentation since this field is a very important one

in various researching fields of image processing. Also many problems in image

documentation have been challenging and difficult even in software engineering and

simulations. Therefore, we prove that CNN could not only be valid for simple

operations of image analysis but also useful for more complicated applications. This

thesis makes use of CNN structure to discuss the natures of image data for

understanding the characteristics of documental images. In this way, CNN is like an

 14

analytical tool for illustrating image data rather than a specific tool for some specific

application. This thesis successfully uses CNN in image processing in a different

point of view. For the other significant contribution proposed by this thesis, we have

the following category.

B. Feature extraction

Unlike the traditional approaches using CNN’s in the literature, this thesis does

not focus on finding a specific CNN template for some specific image applications.

CNN is taken as an analytical tool for digital image processing, in which CNN could

be regarded as a transformation mapping like FFT, wavelet transform, and so forth in

software engineering. The previous researches by CNN put a higher stress on

hardware construction than being applied to more complicated applications and

understanding the nature of images. This thesis hence tries to work on applying CNN

to more complicated image applications and associating CNN templates with the

characteristics of image files. Therefore, we have proposed a new approach in feature

extraction by using CNN’s and provided a transformation process to project the

original image information into another feature space in this thesis. And this mainly

focuses on the following subparts.

B.1 A pre-classified mechanism for different screening images

In the past, the performance of image descreening has been restricted only

because the same strategy has to be applied to for many kinds of images. We thus in

this thesis proposed a very different structure – the pre-classified mechanism for

different screening images. This mechanism makes it easier to deal with various

screening images and made a great improvement in image descreening performance.

It implies that the CNN structure can also combine with any motivated mechanism

from software-oriented status.

B.2 Illustrating CNN outputs in image natures

 15

Our proposed approach in this thesis illustrates the simple CNN outputs in a very

different way and also associates the image natures with every adjusted arguments of

CNN cell. For image analysis and texture discrimination, the illustrative way of CNN

outputs makes the applications by CNN more prevailing and flexible.

B.3 A proliferated structure of CNN templates

The optimization of CNN templates was difficult and insufficient. Thus, we try

to propose a proliferated structure to determine CNN templates more adaptively and

efficiently. In our proposed structure, CNN templates could be flexibly proliferated

for any set of texture patterns. The number of CNN templates that we have to

optimize for any prepared texture patterns could be effectively reduced and the

optimization process would be shortened in the predefinition of CNN templates.

B.4 A new feature series for texture analysis – Transition Bit String (TBS)

The most significant matters in the difficulty of applying CNN to the

higher-level image processing lie in the lack of image information extracted from

CNN. Because of this, we proposed the one-dimensional feature curve as well as its

feature series in this thesis to provide more chances of using CNN for more

applications of image processing. Our proposed feature curves help to understand the

natures of textured image patterns and also offer an evaluation index to determine

whether the texture patterns that we have to classify in our database are discriminated

enough and to decide the number of CNN templates and the corresponding parameters

in the optimized templates. As above, we have roughly introduced in this thesis how

we could apply CNN in complicated applications of image processing and what kind

of relative CNN arguments we have to predefine and determine in advance. To sum

up, we have introduced in here the main contributions before getting in the kernel part

of this thesis. We did this to make the organization of this thesis more clear and

definite.

 16

1.4 Concluding Remarks

In this chapter, we have introduced the related surveys and state-of-the-art of

each essential item presented in this thesis. Also, we illustrate the main contributions

of this thesis. The structure of CNN’s in the past was only applied to some simple and

intuitive applications of image processing. Hence we develop more algorithms based

on CNN’s in order to increase the future applications for hardware implementation. In

this whole framework, we need to look for an efficient method to optimize the related

parameters which have to be determined in CNN structure. The detailed information

of GA has been given in this section and the prominent features of using GA in the

design of arguments have also been introduced. As long as an effective approach to

deciding CNN parameters can be determined, the key solutions for our chosen

applications by CNN’s would depend on understanding the characteristics of digital

images. In this way, more applications based on CNN’s could be brought in the CNN

field much easier. In addition, we also work on image documentation, image

descreening in particular, since this kind of issues have been the most difficult

problems that need to be dealt with by CNN’s. So we try to get to know more about

the internal characteristics of document images and associate this relationship with

CNN’s. It is natural for us to design the related arguments in image descreening when

implemented by CNN’s. In fact, image descreening can be regarded as one of

high-order image applications because we cannot handle this problem by a simple

strategy for all cases. We firstly give the survey of image documentation in this

chapter and later in chapter 3 and 4 we will show the systematic approach based on

CNN’s in getting this problem clarified. After applying CNN’s to image

documentation, we focus on incorporating CNN’s with some fundamental analysis in

image processing. Thus, texture analysis we showed in this thesis provides a versatile

 17

solution for any other image processing techniques when it always plays an essential

role in the fundamental researches related to properties of digital images. Unlike the

traditional approaches based on CNN’s for texture analysis, the structure proposed in

this thesis gives a more flexible mechanism for CNN argument optimization and the

developed features make texture analysis based on CNN’s apply to more complicated

problems in image processing. To make our main content of this thesis more clearly,

we organized this thesis in the following order: fundamentals of Cellular Neural

Network (CNN) and Genetic Algorithm (GA), image descreening based on GA-CNN

texture classification, texture discrimination based on GA-CNN proliferation structure,

and conclusions and perspectives.

 18

2. Fundamentals of Cellular Neural
Network and Genetic Algorithm

Since this thesis describes the methodology and applications that can be

implemented by CNN’s, we here illustrate the basic structure of CNN and the

formation of CNN basic theory. Also, a more generalized model and formulas have to

be given in this chapter for high-order image processing. We do not put our emphasis

on the discussions of CNN stability and robustness, and we will not over focus on the

derivation of dynamic plots in CNN structure because the related proofs of theories

have been given in the literature. Instead, we will bring in the image processing field

more practical uses by illustrating some basic and simple examples of applications

based on CNN’s. These simple instances could give broad descriptions about how the

elements in CNN templates can be associated with the properties of digital images,

which also speed up optimizing CNN templates by GA. That is why we in this chapter

introduce the selected CNN templates in the original CNN library for edge and corner

detection, image thresholding, connected component detection, half-toning and

inverse half-toning, histogram generation. Besides, we will introduce some essentials

and important adjustments about GA in the back of this chapter.

2.1 The Fundamental Architecture of CNN

CNN is more appropriate to be the acronym for Cellular Nonlinear Networks

than Cellular Neural Network in this thesis since we would use CNN as a nonlinear

processing mechanism rather than a learning mapping in some complicated

applications. CNN still has the characteristics of networks, a spatial arrangement of

locally-coupled cells where each cell can be regarded as a dynamic system with an

input, an output, and a defined state which can be prescribed by some dynamic rules.

In this thesis, we will put our stress on some applications of image processing based

 19

on CNN’s. We hence only illustrate the two-dimensional CNN architecture

throughout this section. Before we introduce the whole CNN structure, we would

describe the components and variables of an isolated cell. For any arbitrary isolated

cell, there are four general variables for the definition of a standard CNN structure.

They are the input uij, output yij, state xij, and threshold zij, respectively, where each

variable represents an essential segment in the standard formulas of CNN’s, and the

subscript indicates the corresponding location in the neighborhood of this isolated cell.

In general, the threshold is usually a constant scalar for simplicity and the other three

variables can be considered as the functions of continuous time t or the discrete time

in the special case. The initial state can be given for some specific application or

adjusted at any time during the processes. That is to say, for any fixed threshold zij ,

the given initial state xij , and the processed input uij , the state xij at time t of the

isolated cell Cij will be evolved according to a time variant state function defined

below.

NjandMifortutztxftx ijijijijij ≤≤≤≤=
⋅

1 1))(),(),(()((1)

where the current state xij can be seen as the function of combination of the last state

xij , the threshold zij , and the input uij. It can be easily observed that all the cells are

identical in image applications. Also, (1) can be regarded as the formal ordinary

differential equations. Without loss of generality, we have used the simplest output

function which is defined as (2).

))(()(txgty ijijij = (2)

The output function here is simply the predefined transformation from the current

state xij to the output yij. The detailed mathematical formulas of an isolated CNN cell

were proposed by Chua and Yang in 1988 and widely used in the past applications,

which could be listed as follows.

 20

State equation: ijijijijijij
ij zubxfax

dt
dx

+++−=)((3)

where ija and ijb are the weighting coefficients.

Output function:

)(ijij xgy =

where
⎪
⎩

⎪
⎨

⎧

−≤−
<
≥

=−−+=
1 ,1
1 ,

1 ,1
)11(

2
1)(

ij

ijij

ij

ijijij

x
xx

x
xxxg (4)

To illustrate the isolated cell and its related variables, we have Fig. 2.1_1 to simply

describe the relationship among theses four variables.

Fig. 2.1_1 Expression of an isolated cell

 We have described the simple architecture and the basic theory of CNN, and we

will specially introduce the basic CNN formulas and the general CNN model for the

digital image applications in the following two sections.

2.1.1 Basic CNN formula

 For the image size MxN in the CNN applications, the image size is equivalent to

the CNN array and the state equation (3) can be rewritten in a more formal way as (5).

∑ ∑
∈ ∈

⋅

+++−=
ij ijSkl Skl

klklklklijijij ubyazxx (5)

where the indices kl moves accordingly in the neighborhood of Sij and ij can be

referred to as each pixel of an image. Hence i and j would run from 1 to M and N,

Output
Threshold

uij

zij

State
xij

yijInput

Cell Cij

 21

respectively. Equation (5) would totally has MxN nonlinear ordinary differential

equations. For the basic CNN formulas, the same equation can be defined as (4). In

definition, (5) only extends its generality only inside the boundary of CNN array. In

order to make (5) more complete, the additional boundary conditions have to be

defined. The three boundary conditions which have been used widely in the literature

could be listed as follows.

 A. Fixed boundary condition

This boundary condition assigns the state xkl of each cell xkl in (5) inside the

boundary to be a fixed constant.

 B. Zero flux boundary condition

This boundary condition confines the states xkl of the corresponding cells in

the neighbor perpendicular to the boundaries to be the same.

 C. Periodic boundary condition

In this boundary condition, the first and last rows/columns of the CNN array

are similar to be periodic.

After giving the boundary conditions, the preparation of CNN could be done if the

initial state for all cells were specified. For image processing in particular, the initial

state could be assigned via the gray-level in an image which has to be normalized first

between -1 and 1. From all the above essentials in the standard CNN structure, we

would have the specific CNN template for the specific application.

2.1.2 General CNN model

 The equations that we have introduced for a standard CNN array could not be

applied to all applications, so a more generalized CNN model would be preferred by

giving different dynamics and coupling laws of each cell. Hence, a general MxN

CNN model could be given as long as the following conditions would be specified, i.e.

the state equations and the coupling laws of each isolated cell, the boundary and

 22

initial conditions. With the specified definitions in more details, equations (1) and (2)

would well describe the general CNN model. As for image processing applications,

the ordinary differential equations can be recast in the following matrix form. The

matrix representations for CNN arrays provide more choices for image processing,

and more image applications could be carried out by incorporating CNN into the

simulated processes.

)(XFX =
⋅

 (6)

where

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)()()(

)()()(
)()()(

)(

21

22221

11211

21

22221

11211

MNMM

n

n

MNMM

n

n

xfxfxf

xfxfxf
xfxfxf

XF

xxx

xxx
xxx

X

LL

MLLMM

MLLMM

LL

LL

LL

MLLMM

MLLMM

LL

LL

2.2 CNN Templates for Digital Image Processing

 As we know, CNN’s can be applied to many applications by specifying the

weighting coefficients defined in (3). More systematically, there are several

requirements that have to be assigned for a specific image application. Since the

specific image processing can be looked upon as a transformation from an input

image U (uij representing the mapped value of each pixel of the input image) to an

output image Y (yij representing the mapped value of each pixel of the output image)

with a series of operations, we have to specify the types of input image for using CNN

simulation in the first step. Take the gray-scale image and true color image for

 23

instance, we have the first-order and third-order of cells defined for the state xij,

respectively. After that, the initial state and the boundary condition for the specific

image application have to be selected or designed according to the specified

requirements. Besides, the most important matter in the design of CNN structure

associating with some image application lies in the decision of a combination of

parameters in CNN’s, called CNN template. Once the CNN template could be

determined, the problem of image could also be overcome. In the following sections,

we would survey several predefined CNN templates for image processing in binary

and gray-scale format. We selected these examples of templates in the literature

simply because we regard these CNN templates in some basic image applications as

the shortcut to the higher-order image applications based on CNN’s.

2.2.1 Edge Detection CNN Template

Descriptions: Extract edges of the objects of the input image.

Rules: Each black pixel which has at least one white pixel in the defined

neighborhood is defined to be an edge cell.

Boundary Condition: Fixed boundary condition

Initial State: 0)0(=ijx (0 means white in an image)

Cloning Template:

 5.0
111
181
111

000
020
000

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−
−−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= zBA

Example:

 24

(a)

(b)

Fig. 2.2.1_1 Edge detection example by some specified template for (a) the binary
image (b) the gray-level image (Left: the original image, Right: the processed

image)

2.2.2 Color Inverse CNN Template

Descriptions: Inverse colors of the objects in a digital image.

Rules: The color of the input image would be equivalently inversed via the

middle of the color range in CNN format.

Boundary Condition: Fixed boundary condition

Initial State: 0)0(=ijx (0 means white in an image)

Cloning Template:

 0
000
05.20
000

000
025.00
000

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−= zBA

Example:

 25

(a)

(b)

Fig. 2.2.2_1 Inverse operation example by some specified template for (a) the binary
image (b) the gray-level image (Left: the original image, Right: the processed

image)

2.2.3 Image Thresholding CNN Template

Descriptions: Transform a gray-level image into a binary image by some

predefined threshold.

Rules: Each pixel of a gray-level image can be labeled as ‘pure white’ if and only

if its transformed intensity in CNN format (between -1 and 1) is higher than some

predefined threshold z*.

Boundary Condition: Fixed boundary condition

Initial State:)0()0(ijij ux =

Cloning Template:

 26

 *
000
000
000

000
020
000

zzBA =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

Example:

Fig. 2.2.3_1 Thresholding example by some specified template (Left: the original

image, Right: the processed image)

2.2.4 Low-pass Filtering CNN Template

Descriptions: Do the low-pass filtering for the gray-level image..

Rules: The pixels with some specific color range (usually in the low band) can be

labeled as ‘black’ pixels while the others are labeled as ‘white’ pixels.

Boundary Condition: Fixed boundary condition

Initial State: 0)0(=ijx (0 means white in an image)

Cloning Template:

 specifiednotzBspecifiednotA
121
242
121

16
1 =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×==

Example:

 27

Fig. 2.2.4_1 Low-pass filtering example by some specified template (Left: the

original image, Right: the processed image)

2.2.5 Laplacian CNN Template

Descriptions: Laplacian operation for the digital image.

Rules: Each pixel of the input image would be filtered via the defined Laplace

filter.

Boundary Condition: Fixed boundary condition

Initial State: 0)0(=ijx (0 means white in an image)

Cloning Template:

specifiednotzBspecifiednotA
025.00

25.0125.0
025.00

 =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
==

Example:

(a)

 28

(b)

Fig. 2.2.5_1 Laplacian operation example by some specified template for (a) the
binary image (b) the gray-level image (Left: the original image, Right: the processed

image)

2.2.6 Half-toning CNN Template

Descriptions: Transform a gray-level image into a half-toned binary image which

preserves the major characteristics of the original image.

Rules: The gray-level intensity of an input image would be re-sampled to obtain

a binary image via half-toning which could resume the original image intensity by

inverse half-toning.

Boundary Condition: Fixed boundary condition defined by the constant values of

the initial state and the input image.

Initial State:)0()0(ijij ux =

Cloning Template:

0
07.01.007.0
1.032.01.0

07.01.007.0

07.01.007.0
1.015.11.0

07.01.007.0
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−
−−−

= zBA

Example:

 29

(a)

(b)

Fig. 2.2.6_1 Image half-toning by some specified template for (a) the natural
gray-level image (b) the human gray-level image (Left: the original image, Right:

the processed image)

2.3 CNN Justifications

 In this section, we shall discuss the related justifications about CNN. Also, we

would like to elucidate some querying points for those who might be concerned about

using CNN in the related applications of image processing in three aspects.

A. Discussions of CNN equations

As what we have mentioned in the earlier part of this chapter, the most crucial part

of applying CNN to image processing is to determine the corresponding arguments of

CNN templates. In addition, the structure of CNN depends on the state and output

equations as (3) and (4). Those who are good at image processing but not familiar

with CNN might doubt the relationship between these two equations and might be

curious about the resultant images after using CNN. In fact, many original studies

 30

about CNN have proved that the processed images after CNN should be in the binary

form on account of the following theorem [68].

Theorem 2.3.1.

 The output ijy of every cell at any stable equilibrium point of a completely

stable standard CNN defined by (3) and (4) is equal to either plus 1, or minus 1, if the

center element ija of the A template satisfies 1>ija .

Also, without loss of generality, the processed images could be binarized if 1≠ija as

to meet the bistable criterion of CNN.

B. Justifications of CNN circuit

Some might be concerned about the pros of cons by using CNN. Therefore, in this

section we shall briefly introduce some significant reasons for applying CNN’s to

applications of images. As we know, CNN is very attractive in its successful

implementation of an analog input/output CNN universal machine which can also be

referred to as a CNN universal chip. The analog circuit is very different from the

digital one in the sense that the analog could truly transmit and process most signals

in the undistorted way. Furthermore, a single silicon chip is regarded as a completely

dynamic array stored-program computer where the CNN chromosome can be

executed and programmed on the chip at a tremendously high speed (given 1012

analog instructions per second based on a 100x100 CNN chip). Also, the chip design

by the CNN universal machine would differ from that by a digital circuit because it

could be carried out in the completely nonlinear dynamics. Hence, we would like to

take advantage of some dominant and distinguishing characteristics of CNN’s in more

complicated applications of images.

C. Sensitivity of CNN’s

In addition to some justifications of CNN’s stated above, some might be

 31

concerned about its sensitivity when applying CNN to various applications. In this

thesis, we used CNN’s in image documentation and texture analysis. For CNN

applications that we discussed in this thesis, we have to find the appropriate templates

of CNN with respect to some specific purpose. We in here make use of GA to

optimize the related arguments of CNN templates. Naturally, the desired patterns in

some sense should be specified beforehand. Unlike the concept of classic cellular

automata, CNN cannot be defined by local rules directly but can be simply defined by

iterating the CNN genes. That is why GA could be broadly applied to every sort of

image applications. Speaking to the proposed applications in the chapter 3, we do not

need to accurately pre-specify the desired patterns of CNN templates because only the

ratio of black and white pixels in the CNN output would be quite sufficient to provide

a proper decision in the later processes. The related explanations about sensitivity in

optimizing CNN arguments when using GA have been given in some important works

of the literature [13], [43]. As they concluded, the form of desired patterns in

black/white or white/black arrangement has no influence on the final results even for

some applications in need of high accuracy. Therefore, in the point of view in using

CNN for pattern selection, the arrangement of black/white or white/black in setting

the desired patterns shows no difference in the final performance if GA is applied to

optimize the CNN templates.

2.4 Concluding Remarks of CNN

It is observed that the CNN templates in all introduced examples are defined by

the sphere of influence in radius r = 1. That is to say, only 19 parameters in the triplet

template {A, B, z} have to be determined. The main reason is that this kind of CNN

template would be much more efficient for various image applications by experienced

rules and practical uses. Besides, the examples demonstrated above try to associate

 32

the design of CNN templates with some image characteristics in the specific

application. These kinds of arrangement in CNN templates not only reveal the

intuitive decision of CNN templates but also motivate our approach in analyzing the

nature of images and inspiring the design of CNN templates. After that, we especially

state the justifications of CNN in three aspects in order to make those who like to use

CNN in image applications more comprehensive on these concerning topics. We

hence make use of a more effective training and learning approach for optimizing

CNN templates in our proposed high-order image applications based on CNN’s. This

optimization method, genetic algorithm (GA), would be given in more details in the

next section.

2.5 Genetic Algorithm (GA)

There exist two kinds of optimization approaches where one is the specific

optimization rule and the other is the generalized one. The specific design rule is

defined by some specific characteristics of object functions. The object functions have

to satisfy some properties such as linear, invariant, differential properties, so the

differential and gradient approaches are of this type. As for the generalized one, the

design rules are independent of object functions, and random searching as well as

genetic algorithm should be of this type. For the design of CNN templates, GA would

be a better choice since no direct relation between CNN templates and image

applications can be found by intuition. The most significant advantage of GA lies in

the wide range of searching, and this makes optimization of CNN templates more

effective and accurately. Later in this section, we will introduce some necessary

components and important properties of GA, which have a great influence on the

design of CNN templates.

Genetic algorithms are based upon a kind of optimization searching mechanism

 33

during the process of natural selection which spiritually imitates the natural rule, the

survival of the fittest. As the evolution rule of genes, GA can choose a better parent

generation in the species which has the superior properties and randomly exchanges

the genetic information with each other. In this way, the children generation could be

expected to be superior to the last parent generation and the best species would be

generated by this repetitive way. In fact, there are three major operators for GA

including reproduction, crossover, and mutation. The fundamental concept of GA

applied to optimization lies in the following essentials, i.e. encoding all the searching

arguments to so called chromosomes, design of fitness function by the given

acquirements, selection of the species with higher fitness values for mating pool, and

crossover and mutation for the worse reproduction result. Fig. 2.4_1 illustrates the

whole process of GA.

 34

Fig. 2.4_1 Flow chart of the systematical GA structure

2.6 Essentials in GA

 After introducing the whole structure of GA, in this section we will give more

detailed information about the essentials in GA which are organized as below.

A. Reproduction

Reproduction is an operation process which can decide the quantum of

Generating the initial
population randomly

Encoding searching
arguments

Calculating fitness
function values

Judging
Condition

Reproduction
Optimized solution

Crossover

Mutation

yes

 no

 35

species of the next generation that need to be eliminated or reproduced according

to how fitting the species of the parent generation can be. The species in higher

fitting capability would be reproduced much more while those in lower fitting

capability would be excluded in the next generation. The fitting capability that

we mentioned above can be estimated by the responses of fitness function. In

general, there exist two types of reproduction where one is the roulette wheel

selection and the other is the tournament selection.

a. Roulette wheel selection

During the process of evolution, the area of each component of the roulette

wheel can be determined by its corresponding fitness function value. The bigger

the fitness function value, the larger the corresponding area of roulette wheel.

The proportion of occupied area of roulette wheel also indicates the probability

of being selected for the mating pool. Assume that there are N species and fi

represents the fitness function value of the ith species. Theoretically, the total

number of this kind of species, ∑∑ ==⋅
i

ii
i

ii f
N

fwhereffffN 1 // and f

means the average fitness function value of all species, would be reproduced and

selected to the mating pool.

b. Tournament selection

The major difference between tournament and roulette wheel selection is

that tournament selection randomly selects two or more species at the first run

and the species with the biggest fitness function value would be sent to the

mating pool during the process of evolution.

 Basically speaking, these two selection methods both can achieve the goal of

survival of the fittest. Obviously, tournament selection is good at its processing speed

on account of less complexity and roulette wheel selection is fascinating in its

 36

generality and wide applications if calculation complexity is not the most significant

matter in the discussing issues.

B. Crossover

Crossover would randomly select two strings of species in the parent

generation from mating pool and exchange their information to generate two new

species. In pursuit of generating the superior children generation, crossover could

take advantage of outstanding information from the last generation. The

probability of crossover depends on how often the process of crossover could

occur which includes the following three types, one-point crossover, two-point

crossover, and masking crossover. For an easier comprehension, it is sufficient

for us describe these three types of crossover by illustrating one example

encoded by strings as below.

a. One-point crossover

Fig. 2.5_1 Illustrating figure for one-point crossover

b. Two-point crossover

A=111000 A=111111

B=000000 B=000111

crossover

Crossover point Crossover point

Crossover point Crossover point

 37

Fig. 2.5_2 Illustrating figure for two-point crossover

c. Masking crossover

Fig. 2.5_3 Illustrating figure for masking crossover

C. Mutation

During the process of mutation, one string/ species and the location of

mutation point would be chosen and then the information of corresponding

species at mutation point would also be changed. The probability of mutation

depends on the process of occurring mutation, and the location of mutation point

could be defined as a bit, a whole string, or by a specific mask. The types of

mutation hence could be defined by the location of mutation point as what we

have introduced for the crossover process.

 GA could be equipped with these three introduced essentials and its type is

A=111000 A=100000

B=011111 B=000111

crossover

Crossover point Crossover point

Crossover point Crossover point

Mask=011000

A=111000 A=111110

B=000001 B=000111

crossover

Crossover point Crossover point

Crossover point Crossover point

 38

chosen by the characteristics of some specific image application. In our practical use

by GA, we would give more information about how we could determine the types of

each essential and its pros and cons in the later topics of this thesis.

2.7 Discussions of GA

GA is basically different from the traditional approaches and can be

characterized by the following issues.

A. GA cannot be operated on the parameter itself but the set of parameters, so it

can jump away from the constraint of analysis in search space.

B. GA cannot search a single point but many points in search space, so it can

obtain the global optimum sooner and avoid finding the local optimum.

C. All GA needs is the information of fitness function, that is to say, it is not

necessary for GA to use other aided information like gradient. In this way, GA can

use many kinds of fitness functions so as to save complexities resulted from over

mathematical computations.

D. GA can be applied to various sorts of optimization problems since it does not

solve problems by well-defined rules but use the probabilistic rules to make the

searching direction more clear.

 In the remained part of this section, we will focus on some important discussions

about the adjustment of GA structure.

2.7.1 Parameter settings

 The most complicated and difficult matters in GA would be the settings of

related parameters. It is impossible for us to develop a standard method for all cases to

set all the parameters of GA here. Instead, we will give broad descriptions about

where we could put more emphasis and how the parameters can be related to each

other. The major parts that one needs to design GA parameters for a specific case are

 39

the range of encoding, length of string, size of population, mutation and crossover rate,

and the design of fitness function. These aspects would have a great impact on the

final searching result and between them the close relationship and dependence exist in

process of optimization. For the setting of rates in some essentials of GA, we will

show in the practical applications of this thesis. As for the kernel part of GA, we will

discuss the problems appeared frequently when using GA and we will also introduce

some existed types of fitness functions in this section.

2.7.2 Global optimization

The convergence speed of GA could be governed by the population size,

crossover rate, and mutation rate. A higher value may speed up convergence of GA

and then result in finding the local minimum. On the contrary, a lower value may

cause the difficulty of convergence. Therefore, we have to take into consideration the

dimensionality of search space, the range of parameters, and the string length while

encoding. To avoid giving a higher crossover or mutation rate, we can predefine its

corresponding maximum and minimum. In one way, the setting of theses two

parameters can be initiated at the maximum and then decayed to the minimum along

with the growing generations. Another flexible approach is using the floating

mutation or crossover rate, since the local optimization might be achieved if the

species have stopped evolving. This approach invokes to add some artificial

interference in order to simulate the generation of new species, and this can be

implemented by switching the mutation and crossover rate. For simplicity, we can

increase the generated speed of new species (mutation and crossover rates) if the best

fitness function value has kept unchanged through generations, and also we will get

mutation and crossover rates back if the best fitness function value has increased. It is

apparent that we can avoid finding the local optimization value as long as these

adjustable parameters in GA could be effectively determined. Besides, the other

 40

crucial essential of GA, fitness function, will be introduced in the next section in

much more details.

2.7.3 Fitness Function

 The selected fitness function should be capable of reflecting the differences

between different species. Besides, fitness function ought to exclude the inferior

species and offer more chances for new species to get in the populations. Sometimes,

diversity of species in the mating pool can help to generate a better optimized solution

since choosing the same superior species from the mating pool might bring about a

worse optimized result. To achieve the above requirements, how to adjust the fitness

function becomes more important. Thus, there exist three kinds of methods to adjust

fitness functions in the history of GA. In the followings, we shall introduce the basis

and the pros and cons of these three methods.

A. Linear scaling

 Linear scaling can transform the values calculated from fitness function by the

following (7).

 baff +=′ (7)

where f and f ′ are the original and transformed values of fitness function,

respectively, and the coefficients a and b can be chosen such that

 avgavgavg ffandff ⋅=′′= κmax (8)

where and , maxfff avgavg ′′ are the original and transformed average values of fitness

function, and the transformed max fitness value, respectively. The coefficient κ is

the multiplier between max and ff avg ′ . The linear scaling function is shown in Fig.

3.3.3_1. In the point of view by statistics, (8) can ensure one of the chromosomes with

the average fitness value to be selected to the next generation because of the

 41

condition 1/ =′avgavg ff . Also, the total numberκ of chromosomes could be reproduced

to the next generation by the assumption κ=′′ avgff /max . In using this scaling method,

we have to avoid the negative fitness values after transformation.

Fig. 2.6.3_1 Illustrating figure for linear scaling

B. Sigma truncation

In addition to avoiding the negative fitness values, linear scaling can map the

fitness values into our expected range. However, most chromosomes of the population

will have the higher fitness values when the searching process of GA tends to be

mature, which might cause the negative fitness values if the minority of chromosomes

has a very low fitness value. To overcome this problem, sigma truncation uses the

information of variance before scaling the fitness function. This can be carried out by

the following equation (9).

)(σ⋅−−=′ mfff (9)

where the notation is like linear scaling and m depends upon a multiplier of variance

of the fitness values in the population. By the help of sigma truncation, we can avoid

the negative fitness values resulted from linear scaling.

0 minf avgf maxf

minf ′

avgf ′

avgf⋅κ

The original fitness values

The transform
ed fitness values

 42

C. Power law scaling

Beside of sigma truncation, power law scaling can also help adjust the fitness

function of GA. This scaling method makes the transformed fitness values be the

power law of the original fitness value like (10).

 pff =′ (10)

where the decision of p is up to the issuing problem. Also, p has to keep changing

during the searching process of GA to meet the requirements of extending the range

space of fitness values.

2.8 Concluding Remarks of GA

 In this section, we not only illustrate the fundamentals of GA but also describe

the pros and cons of related essentials in GA. For some essentials in GA such as

crossover, mutation, and fitness function, we have given a detailed introduction about

these components. It is simply because any specific applications can be solved by GA

only depends on the right choices of fitness function and the appropriate GA settings.

For the specific image application, we shall induce a complete methodology by using

GA in the following two chapters. With the equipment of GA information introduced

in this chapter, we could make the following explanations about using GA much

easier and offer more ways of thinking for the adjustments of GA parameters applied

in our problems.

 43

3. Image Descreening based on GA-CNN
Texture Classification

3.1 Introduction

We in this chapter propose a new image descreening technique based on texture

classification using cellular neural network (CNN) with template trained by genetic

algorithm (GA), called GA-CNN. Instead of using the fixed filters for image

descreening, we are equipped with a more pliable mechanism for classifications in

screening patterns. Using CNN makes it possible to get an accurate texture

classification result in a faster speed by its superiority of implementable hardware and

the flexible choices of templates. The use of GA here helps us to look for the most

appropriate template for CNN more adaptively and methodically. The evolved

parameters in the template for CNN can not only provide a quicker classification

mechanism but also help us with a better texture classification for screening patterns.

After the class of screening patterns in the querying images is determined by the

trained GA-CNN-based texture classification system, the recommendatory filters are

induced to solve the screening problems. The induction of the classification in

screening patterns has simplified the choice of filters and made it valueless to

determine a new structured filter. Eventually in this section, our comprehensive

methodology is going to be topped off with more desirable results and the indication

for the decrease in time complexity. This chapter is organized in the following section

orders: the proposed system architecture, screening texture classification, design of

CNN templates for screening texture classification by GA, selection of descreening

filters, adaptive determination of arguments in the chosen descreening filter,

experimental results, and concluding remarks.

 44

3.2 The Proposed System Architecture

The proposed image descreening system can be divided into three major

processes. At first, we make use of GA to determine the working template elements

for the required operational function of CNN. After the working templates are

determined, the required function of CNN is determined at the same time. And then,

in the execution of CNN, the output can only be a binary image. For this reason,

several useful indices extracted from the output image of CNN are introduced to

indicate the property of screening in the target image. By the information obtained

from the output of CNN, the types of descreening filters and the parameters in the

filter are then obtained as desired. Finally, in the descreening stage, we apply the

selected filter to the screened images to filter out the screenings.

The proposed image descreening technique consists of the training phase (Fig.

3.2_1) and descreening phases (Fig. 3.2_2). At the beginning, we have to prepare

screened images on which the features of the screening patterns are extracted for

training purpose. In the training phase, a block in the size of 64*64 pixel2 is extracted

manually from the original screened images in our database. A block in the same size,

of course, would be cropped automatically in the testing phase. Also, in the training

phase, the proper template of CNN is determined by GA to perform texture

classification with the derived template. Two screening estimates calculated from the

output of CNN in the training phase can be utilized to be the matching indices for that

in the testing phase. The closer the calculated values in the testing images to those in

the training images are, the higher the level of tendency toward that screening pattern

will be. These two screening estimates not only suggest the types of descreening

filters, but also determine such arguments like width, radius, or size in the selected

filter. Once the type of the screened image has been recognized according to the

 45

extracted screening pattern, this screened image will be convolved with the suggested

filter to acquire the final descreened image.

Fig. 3.2_1. Flowchart of the training phase of the proposed GA-CNN-based texture
classification scheme.

 46

Fig. 3.2_2. Flowchart of the proposed image descreening technique.

 47

3.3 Screening Texture Classification

There are diverse screening patterns in the screened images; each can be best

removed by a specific kind of filters, so the lack of the screening information in the

screened images restrains the descreening results and complicates this kind of

problems. Textures can be viewed as complex visual patterns composed of entities, or

sub-patterns, that have characteristic brightness, color, slope, size, etc. [44]. Generally

speaking, four kinds of popular approaches nearly dominate all the researches in the

texture analysis, i.e., structural, statistical, model-based, and transform methods.

Structural approaches [44] ~ [45] represent texture by well-defined primitives

(micro-texture) and a hierarchy of spatial arrangements (macro-texture) of those

primitives. As to model-based texture analysis [46] ~ [52], it uses fractal and

stochastic models, and attempts to interpret an image texture by using generative

image model and stochastic model, respectively. Finally, transform methods for

texture analysis, such as Fourier [51], Gabor [52] ~ [53] and wavelet transforms [54]

~ [56] represent an image in a space whose co-ordinate system has a strong

understanding that is closely connected with the characteristics of a texture, like

scales or frequency.

Our proposed texture analysis scheme combines the advantages of structural

methods with those of statistical ones. The screening patterns can be referred to as

primitives in structural methods since the classification mechanism is a supervised

one. In the descreening phase, smooth indices are used to determine whether the

screening patterns could stand for the screenings in the original images. If so, the

screening pattern extracted from the original image will be fed into our classification

engine, GA-CNN. As soon as the type of screenings in the testing image is identified,

the following processes will be much easier and the descreening performance will be

 48

better.

3.3.1 Screening-Texture Patterns

Screening patterns can be viewed as one kind of textures that represents the

similarity grouping in an image. It may be difficult to get this sort of similarity in the

screened images accurately. It takes no effort, however, to observe the regularity of

the same screened images by human perception. For example, Fig. 3.3.1_1 (a)-(c)

contain different types of screening patterns, each of which has its own regularity or

uniformity, called texture of its own. Fig. 3.3.1_1 (a) contains screenings with smaller

granulations; while Fig. 3.3.1_1 (b) has bigger or squared screenings. For the image

corrupted by a specific screening pattern, a proper filter should be used for

descreening. The total number of screening patterns for all the screened images can

not be known beforehand. How to determine the number of screening patterns

depends on the desired functional performance. In our experiments for the

descreening purpose, only two classes of screening patterns are classified. Our

experiments have showed that the descreening performance after two-class screening

classification is very satisfactory and acceptable to human perception. The two classes

of screening patterns that are cropped manually from the screened images in our

database are showed in Fig. 3.3.1_2 and Fig. 3.3.1_3, respectively. These patterns and

manual classification results will be used for the training of the proposed GA-CNN

texture classifier.

In the testing phase of the trained GA-CNN texture classifier, it is essential to

identify the proper block(s) in the testing image for screening texture identification

and classification. We shall propose a set of smooth indices calculated from an image

block for determining whether the extracted block is qualified to be one of the

screening patterns in the testing images. Smooth indices thus play a critical role in the

screening classification. The derivation in more details for smooth indices will be

 49

depicted in the next subsection.

(a) (b)

 (c)

Fig. 3.3.1_1 Three example screened images. Images (a) – (c) contain different types
of screening patterns.

 50

Fig. 3.3.1_2 Screening Example 1

Fig. 3.3.1_3 Screening Example 2

3.3.2 Smooth Indices for Screening-Texture Block Detection

The standard deviations in statistical approaches were always used as the

analytical tool for signal processing and image processing. The smooth index used in

our approach can be also represented in terms of the standard deviation; it is obtained

from the proportion of difference in the standard deviations. The standard deviation in

an image represents the extent of difference in intensities of an image. Looking for an

index which can best describe how smooth a block will be, we have made use of the

proportion of difference in the standard deviations between our defined blocks, named

the difference ratio of standard deviations.

 51

The size of the screening pattern that we extracted from one of screened images

is 64 by 64 pixels. We partition the extracted screening pattern into five parts (i.e.,

sub-screening patterns). Figure 3.3.2_1 illustrates this partition of the screening

pattern. For each of them, a standard deviation value has to be calculated, and then the

calculated value needs to be compared with that of the original screening pattern.

With regard to all of these five sub-screening patterns, five difference ratios can be

acquired for a screening pattern in a screened image. In the same way, four difference

ratios can also be obtained about the central part from which is partitioned off the

screening pattern. None of these nine numerical values being larger than ten percents

totally makes sure of the smoothness of the extracted screening pattern. This smooth

index can be tuned higher if the original document image is not that smooth and the

components of edges may be more dominant. Although the smooth index is relevant

to the screened images, it is ranged from 10% to 20% without respect to the

complexity of the screened images. As Fig. 3.3.2_1 shows, each of the five blocks has

half of the size of the original screening pattern, 32 by 32 pixels. The higher the

smooth index is, the coarser the extracted screening pattern is. A smaller smooth index

implies the uniformity and regularity of the extracted screening pattern. The similarity

among blocks can truly reveal the agreement to the screening pattern coming from the

testing screened image.

Fig. 3.3.2_1 Partition in the screening pattern for calculating the smooth indices

 52

3.4 Design of CNN Templates for Screening Texture

Classification by GA

The core technique in the proposed descreening method is to design a

CNN-based screening texture classifier. The subject of template design or learning is

the most important topic in CNN researches. The methods which have been

investigated may be classified as local learning algorithms [5], [6], [57], global

learning algorithms (GA) [7] ~ [8], and analytical methods [3], [4], [58], [59]. Local

learning algorithms are derived from training methods developed for other neural

networks such as multilayer perceptrons, and their global counterparts mostly use

stochastic optimization techniques such as genetic algorithms [7] or simulated

annealing [8]. The analytical approaches are based upon a set of local rules

characterizing the dynamics of a cell, depending on its neighboring cells. These rules

are transformed into an affine set of inequalities that need be solved to get correctly

operating templates. Actually, GAs inherit the properties of analytical methods and

global methods. At the same time the local information can also be retained in the

template training stage.

For texture analysis by using CNN based upon GAs, some relevant and representative

studies as [43], [60] ~ [65] have to be taken for further discussions. Like [43], a

strategic approach was proposed to provide a simple but complete methodology for

texture classification and segmentation. Indeed, the features mentioned in this

reference, ROB (ratio of black pixels) and average gray-levels, give a very helpful

tool to classify up to sixteen texture patterns after a series of processing units or

analytic steps. But for some specific textures like screening patterns mentioned in this

chapter, the characteristics proposed earlier are not sufficient to classify and segment

these screening texture patterns since there may be various causes for screenings such

 53

like different resolutions, sampling rates by documental scanning, printing processes,

and so on. In [62], the hardware implementation for texture segmentation was

developed, which sped up the research and discovery of texture analysis and other

related applications, and meanwhile made texture-specific filtering and evaluation

processes facilitated with parallel handling capability and consecutive template

training of CNN’s. The uses of gray level histograms or other statistical methods in

[43], [60] ~ [62] also modulate the decision procedure after texture classification. In

addition to filtering textures in some orientation, having a process of cross-correlation

between the state and input, and using the halftone-like output of CNN as in [65], our

proposed approach turns the statistical analysis of CNN and the classification of

screening patterns in advance for descreening on a differently breaking view. Two

useful estimates, therefore, have been deduced here to solve this kind of descreening

problem exactly.

3.4.1 The Settings of CNN Templates

A cellular neural network is innovated with implementable circuits and the basic

characteristics of structures of neural networks. For the image processing in CNN, the

dynamics of the network is governed by a system of n=MN differential equation (11):

},2,1{},2,1{),(),()))((()(
)(

,
,, NMjitnIubtxfatx

dt
tdx

ij
Nlk

kljlikkljlikij
ij

ij

LL ×∈++++−= ∑
∈

−−−− (11)

where ijN denotes the neighborhood of the cell ijC , kla and klb are the feedback

and the control template parameters, respectively, M and N are the height and width of

an image, respectively, and)(tnij is the disturbance term. CNN has presumed

circumscribed by a virtual contour of cells with the constant input and output for the

lack of a complete set of regular neighbors on the boundary cells. The correspondence

subsumed under)(•∂ fij is the piecewise linear saturation function defined as (12).

 54

)11(
2
1)(−−+= xxxf (12)

and))(()(txfty ijij = is referred to as the output of ijC .

A template contains the combination of a triplet {A, B, z} for the template

learning, where A consists of all the arguments kla , and B represents the values klb . In

the structure of CNN, A and B both are 3*3 or 5*5 matrices. The size of matrices

depends on the functions of CNN. The threshold z is a one-dimensional scalar. In our

system, we apply 3*3 matrices to both A and B in the consideration of functional

performance for the texture classification. The constant input is chosen to be the

original image; i.e., the extracted screening pattern in gray scales. The initial state in

CNN for the texture classification can also be set as the original screening pattern due

to the ability of convergence. The task now is to design proper templates such that the

binary output of the corresponding CNN can indicate the class that the input screening

pattern in gray scales belongs to.

3.4.2 Parameter Adjustments in GA

A genetic algorithm (GA) is a kind of methodology, which can accomplish the

specific task or processing by a series of rigorously mathematical operations and

logical decisions. With the ability of selection, crossover, mutation, and reproduction

in genes, the superior offspring will survive while the inferior one being excluded

through competition. The most important part in GAs lies in the “fitness” function, a

kind of objective or cost function that covers all the information about the discussions,

which is in turn yielded to evaluate the fitness value of all the possible solutions and

their performances. Trying to reach a higher fitness value by recombining

chromosomes has then become an essential constituent in this parameter space.

When it comes to the operational theories in GAs, schema or template theorem

should have been taken to explain how it works. In the followings, some basic

 55

definitions in schema would be simply illustrated. A binary number “1xxx01xx”

presented here could be viewed as one of the examples of schemas where the symbol

‘x’ means “Don’t care”. The values located in ‘x’ could be 0 or 1. Also, a binary

number with or without ‘x’ is a schema. For a binary number “101”, thus, all possible

eight schemas are {101, x01, 1x1, 10x, xx1, x0x, 1xx, xxx}. There may include 2n

schemas for an n bit binary number.

The operational theories in GAs are based upon the building blocks hypothesis,

where the building blocks are the schemas applied for schema theorem. A good

contour could be conserved in case of selections. A better result could be shown up in

case of crossover. GAs could only find the optimization by getting rid of the local

traps in case of mutation. From above of all, the schemas with the smaller order, the

shorter defining length, and those beneficial to looking for the optimization would

survive generation by generation.

3.4.3 CNN Template Design by GA

When GA is used as the training tool for CNN templates, a few conditions that

ought to be met need to be taken into considerations. To make sure of the stability in

CNN, the positive cell-linking [1] and symmetry [66] of the “A” template have to be

verified. Fortunately, any template optimized by GAs must be stable because the

lower fitness values always result from unstable trajectories in CNN. It ensures the

stability in CNN if a higher fitness value could be reached, which is exactly what GA

goes for. The well-known evaluation function is defined as (13) by the mean squared

error:

∑
=

−=
k

i

s
i

d
i yyjg

1

2)()(,

(13)

where j is the training template including A, B, and z, k is the number of cells which

 56

depends on the size of templates, d
iy is the desired output for each i pixel, and s

iy

is the output in steady state for each i pixel. Obviously, only minimizing)(•g can

make the training templates become our desired templates, which just goes against

our purpose of getting higher fitness values. Therefore, a modified mapping function

is presented in Fig. 3.4.3_1 to transform the original cost function)(•g into the

required fitness function)(•f .

This mapping function mixes both advantages of windowing and linear scaling.

Windowing is one sort of fitness functions that can assign a constant minimum fitness

value to the chromosome in the worst condition. The increased fitness value makes

the chromosomes with lower fitness values have chance to compete with others in

some exceptional conditions. A linear mapping function with scaling is such a

transforming function that the population with an average evaluation value can be

mapped into the one with an average fitness value. The two properties amplify the

difference between good populations and bad ones so that the survival chromosome

could evolve more easily.

Fig. 3.4.3_1 Mapping function from the cost function g(.) to the fitness function f(.).

Beside of the transformation from the evaluation function to the fitness function,

 57

some other necessary elements in GAs have to be considered as well. To be more

systemized, the steps in the GA used in search of CNN’s templates are arranged

below.

(a) Encoding process: For the facility of using crossover and mutation, BGA

(binary genetic algorithm) is frequently utilized in GA’s realization. Representing a

floating decimal template in terms of a binary string is necessary. In fact, CNN’s

hardware implementation would be the terminal goal in trying finding an appropriate

template, so the values of parameters in that template need to be ranged from -5 to 5.

There exist a few popular coding methods like standard coding, enhanced coding,

inverse reordering, etc. Enhanced standard coding has improved the corresponding

association in the standard coding methods. It is the right coding method to put the

relevant digits corresponding to the same bit-location together for the effect that the

familiarity in a binary string can be effortlessly found out without interferences. This

encoding process of chromosomes is illustrated in Fig. 3.4.3_2. For the sake of

explanations, a simplified template with most entries filled by zero would be

exhibited in our encoding process. The resolution used in our template optimization

need not be too high since the redundant digits in CNN increase the computing

loadings only. We take the binary strings in 12 bits for convenience to represent the

decimal digits in CNN’s templates with the resolution less than 0.01; e.g., a binary

string “111111111111” represents a floating decimal 5.00 in the template. But for our

optimization process in the experiments, 5-7 bits for each weight in one population

would be quite adequate and efficient to realize the encoding progress, which is ought

to be accompanied by optimizing 5-10 weights within each of iterations in order to

speed up the convergence in GA’s evolution. In this manner, CNN’s template decision

could be well realized by the binary conversion in the first period of BGA.

 58

Fig. 3.4.3_2 The encoding process of chromosomes in the GA-CNN training phase.

(b) Reproduction or selection: In GAs, how to choose the chromosomes with

higher fitness values from the candidate population is quite a decisive problem, since

it influences the survival or decay of a competitive population. At this time, we

 59

select the simplest and the most general selection method, Roulette wheel selection,

to deal with this problem. At the point of adaptation functions, a higher fitness values

will contribute to a bigger region area. A more contributed chromosome also would

be liable to be picked out in the process of selection. The insufficient chromosomes

will be generated by the recombination of the chosen populations through

reproduction, crossover, or mutation operations mentioned below.

(c) Crossover and Mutation: Among various crossover operators, two-point

crossover is adopted to alter the previous relationship between two crossing sites in

the binary strings and its percentage value is chosen as 0.7 empirically. It signifies that

all the bits between two different sites chosen randomly have to be exchanged.

Two-point crossover ameliorates the drawbacks of one-point crossover with inability

of linking certain schemas. Mutation, in the end, is just performed by flipping an

arbitrary digit to increase the occurrence probability of the populations with low

fitness values and varies from 5%-15% according to the present error in the fitness

function. Besides, GAP is also set to be 0.65 for keeping track of the optimized

chromosomes and making the vibration in GA’s training slighter. Through these

operators, CNN’s template learning can be carried out by GA more successfully.

After the above GA optimization search, the designed CNN’s templates can be

rearranged as a triplet {A, B, z} and are listed in decimals in Fig. 3.4.3_3. On the GA

training pass, we shall demonstrate the evolution processes by the curve of fitness

functions (Fig. 3.4.3_4 (a)) and the corresponding simulated results through GA-CNN

(Fig. 3.4.3_4 (c)). In Fig.3.4.3_4 (a), the fitness values of the best, average, and

poorest populations are indicated for each generation in an amount of five hundred

generations. Likewise, five consistent results simulated through GA-CNN for every

hundred generations are also displayed in Fig. 3.4.3_4(c). It can be observed

apparently from the distribution of fitness functions (in Fig.3.4.3_4 (a)) that the

 60

fitness values incline towards a steady state after an appropriate number of evolved

generations. Also, in Fig. 3.4.3_5, the convergence curve reveals the variation in the

mean squared errors between the desired output and the output acquired by GA-CNN.

The distribution of fitness values and convergence curve both show the expected

generation which results in the satisfactory classification consequences in

experiments.

Fig. 3.4.3_3 The GA designed CNN’s templates for screening textures classification.

(a)

(b)

 61

 (c)

Fig. 3.4.3_4 (a) The variation of the fitness values during the evolutions of GAs by
200, 400, and 500 generations, respectively. (From left to right) (b) The testing

screening pattern for texture classification in gray scales and its binary desired output.
(c) The simulated results after texture classification during the evolutions of GAs by

100, 200, 300, 400, and 500 generations, respectively. (From left to right)

Fig. 3.4.3_5 The convergence curve for mean squared errors of the fitness function.

3.5 Selection of Descreening Filters

Numerous filtering approaches for image descreening have been proposed

previously since it was believed that there must be a way to find out a qualified filter

for screenings removal. But unfortunately, the outcomes of this concept only

provoked over-blurred images or low descreening effect. In spite of the complex

procedures, the descreening results are still restricted even if sharpening after

descreening has been employed. At the same time, most of the existing literature also

gives defense to their proposed filters against the common descreening filters like

 62

Gaussian or median filters. As a matter of fact, these popular filters still work quite

well on condition that the suitable arguments are correctly decided. In this chapter, we

shall show that the median and Gaussian filters are capable of coping with nearly all

the screened images if the screening patterns are classified and the appropriate filter

arguments are determined.

The Gaussian filter and median filter have complementary effects on image

descreening. Although the Gaussian filter is often under the opinion that it has less

effect on screenings removal, it can remove screenings without destroying the

information of high frequencies in the original documental images if the screening

degree would not be too high. Contrarily, the median filter has a stronger aptitude for

screening removal yet resulting in an over descreening phenomenon; i.e., over

blurredness. When the screening degree is high enough, the median filter will have a

great efficacy on image descreening. Therefore, the correct selection among these two

filters according to different screening textures can solve almost all the image

screening problems. Moreover, with the fittest filter arguments chosen in the filters

adaptively, the descreening outcomes can be further improved. The adaptive argument

decision mechanism will be described in the next section.

According to the above discussion, as soon as the screening type in the screened

image has been testified, either Gaussian or median filter will be used. The selection

mechanism depends on the tendency strength of the screening type in the screened

image. This selection does not indicate the exact screening pattern but an implication

about which of the two filters can offer a better descreening consequence. The

information of the binary output from the CNN texture classifier is sufficient to

determine which filter has to be selected. To extract such information, a determinative

parameter sr is defined as (14).

 63

)(
)(

sb
sars = (14)

where)(sa and)(sb both are the number of pixels with respect to the two

screening types, respectively. The parameter sr is the selection ratio for

recommending an agreeable filter for image descreening. The ratio is prone to

approach zero or infinity in an ideal condition if some screening pattern is more

dominant. In reality, the ratio is centered on the ranges by two boundary values, 10

and 0.1. It means that this parameter is ranged in two intervals, [0, 0.1] and [10,∞].

And, it can be observed that these two values are distinct enough to halve the defined

screening patterns.

3.6 Adaptive Determination of Arguments in the Chosen

Descreening Filter

Even if a desirable filter for descreening has been selected correctly, an arbitrary

decision of arguments in this filter might give rise to inferior descreening results. An

advisable filter with the adaptive decision of arguments can just straighten out the

problems in discussions. Two simple but applicable screening estimates are

introduced here to provide the screened images with a well defined Gaussian or

median filter. The two screening estimates are obtained by CNN’s binary output as

defined below. First, the CNN is performed to classify the screened image according

to the extracted screening pattern and give a binary output for texture classification.

Next, both x and y projection functions can be sketched or analyzed with regard to the

digits of the dominant screening type. Fig. 3.6_1 displays an x projection function of

the binary output from the chosen screening pattern. The y projection function of the

same screening pattern can be plotted in the same way as Fig. 3.6_1. The two

screening estimates can then be calculated as (15).

 64

minmax

minmax
2

minmax

minmax
1 ,

yy
nns

xx
nns

−
−

=
−
−

= (15)

Fig. 3.6_1 An x projection function of the screening pattern

The CNN’s binary output stands for the distribution of the two screening patterns

and meanwhile reveals the screening degree in the original screened image. The above

estimates point out the maximum variation in x and y directions, respectively; in other

words, the distribution of screenings in that pattern could be also best described in

two different directions. The inessential noises can be evitable since only the

dominant screening type is considered. Also, with the concern in image descreening,

the range of arguments in the Gaussian or median filter should be determined in the

first place. For the Gaussian filter, we only adjust the variance in a Gaussian function

from 1.5 to 9.0 with the precision up to 0.1. For the median filter, the size of the

sliding block is the only argument value we have to determine in our scheme, which

ranges from 3 to 15 in the width with the interval of one pixel. From any binary

output obtained by the screening classification, both of the two estimates can be

calculated. Naturally, these two estimates have to be normalized into its proper range

in accordance with the selected filter. This working interval was encircled by the

maximum and minimum estimates computed from the screening patterns in the

 65

training phase. The maximal estimate is assigned to 9.0 as the minimal one is assigned

to 1.5, and then the variance in Gaussian filter can be determined by interpolation. For

the median filter, the width of sliding blocks can also be received in the same measure.

Through the similar way in the training phase, we can inspect which direction is more

decisive. In fact, we just emphasize the higher screening estimate in two directions

now that the distribution of screenings in this direction will be evidently perceived.

3.7 Experimental Results

The experimental results reported in this section will focus on the final results

after descreening. In our approach, all the experiments can be separated into two parts:

the training and testing phases. The training phase includes the collection of two

different types of screening patterns, CNN’s template design, GA’s optimization, and

the acquirement in the available information of two screening estimates. The testing

phase comprises the classification of screening types, the texture classification based

on CNNs, filter selection, and the adaptive decision of arguments in the chosen filter.

The most time-consuming step in our method is GA’s optimization that determines

CNN’s template for texture classification. In the testing phase, fortunately, we only

use the fixed CNN’s templates, which have been optimized by GAs in the training

phase. Actually, it takes almost no time in the stage of the screenings classification

because only a small block (64*64 pixel2) in gray scales is extracted for further

analysis. As a whole, we spent about 3.3 or 0.8 seconds (by the computer, CPU: PIII,

800MHz) dealing with a document image in the size of 862 pixels by 768 pixels if a

median or Gaussian filter is selected as the descreening filter, respectively. The

detailed experimental results in these two phases will be given in the following two

subsections.

3.7.1 The Training Phase

 66

The experimental results of using the GA for CNN’s template design can be

exhibited in the form of screenings classification. Fig. 3.7.1_1 to Fig. 3.7.1_3 show

variously assorted consequences by means of CNN’s texture classification based on

GAs. The screening patterns in Fig. 3.7.1_1 and Fig. 3.7.1_2 are the ones from two

defined distinct screenings. In Fig. 3.7.1_3, the screening is generated synthetically by

mixing these predefined screening types. Fig. 3.7.1_4 presents the way to calculate

the smooth indices of the screening pattern by the manual cropping in the training

phase. Table 3.7.1_1 lists the data of the smooth indices with respect to two

predefined screening types and a mixed screening pattern of those two screening

types.

As Fig. 3.7.1_4 depicts, the screening pattern can be extracted accordingly.

When the first screening is randomly selected, the corresponding smooth indices can

be calculated simultaneously. If more than three indices are larger than 20% in those

nine indices, the next screening pattern has to be randomly searched until that

condition is satisfied. In this case, all the smooth indices of the third chosen screening

pattern will meet this requirement. Consequently, this searching procedure can be

terminated and the selected screening pattern can be applied for the screenings

classification in the screened images.

As Table 3.7.1_1 indicates, the screening patterns (a) and (b) both have smaller index

values than the screening pattern (c). It is obvious that smaller index values will bring

about smoother blocks of images, which is able to provide an index to distinguish the

smoothness of an image block. In comparison with what the previous works have

been doing by using their features which were applied to texture classification and

segmentation, the statistical arguments for screening pattern classification before

image descreening that we proposed in this chapter have shown a better classification

 67

performance and a lower misclassification rate by Table 3.7.1_2 in 200 documental

samples with various screenings. Table 3.7.1_2 describes the classification error by

several different indices, where one of them is the estimate that we made use of here,

and the others are the common features like ROB and texture energy dealt with by

half-toning or gray-scale outputs. It is easy to observe that the two estimates we

proposed for image descreening indeed have more specific and distinguished

characteristics toward the classification of screening patterns than what have been

appeared in the past studies for aiming at the texture analysis only.

 (a) (b) (c) (d)

Fig. 3.7.1_1 One defined screening type. (a) The original screening pattern. (b) The
screening pattern in gray scales. (c) The desired classification result. (d) Our

experimental classification result.

 (a) (b) (c) (d)

Fig. 3.7.1_2 The other defined screening type. (a) The original screening pattern. (b)
The screening pattern in gray scales. (c) The desired classification result. (d) Our

experimental classification result.

 (a) (b) (c) (d)

Fig. 3.7.1_3 The mixed screening type. (a) The original screening pattern. (b) The
screening pattern in gray scales. (c) The desired classification result. (d) Our

experimental classification result.

 68

 1

 3 2

Fig. 3.7.1_4 An illustrative image for the extraction of screening patterns by smooth
indices.

 (a) (b) (c)

 Index1 Index2 Index3 Index4 Index5 Index6 Index7 Index8 Index9

(a) 8.1% 7.8% 6.9% 15.1% 5.1% 17.2% 6.6% 13.5% 7.2%

(b) 13.2% 5.4% 6.6% 8.5% 9.2% 9.6% 15.8% 11.2% 9.4%

(c) 11.5% 78.6% 27.6% 54.3% 43.2% 45.6% 33.1% 9.4% 19.2%

Table 3.7.1_1 Comparison of the smooth indices with respect to three screening
patterns in distinct smoothness, (a), (b), and (c) accordingly.

Table 3.7.1_2 Comparison of the classification error for screening patterns by ROB,
TE (or gray level average), and our introduced parameters (one determinative index

and two screening estimates) in terms of different output formats (Binary/Gray
scale).

3.7.2 The Testing (Descreening) Phase

Histogram Average distributions of Parameters Output Screening 1 Screening 2 Screening 1 Screening 2
Classification

error
Our

indices B 1% 99% 0.6 75 2.4%

ROB G 47% 53% 44% 49% 4.8%
TE G 48% 52% 31% 33% 8.7%

 69

In this subsection, we demonstrate some descreening outcomes of the proposed

trained system on the screened images in the testing phase. The document images in

Fig. 3.7.2_1 and Fig. 3.7.2_2 are processed by the Gaussian filter according to the

screening classification result. The document image in Fig. 3.7.2_3 is processed by

the selected median filter obtained in the same way. The Gaussian filter applied to Fig.

3.7.2_1 and Fig. 3.7.2_2 is facilitated with its adaptive argument decision, so the

variance in the Gaussian function is set to be 2.4 for both of these two cases by the

two introduced screening estimates. However, in Fig. 3.7.2_3, the screening type

verifies the use of the median filter with the size of the sliding block by 6 pixels in

width. We here make some comparisons to other traditional and famous methods in

Fig. 3.7.2_4. Fig. 3.7.2_4 demonstrates the descreened images in various methods

where (a) shows the descreened results based on our method while the others are

based on three traditional methods. Among these three methods, one is the filtering

approach based on wavelet analysis, another is the approach by Gaussian filtering

only, and the other is the approach by medium filtering only. Apparently, our proposed

method shows a better processed result even in the software-oriented exposition. No

matter which filter is selected to do the image descreening by our proposed approach,

the document images after processing are undoubtedly superior to those in the related

studies. Again, this thesis additionally offers a chance to carry out in the design of

analog circuit. CNN naturally plays a promising part in image documentation, and

cannot be ignored in the field of applications of digital images.

Since there is no standard method for comparison in image quality after image

descreening processes, we devise an experimental scheme in the aspect of psychology

by compiling and integrating the opinions of around 100 persons to indicate the

acceptable degrees of the descreened images for every screening extent in various

respects like descreening results, smooth, or sharp degrees at the point of human

 70

perception. In Table 3.7.2_1, the evaluation range is halved by 5 where the interval

below 5 has a higher tendency toward discredits and the interval above 5 inclines a

higher confidence by credits. In the same way, a finer division by three intervals

shows such different levels as high, medium, and low. All data in Table 3.7.2_1

represent every tester’s point of view about the unprocessed and descreened images in

an average scale. And Table 3.7.2_1 gives a kind of representative indices, perceived

from human eyes, which clearly demonstrates the higher descreening performance

processed by our method than that handled by some previous approaches which were

extensively used in image descreening. From the experimental data in the descreening

results, our method is actually superior to any other one in every respect of image

qualities including smoothness, fineness, and edge information after descreening

processes.

It is also proved that a simple filter still can work as long as the screening type

could be classified first and an appropriate lowpass filter is chosen. In spite of the

variety in the screening types, the proposed filter selection scheme can settle most of

the descreening problems.

(a) (b)

Fig. 3.7.2_1 A testing image for descreening using the Gaussian filter. (a) The
original image. (b) The descreened image.

 71

(a) (b)

Fig. 3.7.2_2 A testing image for descreening using the Gaussian filter. (a) The
original image. (b) The descreened image.

 (a) (b)

Fig. 3.7.2_3 A testing image for descreening using the median filter. (a) The original
image. (b) The descreened image.

(a)

 72

(b)

(c)

(d)

 73

Fig. 3.7.2_4 The comparison to other famous methods. (a) The descreened images by
our approach. (b) The descreened images by wavelet filtering method. (c) The

descreened images by Gaussian filtering method. (d) The descreened images by
Medium filtering method. (The images in each row represent various processed

images in our database)

Table 3.7.2_1 Comparison of descreening performance and screening extent in

human’s observation by credits and discredits halved in 5 (normally we have three
different ranges: low for degree 1-3, medium for degree 4-7, high for degree 8-10).

3.8 Concluding Remarks

The work in this chapter was carried through with a creative idea in image

descreening. An alternative way applied to the screening classification is the crucial

part in making a correct choice of descreening filters for the removal of screenings.

By the applications of CNN’s texture classification, the predefined screening patterns

can be successfully separated. By the uses of GAs, the decisive template in the

functions of CNNs can also be well optimized. The classification based on CNNs can

be accomplished in such an easier manner that we make the descreening results more

acceptable. Also, we introduced the smooth indices to determine whether the

 74

screening pattern in the testing image was smooth enough to be extracted. The defined

screening types can be verified for the later filter selection according to this screening

pattern. CNNs in this chapter played an influential part due to its stability and the

association of neighboring cell linking. In particular, two suggested screening

estimates in the training phase were taken to decide the range of the same ones in the

testing phase, which helped to determine the arguments in the selected filter. In this

adaptive way, an appropriate filter with the chosen arguments not only made the

descreening processing easier but also rendered the processed images attractive ones

to human perception.

Our experimental results indicated that the descreened document images by our

scheme are more natural and acceptable to naked eyes, for both the high and low

frequency part in a descreened image demonstrating the smoothness and sharpness in

concord. With the selection of a proper filter and the decision of its arguments, the

screenings have been removed away effectively, but the high frequency part in

document images would still remain natural. It was shown that the descreening results

were also pleasing or even better despite of the absence of sharpening processes in our

approach. For more application in this field, the binary output of CNNs will be

extended to the output in gray values or even in color scales with more channels.

 75

4. Texture Discrimination based on
GA-CNN proliferation structure

4.1 Introduction

In this chapter, we presents a novel approach to texture discrimination, realized

by an innovative feature curve, TBS (Transition Bit String), extracted from the

mapping of Cellular Neural Networks (CNN’s) with optimized GA-CNN templates.

This one dimensional feature curve TBS has not only been demonstrated valid and

effective in the representation of various textures, it also leads to a better classification

result for complicated texture patterns. What is more, TBS helps to carry out the

GA-CNN based proliferation structure that always optimizes the number of templates

for texture classification and representation. Also, the overview of diverse texture

patterns from CNN’s characterizes the use of CNN’s and determines the

discriminability between textures. With the new approach we’re introducing here, we

would be able to proliferate the CNN templates at a much wider flexibility simply by

analyzing the feature curves of TBS for different textures. Meanwhile, we also

provide a selective processing mechanism for distinct cases of textures in

classification analysis, which takes into consideration the given conditions of texture

patterns in question. Last but not least, since the proposed structure and the developed

feature curve for texture classification show a satisfactory result even without given

conditions about texture patterns and is still applicable in much more complicated

texture patterns, we would be able to show the advantages of TBS in analyzing the

representation of textures whereas presents the superiority it carries out in the analysis

of texture classification.

This work is however significant since texture analysis could be applied to

 76

numerous researches such like image documentation, image descreening, background

removal, and many other digital image processing issues [67]. As to texture

classification, GA would definitely be employed in the design of templates of CNN’s.

Nevertheless, most studies on texture classification based upon CNN’s have put an

excessive emphasis on the searching of templates in CNN’s without really considering

the wider varieties in texture patterns that make the problems even more complicated

because the training of optimized templates is supposed to be time-consuming and

inefficient. This chapter, therefore, aims at building a brand-new structure to

effectively find the minimum number of CNN templates while retaining texture

classification performance. To illustrate our approach more clearly, we have organized

this chapter with the following sections: the proposed system architecture, Transition

bit string (TBS), the characteristics of texture patterns from CNN’s, design of

characteristic templates optimized by genetic algorithms (GA’s), texture classification

mechanism, experimental results, and concluding remarks.

4.2 The Proposed System Architecture

A novel systematic architecture is proposed in this chapter, as shown in Fig.

4.2_1. This overall architecture describes the complete workflows for our

classification problem and lists the main components under this structure. As we

discussed earlier, CNN’s plays a crucial role in overlooking the characteristics of

various texture patterns in terms of optimized GA-CNN templates. The proposed

structure here could process two distinct texture patterns defined by various ways to

acquire training samples. By obtaining the feature maps from the CNN outputs, we

use some special method for feature extraction to derive the curve of TBS. TBS then

becomes the kernel part here since it could be taken as the tool for the representation

of different textures and for the judgment foundation on differentiating different

 77

texture patterns. Finally, we apply TBS instead of the original image of texture

patterns to the input of classifier for texture classification and use it to represent the

texture patterns.

To explain more clearly, the feature combination in Fig. 4.2_1 (a) elaborates the

proliferating process of CNN templates based on the decision and evaluation of TBS.

The query function on the righthand side of Fig. 4.2_1 (b) provides a tradeoff choice

for something that we might not have about the input of the classification issue. In

order to avoid the unnecessary interferences and prepare a better processing strategy,

the pre-classification mechanism has been put here to simplify the classification

procedure. After classifying the combined feature curves for the first time, we would

move on to the following decision engine if the number of clusters has been given.

We would not take the other branch as indicated in Fig. 4.2_1 (b). The other branch

includes thresholding and cluster decision, where thresholding helps remove any

redundant information in the feature curve obtained from feature mappings and

cluster decision makes the features extracted from the output of various CNN’s

classified in advance and decides the number of clusters. On the other hand, if the

number of clusters has been determined on cluster decision, the same procedures

would be executed as in the case of a priori clusters.

The classification algorithm has to keep running till the number of clusters is

determined. And decision engine judges if the difference between any two clusters is

greater than some threshold. If so, the classification process would be terminated and

the outputs are the classified texture patterns. If not, the classification process would

go on and one more CNN template would be proliferated to generate more TBS

features in representing distinct textures. Our experimental results eventually

demonstrate both the capability of our introduced feature curve and the pleasing

classification outcome based on this method.

 78

(a)

Input (Texture patterns)

CNN
template 1

CNN
template 2

CNN
template n

CNN’s

Feature Map 1 Feature Map 2 Feature Map n

Feature Mapping Feature Mapping Feature Mapping

TBS 1 TBS 2 TBS n

Combined Feature Series

Feature
Combination

GA

TBS difference evaluation

 79

(b)

Fig. 4.2_1 The GA-CNN based proliferating system (a) Feature extraction phase (b)
The recognition phase

4.3 Transition Bit String (TBS)

For any applications in digital image processing, we offer a very useful feature

index extracted from two-dimensional signals, making it the desired descriptions of

texture patterns. This defined function TBS, can be taken as a projection mapping

from a 2-d input signal to a 1-d output signal. For any different kinds of combinations

of feature series, the characteristic function TBS could be defined as (16-1) or (16-2)

Input (Texture patterns)

Query
Function

no

Output
(Classified Textures)

Pre-Classification
Mechanism

Decision Engine

yes

no

Judge if the
number of clusters

was given.

yes

Thresholding

Cluster
Decision

yes

no

Feature Extraction

Mechanism

 80

depending on the type of input signals. Equation (16) can also be expressed in terms

of (17) and (18).

 f
k

k
k nkforxhTBS ≤≤=∑ 1)((16-1)

or f
k

k
k nkforxhTBS ≤≤= 1)(U (16-2)

where

f

k
kk

k nkfor
n
xnxh ≤≤= 1)()((17)

and

fkk

ikikk
k

k
k nkandnifor

otherwisexx
yxyxifxnxn

≤≤≤≤
⎩
⎨
⎧

+=
<−+= −

∞∞ 1 1
 ,1

))()((,1)()()1()(ε

 ………………………………………………………………………………........(18)

where TBS indicates the sum or union of differently-combined feature curves after

scanning the original 2-d input signals in some orientation k over its axis kx , while

fn is the total number of feature curves. Here we use the superscript k to avoid

confusion with the overall domain of axis x. The domain of TBS should be the unions

of kx with the numerical value k from 1 to fn . If the summation in (16-1) is replaced

by the “OR” operation, TBS stands for the union of feature series in some sense and

(16-2) will replace (16-1). Whether to select (16-1) or (16-2) is usually determined by

the sensibility in orientations of texture patterns and output signals. Apparently, (16-2)

would be more applicable to the applications of CNN’s since we simulate the CNN

outputs in a more logical form, which also keeps more information from the extracted

feature curve. The derivative equation (17) kicks off the normalization of histogram

by dividing the value n, the total number pixels in the images of CNN outputs, to keep

from the disturbance of various image sizes. Also, the maximum value kx in the

 81

orientation k indicates the total number of continuous strings listed in the

above-mentioned equations and here a string is referred to as a digital image with its

corresponding pixels.

In addition, equation (18) describes the kernel part of this characteristic function

where)(k
k xn represents the length of the current continuous string for the steady

state signals (∞y). And)()(ik yx ∞ means the transformed signals in orientation k

from ∞y in location i. In our application, we use the output of CNN’s for this kind

of input signals. The numerical value ()(k
k xn) hence indicates the length of the xk th

continuous string for the kth feature curve in the orientation k. This value will be

accumulated only when the difference ratio between the current string (k

ix) and the

previous one (k

ix 1−) is lower than some predefined threshold (ε). This threshold

depends on the types of image and how we tolerate noises of the processed images.

This explains the difference ratio is higher for more noisy textures. In our case, ε is

set to be 1 for the CNN binary output. Our featured function regarding xk projects the

original 2-d signal (CNN outputs here) onto a 1-d curve so as to re-classify the binary

strings according to our requirement. Finally, the defined characteristic function TBS

can be determined after analyzing the combination of feature curves in all considered

orientations. As we mentioned, the pre-defined threshold is frequently set to remove

more noises while deciding the current continuous string. This featured function can

be more flexible by selectively determining or adjusting this threshold.

Later in our experimental results, the feature curves in two dominant orientations

(horizontal and vertical) are well-functioning enough to classify up to sixteen texture

patterns in our database. This method is still applicable to the feature curves in more

orientations if the texture patterns are distributed in some particular orientation. We

named this feature curve TBS (Transition Bit String) since its horizontal axis

 82

represents the times of transitions or the number of total continuous strings and the

vertical axis shows the length of some specific string. To illustrate the use of TBS, we

have some regular texture patterns in the ideal binary level at different frequencies

and orientations as shown in Fig. 4.3_1 (a), where the proportion of whiter area in (a.1)

is 2/3 distributed horizontally and each texture image is assumed in LxL size for

simpler explanations. The proportion of whiter area in (a.2) is one half of the same

area in (a.1), and (a.3) is again one half of (a.2). As to Fig. 4.3_1 (a.4) ~ (a.6), we

have the same proportion between two different bright blocks while they are

distributed vertically. The corresponding TBS in the horizontal orientation could be

shown in Fig. 4.3_1 (b). We define the x-axis of Fig. 4.3_1 (b) as the number of

continuous strings and y-axis as the length of each continuous string (denoted by

counts). In Fig. 4.3_1, the numerical values (like 2L/3, L/3, etc…) represent the

corresponding coordinate values of x-axis or y-axis on its feature curve. From the

observations we make here, horizontal TBS plots indicate the same distributions for

the same textured patterns regardless of frequencies and orientations; they also at the

same time reveal different lengths and widths for those texture patterns. On the other

hand, vertical TBS plots demonstrate the opposite conditions against the horizontal

ones. In our case, our TBS combines the feature curves in two distinct orientations

(horizontal and vertical) by (16-2). Hence, TBS in truth shows the capability in

discriminating texture patterns at different scales or frequencies, and we could use

TBS to classify and represent texture patterns of natural images as long as the images

of texture patterns are spaced clearly by nature or by appropriate transformation. As a

result, we may successfully incorporate the structure of CNN’s in the sense of the

ability in generating distinct binary outputs for digital images to obtain the unique

projected feature maps with respect to various textures. The reason of introducing

CNN’s in this chapter will be given in the following section.

 83

 (a.1) (a.2) (a.3)

 (a.4) (a.5) (a.6)

(a)

(b)
Fig. 4.3_1 Illustrations for TBS plots (a) The ideal texture patterns in various

frequencies and orientations (b) The corresponding TBS plots orderly arranged from
left to right, and top to bottom (corresponding to (a.1) ~ (a.6)).

2L/3
L/3

2L

counts

No. of cont. strings

L/6
L/3

4L

counts

No. of cont. strings

L/6L/12

8L

counts

No. of cont. strings

2L2/3

counts

No. of cont. strings

counts

No. of cont. strings

counts

No. of cont. strings

L2/3

2

L2/3

L2/6

4

L2/6

L2/12

8

 84

4.4 The Characteristics of Texture Patterns from CNN’s

When it comes to texture discrimination analysis, we all aim at finding the

characteristics of each specific texture pattern. How to describe or represent the

distribution in texture patterns would thus be significant and how to extract the

representative features from various texture patterns would be also crucial to the final

performance in the classification mechanism. As we know, textures can be viewed as

complex visual patterns composed of entities, or sub-patterns, that have characteristic

brightness, color, slope, size, etc. [44]. Generally speaking, four kinds of popular

approaches nearly dominate all the researches in the field of texture analysis:

structural, statistical, model-based, and transform methods. Structural approaches [44],

[45] represent texture by well-defined primitives, indicated as micro textures, and a

hierarchy of spatial arrangements, indicated as macro textures, of those primitives. As

to model-based texture analysis [47] ~ [52], it uses fractal and stochastic models, and

attempts to interpret an image texture by using generative image model and stochastic

model, respectively. More clearly, [47] describes the natural scenes by fractal

dimension estimation and takes advantage of iterations between parameters to

improve the performance in one parameter adjustment. Using the set of Markov

parameters and the correlation coefficients of textures [48] makes the classification

problem more challenging. But the limitation of [48] is that the calculated arguments

from texture patterns can not distinguish these textures since they share the same

power spectra but different phase information. The approach proposed in [49] uses the

Gibbs distribution for noisy textured images and it shares the parameter estimation as

in [47]. For the unknown number of clusters among textures, [50] proposed an

unsupervised texture segmentation method to model the textured images that can be

divided into non-overlapping regions, from which the information of Gauss Markov

 85

random field (GMRF) can be extracted. Besides, transform methods for texture

analysis, such as Fourier [51], Gabor [52], [53] and wavelet transforms [54] ~ [56]

represent an image in a space whose co-ordinate system has a strong understanding

that is closely related to the characteristics of a texture, like scales or frequency. For

instance, [53] interprets image textures with 2-D Gabor filtering by its orientation

characteristics, and [54] describes the basis of image representation based on

multi-frequency bands. For multi-band analysis, [55] uses wavelet package to

represent textured images by entropy and energy of wavelet coefficients. Again, for

the unsupervised case, a simple structure based on wavelet analysis for unknown

number of textures was introduced in [56]. From the observations above, it is clear

that our proposed texture analysis scheme keeps the advantages of structural methods

while retaining those of statistical ones. The texture patterns can be regarded as

primitives in structural methods while the specific CNN template could be viewed as

the elements of primitives for reflection of some specific textures. In addition, like the

analytical procedures in the statistical approach, our introduced TBS plays an

essential part in describing the distribution in various textures in the aspect of feature

extraction through different CNN templates. In the following section, we will have a

brief introduction to the basic structure of CNN’s for those who might not be familiar

with CNN’s. After that, a brand-new idea based on CNN’s for texture discrimination

will be given in section 4.4.2.

4.4.1 The Settings of CNN Templates

 As what we have addressed in the chapter 3, the state equation and output

function of CNN’s for the image applications could be described as (11) and (12),

respectively. Likewise, the CNN template contains the combination of a triplet {A, B,

I} for the template learning, where A consists of all the arguments kla , and B

represents the values klb . In the structure of CNN, A and B both are 3*3 or 5*5

 86

matrices. The size of matrices depends on the functions of CNN. The threshold I is a

one-dimensional scalar. In our system, we apply 3*3 matrices to both A and B in the

consideration of functional performance for the texture classification. The constant

input is chosen to be the original image; the initial state in CNN for the texture

classification can also be set as the original texture pattern due to the ability of

convergence. The good thing is not every element in templates has to be trained since

our defined templates are sensible enough to describe texture patterns of any kind.

These types of templates can represent the characteristics of textures in our innovative

ideas, which will be conceptualized and illustrated as below and more details will

come later in section 4.5.

4.4.2 The Overview of Texture Patterns Based on CNN’s

Unlike the traditional approaches using CNN’s, we take advantage of the

characteristics of templates in CNN’s to simulate the distribution among texture

patterns instead of looking for a specific template for some specific applications. The

characteristics of different kinds of texture patterns could be generalized from CNN’s

mapping, as shown in Fig. 4.4.2_1 (a) and (b). One can understand why we try to

describe the properties in texture patterns for classification problems from the

perspective of feature mapping based on various templates of CNN’s. As a result, it is

similar to an outlook from various CNN templates (the front layer) to feature space

(the back layer) through many kinds of texture patterns (the mid-layer). From Fig.

4.4.2_1 (a) and (b), different templates in CNN’s correspond to different regions of

feature space which might be projected from various texture patterns. It could also be

observed that Fig. 4.4.2_1 (a) and (b) indicate two diverse conditions that might result

from the singular and nonsingular feature projection based on the same CNN template.

For illustrations of more details, Fig. 4.4.2_2 describes the feature space in a more

definite fashion for both ways in bifurcating feature mappings seen through a

 87

characteristic CNN template. With a suitable selection in CNN templates which can

be found in advance or trained by GA’s, textures would be projected by these

templates into ranges of feature space different from one another. On the other hand,

the more overlapped condition in the feature space projected from a specific CNN

template would be undesirable in this chapter. As what has been described above, we

try to find the applicable CNN templates that can best describe the texture patterns in

order to represent or classify these textures in the consideration of improving the

performance of our system. Naturally, CNN’s could generate this kind of feature maps

by optimizing templates based on GA, which would be elucidated at the design

guidelines in the following section.

(a)

 88

(b)

Fig. 4.4.2_1 Illustration Figure for Feature Mapping based on CNN’s by (a)
Non-overlapping condition and (b) Overlapping condition.

Fig. 4.4.2_2 Illustration Figure for the distribution in features projected from

different CNN templates

 89

4.5 Design of Characteristic Templates Optimized by Genetic

Algorithms (GA’s)

In the past studies, the most important issue in any applications related to CNN’s

lies in the search of CNN templates. However, looking for appropriate templates is

sometimes time-consuming and difficult, which in turn results in a standard format of

the system structure and the constraints of the performance of that system. Therefore,

efficient template finding could be decisive and may also better off the final results.

To discriminate texture patterns more clearly, we use genetic algorithms to find the

specific CNN templates with the goal of generating distinct feature maps for any two

different textures. The design of CNN templates has been prevailingly illuminated by

GA since the convenience and robustness of GA have extended the capability of

CNN’s applications. A strategic approach has been proposed to provide a simple but

comprehensive method for texture classification and segmentation [43]. The feature

mentioned in this reference, Rob (ratio of black pixels) and average gray-levels, in

fact give a very helpful tool to classify texture patterns after a series of processing

units or analytic steps. But these features confine the applications in image processing

by CNN’s since we can not leave aside the practical problem of whether the hardware

is implementable for complicated texture patterns. In this regard, we propose a one

dimensional feature curve in this chapter to highlight the more complicated issues of

image processing by CNN’s, so that hardware of the applications alike in higher level

image processing can be implemented more easily. In addition, this feature curve

plays an important role in the design of CNN templates based on GA by incorporating

with the evaluation of fitness function and the simplification of templates in the

optimizing process of GA.

4.5.1 The Design Rules on GA by TBS

 90

A genetic algorithm (GA) is a kind of methodology, which can accomplish the

specific task or processing by a series of rigorously mathematical operations and

logical decisions. With the ability of selection, crossover, mutation, and reproduction

in genes, the superior offspring will survive while the inferior one being excluded

through competition. When GA is used as the training tool for CNN templates, all the

elements in the templates of CNN’s have to be verified. As far as texture analysis is

concerned, the CNN templates which possess the ability to simulate or differentiate

texture patterns belong to a special kind of filter for extracting features in the original

textures. Therefore, we would manage to modulate this specific form of CNN

templates in stead of looking for a new CNN template just between any two specific

texture patterns. The reason is simple: the latter gives rise to the decrease of the

trained CNN templates and truly reflects the non-overlapped feature mappings from

those templates. In fact, there exist some types of templates in generating distinct

feature mappings among different textures for enhancing the differentiation functions

of the classifier. Thus, the goal here turns to predefine this special form of templates

to differentiate texture patterns. This kind of CNN templates could be determined and

optimized by the adjustment of TBS difference when the following criterion is

satisfied.

 kj
k

i
k

j
k

i
k

TBSTBS
TBSTBSabs η≥−

),max(
)((19)

where i
kTBS and j

kTBS are the kth index of our featured curves calculated from the

CNN outputs for any two different textures, texture i and texture j. The subscript k

represents the kth location in the calculated TBS. The kη for the kth index represents

the threshold of difference ratio between texture patterns, whose value, between 0 and

1, can be selected beforehand for various sets of texture patterns. Also kη

approaching 1 implies a higher difference ratio between texture i and texture j. We set

 91

the same kη for all indices for convenience and a bigger kη for higher

discriminative power between textures. For this requirement, we choose the error

function in GA as follows.

 ∑
=

−=
n

k

j
k

i
k yyabslg

1

)()((20)

where l is the training template including A, B, and I. n is the number of cells that

depends on the size of templates; i
ky is the desired output for the target texture

pattern and j
ky is the steady state output of the discriminative texture pattern for the

kth cell. Here the definition of (20) just expresses the relationship between the current

optimizing templates, and the error function should be related to our TBS difference.

So the error function in GA was defined as the reciprocal of TBS difference. Finding a

lower difference between d
iy and sy is equivalent to finding a higher TBS

difference. As what we intend to do in this chapter, the fitness function given above is

set to be the difference of the defined feature curve, TBS, between different texture

patterns. Besides, any template optimized by GA must be stable because the lower

fitness values always result from unstable trajectories in CNN. It ensures the stability

in CNN if a higher fitness value is reached, which is exactly why GA is used for.

Since these two functions in this issue would be running after the same goal, we do

not need to define an additional error function or to project it on the fitness function

by any transforming function, like most approaches would do. The other related

adjustments about GA on the search of CNN templates such as the encoding process,

the way of adjusting reproduction and selection, crossover and mutation rate, etc, can

also be referred to the previous chapter for more details.

 In order to optimize CNN templates in pursuit of generating different feature

maps for various texture sets more efficiently, we predefine three types of uncoupled

 92

CNN template which take the distribution of different texture patterns into account

with regard to its regularity, uniformity, and symmetry. Hence, we have

Type 1

.
0

00
0

000
00
000

22

1

22

cI
bb

b
bb

BaA =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

Type 2

.
00

00

000
00
000

2

212

2

cI
b

bbb
b

BaA =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

Type 3

.
000
00
000

222

212

222

cI
bbb
bbb
bbb

BaA =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

All the three types of CNN templates are defined according to the arrangement

of every cell coupling with its texture pattern, and only three conditions are

considered due to the applicability in various texture patterns. For each training

process of GA, only one of these three templates would be met to form the

discriminative feature map for any pair of texture sets. Later we will show the faster

convergence condition based upon our GA-defined template in the up-coming

experimental results. The three types of CNN templates describe different ranges of

feature space, and our featured curves could decrease the number of templates that

have to be optimized. It is interesting to observe that CNN edge template in the library

happens to be one of the defined templates since the former describes the texture

pattern in the high frequency band. Thus it becomes the first template to represent

textures before deciding whether or not the proliferation of CNN templates is

necessary. Meanwhile, TBS helps provide an evaluation index in the optimizing

 93

process of GA to determine the extent of discriminations between textures.

To acquire the feature maps based on different CNN’s, we have to optimize our

defined templates. And the optimized results after GA search are shown in Fig.

4.5.1_1. For any two texture patterns (Fig. 4.5.1_2 (a)) which can not be classified

correctly by the first template, a new CNN template will be optimized as stated in our

approach. The evolution processes is demonstrated by the corresponding feature maps

(Fig. 4.5.1_2 (b)) through GA-CNN and the corresponding fitness functions (Fig.

4.5.1_2 (c)) during GA optimization. The first and second row in Fig. 4.5.1_2 (b) and

(c) correspond to the left and right texture pattern in Fig. 4.5.1_2 (a), respectively.

From the steady state feature maps shown in the rightmost figure of Fig. 4.5.1_2 (b),

we know that the original texture patterns have been well described by the new

feature maps, which show the diverse distributions in the horizontal and vertical

directions for those two patterns. And in Fig. 4.5.1_2 (c), the fitness values of the best,

average, and poorest populations are indicated for each generation in an amount of

two hundred generations. It can be observed apparently that the fitness values incline

towards a steady state after an appropriate number of evolved generations. Fig.

4.5.1_3 describes the convergence curve by the variation of error functions in the

training process of GAs between our target texture patterns. We define the error

function as the difference of parameters between the current and desired patterns as in

(20) in order to observe the convergence condition during the evolution of optimized

CNN templates based on GA. The label of x-axis in Fig. 4.5.1_3 is denoted by epochs

since the generated populations based on GA should be corresponding to the training

process of neural networks. Finally, the distribution of fitness values and convergence

curve both show the expected generation which results in the satisfactory

classification consequences in experiments.

 94

Fig. 4.5.1_1 Optimized CNN template set for all sixteen texture patterns

(a)

(b)

 95

(c)
Fig. 4.5.1_2 GA training process for our defined CNN template (a) The misclassified

texture patterns in the first run (b) The evolved feature maps during the training
phase by GA (c) The corresponding fitness function for the best, average, and

poorest populations after 50, 100, and 200 generations accordingly.

Fig. 4.5.1_3 The convergence curve by GA trainings

 96

4.6 Texture Classification Mechanism

So far it is obvious that we have put forth a new structure in generating CNN

templates in a more flexible fashion. This structure also deals with the classification

issues in supervised and unsupervised conditions for texture patterns. Here we

addressed on how our texture classification mechanism can work for this function.

Our entire classification mechanism emphasizes on the decision engine and the

classification algorithm besides the searching processes for CNN templates based on

GA. As indicated formerly, CNN template set ensures the existence of feature maps

for various texture patterns. TBS gives an evaluation standard for determining

whether the classified outputs are desired ones and whether TBS series can describe

the difference between texture patterns. Therefore, for the decision engine, TBS

difference between textures decides whether or not the CNN template has to be

proliferated. If TBS difference is greater than some threshold, this TBS series is

distinct enough to represent different textures and the classification process is

terminated. Otherwise, we must generate more CNN templates to organize a new TBS

series for differentiating textures. Also, whether the number of clusters is a priori is

taken into consideration for different processing purposes. If the number of clusters is

known, the classification process would be much easier by applying the pre-classifier

and decision engine. Since the features (TBS series) extracted from CNN outputs are

quite representative for various texture patterns, a complex or time-consuming

classifier is no longer required for pre-classification mechanism. Instead, a simple

classifier would work on the classification for features extracted from textures. If the

number of clusters is not given, we would use the classification algorithm in the first

place to find the number of clusters that will be brought in later. There is no need to

apply any existed unsupervised classifier that might be difficult and inefficient for

 97

texture classification. To sum up, we have the classification algorithm on the

foundation of TBS series as shown below.

Classification Algorithm

1. Extract the dominant features from the TBS series.
2. Set iterationn =1 where iterationn is the number of iterations, and calculate the average

of all texture patterns.
i.e. Calculate mifor

n
ttt

t
i
n

ii
i
c ≤≤

+++
= 1 ,

)(21 L
 where i

ct means the centre
tuple in the ith dimension, m is the total dimension of each tuple, and n is the total
number of tuples (texture patterns).

3. Calculate the distance from each tuple to the centre tuple.
i.e. njforttd i

c
i
j

j
c ≤≤−= 1 ,)(where j

cd is defined as the 2-norm distance
from the tuple j to the centre tuple in the sum of every dimension i in tuple j.

4. Find the maximum distance maxd such that }{max
1max

j
cnj

dd
≤≤

= .
5. Divide j

cd by maxd for nj ≤≤1 to obtain the normalized distance j
nd .

6. Find the tuple j such that η≥j
nd for nj ≤≤1 . where η is the predefined

difference ratio between texture patterns and 10 ≤≤η . Let k be the total number
of tuples whose j satisfies the above constraint.

7. Make the centers of new clusters be jt where kj ≤≤1 . Now the number of
clusters will be k+1 (i.e. iteration

r
cluster nrandkn =+= ,1) since ct should also be

one of the centers of clusters.
8. Assign the remained unclassified members jt where 11 +−≤≤ r

clusternnj to the
cluster whose i

nd is the minimum among all i (r
clusterni ≤≤1).

9. Recalculate the centers of new clusters to form jc where r
clusternj ≤≤1 .

10. Evaluate the difference ratio between clusters ijr .
where 11 11 }{max/

11
11

+≤≤+≤≤−−=
+≤≤
+≤≤

kjandkiforccccr ji
kj
kijiij .

Find cluster i and cluster j such that ijr is minimum.
If η≥min

ijr then
Stop the algorithm and iteration

r
clustercluster nrwherenn == .

Else
Merge cluster i and cluster j, 1 += iterationiteration nnset , and go back to step 9 with

iteration
r
cluster

r
cluster nrwherenn =−= − 11 .

Like the first step illustrated in this algorithm, extracting the dominant features

from TBS series is trying to simplify the analysis of feature curves and enable the

 98

convergence of classification. These dominant features used in this chapter are

average height, width, peak value, and the position of the peak value calculated from

the feature curve TBS. The classification algorithm helps to find the number of

clusters in an efficient way from how clearly we expect the textures to be

distinguished. Naturally, the classification mechanism would go back to the

proliferating system if the current TBS series are still insufficient to distinguish

texture patterns. This then becomes precisely the case where the number of clusters

has been given. And the processing procedures would be more lucid after the number

of clusters is a priori. We will look into the outcomes for different given conditions in

the following section to show how both cases demonstrate satisfactory results.

4.7 Experimental Results

This section mainly focuses on the experimental results of classification

outcomes. Besides, we would also show the performance of our feature curves

presented previously to demonstrate how they may represent various texture patterns

in practical use. All the texture patterns we use in this chapter are obtained from

Brodatz texture database, and we have sixteen texture patterns for the following

experiments. For both experimental and optimized parts, the standard size of texture

patterns in this chapter is 64x64 pixels. First, the capability of the feature curve, TBS,

in one direction for four texture patterns cropped in different orientations and

regularity are shown in Fig. 4.7_1 (a)-(c). Fig. 4.7_1 (a) represents the original four

texture patterns in different orientations and regularity with each row representing the

same texture patterns we have collected in five different orientations and regularity.

Fig. 4.7_1 (b) and (c) indicate the feature maps obtained from the operation of the

first template in CNN’s and the corresponding feature curves scanning in the

horizontal direction. Fig. 4.7_1 (c) figures out the different distributions among these

 99

four texture patterns. Using it as an example in these four textures, the feature curves

obtained from the given CNN templates indeed describe the discriminability between

different texture patterns.

In a more difficult case, the original CNN template is not sufficient to

discriminate those eight texture patterns interpreted in Fig. 4.7_2 (a)-(c). Fig. 4.7_2 (a)

shows the original eight texture patterns, and Fig. 4.7_2 (b) and (c) both present the

same thing as in Fig. 4.7_1 excluding the additional texture patterns. As what our

approach highlights, a new CNN template has to be optimized then in order to

differentiate the current texture patterns (Fig. 4.7_2 (a)) by the combined TBS series

extracted from this new optimized CNN template. With TBS difference ratio, we can

foresee whether the texture patterns will lead to the similar or different distribution of

TBS. In this way, we need to train one more CNN template for distinct feature maps

as shown in Fig. 4.7_3 (a), whereas Fig. 4.7_3 (b)-(c) show the different distribution

of TBS in this case. Fig. 4.7_3 (b) and (c) indicate the diverse TBS in the horizontal

and vertical directions, which causes the differentiation in some other texture patterns.

More specifically, from the 4th row (texture 4) to the 8th row (texture 8) in Fig.4.7_2

(a), (texture 4 and 5) and (texture 7 and 8) in particular, the original feature maps (Fig.

4.7_2 (b)) and TBS (Fig. 4.7_2 (c)) which can not represent or differentiate these

textures will be representative enough to discriminate these patterns by incorporating

this new TBS (Fig. 4.7_3 (b) and (c)) to form a complete TBS series. Therefore, the

experimental results (Fig. 4.7_2 and 4.7_3) show that the proliferated CNN templates

accompanied by the original ones give a better representative discriminability for

more texture patterns. In order to elucidate the functions of TBS series for texture

discrimination, we set up a verifying experiment for numerical comparisons based on

these figures (Fig. 4.7_2 and 4.7_3) in Table 4.7_1. The numerical value on each line

represents the discrimination index of corresponding textures in Table 4.7_1 (a). The

 100

discrimination index denoted by η(i, j) implies the discriminative ability between

texture i and texture j (the row number of Fig 4.7_2 or 4.7_3). We only show the

smallest top 5 discrimination indices for each figure from left to right. We can observe

that all the numbers in Table 4.7_1 (a) are smaller than 0.5, which speaks of the

difficulty in separating these textures. Therefore, we demonstrate the functions of

TBS series (a combination of more features extracted from more CNN templates) in

Table 4.7_1 (b). We would only show the textures which result in the lowest five

discrimination indices for comparison. As Table 4.7_1 (b) indicates, the combined

TBS series have enhanced the discriminative ability among textures since all the

discrimination indices in Table 4.7_1 (b) are higher than those in Table 4.7_1 (a). The

quantitative experiments indeed prove that features from the proliferated templates

can make texture patterns more discriminative.

By the same token of satisfactory experimental results, we also demonstrate how

effective and prevailing our defined CNN template can be. Our structure is by far

better than some other traditional method that takes it as nothing more than a normal

template that has nineteen parameters to be trained. Fig. 4.7_4 reveals the

convergence condition by the fitness functions of GA’s from the best, average, and

poorest populations after the same generations for the general CNN template (Fig.

4.7_4 (a)) and our predefined CNN template (Fig. 4.7_4 (b)). Unlike the

generally-adopted CNN templates based on GA that often encounter difficulty in the

convergence of obtaining a proper template, our results show a much faster

convergence speed in the predefined case. In addition, our experiments show that at

least three optimized templates would be sufficient enough to classify up to sixteen

kinds of texture patterns by using TBS.

To classify less than eight textures in obviously distinct orientations, one out of

two templates that is proliferated would be enough to differentiate different texture

 101

patterns. As Table 4.7_2 shows, our introduced feature curve, TBS, does provide a

better classification outcome than other features based on CNN’s in the previous

studies will do. Table 4.7_3 and 4.7_4 indicate respectively the classification results

for different rotations and sampling sizes of textures. This suggests the stability and

invariance of our approach when applied to different situations. Also, Table 4.7_5

compares the experimental results between different feature curves, and there seems

to be no difference even if only one orientation of TBS has been used. Since GA is a

training process with optimization, we need to have some discussions about texture

data sets on training/testing separation. We use the tenfold cross-validation testing

model to make our experimental results more persuasive. Hence Table 4.7_6 indicates

the individual and average classification error for a fixed textured data set of eight

texture patterns in the standard size (64x64). We can see that the average

classification error based on our introduced feature series is much lower than that of

other traditional features based on CNN’s. Eventually, if the number of clusters is not

given, we have the classification results in Table 4.7_7. Table 4.7_7 shows that the

number of clusters should increase if the difference ratio between textures (η)

decreases and vice versa. In this way, we can decide the number of clusters that we

wish to classify the texture patterns in the database by adjusting η. As the

classification outcome shows, the error percentage of our introduced system structure

is still acceptable even if the number of clusters is not known beforehand. In Table

4.7_7, the error percentage of the fixed η is not given for unsupervised case since it is

meaningless to calculate the classification error percentage on the different bases of

the real situation. All the experiments indicate that our developed texture

classification mechanism with the introduced TBS needs fewer templates for

optimization, which for sure result in time-efficiency in the optimizing process of GA

and the satisfactory results in texture discrimination as well.

 102

(a)

(b) (c)
Fig. 4.7_1 Texture representation for four texture case (a) the original texture

patterns (b) feature maps (c) TBS.

(a)

 103

(b) (c)
Fig. 4.7_2 Texture representation for eight texture case (a) the original texture

patterns (b) feature maps (c) TBS.

(a)

(b) (c)
Fig. 4.7_3 Texture representation for eight texture case based on another CNN

template illustrated by (a) feature maps (b) TBS in the horizontal direction (c) TBS in
the vertical direction.

 104

(a) (b)
Fig. 4.7_4 The convergence condition by GA for (a) The general CNN template (19

optimized parameters) (b) Our predefined CNN template

Table 4.7_1 Numerical Comparison for texture discrimination ability based on
Fig.4.7_2 and 4.7_3

a. For individual feature curve (by only one CNN template)
 Discrimination
 Index

Subjects
1 2 3 4 5

Fig.4.7_2 η(4,5)=0.12 Η(4,6)=0.15 η(5,6)=0.17 η(7,8)=0.22 η(3,7)=0.27

Fig.4.7_3 (b) η(1,2)=0.13 Η(3,4)=0.14 η(2,8)=0.16 η(2,7)=0.21 η(7,8)=0.27

Fig.4.7_3 (c) η(2,3)=0.10 Η(2,4)=0.14 η(1,3)=0.18 η(4,7)=0.19 η(2,8)=0.22

b. Comparison of discrimination index by one feature curve and combined feature
curves (TBS series)
 Discrimination
 Index

Subjects
η(2,3) η(4,5) η(1,2) η(2,4) η(3,4)

One CNN template 0.10 0.12 0.13 0.14 0.14

TBS series 0.51 0.58 0.60 0.55 0.52

 105

Table 4.7_2 Comparison in the classification outcome based on various features

Table 4.7_3 Experimental results for different rotations of texture patterns

Classification error for different rotations of texture patterns Number of

textures Original (0) 90 degree 180 degree 270 degree

4 textures 0.4% 0.7% 0.5% 0.6%

8 textures 3.6% 3.8% 3.5% 3.7%

12 textures 4.8% 5.4% 5.1% 5.5%

16 textures 5.8% 6.0% 6.2% 5.9%

Table 4.7_4 Experimental results for different sizes of texture patterns

Classification error for different sizes of texture patterns Number of

textures 64x64 32x32 16x16 100x100

4 textures 0.4% 1.2% 3.5% 0.3%

8 textures 3.6% 3.8% 4.3% 3.3%

12 textures 4.8% 5.2% 6.5% 4.7%

16 textures 5.8% 6.2% 7.2% 5.8%

Table 4.7_5 Experimental results for different TBS (vertical and horizontal)

Classification error for different TBS Number of

textures Horizontal only Vertical only

4 textures 0.5% 0.5%

8 textures 4.2% 4.7%

12 textures 5.2% 5.8%

16 textures 6.5% 6.7%

Number of templates Classification error

Parameters Output 4

textures

8

textures

12

textures

16

textures

4

textures

8

textures

12

textures

16

textures

TBS Binary 1 2 2 3 0.4 % 3.6 % 4.8% 5.8%

Rob Binary 3 4 4 5 2.4 % 4.5 % 5.1 % 6.7%

TE Gray 3 4 4 5 4.5 % 6.3% 7.7 % 8.5%

 106

Table 4.7_6 Experimental results for tenfold cross-validation testing model

Features Average Classification error

TBS 13.5%

Rob 17.8%

TE 25.2%

Table 4.7_7 Experimental results for the case when the number of clusters is not
known

Number of textures Clusters Η Error (%) Clusters η Error (%)

4 textures 3 0.5 NA 4 0.60 2

8 textures 10 0.5 NA 8 0.55 4

12 textures 8 0.5 NA 12 0.45 5

16 textures 20 0.5 NA 16 0.36 8

4.8 Concluding Remarks

In this chapter, we have brought up a brand-new methodology, where a GA-CNN

proliferating system is presented to deal with texture patterns in different given

conditions. Here CNN’s inevitably take up a crucial part in signal analysis from a

perspective of various templates through many kinds of texture patterns. Also, GA is

used to optimize our defined templates of CNN’s which might project the texture

patterns in different feature maps. Most significantly, the feature curve (TBS) which

has been shown valid in the representation of texture patterns is introduced to classify

textures in the most efficient way by determining if one more CNN template should

be proliferated. TBS series could help to determine the number of clusters if it is not

given in advance so that the classification process would be much simpler and more

flexible. Furthermore, TBS could be applied to any binary images in the distinct

feature maps if there is some other analytic tool to generate such feature maps like

 107

CNN’s. Finally, the experimental results corresponding to the newly-introduced

approach in this chapter are proven superior to those of other methods. It is therefore

surely foreseeable that our structure will be of great help in applications of higher

order image processing in the future.

 108

5. Conclusions and Perspectives
 In this thesis, we have addressed on the applications of cellular neural networks

(CNN’s) in high-order image processing. We start with introducing the fundamentals

and design guidelines of CNN and GA to deduce the later architecture that we

proposed in this thesis. For using CNN’s in some specific image application, we use

genetic algorithm (GA) to optimize a better CNN template. The major reason that we

used GA as an analytical training tool for our issuing problems lies in the prevailing

applied field and evolution mechanism of GA. As we know, search of CNN templates

could be sometimes too complicated to follow the rules in higher-order image

processing. Thus, we introduced some basic but significant CNN template examples

at the first place so as to inspire more applications based on CNN’s by observing the

nature of images. Most significantly, we make use of CNN’s to deal with some

difficult issues of image processing, image descreening in particular, which has been

regarded as a tough question since no single solution can be applied to all cases.

However in this thesis, we classify the original screening images in two classes

beforehand by our defined index, and a different simple filter would be applied to

each of these two classes. In this application, CNN plays an important role in

classification of images by looking upon screening patterns as different textures. The

descreened images hence could be more satisfactory and acceptable to human

perception.

What’s more, we focus on texture discrimination and representation for more

image applications related to texture analysis. In this aspect, we proposed a brand-new

structure to proliferate CNN templates, which makes decision of CNN templates more

flexible. We do not have to assume how many templates to be optimized at the

beginning of texture classification, and instead we adaptively determine the number of

 109

optimized templates for the characteristics of the texture set. CNN can be no doubt

used here on account of its filtering capability and attraction of hardware

implementability. To characterized CNN more sensitively in various kinds of texture

patterns, we also presented a series of features, Transition Bit String (TBS) defined in

this thesis, for more practical uses. Also, our feature series could not be necessarily

carried out by CNN. To be more organized, we have the following major

contributions in this thesis.

A. We propose a systematical method for image descreening.

B. We inspire an idea of screening pattern classification in advance for image

descreening, which makes image documentation simpler and more

impressive.

C. We present a proliferation structure to determine CNN templates in a more

flexible fashion.

D. We innovate a kind of characterizing features for texture analysis.

E. We give more possibilities of hardware implementations in high-order image

processing.

To sum up, this thesis not only provides an approach in the recent state-of-the-art

but also gives more chances and perspectives for hardware implemented in high-order

image applications. In addition, the indices and features proposed in this thesis would

bring about more solutions in the complicated problems of image processing. We shall

at this place list some researching fields that might be carried out in the future.

A. Hardware implementation

The main content of this thesis would like to apply the CNN structure to more

applications in pursuit of future hardware implementation or chip design.

Therefore, this future work might be the most important and ultimate issue among

many kinds of applications inspired by this thesis.

 110

B. Augment of more CNN channels

CNN used to apply to applications of image processing only in gray-scale, which

might cause the loss of some important information of original images. It is

certainly believed that more channels of CNN implementation could do a great

help for some specific applications of images that should depend on the color

information of original images. So the implementation of more CNN channels

might provide more solutions for more complicated problems of image

processing.

C. Feature selection of CNN proliferation structure

In this thesis, we only take into consideration the generative way of extracted

features for our CNN proliferation structure due to the augmented properties of

TBS feature series. Of course, for the concept of feature selection, how to reduce

the number of features might also be useful in pattern recognition. The

consideration of how to select useful features could be put forth in the future.

D. More applications or generalization of TBS

We have presented the basic definition and formula of TBS in this thesis, and TBS

series have also been proven to be useful in representation of various texture

patterns. As what we have concluded earlier, TBS series would not necessarily be

applied to CNN outputs, and these feature curves could be quite useful for

analyzing image data in software-oriented applications. More specifically, TBS

series could be expressed in various cases of requirements of images. For example,

the setting of threshold, the scanning directions, the way of counting pixels, and so

on would provide more flexible tuning parameters for more versatile image

applications.

E. More applications of image processing by CNN

No doubt, more applications of image processing are the major goals that this

 111

thesis pursues. This thesis has offered more way of using CNN output and

illustrated the relationship between CNN structure and image data. It is observed

that the results convolved from CNN outputs could also be expressed in terms of

various sorts of definitions for images. More complicated applications of image

processing could be consequently carried out in the future by our proposed feature

series as well as the constructed structure.

In this section, we have concluded the major contributions and the possible future

works in details. Hence, we would be dedicated to solving more and more issues of

digital image processing by our proposed strategies using CNN in the future.

 112

Bibliography

[1] L. O. Chua and T. Roska, “Stability of a class of nonreciprocal cellular neural
networks,” IEEE Trans. Circuits Syst., vol. 37, pp. 1520-1527, 1990.

[2] F. Zou and J. A. Nossek, “Stability of cellular neural networks with opposite-sign
templates,” IEEE Trans. on Circuits Syst., vol. 38,pp. 675–677, June 1991.

[3] I. Fajfar and F. Bratkovi¢c, “Design of monotonic binary-valued cellular neural
networks,” in Proc. IEEE Int.Workshop Cellular Neural Networks Applications,
Sevilla, Spain, pp. 321–326, June 1996.

[4] B. Mirzai, D. myL&& , and G. S. Moschytz, “On the robust design of uncoupled
CNN’s,” in Proc. European Symp. Artificial Neural Networks, Bruges, Belgium,
pp. 297–302, Apr. 1998.

[5] J. A. Nossek, “Design and learning with cellular neural networks,” in Proc. IEEE
Int.Workshop Cellular Neural Networks Applications, Rome, Italy, pp. 137–146,
Dec. 1994.

[6] C. G&& uzelis and S. Karamahmut, “Recurrent perceptron learning algorithm for
completely stable cellular neural networks,” in Proc. IEEE Int. Workshop
Cellular Neural Networks Applications, Rome, Italy, pp. 177–182, Dec. 1994.

[7] T. Kozek, T. Roska, and L. O. Chua, “Genetic algorithm for CNN template
learning,” IEEE Trans. Circuits Syst. I, vol. 40, pp. 392–402, June 1993.

[8] B. Chandler, C. Rekeczky, Y. Nishio, and A. Ushida, “Using adaptive simulated
annealing in CNN template learning—A powerful alternative to genetic
algorithms,” in Proc. European Conf. Circuit Theory Design, Budapest, Hungary,
pp. 655–660, Sept. 1997.

[9] G. Seiler, A. J. Schuler, and J. A. Nossek, “Design of robust cellular neural
networks,” IEEE Trans. Circuits Syst. I, vol. 40, pp. 358–364, Mar. 1993.

[10] I. Fajfar and F. Bratkovi˘c, “Optimizing cellular neural networks for robustness
and speed,” in Proc. European Conf. Circuit Theory Design, Istanbul, Turkey,
Aug. pp. 781–784, 1995.

[11] M. H¨anggi and G. S. Moschytz, “Genetic optimization of cellular neural
networks,” in Proc. IEEE Int. Conf. Evolutionary Computation, Anchorage, AK,
pp. 381–386, 1998.

[12] Hanggi, M. and Moschytz, G.S., “Stochastic and hybrid approaches toward
robust templates,” in Proc. IEEE Int. Workshop Cellular Neural Networks
Applications, London, U.K., Apr. pp. 366–371, 1998.

[13] L. O. Chua and L. Yang, “Cellular neural networks: Applications,” IEEE Trans.
Circuits Syst. I, vol. 35, pp. 1273–1290, Oct. 1988.

 113

[14] J. K. Hawkins, “Textural properties for pattern recognition,” Picture Procesping
and Psychopictorics, Bernic Sacks Lipkm and Azriel Rosenfeld (EDS). New York:
Academic Press, 1969.

[15] J. Serra, “Theoretical bases of the Leitz texture analyses system,” Leifz Sci. Tech.
Inform., Supplement 1, 4, pp. 125-136, Apr. 1974 (Wetzlar, Germany).

[16] G. Matheron, “Elements Pour Une Theorie des Milieux Poreu,” Paris, France:
Masson, 1967.

[17] J. Weszka, C. Dyer, and A. Rosenfeld, “A comparative study of texture measures
for terrain classification,” IEEE Trans. on Sys., Man , and Cyber., vol. SMC-6,
no. 4, pp. 269-285, Apr. 1976.

[18] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, Mass., 1989.

[19] L. Davis, ed., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New
York, 1991.

[20] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolutionary
Programs, Springer-Verlag, Berlin, 1992.

[21] J.H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan
Press, Ann Arbor, Mich., 1975.

[22] R. R. Brooks, Lynne Grewe and S. S. Iyengar, “Recognition in the wavelet
domain: A survey”, Journal of Electronic Imaging, pp. 757-784, July 2001.

[23] L.-K. Shark and C. Yu, “Denoising by optimal fuzzy thresholding in wavelet
domain,” Electronics Letters, Vol. 36, pp. 581 –582, March 2000.

[24] R.D. Nowak and R.G. Baraniuk, “Wavelet-domain filtering for photon imaging
systems,” IEEE Trans. on Image Processing, Vol. 8, pp. 666 –678, May 1999.

[25] D. Margulis, Mathematics, Morie, and the Artist, CATFWorld, Sep/Oct, 1997.
[26] R. Ulichney, Digitial halftoning , MIT press, Cambridge, Massachusetts, 1987.
[27] P. W. Wong, “Inverse halftoning and kernel estimation for error diffusion,” IEEE

Trans. Image Processing, vol. 4, pp. 486–498, Apr. 1995.
[28] S. Hein and A. Zakhor, “Halftone to continuous-tone conversion of

error-diffusion coded images,” IEEE Trans. Image Processing, vol. 4, pp.
208–216, Feb. 1995.

[29] D. C. Youla and H. Webb, “Image restoration by the method of convex
projections—Part I: Theory,” IEEE Trans. Med. Imag. vol. MI-1, pp. 81–94, Oct.
1982.

[30] D. F. Dunn, T. P. Weldon and W. E. Higgins, “Extracting halftones from printed
documents using texture analysis,” Optical Engineering, vol 36, no 4, pp.
1044-1052, 1997.

 114

[31] A. Jaimes, F. Mintzer, A.R. Rao, and G. Thompson, “ Segmentaion and automatic
descreening of scanned documents,” Spie, vol. 3648, pp. 517-528, 1999.

[32] J. J. Hopfield, “Neural networks and physical systems with emergent
computational abilities,” Proc. Natl. Acad. Sci. USA., vol. 79, pp. 2554-2558,
1982.

[33] J. J. Hopfield and D. W. Tank, “Neural computation of decisions in optimization
problems,” Bio. Cybern., vol. 52, pp. 141-152, 1985.

[34] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: a model,”
Science (USA), vol. 233, no. 4764, pp. 625-633, 1986.

[35] D. W. Tank and J. J. Hopfield, “Simple ‘neuron’ optimization networks: An A/D
converter, signal decision circuit, and a linear programming circuit,” IEEE Tran.
Circuits Syst., CAS-33, pp. 533-541, 1986.

[36] F. Zou, S. Schwarz, and J. A. Nossek, “Cellular neural network design using a
learning algorithm,” in Proc. IEEE Int. Workshop on Cellular Neural Networks
and Their Applications, pp. 73-81, 1990.

[37] S. Schwarz and W. Mathis, “A design algorithm for cellular neural networks,” in
Proc. 2nd Int. Conf. Microelectronics for neural network, pp. 53-59, 1991.

[38] H. Harrer. “Multiple layer discrete time cellular neural networks using time
variant templates,” IEEE TCAS-II, vol 40, n.3, pp. 191-199, 1993.

[39] P. Lopez, D.L. Vilarino and D. Cabello, “Design of multilayer discrete time
cellular neural networks for image processing tasks based on genetic
algorithms,” ISCAS 2000, n.4, pp. 133-136, 2000.

[40] P. Lopez, M. Balsi, D.L. Vilarino and D. Cabello, “Design and training of
multilayer discrete time cellular neural networks for antipersonnel mine
detection using genetic algorithms,” in Proc. 6th IEEE Int. Workshop on Cellular
Neural Networks and Their Applications, pp. 363-368, 2000.

[41] D.L. Vilarino, D. Cabello, M. Balsi and V. M. Brea, “Image segmentation based
on active contours using discrete time cellular neural networks,” in Proc. fifth

IEEE Int. Workshop on Cellular Neural Networks and Their Applications, pp.
331-336, 1998.

[42] P. Lopez, D.L. Vilarino and D. Cabello, “Genetic algorithm based training for
multilayer discrete time cellular neural networks,” IWANN’99. Lecture Notes in
Computer Science, vol. 1607, pp. 467-476, Springer-Verlag, 1999.

[43] Tamas Sziranyi and Marton Csapodi, “Texture classification and segmentation by
cellular neural networks using genetic algorithms,” Computer Vision and Image
Understanding, vol. 71, No. 3, Sep, pp. 255-270, 1998.

[44] M. Levine, Vision in Man and Machine, McGraw-Hill, 1985.
[45] R. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE, vol.

 115

67, no. 5, pp.786- 804, 1979.
[46] G. Cross and A. Jain, “Markov random field texture models,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 5, no. 1, pp. 25-39, 1983.
[47] A. Pentland, “Fractal-based description of natural scenes,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 6, no. 6, pp. 661-674, 1984.
[48] R. Chellappa and S. Chatterjee, “Classification of textures using gaussian markov

random fields,” IEEE Trans. Acoustic, Speech and Signal Processing, vol. 33, no.
4, pp. 959-963, 1985.

[49] H. Derin and H. Elliot, “Modeling and segmentation of noisy and textured
images using Gibbs random fields,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 9, no. 1, pp. 39-55, 1987.

[50] B. Manjunath and R. Chellappa, “Unsupervised texture segmentation using
markov random fields,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 13, no. 5, pp. 478-482, 1991.

[51] A. Rosenfeld and J. Weszka, “Picture recognition” in Digital Pattern
Recognition, K. Fu (Ed.), Springer-Verlag, pp. 135-166, 1980.

[52] J. Daugman, “Uncertainty relation for resolution in space, spatial frequency and
orientation optimised by two-dimensional visual cortical filters,” Journal of the
Optical Society of America, vol. 2, pp. 1160-1169, 1985.

[53] A. Bovik, M. Clark, and W. Giesler, “Multichannel texture analysis using
localised spatial filters,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 12, pp. 55-73, 1990.

[54] S. Mallat, “Multifrequency channel decomposition of images and wavelet
models,” IEEE Trans. Acoustic, Speech and Signal Processing, vol. 37, no. 12,
pp. 2091-2110, 1989.

[55] A. Laine and J. Fan, “Texture classification by wavelet packet signatures,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1186-1191,
1993.

[56] C. Lu, P. Chung, and C. Chen, “Unsupervised texture segmentation via wavelet
transform,” Pattern Recognition, vol. 30, no. 5, pp. 729-742, 1997.

[57] B. Mirzai, Z. Cheng, and G. S. Moschytz, “Learning algorithms for cellular
neural networks,” in Proc. IEEE Int. Symp. Circuits Systems, Monterey, CA, vol.
3, pp. 159–162, June 1998.

[58] L. O. Chua and P. Thiran, “An analytic method for designing simple cellular
neural networks,” IEEE Trans. Circuits Syst. I, vol. 38, pp. 1332–1341, Nov.
1991.

[59] M. Hanggi and G. S. Moschytz, “An exact and direct analytical method for the
design of optimally robust CNN templates,” IEEE Trans Circuits Syst. I, vol. 46,

 116

no. 2, pp. 304-311, Feb. 1999.
[60] Tamas Sziranyi and Attila Hanis, “Sub-pattern texture recognition using

intelligent focal-plane imaging sensor of small window-size,” Pattern
Recognition Letters, pp. 1133-1139, 1999.

[61] Tamas Sziranyi and Josiane Zerubia, “Markov random field image segmentation
using cellular neural network,” IEEE CAS-I: Fundamental Theory and
Applications, vol. 44, no.1, 1997.

[62] Tamas Sziranyi, “Texture segmentation by the 64X64 CNN chip,” in Proc. IEEE
Int.Workshop Cellular Neural Networks Applications, pp. 547-554, 2000.

[63] Tamas Sziranyi and Jozsef Csicsvari, “High-speed character recognition using a
dual cellular neural network architecture (CNND),” IEEE CAS-II: Analog and
Digital Signal Processing, vol. 40, no. 3, March 1993.

[64] John P. Miller, Tamas Roska, Tamas Sziranyi, Kenneth R. Crounse, Leon O.
Chua, and Laszlo Nemes, “Deblurring of images by cellular neural networks
with applications to microscopy,” in Proc. Third IEEE Int.Workshop Cellular
Neural Networks Applications, pp. 237-242, 1994.

[65] Tamas Sziranyi, “Texture recognition using a superfast cellular neural network
VLSI chip in a real experimental environment,” Pattern Recognition Letters, pp.
1329-1334, 1997.

[66] L. O. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE Trans.
Circuits Syst., vol. 35, pp. 1257-1272, 1988.

[67] Y.-W. Shou and C. T. Lin, “Image descreening by GA-CNN-Based Texture
Classification,” IEEE Trans. on circuits and system I, vol. 51, no.11, pp.
2287-2299, 2004.

[68] Leon O. Chua, CNN: A paradigm for complexity, World scientific, 1998.

