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摘  要 

 

非失真影像編碼在許多場合皆有其應用之需求性；例如醫學影像編碼、遠端感測，

以及影像壓縮等。在進行非失真影像編碼過程中，如何有效地移除統計累贅至今仍是訊

號源編碼研究領域的一個主要挑戰課題。因此已有許多關於非失真影像編碼的方法被提

出。其中有部分的研究係使用可還原小波轉換。然而由各項文獻中可以發現，使用轉換

編碼所得到的結果往往卻不若以空間域之預測編碼結合環境建模（predictive coding with 
context modeling in spatial domain）所得到之結果來的好。 

在本篇論文中，我們將針對近年來非失真影像編碼之概況做一簡介。此外我們亦將

提出一基於線性預測之架構並以最小平方法進行此預測器係數之修正。由於使用最小平

方法進行預測器係數之修正具有所謂邊界導向之特性（edge-directed characteristic），因

此對於位處影像邊界附近像素之預測具有非常良好的效果。然而若將整張圖像皆以最小

平方法進行預測器係數之修正勢將導致極高之複雜度，因此我們提出當編碼過程遭遇影

像之邊界時才以最小平方法進行預測器係數之修正；如此運算複雜度將可大幅地降低。

為了能夠於編碼過程中事先偵測影像邊界之存在與否，我們提出了一個非常簡易、有效

而且僅使用已掃瞄/編碼像素（causal pixels）的邊界偵測法。如此一來我們的系統便可

以預知影像邊界存在與否，並在遭遇邊界時，事先以最小平方法進行預測器係數之修正

以防範較大預測誤差之發生。在我們所提出的方法中僅使用到已掃瞄/編碼像素來進行預

測編碼；因此並無需傳送額外之資訊。經由實驗證明，我們所提出的方法能夠有效地在

預測結果與運算複雜度之間取得良好的平衡點。此外我們也透過大量的實驗並針對當前

非失真影像壓縮領域最先進的預測器（predictor）與編碼器（coder）進行比較來證明所

提出方法之可用性。 
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除上述所提出具邊界前瞻（edge-look-ahead）能力之非失真預測編碼架構外，我們

發現較大的預測誤差通常好發於影像中具有邊界之處。因此，我們在本篇論文中提出一

創新概念，亦即利用控制工程的技術來改進影像中位於邊界附近像素之預測結果。之所

以有這樣的想法是因為我們瞭解控制系統的目的本就是希望系統的輸出能夠準確地遵

循所輸入之控制命令；因此在目的上與預測編碼是一致的。此外影像中的邊界（亦即像

素的急速變化）亦可視為控制系統中的步階命令（step command）。基於前述的觀察使

我們產生了嘗試以控制方法來改進預測編碼效能的想法。為了實現這樣想法，我們也以

Takagi 以及 Sugeno 兩位學者所提出之模糊類神經網路實做了一適應性預測編碼架構。

此外我們也將控制領域中經常被使用的 Proportional Controller（P 型控制器）實現於此

一模糊類神經網路中以強化影像中位於邊界像素之預測結果。我們發現這樣的作法對於

預測編碼的效能改善確實是有所幫助的；雖然目前的改進效果並不是那麼地顯著，但是

這樣的概念的確為非失真影像預測編碼領域開啟了一個全然不同的問題思考以及解決

方式。 



Abstract

Lossless image coding is required by many applications, such as

medical imaging, remote sensing, and image archiving. It has re-

mained a major challenge to source coding community for the dif-

ficulty of removing statistical redundancy effectively and efficiently.

Therefore, many approaches have been proposed for lossless compres-

sion of images. Among proposed approaches, some of which are based

on reversible transform coding, like integer wavelet transformation.

However, we find in literatures that the results obtained by using

transform coding are typically inferior to that of obtained by predic-

tively encoded techniques with context modeling in spatial domain.

In this dissertation, an introduction on recent advances in lossless

image coding will be given. Moreover, we will propose an approach

based on linear predictive coding with least-squares (LS) optimiza-

tion for the adaptation of predictor coefficients. The LS-based adap-

tive predictor, for its edge-directed characteristic, has been shown to

be useful for the prediction of pixels around boundaries. Instead of

performing LS adaptation in a pixel-by-pixel manner, we adapt the

predictor coefficients only when an edge is detected so that the compu-

tational complexity can be significantly reduced. For this, we propose

a simple yet effective edge detector using only causal pixels. This

way, the proposed system can look ahead to determine if the coding

pixel is around an edge and initiate the LS adaptation in advance to

prevent the occurrence of a large prediction error. Furthermore, only

causal pixels are used for estimating the coding pixels in the proposed

encoder; no additional side information needs to be transmitted. As

we will see later in the experiments, a very good trade-off between
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prediction results and the computational complexity can be obtained

with the proposed approach. Besides, extensive experiments as well

as comparisons to existing state-of-the-art predictors and coders will

be given to demonstrate the usefulness of the proposed approach.

In addition to the proposed edge-look-ahead approach, we find a

large prediction error can usually take place for pixels around bound-

aries. Therefore, we also propose in this dissertation a novel concept

of using control technologies to improve prediction result for pixels

around boundaries. This idea comes from the fact that the purpose of

a control system is to follow the input command as precisely as pos-

sible, which has the same objective with predictive coding. Moreover,

an edge or a boundary can be regarded as a step command in control

system. The above observations lead to the idea of solving this prob-

lem using control technologies. To realize this idea, we also implement

an adaptive predictor using Takagi-Sugeno fuzzy neural network (TS-

FNN). Moreover, the widely used proportional controller in control

theory is applied implicitly in the consequent part of the network as

a compensator to enhance the prediction result around edges. The

effectiveness of the proposed novel approach, though not very con-

spicuous at present, can be further improved if a more sophisticated

compensator is applied, and what’s more, we have brought up an idea

of solving this problem in a quite different aspect for lossless compres-

sion of images.
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Chapter 1

Introduction

Lossless image coding is required by many applications, such as medical

imaging, remote sensing, and image archiving. It has remained a major

challenge to source coding community for the difficulty of removing statistical

redundancy effectively and efficiently. In this chapter, we will give a short

description on the differential encoding technique, which is widely used in

image and speech encoding system. Moreover, a review on recent advances

in lossless image coding will also be introduced. After that is an overview of

the proposed predictive coding scheme. Finally, the chapter outline of the

dissertation will be given.
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Figure 1.1: Basic block diagram of a lossless differential encoding system.

1.1 Advances in Lossless Image Coding

There have been great advances in lossless image coding recently [1]-[31].

Some of which are based on reversible wavelet transformation using lifting

structure [6]-[10]. By using integer wavelet transformation, lossless to near-

lossless compression as well as progressive reconstruction of image data can

be achieved [6]-[10]. However the compression results obtained with the use

of integer wavelet transformation are typically inferior to that of obtained by

predictively encoded techniques [17].

The predictive coding scheme, known as the differential pulse code mod-

ulation (DPCM), is used in a wide variety of applications such as image

and speech compression for ease of implementation [1]. Due to the high

correlation between successive image samples, the differential encoding tech-

nique removes the inter-pixel redundancy by encoding the difference between

successive image samples rather than the samples themselves. Since the dif-

ference between samples is expected to be smaller than the actual sampled

amplitudes, fewer bits are required to represent the difference. Thus, the

differential encoding removes the inter-pixel redundancies and encodes only

the new information between closely spaced image pixels.
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For lossless compression of images, we show in Fig. 1.1 the basic block

diagram of a differential encoding system (predictive coding system). As can

be seen in Fig. 1.1, the lossless predictive coding system is composed of two

major blocks; the predictor and the entropy coder. In order that a lower

first-order entropy and hence a lower actual bit rate can be obtained, many

researches on the design of an effective and efficient predictor for removing

the statistical redundancy among coding pixels have been proposed. Among

which, adaptive predictors with context modeling are often used to accom-

modate the varying statistics of coding images [11]-[31]. Besides, adaptive

prediction is achieved in most of the coders by using multi-predictor struc-

tures [11]-[22]. Among which, the CALIC coding system [14], a state-of-the-

art lossless coder proposed for JPEG-LS, uses a gradient adjusted predictor

(GAP). Based on the gradient of neighboring pixels, one out of a set of

seven predictors is chosen. The LOCO-I coder [15], an algorithm motivated

by CALIC [14] and standardized into JPEG-LS, uses a median edge detec-

tor (MED) to choose one of three predictors for current prediction. In [16],

adaptive prediction is achieved by choosing one out of a set of predictors that

minimizes the energy of prediction errors in a specified cluster of causal pix-

els, and the predictor coefficients of the selected predictor are then updated

by applying gradient descent rule.

In [17]-[20], multi-pass prediction is introduced. With multiple passes,

progressive transmission of lossless and near-lossless coding of image data

can be achieved. Besides, the encoder can form a 360 degree prediction [19]

or perform a global image analysis [20] by using multi-pass prediction. A

highly complex two-pass coder called TMW has been proposed in [20]. Using

multiple linear predictors and global image analysis, the TMW system can

achieve lower bit rates than existing coders for most images. While achieving
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very low bit rates, the computational cost is regarded as prohibitive in TMW

[20]. Recently, a fuzzy logic-based adaptive DPCM algorithm called FMP [21]

is proposed. The FMP presents a competitive, and in some cases superior

result than TMW but with a lower computational cost. Though FMP is

effective in removing the statistical redundancy, it still takes minutes.

In the context of optimal predictors, the minimum mean square error

estimate of Y given observations X1, X2, · · · , Xn is E{Y |X1, X2, · · · , Xn},
generally a nonlinear function. Therefore, there have been many results

using neural networks as nonlinear estimators [22]-[24]. Neural network based

predictors perform well in slowly varying areas. However, there can be large

prediction error around boundaries [32]. The result can be improved using

additional hidden layers or hidden neurons, but this incurs a drastic increase

in complexity [23], [33].

The performance of predictive image coding scheme highly depends upon

the effectiveness of the predictor used in the coding process. Most of the

image predictors perform very well in slowly varying areas. However, large

prediction errors can take place around edges and boundaries, and this has

become a major problem to be conquered so far. Intuitively, the prediction

results can be improved if we can foresee the existence of an edge and then

predict along the edge orientation. However, the design of a robust edge de-

tector and the analysis of edge orientation are difficult problems themselves,

let alone to predict along the edge orientation. Recently, linear predictors

adapted by least-squares (LS) optimization have been proposed as an effi-

cient approach to accommodate varying statistics of coding images [25]-[31].

Among which, the EDP [26] pointed out that the superiority of LS adap-

tation is in its edge-directed property. That is, the LS-based predictor can

adjust the prediction support along the edge orientation automatically during
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the adaptation process. With the edge-directed property, LS-based adaptive

predictor performs very well for pixels around boundaries. For complexity

consideration, performing the LS adaptation process in a pixel-by-pixel man-

ner is regarded as prohibitive. Therefore, the EDP [26] proposed initiating

the LS optimization process only when the prediction error is beyond a pre-

selected threshold such that the computational complexity can be reduced.

The EDP [26] has made a noticeable improvement over the state-of-the-art

lossless coder CALIC [14]. On the other hand, we know that the normal equa-

tions provide the key for LS adaptation, and some fast algorithms, Cholesky

decomposition for example, can be applied in the LS adaptation process.

Therefore, the complexity in solving the normal equations itself is not a

problem. Nevertheless, the computational cost for the construction of nor-

mal equations is rather high. Thus, an algorithm for the fast construction of

normal equations has been proposed in [25] so that the computational cost

for LS adaptation process can be reduced significantly.
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1.2 The Proposed approach

It is known that many coding methods are more efficient with some images

than others. In particular, run-length coding is very useful for coding areas

of little changes. Adaptive predictive coding achieves high coding efficiency

for fast changing areas like edges. In this dissertation, we propose a switch-

ing coding scheme that will combine the advantages of both Run-length and

Adaptive Linear Predictive coding (RALP). There are other switching meth-

ods that achieve very low bit rates [20]-[23]. However the results are usually

obtained with a very high computational complexity [20]-[23]. On the con-

trary, the proposed RALP coder can achieve a very good coding efficiency

but still with a moderate computational complexity. In the proposed ap-

proach, the run-length encoder is used for pixels in slowly varying areas;

otherwise an LS-based adaptive predictor is used. The LS-based predictor

has been shown to be very useful for the prediction of pixels around an edge

[26], [27]. Moreover, we adapt the predictor coefficients only when an edge

is detected or when the prediction error is beyond a pre-selected threshold

so that the computational cost can be significantly reduced [27]. To do this,

we use a simple and efficient edge detector that uses only causal pixels, i.e.,

pixels that have already been coded. This way, the predictor can look ahead

if the coding pixel is around an edge and initiate the LS adaptation process

beforehand to prevent the occurrence of a large prediction error. With the

proposed switching structure, very good prediction results can be obtained in

both slowly varying areas and pixels around boundaries. Some preliminary

results regarding the proposed LS-based predictor with edge-look-ahead can

be found in [27].

For prediction error refinement, the so-called context modeling technique

[14], [19] is used in the proposed system. The compensated error has a
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narrower histogram and hence a lower first-order entropy. As we will see

in the experiments that the switching structure combined with edge-look-

ahead prediction as well as automatic error modeling renders the proposed

RALP highly adaptable and very feasible under limited resources. A very

good trade-off between coding efficiency and computational complexity can

be achieved. Comparisons with existing state-of-the-art LS-based predictors

can also be found in our experiments.

1.3 Outline of the Dissertation

The rest of the paper is organized as follows. Chapter 2 introduces the pro-

posed LS-adaptive predictor with edge-look-ahead. The entropy coding of

prediction error is addressed in chapter 3. Extensive experiments of the pro-

posed method and comparisons to existing predictors and coders are given

in chapter 4. Chapter 5 investigates the use of control technologies to en-

hance prediction result of pixels around boundaries. A conclusion is given in

Chapter 6.
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Chapter 2

Least-squares Based Adaptive
Predictor with Edge-look-ahead

In this chapter, details on the proposed least-squares (LS) based adaptive

predictor will be addressed. First of all, we will give an overview on the

proposed predictive coding system. Secondly, an illustrative example will be

given to manifest the edge-directed property of LS adaptation. In order that

the proposed system can foresee the existence of an edge, we will introduce

in this chapter the proposed causal edge detector. After that, a detailed

description on the LS adaptation process will be given. Finally, the so-called

bias cancelation technique for prediction error refinement will be addressed.
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Figure 2.1: Proposed RALP coding system.

2.1 An Overview of the Proposed System

Many coding methods are more efficient with some images than others. In

particular, run-length coding is very useful for coding areas of little changes.

Adaptive predictive coding achieves high coding efficiency for fast changing

areas like edges. In this dissertation, we propose a switching coding scheme

(as shown in Fig. 2.1) that will combine the advantages of both Run-length

and Adaptive Linear Predictive coding (RALP). For pixels in slowly varying

areas, run-length coding is used; otherwise least-squares (LS) based adaptive

predictive coding is used. Instead of performing LS adaptation in a pixel-

by-pixel manner, we adapt the predictor coefficients only when an edge is

detected so that the computational complexity can be significantly reduced.

For this, we use a simple yet effective edge detector using only causal pixels.

This way, the proposed system can look ahead to determine if the coding

pixel is around an edge and initiate the LS adaptation in advance to prevent
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the occurrence of a large prediction error. With the proposed switching

structure, very good prediction results can be obtained in both slowly varying

areas and pixels around boundaries. Furthermore, only causal pixels are used

for estimating the coding pixels in the proposed encoder; no additional side

information needs to be transmitted.

The proposed RALP system, as shown in Fig. 2.1, has two operation

modes, run mode and regular mode. The “mode selection” block (Fig. 2.1)

determine if the current pixel is in an local area of little changes. If it is,

the run mode is triggered and the current pixel is encoded using run-length

encoding. If not, the regular mode is assumed and the pixel is encoded using

predictive coding.

Run mode

It is known that the run-length coding is most efficient for the encoding of

consecutive pixels with identical grey values. The case that consecutive pixels

are identical can usually occur in an artificial image or in slowly varying areas

of a natural image. Therefore, we use the run-length coding in the proposed

RALP system for the encoding of pixels in an area of little changes. If the four

pixels xn(1), . . . , xn(4) in Fig. 2.2 are identical, the run mode is switched on

and the run-length is encoded using an arithmetic coder with an alphabet set

of {0, 1, . . . , 20}. The “0”, called escape symbol in the proposed approach, is

used to indicate an unsuccessful run and should be encoded if the grey value

of the coding pixel xn and that of xn(1), . . . , xn(4) are distinct so that the

decoder can also make a right decision and quit the run mode automatically.

This time, the regular mode is used for the encoding of the current pixel. It

is noted that the run mode can also be broken by ends of lines, in which case

the encoder returns to the regular mode, i.e., the regular mode is assumed for
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the first pixel of every line. Moreover, the encoding of an escape symbol can

cause penalty and degrade the coding efficiency. Therefore, we record the

number of times of run mode triggered and the times of unsuccessful run. If

the percentage of unsuccessful run is greater than a predefined threshold, the

run mode is disabled and not to be used for the rest of the coding process. It

is noted that all the pixels used for mode selection are causal and the decoder

can reproduce the same decisions without any side information.

xn(1)

xn(2)xn(3) xn(4)xn(7)

xn(5)

xn(11) xn(8) xn(6) xn(9)
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xn(5)
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xn(10)

xn(12)

xn

Figure 2.2: The ordering of pixels for prediction inputs.

Regular mode

In the regular mode, pixels are encoded using predictive coding. Predic-

tive coding can be very efficient for the removal of statistical redundancy

between neighboring pixels in slowly varying areas. However, there can have

a large prediction error around boundaries. In this paper, we will use LS op-

timization to update the predictor coefficients on the fly so that the predictor

can adapt itself to the varying statistics [25]-[28]. It is known that the LS-

based adaptive predictor is an efficient approach to improve the prediction

result around boundaries for its edge-directed property [26]-[28]. However,

a pixel-by-pixel adaptation of the predictor coefficients is computationally

expensive and often not necessary [25]-[28]. Therefore, we will initiate adap-
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tation only when the prediction is inadequate, which is around an edge. For

this, an “edge detector” is used to look ahead and determine if the coding

pixel is around an edge so that the predictor can adapt itself beforehand

to prevent the occurrence of a large prediction error. In the regular mode,

the prediction error is further refined using error compensation. That is, the

predictor output xp is added by a correction term ep (as shown in Fig. 2.1) to

get a compensated prediction xcpd = xp + ep. The amount of compensation

ep is determined through an error modeling mechanism. The refined error

signal ε = xn−xcpd can then be entropy encoded using conditional arithmetic

coding to produce the coded bit stream.

In the proposed encoder, only causal pixels, i.e., pixels that have already

been coded, are used for estimating the coding pixels; no additional side

information needs to be transmitted. Moreover, the proposed RALP coder

is symmetric, meaning that the decoder has the same predictor switch as

the encoder, and performs prediction and error compensation just like the

encoder. Therefore, the actual pixel value can be reconstructed in the de-

coder with the received bit stream of refined errors. Details of the individual

components of the system are introduced in subsequent sections.
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2.2 Edge-directed Characteristic of LS adap-

tation

In predictive coding schemes, the effectiveness of any adaptive predictor de-

pends upon its capability of adapting from slowly varying areas to edge

regions [26]. Intuitively, the prediction results can be improved if we can

foresee the existence of an edge and then predict along the edge orienta-

tion. However, the design of a robust edge detector and the analysis of edge

orientation are difficult problems themselves, let alone to predict along the

edge orientation. In contrast, the LS-based adaptation provides an elegant

way of approximating the optimal orientation adaptive prediction due to its

edge-directed property [26].

To illustrate the edge-directed property of LS adaptation, a simple exam-

ple will be given so that the relationship between the prediction support and

the edge orientation can be quantitatively analyzed. For this, we show in

Fig. 2.3 an example in which the current pixel is along a sharp vertical edge,

i.e., |r − s| � 0. For simplicity, we only consider the second-order predictor

x̂n = a1xwest + a2xnorth = a1r + a2s, in which case the training window has
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12 elements (Fig. 2.3). To find the least-squares solution of the second-order

predictor coefficients, i.e., a1 and a2, we start with the following equation,

which is constructed by using the 12 training pixels in raster scan order.
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, (2.1)

where a1 and a2 are the predictor coefficients to be determined. Obviously,

(2.1) is an over determined system. To find the LS solution of (2.1), the

transpose of the coefficient matrix in (2.1) is left multiplied to both sides of

itself, and we can get[
6r2 + 2rs + 4s2 6r2 + 6s2

8r2 + 4s2 6r2 + 2rs + 4s2

] [
a1

a2

]
=

[
6r2 + 6s2

6r2 + 2rs + 4s2

]
. (2.2)

By some simple operations, we find the optimal LS solution for the predictor

coefficients are given by [
a1

a2

]
=

[
0
1

]
. (2.3)

The edge-directed characteristic of LS adaptation can be best observed from

(2.3) where the prediction support has been adjusted along the edge orien-

tation (i.e., vertical orientation in this case) automatically. For a horizontal

or arbitrarily oriented edges, the edge-directed property can also be veri-

fied by using similar mathematical derivations [26]. As we will see later in

the experiments, the LS-based adaptive predictor, having the edge-directed
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property, can have a very good performance for pixels around boundaries,

and the edge-directed characteristic of LS adaptation will be utilized in the

proposed approach.

15



2.3 Proposed Edge Detector

In the regular mode, we use a LS-based adaptive predictor to accommodate

the varying statistics of the image. To save computations, the predictor is

adapted only when prediction error is large or likely to be large. For a pixel

around an edge, prediction error is usually large and adaptation is needed.

To determine whether the coding pixel is around an edge, we use a simple yet

effective edge detector in this paper. It should be noted that conventional

edge detectors, e.g., “Sobel” operator, can not be applied here because they

use non-causal pixels, i.e., pixels yet to be encoded.

2
�

2

l�
2

h�

Figure 2.4: A typical histogram of an area that contains an edge.

We observe that an area that contains an edge usually has a large variance.

Furthermore, the histogram of such an area tends to have two peaks, one on

each side of the mean value (Fig. 2.4). We will use these two observations to

determine the existence of an edge. Moreover, the set of the four pixels κ =
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{xn(1), . . . , xn(4)} in Fig. 2.2 are used for the detection. The mean x̄ and

variance σ2 of the set κ are calculated. Furthermore, the four pixels can be

divided into two groups, the pixels with gray levels higher than x̄ in group

κh and the rest in group κl. We also compute the respective variance σ2
h, σ2

l

of the pixels in κh and κl (Fig. 2.4).

A pixel around an edge is likely to have a large σ2 but small σ2
h and σ2

l .

We determine whether the coding pixel is around an edge if the following

two conditions are both satisfied,

σ2 ≥ γ1, and σ2 ≥ γ2 (σ2
h + σ2

l ). (2.4)

It is noted that the second condition in (2.4) is included because a region

with uniformly distributed gray values also results in a large σ2. Therefore,

the switch first examines if σ2 ≥ γ1 when a large σ2 is detected then the

switch checks the second inequality in (2.4). In this paper, the LS adaptation

process in the regular mode is activated whenever the two conditions in (2.4)

are satisfied. We have found through experiments that γ1 = 100 and γ2 = 10

work very well and these values will be used throughout this dissertation.

It should also be noted that the run mode will be triggered when σ2 = 0,

i.e., the case that xn(1), . . . , xn(4) are identical. In this case, we do not have

to check the conditions in (2.4). As we will see later in experiments that

the proposed detector is very effective in detecting edges although only four

pixels are used. Moreover, since we use only causal pixels for the detection

of an edge, the decoder can perform the same edge detection operation and

switches on the LS adaptation process.
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2.4 Least-squares Based Adaptive Prediction

In the regular mode, the LS adaptation process is activated whenever the

two conditions in (2.4) are both satisfied or when the prediction error is

greater than a predefined threshold θ. The corresponding predictor inputs

for different prediction orders are shown in Fig. 2.2 where the ordering of

pixels is based on the distance to the pixel to be encoded. In this paper, the

predicted value xp of the coding pixel xn is a linear combination of its causal

neighbors given by

xp =
N∑

k=1

a(k)xn(k), (2.5)

where N is the prediction order, xn(k) is the kth nearest neighbor of xn and

a(k) is the corresponding predictor coefficient. It is noted that we do not use

any training set for the optimization of initial predictor coefficients in this

paper. The initial coefficients for the proposed predictor are equally weighted,

i.e., the coefficients a(k) for the Nth-order predictor are 1/N respectively.

The training area for LS adaptation process of the coding pixel is shown

in Fig. 2.5. Suppose we have M pixels in the training area, our objective is
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to find a least-square solution for the system

Pa = y, (2.6)

where

P =




xn−1(1) xn−1(2) . . . xn−1(N)
xn−2(1) xn−2(2) . . . xn−2(N)

...
...

. . .
...

xn−M(1) xn−M(2) . . . xn−M(N)


 ,

a =




a(1)
a(2)

...
a(N)


 , y =




xn−1

xn−2
...

xn−M


 .

The optimal a that minimizes the square errors ‖y−Pa‖2
2 can be obtained

by solving the normal equations [35]

PTPa = PTy. (2.7)

There are well-developed numerical approaches to solve (2.7). For the

case that P has full rank; i.e., rank N , PTP is nonsingular and positive

definite [35], [36]. The normal equations will have a unique solution a =

(PTP)−1PTy. In this case, the Cholesky decomposition, which requires only

half the usual number of multiplications than alternative methods, can be

used to solve (2.7) [35], [36].

If P is defective; i.e., rank < N , PTP fails to be positive definite and

the singular value decomposition (SVD) can be used to solve (2.7) [35], [36] .

The positive definite property of PTP can be easily examined in the process

of Cholesky decomposition [36].

In the proposed approach, updated predictor coefficients are used for

current prediction and passed on to the next coding pixel. For non-edge

pixels, we use the stored prediction coefficients of the four nearest causal
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Figure 2.6: The image “Lennagrey”.

neighbors to generate four prediction values and take their average as the

final prediction result. This manner, the predictor can resist against moder-

ate salt-and-pepper noise. To summarize, the pseudo code of the proposed

algorithm is given in appendix A.
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2.5 Prediction Error Refinement

It is known that the prediction error xn − xp in the regular mode can be

further refined by learning from previous predictions, i.e., the so-called bias

cancelation technique [14], [15], [19]. To do this, we define the compound

context v of a coding pixel as,

v = {xn(1), . . . , xn(6), en(1), . . . , en(4)}, (2.8)

where xn(i), i = 1, . . . , 6 are as shown in Fig. 2.2 and en(i), i = 1, . . . , 4

are the uncompensated prediction errors corresponding to xn(1), . . . , xn(4)

respectively. We have incorporated prediction errors in error modeling be-

cause the amount of compensation is likely to be related to the prediction

errors of neighboring pixels.

In the proposed RALP system, error modeling is achieved by performing

context clustering with a fixed number of contexts. For this, a set of initial

contexts are generated off-line using the image “Lennagrey” (Fig. 2.6) for

the clustering process. For each coding pixel, the compound context v is

assigned to one of the existing contexts using mean absolute error (MAE)

distance measure and the corresponding context is then modified accordingly

in the coding process. By classifying coding pixels with similar context into

the same group, the amount of compensation ep for the current prediction

can be estimated by calculating the sample mean of prediction errors in

that group. Therefore, the value ep to be used in compensating the current

prediction is given by

ep =
S

N
, (2.9)

where S is the prediction errors accumulated in the context which v belongs

to, and N is the number of members in that context. With the correction
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term ep, we now form a more refined prediction xcpd = xp + ep. The com-

pensated error ε = xn − xcpd has a narrower histogram and hence a lower

first-order entropy. In the regular mode, the refined error ε is then entropy

encoded using a conditional arithmetic coder to produce the bit stream [28],

[34].
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2.6 Concluding Remarks

In this chapter, we have introduced the proposed switching structure for

lossless compression of images. Moreover, a detailed description on the pro-

posed LS-based adaptive predictor with edge-look-ahead, i.e., the core of the

regular mode, is also given. In order that the adaptive predictor in regular

mode can look ahead if the coding pixel is around an edge, we also propose

in this research an edge detector using only causal pixels. Summarizing, the

proposed approach has the following properties:

1. The run mode is triggered if the four pixels xn(1), xn(2) . . . xn(4) in

Fig. 2.2 are identical. The run length is then entropy encoded using

an arithmetic coder to produce the bit stream.

2. An escape symbol have to be encoded to indicate an unsuccessful run if

the value of the coding pixel xn and that of xn(1), . . . , xn(4) are distinct.

However, the encoding of an escape symbol can cause penalty and

degrades the coding efficiency. Therefore, the run mode is disabled once

the percentage of unsuccessful run is beyond a predefined threshold.

3. The proposed LS-based adaptive predictor, for its edge-directed prop-

erty, is very useful for the prediction of pixels around boundaries.

4. The proposed edge detector uses only causal pixels, i.e., pixels that have

been coded. Therefore, the decoder can perform the same operation

just like the encoder and determine if the coding pixel is around an

edge without any side information.

5. The LS-based adaptation process in regular mode is initiated only when

an edge is detected or when the prediction error is greater than a prede-
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fined threshold so that the computational complexity of the LS adap-

tation process can be significantly reduced.

6. With the proposed approach, the results obtained are are very close

to those with pixel-by-pixel LS adaptation, but with a much reduced

complexity. A very good trade-off between the prediction result and

the computational complexity can be obtained as we will see later in

Chapter 4.
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Chapter 3

Entropy Coding of Prediction
Errors

In the proposed approach, the refined error in regular mode is then entropy

encoded through a conditional arithmetic coder to produce the bit stream.

For entropy coding of the refined error signal ε, we borrow the concepts of

“error sign flipping”, “error remapping”, and “histogram tail truncation” in

[14], [15], [19] so that the coding efficiency in actual bit rates can be further

improved. All the details on how the entropy coder works will be addressed

in this chapter.
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3.1 Conditional Entropy Coding

It is known that the coding efficiency can be further improved with the use

of conditional probability models. By classifying similar prediction errors in

the same group, the coding efficiency can be improved by sharpening the

error histogram in each group and thus a smaller conditional entropy can be

obtained. To perform the classification, we have to define an error strength

estimate ∆ so that both the encoder and decoder know exactly which group

does the prediction error belongs to or which probability model should be

used. In this dissertation, we define the error strength estimate of the coding

pixel to be |ep|, that is

∆ = |ep|. (3.1)

It is noted that the ep, introduced in section 2.5, is used in compensating

the prediction error. Moreover, it is also available in both the encoder and

the decoder. Therefore, we have applied the use of |ep| as the error strength

estimate.

By conditioning on the error strength estimate ∆, we can quantize refined

errors into classes of different variances [14], [19], [26]. Moreover, the error

histogram in each quantization bins can be sharpened and thus a smaller

conditional entropy can be obtained. Therefore, we are using the conditional

probability model P (ε|∆) instead of P (ε) for entropy coding of refined errors.

Furthermore, to find the optimal number of quantization bins as well as an

optimal quantization for ∆ so that the conditional entropy can be minimized,

we define a cost function C(Q, ε, ∆) as

C(Q, ε, ∆) = E{H( ε |Q(∆)) }

= −
N∑

Q(�)=1

{
P (Q(�))

∑
ε

P (ε | Q(�))Log2 [P (ε | Q(�))]

}
,
(3.2)
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where Q(.), which maps ∆ into one of the N quantization bins, is the quan-

tizer to be designed, and N is the number of quantization bins to be decided.

With such cost function, we are calculating the first-order entropy of ε as-

signed in each quantization bins, i.e., H( ε | Q(∆)), and then take expectation

on the entropy H( ε | Q(∆)).

To minimize the cost function in (3.2), we use a set of training pairs

(ε, ∆) recorded in the prediction process of the fourteen test images [20] in

Chapter 4. By performing dynamic programming off-line, the final number of

quantization bins is found to be three and the approximately optimized quan-

tization of ∆ is found to be [0, 1], (1, 55], (55,∞). Though the quantization

may be suboptimal, the compression result is satisfactory as the simulation

results in Chapter 4 will demonstrate. Using the above quantization bins,

one out of a set of three probability models is chosen for the entropy coding

of ε based on the value of error strength estimate ∆ as below


using pmf 1, if 0 ≤ � ≤ 1
using pmf 2, if 1 < � ≤ 55
using pmf 3, otherwise

(3.3)
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3.2 Further Manipulations on the Refined Er-

rors

In order that a further coding gain on the actual bit rates can be obtained,

the following techniques are applied to process the refined errors prior to they

are entropy encoded.

3.2.1 Error Sign Flipping

The concept of error sign flipping in [14], [15], [19] is also used in this paper

for coding the refined error signal ε. Since ep, the amount for prediction error

compensation, is an average result of past history or experiences, it is very

likely that the refined error ε has the same sign as ep. Therefore, the refined

error ε is encoded according to the following equation,{
encode − ε, if ep < 0
encode ε, otherwise.

(3.4)

It is noted that all the pixels used in the proposed coding system are causal,

the decoder can calculate the error estimate ep just like the encoder. There-

fore, the decoder can reconstruct the sign flipped errors successfully when

the image is to be decompressed.

3.2.2 Error Remapping

The range of the refined error ε is [−255, 255]. In general, a probability model

with a set of 511 symbols should be used for the entropy coding of prediction

errors. However, they can only take on values in the range [−xcpd, 255−xcpd]

[14], [15], [19]. Therefore, we can use the following error remapping before it

is entropy encoded so that the symbols to be encoded will fall in the range
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of [−128, 127], i.e., a set with 256 symbols.{
Encode ε by (ε + 256), if ε < −128
Encode ε by (ε − 256), if ε ≥ 128

(3.5)

In this case, the number of symbols used is reduced to 256, which further

improves the coding gain in the entropy coding stage. Since all the pixels

used are causal and the decoder performs prediction and compensation just

like the encoder, the predicted value xp, the error estimate ep and thus the

compensated prediction, i.e., xcpd = xp+ep, can be calculated in the decoder.

Therefore, the decoder can reconstruct the remapped ε by{
Reconstruct ε by (ε + 256), if ε < −xcpd

Reconstruct ε by (ε − 256), if ε > (255 − xcpd).
(3.6)

3.2.3 Histogram Tail Truncation

With the quantization bins in (3.3), the error histogram in each quantization

bin for the image “Lennagrey” (Fig. 2.6) are plotted in Fig. 3.1. The curve of

Bin3 is not shown because no error strength estimate falls in that region. As

can be seen, most of the refined errors fall in the region around 0. Though

seldom occur, the count of occurrence for those away from 0 are initialized

to be 1 in case they do occur. This operation degrades the performance of

entropy coding. To conquer this problem, we use the concept of histogram

tail truncation in [14].

The probability distribution of the prediction error is usually a two-sided

Laplacian distribution [14], [19]. Instead of remapping the error into a one-

sided monotonically decreasing probability distribution in [14], the error his-

togram tail are truncated symmetrically in each quantization bin. The cut

off region for quantization bins are chosen to be [−25, 25], [−48, 48] and

[−128, 127] such that over 99% of the refined errors in each quantization bin

are within the truncated regions. With histogram tail truncation, an error
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Figure 3.1: Histogram of errors in quantization bins for image “Lennagrey”.
(using a sixth-order LS-based predictor with γ1 = 100, γ2 = 10)

30 in Bin1, for example, is encoded first to be 25 using pmf 1, followed by 5

using pmf 2.
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3.3 Concluding Remarks

In this chapter, we have introduced the entropy coding stage of the proposed

system. In order that a lower actual bit rates can be obtained, we use a

conditional arithmetic coder in the proposed system. To do this, we define

an error strength estimate ∆ = ep, and then we find an approximately op-

timal quantization for ∆ by using dynamic programming off-line. In this

dissertation, the number of quantization bins for ∆ is found to be three, and

the approximately optimal quantization is shown in (3.3). By conditioning

on the error strength estimate ∆, the refined error is then entropy encoded

using one out of the three probability models as in (3.3). Besides, the entropy

decoder also knows which probability model should be used if the received

bit stream is to be decoded.

In addition to the conditional arithmetic corder, the concept of “error

sign flipping”, “error remapping”, and “histogram tail truncation” are also

applied in the proposed system before the refined error is entropy encoded so

that a further coding gain on actual bit rates can be obtained. We would like

to mention again that all the pixels used in the encoder are causal. Therefore,

the decoder can reconstruct the remapped and sign flipped error just like the

encoder without any side information. The proposed entropy coder deter-

mines the coding performance of actual bit rates, and the usefulness of the

proposed entropy coding stage can be found in Chapter 4, where comparisons

with existing state-of-the-art lossless image coders will be given.

31



Chapter 4

Experiments

In this chapter, we evaluate the performance of the proposed lossless image

codec. Extensive experiments as well as comparisons to existing state-of-the-

art predictors and coders will be given to demonstrate the usefulness of the

proposed system. All the test images used in the experiments are from TMW

[20]. We will first demonstrate the usefulness of the proposed edge detector

and then the error compensation mechanism in the regular mode. After

that, we will demonstrate the usefulness of the proposed edge-look-ahead

approach in the regular mode. Then, the entropy and bit rate performance

of the system is presented. Finally, the computational complexity of the

proposed system will be discussed.
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Figure 4.1: (a) The image “Shapes”. (b) Pixels for which (2.4) is satisfied in
the image “Shapes”.

4.1 The Edge Detector

To demonstrate the effectiveness of the proposed edge detector, we use the

image “Shapes” (Fig. 4.1(a)), an artificial image with many edges and lines.

The pixels that satisfy the two conditions in (2.4) are marked in Fig. 4.1(b).

We can see from Fig. 4.1(b) that the edge detector has successfully picked out

the pixels around edges. To test the robustness of the detector, we apply the

edge detector to the image “Noisesquare” (Fig. 4.2(a)), an image with salt-

and-pepper noise. The pixels picked out by the edge detector are as shown

in Fig. 4.2(b). We see from Fig. 4.2(b) that the edge detector is robust

to moderate salt-and-pepper noise. In addition to artificial images, we also

apply the edge detector to “Lennagrey”, a natural image that is shown in

Fig. 2.6. As can be seen in Fig. 4.3, the pixels around the edges have been

picked out successfully.
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Figure 4.2: (a) The image “Noisesquare”. (b) Pixels for which (2.4) is satis-
fied.
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Figure 4.3: Pixels for which (2.4) is satisfied in the image “Lennagrey” (γ1 =
100, γ2 = 10).
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Figure 4.4: Masks used in “Sobel” operator. (a) The mask Gx for the com-
putation of vertical derivatives. (b) The mask Gy for the computation of
horizontal derivatives.

4.1.1 Comparison with “Sobel” Operator

In the proposed approach, we use raster scan for the encoding of image pixels,

i.e., the pixels are encoded in a sequence from left to right and top to bottom.

In order that the decoder can perform the same edge detection as the encoder,

non-causal pixels, i.e., pixels that lies below and to the right of the coding

pixel, can not be used because they are not available in the decoder at the

moment. Therefore, we have indicated in section 2.3 that conventional edge

detectors, e.g., “Sobel” operator, can not be applied here because they use

non-causal pixels. That is also why we have to propose an edge detector that

uses only causal pixels in this paper.

It is noted that the “Sobel” operator defines two masks Gx and Gy (as

in Fig. 4.4) for the computation of vertical and horizontal derivatives respec-

tively. Moreover, the gradient of the pixel is define by,

∇f = |Gx| + |Gy|. (4.1)

A pixel is detected as around an edge in “Sobel” operator if the following

equation is satisfied.

∇f ≥ threshold. (4.2)

As can be seen in (4.2), we have to define a gradient threshold for the edge

detection when using “Sobel” operator. To compare the effectiveness of the
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proposed edge detector with “Sobel” operator, we use the image “Lennagrey”

as the test image. We show in Fig. 4.5 to Fig. 4.6 the image of pixels that

is detected as around an edge using “Sobel” operator with threshold varies

from 50 to 200 respectively. The image of pixels that is detected as around

an edge by using the proposed edge detector is shown in Fig. 4.3. As can be

seen in Fig. 4.6(b) and Fig. 4.3, the image of pixels that is detected as around

an edge using the proposed edge detector is very similar to that of obtained

by using the non-causal “Sobel” operator. The proposed edge detector is

very effective in detecting edges although only four causal pixels are used.

The Matlab program for the “Sobel” operator in this experiment is given in

Appendix B.
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Figure 4.5: Pixels detected as around an edge in image “Lennagrey” when
the Sobel operator is used. (a) threshold= 50. (b) threshold= 100.
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Figure 4.6: Pixels detected as around an edge in image “Lennagrey” when
the Sobel operator is used. (a) threshold= 150. (b) threshold= 200.

4.1.2 Texture context for Edge Detection

In this experiment, we will show that a larger context for the detection of

an edge is not necessary. For this, we construct four sixth-order LS based

predictors each with an edge detectors that uses 4, 6 ,8 and 10 pixels respec-

tively. The pixels used in the four constructed edge detectors are selected in

an order as defined in Fig. 2.2. Again, the image “Lennagrey” is used for the

experiment. To show that the proposed 4-point edge detector is sufficient

for the detection of an edge, we compare the improvement on the prediction

result and the complexity increased when the number of pixels used for the

edge detector varies from 4 to 10. In this experiment, the run mode is dis-

abled; only the regular mode is used. Moreover, the LS adaptation process

is activated when an edge is detected or when the prediction error is greater

than a predefined threshold.
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We show in Fig. 4.7.(a) to Fig. 4.10.(a) the image of pixels that is detected

as around an edge by using the four constructed edge detectors. Besides, the

corresponding pixels for which the LS adaptation is activated are shown in

Fig. 4.7.(b) to Fig. 4.10.(b) respectively. Moreover, we show in Table 4.1 the

first-order entropies of the uncompensated prediction errors and the percent-

age of pixels that activates the LS adaptation when different context is used

for edge detection. The execution times of the proposed edge-look-ahead

predictor with different context edge detection are also recorded in the last

column of Table 4.1. As can be seen in Table. 4.1, the percentage of pixels

that activates the LS adaptation process by using the proposed 4-point edge

detector is 17.90% and that of obtained by the use of a 10-point edge detector

is 21.13%. There is an increase of about 3.2% in performing LS adaptation,

which means an increased computational complexity. However, the predic-

tion results (in terms of first-order entropy) almost remain unchanged as can

be seen in Table 4.1; only marginal improvement can be obtained. Therefore,

the use of a larger context for the detection of an edge is not necessary and

the proposed 4-point context is sufficient for the edge detection process.
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Figure 4.7: 4-point edge detector for image “Lennagrey”. (a) Pixels detected
as around an edge. (b) Pixels for which LS adaptation is used.
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Figure 4.8: 6-point edge detector for image “Lennagrey”. (a) Pixels detected
as around an edge. (b) Pixels for which LS adaptation is used.
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Figure 4.9: 8-point edge detector for image “Lennagrey”. (a) Pixels detected
as around an edge. (b) Pixels for which LS adaptation is used.
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Figure 4.10: 100-point edge detector for image “Lennagrey”. (a) Pixels de-
tected as around an edge. (b) Pixels for which LS adaptation is used.
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Table 4.1: First-order entropies of uncompensated prediction errors and per-
centage of pixels that activate the LS adaptation when different context is
used for the edge detection. (Run on a P4-1.4GHz machine; without doing
error compensation and entropy coding).
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4.2 Error compensation
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Figure 4.11: (a) Image of refined errors using the proposed approach for
“Lennagrey”. (using a sixth-order LS-based predictor with γ1 = 100, γ2 =
10) (b) Histogram of prediction errors for image “Lennagrey”.

To demonstrate the usefulness of the proposed error compensation mech-

anism in regular mode, we use a sixth-order LS-based predictor. The image

“Lennagrey” (Fig. 2.6) is used as the test image. The compensated predic-

tion errors for image “Lennagrey” is shown in Fig. 4.11(a). As can be seen

in Fig. 4.11(a), the proposed approach performs very well around edges and

the statistical redundancy has been removed effectively. Fig. 4.11(b) shows

the histograms of prediction error with and without error compensation. We

can observe the usefulness of the proposed automatic context modeling for

error refinement from Fig. 4.11(b). The histogram of the refined error has

a narrower peak. The first-order entropy for the compensated error and the

uncompensated error is 3.97 bits and 4.20 bits respectively.

In addition to the natural image “Lennagrey”, the image “Airplane”
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(Fig. 4.12.(a)), “Goldhill” (Fig. 4.14.(a)) and “Peppers” (Fig. 4.16.(a)) are

also used to demonstrate the usefulness of the proposed error compensation

mechanism in regular mode. It is noted that all the results are obtained by

using a sixth-order predictor with γ1 = 100, γ2 = 10 and θ = 8.

For the image “Airplane”, we show in Fig. 4.13 the image of predic-

tion errors with and without doing error compensation. As can be seen

in Fig. 4.13.(b), the proposed approach performs very well around edges

and the statistical redundancy has been removed effectively. The usefulness

of the proposed error compensation mechanism can be best observed from

Fig. 4.12.(b), in which the histogram of prediction errors with and with-

out error compensation are shown. The refined error has a much narrower

peak than that without error compensation. In Fig. 4.12.(b), the first-order

entropy for the compensated error is 3.82 bits and 4.11 bits for the uncom-

pensated error.

As another example, we use the image “Goldhill” in Fig. 4.14.(a). The

image of prediction errors with and without error compensation are shown in

Fig. 4.15. As can be seen in Fig. 4.15.(b), the proposed error compensation

mechanism performs very well around edges. For comparison purpose, we

also show in Fig. 4.14.(b) the histogram of prediction errors. The histogram

of refined errors is much narrower than that without doing error compensa-

tion. In Fig. 4.14.(b), the entropies corresponding to the two histograms are

respectively 4.40 bits (Refined errors) and 4.60 bits (Uncompensated errors).

Moreover, we use the image “Peppers” in Fig. 4.16.(a) to demonstrate

the effectiveness of the proposed error compensation mechanism. The images

of prediction errors with and without doing error compensation are shown

in Fig. 4.17.(a) and (b) respectively. As can be seen in Fig. 4.17.(b), the

proposed approach performs very well for pixels around edges. Again, we also
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shown in Fig. 4.16.(b) the histogram of prediction errors with and without

doing error compensation. Obviously, the histogram of refined errors is much

narrower than that without doing error compensation. In Fig. 4.16.(b), the

first-order entropy are respectively 4.27 bits (Refined errors) and 4.45 bits

(Uncompensated errors).
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Figure 4.12: (a) The image “Airplane”. (b) Histogram of prediction errors
for image “Airplane”.
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Figure 4.13: (a) The image of uncompensated errors for “Airplane”. (b)
Image of refined errors for “Airplane”.
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Figure 4.14: (a) The image “Goldhill”. (b) Histogram of prediction errors
for image “Goldhill”.

45



100 200 300 400 500

100

200

300

400

500

600

700

(a)

100 200 300 400 500

100

200

300

400

500

600

700

(b)

Figure 4.15: (a) The image of uncompensated errors for “Goldhill”. (b)
Image of refined errors for “Goldhill”.
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Figure 4.16: (a) The image “Peppers”. (b) Histogram of prediction errors
for image “Peppers”.
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Figure 4.17: (a) The image of uncompensated errors for “Peppers”. (b)
Image of refined errors for “Peppers”.
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Table 4.2: Compression ratio and the running time (in seconds, on a P3-
1.06GHz machine) of the constructed coder vary with different prediction
order using the proposed approach.

Compression

Ratio

Run

Time

Compression

Ratio

Run

Time

Compression

Ratio

Run

Time

Compression

Ratio

Run

Time

Baboon 1.35 3.82 1.38 6.80 1.38 12.37 1.38 14.21

Lena 1.82 3.09 1.84 4.22 1.84 5.71 1.84 6.95

Lennagrey 2.01 3.04 2.03 3.79 2.03 5.18 2.03 5.84

Peppers 1.86 3.03 1.88 3.86 1.88 4.59 1.89 6.06

Barb 1.88 3.38 1.95 4.80 1.96 9.07 1.97 8.62

Barb2 1.73 5.41 1.77 8.28 1.77 14.33 1.77 15.26

Boats 2.11 4.82 2.15 6.02 2.16 8.43 2.17 9.18

Gold Hill 1.82 4.76 1.83 6.58 1.84 8.30 1.84 10.97

Average 1.82 3.92 1.85 5.54 1.86 8.50 1.86 9.64

Image

4.3 Order of predictor

The order of the predictor affects coding gain in the regular mode. We list in

Table 4.2 the compression ratio for order N = 4, 6, 8, 10 with the run mode

disabled. The execution time is also listed in the Table. As can be seen in

Table 4.2, the compression ratio quickly saturates when the prediction order

is greater than six. Moreover, the increases in the execution time does not

justify the use of a predictor with order higher than six. Therefore, the use

of a sixth-order predictor in the regular mode is a proper choice and this will

be used in the design of a lossless image coder afterward for comparison with

existing state-of-the-art lossless image coders.
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Figure 4.18: (a) Pixels for which LS adaption is used in the proposed edge-
look-ahead predictor for the image “Lennagrey”. (using a sixth-order pre-
dictor with γ1 = 100, γ2 = 10) (b) Image of uncompensated prediction errors
using the proposed edge-look-ahead approach for “Lennagrey”.

4.4 Effectiveness of the Edge-look-ahead mech-

anism

The usefulness of the proposed predictor with edge-look-ahead can be demon-

strated through the following experiment. We construct two sixth-order LS

based predictors for the regular mode; one with the use of the proposed edge-

look-ahead mechanism and the other performs LS adaptation in a pixel-by-

pixel manner. Then we compare the performance of the two predictors. In

this experiment, the run mode is also enabled and the image “Lennagrey” in

Fig. 2.6 is used for this comparison.

For the predictor with edge-look-ahead, the pixels for which LS adaption

is activated are shown in Fig. 4.18(a). Overall, about 17% of pixels activate
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Figure 4.19: Histogram of uncompensated prediction errors for the proposed
approach and that of a pixel-by-pixel adaptation. (both using a sixth-order
predictor)

the LS adaptation process. The image of uncompensated prediction errors

(xn − xp) and the corresponding histogram are shown in Fig. 4.18(b) and

Fig. 4.19 respectively. For comparison, we also show in Fig. 4.19 the his-

togram of uncompensated prediction error when the LS adaptation process

is performed in a pixel-by-pixel manner. The histogram using the proposed

approach is very close to that with pixel-by-pixel adaptation although only

17% of pixels activate the LS adaptation process. The proposed edge-look-

ahead approach has made a good tradeoff between prediction efficiency and

computational complexity. Indeed, the entropies corresponding to the two

histograms in Fig. 4.19 are respectively 4.20 bits (proposed approach) and

4.18 bits (adapted in a pixel-by-pixel manner).
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Table 4.3: First-order entropies of prediction errors. (Only the regular mode
is used in the proposed algorithm; the run mode is disabled.)

N=4 N=6 N=8 N=10 N=4 N=6 N=8 N=10 N=4 N=6 N=8 N=10

Baboon 6.28 6.22 6.04 6.01 6.00 5.99 6.03 5.99 5.98 5.98 6.03 5.99 5.98 5.98

Lena 4.90 4.75 4.64 4.60 4.59 4.58 4.58 4.53 4.53 4.51 4.58 4.53 4.53 4.51

Lennagrey 4.56 4.40 4.32 4.26 4.24 4.22 4.24 4.20 4.19 4.15 4.22 4.18 4.17 4.15

Peppers 4.95 4.78 4.55 4.52 4.51 4.50 4.48 4.45 4.44 4.43 4.47 4.43 4.43 4.43

Barb 5.21 5.15 4.67 4.44 4.40 4.35 4.52 4.36 4.30 4.25 4.46 4.31 4.26 4.21

Barb2 5.19 5.06 4.93 4.80 4.79 4.78 4.90 4.77 4.75 4.75 4.88 4.75 4.74 4.74

Boats 4.31 4.29 4.20 4.14 4.12 4.10 4.16 4.10 4.07 4.05 4.07 4.00 3.97 3.96

Gold Hill 4.72 4.70 4.64 4.60 4.59 4.58 4.64 4.60 4.59 4.59 4.63 4.58 4.57 4.57

X-ray Neck N/A N/A N/A N/A N/A N/A 3.21 3.17 3.16 3.16 3.19 3.16 3.15 3.15

EDP Pixel by Pixel Optimization
Image MED GAP

Proposed Algorithm

4.5 Comparisons to existing predictors

Table 4.3 gives comparisons of uncompensated prediction errors for a set of

eight test images in first-order entropies. We compare with existing linear and

nonlinear predictors for prediction order N = 4, 6, 8, 10. In this experiment,

the run mode of the proposed system is disabled; only the regular mode is

used so that we can make a fair comparison. The results of a median edge

detector (MED) [15], a gradient adjusted predictor (GAP) [14] and an edge

directed predictor (EDP) with different orders are taken from [26]. As can be

seen in Table 4.3, the proposed system can remove the statistical redundancy

efficiently. It achieves noticeable improvement when compared with MED

and GAP predictor. The proposed predictor also gives lower entropies when

compared with those of EDP [26]. Moreover, the results of the proposed

approach are very close to those with pixel-by-pixel LS adaptation.

In addition to the eight natural images, we also apply the proposed ap-

proach to a medical image “Neck” taken by X-ray (Fig. 4.20). The first-order
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Figure 4.20: The X-ray image “Neck”.

entropies of the image “Neck” obtained by using the proposed approach with

different prediction order and that of obtained by using pixel-by-pixel LS

adaptation are list in the last row of Table 4.3. Besides, pixels for which LS

adaptation is used for the image “Neck”, and the image of uncompensated

prediction error obtained with the proposed approach by using a sixth-order

predictor are shown in Fig. 4.21(a) and 4.21(b) respectively. As can be seen

in Fig. 4.21(b), the proposed approach performs very well for the medical

image “Neck” around boundaries with only about 2.7% of pixels activate the

LS adaptation process.
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Figure 4.21: (a) Pixels for which the LS adaptation is used in the proposed
edge-look-ahead predictor for the X-ray image “Neck”. (using a sixth-order
predictor) (b) Image of uncompensated prediction error for the X-ray image
“Neck”.

Table 4.4: Percentage of pixels performing LS adaption and the resulting
first-order entropy by varying the variance threshold γ1 in the proposed ap-
proach (The image “Lennagrey” is used for the test with γ2 = 10, θ = 10 for
all cases).

Parameter
Number of

Pixels with LS

Adaptation

Percentage with

LS Adaptation

(A)

Percentage

Detected as

around an Edge

(B)

Percentage with LS

Adaptation in

slowly varying

areas (C=A-B)

First-order

Entropy

37692 14.38 11.47 2.91 4.176

28205 10.76 6.87 3.89 4.184

24117 9.20 4.79 4.41 4.188

21819 8.32 3.58 4.75 4.190

20342 7.76 2.75 5.01 4.193
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4.6 LS adaptation

In this section, we investigate how the prediction performance (in terms of

entropy) varies with the variance threshold γ1 in (2.4) for LS adaptation. We

construct a tenth-order predictor with edge-look-ahead for the experiment,

and the image “Lennagrey” (Fig. 2.6) is used for the test. For LS adaptation,

we use the same training area as defined in EDP [26]. Moreover, we set

γ2 = 10 and θ = 10 for all cases in the experiment. By varying the variance

threshold γ1, the number of pixels that activates LS adaptation also changes.

The experimental results using the proposed approach with various γ1 are

shown in Table 4.4.

We observe from Table 4.4 that a small γ1 may results in a small entropy

at the expense of an increased number of pixels performing LS adaptation

process. The percentage of pixels regarded as around an edge increases as γ1

decreases, but the percentage of pixels that activates the LS adaptation in

slowly varying areas almost remain unchanged. This can be best observed

from the fifth column, which is obtained by subtracting the fourth column

from the third column, of Table 4.4, and we can find that about 3% to 5%

of pixels in slowly varying areas will activates the LS adaptation. Therefore,

the improvement on the entropy in the proposed approach is mainly around

edges.
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Figure 4.22: (a) Histogram of uncompensated prediction errors for the pixels
in Fig. 4.3. (b) Histogram of uncompensated prediction errors for those pixels
in Fig. 4.1(b).

4.7 Further insight on the proposed edge-look-

ahead mechanism

To highlight the usefulness of the proposed edge-look-ahead mechanism for

LS-based predictor, we compare the proposed approach with the state-of-

the-art LS-based EDP predictor in [26]. As in [26], we use a tenth-order

predictor. With EDP [26], the percentage of pixels activating LS adaptation

is 9.87% and the resulting entropy is 4.22bpp. The results of the proposed

edge-look-ahead approach are given in Table 4.4. As can be seen in the rows

for which γ1 varies from 300 to 500 (the last three rows of Table 4.4), the

number of pixels performing LS adaptation is fewer than that with EDP

approach but still have lower entropy than EDP.

To gain a further insight, we look into the case with γ1 = 100. The

histogram of uncompensated prediction errors for those pixels that are con-

sidered as around an edge (i.e., pixels for which (2.4) are satisfied) is shown
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in Fig. 4.22(a). For comparison, we also show the histogram of uncompen-

sated prediction error if EDP is used for those pixels instead. As can be seen

in Fig. 4.22(a), the histogram with the proposed approach is much narrower

than that with EDP. The proposed approach has a smaller prediction error

than EDP does around edges. Indeed, the entropies corresponding to the

two histograms in Fig. 4.22(a) are respectively 5.12 bits (proposed) and 5.32

bits (EDP).

As another example, we use the artificial image “Shapes” (Fig. 4.1(a))

for the same experiment. The pixels for which (2.4) is satisfied, i.e., pixels

detected as around an edge, have been shown in Fig. 4.1(b). The histogram of

uncompensated prediction errors using the proposed approach for those pixels

in Fig. 4.1(b) is shown in Fig. 4.22(b). The histogram with the proposed

approach is much narrower than that with EDP; the proposed approach

has a smaller prediction error than EDP does around edges. The entropies

corresponding to the two histograms in Fig. 4.22(b) are respectively 4.51 bits

(proposed) and 5.28 bits (EDP).

As can be seen in Fig. 4.22(a) and Fig. 4.22(b), the proposed system

has achieved a noticeable improvement over the use of EDP around edges.

Moreover, the improvement is very distinct for images with many edges and

lines. As indicated in the title of EDP [26], the EDP is designed mainly

for natural images and it is noted that most of the areas vary slowly in

natural images. The EDP initiates the LS adaptation process only after the

prediction error is beyond a preselected threshold so that the computational

complexity can be reduced. Nevertheless, an abrupt change in the image

pixel, e.g., an edge or a line, may results in a large prediction error with EDP.

Compared with EDP, the proposed system can look ahead to determine if

the coding pixel is around an edge and initiate the LS adaptation process
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beforehand to prevent the occurrence of a large prediction error. With a

moderately increased computational complexity in detecting the existence of

an edge, the proposed system has achieved a noticeable improvement around

edges than that with the EDP approach.

Table 4.5: Comparisons with existing lossless image coders (in bits/sample).
The fifth column is the execution time of the proposed approach (on a P3-
1.06GHz machine).

Image
First-oreder

Entropy
RALP

% of LS

adaptation
seconds JPEG-LS [15] CALIC [14] EDP* [26] TMW [20]

Airplane 3.82 3.71 16.6 3.75 3.82 3.74 N/A 3.60

Baboon 5.91 5.81 63.8 6.82 6.04 5.88 5.81 5.73

Balloon 2.56 2.55 4.0 4.50 2.90 2.83 N/A 2.66

Barb 4.15 4.12 33.6 4.80 4.69 4.32 4.11 4.09

Barb2 4.57 4.51 37.7 8.02 4.69 4.53 4.52 4.38

Boats 3.84 3.75 18.1 6.07 3.93 3.83 3.80 3.61

Camera 4.42 4.24 26.7 1.18 4.31 4.19 N/A 4.10

Couple 3.63 3.63 15.8 1.01 3.70 3.61 N/A 3.45

Gold Hill 4.41 4.32 23.6 6.81 4.48 4.39 4.39 4.27

Lena 4.36 4.35 23.5 4.27 4.61 4.48 4.40 4.30

Lennagrey 3.97 3.95 17.4 3.82 4.24 4.11 4.02 3.91

Noisesquare 5.35 5.37 56.7 1.60 5.68 5.44 N/A 5.54

Peppers 4.27 4.27 18.2 3.97 4.51 4.42 4.35 4.25

Shapes 1.87 1.52 7.1 1.94 1.21 1.14 N/A 0.76

X-ray Neck 2.87 2.82 2.7 3.23 N/A N/A N/A N/A

Average 4.08 4.01 25.92 4.18 4.20 4.07 4.43 3.90

(* For the EDP method, the bit rates for some of the images are not
available and the average is computed only for those that are available.

The X-ray image “Neck” is not taken into account for the average values
listed in the last row of the table.)
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4.8 Comparisons to existing state-of-the-art

coders

Table 4.5 gives the actual bit rates of proposed RALP coder, JPEG-LS [15],

CALIC [14], EDP [26] and TMW [20] for a set of fourteen test images. In

Table 4.5, the results of CALIC, EDP and TMW are taken directly from [21]

and those of the JPEG-LS are obtained using the code given in the website

of LOCO-I [15]. All the bit rates of the proposed algorithm are obtained

using the same parameters described in previous sections, i.e., sixth-order

predictor with a four-point texture context edge detector, and no individual

optimization is performed. Besides, we show in the second column and the

fourth column respectively the first-order entropies of the compensated pre-

diction errors and the percentage of pixels performing LS adaptation using

the proposed approach. Moreover, we also show in the fifth column the exe-

cution time of the proposed coder so that we can get a picture on the runtime

performance of the proposed approach. It should be noted that some of the

results in EDP are denoted by “N/A” because they are not reported in the

paper of EDP [26] and [21]. Therefore, the set of images included in the aver-

age is different for that column than any other. Table 4.5 shows that RALP

has lower bit rates than JPEG-LS in thirteen out of the fourteen test images

and outperforms CALIC [14] in eleven of fourteen test images. Encourag-

ingly, the proposed RALP achieves lower bit rates than the highly complex

TMW in two images, “Balloon” and “Noise square”. It should be noted

that the proposed bit rate performance for the artificial image “Shapes” is

inferior to that of obtained by CALIC [16] and JPEG-LS [17]. For this, we

can see from Fig. 4.1.(a) that the image “Shapes”, an artificial image with

edges and lines, can be segmented into many slowly varying areas in which

the run-length coding is most efficient to be used. In the meanwhile, we also
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know that the run-length encoding is applied in the coder of JPEG-LS [15]

and RALP [28]. Furthermore, the CALIC [14] also uses a “Ternary entropy

coder” for the so-called “binary mode” or uniform regions. Therefore, we

think the bit rate performance for artificial images, like “Shapes”, can be

improved if a more sophisticated run-length coder or an extra entropy coder

with a small symbol set is applied for slowly varying areas in the proposed

approach.
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Table 4.6: Percentage of pixels performing LS adaption and the number of
pixels performing Cholesky decomposition and Singular Value Decomposition
(SVD). (Only the regular mode is used; the run mode is disabled.)

% Cholesky SVD % Cholesky SVD % Cholesky SVD % Cholesky SVD

Baboon 65.1 170545 0 64.7 169588 0 64.7 169651 0 64.5 169203 0

Lena 24.4 63989 16 23.9 62681 52 23.9 62568 76 23.4 61136 83

Lennagrey 18.2 47757 14 17.9 46856 29 17.9 46754 42 17.4 45607 32

Peppers 19.0 49789 0 18.4 48362 0 18.3 47940 0 18.1 47567 0

Barb 35.8 93825 0 34.8 91254 0 34.5 90552 0 34.3 89946 0

Barb2 39.7 164570 0 38.7 160509 0 38.8 160888 0 38.8 160829 0

Boats 19.3 79992 65 18.8 78030 0 18.5 76863 21 18.3 76036 36

Gold Hill 24.8 102857 1 24.2 100169 0 24.0 99628 0 23.9 99086 0

Average 30.8 96666 12.0 30.2 94681 10.1 30.1 94356 17.4 29.9 93676 18.9

Proposed linear predictor with edge-look-ahead

Image N=4 N=6 N=8 N=10

4.9 Computational complexity

It is noted that the construction of normal equations requires roughly MN2/2

multiplications, where M is the number of training pixels and N is the pre-

diction order [35]. Numerically, the normal equations (2.7) can be solved by

Cholesky decomposition or Singular Value Decomposition (SVD) depending

on the rank of P in (2.6). When P is full-ranked, PTP is nonsingular and

positive definite. For a positive definite matrix, the Cholesky decomposition

can be used, and it requires only N3/6 multiplications to solve (2.7), which is

about half the usual number of multiplications required by alternative meth-

ods [35], [36]. Only when P is not full-ranked, SVD, which requires much

higher computations, is needed. Fortunately, our experiments show that in

most cases P has full rank. This can be seen in Table 4.6, where we have

listed the percentage of pixels performing LS adaption and the number of

pixels performing Cholesky Decomposition or SVD for predictors with differ-
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Table 4.7: Operation counts for edge detector in (2.4).

Operation Compare ADD/SUB MUL/DIV Square

Edge detection 
 (N+2) 
 (4N-2) 
 7 
 (N+3)

ent orders. Indeed, this is because pixels around boundaries usually have

a large variation in gray levels and thus the matrix P in (2.6) is seldom

rank deficient. Therefore, most of the computations take place in forming

the normal equations (2.7) rather than solving them. For this, an inclusion

and exclusion method for fast construction of the PTP matrix is proposed

in [25]. The algorithm in [25] utilize the overlapped training area between

successive coding pixels. Therefore, the fast algorithm can only be used in

a pixel-by-pixel adaptation manner and can not be applied in the proposed

approach as we activate the LS adaptation process only when necessary.

For the proposed edge detector, the operation counts for each coding

pixel in the edge detection process are listed in Table 4.7. It should be

noted that there is no need to check both of the two inequalities in (2.4)

for every pixel. Only when the first inequality holds then we check the

second condition. Therefore, the actual computational cost is lower than

what is listed in Table 4.7. Though edge detection incurs a slight increase in

computations, the overall complexity is reduced significantly when compared

with that of pixel-by-pixel adaptation approach. The proposed approach has

achieved a very good trade-off between runtime performance and prediction

efficiency.
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4.10 Concluding Remarks

In this chapter, we have evaluated the performance of the proposed lossless

image codec. Extensive experiments as well as comparisons to existing state-

of-the-art predictors and coders are also given to demonstrate the usefulness

of the proposed system. In summary, we can make the following concluding

remarks:

1. We have investigated in this chapter the usefulness of the proposed

edge detector. As can be seen in our experiments, the proposed edge

detector is very effective in detecting edges and robust to images with

moderate salt-and-pepper noise although only four causal pixels are

used.

2. The effectiveness of the error compensation mechanism in regular mode

is also evaluated in this chapter. Our experiments show this very useful

that further improves the bit rates by, on average, 0.2bpp in test images.

3. The prediction order affects the coding gain. In our experiments, we

find the compression ratio quickly saturates when the prediction order

is greater than six. Moreover, the use of a higher prediction order also

means an increase in computational complexity. Therefore, we have

found the use of a sixth-order predictor is a proper choice.

4. With the proposed edge-look-ahead approach, we activate the LS adap-

tation process only when an edge is detected or when the prediction

error is beyond a predefined threshold. As can be seen in our exper-

iments, the results obtained by using the proposed approach are very

close to those with pixel-by-pixel LS adaptation, but with a signifi-

cantly reduced complexity. The proposed edge-look-ahead approach is
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more feasible under limited resources.

5. In this chapter, we also compare the proposed system with existing

state-of-the-art predictors and coders. As can be seen in Table 4.3 and

Table 4.5, comparisons on first-order entropies and actual bit rates have

demonstrated the superiority of the proposed system.

6. A detailed analysis on the computational complexity of the proposed

system is also given in this chapter. For LS adaptation process, fast

algorithms, like Cholesky decomposition, can be used in most of the

cases depending on the defectiveness of the matrix P in (2.6). Besides,

we also list in Table 4.7 the operation counts of the proposed edge

detector. Though edge detection incurs a slight increase in computa-

tions, the overall complexity is reduced significantly when compared

with that of pixel-by-pixel adaptation approach.
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Chapter 5

Enhancing the Predictive
Coding Efficiency with Control
Technologies

There has been great interest in applying predictive coding to lossless com-

pression of images. Predictive coding is very useful for removing statistical

redundancy among pixels in slowly varying areas. However, there can be

large prediction errors for pixels around boundaries. In this chapter, we in-

troduce techniques commonly used in control systems to enhance the coding

efficiency of predictive coding. Actually, the predictive coding system, which

calculates the system output based on the texture context of the coding pixel,

behaves just like a multi-input single-output system with the predictor itself

can be taken as the system model. Besides, the prediction error is usually

feedback for the adaptation of predictor coefficients so that the difference

between the desired and the actual output, i.e., the so-called error signal,

for consecutive pixels can be minimized. When compared with the purpose

of a control system, which is to follow the system command as precisely as

possible, we find the objective of both systems are the same. Moreover, an

edge or a boundary among image pixels can be regarded as a step command
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in control systems. These observations lead to the idea of using control tech-

nologies to improve prediction result for pixels around boundaries. To realize

this idea, we use an adaptive Takagi-Sugeno fuzzy neural network (TS-FNN)

as the predictor for its advantages of fast convergence and parallel computa-

tion. Furthermore, the widely used proportional controller (P-controller)

in control system is implemented implicitly in the consequent part of the

network so that the prediction error can be further compensated for pixels

around boundaries. We find in experiments that the proposed approach can

have a very good prediction result even without using any online training

area for network adaptation process. This makes the proposed system more

feasible under limited resources, and a very good run time performance can

be obtained. Finally, comparisons to existing state-of-the-art lossless pre-

dictors and coders will be given to highlight the advantages of the proposed

novel approach.
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5.1 Introduction

The performance of predictive image coding scheme highly depends upon

the effectiveness of the predictor used in the coding process. Most of the

image predictors perform very well in slowly varying areas. However, large

prediction errors can take place around edges and boundaries, and this has

remained a major problem in predictive coding schemes so far. Intuitively,

the prediction results can be improved if we can foresee the existence of

an edge and then predict along the edge orientation. However, the design

of a robust edge detector and the analysis of edge orientation are difficult

problems themselves, let alone to predict along the edge orientation. Re-

cently, some approaches propose the use of a linear predictor adapted by

least squares (LS) optimization during the coding process [25]-[31]. Among

which, the EDP [26] pointed out that the superiority of LS adaptation is

in its edge-directed property. That is, the LS-based predictor can adjust

the prediction support along the edge orientation automatically during the

adaptation process. With the edge-directed property, LS-based adaptive pre-

dictor performs very well for pixels around boundaries. On the other hand,

we know that the normal equations provide the key for LS adaptation, and

some fast algorithms, “Cholesky decomposition” for example, can be ap-

plied in the LS adaptation process. Therefore, the complexity in solving the

normal equations itself is not a problem. Nevertheless, the computational

cost for the construction of normal equations is rather high. Thus, a pixel-

by-pixel LS adaptation process for predictive image coding is regarded as

prohibitive. For this, an edge-look-ahead approach is proposed [27], [28].

The edge-look-ahead approach proposes a causal edge detector and initiates

the LS adaptation process only when the coding pixel is around an edge or

when the prediction error is beyond a predefined threshold. With the edge-
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look-approach, the advantage of edge-directed property in LS-based predictor

can be fully exploited. Moreover, a noticeable reduction in computational

complexity can also be obtained when compared with that of pixel-by-pixel

LS adaptation approach.

In order that the highly complex statistical redundancy can be removed

more effectively, some of the results are obtained by using fuzzy logic or

neural network as the nonlinear predictor [21]-[23]. Theoretically, the use of

nonlinear predictors can get better prediction performance than that of ob-

tained by using linear predictors. However, we find in literatures that fuzzy

logic or neural network based nonlinear predictors usually come along with

a very high computational complexity for inherent nonlinear characteristics

and the time-consuming online adaptation process. Furthermore, the im-

provement on the prediction result obtained seems does not justify the use

of such a highly complex nonlinear predictor when the run time performance

is taken into consideration.

In this chapter, we propose an approach performing nonlinear predic-

tion based on a four-layered Takagi-Sugeno fuzzy neural network (TS-FNN)

[37]-[45]. The TS-FNN is applied in the proposed approach as the nonlinear

predictor for its advantages in parallel computation, universal approximation

and fast convergence [41]-[45]. With priori knowledge on the partitioning of

input space, the network structure can be constructed with neurons provided

with a set of Gaussian membership functions. Moreover, suitable fuzzy rules

can also be derived and recruited by measuring the membership degrees so

that a nonlinear prediction model is developed. To make the proposed sys-

tem adapted to the varying statistics, the prediction error of the coding pixel

is feedback to update the connection weights and the parameters in the mem-

bership layer. In order that the high computational complexity incurred in
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the network learning process can be avoided, the number of training pixels

used during the network adaptation process is decreased substantially and

even not used in the proposed TS-FNN approach. Moreover, all the oper-

ations used in the proposed TS-FNN based predictor are linear except the

the Gaussian membership degree measurement in second layer. This makes

the proposed approach more feasible under limited resources and a very good

run-time performance can be obtained.

Regarding to the problem of encountering a large prediction error for pix-

els around boundaries in most of the predictive coding schemes, we propose in

this chapter a novel idea based on commonly used control technologies. Ac-

tually, the design of a controller is to follow the system command as precisely

as possible, which has the same objective with predictive coding. Moreover,

an edge or a boundary, i.e., an abrupt change among neighboring pixels, can

be regarded as a step command in control systems. The above observations

lead to the idea of enhancing the prediction result with control technologies.

In this chapter, both the horizontal and vertical deviations around the coding

pixel are calculated such that we can know the existence of an edge. The cal-

culated deviations are then used as the inputs of P-controller compensators

which are implemented implicitly in the network weights connecting the rule

layer and the output layer, i.e., the consequent part of a fuzzy rule. As we

will see in the experiment that the proposed P-controller compensator is very

useful in removing the inter-pixel redundancy and can further improve the

entropies of prediction errors.

Novelty of the proposed approach

In this chapter, we propose the use of a TS-FNN based nonlinear predictor

for lossless coding of images. In order a very good run-time performance can
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be obtained, the number of training pixels for network adaptation process

is decreased substantially and even not used in the proposed approach. For

pixel around edges, we propose a novel approach by applying the commonly

used P-controller in control system as a compensator so that the prediction

error can be further reduced. It is noted that the conventional error model-

ing technique, a statistical approach, can also be used for further reduction

in entropies. With the proposed adaptive predictor and the P-controller

compensation mechanism render the proposed approach very effective in re-

moving statistical redundancy and feasible for real time applications.

The rest of the chapter is organized as follows. Section 5.2 gives an

overview of the proposed TS-FNN based coding system. A detailed descrip-

tion on the prediction and the network adaptation process are also addressed

in this section. Besides, a brief introduction on the conditional entropy coder

applied in the proposed coding system is given in Section 5.3. The exper-

imental results are shown in section 5.4 to demonstrate the effectiveness of

the proposed system. Finally, a concluding remark is given in Section 5.5.
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5.2 Proposed TS-FNN based coding system

Error Compensation

Entropy

Coder

A B

Context Modeling

Code Stream

xn

xp

xcpd

xn "

epTS-FNN Based

Predictor

C

Error Estimate

Figure 5.1: Proposed TS-FNN based coding system.

Fig. 5.1 shows the block diagram of the proposed TS-FNN based pre-

dictive coding system. As can be seen in Fig. 5.1, the proposed system is

composed of three major blocks, the “TS-FNN based predictor”, the “error

compensation mechanism”, and the “entropy coder”. The TS-FNN based

predictor is a four-layered linear-like network with Gaussian membership de-

gree measurement and linear combinations. Besides, the network parameters

are adapted in the coding process by using back propagation learning algo-

rithm. As we will see in succeeding sections, the proposed system performs

nonlinear prediction but with much reduced computational complexity just

like a linear predictor. In the proposed system, the predictor output xp is

further refined through an error compensation mechanism, i.e., the so-called

bias cancelation technique, to get a compensated prediction xcpd = xp + ep.

The refined error ε = xn−xcpd is then entropy encoded through a conditional

arithmetic coder to produce the bit stream [34]. It should be noted that all

the pixels used in the proposed approach are causal, i.e., pixels previously

encoded. Therefore, the decoder can reconstruct the image pixel from the re-
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ceived bit stream by performing the same prediction and error compensation

just like the encoder without any side information.

5.2.1 The TS-FNN based adaptive predictor

In this chapter, the predictor is implemented by using the TS-type fuzzy

neural network (TS-FNN) proposed by Takagi and Sugeno [37]-[39]. It is

noted that a highly complex nonlinear model can be easily described in the

TS-FNN system with a small number of fuzzy “If-Then” rules [37]-[39]. In

general, the kth rule, Rk, of the TS-FNN model can be expressed by

Rk : If z1(t) is F1k . . . and zi(t) is Fik Then

yk(t) = Akx(t) + Bku(t) for k = 1, 2, . . . , L, (5.1)

where z1(t), . . . , zi(t) are the input variables, F1k, . . . , Fik are the fuzzy quan-

tifiers (fuzzy sets) associated with corresponding input variables, yk(t) ∈
Rp represents the output of the kth rule, t denotes the current discrete

time index, L denotes the number of rules, Ak ∈ Rp×n, x(t) ∈ Rn, Bk ∈
Rp×m, and u(t) ∈ Rm are the consequent parts of the rule.

The proposed TS-FNN based predictor is shown in Fig. 5.2. As can be

seen in Fig. 5.2 , the proposed network has four layers. The nodes in Layer1

(the input layer) transmit the input signal to their output directly, i.e., it

plays the role of signal buffering. In the proposed approach, there are two

nodes in the input layer (i = 2). Layer2 is the “membership layer”. In this

layer, the number of nodes associated with corresponding input variable is

set to be three (j = 3). Layer3 is the “rule layer”. Since the interconnection

topology between nodes in layer2 is fully connected, we have nine (i.e., ji)

nodes (i.e., rules) in layer3. Layer4 is the “output layer”. The output layer

has only one node in the proposed approach, and its output is the prediction
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Figure 5.2: Proposed TS-FNN predictor.

value of the coding pixel. It is noted that the pixel values are normalized by

255 before they are feed into the system, suppose the input image has 8 bits

per pixel, and the output of the network is scaled by 255 and then rounded

to the nearest integer as the prediction value.

For notation convenience, the net input to the jth node in layer l and the

corresponding activation function are denoted by net
(l)
j and f

(l)
j respectively,

and the output of jth node in layer l, is given by O
(l)
j = f

(l)
j (net

(l)
j ). A brief

description about the proposed TS-FNN based predictor is given below.

Fig. 5.3 defines the texture context of the coding pixel. Besides, the input

vector z(t) of the proposed network is given by

z(t) = [z1(t), z2(t)]
T = [x1 − x3, x2 − x3]

T , (5.2)
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where t denotes the discrete coding sequence. Obviously, z1 measures the

strength of vertical deviation (i.e., horizontal edge detection), while z2 is for

that of horizontal deviation (i.e., vertical edge detection). It should be noted

that all the pixels used should be normalized by 255 before feed into the

network in order not to fall into the saturation region during the network

learning process.

Layer1: Input layer

The nodes in this layer just perform the buffering operations. That is,

the input variables z1 and z2 are transmitted to layer2 directly. Therefore,

the output of the ith node in layer1 is given by

O
(1)
i = zi for i = 1, 2. (5.3)

Layer2: Membership layer

In this layer, the activation function of the jth node associate with the

ith input, zi, in layer1 is denoted by f
(2)
ij . Each node in this layer performs

the membership degree measurement of a Gaussian function, and its output,

µij = O
(2)
ij , specifies the degree to which the given input zi satisfies the fuzzy
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quantifier f
(2)
ij , that is,

µij = O
(2)
ij = f

(2)
ij (zi) = exp{−(zi − mij)

2

σ2
ij

} for i = 1, 2, and j = 1, 2, 3,

(5.4)

where mij and σij denotes the center and the width (i.e., standard devia-

tion) of the Gaussian membership function respectively, and the subscript ij

indicates the jth node associated with the ith input zi in layer1.

Layer3: Rule layer

The links in this layer are used to implement the antecedent matching.

The matching operation (or the fuzzy “AND” aggregation) is chosen as the

simple “product” operation instead of “min” operation. Therefore, each

node in this layer multiplies incoming signals and sends the product to its

output. The output of the kth node in this layer represents the firing strength

of the kth rule, and is given by

αk = O
(3)
k = µ1p ∗ µ2q = net

(3)
k for k = 1, 2, . . . , 9,

p = 1, 2, 3, and 1 ≤ q = k − 3(p − 1) ≤ 3. (5.5)

Layer4: Output layer

This layer performs the defuzzification process to get the numerical out-

put. As can be seen in Fig. 5.2, the output of each node in layer3 (i.e., the

firing strength αk) is first weighted by a factor wk, and then summed up to-

gether as the net input of layer4. The connection weight wk, which represents

the output action for the kth rule, is given by

wk = Akx(t) + Bku(t) for k = 1, 2, . . . , 9, (5.6)
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where x(t) = [x1, x2, . . . , x6]
T is composed of the six causal neighbors around

the coding pixel, Ak = [a1
k, a

2
k, . . . , a

6
k]

T can be regarded as the sixth-order

predictor coefficients associated with the kth rule, u(t) = [u1, u2]
T = [x1 −

x3, x2 − x3]
T = z(t) is used for horizontal and vertical edge detection, and

the vector Bk = [b1, b2]
T is the weighting coefficients associated with the

kth rule for the vector u(t). As we know that a large prediction error can

take place around an edge. Besides, an edge among image pixels during

the coding process can be regarded as a step command in control system.

Moreover, we find both the predictive coding and a control system have

the same objective to minimize the difference between the desired and the

actual output, i.e., the so-called error signal. These observations lead to the

motivation of enhancing the prediction result with control technologies. For

this, the term Bku(t), which is called “P-controller” in control system, is

applied in (5.6) for prediction error suppression. It should be noted that the

proposed P-controller compensator is quite different to the so-called “error

modeling” or “bias cancelation technique” in [14], [19], and both of which

can be applied jointly for further refinement of prediction errors.

The output of the TS-FNN system is then a linear combination of the

consequent part. That is, the final output of the predictor network is a

weighted summation of the individual output of the rules in layer3 (Fig. 5.2),

and is given by

y(t) = net(4) =
9∑

k=1

αkwk =
9∑

k=1

αk(Akx + Bku). (5.7)

As can be seen in (5.7), the output of the proposed TS-FNN based pre-

dictor is implemented in an un-normalized manner which has the advantages

of a faster training rate and a much simpler input/output sensitivity equa-

tion [41], [44], [45]. In addition, it should be noted again that all the pixels
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used are normalized by 255 before they are feed into the proposed predictor

network. Therefore, the predictor output should be scaled by 255 this time

and bounded in the range of [0, 255] as the prediction value.

5.2.2 Network Adaptation process

In order that the proposed predictor network can adapt itself to the varying

statistics of the image to be coded. The network parameters are updated

continuously using the gradient descent method during the coding process.

To do this, an online training area is commonly used [22]-[24]. However, the

use of an online training area also means an increase in computational com-

plexity. Therefore, we have investigated in this chapter the use of an online

training area composed of only the four causal pixels x1, x2, · · · , x4 (Fig. 5.3)

and even that of without using any online training area. Though with a sub-

stantially decreased number of training pixels, the prediction performance of

proposed approach is still very good as we will see later in the experiments.

To adapt the parameters of the proposed predictor network during the

coding process, we first define a cost function (or error function) E(t) as in

(5.8).

E(t) =
1

2
(d(t) − y(t))2, (5.8)

where d(t) denotes the desired output and y(t) denotes the actual output

of the proposed TS-FNN system. The back propagation (BP) learning algo-

rithm is used to minimize the error function, and the parameter w is adapted

by

w(t + 1) = w(t) + η(−∂E(t)

∂w(t)
), (5.9)

where w = [m,σ,Ak, Bk]
T , and η is the learning rate. We will first derive

the adaptation rules for the parameters in the consequent part, i.e., the links
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between layer3 and layer4. After that, the adaptation equations for those

parameters in layer2 will be given.

A-1. Consequent part: Derivation for ∆ar
k

In the consequent part, coefficients of the nine sixth-order predictors and

the P-controller compensators are to be updated. We will first derive the

adaptation rules for the coefficients of the nine sixth-order predictors. The

adaptation for ar
k, the rth coefficient of the sixth-order predictor associated

with the kth rule (or kth predictor) is given by

ar
k(t + 1) = ar

k(t) + ∆ar
k(t) for r = 1, 2, . . . , 6, and k = 1, 2, . . . , 9, (5.10)

where ∆ar
k(t) is the correction term for ar

k(t) given by

∆ar
k(t) = −ηA

∂E

∂ar
k

= −ηA

[
∂E

∂O(4)

] [
∂O(4)

∂net(4)

] [
∂net(4)

∂ar
k

]

= −ηA

[
∂E

∂y

] [
∂y

∂net(4)

] [
∂net(4)

∂ar
k

]

= ηA(d − y)

[
∂net(4)

∂ar
k

]

= ηA(d − y)
∂

∂ar
k

[
9∑

j=1

αj(Ajx + Bju)

]

= ηA(d − y)αkxr

= ηAδ(4)αkxr,

(5.11)

where δ(4) is the error signal of layer4 (i.e., output layer) defined by

δ(4) = − ∂E

∂net(4)
= −

[
∂E

∂O(4)

] [
∂O(4)

∂net(4)

]
= (d − y). (5.12)
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In general, (5.11), the correction term for ar
k(t), is represented in the following

form

∆ar
k(t) = ηAδ(4)αkxr + τ∆ar

k(t − 1), (5.13)

where τ is the momentum term to accelerate the convergence speed. Using

(5.13), we can rewrite (5.10) as

ar
k(t + 1) = ar

k(t) + ηAδ(4)αkxr + τ∆ar
k(t − 1) for r = 1, 2, . . . , 6,

and k = 1, 2, . . . , 9. (5.14)

A-2. Consequent part: Derivation for ∆bs
k

With a similar approach for that of ar
k, the adaptation rule for bs

k, i.e.,

the sth coefficient of the compensator associated with the kth rule, is given

by

bs
k(t + 1) = bs

k(t) + ∆bs
k(t) for s = 1, 2, and k = 1, 2, . . . , 9, (5.15)

where ∆bs
k(t) is the correction term for bs

k(t) given by

∆bs
k(t) = −ηB

∂E

∂bs
k

= −ηB

[
∂E

∂y

] [
∂y

∂net(4)

] [
∂net(4)

∂bs
k

]

= ηB(d − y)

[
∂net(4)

∂bs
k

]

= ηB(d − y)
∂

∂bs
k

[
9∑

j=1

αj(Ajx + Bju)

]

= ηB(d − y) [αkus]

= ηBδ(4)αkus.

(5.16)

As for ∆ar
k(t), a momentum term τ∆bs

k(t− 1) is added to (5.16) so that the

convergence speed can be accelerated. Therefore, the correction term for the
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bs
k(t) can be rewritten as

∆bs
k(t) = ηBδ(4)αkus + τ∆bs

k(t − 1). (5.17)

Using (5.17), (5.15) can be rewritten as

bs
k(t + 1) = bs

k(t) + ηBδ(4)αkus + τ∆bs
k(t − 1) for s = 1, 2,

and k = 1, 2, . . . , 9. (5.18)

B-1. Primary part: Derivation for ∆mij

In the primary part, the mean mij and the standard deviation σij of the

six Gaussian membership functions in layer2 have to be updated. We will

first derive the adaptation rules of the six Gaussian means, and then the

adaptation rules for the six standard deviations will be given.

The adaptation rule for mij, i.e., the mean of the jth Gaussian member-

ship function associated with the ith input variable, is given by

mij(t + 1) = mij(t) + ∆mij(t) for i = 1, 2, and j = 1, 2, 3, (5.19)

where

∆mij(t) = −ηm
∂E

∂mij

= −ηm

[
∂E

∂y

] [
∂y

∂net(4)

] [
∂net(4)

∂mij

]

= ηm(d − y)

[
∂net(4)

∂mij

]
,

(5.20)
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where ∂net(4)

∂mij
, by applying chain rule, can be expressed as

∂net(4)

∂mij

=
∑

k

[
∂net(4)

∂O
(3)
k

] [
∂O

(3)
k

∂net
(3)
k

] [
∂net

(3)
k

∂O
(2)
ij

] [
∂O

(2)
ij

∂mij

]

=
9∑

k=1

Φ
(ij)
k

[
∂net(4)

∂O
(3)
k

] [
∂O

(3)
k

∂net
(3)
k

] [
∂net

(3)
k

∂O
(2)
ij

] [
∂O

(2)
ij

∂mij

]

=
9∑

k=1

Φ
(ij)
k wk

αk

µij

∂

∂mij

{
exp

[
−(zi − mij)

2

σ2
ij

]}

=
9∑

k=1

Φ
(ij)
k wk

αk

µij

µij
2(zi − mij)

σ2
ij

=
2(zi − mij)

σ2
ij

{
9∑

k=1

Φ
(ij)
k wkαk

}
,

(5.21)

where

Φ
(ij)
k =




1 if k = [j − (2 − i)] r(2−i) + [v − (i − 1)] r(i−1)

for v = 1, 2, 3, and r = 3

0 otherwise.

(5.22)

By substituting (5.21) back into (5.20), we have

∆mij(t) = ηm
2(zi − mij)

σ2
ij

{
9∑

k=1

Φ
(ij)
k (d − y)wkαk

}

= ηm
2(zi − mij)

σ2
ij

{
9∑

k=1

Φ
(ij)
k δ

(3)
k αk

}
,

(5.23)

where δ
(3)
k is the error signal associated with the kth node in layer3 defined
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by

δ
(3)
k = − ∂E

∂net
(3)
k

= −
[

∂E

∂net(4)

] [
∂net(4)

∂O
(3)
k

] [
∂O

(3)
k

∂net
(3)
k

]

= −
[
∂E

∂y

] [
∂y

∂αk

]

= (d − y)
∂

∂αk

[
9∑

j=1

αjwj

]

= (d − y)wk

= δ(4)wk.

(5.24)

The Φ
(ij)
k in (5.22) describes the connectivity of the nodes in layer3 which is

associated with the ijth node in layer2. That is, if the kth node in layer3 has

one of its incoming signal from the ijth node in layer2, then Φ
(ij)
k = 1; oth-

erwise Φ
(ij)
k = 0. Combing (5.23) with the momentum term for convergence

speed acceleration, we can rewrite (5.19) as

mij(t + 1) = mij(t) + ηm
2(zi − mij)

σ2
ij

{
9∑

k=1

Φ
(ij)
k δ3

kαk

}
+ τ∆mij(t − 1)

for i = 1, 2, and j = 1, 2, 3. (5.25)

B-2. Primary part: Derivation for ∆σij

The adaptation rule for σij, i.e., the standard deviation of the jth Gaus-

sian membership function associated with the ith input variable, is given

by

σij(t + 1) = σij(t) + ∆σij(t) for i = 1, 2, and j = 1, 2, 3, (5.26)
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where

∆σij(t) = −ησ
∂E

∂σij

= −ησ

[
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] [
∂y
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] [
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]
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(5.27)

where ∂net(4)
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, by applying chain rule, can be expressed as
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(5.28)

By substituting (5.28) back into (5.27), we have

∆σij(t) = ησ
2(zi − mij)

2

σ3
ij

{
9∑

k=1

Φ
(ij)
k (d − y)wkαk

}

= ησ
2(zi − mij)

2

σ3
ij

{
9∑

k=1

Φ
(ij)
k δ

(3)
k αk

}
.

(5.29)

Using (5.29) together with a momentum term, (5.26), the adaptation rule for
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σij, can be rewritten in the following form

σij(t + 1) = σij(t) + ησ
2(zi − mij)

2

σ3
ij

{
9∑

k=1

Φ
(ij)
k δ

(3)
k αk

}
+ τ∆σij(t − 1)

for i = 1, 2, and j = 1, 2, 3. (5.30)

In this chapter, the updated network parameters are used for the prediction

of next coding pixel. In addition to the predictor adaptation process, we

also know that the prediction error can be further refined through an er-

ror compensation mechanism. For this, we use the proposed error modeling

technique in [28] so that the the prediction error xn −xp can be further com-

pensated. The compensated error ε = xn − xcpd has a narrower histogram

and hence a lower first-order entropy. The refined error ε is then entropy en-

coded using a conditional arithmetic coder to produce the bit stream [34]. To

summarize, the pseudo code of the proposed approach is given in Appendix

C.
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Figure 5.4: Histogram of refined errors in quantization bins for image “Lenna-
grey.”

5.3 Entropy Coding of Prediction Errors

In the proposed approach, the refined error ε is then entropy encoded through

a conditional arithmetic coder. For this, we use the same approach in-

troduced in Chapter 3, and the error strength estimate ∆ of the coding

pixel defined here is also the same as that of in Chapter 3. The approxi-

mately optimal quantization of ∆ in the proposed approach is found to be

[0, 1], (1, 3], (3, 90], (90,∞). With this quantization, one out of a set of four

probability models is chosen for the entropy coding of ε based on the value
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of error strength estimate ∆.


use pmf 1, if 0 ≤ � ≤ 1
use pmf 2, if 1 < � ≤ 3
use pmf 3, if 3 < � ≤ 90
use pmf 4, otherwise.

(5.31)

In order that the coding efficiency in actual bit rates can be further im-

proved, the techniques including “error sign flipping”, “error remapping”,

and the “histogram tail truncation” are also applied in the proposed ap-

proach prior to it is entropy encoded. With the quantization bins in (5.31),

the error histogram in each quantization bin for image “Lennagrey” (Fig. 2.6)

are plotted in Fig. 5.4. The curve of Bin4 is not shown because no error

strength estimate falls in that region. With the “histogram tail truncation”

technique, the cut off region for the quantization bins are selected to be

[−23, 23], [−41, 41], [−59, 59] and [−128, 127] such that over 99% of the re-

fined errors in each quantization bin are within the truncated regions. By

using the histogram tail truncation, an error 30 in Bin1 for example, is en-

coded first to be 23 using pmf 1, followed by 7 using pmf 2.
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5.4 Experiments

In this section, performance of the proposed TS-FNN based lossless image

coding system will be evaluated. Comparisons to existing state-of-the-art

linear and nonlinear predictors and coders are also given. All the test im-

ages used in the experiments are from TMW [20]. We will first demonstrate

the effectiveness of the proposed TS-FNN based predictor and the implic-

itly implemented “P-controller” compensator. After that, the usefulness of

the error compensation mechanism that uses the so-called bias cancelation

technique will be demonstrated. Finally, the bit rate performance and the

computational complexity of the proposed system will be discussed.

5.4.1 The network parameters

Table 5.1: Initial parameters for the six Gaussian membership functions in
Layer2.

m11 = −0.208 σ11 = 0.135
m12 = −0.006 σ12 = 0.612
m13 = 0.229 σ13 = 0.208
m21 = −0.230 σ21 = 0.199
m22 = 0.528 σ22 = 1.418
m23 = 0.197 σ23 = 0.250

In this chapter, initial values of the parameters that are used in the pro-

posed approach are listed in Table 5.1 to Table 5.4. These settings are

obtained by using the image “Lennagrey” (Fig. 2.6) as the predictor input

iteratively off-line so that the network parameters are well trained before-

hand. Table 5.1 shows initial values of the center and standard deviation

for the six Gaussian membership functions in layer2. To be clear, the six

Gaussian membership distributions are also plotted in Fig. 5.5. The initial
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Figure 5.5: The six membership functions in layer2. (a) associated with
input variable z1. (b) associated with input variable z2.

coefficients of the nine sixth-order predictors and the “P-controller” compen-

sators are as shown in Table 5.2 and Table 5.3 respectively. In Table 5.3,

some of the initial coefficients for the “P-controller” compensator appear

to be zero just because they are too small to be represented under limited

display precision.

Parameters used for network adaptation process are summarized in Ta-

ble 5.4. As can be seen in Table 5.4, the learning rate for different parameters

are defined separatively, while the momentum coefficient used are the same.

Moreover, the learning rates and the momentum coefficient in Table 5.4 are

chosen empirically, and we find them perform very well in our experiments.

Therefore, these values will be used through out this chapter.

87



Table 5.2: Initial parameters for matrix A. (i.e., coefficients of the nine sixth-
order predictors)

a11= -0.287 a12= -0.489 a13= 0.225 a14= 0.224 a15= 0.098 a16= 0.191

a21= 0.195 a22= -0.135 a23= 0.247 a24= -0.120 a25= -0.245 a26= -0.208

a31= 0.258 a32= 0.600 a33= 0.154 a34= -0.318 a35= -0.003 a36= -0.323

a41= -0.369 a42= 0.773 a43= 0.152 a44= -0.013 a45= -0.023 a46= -0.412

a51= 0.267 a52= 0.160 a53= 0.111 a54= 0.536 a55= -0.006 a56= 0.113

a61= 0.220 a62= 0.833 a63= -0.237 a64= -0.529 a65= -0.107 a66= -0.237

a71= 0.199 a72= 0.774 a73= 0.148 a74= -0.902 a75= -0.249 a76= -0.068

a81= 0.567 a82= 0.045 a83= -0.254 a84= 0.084 a85= 0.050 a86= -0.379

a91= -0.222 a92= -0.211 a93= -0.169 a94= 0.347 a95= -0.046 a96= 0.018

5.4.2 The training area for network adaptation

Further to the network adaptation process, there is one more thing that

should be mentioned is the number of training pixels and the number of

training cycles selected in the proposed approach. The use of a moderate

training area around the coding pixel can adapt the predictor network to the

local statistics. However, a large number of training pixels and training cycles

can incur a drastic increase in computational complexity. In this chapter,

the image pixels are encoded in an order of raster scan, i.e., from left to

right and from top to bottom. Therefore, we choose in this chapter the

training area to be the four nearest causal pixels x1, x2, . . . , x4 in Fig. 5.3.

We also find in our experiments that a larger training area than the four pixels

defined above has only minor improvement on the prediction results. Based

on this observation, we even try not to use any training area in the network

adaptation process, and the prediction results obtained are still very good

as we will see later in the following experiments. Furthermore, the training

88



Table 5.3: Initial parameters for matrix B. (i.e., parameters of the nine “P-
controller” compensators)

b11 = 0.000 b12 = 0.000
b21 = 0.004 b22 = 0.004
b31 = 0.002 b32 = 0.002
b41 = 0.001 b42 = 0.001
b51 = 0.003 b52 = 0.003
b61 = −0.001 b62 = −0.001
b71 = 0.000 b72 = 0.000
b81 = 0.000 b82 = 0.000
b91 = 0.000 b92 = 0.000

Table 5.4: Learning rates and momentum for network adaptation process.
Learning rate for matrix A in the connection from Layer3 to Layer4 ηA = 0.01
Learning rate for matrix B in the connection from Layer3 to Layer4 ηB = 0.8
Learning rate for the mean of Gaussian member functions ηm = 0.05
Learning rate for the standard deviation of Gaussian member functions ησ = 0.05
Momentum used in parameters updating process τ = 0.2

cycle for network adaptation is set to be one in our experiments so that the

run time performance of the proposed approach can be very good.

5.4.3 The “P-controller” based compensation mecha-
nism

The usefulness of the proposed “P-controller” compensator, i.e., the term

Bku in (5.6), can be evaluated through the following experiment. In this

experiment, the fourteen test images in Table 5.5 will be used as the pre-

dictor input. We first set the B matrix in the consequent part to be a zero

vector (denoted as Type 1), and then calculate the first-order entropies of

uncompensated prediction error for the fourteen test images. After that, the

prediction process is repeated again but with the component Bku in existence
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Table 5.5: The usefulness of the proposed “P-controller” compensator. (i.e.,
the term Bku)

B Absent

(A1)

B Present

(B1)

Difference

(C1) = (A1) - (B1)

Percentage

(C1)/(A1)

B Absent

(A2)

B Present

(B2)

Difference

(C2) = (A2) - (B2)

Percentage

(C2)/(A2)

Airplane 6.71 4.09 4.07 0.01 0.3% 4.09 4.08 0.01 0.3%

Baboon 7.36 6.11 6.10 0.01 0.1% 6.11 6.07 0.04 0.6%

Balloon 7.35 2.99 2.98 0.01 0.3% 2.97 2.96 0.01 0.4%

Barb 7.47 4.89 4.81 0.07 1.5% 4.83 4.72 0.11 2.3%

Barb2 7.48 4.90 4.87 0.03 0.6% 4.90 4.89 0.01 0.1%

Boats 7.10 4.23 4.17 0.06 1.4% 4.23 4.16 0.07 1.7%

Camera 7.01 4.86 4.85 0.01 0.2% 4.94 4.89 0.05 1.0%

Couple 6.39 4.12 4.07 0.05 1.2% 4.08 4.06 0.02 0.5%

Goldhill 7.53 4.64 4.64 0.00 0.0% 4.65 4.64 0.01 0.2%

Lena 7.59 4.67 4.67 -0.00 0.0% 4.67 4.68 -0.01 -0.2%

Lennagrey 7.45 4.32 4.32 -0.00 0.0% 4.33 4.34 -0.00 -0.1%

Noisesquare 5.72 5.44 5.43 0.01 0.2% 5.48 5.46 0.01 0.2%

Peppers 7.59 4.58 4.56 0.02 0.4% 4.55 4.53 0.01 0.3%

Shapes 6.74 2.55 2.48 0.07 2.7% 2.41 2.36 0.05 1.9%

Average 7.11 4.46 4.43 0.03 0.6% 4.44 4.42 0.03 0.6%

Case 1: without online training area Case 2: with 4-pixel online training area
Image

Original

Entropy

this time (denoted as Type 2). Moreover, the experiment can be classified

into two cases, one with no online training area (denoted as Case 1), and

the other with the predefined four-pixel online training region (denoted as

Case 2).

In Table 5.5, the results obtained by setting the B matrix to be a zero

vector (Type 1) are shown in the columns denoted as A1 and A2, and that

of obtained by using the proposed “P-controller” compensator (Type 2) are

shown in the columns denoted as B1 and B2 respectively. For comparison

purpose, we also show in the last column of each case (Table 5.5) the percent-

age of improvement between the two types. As can be seen in Table 5.5, the

proposed “P-controller” compensator brings up a conspicuous improvement

from 1.4% to 2.7% on the first-order entropy of the three images “Barb”,

“Boats”, and “Shapes”. That is, the proposed approach is very useful for
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Figure 5.6: The image “Barb.”

images with many edges and lines.

While expected to be very useful for pixels around edges and boundaries,

the proposed “P-controller” compensator results in a minor degradation on

the prediction result for the two images, “Lena” and “Lennagrey”. It is noted

that all the initial network parameters used in this chapter are generated off-

line from the image “Lennagrey”. Therefore, the results shown for the image

“Lena” and “Lennagrey” are quite interesting. One possibility for explaining

the degradation is the over-training of network parameters, and the cause of

the fact has to be further investigated.

To look further into the usefulness of the proposed “P-controller” com-

pensation mechanism, we use the image “Barb” in Fig. 5.6 as the test image.

The images of uncompensated prediction error obtained with B matrix set to
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Figure 5.7: Uncompensated prediction error for image “Barb.” (a) with B
matrix absent. (b) with B matrix in presence.

a zero vector (Type 1) and in presence (Type 2) are shown in Fig. 5.7(a) and

5.7(b) respectively. In Fig. 5.7, both the two types perform online adaptation

using the predefined four-pixel training area. The histograms of uncompen-

sated prediction error for the two types in Fig. 5.7 are shown in Fig. 5.8. As

can be seen in Fig. 5.8, the uncompensated prediction error obtained by us-

ing the proposed “P-controller” compensator has a narrower histogram, and

hence a lower first-order entropy. Indeed, the entropies of the two histograms

in Fig. 5.8 are 4.83bpp (Type 1) and 4.72bpp (Type 2) respectively.

5.4.4 Comparisons to existing predictors

Table 5.6 shows the comparison results of uncompensated prediction errors

with state-of-the-art lossless image predictors for a set of eight test images

in first-order entropies. The results of the median edge detector (MED) [15],
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Figure 5.8: Histogram of uncompensated prediction error for the image
“Barb.” (both with the four-pixel online training area)

the gradient adjusted predictor (GAP) [14], the sixth-order edge directed

predictor (EDP) [26], and the sixth-order LS-based edge-look-ahead approach

[27] are taken from [26] and [27] respectively. The results of the proposed

approach, which are obtained with the component Bku in existence, are

listed in the last two columns (Case 1 and Case 2) of Table 5.6. As can be

seen in Table 5.6, the proposed TS-FNN based predictor outperforms the

MED and GAP predictors in all the test images, and is compatible with

that of reported by the sixth-order EDP and the sixth-order LS-based edge-

look-ahead approach, which justifies the usefulness of the proposed predictor

approach.
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Table 5.6: Comparisons on first-order entropy with existing state-of-the-art
predictors.

Without

Local

Training

With Local

Training

Baboon 7.36 6.28 6.22 6.01 6.10 6.07

Lena 7.59 4.90 4.75 4.60 4.67 4.68

Lennagrey 7.45 4.56 4.40 4.26 4.32 4.34

Peppers 7.59 4.95 4.78 4.52 4.56 4.53

Barb 7.47 5.21 5.15 4.44 4.81 4.72

Barb2 7.48 5.19 5.06 4.80 4.87 4.89

Boats 7.10 4.31 4.29 4.14 4.17 4.16

Gold Hill 7.62 4.72 4.70 4.60 4.64 4.64

Average 7.46 5.02 4.92 4.67 4.63 4.77 4.75

Image
Original

Entropy
MED GAP

Sixth-Order

EDP

Sixth-Order

LS-Based

Edge-look-ahead

5.4.5 The error compensation mechanism

The usefulness of the error compensation mechanism (Fig. 5.1) will be evalu-

ated in this part. In this chapter, the error compensation mechanism uses the

so-called “bias cancelation” technique for further refinement of the predic-

tion errors [14], [15], [19], [28]. It should be noted that the conventional error

compensation mechanism discussed here, a statistical approach, is quite dif-

ferent to the proposed “P-controller” compensator implemented implicitly in

the consequent part of the predictor network. To demonstrate the effective-

ness of the proposed error compensation mechanism, the image ”Lennagrey”

(Fig. 2.6) is used for the experiment. The uncompensated and refined predic-

tion error for the image “Lennagrey” are shown in Fig. 5.9(a) and 5.9(b) re-

spectively. Moreover, the corresponding histogram are as shown in Fig. 5.10.

As can be seen in Fig. 5.10, the histogram of refined error has a narrower

peak and hence a lower entropy. Actually, the entropy for the two error

images are respectively, 4.116bpp (refined) and 4.335bpp (uncompensated).

94



100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(b)

Figure 5.9: Prediction errors for the image “Lennagrey.” (a) Uncompensated.
(b) Refined.

5.4.6 Comparisons to existing state-of-the-art coders

To demonstrate the usefulness of the proposed coding system on actual bit

rates, we also compare the proposed approach with state-of-the-art lossless

image coders. Table 5.7 gives actual bit rates by JPEG-LS [15], CALIC

[14], EDP [26], RALP [28] and TMW [20] for a set of fourteen test images.

In Table 5.7, the results of JPEG-LS, CALIC, EDP, RALP and TMW are

taken directly from [28]. All the bit rates of the proposed algorithm are ob-

tained using the same parameters with no individual optimization. Besides,

the bit rates of the proposed approach are obtained with the “P-controller”

compensator in presence. We also show in the second column and the fifth

column respectively the first-order entropies of the compensated prediction

errors using the the proposed approach. Moreover, the execution time (in
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Figure 5.10: Histogram of uncompensated and refined prediction errors for
the image “Lennagrey.”

seconds; on a Pentium 1.4GHz machine) of the proposed coder are also listed

in the fourth and seventh column so that we can get a picture on the runtime

performance. It should be noted that some of the results in EDP are denoted

by “N/A” because they are not reported in [26]. Therefore, the average value

for EDP is different to that of for others.

As can be seen in Table 5.7, the proposed TS-FNN based approach out-

performs JPEG-LS [15] in almost all of the test images, and has lower bit

rates than CALIC [14] in eight out of the fourteen test images. Encourag-

ingly, the proposed approach achieves lower bit rates than the highly complex

TMW in two images, “Balloon” and “Noise square”. We notice that the pro-

posed bit rate performance for the image “Shapes” (Fig. 4.1) is inferior to

that of obtained by JPEG-LS [15], CALIC [14], and RALP [28]. For this, we

can see from Fig. 4.1 that the image “Shapes”, an artificial image with many
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Table 5.7: Comparisons on actual bit rates with existing state-of-the-art
lossless image coders. (run on a P4-1.4GHz machine with memory 512MB)

First Oreder

Entropy
Bit rate seconds

First Oreder

Entropy
Bit rate seconds

Airplane 3.80 3.69 3.36 3.79 3.68 7.88 3.82 3.74 N/A 3.71 3.60

Baboon 6.02 6.00 3.97 6.00 5.97 8.31 6.04 5.88 5.81 5.81 5.73

Balloon 2.57 2.56 4.94 2.55 2.54 11.88 2.90 2.83 N/A 2.55 2.66

Barb 4.60 4.54 3.67 4.54 4.49 7.94 4.69 4.32 4.11 4.12 4.09

Barb2 4.68 4.62 5.72 4.71 4.66 15.92 4.69 4.53 4.52 4.51 4.38

Boats 3.91 3.80 5.36 3.90 3.78 12.27 3.93 3.83 3.80 3.75 3.61

Camera 4.61 4.40 1.00 4.61 4.39 2.05 4.31 4.19 N/A 4.24 4.10

Couple 3.76 3.73 1.03 3.75 3.73 2.31 3.70 3.61 N/A 3.63 3.45

Gold Hill 4.44 4.36 5.58 4.45 4.36 12.59 4.48 4.39 4.39 4.32 4.27

Lena 4.49 4.46 3.56 4.50 4.47 9.44 4.61 4.48 4.40 4.35 4.30

Lennagrey 4.11 4.07 3.52 4.12 4.08 10.08 4.24 4.11 4.02 3.95 3.91

Noisesquare 5.32 5.35 0.98 5.40 5.44 2.11 5.68 5.44 N/A 5.37 5.54

Peppers 4.38 4.35 3.55 4.35 4.33 8.00 4.51 4.42 4.35 4.27 4.25

Shapes 1.97 1.86 3.31 1.90 1.79 11.30 1.21 1.14 N/A 1.52 0.76

Average 4.19 4.13 3.54 4.18 4.12 8.72 4.20 4.07 4.43 4.01 3.90

TMW

[20]
Without online training area With 4-pixel online training areaImage

JPEG-LS

[15]

CALIC

[14]

EDP

[26]

RALP

[28]

(* For the EDP method, the bit rates for some of the images are not
available and the average is computed only for those that are available.)

edges and lines, can be segmented into many slowly varying areas in which

the run-length coding method is most efficient to be used. In the meanwhile,

we also know that the run-length encoding is applied in the coder of JPEG-

LS [15] and RALP [28]. Furthermore, the CALIC [14] also uses a “Ternary

entropy coder” for the so-called “binary mode” or uniform regions. There-

fore, we think the bit rate performance for artificial images, like the image

“Shapes”, can be improved if a more sophisticated run-length coder or an

extra entropy coder with a small symbol set is applied for slowly varying

areas in the proposed approach.

As to the computational complexity is compared, the JPEG-LS [15] that
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uses the division-free MED predictor as the core of the image coder has the

lowest complexity. The CALIC coding system [14] applies the use of the

GAP as the core predictor. The GAP calculates the gradient of a coding

pixel and chooses one out of a set of seven predictors based on the calculated

gradient. Therefore, the complexity of the CALIC coding system is higher

than that of JPEG-LS. It is noted that both the coefficients of GAP and MED

predictors are fixed during the coding process. On the other hand, both the

EDP [26] and RALP [28] use a least squares (LS) adapted predictor as the

core of the coding system. We know that the normal equations provides the

key for the solution of LS optimization problem. Moreover, fast algorithms,

like Cholesky decomposition, can be used for the problem solving based on

the singularity of the constructed normal equations [35], [36]. Therefore, the

major complexity of the LS adaptation process in EDP and RALP will be

in constructing the normal equations rather than solving them [25]-[28]. A

detailed analysis on complexity of the LS-based adaptive predictor can be

found in [27] and [28]. Obviously, the computational complexity of EDP and

RALP are little higher than that of JPEG-LS and CALIC.

5.4.7 Computational complexity of the proposed ap-
proach

When reviewing the state-of-the-art lossless image coders, we can find that

some of which are designed for pursuing the ultimate compressibility regard-

less of the computational complexity encountered [20], [21]. In this chapter,

the proposed TS-FNN based approach is designed to be practical and fea-

sible under limited resources. In the proposed system, the prediction errors

are used to update the network parameters with back propagation learning

algorithm during the prediction process. Moreover, the learning cycle is set
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to be one for each coding pixel such that the computational complexity can

be reduced. Unlike other neural network based image predictors, the number

of online training pixels is decreased substantially and even not used in the

proposed approach so that the network adaptation process can be acceler-

ated. As can be seen in previous sections and the pseudo code, the major

nonlinear operation in the proposed system is the calculation of the six Gaus-

sian membership degree, i.e., (5.4), in the membership layer. In the network

adaptation process, only addition, multiplication and division operations are

needed ((5.12), (5.14), (5.18), (5.25), (5.30)). To get a picture about the

run-time performance, we also listed in Table 4.5 the execution times of the

proposed system (on a Pentium 1.4GHz machine). As can be seen in Ta-

ble 4.5, a very good trade-off between the computational complexity and

the prediction results has been obtained in the proposed system. Indeed,

the computational complexity can be further reduced if we can define an

error threshold so that the proposed system will not activate the adaptation

process until the prediction error is beyond the pre-selected threshold.

99



5.5 Concluding Remarks

In this chapter, we have proposed the use of a TS-FNN based predictor for

lossless coding of images. As the number of online training pixels for the

network adaptation process is decreased substantially, a very good run-time

performance can be achieved in the proposed approach. For pixels around

edges, we propose a novel approach by implementing implicitly the com-

monly used “P-controller” compensator in control system into the network

weights so that the prediction result can be improved. It is noted that the

proposed “P-controller” compensator is quite different to the so-called “bias

cancelation” technique applied in most of the lossless image coders. As can

be seen in our experiments, the use of the TS-FNN based predictor and the

“P-controller” compensator render the proposed approach highly adaptable

to the varying statistics of coding images. Besides, comparisons to exist-

ing state-of-the-art lossless image predictors and coders have demonstrated

the usefulness of the proposed approach, and what’s more, we have brought

up an idea of enhancing the predictive coding efficiency in a quite different

aspect.
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Chapter 6

Conclusion

In this dissertation, a switching coding scheme that combines the advantages

of both run-length and adaptive linear predictive coding is proposed. For pix-

els in slowly varying areas, run-length coding is used; otherwise an LS-based

adaptive predictor is used. We find in experiments that the LS-based adap-

tive predictor performs very useful around boundaries for its edge-directed

property. Instead of performing LS adaptation in a pixel-by-pixel manner,

we adapt the predictor coefficients only when an edge is detected or when

the prediction error is greater than a predefined threshold so that the com-

putational complexity can be significantly reduced. For this, we propose a

simple yet effective edge detector using only causal pixels. This way, the

proposed system can look ahead to determine if the coding pixel is around

an edge and initiate the LS adaptation in advance to prevent the occurrence

of a large prediction error. With the proposed switching structure, very good

prediction results can be obtained in both slowly varying areas and pixels

around boundaries. Moreover, only causal pixels are used for estimating the

coding pixels in the proposed encoder; no additional side information needs

to be transmitted. When compared with the pixel-by-pixel LS adaptation,

the proposed approach can achieve a noticeable reduction in complexity with
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only a minor degradation in entropy; a good tradeoff between computational

complexity and prediction results has been obtained. Furthermore, compar-

isons to existing state-of-the-art lossless image predictors and coders have

demonstrated the superiority of the proposed system.

In addition to the proposed edge-look-ahead approach. We find a large

prediction error can usually take place for pixels around boundaries. There-

fore, we also propose a novel idea of using control technologies to improve

the prediction result of pixels around boundaries. To realize this idea, we

have implemented an adaptive predictor based on Takagi-Sugeno fuzzy neu-

ral network. Moreover, the widely used proportional controller in control

theory is applied implicitly in the consequent part of the network as a com-

pensator to enhance the prediction result around edges. The effectiveness of

the proposed novel approach, though not very conspicuous at present, can be

further improved if a more sophisticated compensator is applied, and what’s

more, we have brought up an idea of solving this problem in a quite different

aspect for lossless compression of images.
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Appendix A

Pseudo Code of the Proposed
Edge-look-ahead Approach

{Pseudo-C implementation of the proposed edge-look-ahead ap-

proach in the 1-D scenario.}
/* Symbols definition */

// σ2: variance

// σ2
h: variance h

// σ2
l : variance l

// γl: gamma l

// γ2: gamma 2

// xn: x[n]

// en: e[n]

// θ: theta

// xn(k): x[n-k]

// xp: xp

// a(k): a[k]
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runmode=0;

while (scan unfinished)

{
if ( runmode or (variance==0) )

/* the case that run mode is initiated */

{
if ( x[n]==x[n-1] )

{
runmode=1;

runlength++;

}
else

{
Encode runlength using arithmetic coding.

runlength=0;

runmode=0;

}
}

else

runmode=0;

if (not runmode)

/* the case that regular mode is used */

{
edge detected=0;

if ( variance >= gamma 1 )

{
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Calculate variance h and variance l;

if ( variance >= gamma 2*(variance h + variance l) )

/* the case that an edge exists */

edge detected=1;

}
if ( edge detected or (e[n-1] >= theta) )

Adapt predictor;

/* Perform prediction */

xp=0;

for (k=1; k<=N; k++)

xp=xp+a[k]*x[n-k];

Perform error compensation;

Encode the refined error signal ε using conditional

arithmetic coding;

} /* end of regular mode */

} /* end of scan */
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Appendix B

Matlab Code for Sobel operator

{Matlab code for the Sobel operator.}
%Main Program

fid=fopen(‘Lennagrey.raw’,r);

f=fread(fid,[512,512]);

f=f’;

EdgeImage=Sobel(f,50);

imagesc(EdgeImage);

axis square;

colormap(gray);

%Sobel function

function y=Sobel(image, th)

[Nn Nm]=size(image);

h=[-1 -2 -1;0 0 0;1 2 1];

Gx=filter2(h,image);

Gy=filter2(h’,image);

F=abs(Gx)+abs(Gy);
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for i=1:Nn

for j=1:Nm

if F(i,j) < th

y(i,j)=255;

else

y(i,j)=0;

end

end

end
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Appendix C

Pseudo Code of the
P-Controller Compensation
Approach

{Pseudo code of the P-controller compensation approach.}
/* Symbols definition */

// xn: xn

// xp: xp

// zi: z[i]

// ui: u[i]

// µij: mu[i][j]

// mij: m[i][j]

// σij: sigma[i][j]

// αk: alpha[k]

// wk: w[k]

// ar
k: a[k][r]

// bs
k: b[k][s]

// δ(4): delta[4]
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// ∆ar
k: Delta a[k][r]

// ∆bs
k: Delta b[k][s]

// ∆mij: Delta m[i][j]

// ∆σij: Delta sigma[i][j]

// ηA: eta A

// ηB: eta B

// ηm: eta m

// ησ: eta sigma

// τ : tau

NodeinLayer1=2;

NodeinLayer2=3;

NodeinLayer3=9;

Av=255;

while (scan unfinished)

{
/* Texture context normalization */

for (t=1; t<=6; t++)

x[t]=x[t]/Av;

xf=xn/Av;

z[1]=x[1]-x[3];

z[2]=x[2]-x[3];

u[1]=z[1];

u[2]=z[2];

/* Compute the output of Layer2 */

for (i=1; i <= NodeinLayer1; i++)
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for (j=1; j <= NodeinLayer2; j++)

mu[i][j]=exp(-sqr(z[i]-m[i][j])/sqr(sigma[i][j]));

/* Compute the output of Layer3 */

k=1;

for (i=1; i <= NodeinLayer2; i++)

for (j=1; j <= NodeinLayer2; j++)

{
alpha[k]=mu[1][i]*mu[2][j];

k++;

}

/* Layer4 */

y=0;

for (k=1; k <= NodeinLayer3; k++)

{
w[k]=0;

for (r=1; r <= 6; r++)

w[k]=w[k]+a[k][r]*x[r];

for (s=1; s <= 2; s++)

w[k]=w[k]+b[k][s]*u[s];

yy[k]=alpha[k]*w[k];

y=y+yy[k];

}
/* Compute the actual output */

xp=Round(y*Av);

if xp > 255 then xp=255
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else if xp < 0 then xp=0;

e=xn-xp;

Perform error compensation to get refined error ε;

Encode the refined error ε using conditional arith-

metic coding.

/* Update ar
k and bs

k in the connection between Layer3 to Layer4*/

delta[4]=xf-y;

for (k=1; k <= NodeinLayer3; k++)

{
for (r=1; r <= 6; r++)

{
Delta a[k][r]=eta A*delta[4]*alpha[k]*x[r] + tau*Delta a[k][r];

a[k][r]=a[k][r] + Delta a[k][r];

}
for (s=1; s <= 2; s++)

{
Delta b[k][s]=eta B*delta[4]*alpha[k]*u[s] + tau*Delta b[k][s];

b[k][s]=b[k][s] + Delta b[k][s];

}
}

/* Compute ∆mij */

Delta m[1][1]=eta m*2*(z[1]-m[1][1])*delta[4]*(yy[1]+yy[2]+yy[3])/sqr(sigma[1][1])

+ tau*Delta m[1][1];

Delta m[1][2]=eta m*2*(z[1]-m[1][2])*delta[4]*(yy[4]+yy[5]+yy[6])/sqr(sigma[1][2])
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+ tau*Delta m[1][2];

Delta m[1][3]=eta m*2*(z[1]-m[1][3])*delta[4]*(yy[7]+yy[8]+yy[9])/sqr(sigma[1][3])

+ tau*Delta m[1][3];

Delta m[2][1]=eta m*2*(z[2]-m[2][1])*delta[4]*(yy[1]+yy[4]+yy[7])/sqr(sigma[2][1])

+ tau*Delta m[2][1];

Delta m[2][2]=eta m*2*(z[2]-m[2][2])*delta[4]*(yy[2]+yy[5]+yy[8])/sqr(sigma[2][2])

+ tau*Delta m[2][2];

Delta m[2][3]=eta m*2*(z[2]-m[2][3])*delta[4]*(yy[3]+yy[6]+yy[9])/sqr(sigma[2][3])

+ tau*Delta m[2][3];

/* Compute ∆σij */

Delta sigma[1][1]=eta sigma*2*sqr(z[1]-m[1][1])*delta[4]*(yy[1]+yy[2]+yy[3])

/power(sigma[1][1],3) + tau*Delta sigma[1][1];

Delta sigma[1][2]=eta sigma*2*sqr(z[1]-m[1][2])*delta[4]*(yy[4]+yy[5]+yy[6])

/power(sigma[1][2],3) + tau*Delta sigma[1][2];

Delta sigma[1][3]=eta sigma*2*sqr(z[1]-m[1][3])*delta[4]*(yy[7]+yy[8]+yy[9])

/power(sigma[1][3],3) + tau*Delta sigma[1][3];

Delta sigma[2][1]=eta sigma*2*sqr(z[2]-m[2][1])*delta[4]*(yy[1]+yy[4]+yy[7])

/power(sigma[2][1],3) + tau*Delta sigma[2][1];

Delta sigma[2][2]=eta sigma*2*sqr(z[2]-m[2][2])*delta[4]*(yy[2]+yy[5]+yy[8])

/power(sigma[2][2],3) + tau*Delta sigma[2][2];

Delta sigma[2][3]=eta sigma*2*sqr(z[2]-m[2][3])*delta[4]*(yy[3]+yy[6]+yy[9])

/power(sigma[2][3],3) + tau*Delta sigma[2][3];

/* Update mij and σij in Layer2 */

for (i=1; i <= NodeinLayer1; i++)

for (j=1; j <= NodeinLayer2; j++)
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{
m[i][j]=m[i][j]+Delta m[i][j];

sigma[i][j]=sigma[i][j]+Delta sigma[i][j];

}
} /* end of scan */
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4. Reviewer, IEEE Trans. Systems, Man and Cybernetics, Part B. 
5. Reviewer, EURASIP Journal on Advances in Signal Processing 
6. Reviewer, TANET2006（2006 網際網路研討會） 
7. Session chair and preparatory committee, TANET2006（2006 網際網路研討會） 
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榮  譽 

全國性競賽： 
1. 指導學生參加教育部『八十九學年度通訊專題製作競賽』晉級複賽，並獲得教育部

三萬元獎助。該論文收錄於『第四屆教育部通訊專題競賽入選論文集』。 
2. 所指導學生之專題『校園電子消費系統』獲得『八十九學年度全國大專專題製作競

賽』佳作。 
3. 指導學生參加教育部『八十八學年度通訊專題製作競賽』晉級複賽，並獲得教育部

三萬元獎助。該論文收錄於『第三屆教育部通訊專題競賽入選論文集』。 

學術類： 
1. 榮獲九十二學年度（92.07.14）國立交通大學電機資訊學院博士班『朱順一合勤獎

學金』。 
2. 八十九學年度以第一名成績進入交通大學電機與控制工程學系博士班就讀。 
3. 國立交通大學八十四學年度第一學期書卷獎。 

教學服務類： 

1. 當選「大漢技術學院 95 學年度第 2 學期教學優良教師」（Oct. 29, 2007） 
2. 當選「96 學年度花蓮縣新城鄉資深優良教師」（Sep. 27, 2007） 
3. 當選「大漢技術學院 95 學年度第 1 學期教學優良教師」（Jun. 4, 2007） 
4. 當選「大漢技術學院 94 學年度第 2 學期教學優良教師」（Sep. 14, 2006） 

他項榮譽： 

1. 榮獲『花蓮縣洄瀾願景 2010 徵文競賽優等獎』（花蓮縣政府；Nov. 5, 2006）。 
2. 榮獲列名未來領袖名人錄『Marquis Who's Who of Emerging Leaders, 2007』， the 

1st Edition。 
3. 榮獲列名 2007 年亞洲名人錄『Marquis Who's Who in Asia, 2007』，the 1st Edition。 
4. 榮獲列名 2006-2007 年科學與工程名人錄『Marquis Who's Who in Science and 

Engineering, 2006-2007』，the 9th Edition。 
5. 榮獲當選『花蓮縣第五屆 e 世代未來領袖暨優秀青年代表』（花蓮縣科技青年會，

2006 年）。 
6. 榮獲列名 2005 年世界名人錄『Marquis Who's Who in the World, 2005』，the 22nd 

Edition。  
7. 榮獲列名 2005-2006 年科學與工程名人錄『Marquis Who's Who in Science and 

Engineering, 2005-2006』，the 8th Edition。 

（資 料 備 查） 
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List of Publications（著作表列） 

姓名（中文）：高立人 
姓名（英文）：Lih-Jen Kau 

[A] Journal Papers（期刊論文集） 

[1]  Lih-Jen Kau and Yuan-Pei Lin, “Least Squares-Based Switching Structure for 
Lossless Image Coding,” IEEE Trans. Circuits and Systems I, pp. 1529-1541, Vol. 
54, No. 7, July 2007. 

[2]  Lih-Jen Kau, Yuan-Pei Lin and Chin-Teng Lin, “Lossless Image Coding using 
Adaptive, Switching Algorithm with Automatic Fuzzy Context Modeling,” IEE 
Proc. Vision, Image & Signal Processing, pp. 684-694, Vol. 153, No. 5, Oct. 
2006. 

[3]  Lih-Jen Kau and Yuan-Pei Lin, “Adaptive Lossless Image Coding using Least 
Squares Optimization with Edge-look-ahead,” IEEE Trans. Circuits and Systems 
II, pp. 751-755, Vol. 52, No. 11, Nov. 2005. 

[4]  Ching-Hung Lee, Lih-Jen Kau, and Yuan-Pei Lin, “Enhancing the Predictive 
Coding Efficiency with Control Technologies for Lossless Compression of 
Images,” submitted to IEEE Trans. Circuits and Systems I. 

[B] Conference Papers（會議論文集） 

[1] Lih-Jen Kau and Yuan-Pei Lin, “Least Squares-Adapted Edge-look-ahead 
Prediction with Run-Length Encodings for Lossless Compression of Images,” in 
Proc. IEEE International Conference on Acoustics, Speech and Signal 
Processing (IEEE ICASSP 2008), pp.1185-1188, Las Vegas, Nevada, U.S.A., Mar. 
30 - Apr. 4, 2008. 

[2]  Lih-Jen Kau and Yuan-Pei Lin, “Least Squares-Based Lossless Image Coding 
with Edge-look-ahead,” in Proc. IEEE International Symposium on Circuits and 
Systems (IEEE ISCAS 2006), pp.4931-4934, Island of Kos, Greece, May 21- 24, 
2006. 

[3]  Lih-Jen Kau and Yuan-Pei Lin, “Lossless Image Coding using a Switching 
Predictor with Run-Length Encodings,” in Proc. IEEE International Conference 
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on Multimedia and Expo (IEEE ICME 2004), pp.1155-1158, Taipei, Taiwan, 
R.O.C., June 27–30, 2004. 

[4]  Lih-Jen Kau, “Lossless Image Coding using Adaptive Predictor with Automatic 
Context Modeling,” in Proc. IEEE International Conference on Electronics, 
Circuits and Systems (IEEE ICECS 2003), pp. 116-119, Sharjah, United Arab 
Emirates, Dec. 14-17, 2003. 

[5]  Lih-Jen Kau and Yuan-Pei Lin, “A Switching Predictor for Lossless Image 
Coding,” in Proc. IEEE International Conference on Systems, Man and 
Cybernetics (IEEE SMC 2003), pp. 228-233, Washington, D.C., USA. Oct. 5–8, 
2003. 

[6]  Lih-Jen Kau, “Adaptive Predictor with Dynamic Fuzzy K-Means Clustering for 
Lossless Image Coding,” in Proc. IEEE International Conference on Fuzzy 
Systems (FUZZ-IEEE 2003), pp. 944-949, St. Louis, MO, USA, May 25-28, 
2003. 

[7]  Lih-Jen Kau, “A Look Up Table Based Real Time Color Classification 
System,” in Proc. International Symposium on Nonlinear Theory and Its 
Applications (NOLTA 2002), pp. 759-762, Xi'an, PRC, Oct. 7-11, 2002. 

 

[C] Technical Reports（技術報告及其他） 

[1] 高立人, 董恩家, 黃懷慶, 楊馥華, 楊曜誠, 陳志銘, 陳威樵, “無線視訊遙控

車,” 教育部八十九學年度通訊專題製作競賽入選論文集, pp. 67-84, May 
2001 

[2] 高立人, 謝金寸, 莊正吉, 陳宏杰, 張坤隆, “校園電子消費系統之實做,” 教
育部八十八學年度通訊專題製作競賽入選論文集, pp. 393-398, May 2000 




