
Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 290

Self-certified multi-proxy signature schemes with
message recovery*

Tzong-sun WU1, Chien-lung HSU†‡2, Han-yu LIN3

(1Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, China)
(2Department of Information Management, Chang Gung University, Taoyuan 333, Taiwan, China)
(3Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, China)

†E-mail: clhsu@mail.cgu.edu.tw
Received Apr. 19, 2008; Revision accepted June 21, 2008; Crosschecked Dec. 22, 2008

Abstract: Multi-proxy signature schemes allow the original signer to delegate his/her signing power to n proxy signers such that
all proxy signers must corporately generate a valid proxy signature on behalf of the original signer. We first propose a multi-proxy
signature scheme based on discrete logarithms and then adapt it to the elliptic curve cryptosystem. With the integration of
self-certified public-key systems and the message recovery signature schemes, our proposed schemes have the following advan-
tages: (1) They do not require the signing message to be transmitted, since the verifier can recover it from the signature; (2) The
authentication of the public keys, verification of the signature, and recovery of the message can be simultaneously carried out in a
single logical step; (3) No certificate is needed for validating the public keys. Further, the elliptic curve variant with short key
lengths especially suits the cryptographic applications with limited computing power and storage space, e.g., smart cards. As
compared with the previous work that was implemented with the certificate-based public-key systems, the proposed schemes give
better performance in terms of communication bandwidth and computation efforts.

Key words: Self-certified, Multi-proxy signature, Message recovery, Smart cards, Discrete logarithms, Elliptic curve
doi:10.1631/jzus.A0820202 Document code: A CLC number: TN918; TP309

INTRODUCTION

Since Diffie and Hellman (1976) first proposed
the public-key cryptosystem for solving the problem
of key management, public-key systems have been
widely used in various applications such as e-cash,
e-market, and e-voting. In a public-key cryptosystem,
each one has a private key and a corresponding public
key. To achieve the security requirements of authen-
tication, data integrity and non-repudiation, one can
use his/her own private key to generate a digital sig-
nature for the given message by using a digital sig-
nature scheme. The digital signature will be verified
by the signer’s public key. Extending the concept of

digital signatures, Mambo et al.(1996a; 1996b) first
introduced the concept of proxy signatures. In a proxy
signature scheme, an authorized person, called the
proxy signer, is delegated from the original signer to
generate a proxy signature on behalf of the original
signer.

So far, there are four different sorts of delega-
tions: full delegation, partial delegation, delegation by
warrant, and partial delegation with warrant. In the
full delegation (Mambo et al., 1996a; 1996b), the
proxy signer’s signing key is the same as the original
signer’s private key so that all (proxy) signatures are
generated with the same private key. Consequently, it
cannot offer secure mechanisms to protect the origi-
nal signer or the proxy signer from being framed by
the other. In the partial delegation (Mambo et al.,
1996a; 1996b), the proxy signature key is computed
from the original signer’s private key, while the latter

Journal of Zhejiang University SCIENCE A
ISSN 1673-565X (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project (No. 94-2213-E-182-019) supported by the National Science
Council, Taiwan, China

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 291

cannot be derived from the former. However, it is
hard to identify the actual signer of a given signature,
since a malicious original signer can impersonate the
proxy signer to forge a valid proxy signature. In the
delegation by warrant (Varadharajan et al., 1991;
Neuman, 1993), the original signer prepares the
warrant that contains some necessary proxy informa-
tion, and then sends it to the proxy signer as the
delegation authorization. It requires extra efforts to
certify and transmit the warrant. Partial delegation
with warrant (Kim et al., 1997) preserves the merits
of partial delegation and delegation by warrant. It is
computationally infeasible for the proxy signer to
derive the original signer’s private key from the proxy
signature key. Certification of the warrant and vali-
dation of the signature can be simultaneously carried
out in a single step. Obviously, the fourth approach,
partial delegation with warrant, is more flexible and
secure as compared with the other three, and thus is
adopted to implement our proposed schemes.

Generally a secure proxy signature scheme sat-
isfies the following two properties (Mambo et al.,
1996a): (1) Unforgeability—No one but the desig-
nated proxy signer can generate a valid proxy signa-
ture; (2) Verifiability—Any receiver of the proxy
signature can verify its legitimacy.

Since we adopt partial delegation with warrant to
implement our proposed schemes, the following
properties should also be considered (Mambo et al.,
1996a): (1) Proxy signer’s deviation—The proxy
signer cannot create a valid proxy signature with
respect to another proxy signer; (2) Distinguishability
—A valid proxy signature is distinguishable from a
valid original signature; (3) Identifiability—An
original signer can identify the actual proxy signer
from a given proxy signature; (4) Secret-keys’ de-
pendence—The proxy signer’s secret key is com-
puted from the original signer’s secret key; (5) Un-
deniability—The proxy signer cannot deny his/her
signatures. Up to now, lots of variations of proxy
signatures have been proposed (Kim et al., 1997; Lee
et al., 1998; Sun et al., 1999; Hwang and Shi, 2000;
Hwang et al., 2000; Yi et al., 2000; Hsu et al., 2001;
Hwang and Chen, 2001; Lin et al., 2002; Tzeng et al.,
2004; Xue and Cao, 2004a; 2004b).

In a multi-proxy signature, the original signer
delegates his signing power to two or more proxy
signers, and all of the proxy signers must coopera-

tively sign on behalf of the original signer. This paper
gives a solution to the most common problem of the
delegation in enterprise management. For example,
two or more vice presidents can corporately make a
significant decision or sign an important document on
behalf of the president in his absence.

Consider the scenario that a malicious adversary
may plot the impersonation attack by substituting the
fake public key for the genuine one (Michels and
Horster, 1996). In this case, it is necessary to authen-
ticate the public key before using it. A certificate-
based public-key system (Kohnfelder, 1978; ISO/IEC
9798-3, 1993; ISO/IEC 14888-3, 1998) is a com-
monly used solution, in which each public key is
accompanied with a certificate issued by the certifi-
cation authority (CA). One can perform certificate
verification to make sure the authenticity of the re-
ceived public key before using it. It is obvious that
extra computation efforts and communication over-
heads are required for verifying and transmitting the
certificate. Shamir (1984) introduced the concept of
ID-based public-key cryptosystems, where the public
key is defined as the identifier of the user. Obviously,
the authenticity of the public key can be explicitly
verified without any extra certificate, since the public
identifier of each user is intrinsically known. The
security of the system heavily relies on the system
authority, since all private keys are generated by the
system authority. Girault (1991) introduced the con-
cept of a self-certified public-key system. The user
can determine his private key, while the public key of
the user is generated by CA. In the subsequent sig-
nature verification or other cryptographic applications,
the verification of the signature and the authentication
of the public keys are simultaneously carried out in a
single logical step. As compared with certificate-
based systems, this approach greatly reduces the
computation efforts and communication overheads,
since no additional certificates are required. From the
above discussions, one can see that the self-certified
public-key system might be a better choice for im-
plementing secure and efficient cryptographic
applications.

The main advantage of the message recovery
signature scheme is that the message can be recovered
from the received signature. Hence, the message is
unnecessary to be transmitted along with the signa-
ture, which results in more bandwidth savings. In this

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 292

paper, we adopt the merits of the self-certified public-
key systems and the message recovery signature
scheme to implement efficient multi-proxy signature
schemes. A significant feature of our proposed
schemes is that the tasks of verifying the signature,
authenticating the public keys and recovering the
message are simultaneously carried out within one
step. That is, the proposed schemes can improve the
efficiency of communication and computation.

Elliptic curve cryptography (ECC) (ANSI X9.31,
1998; ANSI X9.62, 1998; ISO/IEC 14888-3, 1998;
IEEE P1363, 2000; ANSI X9.63, 2001; ISO/IEC
15946-3, 2002), first introduced by Miller (1985) and
Koblitz (1987), especially suits the applications with
limited computing power and insufficient storage
space, such as smart cards. To achieve the same level
of security as conventional cryptography, ECC re-
quires shorter key lengths, which ensure faster exe-
cution and more bandwidth savings (Jurisic and
Menezes, 1997; Stallings, 2002). In this paper, we
further present an elliptic curve variant of our pro-
posed multi-proxy signature scheme.

The remainder of this paper is organized as fol-
lows. In Section 2, we propose a multi-proxy signa-
ture scheme based on the discrete logarithms over a
finite field. An elliptic curve variant based on the
elliptic curve discrete logarithms is given in Section 3.
Section 4 discusses some security considerations and
the performance evaluation. Also, we compare our
proposed scheme with two existing multi-proxy sig-
nature schemes. Finally, conclusions are given in
Section 5.

PROXY SIGNATURE SCHEME BASED ON
DISCRETE LOGARITHMS

In this section, we propose a multi-proxy sig-
nature scheme over a finite field. In the system, there
exists a trusted CA whose tasks are to set up the sys-
tem and to generate users’ private and public-key
pairs in the registration stage. Initially, the CA de-
termines the following parameters: p, q—two large
primes, and q|p−1; g—a generator with order q over
GF(p); h(·)—a secure one-way hash function that
accepts input of any length and generates a
fixed-length output; (δ, β)—the CA’s private and
public keys, where δ∈RZq

* (In this paper, we denote

“∈R” as “randomly chosen from”), and

β=gδ mod p. (1)

The parameters p, q, g, β and the hash function h
are made public, while the CA’s private key δ is kept
secret. The proposed scheme consists of three stages:
registration, proxy share generation, and multi-proxy
signature generation and verification. Details of each
stage are described below.

1. Registration stage
Each user Ui associated with the identifier IDi

performs the following interactive steps with the CA:
Step 1: Ui chooses an integer ti∈RZq

*, computes

(||) mod ,i ih t ID

iv g p= (2)

and sends (vi, IDi) to the CA, where “||” is the con-
catenation symbol.

Step 2: After receiving (vi, IDi), the CA chooses
ai∈RZq

*, computes

1() mod ,ia
i i iy v h ID g p−= (3)

(||) mod ,i i i iw a h y ID qδ= + (4)

and returns (yi, wi) to Ui.

Step 3: Ui first computes

(||) mod ,i i i ix w h t ID q= + (5)

and verifies its validity by checking if

(||) () (mod).i i ih y ID x
i ih ID y g pβ = (6)

If Eq.(6) holds, user Ui accepts (xi, yi) as his/her

private and public keys.
Note that Eq.(6) also validates the authenticity of

yi with respect to xi. Accordingly, there is no need to
transmit any certificate along with the public key yi.
Eq.(6) can be easily verified as follows:

(||) (||)

(||)

(||) (||)

(||)

() by Eq.(3)

 by Eq.(1)

 by Eq.(2)

 by Eq.(4)
(mod).

i i i i i

i i i

i i i i i

i i i

i

h y ID h y ID a
i i i

a h y ID
i

h t ID a h y ID

h t ID w

x

h ID y v g

v g

g g

g
g p

δ

δ

β β
+

+

+

=

=

=

=

= by Eq.(5)

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 293

2. Proxy share generation stage
Let

1 2
{ , , ..., }

np p pG U U U= be the set of n

designated proxy signers and U0 the original signer
who wants to delegate his/her signing power to the
designated proxy group G. U0 distributes proxy shares
to the members in G with the following steps:

Step 1: U0 chooses an integer ki∈RZq
* (for i=1,

2, …, n) and computes

 mod ,ik
iK g p= (7)

1

mod ,
n

i
i

K K p
=

=∏ (8)

1
0 w(||) mod ,i ix n k h m K qσ −= + (9)

where mw is the warrant consisting of the original and
the proxy signers’ identifiers, the delegation duration,
and so on.

Step 2: U0 sends (σi, mw) to
ipU G∈ via a secure

channel and broadcasts (Ki, K).
Step 3:

ipU G∈ verifies the validity of (σi, mw)

by checking that

1
0 0 w(||) (||)

0 0(()) (mod).i h y ID h m Kn
ig h ID y K pσ β

−

= (10)

The correctness of Eq.(10) is shown as follows.
By raising both sides of Eq.(9) to exponent with base
g, we have

1 1

0 w 0 w

1
0 0 w

(||) (||)

(||) (||)
0 0

 by Eq.(7)

 (()) (mod). by Eq.(6)

i ix n k h m K x n h m K
i

h y ID h m Kn
i

g g g K

h ID y K p

σ

β

− −

−

+= =

=

3. Multi-proxy signature generation and verifi-
cation stage

For signing m on behalf of the original signer U0,
each

ipU G∈ performs the following steps:

Step 1: Choose an integer zi∈RZq
*, compute

 mod ,iz
ir g p= (11)

and broadcast ri to all other proxy signers.

Step 2: After receiving all rj’s (j=1, 2, ..., n; j≠i)
from other proxy signers, compute r and si with the
following equations:

1

(|| ()) mod ,j
n

r
j

j

r m h m r p
=

= ∏ (12)

() (||) mod ,i i i i is z r x h r K qσ= + + (13)

and then broadcast si to all other proxy signers.
Step 3: Validate (rj, sj) sent from the proxy signer

jpU G∈ (j≠i) by checking that

(
)

1 1
0 0

1
w

(||) (||)
0

(||)
(||)

0

()

 () (mod).

j j j js r n h y ID h y ID n
j

h r K
h m Kn

j j j

g r h ID

h ID y y K p

β
− −

−

+=

⋅
 (14)

If Eq.(14) holds, proceed to the next step; oth-

erwise, sj is requested to be sent again.
Step 4: Compute s with all collected sj’s (j=1,

2, ..., n) as

1
mod .

n

j
j

s s q
=

= ∑ (15)

The multi-proxy signature of m is (K, r, s, mw).

Note that the message m is unnecessary to be trans-
mitted, since it can be recovered from the signature.
To check the validity of the multi-proxy signature, the
verifier first computes

0 w

(||)
(||) (||)

0

|| ()

() (mod).
n

i ii

h r Kn
h y ID h m Ks

i i
i

m h m

rg h ID y K pβ =−

=

⎛ ⎞⎛ ⎞∑= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏
(16)

With the recovered m and h(m), along with the

public one-way function h, the verifier can check the
integrity of the message and the validity of the
multi-proxy signature as well. Since the public keys
y0 and yi’s are combined into Eq.(16), no additional
public-key verification is needed before multi-proxy
signature verification. Thus, the message recovery
procedure, the authentication of the public keys, and
the validation of the multi-proxy signature are si-
multaneously carried out in one single equation,
Eq.(16).
Theorem 1 If an individual proxy signature (ri, si) is
properly generated by

ipU G∈ with Steps 1 and 2 of

the multi-proxy signature generation stage, then it
satisfies Eq.(14) (See Appendix for the proof).

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 294

Theorem 2 The verifier can perform Eq.(16) to
recover the message m from the multi-proxy signature
(K, r, s, mw) and to check the validity of the signature
as well as the signers’ public keys (See Appendix for
the proof).

MULTI-PROXY SIGNATURE SCHEME BASED
ON ELLIPTIC CURVE DISCRETE LOGARITHMS

In this section, we propose the elliptic curve
variant based on our first scheme. A significant
property of the variant is that the key length required
is shorter than that of our first scheme at the same
level of security. In general, the elliptic curve cryp-
tography of a 160-bit modulus is almost as secure as
our first scheme of a 1024-bit modulus (Jurisic and
Menezes, 1997; Stallings, 2002). Furthermore, the
computational efforts required for ECC and for the
traditional public-key cryptosystems are considered
comparable for equal key lengths. Hence, the elliptic
curve variant is more efficient in terms of computa-
tional complexities and communication overheads,
which especially appeals to smart card applications
with limited computing power and insufficient stor-
age space.

In the system initialization, the CA determines
the following parameters: p—a large prime; a, b—
two parameters for Zp satisfying 4a3+27b2 mod p≠0;

Ep(a, b)—an elliptic curve y2=x3+ax+b (mod p); q—a
large prime such that q is a divisor of the number of
points on the elliptic curve Ep(a, b); O—a point at
infinity over Ep(a, b); Q—the base point of order q
over Ep(a, b); h(·)—a secure one-way hash function
that accepts input of various lengths and generates
output of a fixed length (note that input of a point over
Ep(a, b) means input of the concatenation of the x- and
y-coordinate of that point); (δ, B)—the CA’s private
and public keys, where δi∈RZq

* and

B=δQ. (17)

The parameters p, q, O, Q, B, the hash function h,

and the elliptic curve Ep(a, b) are made public, while
the CA’s private key δ is kept secret. In the following,
all elliptic curve point operations are manipulated
over Ep(a, b). We further denote x(P) as the

x-coordinate of point P. The proposed ECC variant
also consists of three stages like those of the proposed
first scheme. Details of each stage are stated below.

1. Registration stage
Each user Ui associated with the identifier IDi

performs the following interactive steps with the CA.
Step 1: Ui chooses an integer ti∈RZq

*, computes

(||) ,i i iV h t ID Q= (18)

and sends (Vi, IDi) to the CA.

Step 2: After receiving (Vi, IDi), the CA chooses
ai∈RZq

*, computes

1() (),i i i iY h ID V a Q−= + (19)
(||) mod ,i i i iw a h Y ID qδ= + (20)

and returns (Yi, wi) to Ui.

Step 3: Ui first computes

(||) mod ,i i i ix w h t ID q= + (21)

and verifies its validity by checking that

(||) () .i i i i ih Y ID Β h ID Y x Q+ = (22)

If Eq.(22) holds, user Ui accepts (xi, Yi) as his/her
private and public keys.

Note that Eq.(22) also validates the authenticity
of Yi with respect to xi. Consequently, it is unneces-
sary to transmit any extra certificate with the public
key Yi. The correctness of Eq.(22) is given as follows:

(||) ()

 (||) by Eq.(19)
 ((||)) by Eq.(17)

 by Eq.(20)
 ((||)) by Eq

i i i i

i i i i

i i i i

i i

i i i

h Y ID Β h ID Y
h Y ID Β V a Q

h Y ID a Q V
w Q V
w h t ID Q

δ

+

= + +

= + +

= +

= + .(18)
 . by Eq.(21)ix Q=

That is, if (Yi, Wi) is correctly generated by the CA, it
will pass the test of Eq.(22).

2. Proxy share generation stage
Let

1 2
{ , , ... , }

np p pG U U U= be the set of n

designated proxy signers and U0 the original signer

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 295

who wants to delegate his/her signing power to the
designated proxy signers G. U0 distributes proxy
shares to the members in G with the following steps:

Step 1: U0 chooses an integer ki∈RZq
* (for i=1,

2, …, n) and computes

,i iK k Q= (23)

1

,
n

i
i

K K
=

= ∑ (24)

1
0 w(||) mod ,i ix n k h m K qσ −= + (25)

where mw is defined as in the proposed first scheme.

Step 2: U0 broadcasts (Ki, K) and further sends
(σi, mw) to

ipU G∈ via a secure channel.

Step 3:
ipU G∈ verifies the validity of (σi, mw)

by checking that

1 1
0 0 0 0

w

((||)) (())
 (||) . (26)

i

i

Q n h Y ID Β n h ID Y
h m K K

σ − −= +

+

The correctness of Eq.(26) is shown as follows.

Multiplying both sides of Eq.(25) with the base point
Q, we have

1

0 w

1
0 w

1 1
0 0 0 0

w

((||))

 () (||) by Eq.(23)

 ((||)) (())
 (||) . by Eq.(22)

i i

i

i

Q x n k h m K Q

x n Q h m K K

n h Y ID B n h ID Y
h m K K

σ −

−

− −

= +

= +

= +

+

Therefore, the test of Eq.(26) is successful on condi-
tion that (K, σi, mw) is correctly generated by U0.

3. Multi-proxy signature generation and verifi-
cation stage

For signing m on behalf of the original signer U0,
each user

ipU G∈ performs the following steps:

Step 1: Choose an integer zi∈RZq
*, compute

,i iR z Q= (27)

and then broadcast Ri to all other proxy signers.
Step 2: After receiving all Rj’s (j=1, 2, ..., n and

j≠i) from other proxy signers, compute r and si with

1

1

(|| ()) () mod ,
n

j j
j

r m h m x x R R P
−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ (28)

(()) () (||) mod ,i i i i is z x R x h r K qσ= + + (29)

and then broadcast si to all other proxy signers.
Step 3: Validate (Rj, sj) sent from the proxy

signer
jpU G∈ (j≠i) by checking that

1

0 0

1
0 0 w

() (||)[((||) (||))

 () () (||)]. (30)
j j j j j

j j j

s Q x R R h r K n h Y ID h Y ID B

n h ID Y h ID Y h m K K

−

−

= + +

+ + +

If Eq.(30) holds, proceed to the next step; oth-

erwise, sj is requested to be sent again.
Step 4: Compute s with all collected sj’s (j=1,

2, ..., n) as

1
mod .

n

j
j

s s q
=

= ∑ (31)

The multi-proxy signature of m is (K, r, s, mw).

Note that the signing message is unnecessary to be
transmitted, since any verifier can recover it from the
signature. To check the validity of the signature, the
verifier first computes

()
0

w

|| () (||) (||) ()

 (||) (||) mod . (32)

n

i i i i
i

m h m rx sQ h r K h Y ID B h ID Y

h m K h r K K p

=

⎛= − +⎜
⎝

⎞− ⎟
⎠

∑

∑

Then one can use the public one-way function h

to ensure the integrity of the message and the validity
of the multi-proxy signature. Since the public keys Y0
and Yi’s are combined into Eq.(32), additional public-
key verifications are not required before the multi-
proxy signature verification. Thus the authentication
of the public keys, the validation of the multi-proxy
signature, and the message recovery procedure are
simultaneously carried out in a single equation,
Eq.(32).
Theorem 3 (Ri, si) that can be correctly generated by
Steps 1 and 2 of the multi-proxy signature generation
stage of the elliptic curve variant satisfies Eq.(30)
(See Appendix for the proof).
Theorem 4 A valid multi-proxy signature (K, r, s,
mw) for the message m can be used to recover m with
Eq.(32) (See Appendix for the proof).

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 296

SECURITY CONSIDERATIONS AND PER-
FORMANCE EVALUATION

In this section, we discuss some security con-
siderations and analyze the performance of our pro-
posed schemes.

Security considerations

The security of the proposed first scheme is
primarily based on the cryptographic assumptions of
the discrete logarithm problem (DLP) (Diffie and
Hellman, 1976; Menezes et al., 1997) and the
one-way hash function (OHF) (Diffie and Hellman,
1976; Menezes et al., 1997). The security of the el-
liptic curve variant is primarily based on the assump-
tion of the elliptic curve discrete logarithm problem
(ECDLP) (Menezes, 1993; Blake et al., 1999; IEEE
P1363, 2000), instead of the DLP. Since the elliptic
curve variant and our first scheme have almost the
same structure, we make a merged discussion rather
than separate ones. In the following, security consid-
erations are analyzed from three perspectives: the
intractability of private keys, the authenticity of pub-
lic keys and the unforgeability of the multi-proxy
signature.

1. Intractability of private keys
Consider the attack that an outsider wants to de-

rive the CA’s private key δ from Eq.(1)/(17). He/She
will face the intractability of the DLP/ECDLP as-
sumption. Further, if a malicious member tries to
derive δ from Eq.(4)/(20), he/she has to know ai, a
secret number chosen by the CA and under the pro-
tection of the DLP/ECDLP assumption in Eq.(3)/(19).
Hence, the CA’s private key δ is secure against both
inside and outside attacks.

The security of the user’s private key xi, com-
puted from Eq.(5)/(21), depends on the random value
h(ti||IDi), which is protected by the DLP/ECDLP as-
sumption in Eq.(2)/(18). If any proxy signer attempts
to derive the original signer’s private key x0 from
Eq.(9)/(25), he/she has to know the secret value ki
chosen by U0. However, it is infeasible to obtain ki,
since Ki is protected by the DLP/ECDLP assumption
in Eq.(7)/(23). In addition, an adversary may try to
reveal the original or the proxy signers’ private key(s)
from some intercepted information, including the (ri,
si), the resulting multi-proxy signature (K, r, s, mw),
and the corresponding signing message m. Substi-
tuting σi in Eq.(13)/(29) with Eq.(9)/(25), we have

1
0 w((||)) (||) mod ,i i i i is z r x n k h m K x h r K q−= + + +

1
0 w(()) ((||)) (||) mod ,i i i i is z x R x n k h m K x h r K q−= + + +

respectively. It can be seen that, besides the private
keys x0 and xi, there are two unknown random values
ki and zi protected by the DLP/ECDLP assumption in
Eq.(7)/(23) and Eq.(11)/(27), respectively. That is to
say, it is impossible for the attacker to obtain the
private keys x0 and xi.

2. Authenticity of public keys
Note that a valid public key yi with respect to xi

and IDi has to satisfy the verification equality,
Eq.(6)/(22). A malicious adversary may attempt to
forge a valid pair (IDadv, xadv, yadv) satisfying
Eq.(6)/(22). The malicious adversary can first arbi-
trarily choose his/her identifier IDadv and private key
xadv, and then tries to compute the forged valid public
key yadv. Obviously, it is infeasible since he/she will
face the intractability of the DLP assumption. Simi-
larly, if he/she first fixes (IDadv, yadv), and tries to
obtain xadv, the situation is the same as the previous
one. What is more, to generate a valid IDadv with the
arbitrarily chosen xadv and yadv, the adversary will be
confronted with the difficulty of the DLP/ECDLP and
the OHF assumptions.

3. Unforgeability of multi-proxy signature
To forge a valid multi-proxy signature (K, r, s,

mw) passing the test of Eq.(16)/(32), the adversary
may first choose a message m along with (K, r, mw),
and then tries to compute s from Eq.(16)/(32). How-
ever, the adversary will face the problem of comput-
ing discrete logarithms/elliptic curve discrete loga-
rithms and fail to make it under the DLP/ECDLP
assumption.

On the other hand, if the adversary first fixes (K,
r, s, mw) and then tries to obtain a message m satis-
fying Eq.(16)/(32), he/she cannot successfully plot
the attack unless he/she has the ability to reverse the
OHF. Thus, potential forgery attacks cannot succeed
in the proposed scheme under the protection of the
DLP/ECDLP and the OHF assumptions.

Consider the well-known chosen-ciphertext at-
tack (Bellare et al., 1998). An adversary may submit
different arbitrarily chosen signatures (K, r, s, mw) to
the decryption oracle D(·), which will return the cor-
responding plaintext to obtain the desired message.
However, the probability of obtaining a meaningful
plaintext is negligible. Thus, the chosen-ciphertext
attack does not work in our proposed schemes.

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 297

Performance evaluation
In this subsection we will make some compari-

sons among our proposed first scheme, Lin et
al.(2002)’s scheme (the LWH scheme for short), and
the Xue-Cao scheme (the XC scheme for short) (Xue
and Cao, 2004b). These two schemes have structures
with partial delegation similar to ours and both seem
secure so far. For convenience, we define Th, Tm, Ti,
and Te as the time for performing an OHF h, a
modular multiplication computation, a modular in-
verse computation, and a modular exponentiation
computation, respectively.

The time for performing the modular addition is
negligible compared to the computation time of per-
forming other operations, and thus is ignored here. In
the following comparisons, we assume that all hash
functions are implemented with the VSH (Contini et
al., 2006), an efficient and provable collision-resistant
hash function. Contini et al.(2006) also claimed that a
VSH hash function requires only 4 modular multi-
plications, i.e., Th≈4Tm. Ti and Te can be further con-
verted into computational units in Tm (Koblitz et al.,
2000) for facilitating the evaluation of the computa-
tional complexities. The relations between Ti, Te and
Tm are: Ti≈3Tm, Te≈240Tm. Detailed comparisons of
the computational complexities and communication
overheads among these three multi-proxy signature
schemes are demonstrated by Tables 1 and 2,
respectively.

Since our proposed scheme integrates
self-certified public-key systems and the message
recovery signature schemes, the tasks of authenticat-
ing the public keys, verifying the signature and

recovering the message can be simultaneously carried
out in a single logical step, which helps reduce the
computational complexities. Further, it is unnecessary
to transmit the signing message since the signing
message can be recovered from the signature, which
helps with the bandwidth saving. The rough estima-
tion results in Table 1 for the entire scheme show that
our proposed scheme outperforms the LWH and the
XC schemes by (1647n+2426)Tm and (915n+2419)Tm,
respectively. Table 2 shows that the total communi-
cation cost of our scheme is less than that of the LWH
and the XC schemes, both by (n2+n−1)|p|+(6n+3)|q|.
Therefore, we conclude that the proposed scheme is
better than the LWH and the XC schemes in terms of
computation effort and communication cost.

Table 2 Comparison of communication overheads
Phase Scheme Communication cost

LWH n|p|+3n|q|*
XC n|p|+3n|q|*

Proxy share
generation

Proposed (n+1)|p|+2n|q|
LWH (n2+2n)|p|+(4n+2)|q|*
XC (n2+2n)|p|+(4n+2)|q|*

Multi-proxy
signature
generation Proposed n|p|+n|q|

LWH 2|p|+(2n+4)|q|*
XC 2|p|+(2n+4)|q|*

Multi-proxy
signature
verification Proposed 2|p|+3|q|

LWH (n2+3n+2)|p|+(9n+6)|q|*
XC (n2+3n+2)|p|+(9n+6)|q|* Total cost
Proposed (2n+3)|p|+(3n+3)|q|

* The cost for transmitting each public-key certificate of the LWH
and the XC schemes is implemented with ElGamal signature (El-
Gamal, 1985), i.e., 2|q|. LWH: Lin et al.(2006)’s scheme; XC: Xue
and Cao (2004b)’s scheme

Table 1 Comparison of computational complexities
Phase Scheme Time complexity Rough estimation

LWH 8nTe+(5n+1)Tm+(n+1)Ti
* (1928n+4)Tm

XC 7nTe+3nTm
* 1683nTm

Proxy share
generation

Proposed 5nTe+5nTm+(n+1)Ti+(3n+1)Th (1220n+7)Tm
LWH (n2+8n+4)Te+(n2+7n+2)Tm+Ti+(n+1)Th

* (241n2+1931n+969)Tm
XC (n2+6n+4)Te+(n2+4n+1)Tm+Th

* (241n2+1444n+965)Tm
Multi-proxy
signature
generation Proposed (n2+7n−4)Te+(n2+5n−5)Tm+(4n−3)Th (241n2+1701n−977)Tm

LWH (3n+6)Te+(2n+3)Tm+Th
* (722n+1447)Tm

XC (3n+6)Te+(2n+4)Tm+Th
* (722n+1448)Tm

Multi-proxy
signature
verification Proposed 4Te+5nTm+(2n+2)Th (13n+968)Tm

LWH (n2+19n+10)Te+(n2+14n+6)Tm+(n+2)Ti+(n+2)Th
* (241n2+4581n+2420)Tm

XC (n2+16n+10)Te+(n2+9n+5)Tm+2Th
* (241n2+3849n+2413)Tm Total costs

Proposed (n2+12n)Te+(n2+15n−5)Tm+(n+1)Ti+9nTh (241n2+2934n−6)Tm
* The cost for verifying each public-key certificate of the LWH and the XC schemes is implemented with ElGamal signature verification
(ElGamal, 1985), i.e., Tm+3Te. LWH: Lin et al.(2006)’s scheme; XC: Xue and Cao (2004b)’s scheme

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 298

CONCLUSION

We have proposed two multi-proxy signature
schemes mainly based on the DLP and the ECDLP
assumptions, respectively. Preserving the merits of
self-certified public-key systems and message re-
covery signature schemes, our proposed schemes are
more efficient than the existing schemes, which were
implemented with certificate-based public-key sys-
tems. The characteristics of our proposed schemes
are:

(1) The validation of the multi-proxy signature,
the authentication of the public keys, and the message
recovery procedure are simultaneously carried out
within a single logical step.

(2) No certificate is required for authenticating
the public keys, so as to reduce computation effort
and communication overhead.

(3) The signing message is unnecessary to be
transmitted with the signature, since it can be recov-
ered from the signature, i.e., it gains more bandwidth
savings.

As compared with our first scheme, the elliptic
curve variant with shorter key lengths is more attrac-
tive to the applications with limited computing power
and insufficient storage space, like smart cards.

References
ANSI X9.31, 1998. Digital Signatures Using Reversible Public

Key Cryptography for the Financial Services Industry
(rDSA).

ANSI X9.62, 1998. Public Key Cryptography for the Financial
Service Industry—The Elliptic Curve Digital Signature
Algorithm (ECDSA). Draft.

ANSI X9.63, 2001. Public Key Cryptography for the Financial
Services Industry—Key Agreement and Key Transport
Using Elliptic Curve Cryptography.

Bellare, M., Desai, A., Pointcheval, D., Rogaway, P., 1998.
Relations among notions of security for public-key en-
cryption schemes. LNCS, 1462:26-45. [doi:10.1007/BFb
0055718]

Blake, I., Seroussi, G., Smart, N., 1999. Elliptic Curves in
Cryptography. Cambridge University Press, Cambridge,
UK. [doi:10.2277/0521653746]

Contini, S., Lenstra, A.K., Steinfeld, R., 2006. VSH, an effi-
cient and provable collision-resistant hash function.
LNCS, 4004:165-182. [doi:10.1007/11761679_11]

Diffie, W., Hellman, M., 1976. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644-654. [doi:10.1109/
TIT.1976.1055638]

ElGamal, T., 1985. A public key cryptosystem and a signature
scheme based on discrete logarithms. LNCS, 196:10-18.

[doi:10.1007/3-540-39568-7_2]
Girault, M., 1991. Self-certified public keys. LNCS, 547:490-

497. [doi:10.1007/3-540-46416-6_42]
Hsu, C.L., Wu, T.S., Wu, T.C., 2001. New nonrepudiable

threshold proxy signature scheme with known signers. J.
Syst. Software, 58(2):119-124. [doi:10.1016/S0164-1212
(01)00032-2]

Hwang, M.S., Lin, I.C., Lu, J.L., 2000. A secure nonrepudiable
threshold proxy signature scheme with known signers. Int.
J. Inf., 11(2):1-8.

Hwang, S.J., Chen, C.C., 2001. A New Multi-proxy Mul-
tisignature Scheme. National Computer Symp., p.19-26.

Hwang, S.J., Shi, C.H., 2000. A Simple Multi-proxy Signature
Scheme. Proc. 10th National Conf. on Information Secu-
rity, p.134-138.

IEEE P1363, 2000. Standard Specifications for Public Key
Cryptography. The Institute of Electrical and Electronics
Engineers, Inc., USA.

ISO/IEC 9798-3, 1993. Information Technology—Security
Techniques—Entity Authentication Mechanism—Part 3:
Entity Authentication Using a Public Key Algorithm. In-
ternational Organization for Standardization.

ISO/IEC 14888-3, 1998. Information Technology—Security
Techniques—Digital Signature with Appendix—Part 3:
Certificate-based Mechanisms. International Organiza-
tion for Standardization.

ISO/IEC 15946-3, 2002. Information Technology—Security
Techniques—Cryptographic Techniques Based on Ellip-
tic Curves—Part 3: Key Establishment. International
Organization for Standardization.

Jurisic, A., Menezes, A.J., 1997. Elliptic curves and cryptog-
raphy. Dr. Dobb’s J., 22(4):26-35.

Kim, S., Park, S., Won, D., 1997. Proxy Signatures, Revised.
Proc. Int. Conf. on Information and Communications
Security. Springer, Berlin, p.223-232.

Koblitz, N., 1987. Elliptic curve cryptosystems. Math. Com-
put., 48(177):203-209. [doi:10.2307/2007884]

Koblitz, N., Menezes, A., Vanstone, S., 2000. The state of
elliptic curve cryptography. Des., Codes Crypt., 19(2-3):
173-193. [doi:10.1023/A:1008354106356]

Kohnfelder, L.M., 1978. Toward a Practical Public-key
Cryptosystem. BS Thesis, Department of Electronic En-
gineering, Massachusetts Institute of Technology, USA.

Lee, N.Y., Hwang, T., Wang, C.H., 1998. On Zhang’s nonre-
pudiable proxy signature schemes. LNCS, 1438:415-422.
[doi:10.1007/BFb0053752]

Lin, C.Y., Wu, T.C., Hwang, J.J., 2002. Multi-proxy Signature
Schemes for Partial Delegation with Cheater Identifica-
tion. The Second Int. Workshop for Asia Public Key In-
frastructure. IOS Press, Amsterdam, Netherlands, p.147-
152.

Mambo, M., Usuda, K., Okamoto, E., 1996a. Proxy Signature
for Delegating Signing Operation. Proc. 3rd ACM Conf.
on Computer and Communications Security, p.48-57.
[doi:10.1145/238168.238185]

Mambo, M., Usuda, K., Okamoto, E., 1996b. Proxy signatures:
delegation of the power to sign messages. IEICE Trans.

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 299

Fundam. Electron. Commun. Comput. Sci., E79-A(9):
1338-1354.

Menezes, A., 1993. Elliptic Curve Public Key Cryptosystems.
Kluwer Academic Publishers, USA.

Menezes, A., Oorschot, P., Vanstone, S., 1997. Handbook of
Applied Cryptography. CRC Press, Inc., USA.

Michels, M., Horster, P., 1996. On the risk of disruption in
several multiparty signature schemes. LNCS, 1163:334-
345. [doi:10.1007/BFB0034859]

Miller, V., 1985. Use of elliptic curves in cryptography. LNCS,
218:417-426. [doi:10.1007/3-540-39799-x_31]

Neuman, B.C., 1993. Proxy-based Authorization and Ac-
counting for Distributed Systems. Proc. 13th Int. Conf. on
Distributed Computing Systems, p.283-291. [doi:10.
1109/ICDCS.1993.287698]

Shamir, A., 1984. Identity-based cryptosystems and signature
schemes. LNCS, 196:47-53. [doi:10.1007/3-540-39568-
7_5]

Stallings, W., 2002. Cryptography and Network Security:
Principles and Practice. Prentice Hall, Upper Saddle
River, NJ.

Sun, H.M., Lee, N.Y., Hwang, T., 1999. Threshold proxy
signatures. IEE Proc.-Comput. Dig. Techn., 146(5):
259-263. [doi:10.1049/ip-cdt:19990647]

Tzeng, S.F., Yang, C.Y., Hwang, M.S., 2004. A nonrepudiable
threshold multi-proxy multisignature scheme with shared
verification. Fut. Gen. Comput. Syst., 20(5):887-893.
[doi:10.1016/j.future.2004.01.002]

Varadharajan, V., Allen, P., Black, S., 1991. An Analysis of the
Proxy Problem in Distributed System. Proc. IEEE Com-
puter Society Symp. on Research in Security and Privacy,
p.255-275. [doi:10.1109/RISP.1991.130793]

Xue, Q., Cao, Z., 2004a. A Nonrepudiable Multi-proxy Mul-
tisignature Scheme. Joint 1st Workshop on Mobile Future
and Symp. on Trends in Communications, p.102-105.

Xue, Q., Cao, Z., 2004b. Improvement of Multi-Proxy Signa-
ture Scheme. Fourth Int. Conf. on Computer and Infor-
mation Technology, p.450-455. [doi:10.1109/CIT.2004.
1357236]

Yi, L.J., Bai, G.Q., Xiao, G.Z., 2000. Proxy multi-signature
scheme: a new type of proxy signature scheme. Electron.
Lett., 36(6):527-528. [doi:10.1049/el:20000422]

APPENDIX: PROOFS OF THEOREMS 1~4

Proof of Theorem 1

By raising both sides of Eq.(13) to exponent with
base g, we have

() (||) (mod).i i i i is z r x h r Kg g g pσ +=

The above equation can be further rewritten as

(
)

1 1
0 0

1
w

() (||)

(||) (||)

(||) (||)
0

(||)
(||)

0

 by Eq.(11)

(()) by Eq.(6)

()

() (mod), by Eq.(10)

i i i i

i i i i

i i i

s r x h r K
i

r h y ID h r K
i i i

r n h y ID h y ID n
i

h r K
h m Kn

i i i

g r g

r h ID y g

r h ID

h ID y y K p

σ

σβ

β
− −

−

+

+

=

=

=

⋅

which implies Eq.(14).

Proof of Theorem 2

Raising both sides of Eq.(15) to exponent with
base g yields

1

1 1

1 1 1

() (||)

(||)
(||)

1

 by Eq.(13)

()

n
ii

n n
i i i ii i

n n n
i i i i ii i i

ss

z r x h r K

h r Kn
z r h y ID

i i
i

g g

g g

g g h ID y

σ

σ β

=

= =

= = =

+

=

∑=

∑ ∑=

⎛ ⎞⎛ ⎞∑ ∑ ∑= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏

1 0 w

(||)
(||) (||)

0

 by Eq.(6)

()

 (mod). by Eq.(10)

n n
i i i ii i

h r Kn
z r h y ID h m K

i i
i

g h ID y K

p

β= =

=

⎛ ⎞⎛ ⎞∑ ∑= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏

The above equation can be further rewritten as

1 0 w

(||)
(||) (||)

0

()

 (mod).

n n
i i i ii i

h r Kn
z r h y ID h m Ks

i i
i

g g h ID y K

p

β= =
− −

=

⎛ ⎞⎛ ⎞∑ ∑= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏

Multiplying the above equation by Eq.(12) and re-
arranging the result, we have

0 w

(||)
(||) (||)

0

|| () ()

 (mod).

n
i ii

h r Kn
h y ID h m Ks

i i
i

m h m rg h ID y K

p

β =−

=

⎛ ⎞⎛ ⎞∑= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏

Hence, the verifier can correctly recover the message
m from Eq.(16). With the assistance of the public
OHF, the verifier can check the integrity of the mes-
sage and the validity of the multi-proxy signature as
well. The public keys of the original signer and all
proxy signers are also authenticated.

Proof of Theorem 3

By multiplying both sides of Eq.(29) with base Q,
we have

Wu et al. / J Zhejiang Univ Sci A 2009 10(2):290-300 300

{
}

1
0 0

1
0 0 w

(()) () (||)
() () (||) by Eq.(27)

() (||) [(||) (||)]

 () () (||)

 by Eqs.(2

i i i i i

i i i i

i i i i

i i i

s Q z x R Q x h r K Q
x R R x h r K Q

x R R h r K n h Y ID h Y ID B

n h ID Y h ID Y h m K K

σ
σ

−

−

= + +

= + +

= + +

+ + +

2) and (26)

Proof of Theorem 4
Multiplying both sides of Eq.(31) with base Q

yields

1

1 1

1 1

1

1 1

 (()) () (||) by Eq.(29)

 (()) (||)

 (||)[(||) ()] by Eq.(22)

 (()) (||)[(||)

n

i
i

n n

i i i i
i i

n n

i i i
i i

n

i i i
i

n n

i i i i
i i

sQ s Q

z x R Q x h r K Q

z x R Q h r K Q

h r K h Y ID B h ID Y

z x R Q h r K h Y ID B

σ

σ

=

= =

= =

=

= =

=

= + +

= +

+ +

= +

∑

∑ ∑

∑ ∑

∑

∑ ∑
w ()] (||) (||) . by Eq.(26)i ih ID Y h m K h r K K+ +

The above equation can be further rewritten as

1 1

0

w

(()) (())

 (||)[(||)

 ()] (||) (||) .

n n

i i i i
i i

n

i i
i

i i

z x R Q x R R

sQ h r K h Y ID B

h ID Y h m K h r K K

= =

=

=

= −

+ −

∑ ∑

∑

Combining the above equation with Eq.(28), we have

0

w

|| () (||)[(||) ()]

 (||) (||) mod .

n

i i i i
i

m h m rx sQ h r K h Y ID B h ID Y

h m K h r K K p

=

⎛= − +⎜
⎝

⎞
− ⎟

⎠

∑

∑

Hence, the verifier can correctly recover m||h(m).
With the public OHF, the verifier can check not only
the integrity of the recovered message but also the
validity of the multi-proxy signature.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

