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Abstract

Lossless image coding is required by many applications, such as
medical imaging, remote sensing, and image archiving. It has re-
mained a major challenge to source coding community for the dif-
ficulty of removing statistical redundancy effectively and efficiently.
Therefore, many approaches have been proposed for lossless compres-
sion of images. Among proposed approaches, some of which are based
on reversible transform coding, like integer wavelet transformation.
However, we find in literatures that the results obtained by using
transform coding are typically inferior to that of obtained by predic-
tively encoded techniques with context modeling in spatial domain.

In this dissertation, an introduction on recent advances in lossless
image coding will be given. Moreover;swe will propose an approach
based on linear predietive coding with least-squares (LS) optimiza-
tion for the adaptation of predietor coefficients. The LS-based adap-
tive predictor, for its edge-directed-characteristic, has been shown to
be useful for the prediction: of pixels-around boundaries. Instead of
performing LS adaptation in a pixel-by-pixel manner, we adapt the
predictor coefficients only when an edge is detected so that the compu-
tational complexity can be significantly reduced. For this, we propose
a simple yet effective edge detector using only causal pixels. This
way, the proposed system can look ahead to determine if the coding
pixel is around an edge and initiate the LS adaptation in advance to
prevent the occurrence of a large prediction error. Furthermore, only
causal pixels are used for estimating the coding pixels in the proposed
encoder; no additional side information needs to be transmitted. As

we will see later in the experiments, a very good trade-off between
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prediction results and the computational complexity can be obtained
with the proposed approach. Besides, extensive experiments as well
as comparisons to existing state-of-the-art predictors and coders will
be given to demonstrate the usefulness of the proposed approach.

In addition to the proposed edge-look-ahead approach, we find a
large prediction error can usually take place for pixels around bound-
aries. Therefore, we also propose in this dissertation a novel concept
of using control technologies to improve prediction result for pixels
around boundaries. This idea comes from the fact that the purpose of
a control system is to follow the input command as precisely as pos-
sible, which has the same objective with predictive coding. Moreover,
an edge or a boundary can be regarded as a step command in control
system. The above observations leadfto the idea of solving this prob-
lem using control technologies: To realize this idea, we also implement
an adaptive predictor using Takagi-Sugeno fuzzy neural network (T'S-
FNN). Moreover, the:widely-tised proportional controller in control
theory is applied impli€itly in the consequient part of the network as
a compensator to enhance thelprediction result around edges. The
effectiveness of the proposed novel approach, though not very con-
spicuous at present, can be further improved if a more sophisticated
compensator is applied, and what’s more, we have brought up an idea
of solving this problem in a quite different aspect for lossless compres-

sion of images.
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Chapter 1

Introduction

Lossless image coding is required by many applications, such as medical
imaging, remote sensing, and image archiving. It has remained a major
challenge to source coding community. for the difficulty of removing statistical
redundancy effectively and efficiently. In this chapter, we will give a short
description on the differential encoding: technique, which is widely used in
image and speech encoding system.-Moreover, a review on recent advances
in lossless image coding will alse be introduced. After that is an overview of
the proposed predictive coding scheme: = Finally, the chapter outline of the

dissertation will be given.
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Figure 1.1: Basic block diagram of a lossless differential encoding system.

1.1 Advances in Lossless Image Coding

There have been great advances in lossless image coding recently [1]-[31].
Some of which are based on reversible wavelet transformation using lifting
structure [6]-[10]. By using integer wavelet transformation, lossless to near-
lossless compression as well as progressive.reconstruction of image data can
be achieved [6]-[10]. Howéver the compression-results obtained with the use
of integer wavelet transformation are typically inferior to that of obtained by
predictively encoded techniques {17].

The predictive coding scheme, known as the differential pulse code mod-
ulation (DPCM), is used in a wide variety of applications such as image
and speech compression for ease of implementation [1]. Due to the high
correlation between successive image samples, the differential encoding tech-
nique removes the inter-pixel redundancy by encoding the difference between
successive image samples rather than the samples themselves. Since the dif-
ference between samples is expected to be smaller than the actual sampled
amplitudes, fewer bits are required to represent the difference. Thus, the
differential encoding removes the inter-pixel redundancies and encodes only

the new information between closely spaced image pixels.



For lossless compression of images, we show in Fig. 1.1 the basic block
diagram of a differential encoding system (predictive coding system). As can
be seen in Fig. 1.1, the lossless predictive coding system is composed of two
major blocks; the predictor and the entropy coder. In order that a lower
first-order entropy and hence a lower actual bit rate can be obtained, many
researches on the design of an effective and efficient predictor for removing
the statistical redundancy among coding pixels have been proposed. Among
which, adaptive predictors with context modeling are often used to accom-
modate the varying statistics of coding images [11]-[31]. Besides, adaptive
prediction is achieved in most of the coders by using multi-predictor struc-
tures [11]-[22]. Among which, the CALIC coding system [14], a state-of-the-
art lossless coder proposed for JPEG-LS, uses a gradient adjusted predictor
(GAP). Based on the gradient:of meighboring pixels, one out of a set of
seven predictors is chosen. «The LAQO:I coder [15], an algorithm motivated
by CALIC [14] and standardized into JPEG-LS, uses a median edge detec-
tor (MED) to choose one‘of three"predietors for current prediction. In [16],
adaptive prediction is achieved by choosing ene out of a set of predictors that
minimizes the energy of predictionierrors in a specified cluster of causal pix-
els, and the predictor coefficients of the selected predictor are then updated
by applying gradient descent rule.

In [17]-]20], multi-pass prediction is introduced. With multiple passes,
progressive transmission of lossless and near-lossless coding of image data
can be achieved. Besides, the encoder can form a 360 degree prediction [19]
or perform a global image analysis [20] by using multi-pass prediction. A
highly complex two-pass coder called TMW has been proposed in [20]. Using
multiple linear predictors and global image analysis, the TMW system can

achieve lower bit rates than existing coders for most images. While achieving



very low bit rates, the computational cost is regarded as prohibitive in TMW
[20]. Recently, a fuzzy logic-based adaptive DPCM algorithm called FMP [21]
is proposed. The FMP presents a competitive, and in some cases superior
result than TMW but with a lower computational cost. Though FMP is
effective in removing the statistical redundancy, it still takes minutes.

In the context of optimal predictors, the minimum mean square error
estimate of Y given observations Xy, Xo, -, X, is E{Y|Xy, Xo, -+, X,.},
generally a nonlinear function. Therefore, there have been many results
using neural networks as nonlinear estimators [22]-[24]. Neural network based
predictors perform well in slowly varying areas. However, there can be large
prediction error around boundaries [32]. The result can be improved using
additional hidden layers or hidden neurons, but this incurs a drastic increase
in complexity [23], [33].

The performance of predictive,jmiage coding scheme highly depends upon
the effectiveness of the predictor used<in the-coding process. Most of the
image predictors perform=wery,well“in slowly yarying areas. However, large
prediction errors can take place around edges and boundaries, and this has
become a major problem to be ‘conquered so far. Intuitively, the prediction
results can be improved if we can foresee the existence of an edge and then
predict along the edge orientation. However, the design of a robust edge de-
tector and the analysis of edge orientation are difficult problems themselves,
let alone to predict along the edge orientation. Recently, linear predictors
adapted by least-squares (LS) optimization have been proposed as an effi-
cient approach to accommodate varying statistics of coding images [25]-[31].
Among which, the EDP [26] pointed out that the superiority of LS adap-
tation is in its edge-directed property. That is, the LS-based predictor can

adjust the prediction support along the edge orientation automatically during



the adaptation process. With the edge-directed property, LS-based adaptive
predictor performs very well for pixels around boundaries. For complexity
consideration, performing the LS adaptation process in a pixel-by-pixel man-
ner is regarded as prohibitive. Therefore, the EDP [26] proposed initiating
the LS optimization process only when the prediction error is beyond a pre-
selected threshold such that the computational complexity can be reduced.
The EDP [26] has made a noticeable improvement over the state-of-the-art
lossless coder CALIC [14]. On the other hand, we know that the normal equa-
tions provide the key for LS adaptation, and some fast algorithms, Cholesky
decomposition for example, can be applied in the LS adaptation process.
Therefore, the complexity in solving the normal equations itself is not a
problem. Nevertheless, the computational cost for the construction of nor-
mal equations is rather high. Thas; analgorithm for the fast construction of
normal equations has beenpropeséed in [25]'so that the computational cost

for LS adaptation process:cam be reduced significantly.



1.2 The Proposed approach

It is known that many coding methods are more efficient with some images
than others. In particular, run-length coding is very useful for coding areas
of little changes. Adaptive predictive coding achieves high coding efficiency
for fast changing areas like edges. In this dissertation, we propose a switch-
ing coding scheme that will combine the advantages of both Run-length and
Adaptive Linear Predictive coding (RALP). There are other switching meth-
ods that achieve very low bit rates [20]-[23]. However the results are usually
obtained with a very high computational complexity [20]-[23]. On the con-
trary, the proposed RALP coder can achieve a very good coding efficiency
but still with a moderate computational complexity. In the proposed ap-
proach, the run-length encoder is,used for pixels in slowly varying areas;
otherwise an LS-based adaptive predictor is used. The LS-based predictor
has been shown to be very-useful for the prediction of pixels around an edge
[26], [27]. Moreover, we adapt the predictor coefficients only when an edge
is detected or when the ptediction error is beyond a pre-selected threshold
so that the computational cost. can.be significantly reduced [27]. To do this,
we use a simple and efficient edge detector that uses only causal pixels, i.e.,
pixels that have already been coded. This way, the predictor can look ahead
if the coding pixel is around an edge and initiate the LS adaptation process
beforehand to prevent the occurrence of a large prediction error. With the
proposed switching structure, very good prediction results can be obtained in
both slowly varying areas and pixels around boundaries. Some preliminary
results regarding the proposed LS-based predictor with edge-look-ahead can
be found in [27].

For prediction error refinement, the so-called context modeling technique

[14], [19] is used in the proposed system. The compensated error has a



narrower histogram and hence a lower first-order entropy. As we will see
in the experiments that the switching structure combined with edge-look-
ahead prediction as well as automatic error modeling renders the proposed
RALP highly adaptable and very feasible under limited resources. A very
good trade-off between coding efficiency and computational complexity can
be achieved. Comparisons with existing state-of-the-art LS-based predictors

can also be found in our experiments.

1.3 Outline of the Dissertation

The rest of the paper is organized as follows. Chapter 2 introduces the pro-
posed LS-adaptive predictor with edge-look-ahead. The entropy coding of
prediction error is addressed in chapter 3. Extensive experiments of the pro-
posed method and comparisons to_existing-predictors and coders are given
in chapter 4. Chapter 5 mvestigates:the use-of control technologies to en-
hance prediction result of:pixels around boundaries. A conclusion is given in

Chapter 6.



Chapter 2

Least-squares Based Adaptive
Predictor with Edge-look-ahead

In this chapter, details on the proposed least-squares (LS) based adaptive
predictor will be addressed. [First of all;. we will give an overview on the
proposed predictive coding:System!“Secondly; an illustrative example will be
given to manifest the edgé-directed property of LS adaptation. In order that
the proposed system can foresee the existence of an edge, we will introduce
in this chapter the proposed causal edge detector. After that, a detailed
description on the LS adaptation process will be given. Finally, the so-called

bias cancelation technique for prediction error refinement will be addressed.
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Figure 2.1: Proposed RALP coding system.

2.1 An Overview of.the Proposed System

Many coding methods are more efficient with-some images than others. In
particular, run-length coding is veryrusefil for coding areas of little changes.
Adaptive predictive coding achieves high'coding efficiency for fast changing
areas like edges. In this dissertation, we propose a switching coding scheme
(as shown in Fig. 2.1) that will combine the advantages of both Run-length
and Adaptive Linear Predictive coding (RALP). For pixels in slowly varying
areas, run-length coding is used; otherwise least-squares (LS) based adaptive
predictive coding is used. Instead of performing LS adaptation in a pixel-
by-pixel manner, we adapt the predictor coefficients only when an edge is
detected so that the computational complexity can be significantly reduced.
For this, we use a simple yet effective edge detector using only causal pixels.
This way, the proposed system can look ahead to determine if the coding

pixel is around an edge and initiate the LS adaptation in advance to prevent



the occurrence of a large prediction error. With the proposed switching
structure, very good prediction results can be obtained in both slowly varying
areas and pixels around boundaries. Furthermore, only causal pixels are used
for estimating the coding pixels in the proposed encoder; no additional side
information needs to be transmitted.

The proposed RALP system, as shown in Fig. 2.1, has two operation
modes, run mode and regular mode. The “mode selection” block (Fig. 2.1)
determine if the current pixel is in an local area of little changes. If it is,
the run mode is triggered and the current pixel is encoded using run-length
encoding. If not, the regular mode is assumed and the pixel is encoded using

predictive coding.

Run mode

It is known that the runslength.€éding, is most efficient for the encoding of
consecutive pixels with idéntical grey valuesr The case that consecutive pixels
are identical can usually o¢eur in an‘artificial image or in slowly varying areas
of a natural image. Therefore, we use the run-length coding in the proposed
RALP system for the encoding of pixels in an area of little changes. If the four
pixels z,(1),...,z,(4) in Fig. 2.2 are identical, the run mode is switched on
and the run-length is encoded using an arithmetic coder with an alphabet set
of {0,1,...,20}. The “0”, called escape symbol in the proposed approach, is
used to indicate an unsuccessful run and should be encoded if the grey value
of the coding pixel z,, and that of x,(1),...,x,(4) are distinct so that the
decoder can also make a right decision and quit the run mode automatically.
This time, the regular mode is used for the encoding of the current pixel. It
is noted that the run mode can also be broken by ends of lines, in which case

the encoder returns to the regular mode, i.e., the regular mode is assumed for
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the first pixel of every line. Moreover, the encoding of an escape symbol can
cause penalty and degrade the coding efficiency. Therefore, we record the
number of times of run mode triggered and the times of unsuccessful run. If
the percentage of unsuccessful run is greater than a predefined threshold, the
run mode is disabled and not to be used for the rest of the coding process. It
is noted that all the pixels used for mode selection are causal and the decoder

can reproduce the same decisions without any side information.

Ta(11)| 20 (8) [24(6) |20 (9) |24 (12)

2a(7)|20(3) [2(2) |20 (4) f2n10)

2a(5)| 20 (1)} s T

Figure 2.2: The"orderingof pixels for prediction inputs.

Regular mode

In the regular mode, pixels are encoded using predictive coding. Predic-
tive coding can be very efficient for the removal of statistical redundancy
between neighboring pixels in slowly varying areas. However, there can have
a large prediction error around boundaries. In this paper, we will use LS op-
timization to update the predictor coefficients on the fly so that the predictor
can adapt itself to the varying statistics [25]-[28]. It is known that the LS-
based adaptive predictor is an efficient approach to improve the prediction
result around boundaries for its edge-directed property [26]-[28]. However,
a pixel-by-pixel adaptation of the predictor coefficients is computationally

expensive and often not necessary [25]-[28]. Therefore, we will initiate adap-
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tation only when the prediction is inadequate, which is around an edge. For
this, an “edge detector” is used to look ahead and determine if the coding
pixel is around an edge so that the predictor can adapt itself beforehand
to prevent the occurrence of a large prediction error. In the regular mode,
the prediction error is further refined using error compensation. That is, the
predictor output z, is added by a correction term e, (as shown in Fig. 2.1) to
get a compensated prediction ., = z, + €,. The amount of compensation
e, is determined through an error modeling mechanism. The refined error
signal € = x,, — 4 can then be entropy encoded using conditional arithmetic
coding to produce the coded bit stream.

In the proposed encoder, only causal pixels, i.e., pixels that have already
been coded, are used for estimating the coding pixels; no additional side
information needs to be transmiitted.- Mereover, the proposed RALP coder
is symmetric, meaning that the decodeér has the same predictor switch as
the encoder, and performs prediction.-and error compensation just like the
encoder. Therefore, the actual pixel value can be reconstructed in the de-
coder with the received bit stream of refined.errors. Details of the individual

components of the system are intfrodueed in subsequent sections.
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Figure 2.3: Area that contains a vertical edge.

2.2 Edge-directed Characteristic of LS adap-
tation

In predictive coding schemesj the effectiveness of any adaptive predictor de-
pends upon its capability: of adapting from®slowly varying areas to edge
regions [26]. Intuitively, the prediction results can be improved if we can
foresee the existence of an edgé-andrthen predict along the edge orienta-
tion. However, the design of & rebust edge.detector and the analysis of edge
orientation are difficult problems themselves, let alone to predict along the
edge orientation. In contrast, the LS-based adaptation provides an elegant
way of approximating the optimal orientation adaptive prediction due to its
edge-directed property [26].

To illustrate the edge-directed property of LS adaptation, a simple exam-
ple will be given so that the relationship between the prediction support and
the edge orientation can be quantitatively analyzed. For this, we show in
Fig. 2.3 an example in which the current pixel is along a sharp vertical edge,
i.e., |r —s| > 0. For simplicity, we only consider the second-order predictor

A

Ty = A1 Twest + A2Tportn = AT + A28, in which case the training window has
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12 elements (Fig. 2.3). To find the least-squares solution of the second-order
predictor coefficients, i.e., a; and ao, we start with the following equation,

which is constructed by using the 12 training pixels in raster scan order.

" (2.1)

R RN B S BV
I B S B

1
2
S
| I
I
I R e T R N e

where a; and ay are the predictor coefficients to be determined. Obviously,
(2.1) is an over determinéd system. . To find: the LS solution of (2.1), the
transpose of the coefficient matrix in(2.1) is left multiplied to both sides of

itself, and we can get

(2.2)

6r? + 2rs + 4s* 61 +6s° a | 62 + 6s*
8r? + 452 6r2 + 2rs + 4s? as | | 6r% + 2rs + 4s?

By some simple operations, we find the optimal LS solution for the predictor

)= 2

The edge-directed characteristic of LS adaptation can be best observed from

coefficients are given by

(2.3) where the prediction support has been adjusted along the edge orien-
tation (i.e., vertical orientation in this case) automatically. For a horizontal
or arbitrarily oriented edges, the edge-directed property can also be veri-
fied by using similar mathematical derivations [26]. As we will see later in

the experiments, the LS-based adaptive predictor, having the edge-directed
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property, can have a very good performance for pixels around boundaries,
and the edge-directed characteristic of LS adaptation will be utilized in the
proposed approach.
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2.3 Proposed Edge Detector

In the regular mode, we use a LS-based adaptive predictor to accommodate
the varying statistics of the image. To save computations, the predictor is
adapted only when prediction error is large or likely to be large. For a pixel
around an edge, prediction error is usually large and adaptation is needed.
To determine whether the coding pixel is around an edge, we use a simple yet
effective edge detector in this paper. It should be noted that conventional
edge detectors, e.g., “Sobel” operator, can not be applied here because they

use non-causal pixels, i.e., pixels yet to be encoded.
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Figure 2.4: A typical histogram of an area that contains an edge.

We observe that an area that contains an edge usually has a large variance.
Furthermore, the histogram of such an area tends to have two peaks, one on
each side of the mean value (Fig. 2.4). We will use these two observations to

determine the existence of an edge. Moreover, the set of the four pixels k =
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{z,(1),...,2,(4)} in Fig. 2.2 are used for the detection. The mean z and
variance o2 of the set x are calculated. Furthermore, the four pixels can be
divided into two groups, the pixels with gray levels higher than  in group
kn and the rest in group ;. We also compute the respective variance o7, o}
of the pixels in kj, and x; (Fig. 2.4).

A pixel around an edge is likely to have a large 0 but small o7 and o7.
We determine whether the coding pixel is around an edge if the following

two conditions are both satisfied,
o>, and o® >y (07 + 07). (2.4)

It is noted that the second condition in (2.4) is included because a region
with uniformly distributed gray values also results in a large o2. Therefore,
the switch first examines if g2> 5, whén a large o2 is detected then the
switch checks the second inéquality in.(2.4). In this paper, the LS adaptation
process in the regular mode is activated whenever the two conditions in (2.4)
are satisfied. We have found thretigh-experiments that v, = 100 and v, = 10
work very well and these values will be used throughout this dissertation.
It should also be noted that the run mode will be triggered when o? = 0,
i.e., the case that x,(1),...,x,(4) are identical. In this case, we do not have
to check the conditions in (2.4). As we will see later in experiments that
the proposed detector is very effective in detecting edges although only four
pixels are used. Moreover, since we use only causal pixels for the detection
of an edge, the decoder can perform the same edge detection operation and

switches on the LS adaptation process.
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Figure 2.5: The online training regions for the proposed predictor.

2.4 Least-squares Based Adaptive Prediction

In the regular mode, the LS adaptation process is activated whenever the
two conditions in (2.4) are bothisatisfied or when the prediction error is
greater than a predefined thresholdy#: /I'hecorresponding predictor inputs
for different prediction orders'are shown in Fig. 2.2 where the ordering of
pixels is based on the distance to the pixel to Be encoded. In this paper, the
predicted value x, of the coding pixel'zr, is.alinear combination of its causal

neighbors given by
N

v, =Y a(k)z,(k), (2.5)

k=1
where N is the prediction order, z,(k) is the kth nearest neighbor of z,, and
a(k) is the corresponding predictor coefficient. It is noted that we do not use
any training set for the optimization of initial predictor coefficients in this
paper. The initial coefficients for the proposed predictor are equally weighted,
i.e., the coefficients a(k) for the Nth-order predictor are 1/N respectively.
The training area for LS adaptation process of the coding pixel is shown

in Fig. 2.5. Suppose we have M pixels in the training area, our objective is
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to find a least-square solution for the system

Pa =y, (2.6)
where
ZEn_1<1) ZEn_l(Q) . (L’n_l(N)
a(l) Tp_1
B a(2) | T
a= : Y= :
a(N) Tn_ M

The optimal a that minimizes the square errors ||y —Pal|3 can be obtained

by solving the normal equations, {35]
P'Pa=P'y. (2.7)

There are well-developed numerical approaches to solve (2.7). For the
case that P has full rank: ie’, ‘rank N, PTP is nonsingular and positive
definite [35], [36]. The normal equations will have a unique solution a =
(PTP)~'PTy. In this case, the Cholesky decomposition, which requires only
half the usual number of multiplications than alternative methods, can be
used to solve (2.7) [35], [36].

If P is defective; i.e., rank < N, PTP fails to be positive definite and
the singular value decomposition (SVD) can be used to solve (2.7) [35], [36] .
The positive definite property of PTP can be easily examined in the process
of Cholesky decomposition [36].

In the proposed approach, updated predictor coefficients are used for
current prediction and passed on to the next coding pixel. For non-edge

pixels, we use the stored prediction coefficients of the four nearest causal
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2.5 Prediction Error Refinement

It is known that the prediction error z, — z;, in the regular mode can be
further refined by learning from previous predictions, i.e., the so-called bias
cancelation technique [14], [15], [19]. To do this, we define the compound

context v of a coding pixel as,

v=A{x,(1),...,2,(6),e,(1),...,en(4)}, (2.8)
where x,(i), i = 1,...,6 are as shown in Fig. 2.2 and e,(i), i = 1,...,4
are the uncompensated prediction errors corresponding to x,(1),...,z,(4)

respectively. We have incorporated prediction errors in error modeling be-
cause the amount of compensation is likely to be related to the prediction
errors of neighboring pixels.

In the proposed RALP system gerrormodeling is achieved by performing
context clustering with a fixed number.of contexts. For this, a set of initial
contexts are generated off-line using the image “Lennagrey” (Fig. 2.6) for
the clustering process. Fot each coding pixel, the compound context v is
assigned to one of the existing ¢ontexts using mean absolute error (MAE)
distance measure and the corresponding context is then modified accordingly
in the coding process. By classifying coding pixels with similar context into
the same group, the amount of compensation e, for the current prediction
can be estimated by calculating the sample mean of prediction errors in
that group. Therefore, the value e, to be used in compensating the current
prediction is given by

ep = — (2.9)

where S' is the prediction errors accumulated in the context which v belongs

to, and N is the number of members in that context. With the correction
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term e,, we now form a more refined prediction x4 = =, + €,. The com-
pensated error € = x,, — Zpq has a narrower histogram and hence a lower
first-order entropy. In the regular mode, the refined error € is then entropy
encoded using a conditional arithmetic coder to produce the bit stream [28],

[34].
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2.6 Concluding Remarks

In this chapter, we have introduced the proposed switching structure for
lossless compression of images. Moreover, a detailed description on the pro-
posed LS-based adaptive predictor with edge-look-ahead, i.e., the core of the
regular mode, is also given. In order that the adaptive predictor in regular
mode can look ahead if the coding pixel is around an edge, we also propose
in this research an edge detector using only causal pixels. Summarizing, the

proposed approach has the following properties:

1. The run mode is triggered if the four pixels z,(1),z,(2)...2,(4) in
Fig. 2.2 are identical. The run length is then entropy encoded using

an arithmetic coder to produce the bit stream.

2. An escape symbol haveito beencoded to indicate an unsuccessful run if
the value of the coding pixel &, and that of z,(1), ..., x,(4) are distinct.
However, the encoding of an escape symbol can cause penalty and
degrades the coding efficiency. Therefore, the run mode is disabled once

the percentage of unsuccessful-run is beyond a predefined threshold.

3. The proposed LS-based adaptive predictor, for its edge-directed prop-

erty, is very useful for the prediction of pixels around boundaries.

4. The proposed edge detector uses only causal pixels, i.e., pixels that have
been coded. Therefore, the decoder can perform the same operation
just like the encoder and determine if the coding pixel is around an

edge without any side information.

5. The LS-based adaptation process in regular mode is initiated only when

an edge is detected or when the prediction error is greater than a prede-
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fined threshold so that the computational complexity of the LS adap-

tation process can be significantly reduced.

. With the proposed approach, the results obtained are are very close
to those with pixel-by-pixel LS adaptation, but with a much reduced
complexity. A very good trade-off between the prediction result and

the computational complexity can be obtained as we will see later in

Chapter 4.
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Chapter 3

Entropy Coding of Prediction
Errors

In the proposed approach, the refined error in regular mode is then entropy
encoded through a conditionaliarithmeétie, coder to produce the bit stream.
For entropy coding of the refined, &ftor signal ¢, we borrow the concepts of
“error sign flipping’, “ertorwemapping’, and =‘histogram tail truncation” in
[14], [15], [19] so that the coding efficieney in actual bit rates can be further
improved. All the details on how the entropy coder works will be addressed

in this chapter.
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3.1 Conditional Entropy Coding

It is known that the coding efficiency can be further improved with the use
of conditional probability models. By classifying similar prediction errors in
the same group, the coding efficiency can be improved by sharpening the
error histogram in each group and thus a smaller conditional entropy can be
obtained. To perform the classification, we have to define an error strength
estimate A so that both the encoder and decoder know exactly which group
does the prediction error belongs to or which probability model should be
used. In this dissertation, we define the error strength estimate of the coding
pixel to be |e,|, that is

A = ey (3.1)

It is noted that the e,, introduced in'section 2.5, is used in compensating
the prediction error. Moregver, itjisralso available in both the encoder and
the decoder. Therefore, we have applied the use of |e,| as the error strength
estimate.

By conditioning on the érror strength estimate A, we can quantize refined
errors into classes of different variamces {14], [19], [26]. Moreover, the error
histogram in each quantization bins can be sharpened and thus a smaller
conditional entropy can be obtained. Therefore, we are using the conditional
probability model P(e|A) instead of P(e) for entropy coding of refined errors.
Furthermore, to find the optimal number of quantization bins as well as an
optimal quantization for A so that the conditional entropy can be minimized,
we define a cost function C'(Q, e, A) as

C(Q,e,8) = E{H( e[ Q(A)) }

N

.S {P(Q(ADZP(&\Q(A))Logz[P(€|Q(A))]},(3'2>

Q(A)=1
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where Q(.), which maps A into one of the N quantization bins, is the quan-
tizer to be designed, and N is the number of quantization bins to be decided.
With such cost function, we are calculating the first-order entropy of ¢ as-
signed in each quantization bins, i.e., H( e | Q(A)), and then take expectation
on the entropy H( ¢ | Q(A)).

To minimize the cost function in (3.2), we use a set of training pairs
(e, A) recorded in the prediction process of the fourteen test images [20] in
Chapter 4. By performing dynamic programming off-line, the final number of
quantization bins is found to be three and the approximately optimized quan-
tization of A is found to be [0, 1], (1,55], (55, 00). Though the quantization
may be suboptimal, the compression result is satisfactory as the simulation
results in Chapter 4 will demonstrate. Using the above quantization bins,
one out of a set of three probability madels is chosen for the entropy coding
of € based on the value of error strenigth estimate A as below

ustng” pmfLiiaf 0XA <1

using pmf2.9f 1< A <55 (3.3)
using . pmf3; otherwise
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3.2 Further Manipulations on the Refined Er-
rors

In order that a further coding gain on the actual bit rates can be obtained,
the following techniques are applied to process the refined errors prior to they

are entropy encoded.

3.2.1 Error Sign Flipping

The concept of error sign flipping in [14], [15], [19] is also used in this paper
for coding the refined error signal . Since e, the amount for prediction error
compensation, is an average result of past history or experiences, it is very
likely that the refined error € has the same sign as e,. Therefore, the refined

error ¢ is encoded according to. thelfollowing equation,

{encode R e, < 0 (3.4)

encode €, . otherwise.
It is noted that all the pixels used‘in the-proposed coding system are causal,
the decoder can calculate the error estimate.e, just like the encoder. There-
fore, the decoder can reconstruct the'sign flipped errors successfully when

the image is to be decompressed.

3.2.2 Error Remapping

The range of the refined error € is [—255, 255]. In general, a probability model
with a set of 511 symbols should be used for the entropy coding of prediction
errors. However, they can only take on values in the range [—Zcpa, 255 — Zepd]
[14], [15], [19]. Therefore, we can use the following error remapping before it

is entropy encoded so that the symbols to be encoded will fall in the range
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of [—128,127], i.e., a set with 256 symbols.

{Encode e by (e 4+ 256), if &< —128 (3.5)

Encode € by (¢ — 256), if &> 128

In this case, the number of symbols used is reduced to 256, which further

improves the coding gain in the entropy coding stage. Since all the pixels

used are causal and the decoder performs prediction and compensation just

like the encoder, the predicted value z,, the error estimate e, and thus the

compensated prediction, i.e., Z¢pg = T, +€,, can be calculated in the decoder.
Therefore, the decoder can reconstruct the remapped & by

{Reconstruct e by (e + 256), if €< —Tepa (3.6)

Reconstruct € by (¢ —256), if &> (255 — Zepa).

3.2.3 Histogram Tail Truncation

With the quantization bins in (3.3 )pthe-error histogram in each quantization
bin for the image “Lennagrey” (Fig: 2.6) are plotted in Fig. 3.1. The curve of
Bin3 is not shown becauséno error’strength estimate falls in that region. As
can be seen, most of the réfinedverrors fall i the region around 0. Though
seldom occur, the count of occurrence, for those away from 0 are initialized
to be 1 in case they do occur. This operation degrades the performance of
entropy coding. To conquer this problem, we use the concept of histogram
tail truncation in [14].

The probability distribution of the prediction error is usually a two-sided
Laplacian distribution [14], [19]. Instead of remapping the error into a one-
sided monotonically decreasing probability distribution in [14], the error his-
togram tail are truncated symmetrically in each quantization bin. The cut
off region for quantization bins are chosen to be [—25,25], [—48,48] and
[—128, 127] such that over 99% of the refined errors in each quantization bin

are within the truncated regions. With histogram tail truncation, an error
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Figure 3.1: Histogram of errors in quantization bins for image “Lennagrey”.
(using a sixth-order LS-basedpredictor with v, = 100, 75 = 10)

30 in Binl, for example, is encoded first to be 25 using pmf 1, followed by 5
using pmf 2.
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3.3 Concluding Remarks

In this chapter, we have introduced the entropy coding stage of the proposed
system. In order that a lower actual bit rates can be obtained, we use a
conditional arithmetic coder in the proposed system. To do this, we define
an error strength estimate A = e,, and then we find an approximately op-
timal quantization for A by using dynamic programming off-line. In this
dissertation, the number of quantization bins for A is found to be three, and
the approximately optimal quantization is shown in (3.3). By conditioning
on the error strength estimate A, the refined error is then entropy encoded
using one out of the three probability models as in (3.3). Besides, the entropy
decoder also knows which probability model should be used if the received
bit stream is to be decoded.

In addition to the conditional arithmetic corder, the concept of “error
sign flipping”, “error remapping”,and “histogram tail truncation” are also
applied in the proposed system before the refined error is entropy encoded so
that a further coding gain on actual bit-rates can be obtained. We would like
to mention again that all the pixels.used in the encoder are causal. Therefore,
the decoder can reconstruct the remapped and sign flipped error just like the
encoder without any side information. The proposed entropy coder deter-
mines the coding performance of actual bit rates, and the usefulness of the
proposed entropy coding stage can be found in Chapter 4, where comparisons

with existing state-of-the-art lossless image coders will be given.

31



Chapter 4

Experiments

In this chapter, we evaluate the performance of the proposed lossless image
codec. Extensive experiments as well as comparisons to existing state-of-the-
art predictors and coders will be given to demonstrate the usefulness of the
proposed system. All the testiimages used in the experiments are from TMW
[20]. We will first demonstrate the usefulness-of the proposed edge detector
and then the error compensation mechanism: in the regular mode. After
that, we will demonstrate the:usefulness of the proposed edge-look-ahead
approach in the regular mode. Then, the entropy and bit rate performance
of the system is presented. Finally, the computational complexity of the

proposed system will be discussed.
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Figure 4.1: (a) The image “Shapes”. (b) Pixels for which (2.4) is satisfied in
the image “Shapes”. ol ;

4.1 The Edge Detector

To demonstrate the effectiveness 6f thg propoéed edge detector, we use the
image “Shapes” (Fig. 4.1(5)), ari artificial intage with many edges and lines.
The pixels that satisfy the two conditions in (2.4) are marked in Fig. 4.1(b).
We can see from Fig. 4.1(b) that the edge detector has successfully picked out
the pixels around edges. To test the robustness of the detector, we apply the
edge detector to the image “Noisesquare” (Fig. 4.2(a)), an image with salt-
and-pepper noise. The pixels picked out by the edge detector are as shown
in Fig. 4.2(b). We see from Fig. 4.2(b) that the edge detector is robust
to moderate salt-and-pepper noise. In addition to artificial images, we also
apply the edge detector to “Lennagrey”, a natural image that is shown in
Fig. 2.6. As can be seen in Fig. 4.3, the pixels around the edges have been

picked out successfully.
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Figure 4.2: (a) The image “Noisesquare”. (b) Pixels for which (2.4) is satis-
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Figure 4.3: Pixels for which (2.4) is satisfied in the image “Lennagrey” (v, =

100, 7, = 10).
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Figure 4.4: Masks used in “Sobel” operator. (a) The mask G, for the com-
putation of vertical derivatives. (b) The mask G, for the computation of
horizontal derivatives.

4.1.1 Comparison with “Sobel” Operator

In the proposed approach, we use raster scan for the encoding of image pixels,
i.e., the pixels are encoded in a sequence from left to right and top to bottom.
In order that the decoder can perform the same edge detection as the encoder,
non-causal pixels, i.e., pixels that lies below and to the right of the coding
pixel, can not be used because they are noet available in the decoder at the
moment. Therefore, we haye indicated in section 2.3 that conventional edge
detectors, e.g., “Sobel” operator, can not be applied here because they use
non-causal pixels. That is also why we hiave to propose an edge detector that
uses only causal pixels in this.paper.

It is noted that the “Sobel” operator defines two masks G, and G, (as
in Fig. 4.4) for the computation of vertical and horizontal derivatives respec-

tively. Moreover, the gradient of the pixel is define by,
V=G| + |Gyl (4.1)

A pixel is detected as around an edge in “Sobel” operator if the following

equation is satisfied.
Vf > threshold. (4.2)

As can be seen in (4.2), we have to define a gradient threshold for the edge

detection when using “Sobel” operator. To compare the effectiveness of the

35



proposed edge detector with “Sobel” operator, we use the image “Lennagrey”
as the test image. We show in Fig. 4.5 to Fig. 4.6 the image of pixels that
is detected as around an edge using “Sobel” operator with threshold varies
from 50 to 200 respectively. The image of pixels that is detected as around
an edge by using the proposed edge detector is shown in Fig. 4.3. As can be
seen in Fig. 4.6(b) and Fig. 4.3, the image of pixels that is detected as around
an edge using the proposed edge detector is very similar to that of obtained
by using the non-causal “Sobel” operator. The proposed edge detector is
very effective in detecting edges although only four causal pixels are used.

The Matlab program for the “Sobel” operator in this experiment is given in

Appendix B.

(a) (b)

Figure 4.5: Pixels detected as around an edge in image “Lennagrey” when
the Sobel operator is used. (a) threshold= 50. (b) threshold= 100.
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Figure 4.6: Pixels detected as around an edge in image “Lennagrey” when
the Sobel operator is used. (a)ithresholds 150. (b) threshold= 200.

4.1.2 Texture context for Edge Detection

In this experiment, we will show - that-a Jarger context for the detection of
an edge is not necessary. For this, we construct four sixth-order LS based
predictors each with an edge detectors that uses 4, 6 ,8 and 10 pixels respec-
tively. The pixels used in the four constructed edge detectors are selected in
an order as defined in Fig. 2.2. Again, the image “Lennagrey” is used for the
experiment. To show that the proposed 4-point edge detector is sufficient
for the detection of an edge, we compare the improvement on the prediction
result and the complexity increased when the number of pixels used for the
edge detector varies from 4 to 10. In this experiment, the run mode is dis-
abled; only the regular mode is used. Moreover, the LS adaptation process
is activated when an edge is detected or when the prediction error is greater

than a predefined threshold.
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We show in Fig. 4.7.(a) to Fig. 4.10.(a) the image of pixels that is detected
as around an edge by using the four constructed edge detectors. Besides, the
corresponding pixels for which the LS adaptation is activated are shown in
Fig. 4.7.(b) to Fig. 4.10.(b) respectively. Moreover, we show in Table 4.1 the
first-order entropies of the uncompensated prediction errors and the percent-
age of pixels that activates the LS adaptation when different context is used
for edge detection. The execution times of the proposed edge-look-ahead
predictor with different context edge detection are also recorded in the last
column of Table 4.1. As can be seen in Table. 4.1, the percentage of pixels
that activates the LS adaptation process by using the proposed 4-point edge
detector is 17.90% and that of obtained by the use of a 10-point edge detector
is 21.13%. There is an increase of about 3.2% in performing LS adaptation,
which means an increased computational complexity. However, the predic-
tion results (in terms of first-ordex€ntropy ) almost remain unchanged as can
be seen in Table 4.1; only marginal imprevement can be obtained. Therefore,
the use of a larger context for the‘detection of an edge is not necessary and

the proposed 4-point context is sufficient for'the edge detection process.
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Figure 4.7: 4-point edge detector forrimage “Lennagrey”. (a) Pixels detected
as around an edge. (b) Pixels'for which TiS adaptation is used.
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Figure 4.8: 6-point edge detector for image “Lennagrey”. (a) Pixels detected
as around an edge. (b) Pixels for which LS adaptation is used.
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Figure 4.9: 8-point edge detector forrimage “Lennagrey”. (a) Pixels detected
as around an edge. (b) Pixels for which LS adaptation is used.
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Figure 4.10: 100-point edge detector for image “Lennagrey”. (a) Pixels de-
tected as around an edge. (b) Pixels for which LS adaptation is used.
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Table 4.1: First-order entropies of uncompensated prediction errors and per-
centage of pixels that activate the LS adaptation when different context is
used for the edge detection. (Run on a P4-1.4GHz machine; without doing
error compensation and entropy coding).

Number of pixels % of LS First-order Execution Time
used in edge detector | adaptation Entropy (in seconds)
4 17.90 4.1975 3.39
6 18.25 4.1971 3.53
8 18.67 4.1969 3.55
10 21.13 4.1941 3.72
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4.2 Error compensation
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Figure 4.11: (a) Image of el redmerrors 1 sing the proposed approach for
“Lennagrey”. (using a sixth- based predictor with v, = 100, v, =
10) (b) Histogram of predictic rs for image “Lennagrey”.

To demonstrate the useful g g . ‘..* osed error compensation mech-
anism in regular mode, we use’z : ‘ order LS-based predictor. The image
“Lennagrey” (Fig. 2.6) is used as the test image. The compensated predic-
tion errors for image “Lennagrey” is shown in Fig. 4.11(a). As can be seen
in Fig. 4.11(a), the proposed approach performs very well around edges and
the statistical redundancy has been removed effectively. Fig. 4.11(b) shows
the histograms of prediction error with and without error compensation. We
can observe the usefulness of the proposed automatic context modeling for
error refinement from Fig. 4.11(b). The histogram of the refined error has
a narrower peak. The first-order entropy for the compensated error and the

uncompensated error is 3.97 bits and 4.20 bits respectively.

In addition to the natural image “Lennagrey”, the image “Airplane”
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(Fig. 4.12.(a)), “Goldhill” (Fig. 4.14.(a)) and “Peppers” (Fig. 4.16.(a)) are
also used to demonstrate the usefulness of the proposed error compensation
mechanism in regular mode. It is noted that all the results are obtained by
using a sixth-order predictor with 7, = 100, 79 = 10 and 6§ = 8.

For the image “Airplane”, we show in Fig. 4.13 the image of predic-
tion errors with and without doing error compensation. As can be seen
in Fig. 4.13.(b), the proposed approach performs very well around edges
and the statistical redundancy has been removed effectively. The usefulness
of the proposed error compensation mechanism can be best observed from
Fig. 4.12.(b), in which the histogram of prediction errors with and with-
out error compensation are shown. The refined error has a much narrower
peak than that without error compensation. In Fig. 4.12.(b), the first-order
entropy for the compensated error'is 3:82 bits and 4.11 bits for the uncom-
pensated error.

As another example, we mse the invage ~“Goldhill” in Fig. 4.14.(a). The
image of prediction errorswith and“witheut error compensation are shown in
Fig. 4.15. As can be seen in.Fig" 4.15.(b), the proposed error compensation
mechanism performs very well ‘around ‘edges. For comparison purpose, we
also show in Fig. 4.14.(b) the histogram of prediction errors. The histogram
of refined errors is much narrower than that without doing error compensa-
tion. In Fig. 4.14.(b), the entropies corresponding to the two histograms are
respectively 4.40 bits (Refined errors) and 4.60 bits (Uncompensated errors).

Moreover, we use the image “Peppers” in Fig. 4.16.(a) to demonstrate
the effectiveness of the proposed error compensation mechanism. The images
of prediction errors with and without doing error compensation are shown
in Fig. 4.17.(a) and (b) respectively. As can be seen in Fig. 4.17.(b), the

proposed approach performs very well for pixels around edges. Again, we also
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shown in Fig. 4.16.(b) the histogram of prediction errors with and without
doing error compensation. Obviously, the histogram of refined errors is much
narrower than that without doing error compensation. In Fig. 4.16.(b), the

first-order entropy are respectively 4.27 bits (Refined errors) and 4.45 bits

(Uncompensated errors).
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Figure 4.12: (a) The imagé:':'ﬁf_Ai;plaI_le’f. .:(Bj'-Histogram of prediction errors
for image “Airplane”. TTERgaI"
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Figure 4.13: (a) The image of
Image of refined errors for “Aifplan
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Figure 4.14: (a) The image “Goldhill”. (b) Histogram of prediction errors
for image “Goldhill”.
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Figure 4.15: (a) The image of uncompensated errors for “Goldhill”. (b)
Image of refined errors for
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Figure 4.16: (a) The image “Peppers”. (b) Histogram of prediction errors
for image “Peppers”.
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Figure 4.17: (a) The image of uncompensated errors for “Peppers”. (b)
Image of refined errors for “Peppers”.
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Table 4.2: Compression ratio and the running time (in seconds, on a P3-
1.06GHz machine) of the constructed coder vary with different prediction
order using the proposed approach.

N=4 N=6 N=8 N=10
Image Compression | Run | Compression | Run | Compression| Run | Compression| Run
Ratio Time Ratio Time Ratio Time Ratio Time

Baboon 1.35 3.82 1.38 6.80 | 1.38 1237 | 1.38 |14.21
Lena 1.82 3.09 1.84 422 | 1.84 5.71 1.84 6.95
Lennagrey | 2.01 3.04| 2.03 3.79 | 2.03 5.18 | 2.03 5.84
Peppers 1.86 3.03 1.88 3.86 | 1.88 459 | 1.89 6.06
Barb 1.88 3.38 1.95 4.80 | 1.96 9.07 | 1.97 8.62
Barb2 1.73 5.41 1.77 828 | 1.77 1433 1.77 |15.26
Boats 2.11 482 | 2.15 6.02 | 2.16 843 | 2.17 9.18
Gold Hill 1.82 476 | 1.83 6.58 | 1.84 830 | 1.84 10.97
Average 1.82 3.92 1.85 5.54 | 1.86 8.50 | 1.86 9.64

4.3 Order of predictor

The order of the predictor-affects-codinggain in the regular mode. We list in
Table 4.2 the compression ratio.for order’ N = 4,6, 8, 10 with the run mode
disabled. The execution time is also listed in the Table. As can be seen in
Table 4.2, the compression ratio quickly saturates when the prediction order
is greater than six. Moreover, the increases in the execution time does not
justify the use of a predictor with order higher than six. Therefore, the use
of a sixth-order predictor in the regular mode is a proper choice and this will
be used in the design of a lossless image coder afterward for comparison with

existing state-of-the-art lossless image coders.
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Figure 4.18: (a) Pixels for which, LS adaption is used in the proposed edge-
look-ahead predictor for theimage “Lennagrey”. (using a sixth-order pre-
dictor with v, = 100, 72 =.10) (b)fImage of uncompensated prediction errors
using the proposed edge-leok-ahead approach for “Lennagrey”.

4.4 Effectiveness of the Edge-look-ahead mech-
anism

The usefulness of the proposed predictor with edge-look-ahead can be demon-
strated through the following experiment. We construct two sixth-order LS
based predictors for the regular mode; one with the use of the proposed edge-
look-ahead mechanism and the other performs LS adaptation in a pixel-by-
pixel manner. Then we compare the performance of the two predictors. In
this experiment, the run mode is also enabled and the image “Lennagrey” in
Fig. 2.6 is used for this comparison.

For the predictor with edge-look-ahead, the pixels for which LS adaption

is activated are shown in Fig. 4.18(a). Overall, about 17% of pixels activate
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Figure 4.19: Histogram of uncompensated prediction errors for the proposed
approach and that of a pixel-by=pixel'adaptation. (both using a sixth-order
predictor)

the LS adaptation process.: The‘image-of uneompensated prediction errors
(x, — x,) and the corresponding histogram are shown in Fig. 4.18(b) and
Fig. 4.19 respectively. For comparison, we also show in Fig. 4.19 the his-
togram of uncompensated prediction error when the LS adaptation process
is performed in a pixel-by-pixel manner. The histogram using the proposed
approach is very close to that with pixel-by-pixel adaptation although only
17% of pixels activate the LS adaptation process. The proposed edge-look-
ahead approach has made a good tradeoff between prediction efficiency and
computational complexity. Indeed, the entropies corresponding to the two
histograms in Fig. 4.19 are respectively 4.20 bits (proposed approach) and
4.18 bits (adapted in a pixel-by-pixel manner).
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Table 4.3: First-order entropies of prediction errors. (Only the regular mode
is used in the proposed algorithm; the run mode is disabled.)

EDP Proposed Algorithm | Pixel by Pixel Optimization

Image | MED|GAP
N=4 | N=6 | N=8| N=10| N=4 | N=6| N=8 |N=10| N=4 | N=6 | N=8 | N=10

Baboon | 6.28 | 6.22 | 6.04| 6.01 | 6.00 | 5.99 |6.03 | 5.99 |5.98 |5.98 |6.03 | 5.99 |5.98 | 5.98

Lena | 490 4.75|4.64] 4.60|4.59|4.58 458 453 |4.53 |4.51 458 1 4.53 [4.53 |4.51

Lennagrey| 4.56 | 440 | 432| 4.26|4.24 1422 (424 1 420 |4.19 |4.15 (422|418 |4.17 | 4.15

Peppers | 4.95 | 4.78 | 455| 4.52|4.51 |4.50 (448 | 445 444 443 (447|443 |4.43 443

Barb | 521 |5.1514.67| 444 4.40 435 [4.52 |4.36 | 430 |4.25 [446 |4.31 |4.26 | 4.21

Barb2 | 5.19 | 5.06 | 493 | 480 4.79|4.78 (490 |4.77 |4.75 |4.75 488 | 475 |4.74 | 4.74

Boats | 4311429 1420 414 4.1214.10 /4.16 | 410 |4.07 | 4.05 |4.07 | 400 |3.97 | 3.96

GoldHill | 4.72 | 4.70 | 4.64 | 4.60 | 4.59 | 4.58 |4.64 | 4.60 | 4.59 | 4.59 |4.63 | 4.58 |4.57 | 4.57

X-rayNeck | N/A | N/A | N/A| NA | NA| N/A |3.21 |3.17 | 3.16 | 3.16 |3.19 | 3.16 |3.15 | 3.15

4.5 Comparisons to existing predictors

Table 4.3 gives comparisons of unéompeénsated prediction errors for a set of
eight test images in first-order-entropiess-We compare with existing linear and
nonlinear predictors for prediction“order-N =+, 6,8, 10. In this experiment,
the run mode of the proposed system ‘is disabled; only the regular mode is
used so that we can make a fair‘comparison. The results of a median edge
detector (MED) [15], a gradient adjusted predictor (GAP) [14] and an edge
directed predictor (EDP) with different orders are taken from [26]. As can be
seen in Table 4.3, the proposed system can remove the statistical redundancy
efficiently. It achieves noticeable improvement when compared with MED
and GAP predictor. The proposed predictor also gives lower entropies when
compared with those of EDP [26]. Moreover, the results of the proposed
approach are very close to those with pixel-by-pixel LS adaptation.

In addition to the eight natural images, we also apply the proposed ap-
proach to a medical image “Neck” taken by X-ray (Fig. 4.20). The first-order
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Figure 4.20: The X—gay image “Neck”.
entropies of the image “Neék” obtaue:g”i byusmg the proposed approach with
different prediction order énd tha@@btain&d by using pixel-by-pixel LS
adaptation are list in the last row of Table 43 Besides, pixels for which LS
adaptation is used for the iniage‘ “Neck™, “énd the image of uncompensated
prediction error obtained with the proposed approach by using a sixth-order
predictor are shown in Fig. 4.21(a) and 4.21(b) respectively. As can be seen
in Fig. 4.21(b), the proposed approach performs very well for the medical
image “Neck” around boundaries with only about 2.7% of pixels activate the

LS adaptation process.
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fo ming LS adaption and the resulting
first-order entropy by varying the variance threshold +; in the proposed ap-
proach (The image “Lennagrey” is used for the test with v = 10, § = 10 for

all cases).
. Percentage | Percentage with LS
Number of | Percentage with .. .
Parameter | Pixels with LS | LS Adaptation Detected as Adaptatlon.m First-order
Adaptation (A) around an Edge | slowly varying Entropy
(B) areas (C=A-B)

Y1=100 37692 14.38 11.47 291 4.176
Y1=200 28205 10.76 6.87 3.89 4.184
Y1=300 24117 9.20 4.79 4.41 4.188
Y1=400 21819 8.32 3.58 4.75 4.190
Y1=500 20342 7.76 2.75 5.01 4.193
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4.6 LS adaptation

In this section, we investigate how the prediction performance (in terms of
entropy) varies with the variance threshold v; in (2.4) for LS adaptation. We
construct a tenth-order predictor with edge-look-ahead for the experiment,
and the image “Lennagrey” (Fig. 2.6) is used for the test. For LS adaptation,
we use the same training area as defined in EDP [26]. Moreover, we set
v = 10 and 6§ = 10 for all cases in the experiment. By varying the variance
threshold =1, the number of pixels that activates LS adaptation also changes.
The experimental results using the proposed approach with various ~; are
shown in Table 4.4.

We observe from Table 4.4 that a small v, may results in a small entropy
at the expense of an increased number of pixels performing LS adaptation
process. The percentage of pixels regarded as around an edge increases as 7,
decreases, but the percentage of pixels that activates the LS adaptation in
slowly varying areas almost remain unchanged. This can be best observed
from the fifth column, which is obtained by subtracting the fourth column
from the third column, of Table4.4, and we can find that about 3% to 5%
of pixels in slowly varying areas will activates the LS adaptation. Therefore,
the improvement on the entropy in the proposed approach is mainly around

edges.
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Figure 4.22: (a) Histogram of uncompensated prediction errors for the pixels
in Fig. 4.3. (b) Histogram of uncompensated prediction errors for those pixels
in Fig. 4.1(b).

4.7 Further insight en.the proposed edge-look-

ahead mechanism

To highlight the usefulness of thé proposed edge-look-ahead mechanism for
LS-based predictor, we compare.the proposed approach with the state-of-
the-art LS-based EDP predictor in [26]. As in [26], we use a tenth-order
predictor. With EDP [26], the percentage of pixels activating LS adaptation
is 9.87% and the resulting entropy is 4.22bpp. The results of the proposed
edge-look-ahead approach are given in Table 4.4. As can be seen in the rows
for which 7, varies from 300 to 500 (the last three rows of Table 4.4), the
number of pixels performing LS adaptation is fewer than that with EDP
approach but still have lower entropy than EDP.

To gain a further insight, we look into the case with ~; = 100. The
histogram of uncompensated prediction errors for those pixels that are con-

sidered as around an edge (i.e., pixels for which (2.4) are satisfied) is shown
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in Fig. 4.22(a). For comparison, we also show the histogram of uncompen-
sated prediction error if EDP is used for those pixels instead. As can be seen
in Fig. 4.22(a), the histogram with the proposed approach is much narrower
than that with EDP. The proposed approach has a smaller prediction error
than EDP does around edges. Indeed, the entropies corresponding to the
two histograms in Fig. 4.22(a) are respectively 5.12 bits (proposed) and 5.32
bits (EDP).

As another example, we use the artificial image “Shapes” (Fig. 4.1(a))
for the same experiment. The pixels for which (2.4) is satisfied, i.e., pixels
detected as around an edge, have been shown in Fig. 4.1(b). The histogram of
uncompensated prediction errors using the proposed approach for those pixels
in Fig. 4.1(b) is shown in Fig. 4.22(b). The histogram with the proposed
approach is much narrower than that'with EDP; the proposed approach
has a smaller prediction error thanEDP. does around edges. The entropies
corresponding to the two histograms in-Fig.-4.22(b) are respectively 4.51 bits
(proposed) and 5.28 bits (EDP,).

As can be seen in Fig.“4.22(a) and Fig: 4.22(b), the proposed system
has achieved a noticeable improvement' over the use of EDP around edges.
Moreover, the improvement is very distinct for images with many edges and
lines. As indicated in the title of EDP [26], the EDP is designed mainly
for natural images and it is noted that most of the areas vary slowly in
natural images. The EDP initiates the LS adaptation process only after the
prediction error is beyond a preselected threshold so that the computational
complexity can be reduced. Nevertheless, an abrupt change in the image
pixel, e.g., an edge or a line, may results in a large prediction error with EDP.
Compared with EDP, the proposed system can look ahead to determine if

the coding pixel is around an edge and initiate the LS adaptation process
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beforehand to prevent the occurrence of a large prediction error. With a
moderately increased computational complexity in detecting the existence of
an edge, the proposed system has achieved a noticeable improvement around

edges than that with the EDP approach.

Table 4.5: Comparisons with existing lossless image coders (in bits/sample).
The fifth column is the execution time of the proposed approach (on a P3-
1.06GHz machine).

Image First-oreder RALP % ofITS
Entropy adaptation

Airplane | 382 | 371 | 166 | 3.75 | 382 | 3.74 | N/A | 3.60
Baboon 591 | 581 | 638 | 682 | 604 | 58 | 581 | 5.73
Balloon 256 | 255 | 40 | 450 | 290 | 2.8 | N/A | 266
Barb 415 | 412 | 336 | 480 | 469 | 432 | 411 | 409
Barb2 457 | 451 | 377 | 802 | 469 | 453 | 452 | 438
Boats 3.84 | 375 | A8 1607, | 393 | 3.83 | 3.80 | 3.6l
Camera 442 | 4245 26 Tmidd8 1+ 431 | 4.19 | N/A | 410
Couple 3.63 | 3.63  [15841101. 370 | 3.61 | N/A | 345
GoldHill | 441 | 432'1.236 681 | 1448 | 439 | 439 | 427
Lena 436 | 435 | 2350427 | 461 | 448 | 440 | 430

Lemagrey | 3.97 | 3.95.F 174 382 17424 | 4.11 | 402 | 391
Noissquare | 535 | 537 0567 | 1601 568 | 5.4 | N/A | 5.54
Peppers 427 | 427 | 182°7°397 | 451 | 442 | 435 | 425
Shapes 187 [ 152 ] 71 194 | 121 | 1.14 | N/A | 0.76

XrayNeck| 287 |28 | 27 1323 | NA | NA | NA | NA
Average | 4.08 | 401 | 2592 | 418 | 420 | 407 | 443 | 3.90

seconds | JPEG-LS[15] | CALIC [14] | EDP* [26] | TMW [20]

(* For the EDP method, the bit rates for some of the images are not
available and the average is computed only for those that are available.
The X-ray image “Neck” is not taken into account for the average values
listed in the last row of the table.)
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4.8 Comparisons to existing state-of-the-art
coders

Table 4.5 gives the actual bit rates of proposed RALP coder, JPEG-LS [15],
CALIC [14], EDP [26] and TMW [20] for a set of fourteen test images. In
Table 4.5, the results of CALIC, EDP and TMW are taken directly from [21]
and those of the JPEG-LS are obtained using the code given in the website
of LOCO-I [15]. All the bit rates of the proposed algorithm are obtained
using the same parameters described in previous sections, i.e., sixth-order
predictor with a four-point texture context edge detector, and no individual
optimization is performed. Besides, we show in the second column and the
fourth column respectively the first-order entropies of the compensated pre-
diction errors and the percentagejof pixels performing LS adaptation using
the proposed approach. Moreover, we.also show in the fifth column the exe-
cution time of the proposed coder 86 that we ¢an get a picture on the runtime
performance of the proposed approach. It should be noted that some of the
results in EDP are denoted by~“N/A”*bHecause they are not reported in the
paper of EDP [26] and [21]. Therefore; the set of images included in the aver-
age is different for that column than any other. Table 4.5 shows that RALP
has lower bit rates than JPEG-LS in thirteen out of the fourteen test images
and outperforms CALIC [14] in eleven of fourteen test images. Encourag-
ingly, the proposed RALP achieves lower bit rates than the highly complex
TMW in two images, “Balloon” and “Noise square”. It should be noted
that the proposed bit rate performance for the artificial image “Shapes” is
inferior to that of obtained by CALIC [16] and JPEG-LS [17]. For this, we
can see from Fig. 4.1.(a) that the image “Shapes”, an artificial image with
edges and lines, can be segmented into many slowly varying areas in which

the run-length coding is most efficient to be used. In the meanwhile, we also
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know that the run-length encoding is applied in the coder of JPEG-LS [15]
and RALP [28]. Furthermore, the CALIC [14] also uses a “Ternary entropy
coder” for the so-called “binary mode” or uniform regions. Therefore, we
think the bit rate performance for artificial images, like “Shapes”, can be
improved if a more sophisticated run-length coder or an extra entropy coder

with a small symbol set is applied for slowly varying areas in the proposed

approach.
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Table 4.6: Percentage of pixels performing LS adaption and the number of
pixels performing Cholesky decomposition and Singular Value Decomposition
(SVD). (Only the regular mode is used; the run mode is disabled.)

Proposed linear predictor with edge-look-ahead
Image N=4 N=6 N=8 N=10
% | Cholesky| SVD | % | Cholesky| SVD | % | Cholesky| SVD | % | Cholesky| SVD
Baboon | 65.1| 170545 0| 64.7| 169588 0] 64.7] 169651 0] 64.5| 169203
Lena 24.4| 63989 16| 23.9| 62681 52| 239| 62568 76| 23.4| 61136 83
Lennagrey | 18.2| 47757 14| 17.9| 46856 29| 17.9| 46754 42| 17.4] 45607 32
Peppers | 19.0| 49789 0| 18.4] 48362 18.3| 47940 0] 18.1| 47567
Barb 35.8] 93825 0| 34.8] 91254 34.5| 90552 0| 34.3| 89946 0
Barb2 39.7| 164570 0| 38.7| 160509 38.8| 160888 0] 38.8] 160829 0
Boats 19.3] 79992 65| 18.8| 78030 18.5] 76863 21| 18.3| 76036 36
Gold Hill | 24.8| 102857 1] 24.2] 100169 24.0] 99628 0] 23.9] 99086 0
Average | 30.8| 96666 | 12.0 | 30.2| 94681 | 10.1 | 30.1 | 94356 | 17.4 | 29.9| 93676 | 18.9

oo |00 o

4.9 Computational complexity

It is noted that the construction of normal equafions requires roughly M N? /2
multiplications, where M is the number of training pixels and N is the pre-
diction order [35]. Numerically; the.normal equations (2.7) can be solved by
Cholesky decomposition or Singular Value Decomposition (SVD) depending
on the rank of P in (2.6). When P is full-ranked, PTP is nonsingular and
positive definite. For a positive definite matrix, the Cholesky decomposition
can be used, and it requires only N?3/6 multiplications to solve (2.7), which is
about half the usual number of multiplications required by alternative meth-
ods [35], [36]. Only when P is not full-ranked, SVD, which requires much
higher computations, is needed. Fortunately, our experiments show that in
most cases P has full rank. This can be seen in Table 4.6, where we have
listed the percentage of pixels performing LS adaption and the number of

pixels performing Cholesky Decomposition or SVD for predictors with differ-
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Table 4.7: Operation counts for edge detector in (2.4).
Operation Compare | ADD/SUB | MUL/DIV Square
Edge detection | < (N+2) | < (4N-2) <7 < (N+3)
"N" 1s the number of pixels used in edge detection. In this paper, N= 4.

ent orders. Indeed, this is because pixels around boundaries usually have
a large variation in gray levels and thus the matrix P in (2.6) is seldom
rank deficient. Therefore, most of the computations take place in forming
the normal equations (2.7) rather than solving them. For this, an inclusion
and exclusion method for fast construction of the PP matrix is proposed
in [25]. The algorithm in [25] utilize the overlapped training area between
successive coding pixels. Therefore, the fast algorithm can only be used in
a pixel-by-pixel adaptation manner and ¢én not be applied in the proposed
approach as we activate the LS adaptation process only when necessary.
For the proposed edge detector, the operation counts for each coding
pixel in the edge detection. processrarerlisted in Table 4.7. It should be
noted that there is no needto.check both of the two inequalities in (2.4)
for every pixel. Only when the first inequality holds then we check the
second condition. Therefore, the actual computational cost is lower than
what is listed in Table 4.7. Though edge detection incurs a slight increase in
computations, the overall complexity is reduced significantly when compared
with that of pixel-by-pixel adaptation approach. The proposed approach has
achieved a very good trade-off between runtime performance and prediction

efficiency.
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4.10 Concluding Remarks

In this chapter, we have evaluated the performance of the proposed lossless
image codec. Extensive experiments as well as comparisons to existing state-
of-the-art predictors and coders are also given to demonstrate the usefulness
of the proposed system. In summary, we can make the following concluding

remarks:

1. We have investigated in this chapter the usefulness of the proposed
edge detector. As can be seen in our experiments, the proposed edge
detector is very effective in detecting edges and robust to images with
moderate salt-and-pepper noise although only four causal pixels are

used.

2. The effectiveness of the'error gompensation mechanism in regular mode
is also evaluated in this chapter. Qur experiments show this very useful

that further improves the bit rates by, on average, 0.2bpp in test images.

3. The prediction order affects the coding gain. In our experiments, we
find the compression ratio quickly saturates when the prediction order
is greater than six. Moreover, the use of a higher prediction order also
means an increase in computational complexity. Therefore, we have

found the use of a sixth-order predictor is a proper choice.

4. With the proposed edge-look-ahead approach, we activate the LS adap-
tation process only when an edge is detected or when the prediction
error is beyond a predefined threshold. As can be seen in our exper-
iments, the results obtained by using the proposed approach are very
close to those with pixel-by-pixel LS adaptation, but with a signifi-
cantly reduced complexity. The proposed edge-look-ahead approach is
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more feasible under limited resources.

. In this chapter, we also compare the proposed system with existing
state-of-the-art predictors and coders. As can be seen in Table 4.3 and
Table 4.5, comparisons on first-order entropies and actual bit rates have

demonstrated the superiority of the proposed system.

. A detailed analysis on the computational complexity of the proposed
system is also given in this chapter. For LS adaptation process, fast
algorithms, like Cholesky decomposition, can be used in most of the
cases depending on the defectiveness of the matrix P in (2.6). Besides,
we also list in Table 4.7 the operation counts of the proposed edge
detector. Though edge detection incurs a slight increase in computa-
tions, the overall complexity'is reduced significantly when compared

with that of pixel-by-pixel adaptation approach.
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Chapter 5

Enhancing the Predictive
Coding Efficiency with Control
Technologies

There has been great interest in applying predictive coding to lossless com-
pression of images. Predictive eoding is very-useful for removing statistical
redundancy among pixels in slowly varying areas. However, there can be
large prediction errors forpixels around boundaries. In this chapter, we in-
troduce techniques commonly:used in control systems to enhance the coding
efficiency of predictive coding. Actually, the predictive coding system, which
calculates the system output based on the texture context of the coding pixel,
behaves just like a multi-input single-output system with the predictor itself
can be taken as the system model. Besides, the prediction error is usually
feedback for the adaptation of predictor coefficients so that the difference
between the desired and the actual output, i.e., the so-called error signal,
for consecutive pixels can be minimized. When compared with the purpose
of a control system, which is to follow the system command as precisely as
possible, we find the objective of both systems are the same. Moreover, an

edge or a boundary among image pixels can be regarded as a step command
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in control systems. These observations lead to the idea of using control tech-
nologies to improve prediction result for pixels around boundaries. To realize
this idea, we use an adaptive Takagi-Sugeno fuzzy neural network (T'S-FNN)
as the predictor for its advantages of fast convergence and parallel computa-
tion. Furthermore, the widely used proportional controller (P-controller)
in control system is implemented implicitly in the consequent part of the
network so that the prediction error can be further compensated for pixels
around boundaries. We find in experiments that the proposed approach can
have a very good prediction result even without using any online training
area for network adaptation process. This makes the proposed system more
feasible under limited resources, and a very good run time performance can
be obtained. Finally, comparisons to existing state-of-the-art lossless pre-
dictors and coders will be givenito'highlight the advantages of the proposed

novel approach.
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5.1 Introduction

The performance of predictive image coding scheme highly depends upon
the effectiveness of the predictor used in the coding process. Most of the
image predictors perform very well in slowly varying areas. However, large
prediction errors can take place around edges and boundaries, and this has
remained a major problem in predictive coding schemes so far. Intuitively,
the prediction results can be improved if we can foresee the existence of
an edge and then predict along the edge orientation. However, the design
of a robust edge detector and the analysis of edge orientation are difficult
problems themselves, let alone to predict along the edge orientation. Re-
cently, some approaches propose the use of a linear predictor adapted by
least squares (LS) optimization during the coding process [25]-[31]. Among
which, the EDP [26] pointed out that thé-superiority of LS adaptation is
in its edge-directed property. That s, the LS-based predictor can adjust
the prediction support along the edge orientation automatically during the
adaptation process. With the edge-directed property, LS-based adaptive pre-
dictor performs very well for pixels.around boundaries. On the other hand,
we know that the normal equations provide the key for LS adaptation, and
some fast algorithms, “Cholesky decomposition” for example, can be ap-
plied in the LS adaptation process. Therefore, the complexity in solving the
normal equations itself is not a problem. Nevertheless, the computational
cost for the construction of normal equations is rather high. Thus, a pixel-
by-pixel LS adaptation process for predictive image coding is regarded as
prohibitive. For this, an edge-look-ahead approach is proposed [27], [28].
The edge-look-ahead approach proposes a causal edge detector and initiates
the LS adaptation process only when the coding pixel is around an edge or

when the prediction error is beyond a predefined threshold. With the edge-
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look-approach, the advantage of edge-directed property in LS-based predictor
can be fully exploited. Moreover, a noticeable reduction in computational
complexity can also be obtained when compared with that of pixel-by-pixel
LS adaptation approach.

In order that the highly complex statistical redundancy can be removed
more effectively, some of the results are obtained by using fuzzy logic or
neural network as the nonlinear predictor [21]-[23]. Theoretically, the use of
nonlinear predictors can get better prediction performance than that of ob-
tained by using linear predictors. However, we find in literatures that fuzzy
logic or neural network based nonlinear predictors usually come along with
a very high computational complexity for inherent nonlinear characteristics
and the time-consuming online adaptation process. Furthermore, the im-
provement on the prediction result obtained seems does not justify the use
of such a highly complex nenlineaz'predictor when the run time performance
is taken into consideration.

In this chapter, we propose an“approach:performing nonlinear predic-
tion based on a four-layered. Takagi-Sugeno fuzzy neural network (TS-FNN)
[37]-[45]. The TS-FNN is applied inithe proposed approach as the nonlinear
predictor for its advantages in parallel computation, universal approximation
and fast convergence [41]-[45]. With priori knowledge on the partitioning of
input space, the network structure can be constructed with neurons provided
with a set of Gaussian membership functions. Moreover, suitable fuzzy rules
can also be derived and recruited by measuring the membership degrees so
that a nonlinear prediction model is developed. To make the proposed sys-
tem adapted to the varying statistics, the prediction error of the coding pixel
is feedback to update the connection weights and the parameters in the mem-

bership layer. In order that the high computational complexity incurred in
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the network learning process can be avoided, the number of training pixels
used during the network adaptation process is decreased substantially and
even not used in the proposed TS-FNN approach. Moreover, all the oper-
ations used in the proposed TS-FNN based predictor are linear except the
the Gaussian membership degree measurement in second layer. This makes
the proposed approach more feasible under limited resources and a very good
run-time performance can be obtained.

Regarding to the problem of encountering a large prediction error for pix-
els around boundaries in most of the predictive coding schemes, we propose in
this chapter a novel idea based on commonly used control technologies. Ac-
tually, the design of a controller is to follow the system command as precisely
as possible, which has the same objective with predictive coding. Moreover,
an edge or a boundary, i.e., an @brupt'cliange among neighboring pixels, can
be regarded as a step commiand in"dontrel systems. The above observations
lead to the idea of enhancingthe prediction result with control technologies.
In this chapter, both the horizontal-and vertical deviations around the coding
pixel are calculated such that we'can know: the existence of an edge. The cal-
culated deviations are then used‘as the inputs of P-controller compensators
which are implemented implicitly in the network weights connecting the rule
layer and the output layer, i.e., the consequent part of a fuzzy rule. As we
will see in the experiment that the proposed P-controller compensator is very
useful in removing the inter-pixel redundancy and can further improve the

entropies of prediction errors.
Novelty of the proposed approach

In this chapter, we propose the use of a TS-FNN based nonlinear predictor

for lossless coding of images. In order a very good run-time performance can
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be obtained, the number of training pixels for network adaptation process
is decreased substantially and even not used in the proposed approach. For
pixel around edges, we propose a novel approach by applying the commonly
used P-controller in control system as a compensator so that the prediction
error can be further reduced. It is noted that the conventional error model-
ing technique, a statistical approach, can also be used for further reduction
in entropies. With the proposed adaptive predictor and the P-controller
compensation mechanism render the proposed approach very effective in re-
moving statistical redundancy and feasible for real time applications.

The rest of the chapter is organized as follows. Section 5.2 gives an
overview of the proposed TS-FNN based coding system. A detailed descrip-
tion on the prediction and the network adaptation process are also addressed
in this section. Besides, a brief introduction on the conditional entropy coder
applied in the proposed coding system'is given in Section 5.3. The exper-
imental results are shown:ingsection 5:4 tordemonstrate the effectiveness of

the proposed system. Finally, a'concluding remark is given in Section 5.5.
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5.2 Proposed TS-FNN based coding system

T, Context Modeling
A B
S TS'FNI\{ Based xp (F) % Error Compensation
Predictor Error Estimate
C
Ly & Entropy | Code Stream
N - Coder

Figure 5.1: Proposed TS-FNN based coding system.

Fig. 5.1 shows the block diagram®ef the proposed TS-FNN based pre-
dictive coding system. As can begseen<n Fig. 5.1, the proposed system is
composed of three major blocks, the “I'S-ENN based predictor”, the “error
compensation mechanism?”, and the  “entropy-coder”. The TS-FNN based
predictor is a four-layered lineat-like network.with Gaussian membership de-
gree measurement and linear combinations. Besides, the network parameters
are adapted in the coding process by using back propagation learning algo-
rithm. As we will see in succeeding sections, the proposed system performs
nonlinear prediction but with much reduced computational complexity just
like a linear predictor. In the proposed system, the predictor output z, is
further refined through an error compensation mechanism, i.e., the so-called
bias cancelation technique, to get a compensated prediction x.,q = z, + €.
The refined error € = x,, — 2pq is then entropy encoded through a conditional
arithmetic coder to produce the bit stream [34]. It should be noted that all
the pixels used in the proposed approach are causal, i.e., pixels previously

encoded. Therefore, the decoder can reconstruct the image pixel from the re-
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ceived bit stream by performing the same prediction and error compensation

just like the encoder without any side information.

5.2.1 The TS-FNN based adaptive predictor

In this chapter, the predictor is implemented by using the TS-type fuzzy
neural network (TS-FNN) proposed by Takagi and Sugeno [37]-[39]. It is
noted that a highly complex nonlinear model can be easily described in the
TS-FNN system with a small number of fuzzy “If-Then” rules [37]-[39]. In
general, the kth rule, Ry, of the TS-FNN model can be expressed by

Ry If z1(t) is Fiy ...and z(t) is Fjx Then
yr(t) = Agz(t) + Bru(t) for k=1,2,...,L, (5.1)

where 21 (t), ..., z(t) are thednput variabless Fiy, . . ., Fjy. are the fuzzy quan-
tifiers (fuzzy sets) associated ‘with:|corresponding input variables, y,(t) €
RP represents the output of the kth rule, t-denotes the current discrete
time index, L denotes thé number'of‘rules: A, € RP*" z(t) € R", B €
RP*™ and u(t) € R™ are the comsequent parts of the rule.

The proposed TS-FNN based predictor is shown in Fig. 5.2. As can be
seen in Fig. 5.2 | the proposed network has four layers. The nodes in Layerl
(the input layer) transmit the input signal to their output directly, i.e., it
plays the role of signal buffering. In the proposed approach, there are two
nodes in the input layer (i = 2). Layer2 is the “membership layer”. In this
layer, the number of nodes associated with corresponding input variable is
set to be three (j = 3). Layer3 is the “rule layer”. Since the interconnection
topology between nodes in layer2 is fully connected, we have nine (i.e., j°)
nodes (i.e., rules) in layer3. Layer4 is the “output layer”. The output layer

has only one node in the proposed approach, and its output is the prediction
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Figure 5.2: Propésed IS-FNN predictor.

value of the coding pixel. Itids noted that.the pixel values are normalized by
255 before they are feed into the system, suppose the input image has 8 bits
per pixel, and the output of the network is scaled by 255 and then rounded
to the nearest integer as the prediction value.

For notation convenience, the net input to the jth node in layer [ and the
corresponding activation function are denoted by nety) and f;l) respectively,
and the output of jth node in layer [, is given by OJ(D = fj@ (netg-l)). A brief
description about the proposed TS-FNN based predictor is given below.

Fig. 5.3 defines the texture context of the coding pixel. Besides, the input

vector z(t) of the proposed network is given by
2(t) = [a1(t), 2(t)]" = [v1 — 23, 22 — 23], (5.2)
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Figure 5.3: Texture context around the coding pixel.

where ¢ denotes the discrete coding sequence. Obviously, z; measures the
strength of vertical deviation (i.e., horizontal edge detection), while z, is for
that of horizontal deviation (i.e., vertical edge detection). It should be noted
that all the pixels used should be normalized by 255 before feed into the
network in order not to fall into the‘saturation region during the network

learning process.

Layerl: Input layer
The nodes in this layer“just perform the buffering operations. That is,
the input variables z; and 2z, aré transmitted to layer2 directly. Therefore,

the output of the ¢th node in layerl is given by

oW =z fori=1,2. (5.3)

Layer2: Membership layer

In this layer, the activation function of the jth node associate with the
tth input, z;, in layerl is denoted by fi(f). Each node in this layer performs
the membership degree measurement of a Gaussian function, and its output,

)

i; » specifies the degree to which the given input z; satisfies the fuzzy

pij = O

73



quantifier fi(f), that is,

.. )2
iy = 02 = [ (z) = eap{—F =0y for =12, and j=1,2,3

(5.4)
where m;; and o;; denotes the center and the width (i.e., standard devia-
tion) of the Gaussian membership function respectively, and the subscript ij

indicates the jth node associated with the 7th input z; in layerl.

Layer3: Rulelayer

The links in this layer are used to implement the antecedent matching.
The matching operation (or the fuzzy “AND” aggregation) is chosen as the
simple “product” operation instead of “min” operation. Therefore, each
node in this layer multiplies ineoming signals and sends the product to its
output. The output of the kth noderimthis layer represents the firing strength
of the kth rule, and is given by

ozk:O,(:’) :ulp*ugq:net,(f) forkasl] 2 9,
p="128and 1 <¢=k—-3(p—1) <3. (5.5)

Layer4: Output layer

This layer performs the defuzzification process to get the numerical out-
put. As can be seen in Fig. 5.2, the output of each node in layer3 (i.e., the
firing strength ) is first weighted by a factor wy, and then summed up to-
gether as the net input of layer4. The connection weight wy, which represents

the output action for the kth rule, is given by

wg = Apx(t) + Bru(t) for k=1,2,...,9, (5.6)
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where x(t) = [, 23, ..., 26T is composed of the six causal neighbors around

the coding pixel, Ay = [a},aZ,...,al]T can be regarded as the sixth-order
predictor coefficients associated with the kth rule, u(t) = [uy, us]’ = |11 —
13,79 — w3)T = 2(t) is used for horizontal and vertical edge detection, and
the vector B, = [bl,bg]T is the weighting coefficients associated with the
kth rule for the vector u(t). As we know that a large prediction error can
take place around an edge. Besides, an edge among image pixels during
the coding process can be regarded as a step command in control system.
Moreover, we find both the predictive coding and a control system have
the same objective to minimize the difference between the desired and the
actual output, i.e., the so-called error signal. These observations lead to the
motivation of enhancing the prediction result with control technologies. For
this, the term Byu(t), which iscalled “P-controller” in control system, is
applied in (5.6) for prediction errer§uppression. It should be noted that the
proposed P-controller comipensator is.quite different to the so-called “error
modeling” or “bias cancelation technique” in:[14], [19], and both of which
can be applied jointly for further refinement.of prediction errors.

The output of the TS-FNN"system"is then a linear combination of the
consequent part. That is, the final output of the predictor network is a

weighted summation of the individual output of the rules in layer3 (Fig. 5.2),

and is given by

9 9
y(t) = net™ => " apw, =Y ap(Az + Byu). (5.7)
k=1 k=1

As can be seen in (5.7), the output of the proposed TS-FNN based pre-
dictor is implemented in an un-normalized manner which has the advantages
of a faster training rate and a much simpler input/output sensitivity equa-

tion [41], [44], [45]. In addition, it should be noted again that all the pixels
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used are normalized by 255 before they are feed into the proposed predictor
network. Therefore, the predictor output should be scaled by 255 this time
and bounded in the range of [0, 255] as the prediction value.

5.2.2 Network Adaptation process

In order that the proposed predictor network can adapt itself to the varying
statistics of the image to be coded. The network parameters are updated
continuously using the gradient descent method during the coding process.
To do this, an online training area is commonly used [22]-[24]. However, the
use of an online training area also means an increase in computational com-
plexity. Therefore, we have investigated in this chapter the use of an online
training area composed of only the four causal pixels x1, 2o, -+, 24 (Fig. 5.3)
and even that of without using‘any online training area. Though with a sub-
stantially decreased number of training pixels; the prediction performance of
proposed approach is still-very good as we will see later in the experiments.

To adapt the parameters of -‘the proposed-predictor network during the
coding process, we first define a cost function (or error function) E(t) as in
(5.8).

B(t) = 3(d(r) — y(5)" (58)
where d(t) denotes the desired output and y(¢) denotes the actual output
of the proposed TS-FNN system. The back propagation (BP) learning algo-
rithm is used to minimize the error function, and the parameter w is adapted
by

wlt+ 1) = w(o) + 1= 5o, (5.9)

|7, and 7 is the learning rate. We will first derive

where w = [m, o, Ay, By

the adaptation rules for the parameters in the consequent part, i.e., the links
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between layer3 and layerd4. After that, the adaptation equations for those

parameters in layer2 will be given.

A-1. Consequent part: Derivation for Aa};

In the consequent part, coefficients of the nine sixth-order predictors and
the P-controller compensators are to be updated. We will first derive the
adaptation rules for the coefficients of the nine sixth-order predictors. The
adaptation for aj, the rth coefficient of the sixth-order predictor associated

with the kth rule (or kth predictor) is given by
ap(t+1) =ap(t) + Aap(t) forr=1,2,...,6, and k=1,2,...,9, (5.10)

where Aaj(t) is the correction term for aj(t) given by

L oF
B nA@az

OFE 20W=1 [Onet™

- {aow} L?net(‘l)] { dal }
_ oF Oy Onet™
-l | oo |

Onet® (5.11)
= na(d —y) { ; ]
A daj,

Aaj(t)

= 77A5(4)Oék$r,

where 6@ is the error signal of layer4 (i.e., output layer) defined by

) ok 00w
(4 _ __ 9% _ o
= Onet® [80(4)] {8net(4)} = (d—vy). (5.12)
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In general, (5.11), the correction term for aj,(¢), is represented in the following

form
Ady(t) = nadWagx, + A (t — 1), (5.13)
where 7 is the momentum term to accelerate the convergence speed. Using

(5.13), we can rewrite (5.10) as

ar(t4 1) = aj(t) + nadWagz, + 7Aas(t — 1) forr=1,2,...,6,
and k=1,2,...,9. (5.14)

A-2. Consequent part: Derivation for Abz
With a similar approach for that of aj, the adaptation rule for b7, i.e.,
the sth coefficient of the compensator associated with the kth rule, is given

by
bi(t+ 1) = b (t) + Abj(t) for's =1,2, and k =1,2,...,9, (5.15)

where Abj(t) is the correction term-for-hi(t) given by

or
Abj(t) = =15 77
g ob?
___JoE Oy onet®
Py | | onet® ob;
onet®
— na(d —
ne(d = y) { ab? 1 (5.16)

P 9
k i—1

-
= n5(d — y) [axus]
= 10" .

As for Aaj(t), a momentum term 7Ab; (t — 1) is added to (5.16) so that the

convergence speed can be accelerated. Therefore, the correction term for the
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bi(t) can be rewritten as
Ab; (1) = npdWagus + TAB(t —1). (5.17)
Using (5.17), (5.15) can be rewritten as

bi(t 4 1) = b (t) + npdWogu, + TAB(t — 1) for s = 1,2,
and k=1,2,...,9. (5.18)

B-1. Primary part: Derivation for Am;;

In the primary part, the mean m;; and the standard deviation o;; of the
six Gaussian membership functions in layer2 have to be updated. We will
first derive the adaptation rules,efsthe six Gaussian means, and then the
adaptation rules for the six.standard deviations will be given.

The adaptation rule for my;, i.e;, the meamn of the jth Gaussian member-

ship function associated with the ithiinput variable, is given by

mzj(t + ].) = m”(t) + Amu(t) ford = 1, 27 and j = 1, 2, 3, (519)

where
oE
Amij(t) - _an
. [oE oy Onet™ 90
— 9y | |onet® om; (5:20)
Onet™
= nm<d - y) { :| )
3mij
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where aget , by applying chain rule, can be expressed as
onet® > onet®] [ 00 ] [oner?] [205
Om; 00D | |onet? | | 902 | | Omi

_ Z e 8net 00 1 [onet? | [00L

(9net,(€3) 605) omi;

R )2
= Z (I)(ZJ ZZ]Z 8mz] {exp |:_(Z7’0_72m”>:| } (521)

]

2
Uij

= mzy {Z(I)(kaak}

_ Zq)(” a 2E = my)

where

1 if k= [j= @F01e% o — (1 —1)] 7Y
oY = for © =1,2,3, and r = 3 (5.22)

0 otherwise.

By substituting (5.21) back inte.(5.20),.we have

2(z; —my :
Amij(t) = nm% {Zq) 2 d y)wkak}
ij

k=1
— ng {Zq)u 5(3) }

where (523) is the error signal associated with the kth node in layer3 defined

(5.23)
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51&3) _ oF
8net,(€3)
B { OF ] onet® | | 90
Inet™ 80,(:’) 8net,(€3)
OF | | Oy
-~ 5] 7 521
a 9
= (d— y)aﬁ“k [Z; ajwj]
=
= (d — y)wy
= Wy

The <I>,(fj ) in (5.22) describes the connectivity of the nodes in layer3 which is
associated with the ¢7th nodejdin layer2. "That is, if the kth node in layer3 has

one of its incoming signal from the:sjth node'in layer2, then CIDSj ) = 1; oth-

erwise @,(fj ) =0. Combing (5.23) with the momentum term for convergence

speed acceleration, we cartrewrite(5:19)as

9
mij(t +1) = mi;(t) + nm ( o2 : { Qéj)égak} Framtey
) k=1

fori=1,2, and j =1,2,3. (5.25)

B-2. Primary part: Derivation for AO’U
The adaptation rule for o;;, i.e., the standard deviation of the jth Gaus-
sian membership function associated with the ¢th input variable, is given

by

oij(t+1) = 04(t) + Aoy;(t) fori=1,2, and j =1,2,3, (5.26)
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where

OF
1 50

__[oE Oy Inet™ < o

— Oy | | Onet@ Jo; (5.27)
Onet™

= ol =) | %],

Aoij(t) = —

where aget , by applying chain rule, can be expressed as
onet™ _ Z onet@ | | 00P | | onet? 002(]2)
Do 80(3) 8net,(€3) 80282) 0o
Z 8net 00 | [onet®] [90
a 0net,(€3) 805) doij
i 0 : — mij)?
= Z Py, B2 {em‘p {—M} } (5.28)
Uw 80” T5j
ii (073 2 Zi — ;4 2
:Zq)’ig)wk ‘ [mj § : ) ]
T3

= m” {Z o\ U)kOék}

By substituting (5.28) back into (5.27), we have

©

Uz’j

9
:770 ng {Z@U k }

Using (5.29) together with a momentum term, (5.26), the adaptation rule for

Acij(t) = UUL:W {Z @,(fj)(d — y)wkak}
o (5.29)

82



0ij, can be rewritten in the following form

2 i iJ 2 : ij
O'Z'j(t -+ 1) = O'Z'j(t) + ngw {Z (I)l(cj)dl(gB)Odk} + TAO'Z‘j(t — 1)

o3
v k=1
fori=1,2, and j =1,2,3. (5.30)

In this chapter, the updated network parameters are used for the prediction
of next coding pixel. In addition to the predictor adaptation process, we
also know that the prediction error can be further refined through an er-
ror compensation mechanism. For this, we use the proposed error modeling
technique in [28] so that the the prediction error x, — x, can be further com-
pensated. The compensated error € = x,, — Zpq has a narrower histogram
and hence a lower first-order entropy. The refined error ¢ is then entropy en-
coded using a conditional arithmietic codér,to produce the bit stream [34]. To

summarize, the pseudo code of the proposed-approach is given in Appendix

C.
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Figure 5.4: Histogram of refined errors in quantization bins for image “Lenna-
grey.”

5.3 Entropy Coding of Prediction Errors

In the proposed approach, the refined error ¢ is then entropy encoded through
a conditional arithmetic coder. For this, we use the same approach in-
troduced in Chapter 3, and the error strength estimate A of the coding
pixel defined here is also the same as that of in Chapter 3. The approxi-
mately optimal quantization of A in the proposed approach is found to be
0, 1], (1, 3], (3,90], (90, 00). With this quantization, one out of a set of four

probability models is chosen for the entropy coding of £ based on the value
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of error strength estimate A.

usepmfl, if 0<A<I1
use pmf2, if 1<A<3
use pmf3, if 3 <A <90

use pmf 4, otherwise.

(5.31)

In order that the coding efficiency in actual bit rates can be further im-
proved, the techniques including “error sign flipping”, “error remapping”,
and the “histogram tail truncation” are also applied in the proposed ap-
proach prior to it is entropy encoded. With the quantization bins in (5.31),
the error histogram in each quantization bin for image “Lennagrey” (Fig. 2.6)
are plotted in Fig. 5.4. The curve of Bin4 is not shown because no error
strength estimate falls in that region. With the “histogram tail truncation”
technique, the cut off region foritherquantization bins are selected to be
[—23, 23], [—41,41], [-59,59] and [-128, 127 such that over 99% of the re-
fined errors in each quantization bin are within the truncated regions. By
using the histogram tail truncation; an error 30 in Binl for example, is en-

coded first to be 23 using pm.f*1; followed by'7 using pm f 2.
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5.4 Experiments

In this section, performance of the proposed TS-FNN based lossless image
coding system will be evaluated. Comparisons to existing state-of-the-art
linear and nonlinear predictors and coders are also given. All the test im-
ages used in the experiments are from TMW [20]. We will first demonstrate
the effectiveness of the proposed TS-FNN based predictor and the implic-
itly implemented “P-controller” compensator. After that, the usefulness of
the error compensation mechanism that uses the so-called bias cancelation
technique will be demonstrated. Finally, the bit rate performance and the

computational complexity of the proposed system will be discussed.

5.4.1 The network parameters

Table 5.1: Initial parameters for the six Gaussian membership functions in
Layer2.

myy = +0:208 |01 =0.135
My — —0.006 012’ = 0.612
mi3 = 0.229 013 — 0.208
mo1 = —0.230 091 = 0.199
Moo = 0.528 099 = 1.418
mes = 0.197 093 = 0.250

In this chapter, initial values of the parameters that are used in the pro-
posed approach are listed in Table 5.1 to Table 5.4. These settings are
obtained by using the image “Lennagrey” (Fig. 2.6) as the predictor input
iteratively off-line so that the network parameters are well trained before-
hand. Table 5.1 shows initial values of the center and standard deviation
for the six Gaussian membership functions in layer2. To be clear, the six

Gaussian membership distributions are also plotted in Fig. 5.5. The initial
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Figure 5.5: The six membership functions in layer2. (a) associated with
input variable z;. (b) associated with input variable z;.

coefficients of the nine sixth-order predictors and the “P-controller” compen-
sators are as shown in Table 5.2 and Table 5:3 respectively. In Table 5.3,
some of the initial coefficients-for the-*P-controller” compensator appear
to be zero just because they are too-small to be represented under limited
display precision.

Parameters used for network adaptation process are summarized in Ta-
ble 5.4. As can be seen in Table 5.4, the learning rate for different parameters
are defined separatively, while the momentum coefficient used are the same.
Moreover, the learning rates and the momentum coefficient in Table 5.4 are
chosen empirically, and we find them perform very well in our experiments.

Therefore, these values will be used through out this chapter.
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Table 5.2: Initial parameters for matrix A. (i.e., coefficients of the nine sixth-
order predictors)

a,=-0287] a,=-0489 | a,= 0.225  a,= 0.224 | a,= 0.098 | a,,= 0.191
a,= 0.195 | a,,=-0.135 | a,,= 0247 a,,=-0.120 | a,;=-0245  a,=-0208
a,= 0.258 | a,= 0.600 | a,,= 0.154 | a,,=-0318 | a,;=-0.003 | a,,=-0323
a,=-0369 | a,= 0.773 | a,= 0.152 | a,,=-0.013 | a,,=-0.023 |a,=-0412
as= 0267 | as= 0.160 | a5= 0.111 | as= 0.536 | ass=-0.006 | as= 0.113
ag= 0.220 | ag= 0.833 | a=-0237 | ag,=-0.529 | ags=-0.107 | ag=-0.237
a,= 0199 | a,= 0774  a,= 0.148 a,=-0902 a,=-0249 a =-0.068
a,= 0.567 | a,= 0.045 |a,=-0254 | a,= 0.084 | a.= 0.050 | a,=-0379
a,,=-0222 | a,,=-0211 | a,,=-0.169 | a,;= 0.347 | a,,=-0.046 | a,,= 0.018

5.4.2 The training area for network adaptation

Further to the network adaptation proecess, there is one more thing that
should be mentioned is the number of training pixels and the number of
training cycles selected in“the=proposed approach. The use of a moderate
training area around the coding pixel-ecan adapt the predictor network to the
local statistics. However, a large number of training pixels and training cycles
can incur a drastic increase in computational complexity. In this chapter,
the image pixels are encoded in an order of raster scan, i.e., from left to
right and from top to bottom. Therefore, we choose in this chapter the
training area to be the four nearest causal pixels x1,xs,..., 24 in Fig. 5.3.
We also find in our experiments that a larger training area than the four pixels
defined above has only minor improvement on the prediction results. Based
on this observation, we even try not to use any training area in the network

adaptation process, and the prediction results obtained are still very good

as we will see later in the following experiments. Furthermore, the training
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Table 5.3: Initial parameters for matrix B. (i.e., parameters of the nine “P-
controller” compensators)

b1; = 0.000 b12 = 0.000
le == 0004 b22 - 0004
b31 — 0002 b32 — 0002
by = 0.001 by = 0.001
bs1 = 0.003 bso = 0.003
bg1 = —0.001 | bgy = —0.001
b7 = 0.000 bzo = 0.000
bs; = 0.000 bsa = 0.000
bg1 = 0.000 bga = 0.000

Table 5.4: Learning rates and momentum for network adaptation process.

Learning rate for matrix A in the connection from Layer3 to Layer4 na = 0.01
Learning rate for matrix B in the connection from Layer3 to Layer4 ng = 0.8
Learning rate for the mean of Gaussian member functions Nm = 0.05
Learning rate for the standard deviation of Gaussian member functions | 1, = 0.05
Momentum used in parameters updating process 7=0.2

cycle for network adaptation is.set-to be-one in our experiments so that the

run time performance of thé proposed approeach can be very good.

5.4.3 The “P-controller” based compensation mecha-
nism

The usefulness of the proposed “P-controller” compensator, i.e., the term
Byu in (5.6), can be evaluated through the following experiment. In this
experiment, the fourteen test images in Table 5.5 will be used as the pre-
dictor input. We first set the B matrix in the consequent part to be a zero
vector (denoted as Type 1), and then calculate the first-order entropies of
uncompensated prediction error for the fourteen test images. After that, the

prediction process is repeated again but with the component Bju in existence
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Table 5.5: The usefulness of the proposed “P-controller” compensator. (i.e.,
the term Bjyu)

Original Case 1: without online training area Case 2: with 4-pixel online training area

Image Entropy B Absent | B Present Difference Percentage| B Absent | B Present Difference Percentage

(Al) (BI) |(cn=(l-BH[(CHAAL)| (A2) (B2) | (C2)=(A2)-(B2)| (C2)/(A2)
Airplane | 6.71 4.09 4.07 0.01 0.3% 4.09 4.08 0.01 0.3%
Baboon 7.36 6.11 6.10 0.01 0.1% 6.11 6.07 0.04 0.6%
Balloon 7.35 2.99 2.98 0.01 0.3% 2.97 2.96 0.01 0.4%
Barb 7.47 4.89 4.81 0.07 1.5% 4.83 4.72 0.11 2.3%
Barb2 7.48 4.90 4.87 0.03 0.6% 4.90 4.89 0.01 0.1%
Boats 7.10 4.23 4.17 0.06 1.4% 4.23 4.16 0.07 1.7%
Camera 7.01 4.86 4.85 0.01 0.2% 4.94 4.89 0.05 1.0%
Couple 6.39 4.12 4.07 0.05 1.2% 4.08 4.06 0.02 0.5%
Goldhill | 7.53 4.64 4.64 0.00 0.0% 4.65 4.64 0.01 0.2%
Lena 7.59 4.67 4.67 -0.00 0.0% 4.67 4.68 -0.01 -0.2%
Lennagrey | 7.45 4.32 432 -0.00 0.0% 4.33 4.34 -0.00 -0.1%
Noisesquare | 5.72 5.44 543 0.01 0.2% 5.48 5.46 0.01 0.2%
Peppers 7.59 4.58 4.56 0.02 0.4% 4.55 4.53 0.01 0.3%
Shapes 6.74 2.55 248 0.07 2.7% 2.41 2.36 0.05 1.9%
Average | 7.11 4.46 443 +20.03 0:6% 4.44 4.42 0.03 0.6%

this time (denoted as Type 2). Motreover, thej experiment can be classified
into two cases, one with no online'training area (denoted as Case 1), and
the other with the predefined four-pixel online training region (denoted as
Case 2).

In Table 5.5, the results obtained by setting the B matrix to be a zero
vector (Type 1) are shown in the columns denoted as A1l and A2, and that
of obtained by using the proposed “P-controller” compensator (Type 2) are
shown in the columns denoted as B1 and B2 respectively. For comparison
purpose, we also show in the last column of each case (Table 5.5) the percent-
age of improvement between the two types. As can be seen in Table 5.5, the
proposed “P-controller” compensator brings up a conspicuous improvement
from 1.4% to 2.7% on the first-order entropy of the three images “Barb”,
“Boats”, and “Shapes”. That is, the proposed approach is very useful for
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While expected to be v@r"y\uséfﬁ fO_I"LI_)'IXEJS" around edges and boundaries,
the proposed “P-controller” éorﬁiﬁéﬁﬁf&‘?ésults in a minor degradation on
the prediction result for the two images, “Lena” and “Lennagrey”. It is noted
that all the initial network parameters used in this chapter are generated off-
line from the image “Lennagrey”. Therefore, the results shown for the image
“Lena” and “Lennagrey” are quite interesting. One possibility for explaining
the degradation is the over-training of network parameters, and the cause of
the fact has to be further investigated.

To look further into the usefulness of the proposed “P-controller” com-
pensation mechanism, we use the image “Barb” in Fig. 5.6 as the test image.

The images of uncompensated prediction error obtained with B matrix set to
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Figure 5.7: Uncompensated

ediction exror for image “Barb.” (a) with B
matrix absent. (b) with B mat .

a zero vector (Type 1) .:;i ; ol ype J are shown in Fig. 5.7(a) and
5.7(b) respectively. In Fig: -  ‘ VO pes perform online adaptation
using the predefined four—pi o “training are A. The histograms of uncompen-
sated prediction error for the tw tyes in Fig. 5.7 are shown in Fig. 5.8. As
can be seen in Fig. 5.8, the uncompensated prediction error obtained by us-
ing the proposed “P-controller” compensator has a narrower histogram, and
hence a lower first-order entropy. Indeed, the entropies of the two histograms

in Fig. 5.8 are 4.83bpp (Type 1) and 4.72bpp (Type 2) respectively.

5.4.4 Comparisons to existing predictors

Table 5.6 shows the comparison results of uncompensated prediction errors
with state-of-the-art lossless image predictors for a set of eight test images

in first-order entropies. The results of the median edge detector (MED) [15],
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Figure 5.8: Histogram of uncompensated prediction error for the image
“Barb.” (both with the four-pixel,online training area)

the gradient adjusted predietor (GAP) [14], the sixth-order edge directed
predictor (EDP) [26], and the sixth-order.S-based edge-look-ahead approach
[27] are taken from [26] and [27] respectively. The results of the proposed
approach, which are obtained with the component B,u in existence, are
listed in the last two columns (Case 1 and Case 2) of Table 5.6. As can be
seen in Table 5.6, the proposed TS-FNN based predictor outperforms the
MED and GAP predictors in all the test images, and is compatible with
that of reported by the sixth-order EDP and the sixth-order LS-based edge-
look-ahead approach, which justifies the usefulness of the proposed predictor

approach.
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Table 5.6: Comparisons on first-order entropy with existing state-of-the-art
predictors.

- . Sixth-Order Proposed
Image gfllir;)? MED GAP Slxtél]—)(i)rder LS-Based WLi(t)ITO;'t With Local
Edge-look-ahead Trai;?ng Training

Baboon 7.36 628 | 622 6.01 5.99 6.10 6.07
Lena 7.59 490 | 475 4.60 4.54 4.67 4.68
Lennagrey| 7.45 456 | 440 426 4.20 432 434
Peppers 7.59 495 | 478 4.52 445 456 453
Barb 747 521 5.15 444 4.36 4.81 4.72
Barb2 7.48 519 | 5.06 4.80 477 4.87 4.89
Boats 7.10 431 4.29 4.14 411 4.17 4.16
Gold Hill | 7.62 472 | 470 4.60 461 4.64 4.64
Average | 7.46 502 | 492 4.67 4.63 4.77 475

5.4.5 The error compensation mechanism

The usefulness of the error.compensation mechanism (Fig. 5.1) will be evalu-
ated in this part. In this chapter, the error compensation mechanism uses the
so-called “bias cancelation” teechnique-for further refinement of the predic-
tion errors [14], [15], [19], [28].:1t should be noted that the conventional error
compensation mechanism discussed here, a statistical approach, is quite dif-
ferent to the proposed “P-controller” compensator implemented implicitly in
the consequent part of the predictor network. To demonstrate the effective-
ness of the proposed error compensation mechanism, the image ” Lennagrey”
(Fig. 2.6) is used for the experiment. The uncompensated and refined predic-
tion error for the image “Lennagrey” are shown in Fig. 5.9(a) and 5.9(b) re-
spectively. Moreover, the corresponding histogram are as shown in Fig. 5.10.
As can be seen in Fig. 5.10, the histogram of refined error has a narrower
peak and hence a lower entropy. Actually, the entropy for the two error

images are respectively, 4.116bpp (refined) and 4.335bpp (uncompensated).
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Figure 5.9: Prediction errors for theiniage “Lennagrey.” (a) Uncompensated.
(b) Refined. il

5.4.6 Compariso ; tate-of-the-art coders

To demonstrate the ' ‘
rates, we also compare the o Ssediapproach with state-of-the-art lossless
image coders. Table 5.7 gives actual bit rates by JPEG-LS [15], CALIC
[14], EDP [26], RALP [28] and TMW [20] for a set of fourteen test images.
In Table 5.7, the results of JPEG-LS, CALIC, EDP, RALP and TMW are
taken directly from [28]. All the bit rates of the proposed algorithm are ob-
tained using the same parameters with no individual optimization. Besides,
the bit rates of the proposed approach are obtained with the “P-controller”
compensator in presence. We also show in the second column and the fifth

column respectively the first-order entropies of the compensated prediction

errors using the the proposed approach. Moreover, the execution time (in
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Figure 5.10: Histogram of uncompensated and refined prediction errors for
the image “Lennagrey.”

seconds; on a Pentium 1.4GHz machine) of the'proposed coder are also listed
in the fourth and seventh columnso that we ¢an get a picture on the runtime
performance. It should be noted thatsome of the results in EDP are denoted
by “N/A” because they are not reported in [26]. Therefore, the average value
for EDP is different to that of for others.

As can be seen in Table 5.7, the proposed TS-FNN based approach out-
performs JPEG-LS [15] in almost all of the test images, and has lower bit
rates than CALIC [14] in eight out of the fourteen test images. Encourag-
ingly, the proposed approach achieves lower bit rates than the highly complex
TMW in two images, “Balloon” and “Noise square”. We notice that the pro-
posed bit rate performance for the image “Shapes” (Fig. 4.1) is inferior to
that of obtained by JPEG-LS [15], CALIC [14], and RALP [28]. For this, we

can see from Fig. 4.1 that the image “Shapes”, an artificial image with many
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Table 5.7: Comparisons on actual bit rates with existing state-of-the-art
lossless image coders. (run on a P4-1.4GHz machine with memory 512MB)

Proposed TS-FNN based coding system

Image Without online training area | With 4-pixel online training area | JPEG-LS | CALIC EDP RALP ™W
First Oreder | 1y First Oreder | 1 3] (4 [26] (28] [20]

Entropy Bit rate | seconds Entropy Bit rate |seconds
Airplane | 3.80 3.69 3.36 3.79 3.68 7.88 | 3.82 3.74 NA | 371 3.60
Baboon | 6.02 6.00 3.97 6.00 597 831 | 6.04 5.88 5.81 5.81 5.73
Balloon | 2.57 2.56 4.94 2.55 2.54 11.88 | 2.90 2.83 N/A | 255 2.66
Barb 4.60 4.54 3.67 4.54 4.49 794 | 4.69 432 4.11 4.12 4.09
Barb2 4.68 4.62 5.72 4.71 4.66 1592 | 4.69 4.53 4.52 4.51 4.38
Boats 391 3.80 5.36 3.90 3.78 1227 | 3.93 3.83 3.80 3.75 3.61
Camera | 4.61 4.40 1.00 4.61 4.39 2.05 | 4.31 4.19 N/A | 424 4.10
Couple 3.76 3.73 1.03 3.75 3.73 2.31 | 3.70 3.61 N/A | 3.63 3.45
GoldHill | 4.44 4.36 5.58 4.45 4.36 1259 | 4.48 4.39 4.39 4.32 4.27
Lena 4.49 4.46 3.56 4.50 447 944 | 4.61 448 4.40 4.35 4.30
Lennagrey | 4.11 4.07 3.52 4.12 4.08 10.08 | 4.24 4.11 4.02 3.95 3.91
Noisesquare | 5.32 5.35 0.98 5.40 5.44 2.11 | 5.68 544 N/A | 537 5.54
Peppers | 4.38 4.35 3.55 4.35 433 8.00 | 4.51 442 4.35 427 4.25
Shapes 1.97 1.86 331 1.90 1.79 11.30 | 1.21 1.14 N/A 1.52 0.76
Average | 4.19 4.13 3.54 418 1=4-12 8.72 | 4.20 4.07 4.43 4.01 3.90

(* For the EDP method, ‘the bit rafes for some of the images are not
available and the average is computed.only for those that are available.)

edges and lines, can be segmented into many slowly varying areas in which

the run-length coding method is most efficient to be used. In the meanwhile,

we also know that the run-length encoding is applied in the coder of JPEG-
LS [15] and RALP [28]. Furthermore, the CALIC [14] also uses a “Ternary

entropy coder” for the so-called “binary mode” or uniform regions. There-

fore, we think the bit rate performance for artificial images, like the image

“Shapes”, can be improved if a more sophisticated run-length coder or an

extra entropy coder with a small symbol set is applied for slowly varying

areas in the proposed approach.

As to the computational complexity is compared, the JPEG-LS [15] that
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uses the division-free MED predictor as the core of the image coder has the
lowest complexity. The CALIC coding system [14] applies the use of the
GAP as the core predictor. The GAP calculates the gradient of a coding
pixel and chooses one out of a set of seven predictors based on the calculated
gradient. Therefore, the complexity of the CALIC coding system is higher
than that of JPEG-LS. It is noted that both the coefficients of GAP and MED
predictors are fixed during the coding process. On the other hand, both the
EDP [26] and RALP [28] use a least squares (LS) adapted predictor as the
core of the coding system. We know that the normal equations provides the
key for the solution of LS optimization problem. Moreover, fast algorithms,
like Cholesky decomposition, can be used for the problem solving based on
the singularity of the constructed normal equations [35], [36]. Therefore, the
major complexity of the LS adaptationsprocess in EDP and RALP will be
in constructing the normalequatiéns rather than solving them [25]-[28]. A
detailed analysis on complexity of the’LS-based adaptive predictor can be
found in [27] and [28]. Obyiously,the eomputational complexity of EDP and
RALP are little higher than that of JPEG=LS and CALIC.

5.4.7 Computational complexity of the proposed ap-
proach

When reviewing the state-of-the-art lossless image coders, we can find that
some of which are designed for pursuing the ultimate compressibility regard-
less of the computational complexity encountered [20], [21]. In this chapter,
the proposed TS-FNN based approach is designed to be practical and fea-
sible under limited resources. In the proposed system, the prediction errors
are used to update the network parameters with back propagation learning

algorithm during the prediction process. Moreover, the learning cycle is set
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to be one for each coding pixel such that the computational complexity can
be reduced. Unlike other neural network based image predictors, the number
of online training pixels is decreased substantially and even not used in the
proposed approach so that the network adaptation process can be acceler-
ated. As can be seen in previous sections and the pseudo code, the major
nonlinear operation in the proposed system is the calculation of the six Gaus-
sian membership degree, i.e., (5.4), in the membership layer. In the network
adaptation process, only addition, multiplication and division operations are
needed ((5.12), (5.14), (5.18), (5.25), (5.30)). To get a picture about the
run-time performance, we also listed in Table 4.5 the execution times of the
proposed system (on a Pentium 1.4GHz machine). As can be seen in Ta-
ble 4.5, a very good trade-off between the computational complexity and
the prediction results has beentobtainéd: in the proposed system. Indeed,
the computational complexity, caii"be further reduced if we can define an
error threshold so that thé& proposed systemr will not activate the adaptation

process until the prediction error-is“bevond the pre-selected threshold.
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5.5 Concluding Remarks

In this chapter, we have proposed the use of a TS-FNN based predictor for
lossless coding of images. As the number of online training pixels for the
network adaptation process is decreased substantially, a very good run-time
performance can be achieved in the proposed approach. For pixels around
edges, we propose a novel approach by implementing implicitly the com-
monly used “P-controller” compensator in control system into the network
weights so that the prediction result can be improved. It is noted that the
proposed “P-controller” compensator is quite different to the so-called “bias
cancelation” technique applied in most of the lossless image coders. As can
be seen in our experiments, the use of the TS-FNN based predictor and the
“P-controller” compensator render,the proposed approach highly adaptable
to the varying statistics of «¢oding images.- Besides, comparisons to exist-
ing state-of-the-art lossless image predictors and coders have demonstrated
the usefulness of the propesed appreach, and what’s more, we have brought
up an idea of enhancing the predictive'coding efficiency in a quite different

aspect.
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Chapter 6

Conclusion

In this dissertation, a switching coding scheme that combines the advantages
of both run-length and adaptive linear predictive coding is proposed. For pix-
els in slowly varying areas, run-length coding is used; otherwise an LS-based
adaptive predictor is used. We find in experiments that the LS-based adap-
tive predictor performs very useful-around boundaries for its edge-directed
property. Instead of performing LS adaptation in a pixel-by-pixel manner,
we adapt the predictor coefficients only when an edge is detected or when
the prediction error is greater than a predefined threshold so that the com-
putational complexity can be significantly reduced. For this, we propose a
simple yet effective edge detector using only causal pixels. This way, the
proposed system can look ahead to determine if the coding pixel is around
an edge and initiate the LS adaptation in advance to prevent the occurrence
of a large prediction error. With the proposed switching structure, very good
prediction results can be obtained in both slowly varying areas and pixels
around boundaries. Moreover, only causal pixels are used for estimating the
coding pixels in the proposed encoder; no additional side information needs
to be transmitted. When compared with the pixel-by-pixel LS adaptation,

the proposed approach can achieve a noticeable reduction in complexity with
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only a minor degradation in entropy; a good tradeoff between computational
complexity and prediction results has been obtained. Furthermore, compar-
isons to existing state-of-the-art lossless image predictors and coders have
demonstrated the superiority of the proposed system.

In addition to the proposed edge-look-ahead approach. We find a large
prediction error can usually take place for pixels around boundaries. There-
fore, we also propose a novel idea of using control technologies to improve
the prediction result of pixels around boundaries. To realize this idea, we
have implemented an adaptive predictor based on Takagi-Sugeno fuzzy neu-
ral network. Moreover, the widely used proportional controller in control
theory is applied implicitly in the consequent part of the network as a com-
pensator to enhance the prediction result around edges. The effectiveness of
the proposed novel approach, though nét yery conspicuous at present, can be
further improved if a more sophisticated compensator is applied, and what’s
more, we have brought uptanidea of solving this problem in a quite different

aspect for lossless compression of-images.
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Appendix A

Pseudo Code of the Proposed
Edge-look-ahead Approach

{Pseudo-C implementationtof thé: proposed edge-look-ahead ap-
proach in the 1-D scenario.}
/* Symbols definition */

// o?: variance

// o%: variance_h

// o?: variance_l

// : gamma_l

// 2: gamma_2

/] @n: x[0]

// en: en]

// 0: theta

/] xn(k): x[n-K]

/] xp: Xp

// alk): alk
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runmode=0;
while (scan unfinished)
{
if ( runmode or (variance==0) )
/* the case that run mode is initiated */
{
if ( x[n]==x[n-1] )
{
runmode=1;

runlength++;

else

Encode runlength usingarithinetic coding.
runlength=0;

runmode=0;

else

runmode=0;

if (not runmode)

/* the case that regular mode is used */

{

edge_detected=0);

if ( variance >= gamma_1 )

{
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Calculate variance_h and variance_l;
if ( variance >= gamma_2*(variance_h + variance_l) )
/* the case that an edge exists */
edge_detected=1;
}
if (edge_detected or (e[n-1] >= theta) )
Adapt predictor;
/* Perform prediction */
xp=0;
for (k=1; k<=N; k++)
xp=xp+a[k]*x[n-k];
Perform error compensation;
Encode the refined erzor signalre using conditional

arithmetic coding;

} /* end of regular:mode */

} /* end of scan */
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Appendix B

Matlab Code for Sobel operator

{Matlab code for the Sobel operator.}
%Main Program
fid=fopen(‘Lennagrey.raw’,r);
f=fread(fid,[512,512]);

f=1";

Edgelmage=Sobel(f,50);
imagesc(Edgelmage);

axis square;

colormap(gray);

%Sobel function

function y=Sobel(image, th)
[Nn Nm|=size(image);
h=[-1-2-1;0 0 0;1 2 1];
Gx=filter2(h,image);
Gy=filter2(h’,image);
F=abs(Gx)+abs(Gy);

113



for i=1:Nn
for j=1:Nm
if F(i,j) < th
¥(1,§)=255;
else
y(i,))=0;
end
end

end
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Appendix C

Pseudo Code of the
P-Controller Compensation
Approach

{Pseudo code of the P-controller compensation approach.}
/* Symbols definition */
/] xp: xn

/] xp: xp

/] = i

// ui: uli]

/[ hag: muli][j]

// maz: mii][j]

/] s sigmalill

// ay: alphalk]

/] wi: wlK]

// ap: alk]i]

// b DIKJ

/] 6W: deltal[4]
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// Aaj: Delta_a[k]|[r]

// Ab;: Delta_blk][s]

// Am;;: Delta_mli][j]
// Aoi;: Delta_sigmali][j]
// na: eta_A

// np: eta_B

/] Nm: eta_m

// ne: eta_sigma

// T: tau

NodeinLayer1=2;
NodeinLayer2=3;
NodeinLayer3=9;
Av=255;

while (scan unfinished)

{

/* Texture context normalization */

for (t=1; t<=6; t++)

x[t]=x[t]/Av;
xf=xn/Av;
2[1]=x[1]-x[3];
2[2]=x[2]-x[3];
uf1]=x[1];
u[2]=x[2];

/* Compute the output of Layer2 */
for (i=1; i <= NodeinLayerl; i4++)
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for (j=1; j <= NodeinLayer2; j+-+)
muif[j]=exp(-sqr(z[i]-mli][j]) /sqr(sigmal[i][j]));

/* Compute the output of Layer3 */

k=1;

for (i=1; i <= NodeinLayer2; i++)
for (j=1; j <= NodeinLayer2; j+-+)

{
alpha[k]=mu[1][i[*mu[2][j];
k++;
}
/* Layerd */
y=0;
for (k=1; k <= NodeinLayer3; k++)
{
w(k]=0;

for (r=1; r <= 6; r++)
wilk]=wlk]+a[k] [r]*x]r];
for (s=1; s <= 2; s++)
wk]=w[k]+bl[k][s]*u[s];
vy [k]=alpha[k]*wk];
y=y+yylk];
}
/* Compute the actual output */
xp=Round(y*Av);
if xp > 255 then xp=255
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else if xp < 0 then xp=0;

e=XN-Xp;

Perform error compensation to get refined error ¢;
Encode the refined error € using conditional arith-

metic coding.

/* Update ay, and b}, in the connection between Layer3 to Layerd*/
delta[4]=xf-y;
for (k=1; k <= NodeinLayer3; k++)
{
for (r=1; r <= 6; r++)
{
Delta_a[k][r]|=eta_A*deltd[d*alphalk]*x[r] + tau*Delta_a[k][r];
a[k|[r]=a[k][r] + Delta alk][r];
}
for (s=1; s <= 2; s+4)
{
Delta_b[k|[s|]=eta_B*deltal4]*alpha[k|*u[s] + tau*Delta_b[k][s];
b[k][s]=blk][s] + Delta_b[k][s];

/* Compute Am;; */
Delta m[1][1}=etam*2*(z[1]-m[1][1])*delta[4]* (vy[1]+yy[2]+vy[3]) /sqr(sigma[1][1])
+ tau*Delta_m|[1][1];
Delta_m([1][2]=etam*2* (z[1]-m[1][2])*delta[4]* (vy[4]+yy[5]+vy[6]) /sqr(sigmal[1][2])
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+ tau*Delta_m[1][2];
Delta_m[1][3]=eta_m*2*(z[1]-m[1][3])*delta[4]* (vy[7]+vy[8]+vy[9]) /sqr(sigma[1][3])
+ tau*Delta_m|[1][3];
Delta_m[2][1]=eta_m*2*(z[2]-m[2][1])*delta[4]* (vy[1]+vy[4]+vy[7]) /sqr(sigma[2][1])
+ tau*Delta_m|2][1];
Delta. m[2][2]—eta.m*2*(z[2)-m[2][2]) *deltald]*(yy[2]-+yy(5)-+yy])/sar(sigmal2][2])
+ tau*Delta_m|2][2];
Delta_m[2][3]=eta_m*2*(z[2]-m[2][3]) *delta[4]* (vy[3]+vy[6]+vy[9]) /sqr(sigma[2][3])
+ tau*Delta_m[2][3];

/* Compute Ag;; */

Delta_sigmal[1][1]=eta_sigma*2*sqr(z[1]-m[1][1]) *delta[4]* (yy[1]+yy[2]+yy[3])
/power(sigma[1][1],3) + tau*Delta_sigmal1][1];
Delta_sigmal[1][2]=eta_sigma*2*&qe(Z]1]-mif1][2]) *deltal4]* (vy[4] +yy[5]+yy[6])
/power(sigma[1][2],3) ¥+ tau*Delta.-sigma|1}[2];

Delta_sigmal[1][3]=eta sigma*2*sqr(z[1]-m[1][3]) *deltal4]* (yy[7]+yy[8]+yy[9])
/power(sigma[1][3],3) +*fau*Delta_sigmiafl][3];
Delta_sigmal[2][1]=eta_sigma*2¥sqr(z[2]-m[2][1]) *deltal[4]* (yy[1]+yy[4]+yy[7])
/power(sigma[2][1],3) + tau*Delta_sigma[2][1];
Delta_sigmal2][2]=eta_sigma*2*sqr(z[2]-m[2][2]) *deltal4]* (yy[2] +yy[5]+yy[8])
/power(sigma[2][2],3) + tau*Delta_sigma[2][2];
Delta_sigmal[2][3]=eta_sigma*2*sqr(z[2]-m[2][3]) *deltal4]* (yy[3]+yy[6]+yy[9])
/power(sigma[2][3],3) + tau*Delta_sigma[2][3];

/* Update m;; and o;; in Layer2 */

for (i=1; i <= NodeinLayerl; i4++)
for (j=1; j <= NodeinLayer2; j++)
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{
m(i] [jJ=m{i][jl+Deltam[i][j];
sigmali][j]=sigmali] [j]+Delta_sigmali][j];
}
} /* end of scan */
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