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分子類神經網路於數位影像處理

的應用 
研究生： 壽宇文          指導教授： 林進燈 博士 

國立交通大學電機與控制工程學系(研究所)博士班 

摘   要 

 在這篇論文裡，我們將分子類神經網路(Cellular Neural Networks)應用於複雜
且具有代表性地數位影像處理；分子類神經網路一直在學術界有著其特殊且不可

取代的地位，其原因主要在於其具備了完整的理論基礎以及在實用時穩定性

(stability)和堅固性(robustness)的易於操控，當然最吸引人地莫過於分子類神經網

路可硬體實現化的優勢，不過由於硬體實現可能性的考量，分子類神經網路中樣

版(template)的設計往往是愈單純愈容易達到硬體實現的目的，但此一設計限制

卻和一般數位影像處理演算法的需求大異其逕，也因此使得在過去的文獻裡分子

類神經網路只侷限於應用在一些簡單的影像處理技術，為了突破此一瓶頸，我們

所提出的這篇論文不但清楚詳細地討論分子類神經網路於高階影像處裡的可能

應用演算法更提出實際案例來證明分子類神經網路應用的可能性，所以我們所提

出的方法不僅可以解決過去一些高階影像處理的問題，同時也為未來種種數位影

像處理於硬體實現的可能提供了一個完整及實際的實現策略。 
這篇論文主要可以分為三大部分：在第一部份裡，我們會詳細地說明並討論

在過去到現在大部分將分子類神經網路應用於影像處理的相關文獻及未來所有

可能的發展和技術，另外也將分子類神經網路作一完整的介紹，除此之外，我們

也會特別著重於分子類神經網路在影像處理相關應用理論的討論以及其硬體實

現化的考量；在第二部分裡，我們提出了一個將分子類神經網路應用於影像辨識

處理的基礎分析—紋路分析(Texture Analysis)，這是由於紋路分析的複雜性和普

遍性會使得分子類神經網路於高階影像處理的應用不會只侷限在單一的影像處

理技術，其中我們也提出了一個相當有用的空間特徵(spatial feature)，此一特徵
不但可以使複雜地高階影像處理能夠應用分子類神經網路，也為影像辨識技術提

供了一個很好的辨識機制；在最後一部分裡，我們也將文件影像分析做了一個完

整的剖析，並以文件影像的去網點為例來說明在實際情況下的分子類神經網路的

應用，如此演算法的開發也為文件影像處理提供了更多實際的應用，更考量了文

件影像處理若以軟體實現時的計算量負荷，而對未來高階數位影像處理能夠以硬

體實現來提高處理速度提供了無限的可能。 
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Abstract 
This dissertation tackles the all-time challenging research field of digital image 

processing by using Cellular Neural Network as means of its application. As we all 

know, Cellular Neural Network has been critically acclaimed by the academia for its 

impeccable theoretical structure and the stability and robustness its applications speak 

for. Aside from these advantages it presents, Cellular Neural Network appears to be 

compelling in that it can be practically realized for hardware compilation. However, 

this does not mean Cellular Neural Network is without limitations. When it comes to 

hardware compilation of Cellular Neural Network, decent and satisfactory results only 

come with easy and simple template design, which on the contrary contradicts the 

algorithmic expectations we have for image processing. This explains why, for years, 

among all those respectable academic papers and researches, Cellular Neural Network 

has been applied only for simple, low-level image processing technology. In this 

dissertation, I will not only dig into the possible algorithms of applications of Cellular 

Neural Network in higher-level image processing, but use practical case study to 

justify how these applications may turn out with unexpectedly outstanding 

performance. In such doing, this dissertation serves as a step stone for papers of its 

counterparts to come, and, more importantly, it proposes a strategic alternative to the 
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realization of models for image processing. 

This dissertation consists of three major parts. In the first part, detailed 

discussions and delicate analyses of academic papers on Cellular Neural Network will 

be provided in the hope of helping us see the potentiality of Cellular Neural Network 

in the applications of image processing. I will focus on the aforementioned limitations 

on hardware compilation as well. In the second part, I will put forth “texture analysis” 

as one basic model of analysis when we apply Cellular Neural Network to image 

processing. In this so-called texture analysis, a useful “spatial feature” is especially 

drawn to help us overcome possible problems of more complicated Cellular Neural 

Network applications in image processing. “Spatial feature” also serves as a 

well-functioning mechanism for technology of image identification. In the last part of 

this thesis, I will look into a case study, where Cellular Neural Network is applied to 

help de-screen document image. Using it as an example, we will see how algorithms 

of Cellular Neural Network may be of marvelous use in applications in document 

image processing, since it would reduce a great deal of calculation and computation 

when applied to software compilation, yet opens up unlimited possibilities for 

higher-speed hardware compilation of high-level image processing. 
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1. Introduction 

 In this chapter, we will introduce the related surveys in the applications based on 

Cellular Neural Networks (CNN’s), the applied image processing techniques in 

particular. We mainly propose the methodology based on CNN’s for some image 

processing techniques in this thesis. In this section, we shall begin with what 

motivated this thesis, and then introduce state-of-the-art in the related areas of the 

main content of this thesis. In addition, we explicitly define our contributions of the 

proposed methodology at the end of this section, which might enhance the readability 

of this thesis. 

1.1 Motivation 

In the past studies, CNN’s have been well-known for its hardware 

implementability and the well-connected interactions between the corresponding cells. 

The basic theory and foundation of CNN’s is not the only issue for most researchers, 

but how to apply CNN to any industrial or academic areas is yet more interesting and 

significant. Therefore, the characteristics of CNN’s in hardware implementations and 

digital image processing motivate us to produce the works related to the discussions 

in high-order image processing techniques. As we know, the applications of CNN’s 

are always restricted since we have to take into consideration the hardware 

implementations and chip design in the development of our algorithms for more 

complicated applications. In this way, the design of CNN structure has to be as simple 

as possible. That is the reason that the current status of CNN’s focuses on the chip 

design for simpler image files like binary ones. It is obvious that most problems in 

image processing are difficult and unpredictable. In order to avoid using CNN’s too 

theoretically, we have been dedicated to searching for more possibilities in many 

image processing applications by CNN’s. Besides, we need to find more solutions for 
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enhancing the image processing performance and speeding up the algorithms in more 

complicated images and issues, image documentation in particular. We thus try to 

carry out all the above requirements and inspire more ideas for readers by this thesis. 

1.2 Related Works 

1.2.1 Cellular Neural Networks 

We shall introduce the interesting topics and various applied fields of CNN’s in 

this section. In the beginning of developing CNN structure, the studies of the basic 

theory and the distinguished characteristics in CNN’s are the most important issues in 

its related research areas. It is surely that most works related to CNN’s cannot 

simulate its reactions without regarding the stability and robustness of CNN’s [1] ~ 

[2]. However, the equivalent accounts will be beyond the scope of this thesis. We do 

not need to highly stress on this issue simply because the problems of hardware 

implementations can be overcome if the CNN template can be optimized in the 

restricted range. In addition, the discussions of the steady and transient responses 

attract the attention of most researchers. When it comes to the applications of CNN’s, 

the transient response especially matters since it can reflect the connected relationship 

of corresponding cells of the specific location in the input signal. As for the related 

applications of CNN, how to determine a better CNN template is quite a critical topic. 

Apparently the intuitive design and the learning process both lead to the technical 

approach for deciding a specific CNN template. We have broadly two kinds of 

approaches in search of CNN templates in the past literature, including analytical and 

learning methods. The analytical approaches should be composed of a set of local 

rules which characterize the dynamics of a cell, depending on its neighboring cells. 

And the operating templates can be obtained correctly by an affine set of inequalities 

from the transformed local rules [3] ~ [4]. According to different ways of training, the 
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learning approaches can be classified as local and global learning algorithms. The 

local learning algorithms [5] ~ [6] take advantage of the neural-based training process 

like neural networks in back propagation while the global ones [7] ~ [8] optimize 

CNN templates in a stochastic form like genetic algorithms or simulated annealing 

approaches. 

The difficulty of CNN template design lies in the fulfillment of a given task with 

implementable templates. As what we mentioned above, the analytical approaches 

indeed provide a systematical way to look for a better template more simply and 

directly [9] ~ [10]. Nevertheless, a simpler approach must not give a satisfactory 

performance or results for complex tasks. There also exist some useful learning 

approaches such as genetic algorithms [11] or combined strategy for finding robust 

and stable CNN templates. For the hybrid methods, they combined stochastic 

optimization schemes with hill climbing algorithms [12]. The combined strategy can 

solve some specified problems as long as its design fits the requirements of a given 

issue in advance, but the design would be sometimes more complicated and result in 

the betray of CNN kernel concept. Thus and so, we need to find not only a 

systematical and standard approach but also a flexible algorithm for determining CNN 

templates in an easier fashion. That is the reason that we would adopt genetic 

algorithms to optimize a better template for any given task. No doubt, this kind of 

learning methods like genetic algorithms have been studied in the past researches, 

which makes the related material more sufficient and the researching timing more 

mutual. 

CNN templates can be regarded as coupled or uncoupled by the center element 

of the control template. In fact, the uncoupled template has ensured the center cell to 

be free from the surrounding influence. Hence most techniques based on CNN’s for 

digital image processing would be defined in the CNN template library by this right 
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kind of template form. Take the applications in shadow projection, global 

connectivity detection, and connected component scanning for instance, the form of 

the relative CNN template would be distributed more regularly [13]. As the 

counterpart, the distribution of template would be irregular if the defined local rules 

cannot describe the dynamic behavior of input signals. Since the form of template 

cannot be indicated by its regularity, we would rather simulate our required CNN 

template by the learning algorithms in this thesis. 

1.2.2 Texture Analysis 

In this section, we will survey the related material in texture analysis. For texture 

characterization and classification, statistical approaches have the major impact on the 

advanced studies of texture analysis. Texture classification has long been one of the 

most difficult problems to tackle in image processing in terms of the characteristics of 

various texture patterns, say, uniformity, regularity, coarseness, just to name a few of 

it. Therefore, many different approaches have been put forth to solve the problems of 

texture classifications. To carry out a better performance and more comprehensive 

results in classifying different textures, a great amount of solutions to the analyses of 

texture patterns are proposed to in the hope of revealing some inherent natures of 

these patterns and being proven useful for further applications to the higher level 

processing. There totally exist eight kinds of analytical approaches, inclusive of 

optical and digital transforms, high-frequency-component analysis, autocorrelation 

functions, structural elements, co-occurrence probabilities and run length 

measurement by spatial gray toning, and autoregressive models [14]. Among these 

approaches, some of them directly or indirectly estimate the spatial frequency of 

image textures and some of them make use of the structural methods. This is because 

texture patterns in the different uniformity could be sensitive to different ranges of 

spatial frequency band. The structural approaches introduced in [15] ~ [16] generally 
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take the matching procedure to detect the spatial regularity of shapes called structural 

elements in a binary image, and the descriptions of auto–correlated textures could be 

carried out by more complicated texture patterns. The co-occurrence probabilities of 

textures can be described by spatial gray toning, and this approach utilizes various 

changes of distances between different textures. Also, the approach by measuring run 

lengths in different gray scales can characterize coarser or finer textures as more or 

less dominant pixels in a fixed gray toning run length. As to the autoregressive model, 

it estimates the gray toning proportion of any given pixel in the predefined 

neighborhood for the representative texture patterns. It can be easily observed that the 

distribution of coefficients has a very large variation for different image textures. 

These approaches naturally have different pros and cons and can be made up for each 

other. For the details of related comparison, [17] concludes that spatial frequency 

approaches generally have worse performance than the other approaches, and the 

structural approaches can only apply to the binary images. Besides, the co-occurrence 

approach can describe the spatial within-relationship of textural patterns by gray 

toning and can be less influential by monotonic gray toning transformations. The 

defection of this approach is the inability of describing the shape aspects for tonal 

primitives, which makes it hard to work well in texture patterns composed of 

large-area primitives. Finally, the auto-regression model by a given linear estimator 

can synthesize texture patterns more correctly, so it is more representative for 

macro-textures. On the other hand, this approach will complicate the analyzed texture 

patterns by micro-textured segments. 

As the popular models and approaches which we have stressed on, it is not an 

easy task for researchers to find an absolute solution for texture classification and 

discrimination. And it is uneasy to develop a set of useful features for texture 

representation. This thesis hence strives itself for finding an analyzing feature set for 
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texture analysis in addition to working on the practical applications based on CNN’s. 

As the matter of fact, texture analysis can be seen as the fundamental research to any 

other image processing techniques. That is to say not only the structure presented in 

texture analysis can motivate the methodology of other issuing problems but also the 

developed features for texture representation may be applied to the proper processing 

approaches of related academic fields. We here try our best to look for more 

applications based on CNN’s for future possibilities in hardware, and in pursuit of 

solving these significant problems more useful tools and corresponding features have 

to be developed to fit the requirements of them. 

1.2.3 Genetic Algorithms 

In the past, genetic algorithms (GAs) could be characterized by the practical 

applications, robust optimization and search methods. Many researchers applied this 

learning algorithm to various areas such as genetic synthesis, chip design, strategy 

planning, machine learning, image and speech processing. The search methods by GA 

come from the mechanism of evolution and the combination of natural genetics [18]. 

The evolution of GA began from the heuristic search approach to simulated annealing 

algorithm. Simulated annealing algorithm takes thermodynamics into consideration 

and annealing here can be used as the optimization process for mathematical 

simulation [19] ~ [20]. Actually, simulated annealing and genetic algorithms are 

similar in the sense that they use the probabilities for searching the maximum or 

minimum of functions. However, genetic algorithms would be much different and 

superior for generating a sequence of populations by using selection, crossover and 

mutation. For extending the nature of GA, only the individuals with proper 

chromosomes can be well adapted to competition and survive, so adapting to a 

changing environment is essential for the survival of each species. The characteristics 

of genes can be dominated by the respective genetic content if the survival capability 
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is characterized by the features of corresponding individuals. In some defined case, 

the observed features can be controlled by a bottom unit like the role of a gene, and 

the set of genes dominates the features observed from the chromosomes. The 

evolution process though manifests itself as a succession of changes in sensing the 

variation of features, and its driving force causes the joint reaction of genetic 

reproduction mainly coming from the recombination of each other and the appropriate 

selection. As to the principle regulations of GA, only the fittest individuals can 

survive and reproduce, and this kind of natural phenomenon can be described as “the 

survival of the fittest” which truly reflects how GA can be related to the way of 

genetic combination. As a result, the genes of the fittest survive while the weaker ones 

fade away. Natural selection implies the survival of the fittest genes, and 

simultaneously the reproduction process generates diverse choices in the gene pool. 

The first step of evolution usually combines the chromosomes from the parent 

generation for reproduction, and then a new combination of genes as well as a new 

gene pool will be generated. For the combined genes with a worse representative 

power, the exchange of genetic chromosomes called crossover provides a better 

combination of genes. Finally, the iterative selection and crossover keep on the 

evolution process of this gene pool and the generation of competitive individuals will 

make the learning process terminate properly. Hence, GA can be applied to some 

problems like optimization or local max/min searching since solving these analytical 

problems is equivalent to finding the best numerical solution by GA. The reference 

[21] illustrates the standard form of GA which represents a binary alphabet as the 

strings of bits in the encoding process and provides the necessary driving power for 

better solutions to survive in the selection process. The evolved genetic chromosomes 

should be associated with the higher fitness value, and then could be compared with 

other reproduced generation. The higher the fitness values of the produced population, 
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the higher chances of survival for the competitive genes. Also, the crossover operation 

exchanges the proportion of transferred bits between strings to enhance the 

performance of reproduction. The mutation operation in GA causes sporadic and 

random alteration of the bits of strings, and it also implies a direct connection with 

outer world. Mutation hence at times helps to look for the better combination of 

chromosomes especially in the difficulty of getting the optimized solution. 

We have introduced the related studies and the fundamental concept of GA in 

this section. As what we described above, GA is not only an adaptive learning 

algorithm but also a deterministic approach for global optimization. In this thesis, we 

use GA as the training tool for looking for the related parameters in CNN settings. GA 

here plays an important role in the design of templates when no a-priori information 

can be given in advance. The nature of GA makes the processed results from the 

optimized template approach the desirable ones of our applications. Therefore, GA 

indeed provides a better solution for us to optimize an arbitrary CNN template in the 

specific field of applications. 

1.2.4 Image Documentation 

Image documentation can be regarded as one significant step of image 

preprocessing before dealing with any complicated applications. As we know, there 

are many key topics in this field such as noisy background removal, image 

descreening, image deskewing, auto-cropping, and so forth. Each of them has some 

crucial influence on some issues in the related research fields. We take image 

descreening for example to illustrate how we can handle this difficult problem by 

hardware orientated CNN’s. More complex issues in image documentation can also be 

solved by the generalized approach. In fact, image descreening takes an important part 

in the analysis of document images. It could make much easier the following 
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processes of document images such as texture or graphic separation. The existence of 

screening signals will make it harder to handle and analyze the document images, and 

the specific kind of problems in dealing with document images are the general ones 

for photo preprocessing or image enhancement. 

There exist many methods for image documentation such as wavelet transforms, 

thresholding techniques, and the statistical analysis methods, etc. Wavelet transforms 

use the decomposition analysis of different levels to remove these undesirable 

screening signals. Its key point lies on the choice of basis functions. From the papers 

[22] ~ [24], we could find the applications restricted by using wavelet transforms with 

common basis functions such like Haar function and Daubetch spline function. In 

addition, the quality of documental images may suffer degradation during 

transformation from a scanned halftoned image to electronic formats through the 

introduction of artifacts such as morie patterns [25] ~ [27]. Numerous inverse 

halftoning or descreening methods have been used to eliminate these artifacts 

regardless of the causes for generation of screening noisy patterns [27] ~ [29]. In most 

studies, (inverse) halftoning techniques can be generally classified into two categories: 

frequency [30] and spatial [31] domain approaches. As a matter of fact, frequency 

domain approaches could keep more textured information in the screened images; 

whereas spatial domain approaches retain more properties for the spread of locations 

of screenings. That is also the reason that most papers tend to use such frequency 

domain methods like FFT, wavelet, or even Gabor filtering methods. Unfortunately, 

their descreening results are still restricted even if complex filters are used through 

time consuming procedures. This mainly results from that no fixed filter could be 

successfully employed in every kind of screened images. Thus, in chapter 3, we 

introduce a unique mechanism including two parts: the classification of screening 
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textures and the descreening procedure by the selected adaptive lowpass filter based 

on the classified screening textures. We hence propose a new strategy for image 

descreening in image documentation based on an innovative analyzing model in this 

thesis. It consists of the design of CNN structure and studies of characteristics in 

document images. Due to the different intensity of screening signals in different 

images, the screenings can be detected and processed by the proper solutions. And 

also, our proposed scheme for an optimal selection of filters can remove the screening 

signals more efficiently. We demonstrate our experimental results with a large number 

of various document images to show the robustness and stability of the proposed 

method. In the chapter 3, we will give the details of our proposed methods in the 

design of CNN structure for the representative topic in image documentation – image 

descreening. 

1.2.5 Genetic Algorithm based Cellular Neural Network 

In this section, we would like to survey the related applications of CNN by GA. 

Especially, we would focus on the topics introduced in this thesis, texture analysis and 

image descreening. Like neural networks [32] ~ [35], CNN is a large-scale nonlinear 

analog circuit, which processes signals in real time. CNN is made of a massive 

aggregate of regularly spaced circuit clones, called cells, which communicate each 

other directly only through its nearest neighbors [13]. To avoid the results from being 

confined and thus leading to an unsatisfactory outcome as shown in [36], [37], GA is 

therefore preferred to solve the problems of stability and adaptation in CNN’s for two 

reasons. First, GA here carries with itself a dual function in deciding template 

elements for CNN: it serves to minimize the objective function, the optimization 

while avoiding the occurrence of oscillation and chaos when testing the pros and cons 

of working templates for CNN, that is, adaptation. Second, the design of template 

elements for CNN based on GA is no longer subject to the types of objective 
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functions and minima, i.e., differentiability of the cost function and the existence of 

local, global, separate, multiple minima, etc. Another advantage is the fact that GA not 

only applies itself to single layer CNN, but also can be used for the parametric design 

of multilayer CNN. Like what is mentioned in [38], the template design of multilayer 

CNN is necessary at times for complex problems that cannot be solved or realized in 

the easier manner of single layer CNN particularly. Selecting CNN templates by GA, 

therefore, has been widely adopted in every field of applications, regardless of single- 

or multilayer CNN, and shown to be powerful and robust in theory and practice [38] ~ 

[41]. Stochastic learning approaches, GA in particular, have become a crucial 

alternative to deterministic ones, which replace the classical methods by using the 

independent properties of initial conditions and the domain of applications combined 

with the implicit parallelism [39]. And the detailed descriptions about GA for 

choosing template elements of multilayer CNN have been given in reference [42] 

where only the global responses to the input images of the system would be available. 

The multilayer CNN design is certainly employed in the near future if the texture 

patterns were much more complicated than those we expected or no a prior 

information about the structure of the system had been given, or the separate 

operation of every layer had been in need. In [43], three different CNN templates 

trained by GA were proposed and carried out to give us a comparative index for 

performance of the system in different combinations of evolutional ways among 

generations, i.e. the average, inverse, and time-interpolated templates. Also, a 

modified assumption of parameters in GA like crossover or mutation rate in [43] 

made it practical to push the responses out of the way giving rise to the difficulty of 

convergence. Beside of the changes of fitness functions in GA, GA could be amended 

in other evaluation forms like the penalty functions mentioned in [39], [42] to give a 

punishment assessment between layers of CNN if the structure of multilayer CNN is 
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required. Now that the precise adjustment of parameters in our CNN template design 

based on GA is not necessary for our screening pattern classification in the 

descreening process, some slight changes about GA like the adaptation of fitness 

functions, how to set the parameters in the evolutional flows, etc. would be very 

useful and applicable to the issue of image descreening addressed in the chapter 3. 

Besides, the advanced studies on GA based CNN will be given in chapter 4 in more 

details. 

1.3 Contributions 

 We will organize this thesis by giving our contributed parts and the whole 

constructed structure of our strategic approach in this section. This thesis contributes 

to applying CNN’s in digital image processing. CNN’s have been only used in the 

simple and direct operations of image processing techniques. In this thesis, we try to 

see CNN’s in various realized simulations for image analysis. More clearly, this thesis 

deals with image processing problems by a separate mechanism which makes use of 

CNN architecture and original information extracted from image data. At this place, 

CNN plays an important role in image analysis – feature extraction. CNN is not only 

distinguished in its hardware implementability but also reveals some information of 

digital images in some sense by placing different CNN templates. To be more 

systematically, we shall firstly introduce our structure of CNN and our significant 

contributions in two aspects. 

A. Image analysis 

CNN has been used in many areas including digital image processing. Since 

using CNN is subject to the relationship between the original image files and CNN 

parameters, the image processing techniques by CNN should be simple and the 

convolved results from CNN should be reflected directly. This thesis pursues using 
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CNN to analyze the information of image data. Later in the chapter 3 of this thesis, we 

demonstrated how to use CNN in some high-level image processing like image 

documentation. CNN here is a classifier for specific predefined patterns to determine 

the following strategy after classification where we have referred the CNN structure 

as one part of the whole software simulations and algorithm development. 

Simultaneously, CNN is used to decide the related arguments that could reflect the 

linking relationship between image data and CNN parameter setting. This thesis thus 

introduces a complete strategic approach to understand the image natures for image 

analysis. We then explicitly list the main contributions in this identified category 

which have been made by our proposed structure as follows. 

A.1 Image preprocessing 

CNN used to handle some simple image applications, so many studies only 

focused on the preprocessing steps of digital image processing. In this thesis, we have 

clearly defined the range of space that CNN could be applied to and the corresponding 

adjustments and critical points in CNN parameter setting. That is, our applications in 

image processing by CNN would focus on algorithm development rather than 

hardware implementation only because the lack of CNN applications makes it hard to 

use the advantages of CNN structure well. 

A.2 Image documentation 

We applied CNN to image documentation since this field is a very important one 

in various researching fields of image processing. Also many problems in image 

documentation have been challenging and difficult even in software engineering and 

simulations. Therefore, we prove that CNN could not only be valid for simple 

operations of image analysis but also useful for more complicated applications. This 

thesis makes use of CNN structure to discuss the natures of image data for 

understanding the characteristics of documental images. In this way, CNN is like an 
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analytical tool for illustrating image data rather than a specific tool for some specific 

application. This thesis successfully uses CNN in image processing in a different 

point of view. For the other significant contribution proposed by this thesis, we have 

the following category. 

B. Feature extraction 

Unlike the traditional approaches using CNN’s in the literature, this thesis does 

not focus on finding a specific CNN template for some specific image applications. 

CNN is taken as an analytical tool for digital image processing, in which CNN could 

be regarded as a transformation mapping like FFT, wavelet transform, and so forth in 

software engineering. The previous researches by CNN put a higher stress on 

hardware construction than being applied to more complicated applications and 

understanding the nature of images. This thesis hence tries to work on applying CNN 

to more complicated image applications and associating CNN templates with the 

characteristics of image files. Therefore, we have proposed a new approach in feature 

extraction by using CNN’s and provided a transformation process to project the 

original image information into another feature space in this thesis. And this mainly 

focuses on the following subparts. 

B.1 A pre-classified mechanism for different screening images 

In the past, the performance of image descreening has been restricted only 

because the same strategy has to be applied to for many kinds of images. We thus in 

this thesis proposed a very different structure – the pre-classified mechanism for 

different screening images. This mechanism makes it easier to deal with various 

screening images and made a great improvement in image descreening performance. 

It implies that the CNN structure can also combine with any motivated mechanism 

from software-oriented status. 

B.2 Illustrating CNN outputs in image natures 
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Our proposed approach in this thesis illustrates the simple CNN outputs in a very 

different way and also associates the image natures with every adjusted arguments of 

CNN cell. For image analysis and texture discrimination, the illustrative way of CNN 

outputs makes the applications by CNN more prevailing and flexible. 

B.3 A proliferated structure of CNN templates 

The optimization of CNN templates was difficult and insufficient. Thus, we try 

to propose a proliferated structure to determine CNN templates more adaptively and 

efficiently. In our proposed structure, CNN templates could be flexibly proliferated 

for any set of texture patterns. The number of CNN templates that we have to 

optimize for any prepared texture patterns could be effectively reduced and the 

optimization process would be shortened in the predefinition of CNN templates. 

B.4 A new feature series for texture analysis – Transition Bit String (TBS) 

The most significant matters in the difficulty of applying CNN to the 

higher-level image processing lie in the lack of image information extracted from 

CNN. Because of this, we proposed the one-dimensional feature curve as well as its 

feature series in this thesis to provide more chances of using CNN for more 

applications of image processing. Our proposed feature curves help to understand the 

natures of textured image patterns and also offer an evaluation index to determine 

whether the texture patterns that we have to classify in our database are discriminated 

enough and to decide the number of CNN templates and the corresponding parameters 

in the optimized templates. As above, we have roughly introduced in this thesis how 

we could apply CNN in complicated applications of image processing and what kind 

of relative CNN arguments we have to predefine and determine in advance. To sum 

up, we have introduced in here the main contributions before getting in the kernel part 

of this thesis. We did this to make the organization of this thesis more clear and 

definite. 
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1.4 Concluding Remarks 

In this chapter, we have introduced the related surveys and state-of-the-art of 

each essential item presented in this thesis. Also, we illustrate the main contributions 

of this thesis. The structure of CNN’s in the past was only applied to some simple and 

intuitive applications of image processing. Hence we develop more algorithms based 

on CNN’s in order to increase the future applications for hardware implementation. In 

this whole framework, we need to look for an efficient method to optimize the related 

parameters which have to be determined in CNN structure. The detailed information 

of GA has been given in this section and the prominent features of using GA in the 

design of arguments have also been introduced. As long as an effective approach to 

deciding CNN parameters can be determined, the key solutions for our chosen 

applications by CNN’s would depend on understanding the characteristics of digital 

images. In this way, more applications based on CNN’s could be brought in the CNN 

field much easier. In addition, we also work on image documentation, image 

descreening in particular, since this kind of issues have been the most difficult 

problems that need to be dealt with by CNN’s. So we try to get to know more about 

the internal characteristics of document images and associate this relationship with 

CNN’s. It is natural for us to design the related arguments in image descreening when 

implemented by CNN’s. In fact, image descreening can be regarded as one of 

high-order image applications because we cannot handle this problem by a simple 

strategy for all cases. We firstly give the survey of image documentation in this 

chapter and later in chapter 3 and 4 we will show the systematic approach based on 

CNN’s in getting this problem clarified. After applying CNN’s to image 

documentation, we focus on incorporating CNN’s with some fundamental analysis in 

image processing. Thus, texture analysis we showed in this thesis provides a versatile 
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solution for any other image processing techniques when it always plays an essential 

role in the fundamental researches related to properties of digital images. Unlike the 

traditional approaches based on CNN’s for texture analysis, the structure proposed in 

this thesis gives a more flexible mechanism for CNN argument optimization and the 

developed features make texture analysis based on CNN’s apply to more complicated 

problems in image processing. To make our main content of this thesis more clearly, 

we organized this thesis in the following order: fundamentals of Cellular Neural 

Network (CNN) and Genetic Algorithm (GA), image descreening based on GA-CNN 

texture classification, texture discrimination based on GA-CNN proliferation structure, 

and conclusions and perspectives. 
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2. Fundamentals of Cellular Neural 
Network and Genetic Algorithm 

Since this thesis describes the methodology and applications that can be 

implemented by CNN’s, we here illustrate the basic structure of CNN and the 

formation of CNN basic theory. Also, a more generalized model and formulas have to 

be given in this chapter for high-order image processing. We do not put our emphasis 

on the discussions of CNN stability and robustness, and we will not over focus on the 

derivation of dynamic plots in CNN structure because the related proofs of theories 

have been given in the literature. Instead, we will bring in the image processing field 

more practical uses by illustrating some basic and simple examples of applications 

based on CNN’s. These simple instances could give broad descriptions about how the 

elements in CNN templates can be associated with the properties of digital images, 

which also speed up optimizing CNN templates by GA. That is why we in this chapter 

introduce the selected CNN templates in the original CNN library for edge and corner 

detection, image thresholding, connected component detection, half-toning and 

inverse half-toning, histogram generation. Besides, we will introduce some essentials 

and important adjustments about GA in the back of this chapter. 

2.1 The Fundamental Architecture of CNN 

CNN is more appropriate to be the acronym for Cellular Nonlinear Networks 

than Cellular Neural Network in this thesis since we would use CNN as a nonlinear 

processing mechanism rather than a learning mapping in some complicated 

applications. CNN still has the characteristics of networks, a spatial arrangement of 

locally-coupled cells where each cell can be regarded as a dynamic system with an 

input, an output, and a defined state which can be prescribed by some dynamic rules. 

In this thesis, we will put our stress on some applications of image processing based 
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on CNN’s. We hence only illustrate the two-dimensional CNN architecture 

throughout this section. Before we introduce the whole CNN structure, we would 

describe the components and variables of an isolated cell. For any arbitrary isolated 

cell, there are four general variables for the definition of a standard CNN structure. 

They are the input uij, output yij, state xij, and threshold zij, respectively, where each 

variable represents an essential segment in the standard formulas of CNN’s, and the 

subscript indicates the corresponding location in the neighborhood of this isolated cell. 

In general, the threshold is usually a constant scalar for simplicity and the other three 

variables can be considered as the functions of continuous time t or the discrete time 

in the special case. The initial state can be given for some specific application or 

adjusted at any time during the processes. That is to say, for any fixed threshold zij , 

the given initial state xij , and the processed input uij , the state xij at time t of the 

isolated cell Cij will be evolved according to a time variant state function defined 

below. 

NjandMifortutztxftx ijijijijij ≤≤≤≤=
⋅

1   1    ))(),(),(()(           (1) 

where the current state xij can be seen as the function of combination of the last state 

xij , the threshold zij , and the input uij. It can be easily observed that all the cells are 

identical in image applications. Also, (1) can be regarded as the formal ordinary 

differential equations. Without loss of generality, we have used the simplest output 

function which is defined as (2). 

                           ))(()( txgty ijijij =                          (2) 

The output function here is simply the predefined transformation from the current 

state xij to the output yij. The detailed mathematical formulas of an isolated CNN cell 

were proposed by Chua and Yang in 1988 and widely used in the past applications, 

which could be listed as follows. 
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To illustrate the isolated cell and its related variables, we have Fig. 2.1_1 to simply 

describe the relationship among theses four variables. 

 
Fig. 2.1_1 Expression of an isolated cell 

 We have described the simple architecture and the basic theory of CNN, and we 

will specially introduce the basic CNN formulas and the general CNN model for the 

digital image applications in the following two sections. 

2.1.1 Basic CNN formula 

 For the image size MxN in the CNN applications, the image size is equivalent to 

the CNN array and the state equation (3) can be rewritten in a more formal way as (5). 
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where the indices kl moves accordingly in the neighborhood of Sij and ij can be 

referred to as each pixel of an image. Hence i and j would run from 1 to M and N, 
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respectively. Equation (5) would totally has MxN nonlinear ordinary differential 

equations. For the basic CNN formulas, the same equation can be defined as (4). In 

definition, (5) only extends its generality only inside the boundary of CNN array. In 

order to make (5) more complete, the additional boundary conditions have to be 

defined. The three boundary conditions which have been used widely in the literature 

could be listed as follows. 

 A. Fixed boundary condition 

This boundary condition assigns the state xkl of each cell xkl in (5) inside the 

boundary to be a fixed constant. 

 B. Zero flux boundary condition 

This boundary condition confines the states xkl of the corresponding cells in 

the neighbor perpendicular to the boundaries to be the same. 

 C. Periodic boundary condition 

In this boundary condition, the first and last rows/columns of the CNN array 

are similar to be periodic. 

After giving the boundary conditions, the preparation of CNN could be done if the 

initial state for all cells were specified. For image processing in particular, the initial 

state could be assigned via the gray-level in an image which has to be normalized first 

between -1 and 1. From all the above essentials in the standard CNN structure, we 

would have the specific CNN template for the specific application. 

2.1.2 General CNN model 

 The equations that we have introduced for a standard CNN array could not be 

applied to all applications, so a more generalized CNN model would be preferred by 

giving different dynamics and coupling laws of each cell. Hence, a general MxN 

CNN model could be given as long as the following conditions would be specified, i.e. 

the state equations and the coupling laws of each isolated cell, the boundary and 
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initial conditions. With the specified definitions in more details, equations (1) and (2) 

would well describe the general CNN model. As for image processing applications, 

the ordinary differential equations can be recast in the following matrix form. The 

matrix representations for CNN arrays provide more choices for image processing, 

and more image applications could be carried out by incorporating CNN into the 

simulated processes. 
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2.2 CNN Templates for Digital Image Processing 

 As we know, CNN’s can be applied to many applications by specifying the 

weighting coefficients defined in (3). More systematically, there are several 

requirements that have to be assigned for a specific image application. Since the 

specific image processing can be looked upon as a transformation from an input 

image U (uij representing the mapped value of each pixel of the input image) to an 

output image Y (yij representing the mapped value of each pixel of the output image) 

with a series of operations, we have to specify the types of input image for using CNN 

simulation in the first step. Take the gray-scale image and true color image for 
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instance, we have the first-order and third-order of cells defined for the state xij, 

respectively. After that, the initial state and the boundary condition for the specific 

image application have to be selected or designed according to the specified 

requirements. Besides, the most important matter in the design of CNN structure 

associating with some image application lies in the decision of a combination of 

parameters in CNN’s, called CNN template. Once the CNN template could be 

determined, the problem of image could also be overcome. In the following sections, 

we would survey several predefined CNN templates for image processing in binary 

and gray-scale format. We selected these examples of templates in the literature 

simply because we regard these CNN templates in some basic image applications as 

the shortcut to the higher-order image applications based on CNN’s. 

2.2.1 Edge Detection CNN Template 

Descriptions: Extract edges of the objects of the input image. 

Rules: Each black pixel which has at least one white pixel in the defined 

neighborhood is defined to be an edge cell. 

Boundary Condition: Fixed boundary condition 

Initial State: 0)0( =ijx  (0 means white in an image) 

Cloning Template: 
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(a) 

 
(b) 

Fig. 2.2.1_1 Edge detection example by some specified template for (a) the binary 
image (b) the gray-level image (Left: the original image, Right: the processed 

image) 

2.2.2 Color Inverse CNN Template 

Descriptions: Inverse colors of the objects in a digital image. 

Rules: The color of the input image would be equivalently inversed via the 

middle of the color range in CNN format. 

Boundary Condition: Fixed boundary condition 

Initial State: 0)0( =ijx  (0 means white in an image) 

Cloning Template: 
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05.20
000

       
000
025.00
000

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−= zBA  

Example: 



 25

 

 
(a) 

 
(b) 

Fig. 2.2.2_1 Inverse operation example by some specified template for (a) the binary 
image (b) the gray-level image (Left: the original image, Right: the processed 

image) 

 

2.2.3 Image Thresholding CNN Template 

Descriptions: Transform a gray-level image into a binary image by some 

predefined threshold. 

Rules: Each pixel of a gray-level image can be labeled as ‘pure white’ if and only 

if its transformed intensity in CNN format (between -1 and 1) is higher than some 

predefined threshold z*. 

Boundary Condition: Fixed boundary condition 

Initial State: )0()0( ijij ux =  

Cloning Template: 
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Fig. 2.2.3_1 Thresholding example by some specified template (Left: the original 

image, Right: the processed image) 

2.2.4 Low-pass Filtering CNN Template 

Descriptions: Do the low-pass filtering for the gray-level image.. 

Rules: The pixels with some specific color range (usually in the low band) can be 

labeled as ‘black’ pixels while the others are labeled as ‘white’ pixels. 

Boundary Condition: Fixed boundary condition 

Initial State: 0)0( =ijx  (0 means white in an image) 

Cloning Template: 
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121
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⎥
⎥
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Fig. 2.2.4_1 Low-pass filtering example by some specified template (Left: the 

original image, Right: the processed image) 

2.2.5 Laplacian CNN Template 

Descriptions: Laplacian operation for the digital image. 

Rules: Each pixel of the input image would be filtered via the defined Laplace 

filter. 

Boundary Condition: Fixed boundary condition 

Initial State: 0)0( =ijx  (0 means white in an image) 

Cloning Template: 

specifiednotzBspecifiednotA        
025.00

25.0125.0
025.00
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⎥
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(a) 
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(b) 

Fig. 2.2.5_1 Laplacian operation example by some specified template for (a) the 
binary image (b) the gray-level image (Left: the original image, Right: the processed 

image) 

2.2.6 Half-toning CNN Template 

Descriptions: Transform a gray-level image into a half-toned binary image which 

preserves the major characteristics of the original image. 

Rules: The gray-level intensity of an input image would be re-sampled to obtain 

a binary image via half-toning which could resume the original image intensity by 

inverse half-toning. 

Boundary Condition: Fixed boundary condition defined by the constant values of 

the initial state and the input image. 

Initial State: )0()0( ijij ux =  

Cloning Template: 

0      
07.01.007.0
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(a) 

 
(b) 

Fig. 2.2.6_1 Image half-toning by some specified template for (a) the natural 
gray-level image (b) the human gray-level image (Left: the original image, Right: 

the processed image) 

2.3 CNN Justifications 

 In this section, we shall discuss the related justifications about CNN. Also, we 

would like to elucidate some querying points for those who might be concerned about 

using CNN in the related applications of image processing in three aspects.  

A. Discussions of CNN equations 

As what we have mentioned in the earlier part of this chapter, the most crucial part 

of applying CNN to image processing is to determine the corresponding arguments of 

CNN templates. In addition, the structure of CNN depends on the state and output 

equations as (3) and (4). Those who are good at image processing but not familiar 

with CNN might doubt the relationship between these two equations and might be 

curious about the resultant images after using CNN. In fact, many original studies 
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about CNN have proved that the processed images after CNN should be in the binary 

form on account of the following theorem [68]. 

Theorem 2.3.1. 

 The output ijy  of every cell at any stable equilibrium point of a completely 

stable standard CNN defined by (3) and (4) is equal to either plus 1, or minus 1, if the 

center element ija  of the A template satisfies 1>ija . 

Also, without loss of generality, the processed images could be binarized if 1≠ija  as 

to meet the bistable criterion of CNN. 

B. Justifications of CNN circuit 

Some might be concerned about the pros of cons by using CNN. Therefore, in this 

section we shall briefly introduce some significant reasons for applying CNN’s to 

applications of images. As we know, CNN is very attractive in its successful 

implementation of an analog input/output CNN universal machine which can also be 

referred to as a CNN universal chip. The analog circuit is very different from the 

digital one in the sense that the analog could truly transmit and process most signals 

in the undistorted way. Furthermore, a single silicon chip is regarded as a completely 

dynamic array stored-program computer where the CNN chromosome can be 

executed and programmed on the chip at a tremendously high speed (given 1012 

analog instructions per second based on a 100x100 CNN chip). Also, the chip design 

by the CNN universal machine would differ from that by a digital circuit because it 

could be carried out in the completely nonlinear dynamics. Hence, we would like to 

take advantage of some dominant and distinguishing characteristics of CNN’s in more 

complicated applications of images. 

C. Sensitivity of CNN’s 

In addition to some justifications of CNN’s stated above, some might be 



 31

concerned about its sensitivity when applying CNN to various applications. In this 

thesis, we used CNN’s in image documentation and texture analysis. For CNN 

applications that we discussed in this thesis, we have to find the appropriate templates 

of CNN with respect to some specific purpose. We in here make use of GA to 

optimize the related arguments of CNN templates. Naturally, the desired patterns in 

some sense should be specified beforehand. Unlike the concept of classic cellular 

automata, CNN cannot be defined by local rules directly but can be simply defined by 

iterating the CNN genes. That is why GA could be broadly applied to every sort of 

image applications. Speaking to the proposed applications in the chapter 3, we do not 

need to accurately pre-specify the desired patterns of CNN templates because only the 

ratio of black and white pixels in the CNN output would be quite sufficient to provide 

a proper decision in the later processes. The related explanations about sensitivity in 

optimizing CNN arguments when using GA have been given in some important works 

of the literature [13], [43]. As they concluded, the form of desired patterns in 

black/white or white/black arrangement has no influence on the final results even for 

some applications in need of high accuracy. Therefore, in the point of view in using 

CNN for pattern selection, the arrangement of black/white or white/black in setting 

the desired patterns shows no difference in the final performance if GA is applied to 

optimize the CNN templates. 

2.4 Concluding Remarks of CNN 

It is observed that the CNN templates in all introduced examples are defined by 

the sphere of influence in radius r = 1. That is to say, only 19 parameters in the triplet 

template {A, B, z} have to be determined. The main reason is that this kind of CNN 

template would be much more efficient for various image applications by experienced 

rules and practical uses. Besides, the examples demonstrated above try to associate 
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the design of CNN templates with some image characteristics in the specific 

application. These kinds of arrangement in CNN templates not only reveal the 

intuitive decision of CNN templates but also motivate our approach in analyzing the 

nature of images and inspiring the design of CNN templates. After that, we especially 

state the justifications of CNN in three aspects in order to make those who like to use 

CNN in image applications more comprehensive on these concerning topics. We 

hence make use of a more effective training and learning approach for optimizing 

CNN templates in our proposed high-order image applications based on CNN’s. This 

optimization method, genetic algorithm (GA), would be given in more details in the 

next section. 

2.5 Genetic Algorithm (GA) 

There exist two kinds of optimization approaches where one is the specific 

optimization rule and the other is the generalized one. The specific design rule is 

defined by some specific characteristics of object functions. The object functions have 

to satisfy some properties such as linear, invariant, differential properties, so the 

differential and gradient approaches are of this type. As for the generalized one, the 

design rules are independent of object functions, and random searching as well as 

genetic algorithm should be of this type. For the design of CNN templates, GA would 

be a better choice since no direct relation between CNN templates and image 

applications can be found by intuition. The most significant advantage of GA lies in 

the wide range of searching, and this makes optimization of CNN templates more 

effective and accurately. Later in this section, we will introduce some necessary 

components and important properties of GA, which have a great influence on the 

design of CNN templates. 

Genetic algorithms are based upon a kind of optimization searching mechanism 
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during the process of natural selection which spiritually imitates the natural rule, the 

survival of the fittest. As the evolution rule of genes, GA can choose a better parent 

generation in the species which has the superior properties and randomly exchanges 

the genetic information with each other. In this way, the children generation could be 

expected to be superior to the last parent generation and the best species would be 

generated by this repetitive way. In fact, there are three major operators for GA 

including reproduction, crossover, and mutation. The fundamental concept of GA 

applied to optimization lies in the following essentials, i.e. encoding all the searching 

arguments to so called chromosomes, design of fitness function by the given 

acquirements, selection of the species with higher fitness values for mating pool, and 

crossover and mutation for the worse reproduction result. Fig. 2.4_1 illustrates the 

whole process of GA. 
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Fig. 2.4_1 Flow chart of the systematical GA structure 

2.6 Essentials in GA 

 After introducing the whole structure of GA, in this section we will give more 

detailed information about the essentials in GA which are organized as below. 

A. Reproduction 

Reproduction is an operation process which can decide the quantum of 

Generating the initial 
population randomly

Encoding searching 
arguments 

Calculating fitness 
function values 

Judging 
Condition

Reproduction 
Optimized solution 

Crossover 

Mutation 

yes

 no
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species of the next generation that need to be eliminated or reproduced according 

to how fitting the species of the parent generation can be. The species in higher 

fitting capability would be reproduced much more while those in lower fitting 

capability would be excluded in the next generation. The fitting capability that 

we mentioned above can be estimated by the responses of fitness function. In 

general, there exist two types of reproduction where one is the roulette wheel 

selection and the other is the tournament selection. 

a. Roulette wheel selection 

During the process of evolution, the area of each component of the roulette 

wheel can be determined by its corresponding fitness function value. The bigger 

the fitness function value, the larger the corresponding area of roulette wheel. 

The proportion of occupied area of roulette wheel also indicates the probability 

of being selected for the mating pool. Assume that there are N species and fi 

represents the fitness function value of the ith species. Theoretically, the total 

number of this kind of species, ∑∑ ==⋅
i

ii
i

ii f
N

fwhereffffN 1    // and f  

means the average fitness function value of all species, would be reproduced and 

selected to the mating pool. 

b. Tournament selection 

The major difference between tournament and roulette wheel selection is 

that tournament selection randomly selects two or more species at the first run 

and the species with the biggest fitness function value would be sent to the 

mating pool during the process of evolution. 

 Basically speaking, these two selection methods both can achieve the goal of 

survival of the fittest. Obviously, tournament selection is good at its processing speed 

on account of less complexity and roulette wheel selection is fascinating in its 
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generality and wide applications if calculation complexity is not the most significant 

matter in the discussing issues. 

B. Crossover 

Crossover would randomly select two strings of species in the parent 

generation from mating pool and exchange their information to generate two new 

species. In pursuit of generating the superior children generation, crossover could 

take advantage of outstanding information from the last generation. The 

probability of crossover depends on how often the process of crossover could 

occur which includes the following three types, one-point crossover, two-point 

crossover, and masking crossover. For an easier comprehension, it is sufficient 

for us describe these three types of crossover by illustrating one example 

encoded by strings as below. 

a. One-point crossover 

 
Fig. 2.5_1 Illustrating figure for one-point crossover 

b. Two-point crossover 

A=111000 A=111111 

B=000000 B=000111 

crossover

Crossover point Crossover point 

Crossover point Crossover point 
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Fig. 2.5_2 Illustrating figure for two-point crossover 

c. Masking crossover 

 
Fig. 2.5_3 Illustrating figure for masking crossover 

C. Mutation 

During the process of mutation, one string/ species and the location of 

mutation point would be chosen and then the information of corresponding 

species at mutation point would also be changed. The probability of mutation 

depends on the process of occurring mutation, and the location of mutation point 

could be defined as a bit, a whole string, or by a specific mask. The types of 

mutation hence could be defined by the location of mutation point as what we 

have introduced for the crossover process. 

 GA could be equipped with these three introduced essentials and its type is 

A=111000 A=100000 

B=011111 B=000111 

crossover

Crossover point Crossover point 

Crossover point Crossover point 

Mask=011000

A=111000 A=111110 

B=000001 B=000111 

crossover

Crossover point Crossover point 

Crossover point Crossover point 
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chosen by the characteristics of some specific image application. In our practical use 

by GA, we would give more information about how we could determine the types of 

each essential and its pros and cons in the later topics of this thesis. 

2.7 Discussions of GA 

GA is basically different from the traditional approaches and can be 

characterized by the following issues. 

A. GA cannot be operated on the parameter itself but the set of parameters, so it 

can jump away from the constraint of analysis in search space. 

B. GA cannot search a single point but many points in search space, so it can 

obtain the global optimum sooner and avoid finding the local optimum. 

C. All GA needs is the information of fitness function, that is to say, it is not 

necessary for GA to use other aided information like gradient. In this way, GA can 

use many kinds of fitness functions so as to save complexities resulted from over 

mathematical computations. 

D. GA can be applied to various sorts of optimization problems since it does not 

solve problems by well-defined rules but use the probabilistic rules to make the 

searching direction more clear. 

 In the remained part of this section, we will focus on some important discussions 

about the adjustment of GA structure. 

2.7.1 Parameter settings 

 The most complicated and difficult matters in GA would be the settings of 

related parameters. It is impossible for us to develop a standard method for all cases to 

set all the parameters of GA here. Instead, we will give broad descriptions about 

where we could put more emphasis and how the parameters can be related to each 

other. The major parts that one needs to design GA parameters for a specific case are 
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the range of encoding, length of string, size of population, mutation and crossover rate, 

and the design of fitness function. These aspects would have a great impact on the 

final searching result and between them the close relationship and dependence exist in 

process of optimization. For the setting of rates in some essentials of GA, we will 

show in the practical applications of this thesis. As for the kernel part of GA, we will 

discuss the problems appeared frequently when using GA and we will also introduce 

some existed types of fitness functions in this section. 

2.7.2 Global optimization 

The convergence speed of GA could be governed by the population size, 

crossover rate, and mutation rate. A higher value may speed up convergence of GA 

and then result in finding the local minimum. On the contrary, a lower value may 

cause the difficulty of convergence. Therefore, we have to take into consideration the 

dimensionality of search space, the range of parameters, and the string length while 

encoding. To avoid giving a higher crossover or mutation rate, we can predefine its 

corresponding maximum and minimum. In one way, the setting of theses two 

parameters can be initiated at the maximum and then decayed to the minimum along 

with the growing generations. Another flexible approach is using the floating 

mutation or crossover rate, since the local optimization might be achieved if the 

species have stopped evolving. This approach invokes to add some artificial 

interference in order to simulate the generation of new species, and this can be 

implemented by switching the mutation and crossover rate. For simplicity, we can 

increase the generated speed of new species (mutation and crossover rates) if the best 

fitness function value has kept unchanged through generations, and also we will get 

mutation and crossover rates back if the best fitness function value has increased. It is 

apparent that we can avoid finding the local optimization value as long as these 

adjustable parameters in GA could be effectively determined. Besides, the other 
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crucial essential of GA, fitness function, will be introduced in the next section in 

much more details. 

2.7.3 Fitness Function 

 The selected fitness function should be capable of reflecting the differences 

between different species. Besides, fitness function ought to exclude the inferior 

species and offer more chances for new species to get in the populations. Sometimes, 

diversity of species in the mating pool can help to generate a better optimized solution 

since choosing the same superior species from the mating pool might bring about a 

worse optimized result. To achieve the above requirements, how to adjust the fitness 

function becomes more important. Thus, there exist three kinds of methods to adjust 

fitness functions in the history of GA. In the followings, we shall introduce the basis 

and the pros and cons of these three methods. 

A. Linear scaling 

 Linear scaling can transform the values calculated from fitness function by the 

following (7). 

                              baff +=′                            (7) 

where f and f ′ are the original and transformed values of fitness function, 

respectively, and the coefficients a and b can be chosen such that 

                 avgavgavg ffandff ⋅=′′= κmax                                   (8) 

where   and  , maxfff avgavg ′′ are the original and transformed average values of fitness 

function, and the transformed max fitness value, respectively. The coefficient κ  is 

the multiplier between max  and  ff avg ′ . The linear scaling function is shown in Fig. 

3.3.3_1. In the point of view by statistics, (8) can ensure one of the chromosomes with 

the average fitness value to be selected to the next generation because of the 
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condition 1/ =′avgavg ff . Also, the total numberκ of chromosomes could be reproduced 

to the next generation by the assumption κ=′′ avgff /max . In using this scaling method, 

we have to avoid the negative fitness values after transformation. 

 
Fig. 2.6.3_1 Illustrating figure for linear scaling 

B. Sigma truncation 

In addition to avoiding the negative fitness values, linear scaling can map the 

fitness values into our expected range. However, most chromosomes of the population 

will have the higher fitness values when the searching process of GA tends to be 

mature, which might cause the negative fitness values if the minority of chromosomes 

has a very low fitness value. To overcome this problem, sigma truncation uses the 

information of variance before scaling the fitness function. This can be carried out by 

the following equation (9).  

                     )( σ⋅−−=′ mfff                          (9) 

where the notation is like linear scaling and m depends upon a multiplier of variance 

of the fitness values in the population. By the help of sigma truncation, we can avoid 

the negative fitness values resulted from linear scaling. 

0 minf avgf maxf

minf ′

avgf ′

avgf⋅κ

The original fitness values

The transform
ed fitness values 
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C. Power law scaling 

Beside of sigma truncation, power law scaling can also help adjust the fitness 

function of GA. This scaling method makes the transformed fitness values be the 

power law of the original fitness value like (10). 

                           pff =′                            (10) 

where the decision of p is up to the issuing problem. Also, p has to keep changing 

during the searching process of GA to meet the requirements of extending the range 

space of fitness values. 

2.8 Concluding Remarks of GA 

 In this section, we not only illustrate the fundamentals of GA but also describe 

the pros and cons of related essentials in GA. For some essentials in GA such as 

crossover, mutation, and fitness function, we have given a detailed introduction about 

these components. It is simply because any specific applications can be solved by GA 

only depends on the right choices of fitness function and the appropriate GA settings. 

For the specific image application, we shall induce a complete methodology by using 

GA in the following two chapters. With the equipment of GA information introduced 

in this chapter, we could make the following explanations about using GA much 

easier and offer more ways of thinking for the adjustments of GA parameters applied 

in our problems. 
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3. Image Descreening based on GA-CNN 
Texture Classification 
 

3.1 Introduction 

We in this chapter propose a new image descreening technique based on texture 

classification using cellular neural network (CNN) with template trained by genetic 

algorithm (GA), called GA-CNN. Instead of using the fixed filters for image 

descreening, we are equipped with a more pliable mechanism for classifications in 

screening patterns. Using CNN makes it possible to get an accurate texture 

classification result in a faster speed by its superiority of implementable hardware and 

the flexible choices of templates. The use of GA here helps us to look for the most 

appropriate template for CNN more adaptively and methodically. The evolved 

parameters in the template for CNN can not only provide a quicker classification 

mechanism but also help us with a better texture classification for screening patterns. 

After the class of screening patterns in the querying images is determined by the 

trained GA-CNN-based texture classification system, the recommendatory filters are 

induced to solve the screening problems. The induction of the classification in 

screening patterns has simplified the choice of filters and made it valueless to 

determine a new structured filter. Eventually in this section, our comprehensive 

methodology is going to be topped off with more desirable results and the indication 

for the decrease in time complexity. This chapter is organized in the following section 

orders: the proposed system architecture, screening texture classification, design of 

CNN templates for screening texture classification by GA, selection of descreening 

filters, adaptive determination of arguments in the chosen descreening filter, 

experimental results, and concluding remarks. 
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3.2 The Proposed System Architecture 

The proposed image descreening system can be divided into three major 

processes. At first, we make use of GA to determine the working template elements 

for the required operational function of CNN. After the working templates are 

determined, the required function of CNN is determined at the same time. And then, 

in the execution of CNN, the output can only be a binary image. For this reason, 

several useful indices extracted from the output image of CNN are introduced to 

indicate the property of screening in the target image. By the information obtained 

from the output of CNN, the types of descreening filters and the parameters in the 

filter are then obtained as desired. Finally, in the descreening stage, we apply the 

selected filter to the screened images to filter out the screenings. 

The proposed image descreening technique consists of the training phase (Fig. 

3.2_1) and descreening phases (Fig. 3.2_2). At the beginning, we have to prepare 

screened images on which the features of the screening patterns are extracted for 

training purpose. In the training phase, a block in the size of 64*64 pixel2 is extracted 

manually from the original screened images in our database. A block in the same size, 

of course, would be cropped automatically in the testing phase. Also, in the training 

phase, the proper template of CNN is determined by GA to perform texture 

classification with the derived template. Two screening estimates calculated from the 

output of CNN in the training phase can be utilized to be the matching indices for that 

in the testing phase. The closer the calculated values in the testing images to those in 

the training images are, the higher the level of tendency toward that screening pattern 

will be. These two screening estimates not only suggest the types of descreening 

filters, but also determine such arguments like width, radius, or size in the selected 

filter. Once the type of the screened image has been recognized according to the 
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extracted screening pattern, this screened image will be convolved with the suggested 

filter to acquire the final descreened image. 

 

 

 

Fig. 3.2_1. Flowchart of the training phase of the proposed GA-CNN-based texture 
classification scheme. 
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Fig. 3.2_2. Flowchart of the proposed image descreening technique. 
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3.3 Screening Texture Classification 

There are diverse screening patterns in the screened images; each can be best 

removed by a specific kind of filters, so the lack of the screening information in the 

screened images restrains the descreening results and complicates this kind of 

problems. Textures can be viewed as complex visual patterns composed of entities, or 

sub-patterns, that have characteristic brightness, color, slope, size, etc. [44]. Generally 

speaking, four kinds of popular approaches nearly dominate all the researches in the 

texture analysis, i.e., structural, statistical, model-based, and transform methods. 

Structural approaches [44] ~ [45] represent texture by well-defined primitives 

(micro-texture) and a hierarchy of spatial arrangements (macro-texture) of those 

primitives. As to model-based texture analysis [46] ~ [52], it uses fractal and 

stochastic models, and attempts to interpret an image texture by using generative 

image model and stochastic model, respectively. Finally, transform methods for 

texture analysis, such as Fourier [51], Gabor [52] ~ [53] and wavelet transforms [54] 

~ [56] represent an image in a space whose co-ordinate system has a strong 

understanding that is closely connected with the characteristics of a texture, like 

scales or frequency. 

Our proposed texture analysis scheme combines the advantages of structural 

methods with those of statistical ones. The screening patterns can be referred to as 

primitives in structural methods since the classification mechanism is a supervised 

one. In the descreening phase, smooth indices are used to determine whether the 

screening patterns could stand for the screenings in the original images. If so, the 

screening pattern extracted from the original image will be fed into our classification 

engine, GA-CNN. As soon as the type of screenings in the testing image is identified, 

the following processes will be much easier and the descreening performance will be 
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better. 

3.3.1 Screening-Texture Patterns 

Screening patterns can be viewed as one kind of textures that represents the 

similarity grouping in an image. It may be difficult to get this sort of similarity in the 

screened images accurately. It takes no effort, however, to observe the regularity of 

the same screened images by human perception. For example, Fig. 3.3.1_1 (a)-(c) 

contain different types of screening patterns, each of which has its own regularity or 

uniformity, called texture of its own. Fig. 3.3.1_1 (a) contains screenings with smaller 

granulations; while Fig. 3.3.1_1 (b) has bigger or squared screenings. For the image 

corrupted by a specific screening pattern, a proper filter should be used for 

descreening. The total number of screening patterns for all the screened images can 

not be known beforehand. How to determine the number of screening patterns 

depends on the desired functional performance. In our experiments for the 

descreening purpose, only two classes of screening patterns are classified. Our 

experiments have showed that the descreening performance after two-class screening 

classification is very satisfactory and acceptable to human perception. The two classes 

of screening patterns that are cropped manually from the screened images in our 

database are showed in Fig. 3.3.1_2 and Fig. 3.3.1_3, respectively. These patterns and 

manual classification results will be used for the training of the proposed GA-CNN 

texture classifier. 

In the testing phase of the trained GA-CNN texture classifier, it is essential to 

identify the proper block(s) in the testing image for screening texture identification 

and classification. We shall propose a set of smooth indices calculated from an image 

block for determining whether the extracted block is qualified to be one of the 

screening patterns in the testing images. Smooth indices thus play a critical role in the 

screening classification. The derivation in more details for smooth indices will be 
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depicted in the next subsection. 

 

 

              

(a)                                 (b) 

 
                                  (c) 

Fig. 3.3.1_1 Three example screened images. Images (a) – (c) contain different types 
of screening patterns. 
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Fig. 3.3.1_2 Screening Example 1 

 

          
Fig. 3.3.1_3 Screening Example 2 

3.3.2 Smooth Indices for Screening-Texture Block Detection 

The standard deviations in statistical approaches were always used as the 

analytical tool for signal processing and image processing. The smooth index used in 

our approach can be also represented in terms of the standard deviation; it is obtained 

from the proportion of difference in the standard deviations. The standard deviation in 

an image represents the extent of difference in intensities of an image. Looking for an 

index which can best describe how smooth a block will be, we have made use of the 

proportion of difference in the standard deviations between our defined blocks, named 

the difference ratio of standard deviations. 
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The size of the screening pattern that we extracted from one of screened images 

is 64 by 64 pixels. We partition the extracted screening pattern into five parts (i.e., 

sub-screening patterns). Figure 3.3.2_1 illustrates this partition of the screening 

pattern. For each of them, a standard deviation value has to be calculated, and then the 

calculated value needs to be compared with that of the original screening pattern. 

With regard to all of these five sub-screening patterns, five difference ratios can be 

acquired for a screening pattern in a screened image. In the same way, four difference 

ratios can also be obtained about the central part from which is partitioned off the 

screening pattern. None of these nine numerical values being larger than ten percents 

totally makes sure of the smoothness of the extracted screening pattern. This smooth 

index can be tuned higher if the original document image is not that smooth and the 

components of edges may be more dominant. Although the smooth index is relevant 

to the screened images, it is ranged from 10% to 20% without respect to the 

complexity of the screened images. As Fig. 3.3.2_1 shows, each of the five blocks has 

half of the size of the original screening pattern, 32 by 32 pixels. The higher the 

smooth index is, the coarser the extracted screening pattern is. A smaller smooth index 

implies the uniformity and regularity of the extracted screening pattern. The similarity 

among blocks can truly reveal the agreement to the screening pattern coming from the 

testing screened image. 

 
Fig. 3.3.2_1 Partition in the screening pattern for calculating the smooth indices 
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3.4 Design of CNN Templates for Screening Texture 

Classification by GA 

The core technique in the proposed descreening method is to design a 

CNN-based screening texture classifier. The subject of template design or learning is 

the most important topic in CNN researches. The methods which have been 

investigated may be classified as local learning algorithms [5], [6], [57], global 

learning algorithms (GA) [7] ~ [8], and analytical methods [3], [4], [58], [59]. Local 

learning algorithms are derived from training methods developed for other neural 

networks such as multilayer perceptrons, and their global counterparts mostly use 

stochastic optimization techniques such as genetic algorithms [7] or simulated 

annealing [8]. The analytical approaches are based upon a set of local rules 

characterizing the dynamics of a cell, depending on its neighboring cells. These rules 

are transformed into an affine set of inequalities that need be solved to get correctly 

operating templates. Actually, GAs inherit the properties of analytical methods and 

global methods. At the same time the local information can also be retained in the 

template training stage. 

For texture analysis by using CNN based upon GAs, some relevant and representative 

studies as [43], [60] ~ [65] have to be taken for further discussions. Like [43], a 

strategic approach was proposed to provide a simple but complete methodology for 

texture classification and segmentation. Indeed, the features mentioned in this 

reference, ROB (ratio of black pixels) and average gray-levels, give a very helpful 

tool to classify up to sixteen texture patterns after a series of processing units or 

analytic steps. But for some specific textures like screening patterns mentioned in this 

chapter, the characteristics proposed earlier are not sufficient to classify and segment 

these screening texture patterns since there may be various causes for screenings such 
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like different resolutions, sampling rates by documental scanning, printing processes, 

and so on. In [62], the hardware implementation for texture segmentation was 

developed, which sped up the research and discovery of texture analysis and other 

related applications, and meanwhile made texture-specific filtering and evaluation 

processes facilitated with parallel handling capability and consecutive template 

training of CNN’s. The uses of gray level histograms or other statistical methods in 

[43], [60] ~ [62] also modulate the decision procedure after texture classification. In 

addition to filtering textures in some orientation, having a process of cross-correlation 

between the state and input, and using the halftone-like output of CNN as in [65], our 

proposed approach turns the statistical analysis of CNN and the classification of 

screening patterns in advance for descreening on a differently breaking view. Two 

useful estimates, therefore, have been deduced here to solve this kind of descreening 

problem exactly. 

3.4.1 The Settings of CNN Templates 

A cellular neural network is innovated with implementable circuits and the basic 

characteristics of structures of neural networks. For the image processing in CNN, the 

dynamics of the network is governed by a system of n=MN differential equation (11): 

},2,1{},2,1{),(  ),()))((()(
)(

,
,, NMjitnIubtxfatx

dt
tdx

ij
Nlk

kljlikkljlikij
ij

ij

LL ×∈++++−= ∑
∈

−−−−   (11) 

where ijN  denotes the neighborhood of the cell ijC , kla  and klb  are the feedback 

and the control template parameters, respectively, M and N are the height and width of 

an image, respectively, and )(tnij  is the disturbance term. CNN has presumed 

circumscribed by a virtual contour of cells with the constant input and output for the 

lack of a complete set of regular neighbors on the boundary cells. The correspondence 

subsumed under )(•∂ fij  is the piecewise linear saturation function defined as (12). 
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and ))(()( txfty ijij =  is referred to as the output of ijC . 

A template contains the combination of a triplet {A, B, z} for the template 

learning, where A consists of all the arguments kla , and B represents the values klb . In 

the structure of CNN, A and B both are 3*3 or 5*5 matrices. The size of matrices 

depends on the functions of CNN. The threshold z is a one-dimensional scalar. In our 

system, we apply 3*3 matrices to both A and B in the consideration of functional 

performance for the texture classification. The constant input is chosen to be the 

original image; i.e., the extracted screening pattern in gray scales. The initial state in 

CNN for the texture classification can also be set as the original screening pattern due 

to the ability of convergence. The task now is to design proper templates such that the 

binary output of the corresponding CNN can indicate the class that the input screening 

pattern in gray scales belongs to. 

3.4.2 Parameter Adjustments in GA 

A genetic algorithm (GA) is a kind of methodology, which can accomplish the 

specific task or processing by a series of rigorously mathematical operations and 

logical decisions. With the ability of selection, crossover, mutation, and reproduction 

in genes, the superior offspring will survive while the inferior one being excluded 

through competition. The most important part in GAs lies in the “fitness” function, a 

kind of objective or cost function that covers all the information about the discussions, 

which is in turn yielded to evaluate the fitness value of all the possible solutions and 

their performances. Trying to reach a higher fitness value by recombining 

chromosomes has then become an essential constituent in this parameter space. 

When it comes to the operational theories in GAs, schema or template theorem 

should have been taken to explain how it works. In the followings, some basic 
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definitions in schema would be simply illustrated. A binary number “1xxx01xx” 

presented here could be viewed as one of the examples of schemas where the symbol 

‘x’ means “Don’t care”. The values located in ‘x’ could be 0 or 1. Also, a binary 

number with or without ‘x’ is a schema. For a binary number “101”, thus, all possible 

eight schemas are {101, x01, 1x1, 10x, xx1, x0x, 1xx, xxx}. There may include 2n 

schemas for an n bit binary number. 

The operational theories in GAs are based upon the building blocks hypothesis, 

where the building blocks are the schemas applied for schema theorem. A good 

contour could be conserved in case of selections. A better result could be shown up in 

case of crossover. GAs could only find the optimization by getting rid of the local 

traps in case of mutation. From above of all, the schemas with the smaller order, the 

shorter defining length, and those beneficial to looking for the optimization would 

survive generation by generation. 

3.4.3 CNN Template Design by GA 

When GA is used as the training tool for CNN templates, a few conditions that 

ought to be met need to be taken into considerations. To make sure of the stability in 

CNN, the positive cell-linking [1] and symmetry [66] of the “A” template have to be 

verified. Fortunately, any template optimized by GAs must be stable because the 

lower fitness values always result from unstable trajectories in CNN. It ensures the 

stability in CNN if a higher fitness value could be reached, which is exactly what GA 

goes for. The well-known evaluation function is defined as (13) by the mean squared 

error:  
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where j is the training template including A, B, and z, k is the number of cells which 
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depends on the size of templates, d
iy  is the desired output for each i pixel, and s

iy  

is the output in steady state for each i pixel. Obviously, only minimizing )(•g  can 

make the training templates become our desired templates, which just goes against 

our purpose of getting higher fitness values. Therefore, a modified mapping function 

is presented in Fig. 3.4.3_1 to transform the original cost function )(•g  into the 

required fitness function )(•f . 

This mapping function mixes both advantages of windowing and linear scaling. 

Windowing is one sort of fitness functions that can assign a constant minimum fitness 

value to the chromosome in the worst condition. The increased fitness value makes 

the chromosomes with lower fitness values have chance to compete with others in 

some exceptional conditions. A linear mapping function with scaling is such a 

transforming function that the population with an average evaluation value can be 

mapped into the one with an average fitness value. The two properties amplify the 

difference between good populations and bad ones so that the survival chromosome 

could evolve more easily. 

 
Fig. 3.4.3_1 Mapping function from the cost function g(.) to the fitness function f(.). 

 

Beside of the transformation from the evaluation function to the fitness function, 
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some other necessary elements in GAs have to be considered as well. To be more 

systemized, the steps in the GA used in search of CNN’s templates are arranged 

below. 

(a) Encoding process: For the facility of using crossover and mutation, BGA 

(binary genetic algorithm) is frequently utilized in GA’s realization. Representing a 

floating decimal template in terms of a binary string is necessary. In fact, CNN’s 

hardware implementation would be the terminal goal in trying finding an appropriate 

template, so the values of parameters in that template need to be ranged from -5 to 5. 

There exist a few popular coding methods like standard coding, enhanced coding, 

inverse reordering, etc. Enhanced standard coding has improved the corresponding 

association in the standard coding methods. It is the right coding method to put the 

relevant digits corresponding to the same bit-location together for the effect that the 

familiarity in a binary string can be effortlessly found out without interferences. This 

encoding process of chromosomes is illustrated in Fig. 3.4.3_2. For the sake of 

explanations, a simplified template with most entries filled by zero would be 

exhibited in our encoding process. The resolution used in our template optimization 

need not be too high since the redundant digits in CNN increase the computing 

loadings only. We take the binary strings in 12 bits for convenience to represent the 

decimal digits in CNN’s templates with the resolution less than 0.01; e.g., a binary 

string “111111111111” represents a floating decimal 5.00 in the template. But for our 

optimization process in the experiments, 5-7 bits for each weight in one population 

would be quite adequate and efficient to realize the encoding progress, which is ought 

to be accompanied by optimizing 5-10 weights within each of iterations in order to 

speed up the convergence in GA’s evolution. In this manner, CNN’s template decision 

could be well realized by the binary conversion in the first period of BGA. 
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Fig. 3.4.3_2 The encoding process of chromosomes in the GA-CNN training phase. 

 

(b) Reproduction or selection: In GAs, how to choose the chromosomes with 

higher fitness values from the candidate population is quite a decisive problem, since 

it influences the survival or decay of a competitive population. At this time, we 
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select the simplest and the most general selection method, Roulette wheel selection, 

to deal with this problem. At the point of adaptation functions, a higher fitness values 

will contribute to a bigger region area. A more contributed chromosome also would 

be liable to be picked out in the process of selection. The insufficient chromosomes 

will be generated by the recombination of the chosen populations through 

reproduction, crossover, or mutation operations mentioned below. 

(c) Crossover and Mutation: Among various crossover operators, two-point 

crossover is adopted to alter the previous relationship between two crossing sites in 

the binary strings and its percentage value is chosen as 0.7 empirically. It signifies that 

all the bits between two different sites chosen randomly have to be exchanged. 

Two-point crossover ameliorates the drawbacks of one-point crossover with inability 

of linking certain schemas. Mutation, in the end, is just performed by flipping an 

arbitrary digit to increase the occurrence probability of the populations with low 

fitness values and varies from 5%-15% according to the present error in the fitness 

function. Besides, GAP is also set to be 0.65 for keeping track of the optimized 

chromosomes and making the vibration in GA’s training slighter. Through these 

operators, CNN’s template learning can be carried out by GA more successfully. 

After the above GA optimization search, the designed CNN’s templates can be 

rearranged as a triplet {A, B, z} and are listed in decimals in Fig. 3.4.3_3. On the GA 

training pass, we shall demonstrate the evolution processes by the curve of fitness 

functions (Fig. 3.4.3_4 (a)) and the corresponding simulated results through GA-CNN 

(Fig. 3.4.3_4 (c)). In Fig.3.4.3_4 (a), the fitness values of the best, average, and 

poorest populations are indicated for each generation in an amount of five hundred 

generations. Likewise, five consistent results simulated through GA-CNN for every 

hundred generations are also displayed in Fig. 3.4.3_4(c). It can be observed 

apparently from the distribution of fitness functions (in Fig.3.4.3_4 (a)) that the 
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fitness values incline towards a steady state after an appropriate number of evolved 

generations. Also, in Fig. 3.4.3_5, the convergence curve reveals the variation in the 

mean squared errors between the desired output and the output acquired by GA-CNN. 

The distribution of fitness values and convergence curve both show the expected 

generation which results in the satisfactory classification consequences in 

experiments. 

 
Fig. 3.4.3_3 The GA designed CNN’s templates for screening textures classification. 

 

 

(a) 

 

 

 

 

(b) 
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         (c) 

Fig. 3.4.3_4 (a) The variation of the fitness values during the evolutions of GAs by 
200, 400, and 500 generations, respectively. (From left to right) (b) The testing 

screening pattern for texture classification in gray scales and its binary desired output. 
(c) The simulated results after texture classification during the evolutions of GAs by 

100, 200, 300, 400, and 500 generations, respectively. (From left to right) 
 

 

Fig. 3.4.3_5 The convergence curve for mean squared errors of the fitness function. 
 

3.5 Selection of Descreening Filters 

Numerous filtering approaches for image descreening have been proposed 

previously since it was believed that there must be a way to find out a qualified filter 

for screenings removal. But unfortunately, the outcomes of this concept only 

provoked over-blurred images or low descreening effect. In spite of the complex 

procedures, the descreening results are still restricted even if sharpening after 

descreening has been employed. At the same time, most of the existing literature also 

gives defense to their proposed filters against the common descreening filters like 
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Gaussian or median filters. As a matter of fact, these popular filters still work quite 

well on condition that the suitable arguments are correctly decided. In this chapter, we 

shall show that the median and Gaussian filters are capable of coping with nearly all 

the screened images if the screening patterns are classified and the appropriate filter 

arguments are determined. 

The Gaussian filter and median filter have complementary effects on image 

descreening. Although the Gaussian filter is often under the opinion that it has less 

effect on screenings removal, it can remove screenings without destroying the 

information of high frequencies in the original documental images if the screening 

degree would not be too high. Contrarily, the median filter has a stronger aptitude for 

screening removal yet resulting in an over descreening phenomenon; i.e., over 

blurredness. When the screening degree is high enough, the median filter will have a 

great efficacy on image descreening. Therefore, the correct selection among these two 

filters according to different screening textures can solve almost all the image 

screening problems. Moreover, with the fittest filter arguments chosen in the filters 

adaptively, the descreening outcomes can be further improved. The adaptive argument 

decision mechanism will be described in the next section. 

According to the above discussion, as soon as the screening type in the screened 

image has been testified, either Gaussian or median filter will be used. The selection 

mechanism depends on the tendency strength of the screening type in the screened 

image. This selection does not indicate the exact screening pattern but an implication 

about which of the two filters can offer a better descreening consequence. The 

information of the binary output from the CNN texture classifier is sufficient to 

determine which filter has to be selected. To extract such information, a determinative 

parameter sr  is defined as (14). 
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where )(sa  and )(sb  both are the number of pixels with respect to the two 

screening types, respectively. The parameter sr  is the selection ratio for 

recommending an agreeable filter for image descreening. The ratio is prone to 

approach zero or infinity in an ideal condition if some screening pattern is more 

dominant. In reality, the ratio is centered on the ranges by two boundary values, 10 

and 0.1. It means that this parameter is ranged in two intervals, [0, 0.1] and [10,∞ ]. 

And, it can be observed that these two values are distinct enough to halve the defined 

screening patterns. 

3.6 Adaptive Determination of Arguments in the Chosen 

Descreening Filter 

Even if a desirable filter for descreening has been selected correctly, an arbitrary 

decision of arguments in this filter might give rise to inferior descreening results. An 

advisable filter with the adaptive decision of arguments can just straighten out the 

problems in discussions. Two simple but applicable screening estimates are 

introduced here to provide the screened images with a well defined Gaussian or 

median filter. The two screening estimates are obtained by CNN’s binary output as 

defined below. First, the CNN is performed to classify the screened image according 

to the extracted screening pattern and give a binary output for texture classification. 

Next, both x and y projection functions can be sketched or analyzed with regard to the 

digits of the dominant screening type. Fig. 3.6_1 displays an x projection function of 

the binary output from the chosen screening pattern. The y projection function of the 

same screening pattern can be plotted in the same way as Fig. 3.6_1. The two 

screening estimates can then be calculated as (15). 
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Fig. 3.6_1 An x projection function of the screening pattern 

The CNN’s binary output stands for the distribution of the two screening patterns 

and meanwhile reveals the screening degree in the original screened image. The above 

estimates point out the maximum variation in x and y directions, respectively; in other 

words, the distribution of screenings in that pattern could be also best described in 

two different directions. The inessential noises can be evitable since only the 

dominant screening type is considered. Also, with the concern in image descreening, 

the range of arguments in the Gaussian or median filter should be determined in the 

first place. For the Gaussian filter, we only adjust the variance in a Gaussian function 

from 1.5 to 9.0 with the precision up to 0.1. For the median filter, the size of the 

sliding block is the only argument value we have to determine in our scheme, which 

ranges from 3 to 15 in the width with the interval of one pixel. From any binary 

output obtained by the screening classification, both of the two estimates can be 

calculated. Naturally, these two estimates have to be normalized into its proper range 

in accordance with the selected filter. This working interval was encircled by the 

maximum and minimum estimates computed from the screening patterns in the 
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training phase. The maximal estimate is assigned to 9.0 as the minimal one is assigned 

to 1.5, and then the variance in Gaussian filter can be determined by interpolation. For 

the median filter, the width of sliding blocks can also be received in the same measure. 

Through the similar way in the training phase, we can inspect which direction is more 

decisive. In fact, we just emphasize the higher screening estimate in two directions 

now that the distribution of screenings in this direction will be evidently perceived. 

3.7 Experimental Results 

The experimental results reported in this section will focus on the final results 

after descreening. In our approach, all the experiments can be separated into two parts: 

the training and testing phases. The training phase includes the collection of two 

different types of screening patterns, CNN’s template design, GA’s optimization, and 

the acquirement in the available information of two screening estimates. The testing 

phase comprises the classification of screening types, the texture classification based 

on CNNs, filter selection, and the adaptive decision of arguments in the chosen filter. 

The most time-consuming step in our method is GA’s optimization that determines 

CNN’s template for texture classification. In the testing phase, fortunately, we only 

use the fixed CNN’s templates, which have been optimized by GAs in the training 

phase. Actually, it takes almost no time in the stage of the screenings classification 

because only a small block (64*64 pixel2) in gray scales is extracted for further 

analysis. As a whole, we spent about 3.3 or 0.8 seconds (by the computer, CPU: PIII, 

800MHz) dealing with a document image in the size of 862 pixels by 768 pixels if a 

median or Gaussian filter is selected as the descreening filter, respectively. The 

detailed experimental results in these two phases will be given in the following two 

subsections. 

3.7.1 The Training Phase 
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The experimental results of using the GA for CNN’s template design can be 

exhibited in the form of screenings classification. Fig. 3.7.1_1 to Fig. 3.7.1_3 show 

variously assorted consequences by means of CNN’s texture classification based on 

GAs. The screening patterns in Fig. 3.7.1_1 and Fig. 3.7.1_2 are the ones from two 

defined distinct screenings. In Fig. 3.7.1_3, the screening is generated synthetically by 

mixing these predefined screening types. Fig. 3.7.1_4 presents the way to calculate 

the smooth indices of the screening pattern by the manual cropping in the training 

phase. Table 3.7.1_1 lists the data of the smooth indices with respect to two 

predefined screening types and a mixed screening pattern of those two screening 

types. 

As Fig. 3.7.1_4 depicts, the screening pattern can be extracted accordingly. 

When the first screening is randomly selected, the corresponding smooth indices can 

be calculated simultaneously. If more than three indices are larger than 20% in those 

nine indices, the next screening pattern has to be randomly searched until that 

condition is satisfied. In this case, all the smooth indices of the third chosen screening 

pattern will meet this requirement. Consequently, this searching procedure can be 

terminated and the selected screening pattern can be applied for the screenings 

classification in the screened images. 

As Table 3.7.1_1 indicates, the screening patterns (a) and (b) both have smaller index 

values than the screening pattern (c). It is obvious that smaller index values will bring 

about smoother blocks of images, which is able to provide an index to distinguish the 

smoothness of an image block. In comparison with what the previous works have 

been doing by using their features which were applied to texture classification and 

segmentation, the statistical arguments for screening pattern classification before 

image descreening that we proposed in this chapter have shown a better classification 
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performance and a lower misclassification rate by Table 3.7.1_2 in 200 documental 

samples with various screenings. Table 3.7.1_2 describes the classification error by 

several different indices, where one of them is the estimate that we made use of here, 

and the others are the common features like ROB and texture energy dealt with by 

half-toning or gray-scale outputs. It is easy to observe that the two estimates we 

proposed for image descreening indeed have more specific and distinguished 

characteristics toward the classification of screening patterns than what have been 

appeared in the past studies for aiming at the texture analysis only. 

 
 
 
 
           (a)            (b)            (c)            (d) 

Fig. 3.7.1_1 One defined screening type. (a) The original screening pattern. (b) The 
screening pattern in gray scales. (c) The desired classification result. (d) Our 

experimental classification result. 
 
 
 
 
 
           (a)            (b)            (c)            (d) 

Fig. 3.7.1_2 The other defined screening type. (a) The original screening pattern. (b) 
The screening pattern in gray scales. (c) The desired classification result. (d) Our 

experimental classification result. 
 
 
 
 
 
           (a)            (b)            (c)            (d) 

Fig. 3.7.1_3 The mixed screening type. (a) The original screening pattern. (b) The 
screening pattern in gray scales. (c) The desired classification result. (d) Our 

experimental classification result. 
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Fig. 3.7.1_4 An illustrative image for the extraction of screening patterns by smooth 
indices. 

 
 
 
 
 
 
                       (a)               (b)                (c) 
 

 Index1 Index2 Index3 Index4 Index5 Index6 Index7 Index8 Index9

(a) 8.1% 7.8% 6.9% 15.1% 5.1% 17.2% 6.6% 13.5% 7.2% 

(b) 13.2% 5.4% 6.6% 8.5% 9.2% 9.6% 15.8% 11.2% 9.4% 

(c) 11.5% 78.6% 27.6% 54.3% 43.2% 45.6% 33.1% 9.4% 19.2% 
 

Table 3.7.1_1 Comparison of the smooth indices with respect to three screening 
patterns in distinct smoothness, (a), (b), and (c) accordingly. 

 
 

 

Table 3.7.1_2 Comparison of the classification error for screening patterns by ROB, 
TE (or gray level average), and our introduced parameters (one determinative index 

and two screening estimates) in terms of different output formats (Binary/Gray 
scale). 

 

3.7.2 The Testing (Descreening) Phase 

Histogram Average distributions of Parameters Output Screening 1 Screening 2 Screening 1 Screening 2 
Classification 

error 
Our 

indices B 1% 99% 0.6 75 2.4% 

ROB G 47% 53% 44% 49% 4.8% 
TE G 48% 52% 31% 33% 8.7% 

 



 69

In this subsection, we demonstrate some descreening outcomes of the proposed 

trained system on the screened images in the testing phase. The document images in 

Fig. 3.7.2_1 and Fig. 3.7.2_2 are processed by the Gaussian filter according to the 

screening classification result. The document image in Fig. 3.7.2_3 is processed by 

the selected median filter obtained in the same way. The Gaussian filter applied to Fig. 

3.7.2_1 and Fig. 3.7.2_2 is facilitated with its adaptive argument decision, so the 

variance in the Gaussian function is set to be 2.4 for both of these two cases by the 

two introduced screening estimates. However, in Fig. 3.7.2_3, the screening type 

verifies the use of the median filter with the size of the sliding block by 6 pixels in 

width. We here make some comparisons to other traditional and famous methods in 

Fig. 3.7.2_4. Fig. 3.7.2_4 demonstrates the descreened images in various methods 

where (a) shows the descreened results based on our method while the others are 

based on three traditional methods. Among these three methods, one is the filtering 

approach based on wavelet analysis, another is the approach by Gaussian filtering 

only, and the other is the approach by medium filtering only. Apparently, our proposed 

method shows a better processed result even in the software-oriented exposition. No 

matter which filter is selected to do the image descreening by our proposed approach, 

the document images after processing are undoubtedly superior to those in the related 

studies. Again, this thesis additionally offers a chance to carry out in the design of 

analog circuit. CNN naturally plays a promising part in image documentation, and 

cannot be ignored in the field of applications of digital images. 

Since there is no standard method for comparison in image quality after image 

descreening processes, we devise an experimental scheme in the aspect of psychology 

by compiling and integrating the opinions of around 100 persons to indicate the 

acceptable degrees of the descreened images for every screening extent in various 

respects like descreening results, smooth, or sharp degrees at the point of human 
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perception. In Table 3.7.2_1, the evaluation range is halved by 5 where the interval 

below 5 has a higher tendency toward discredits and the interval above 5 inclines a 

higher confidence by credits. In the same way, a finer division by three intervals 

shows such different levels as high, medium, and low. All data in Table 3.7.2_1 

represent every tester’s point of view about the unprocessed and descreened images in 

an average scale. And Table 3.7.2_1 gives a kind of representative indices, perceived 

from human eyes, which clearly demonstrates the higher descreening performance 

processed by our method than that handled by some previous approaches which were 

extensively used in image descreening. From the experimental data in the descreening 

results, our method is actually superior to any other one in every respect of image 

qualities including smoothness, fineness, and edge information after descreening 

processes. 

It is also proved that a simple filter still can work as long as the screening type 

could be classified first and an appropriate lowpass filter is chosen. In spite of the 

variety in the screening types, the proposed filter selection scheme can settle most of 

the descreening problems. 

 

 

 

 

 

(a) (b) 
 

Fig. 3.7.2_1 A testing image for descreening using the Gaussian filter. (a) The 
original image. (b) The descreened image. 
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(a)                                            (b) 
 

Fig. 3.7.2_2 A testing image for descreening using the Gaussian filter. (a) The 
original image. (b) The descreened image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  (a)                               (b) 

Fig. 3.7.2_3 A testing image for descreening using the median filter. (a) The original 
image. (b) The descreened image. 

   
(a) 
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(b) 

 

   
(c) 

   
(d) 

 



 73

Fig. 3.7.2_4 The comparison to other famous methods. (a) The descreened images by 
our approach. (b) The descreened images by wavelet filtering method. (c) The 

descreened images by Gaussian filtering method. (d) The descreened images by 
Medium filtering method. (The images in each row represent various processed 

images in our database) 
 

 
Table 3.7.2_1 Comparison of descreening performance and screening extent in 

human’s observation by credits and discredits halved in 5 (normally we have three 
different ranges: low for degree 1-3, medium for degree 4-7, high for degree 8-10). 

 

3.8 Concluding Remarks 

The work in this chapter was carried through with a creative idea in image 

descreening. An alternative way applied to the screening classification is the crucial 

part in making a correct choice of descreening filters for the removal of screenings. 

By the applications of CNN’s texture classification, the predefined screening patterns 

can be successfully separated. By the uses of GAs, the decisive template in the 

functions of CNNs can also be well optimized. The classification based on CNNs can 

be accomplished in such an easier manner that we make the descreening results more 

acceptable. Also, we introduced the smooth indices to determine whether the 
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screening pattern in the testing image was smooth enough to be extracted. The defined 

screening types can be verified for the later filter selection according to this screening 

pattern. CNNs in this chapter played an influential part due to its stability and the 

association of neighboring cell linking. In particular, two suggested screening 

estimates in the training phase were taken to decide the range of the same ones in the 

testing phase, which helped to determine the arguments in the selected filter. In this 

adaptive way, an appropriate filter with the chosen arguments not only made the 

descreening processing easier but also rendered the processed images attractive ones 

to human perception.  

Our experimental results indicated that the descreened document images by our 

scheme are more natural and acceptable to naked eyes, for both the high and low 

frequency part in a descreened image demonstrating the smoothness and sharpness in 

concord. With the selection of a proper filter and the decision of its arguments, the 

screenings have been removed away effectively, but the high frequency part in 

document images would still remain natural. It was shown that the descreening results 

were also pleasing or even better despite of the absence of sharpening processes in our 

approach. For more application in this field, the binary output of CNNs will be 

extended to the output in gray values or even in color scales with more channels. 
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4. Texture Discrimination based on 
GA-CNN proliferation structure 

 

4.1 Introduction 

In this chapter, we presents a novel approach to texture discrimination, realized 

by an innovative feature curve, TBS (Transition Bit String), extracted from the 

mapping of Cellular Neural Networks (CNN’s) with optimized GA-CNN templates. 

This one dimensional feature curve TBS has not only been demonstrated valid and 

effective in the representation of various textures, it also leads to a better classification 

result for complicated texture patterns. What is more, TBS helps to carry out the 

GA-CNN based proliferation structure that always optimizes the number of templates 

for texture classification and representation. Also, the overview of diverse texture 

patterns from CNN’s characterizes the use of CNN’s and determines the 

discriminability between textures. With the new approach we’re introducing here, we 

would be able to proliferate the CNN templates at a much wider flexibility simply by 

analyzing the feature curves of TBS for different textures. Meanwhile, we also 

provide a selective processing mechanism for distinct cases of textures in 

classification analysis, which takes into consideration the given conditions of texture 

patterns in question. Last but not least, since the proposed structure and the developed 

feature curve for texture classification show a satisfactory result even without given 

conditions about texture patterns and is still applicable in much more complicated 

texture patterns, we would be able to show the advantages of TBS in analyzing the 

representation of textures whereas presents the superiority it carries out in the analysis 

of texture classification. 

This work is however significant since texture analysis could be applied to 
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numerous researches such like image documentation, image descreening, background 

removal, and many other digital image processing issues [67]. As to texture 

classification, GA would definitely be employed in the design of templates of CNN’s. 

Nevertheless, most studies on texture classification based upon CNN’s have put an 

excessive emphasis on the searching of templates in CNN’s without really considering 

the wider varieties in texture patterns that make the problems even more complicated 

because the training of optimized templates is supposed to be time-consuming and 

inefficient. This chapter, therefore, aims at building a brand-new structure to 

effectively find the minimum number of CNN templates while retaining texture 

classification performance. To illustrate our approach more clearly, we have organized 

this chapter with the following sections: the proposed system architecture, Transition 

bit string (TBS), the characteristics of texture patterns from CNN’s, design of 

characteristic templates optimized by genetic algorithms (GA’s), texture classification 

mechanism, experimental results, and concluding remarks. 

4.2 The Proposed System Architecture 

A novel systematic architecture is proposed in this chapter, as shown in Fig. 

4.2_1. This overall architecture describes the complete workflows for our 

classification problem and lists the main components under this structure. As we 

discussed earlier, CNN’s plays a crucial role in overlooking the characteristics of 

various texture patterns in terms of optimized GA-CNN templates. The proposed 

structure here could process two distinct texture patterns defined by various ways to 

acquire training samples. By obtaining the feature maps from the CNN outputs, we 

use some special method for feature extraction to derive the curve of TBS. TBS then 

becomes the kernel part here since it could be taken as the tool for the representation 

of different textures and for the judgment foundation on differentiating different 
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texture patterns. Finally, we apply TBS instead of the original image of texture 

patterns to the input of classifier for texture classification and use it to represent the 

texture patterns. 

To explain more clearly, the feature combination in Fig. 4.2_1 (a) elaborates the 

proliferating process of CNN templates based on the decision and evaluation of TBS. 

The query function on the righthand side of Fig. 4.2_1 (b) provides a tradeoff choice 

for something that we might not have about the input of the classification issue. In 

order to avoid the unnecessary interferences and prepare a better processing strategy, 

the pre-classification mechanism has been put here to simplify the classification 

procedure. After classifying the combined feature curves for the first time, we would 

move on to the following decision engine if the number of clusters has been given. 

We would not take the other branch as indicated in Fig. 4.2_1 (b). The other branch 

includes thresholding and cluster decision, where thresholding helps remove any 

redundant information in the feature curve obtained from feature mappings and 

cluster decision makes the features extracted from the output of various CNN’s 

classified in advance and decides the number of clusters. On the other hand, if the 

number of clusters has been determined on cluster decision, the same procedures 

would be executed as in the case of a priori clusters. 

The classification algorithm has to keep running till the number of clusters is 

determined. And decision engine judges if the difference between any two clusters is 

greater than some threshold. If so, the classification process would be terminated and 

the outputs are the classified texture patterns. If not, the classification process would 

go on and one more CNN template would be proliferated to generate more TBS 

features in representing distinct textures. Our experimental results eventually 

demonstrate both the capability of our introduced feature curve and the pleasing 

classification outcome based on this method. 
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(b) 

Fig. 4.2_1 The GA-CNN based proliferating system (a) Feature extraction phase (b) 
The recognition phase 

4.3 Transition Bit String (TBS) 

For any applications in digital image processing, we offer a very useful feature 

index extracted from two-dimensional signals, making it the desired descriptions of 

texture patterns. This defined function TBS, can be taken as a projection mapping 

from a 2-d input signal to a 1-d output signal. For any different kinds of combinations 

of feature series, the characteristic function TBS could be defined as (16-1) or (16-2) 
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depending on the type of input signals. Equation (16) can also be expressed in terms 

of (17) and (18). 
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where TBS indicates the sum or union of differently-combined feature curves after 

scanning the original 2-d input signals in some orientation k over its axis kx , while 

fn  is the total number of feature curves. Here we use the superscript k to avoid 

confusion with the overall domain of axis x. The domain of TBS should be the unions 

of kx with the numerical value k from 1 to fn . If the summation in (16-1) is replaced 

by the “OR” operation, TBS stands for the union of feature series in some sense and 

(16-2) will replace (16-1). Whether to select (16-1) or (16-2) is usually determined by 

the sensibility in orientations of texture patterns and output signals. Apparently, (16-2) 

would be more applicable to the applications of CNN’s since we simulate the CNN 

outputs in a more logical form, which also keeps more information from the extracted 

feature curve. The derivative equation (17) kicks off the normalization of histogram 

by dividing the value n, the total number pixels in the images of CNN outputs, to keep 

from the disturbance of various image sizes.  Also, the maximum value kx  in the 
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orientation k indicates the total number of continuous strings listed in the 

above-mentioned equations and here a string is referred to as a digital image with its 

corresponding pixels. 

In addition, equation (18) describes the kernel part of this characteristic function 

where )( k
k xn  represents the length of the current continuous string for the steady 

state signals ( ∞y ). And )()( ik yx ∞  means the transformed signals in orientation k 

from ∞y  in location i.  In our application, we use the output of CNN’s for this kind 

of input signals. The numerical value ( )( k
k xn ) hence indicates the length of the xk th 

continuous string for the kth feature curve in the orientation k. This value will be 

accumulated only when the difference ratio between the current string ( k

ix ) and the 

previous one ( k

ix 1− ) is lower than some predefined threshold (ε ). This threshold 

depends on the types of image and how we tolerate noises of the processed images. 

This explains the difference ratio is higher for more noisy textures. In our case, ε  is 

set to be 1 for the CNN binary output. Our featured function regarding xk projects the 

original 2-d signal (CNN outputs here) onto a 1-d curve so as to re-classify the binary 

strings according to our requirement. Finally, the defined characteristic function TBS 

can be determined after analyzing the combination of feature curves in all considered 

orientations. As we mentioned, the pre-defined threshold is frequently set to remove 

more noises while deciding the current continuous string. This featured function can 

be more flexible by selectively determining or adjusting this threshold. 

Later in our experimental results, the feature curves in two dominant orientations 

(horizontal and vertical) are well-functioning enough to classify up to sixteen texture 

patterns in our database. This method is still applicable to the feature curves in more 

orientations if the texture patterns are distributed in some particular orientation. We 

named this feature curve TBS (Transition Bit String) since its horizontal axis 
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represents the times of transitions or the number of total continuous strings and the 

vertical axis shows the length of some specific string. To illustrate the use of TBS, we 

have some regular texture patterns in the ideal binary level at different frequencies 

and orientations as shown in Fig. 4.3_1 (a), where the proportion of whiter area in (a.1) 

is 2/3 distributed horizontally and each texture image is assumed in LxL size for 

simpler explanations. The proportion of whiter area in (a.2) is one half of the same 

area in (a.1), and (a.3) is again one half of (a.2). As to Fig. 4.3_1 (a.4) ~ (a.6), we 

have the same proportion between two different bright blocks while they are 

distributed vertically. The corresponding TBS in the horizontal orientation could be 

shown in Fig. 4.3_1 (b). We define the x-axis of Fig. 4.3_1 (b) as the number of 

continuous strings and y-axis as the length of each continuous string (denoted by 

counts). In Fig. 4.3_1, the numerical values (like 2L/3, L/3, etc…) represent the 

corresponding coordinate values of x-axis or y-axis on its feature curve. From the 

observations we make here, horizontal TBS plots indicate the same distributions for 

the same textured patterns regardless of frequencies and orientations; they also at the 

same time reveal different lengths and widths for those texture patterns. On the other 

hand, vertical TBS plots demonstrate the opposite conditions against the horizontal 

ones. In our case, our TBS combines the feature curves in two distinct orientations 

(horizontal and vertical) by (16-2). Hence, TBS in truth shows the capability in 

discriminating texture patterns at different scales or frequencies, and we could use 

TBS to classify and represent texture patterns of natural images as long as the images 

of texture patterns are spaced clearly by nature or by appropriate transformation. As a 

result, we may successfully incorporate the structure of CNN’s in the sense of the 

ability in generating distinct binary outputs for digital images to obtain the unique 

projected feature maps with respect to various textures. The reason of introducing 

CNN’s in this chapter will be given in the following section. 
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                  (a.1)                  (a.2)                 (a.3) 

         
                      (a.4)                  (a.5)                 (a.6) 

(a) 

 

(b) 
Fig. 4.3_1 Illustrations for TBS plots (a) The ideal texture patterns in various 

frequencies and orientations (b) The corresponding TBS plots orderly arranged from 
left to right, and top to bottom (corresponding to (a.1) ~ (a.6)). 

2L/3 
L/3 

2L 

counts 

No. of cont. strings

L/6
L/3 

4L

counts

No. of cont. strings 

L/6L/12 

8L 

counts 

No. of cont. strings

2L2/3

counts

No. of cont. strings 

counts 

No. of cont. strings

counts

No. of cont. strings 

L2/3

2

L2/3 

L2/6 

4 

L2/6

L2/12

8



 84

4.4 The Characteristics of Texture Patterns from CNN’s 

When it comes to texture discrimination analysis, we all aim at finding the 

characteristics of each specific texture pattern. How to describe or represent the 

distribution in texture patterns would thus be significant and how to extract the 

representative features from various texture patterns would be also crucial to the final 

performance in the classification mechanism. As we know, textures can be viewed as 

complex visual patterns composed of entities, or sub-patterns, that have characteristic 

brightness, color, slope, size, etc. [44]. Generally speaking, four kinds of popular 

approaches nearly dominate all the researches in the field of texture analysis: 

structural, statistical, model-based, and transform methods. Structural approaches [44], 

[45] represent texture by well-defined primitives, indicated as micro textures, and a 

hierarchy of spatial arrangements, indicated as macro textures, of those primitives. As 

to model-based texture analysis [47] ~ [52], it uses fractal and stochastic models, and 

attempts to interpret an image texture by using generative image model and stochastic 

model, respectively. More clearly, [47] describes the natural scenes by fractal 

dimension estimation and takes advantage of iterations between parameters to 

improve the performance in one parameter adjustment. Using the set of Markov 

parameters and the correlation coefficients of textures [48] makes the classification 

problem more challenging. But the limitation of [48] is that the calculated arguments 

from texture patterns can not distinguish these textures since they share the same 

power spectra but different phase information. The approach proposed in [49] uses the 

Gibbs distribution for noisy textured images and it shares the parameter estimation as 

in [47]. For the unknown number of clusters among textures, [50] proposed an 

unsupervised texture segmentation method to model the textured images that can be 

divided into non-overlapping regions, from which the information of Gauss Markov 
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random field (GMRF) can be extracted. Besides, transform methods for texture 

analysis, such as Fourier [51], Gabor [52], [53] and wavelet transforms [54] ~ [56] 

represent an image in a space whose co-ordinate system has a strong understanding 

that is closely related to the characteristics of a texture, like scales or frequency. For 

instance, [53] interprets image textures with 2-D Gabor filtering by its orientation 

characteristics, and [54] describes the basis of image representation based on 

multi-frequency bands. For multi-band analysis, [55] uses wavelet package to 

represent textured images by entropy and energy of wavelet coefficients. Again, for 

the unsupervised case, a simple structure based on wavelet analysis for unknown 

number of textures was introduced in [56]. From the observations above, it is clear 

that our proposed texture analysis scheme keeps the advantages of structural methods 

while retaining those of statistical ones. The texture patterns can be regarded as 

primitives in structural methods while the specific CNN template could be viewed as 

the elements of primitives for reflection of some specific textures. In addition, like the 

analytical procedures in the statistical approach, our introduced TBS plays an 

essential part in describing the distribution in various textures in the aspect of feature 

extraction through different CNN templates. In the following section, we will have a 

brief introduction to the basic structure of CNN’s for those who might not be familiar 

with CNN’s. After that, a brand-new idea based on CNN’s for texture discrimination 

will be given in section 4.4.2. 

4.4.1 The Settings of CNN Templates 

 As what we have addressed in the chapter 3, the state equation and output 

function of CNN’s for the image applications could be described as (11) and (12), 

respectively. Likewise, the CNN template contains the combination of a triplet {A, B, 

I} for the template learning, where A consists of all the arguments kla , and B 

represents the values klb . In the structure of CNN, A and B both are 3*3 or 5*5 



 86

matrices. The size of matrices depends on the functions of CNN. The threshold I is a 

one-dimensional scalar. In our system, we apply 3*3 matrices to both A and B in the 

consideration of functional performance for the texture classification. The constant 

input is chosen to be the original image; the initial state in CNN for the texture 

classification can also be set as the original texture pattern due to the ability of 

convergence. The good thing is not every element in templates has to be trained since 

our defined templates are sensible enough to describe texture patterns of any kind. 

These types of templates can represent the characteristics of textures in our innovative 

ideas, which will be conceptualized and illustrated as below and more details will 

come later in section 4.5. 

4.4.2 The Overview of Texture Patterns Based on CNN’s 

Unlike the traditional approaches using CNN’s, we take advantage of  the 

characteristics of  templates in CNN’s to simulate the distribution among texture 

patterns instead of looking for a specific template for some specific applications. The 

characteristics of different kinds of texture patterns could be generalized from CNN’s 

mapping, as shown in Fig. 4.4.2_1 (a) and (b). One can understand why we try to 

describe the properties in texture patterns for classification problems from the 

perspective of feature mapping based on various templates of CNN’s. As a result, it is 

similar to an outlook from various CNN templates (the front layer) to feature space 

(the back layer) through many kinds of texture patterns (the mid-layer). From Fig. 

4.4.2_1 (a) and (b), different templates in CNN’s correspond to different regions of 

feature space which might be projected from various texture patterns. It could also be 

observed that Fig. 4.4.2_1 (a) and (b) indicate two diverse conditions that might result 

from the singular and nonsingular feature projection based on the same CNN template. 

For illustrations of more details, Fig. 4.4.2_2 describes the feature space in a more 

definite fashion for both ways in bifurcating feature mappings seen through a 
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characteristic CNN template. With a suitable selection in CNN templates which can 

be found in advance or trained by GA’s, textures would be projected by these 

templates into ranges of feature space different from one another. On the other hand, 

the more overlapped condition in the feature space projected from a specific CNN 

template would be undesirable in this chapter. As what has been described above, we 

try to find the applicable CNN templates that can best describe the texture patterns in 

order to represent or classify these textures in the consideration of improving the 

performance of our system. Naturally, CNN’s could generate this kind of feature maps 

by optimizing templates based on GA, which would be elucidated at the design 

guidelines in the following section. 

 

  

  

 
(a) 
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(b) 
 

Fig. 4.4.2_1 Illustration Figure for Feature Mapping based on CNN’s by (a) 
Non-overlapping condition and (b) Overlapping condition. 

 
 
 

 
Fig. 4.4.2_2 Illustration Figure for the distribution in features projected from 

different CNN templates 
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4.5 Design of Characteristic Templates Optimized by Genetic 

Algorithms (GA’s) 

In the past studies, the most important issue in any applications related to CNN’s 

lies in the search of CNN templates. However, looking for appropriate templates is 

sometimes time-consuming and difficult, which in turn results in a standard format of 

the system structure and the constraints of the performance of that system. Therefore, 

efficient template finding could be decisive and may also better off the final results. 

To discriminate texture patterns more clearly, we use genetic algorithms to find the 

specific CNN templates with the goal of generating distinct feature maps for any two 

different textures. The design of CNN templates has been prevailingly illuminated by 

GA since the convenience and robustness of GA have extended the capability of 

CNN’s applications. A strategic approach has been proposed to provide a simple but 

comprehensive method for texture classification and segmentation [43]. The feature 

mentioned in this reference, Rob (ratio of black pixels) and average gray-levels, in 

fact give a very helpful tool to classify texture patterns after a series of processing 

units or analytic steps. But these features confine the applications in image processing 

by CNN’s since we can not leave aside the practical problem of whether the hardware 

is implementable for complicated texture patterns. In this regard, we propose a one 

dimensional feature curve in this chapter to highlight the more complicated issues of 

image processing by CNN’s, so that hardware of the applications alike in higher level 

image processing can be implemented more easily. In addition, this feature curve 

plays an important role in the design of CNN templates based on GA by incorporating 

with the evaluation of fitness function and the simplification of templates in the 

optimizing process of GA. 

4.5.1 The Design Rules on GA by TBS 
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A genetic algorithm (GA) is a kind of methodology, which can accomplish the 

specific task or processing by a series of rigorously mathematical operations and 

logical decisions. With the ability of selection, crossover, mutation, and reproduction 

in genes, the superior offspring will survive while the inferior one being excluded 

through competition. When GA is used as the training tool for CNN templates, all the 

elements in the templates of CNN’s have to be verified. As far as texture analysis is 

concerned, the CNN templates which possess the ability to simulate or differentiate 

texture patterns belong to a special kind of filter for extracting features in the original 

textures. Therefore, we would manage to modulate this specific form of CNN 

templates in stead of looking for a new CNN template just between any two specific 

texture patterns. The reason is simple: the latter gives rise to the decrease of the 

trained CNN templates and truly reflects the non-overlapped feature mappings from 

those templates. In fact, there exist some types of templates in generating distinct 

feature mappings among different textures for enhancing the differentiation functions 

of the classifier. Thus, the goal here turns to predefine this special form of templates 

to differentiate texture patterns. This kind of CNN templates could be determined and 

optimized by the adjustment of TBS difference when the following criterion is 

satisfied. 
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where i
kTBS  and j

kTBS  are the kth index of our featured curves calculated from the 

CNN outputs for any two different textures, texture i and texture j. The subscript k 

represents the kth location in the calculated TBS. The kη  for the kth index represents 

the threshold of difference ratio between texture patterns, whose value, between 0 and 

1, can be selected beforehand for various sets of texture patterns. Also kη  

approaching 1 implies a higher difference ratio between texture i and texture j. We set 
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the same kη  for all indices for convenience and a bigger kη  for higher 

discriminative power between textures. For this requirement, we choose the error 

function in GA as follows. 
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where l is the training template including A, B, and I. n is the number of cells that 

depends on the size of templates; i
ky  is the desired output for the target texture 

pattern and j
ky  is the steady state output of the discriminative texture pattern for the 

kth cell. Here the definition of (20) just expresses the relationship between the current 

optimizing templates, and the error function should be related to our TBS difference. 

So the error function in GA was defined as the reciprocal of TBS difference. Finding a 

lower difference between d
iy  and sy  is equivalent to finding a higher TBS 

difference. As what we intend to do in this chapter, the fitness function given above is 

set to be the difference of the defined feature curve, TBS, between different texture 

patterns. Besides, any template optimized by GA must be stable because the lower 

fitness values always result from unstable trajectories in CNN. It ensures the stability 

in CNN if a higher fitness value is reached, which is exactly why GA is used for. 

Since these two functions in this issue would be running after the same goal, we do 

not need to define an additional error function or to project it on the fitness function 

by any transforming function, like most approaches would do. The other related 

adjustments about GA on the search of CNN templates such as the encoding process, 

the way of adjusting reproduction and selection, crossover and mutation rate, etc, can 

also be referred to the previous chapter for more details. 

 In order to optimize CNN templates in pursuit of generating different feature 

maps for various texture sets more efficiently, we predefine three types of uncoupled 
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CNN template which take the distribution of different texture patterns into account 

with regard to its regularity, uniformity, and symmetry. Hence, we have 
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All the three types of CNN templates are defined according to the arrangement 

of every cell coupling with its texture pattern, and only three conditions are 

considered due to the applicability in various texture patterns. For each training 

process of GA, only one of these three templates would be met to form the 

discriminative feature map for any pair of texture sets. Later we will show the faster 

convergence condition based upon our GA-defined template in the up-coming 

experimental results. The three types of CNN templates describe different ranges of 

feature space, and our featured curves could decrease the number of templates that 

have to be optimized. It is interesting to observe that CNN edge template in the library 

happens to be one of the defined templates since the former describes the texture 

pattern in the high frequency band. Thus it becomes the first template to represent 

textures before deciding whether or not the proliferation of CNN templates is 

necessary. Meanwhile, TBS helps provide an evaluation index in the optimizing 
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process of GA to determine the extent of discriminations between textures. 

To acquire the feature maps based on different CNN’s, we have to optimize our 

defined templates. And the optimized results after GA search are shown in Fig. 

4.5.1_1. For any two texture patterns (Fig. 4.5.1_2 (a)) which can not be classified 

correctly by the first template, a new CNN template will be optimized as stated in our 

approach. The evolution processes is demonstrated by the corresponding feature maps 

(Fig. 4.5.1_2 (b)) through GA-CNN and the corresponding fitness functions (Fig. 

4.5.1_2 (c)) during GA optimization. The first and second row in Fig. 4.5.1_2 (b) and 

(c) correspond to the left and right texture pattern in Fig. 4.5.1_2 (a), respectively. 

From the steady state feature maps shown in the rightmost figure of Fig. 4.5.1_2 (b), 

we know that the original texture patterns have been well described by the new 

feature maps, which show the diverse distributions in the horizontal and vertical 

directions for those two patterns. And in Fig. 4.5.1_2 (c), the fitness values of the best, 

average, and poorest populations are indicated for each generation in an amount of 

two hundred generations. It can be observed apparently that the fitness values incline 

towards a steady state after an appropriate number of evolved generations. Fig. 

4.5.1_3 describes the convergence curve by the variation of error functions in the 

training process of GAs between our target texture patterns. We define the error 

function as the difference of parameters between the current and desired patterns as in 

(20) in order to observe the convergence condition during the evolution of optimized 

CNN templates based on GA. The label of x-axis in Fig. 4.5.1_3 is denoted by epochs 

since the generated populations based on GA should be corresponding to the training 

process of neural networks. Finally, the distribution of fitness values and convergence 

curve both show the expected generation which results in the satisfactory 

classification consequences in experiments. 
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Fig. 4.5.1_1 Optimized CNN template set for all sixteen texture patterns 
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(c) 
Fig. 4.5.1_2 GA training process for our defined CNN template (a) The misclassified 

texture patterns in the first run (b) The evolved feature maps during the training 
phase by GA (c) The corresponding fitness function for the best, average, and 

poorest populations after 50, 100, and 200 generations accordingly. 
 
 

 
Fig. 4.5.1_3 The convergence curve by GA trainings  
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4.6 Texture Classification Mechanism 

So far it is obvious that we have put forth a new structure in generating CNN 

templates in a more flexible fashion. This structure also deals with the classification 

issues in supervised and unsupervised conditions for texture patterns. Here we 

addressed on how our texture classification mechanism can work for this function. 

Our entire classification mechanism emphasizes on the decision engine and the 

classification algorithm besides the searching processes for CNN templates based on 

GA. As indicated formerly, CNN template set ensures the existence of feature maps 

for various texture patterns. TBS gives an evaluation standard for determining 

whether the classified outputs are desired ones and whether TBS series can describe 

the difference between texture patterns. Therefore, for the decision engine, TBS 

difference between textures decides whether or not the CNN template has to be 

proliferated. If TBS difference is greater than some threshold, this TBS series is 

distinct enough to represent different textures and the classification process is 

terminated. Otherwise, we must generate more CNN templates to organize a new TBS 

series for differentiating textures. Also, whether the number of clusters is a priori is 

taken into consideration for different processing purposes. If the number of clusters is 

known, the classification process would be much easier by applying the pre-classifier 

and decision engine. Since the features (TBS series) extracted from CNN outputs are 

quite representative for various texture patterns, a complex or time-consuming 

classifier is no longer required for pre-classification mechanism. Instead, a simple 

classifier would work on the classification for features extracted from textures. If the 

number of clusters is not given, we would use the classification algorithm in the first 

place to find the number of clusters that will be brought in later. There is no need to 

apply any existed unsupervised classifier that might be difficult and inefficient for 
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texture classification. To sum up, we have the classification algorithm on the 

foundation of TBS series as shown below. 

 
Classification Algorithm 

1. Extract the dominant features from the TBS series. 
2. Set iterationn =1 where iterationn  is the number of iterations, and calculate the average 

of all texture patterns. 
i.e. Calculate mifor

n
ttt

t
i
n

ii
i
c ≤≤

+++
= 1  ,

)( 21 L
 where i

ct  means the centre 
tuple in the ith dimension, m is the total dimension of each tuple, and n is the total 
number of tuples (texture patterns). 

3. Calculate the distance from each tuple to the centre tuple. 
i.e. njforttd i

c
i
j

j
c ≤≤−= 1 ,)(  where j

cd  is defined as the 2-norm distance 
from the tuple j to the centre tuple in the sum of every dimension i in tuple j. 

4. Find the maximum distance maxd  such that }{max
1max

j
cnj

dd
≤≤

= . 
5. Divide j

cd  by maxd  for nj ≤≤1  to obtain the normalized distance j
nd . 

6. Find the tuple j such that η≥j
nd  for nj ≤≤1 . where η  is the predefined 

difference ratio between texture patterns and 10 ≤≤η . Let k be the total number 
of tuples whose j satisfies the above constraint. 

7. Make the centers of new clusters be jt  where kj ≤≤1 . Now the number of 
clusters will be k+1 (i.e. iteration

r
cluster nrandkn =+=   ,1 ) since ct  should also be 

one of the centers of clusters. 
8. Assign the remained unclassified members jt  where 11 +−≤≤ r

clusternnj  to the 
cluster whose i

nd  is the minimum among all i ( r
clusterni ≤≤1 ). 

9. Recalculate the centers of new clusters to form jc  where r
clusternj ≤≤1  . 

10.  Evaluate the difference ratio between clusters ijr . 
where 11  11  }{max/

11
11

+≤≤+≤≤−−=
+≤≤
+≤≤

kjandkiforccccr ji
kj
kijiij . 

Find cluster i and cluster j such that ijr  is minimum. 
If η≥min

ijr  then  
Stop the algorithm and iteration

r
clustercluster nrwherenn ==   . 

Else  
Merge cluster i and cluster j, 1 += iterationiteration nnset , and go back to step 9 with 

iteration
r
cluster

r
cluster nrwherenn =−= −    11 . 

 

Like the first step illustrated in this algorithm, extracting the dominant features 

from TBS series is trying to simplify the analysis of feature curves and enable the 
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convergence of classification. These dominant features used in this chapter are 

average height, width, peak value, and the position of the peak value calculated from 

the feature curve TBS. The classification algorithm helps to find the number of 

clusters in an efficient way from how clearly we expect the textures to be 

distinguished. Naturally, the classification mechanism would go back to the 

proliferating system if the current TBS series are still insufficient to distinguish 

texture patterns. This then becomes precisely the case where the number of clusters 

has been given. And the processing procedures would be more lucid after the number 

of clusters is a priori. We will look into the outcomes for different given conditions in 

the following section to show how both cases demonstrate satisfactory results. 

4.7 Experimental Results 

This section mainly focuses on the experimental results of classification 

outcomes. Besides, we would also show the performance of our feature curves 

presented previously to demonstrate how they may represent various texture patterns 

in practical use. All the texture patterns we use in this chapter are obtained from 

Brodatz texture database, and we have sixteen texture patterns for the following 

experiments. For both experimental and optimized parts, the standard size of texture 

patterns in this chapter is 64x64 pixels. First, the capability of the feature curve, TBS, 

in one direction for four texture patterns cropped in different orientations and 

regularity are shown in Fig. 4.7_1 (a)-(c). Fig. 4.7_1 (a) represents the original four 

texture patterns in different orientations and regularity with each row representing the 

same texture patterns we have collected in five different orientations and regularity. 

Fig. 4.7_1 (b) and (c) indicate the feature maps obtained from the operation of the 

first template in CNN’s and the corresponding feature curves scanning in the 

horizontal direction. Fig. 4.7_1 (c) figures out the different distributions among these 
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four texture patterns. Using it as an example in these four textures, the feature curves 

obtained from the given CNN templates indeed describe the discriminability between 

different texture patterns. 

In a more difficult case, the original CNN template is not sufficient to 

discriminate those eight texture patterns interpreted in Fig. 4.7_2 (a)-(c). Fig. 4.7_2 (a) 

shows the original eight texture patterns, and Fig. 4.7_2 (b) and (c) both present the 

same thing as in Fig. 4.7_1 excluding the additional texture patterns. As what our 

approach highlights, a new CNN template has to be optimized then in order to 

differentiate the current texture patterns (Fig. 4.7_2 (a)) by the combined TBS series 

extracted from this new optimized CNN template. With TBS difference ratio, we can 

foresee whether the texture patterns will lead to the similar or different distribution of 

TBS. In this way, we need to train one more CNN template for distinct feature maps 

as shown in Fig. 4.7_3 (a), whereas Fig. 4.7_3 (b)-(c) show the different distribution 

of TBS in this case. Fig. 4.7_3 (b) and (c) indicate the diverse TBS in the horizontal 

and vertical directions, which causes the differentiation in some other texture patterns. 

More specifically, from the 4th row (texture 4) to the 8th row (texture 8) in Fig.4.7_2 

(a), (texture 4 and 5) and (texture 7 and 8) in particular, the original feature maps (Fig. 

4.7_2 (b)) and TBS (Fig. 4.7_2 (c)) which can not represent or differentiate these 

textures will be representative enough to discriminate these patterns by incorporating 

this new TBS (Fig. 4.7_3 (b) and (c)) to form a complete TBS series. Therefore, the 

experimental results (Fig. 4.7_2 and 4.7_3) show that the proliferated CNN templates 

accompanied by the original ones give a better representative discriminability for 

more texture patterns. In order to elucidate the functions of TBS series for texture 

discrimination, we set up a verifying experiment for numerical comparisons based on 

these figures (Fig. 4.7_2 and 4.7_3) in Table 4.7_1. The numerical value on each line 

represents the discrimination index of corresponding textures in Table 4.7_1 (a). The 



 100

discrimination index denoted by η(i, j) implies the discriminative ability between 

texture i and texture j (the row number of Fig 4.7_2 or 4.7_3). We only show the 

smallest top 5 discrimination indices for each figure from left to right. We can observe 

that all the numbers in Table 4.7_1 (a) are smaller than 0.5, which speaks of the 

difficulty in separating these textures. Therefore, we demonstrate the functions of 

TBS series (a combination of more features extracted from more CNN templates) in 

Table 4.7_1 (b). We would only show the textures which result in the lowest five 

discrimination indices for comparison. As Table 4.7_1 (b) indicates, the combined 

TBS series have enhanced the discriminative ability among textures since all the 

discrimination indices in Table 4.7_1 (b) are higher than those in Table 4.7_1 (a). The 

quantitative experiments indeed prove that features from the proliferated templates 

can make texture patterns more discriminative. 

By the same token of satisfactory experimental results, we also demonstrate how 

effective and prevailing our defined CNN template can be. Our structure is by far 

better than some other traditional method that takes it as nothing more than a normal 

template that has nineteen parameters to be trained. Fig. 4.7_4 reveals the 

convergence condition by the fitness functions of GA’s from the best, average, and 

poorest populations after the same generations for the general CNN template (Fig. 

4.7_4 (a)) and our predefined CNN template (Fig. 4.7_4 (b)). Unlike the 

generally-adopted CNN templates based on GA that often encounter difficulty in the 

convergence of obtaining a proper template, our results show a much faster 

convergence speed in the predefined case. In addition, our experiments show that at 

least three optimized templates would be sufficient enough to classify up to sixteen 

kinds of texture patterns by using TBS. 

To classify less than eight textures in obviously distinct orientations, one out of 

two templates that is proliferated would be enough to differentiate different texture 
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patterns. As Table 4.7_2 shows, our introduced feature curve, TBS, does provide a 

better classification outcome than other features based on CNN’s in the previous 

studies will do. Table 4.7_3 and 4.7_4 indicate respectively the classification results 

for different rotations and sampling sizes of textures. This suggests the stability and 

invariance of our approach when applied to different situations. Also, Table 4.7_5 

compares the experimental results between different feature curves, and there seems 

to be no difference even if only one orientation of TBS has been used. Since GA is a 

training process with optimization, we need to have some discussions about texture 

data sets on training/testing separation. We use the tenfold cross-validation testing 

model to make our experimental results more persuasive. Hence Table 4.7_6 indicates 

the individual and average classification error for a fixed textured data set of eight 

texture patterns in the standard size (64x64). We can see that the average 

classification error based on our introduced feature series is much lower than that of 

other traditional features based on CNN’s. Eventually, if the number of clusters is not 

given, we have the classification results in Table 4.7_7. Table 4.7_7 shows that the 

number of clusters should increase if the difference ratio between textures (η) 

decreases and vice versa. In this way, we can decide the number of clusters that we 

wish to classify the texture patterns in the database by adjusting η. As the 

classification outcome shows, the error percentage of our introduced system structure 

is still acceptable even if the number of clusters is not known beforehand. In Table 

4.7_7, the error percentage of the fixed η is not given for unsupervised case since it is 

meaningless to calculate the classification error percentage on the different bases of 

the real situation. All the experiments indicate that our developed texture 

classification mechanism with the introduced TBS needs fewer templates for 

optimization, which for sure result in time-efficiency in the optimizing process of GA 

and the satisfactory results in texture discrimination as well. 
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(a) 

  

(b) (c) 
Fig. 4.7_1 Texture representation for four texture case (a) the original texture 

patterns (b) feature maps (c) TBS. 
 

 

(a) 
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(b) (c) 
Fig. 4.7_2 Texture representation for eight texture case (a) the original texture 

patterns (b) feature maps (c) TBS. 
 

 

(a) 

  

(b) (c) 
Fig. 4.7_3 Texture representation for eight texture case based on another CNN 

template illustrated by (a) feature maps (b) TBS in the horizontal direction (c) TBS in 
the vertical direction. 
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(a) (b) 
Fig. 4.7_4 The convergence condition by GA for (a) The general CNN template (19 

optimized parameters) (b) Our predefined CNN template 
 
 

Table 4.7_1 Numerical Comparison for texture discrimination ability based on 
Fig.4.7_2 and 4.7_3 

a. For individual feature curve (by only one CNN template) 
      Discrimination 
             Index 

Subjects 
1 2 3 4 5 

Fig.4.7_2 η(4,5)=0.12 Η(4,6)=0.15 η(5,6)=0.17 η(7,8)=0.22 η(3,7)=0.27 

Fig.4.7_3 (b) η(1,2)=0.13 Η(3,4)=0.14 η(2,8)=0.16 η(2,7)=0.21 η(7,8)=0.27 

Fig.4.7_3 (c) η(2,3)=0.10 Η(2,4)=0.14 η(1,3)=0.18 η(4,7)=0.19 η(2,8)=0.22 

 
b. Comparison of discrimination index by one feature curve and combined feature 
curves (TBS series) 
      Discrimination 
             Index 

Subjects 
η(2,3) η(4,5) η(1,2) η(2,4) η(3,4) 

One CNN template 0.10 0.12 0.13 0.14 0.14 

TBS series 0.51 0.58 0.60 0.55 0.52 
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Table 4.7_2 Comparison in the classification outcome based on various features 

 
Table 4.7_3 Experimental results for different rotations of texture patterns 

 
Classification error for different rotations of texture patterns Number of 

textures Original (0) 90 degree 180 degree 270 degree 

4 textures 0.4% 0.7% 0.5% 0.6% 

8 textures 3.6% 3.8% 3.5% 3.7% 

12 textures 4.8% 5.4% 5.1% 5.5% 

16 textures 5.8% 6.0% 6.2% 5.9% 

 
Table 4.7_4 Experimental results for different sizes of texture patterns 

 
Classification error for different sizes of texture patterns Number of 

textures 64x64 32x32 16x16 100x100 

4 textures 0.4% 1.2% 3.5% 0.3% 

8 textures 3.6% 3.8% 4.3% 3.3% 

12 textures 4.8% 5.2% 6.5% 4.7% 

16 textures 5.8% 6.2% 7.2% 5.8% 

 
Table 4.7_5 Experimental results for different TBS (vertical and horizontal) 

 
Classification error for different TBS Number of 

textures Horizontal only Vertical only 

4 textures 0.5% 0.5% 

8 textures 4.2% 4.7% 

12 textures 5.2% 5.8% 

16 textures 6.5% 6.7% 

Number of templates Classification error 

Parameters Output 4 

textures 

8 

textures

12 

textures

16 

textures

4 

textures

8 

textures

12 

textures 

16 

textures

TBS Binary 1 2 2 3 0.4 % 3.6 % 4.8% 5.8% 

Rob Binary 3 4 4 5 2.4 % 4.5 % 5.1 % 6.7% 

TE Gray 3 4 4 5 4.5 % 6.3% 7.7 % 8.5% 
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Table 4.7_6 Experimental results for tenfold cross-validation testing model 

 
Features Average Classification error

TBS 13.5% 

Rob 17.8% 

TE 25.2% 

 
 

Table 4.7_7 Experimental results for the case when the number of clusters is not 
known 

 
Number of textures Clusters Η Error (%) Clusters η Error (%) 

4 textures 3 0.5 NA 4 0.60 2 

8 textures 10 0.5 NA 8 0.55 4 

12 textures 8 0.5 NA 12 0.45 5 

16 textures 20 0.5 NA 16 0.36 8 

 

4.8 Concluding Remarks 

In this chapter, we have brought up a brand-new methodology, where a GA-CNN 

proliferating system is presented to deal with texture patterns in different given 

conditions. Here CNN’s inevitably take up a crucial part in signal analysis from a 

perspective of various templates through many kinds of texture patterns. Also, GA is 

used to optimize our defined templates of CNN’s which might project the texture 

patterns in different feature maps. Most significantly, the feature curve (TBS) which 

has been shown valid in the representation of texture patterns is introduced to classify 

textures in the most efficient way by determining if one more CNN template should 

be proliferated. TBS series could help to determine the number of clusters if it is not 

given in advance so that the classification process would be much simpler and more 

flexible. Furthermore, TBS could be applied to any binary images in the distinct 

feature maps if there is some other analytic tool to generate such feature maps like 
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CNN’s. Finally, the experimental results corresponding to the newly-introduced 

approach in this chapter are proven superior to those of other methods. It is therefore 

surely foreseeable that our structure will be of great help in applications of higher 

order image processing in the future. 
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5. Conclusions and Perspectives 
 In this thesis, we have addressed on the applications of cellular neural networks 

(CNN’s) in high-order image processing. We start with introducing the fundamentals 

and design guidelines of CNN and GA to deduce the later architecture that we 

proposed in this thesis. For using CNN’s in some specific image application, we use 

genetic algorithm (GA) to optimize a better CNN template. The major reason that we 

used GA as an analytical training tool for our issuing problems lies in the prevailing 

applied field and evolution mechanism of GA. As we know, search of CNN templates 

could be sometimes too complicated to follow the rules in higher-order image 

processing. Thus, we introduced some basic but significant CNN template examples 

at the first place so as to inspire more applications based on CNN’s by observing the 

nature of images. Most significantly, we make use of CNN’s to deal with some 

difficult issues of image processing, image descreening in particular, which has been 

regarded as a tough question since no single solution can be applied to all cases. 

However in this thesis, we classify the original screening images in two classes 

beforehand by our defined index, and a different simple filter would be applied to 

each of these two classes. In this application, CNN plays an important role in 

classification of images by looking upon screening patterns as different textures. The 

descreened images hence could be more satisfactory and acceptable to human 

perception. 

What’s more, we focus on texture discrimination and representation for more 

image applications related to texture analysis. In this aspect, we proposed a brand-new 

structure to proliferate CNN templates, which makes decision of CNN templates more 

flexible. We do not have to assume how many templates to be optimized at the 

beginning of texture classification, and instead we adaptively determine the number of 
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optimized templates for the characteristics of the texture set. CNN can be no doubt 

used here on account of its filtering capability and attraction of hardware 

implementability. To characterized CNN more sensitively in various kinds of texture 

patterns, we also presented a series of features, Transition Bit String (TBS) defined in 

this thesis, for more practical uses. Also, our feature series could not be necessarily 

carried out by CNN. To be more organized, we have the following major 

contributions in this thesis. 

A. We propose a systematical method for image descreening. 

B. We inspire an idea of screening pattern classification in advance for image 

descreening, which makes image documentation simpler and more 

impressive. 

C. We present a proliferation structure to determine CNN templates in a more 

flexible fashion. 

D. We innovate a kind of characterizing features for texture analysis. 

E. We give more possibilities of hardware implementations in high-order image 

processing. 

To sum up, this thesis not only provides an approach in the recent state-of-the-art 

but also gives more chances and perspectives for hardware implemented in high-order 

image applications. In addition, the indices and features proposed in this thesis would 

bring about more solutions in the complicated problems of image processing. We shall 

at this place list some researching fields that might be carried out in the future.  

A. Hardware implementation 

The main content of this thesis would like to apply the CNN structure to more 

applications in pursuit of future hardware implementation or chip design. 

Therefore, this future work might be the most important and ultimate issue among 

many kinds of applications inspired by this thesis. 
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B. Augment of more CNN channels 

CNN used to apply to applications of image processing only in gray-scale, which 

might cause the loss of some important information of original images. It is 

certainly believed that more channels of CNN implementation could do a great 

help for some specific applications of images that should depend on the color 

information of original images. So the implementation of more CNN channels 

might provide more solutions for more complicated problems of image 

processing. 

C. Feature selection of CNN proliferation structure 

In this thesis, we only take into consideration the generative way of extracted 

features for our CNN proliferation structure due to the augmented properties of 

TBS feature series. Of course, for the concept of feature selection, how to reduce 

the number of features might also be useful in pattern recognition. The 

consideration of how to select useful features could be put forth in the future. 

D. More applications or generalization of TBS 

We have presented the basic definition and formula of TBS in this thesis, and TBS 

series have also been proven to be useful in representation of various texture 

patterns. As what we have concluded earlier, TBS series would not necessarily be 

applied to CNN outputs, and these feature curves could be quite useful for 

analyzing image data in software-oriented applications. More specifically, TBS 

series could be expressed in various cases of requirements of images. For example, 

the setting of threshold, the scanning directions, the way of counting pixels, and so 

on would provide more flexible tuning parameters for more versatile image 

applications. 

E. More applications of image processing by CNN 

No doubt, more applications of image processing are the major goals that this 
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thesis pursues. This thesis has offered more way of using CNN output and 

illustrated the relationship between CNN structure and image data. It is observed 

that the results convolved from CNN outputs could also be expressed in terms of 

various sorts of definitions for images. More complicated applications of image 

processing could be consequently carried out in the future by our proposed feature 

series as well as the constructed structure.  

In this section, we have concluded the major contributions and the possible future 

works in details. Hence, we would be dedicated to solving more and more issues of 

digital image processing by our proposed strategies using CNN in the future. 
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