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Abstract:    Multi-proxy signature schemes allow the original signer to delegate his/her signing power to n proxy signers such that 
all proxy signers must corporately generate a valid proxy signature on behalf of the original signer. We first propose a multi-proxy 
signature scheme based on discrete logarithms and then adapt it to the elliptic curve cryptosystem. With the integration of 
self-certified public-key systems and the message recovery signature schemes, our proposed schemes have the following advan-
tages: (1) They do not require the signing message to be transmitted, since the verifier can recover it from the signature; (2) The 
authentication of the public keys, verification of the signature, and recovery of the message can be simultaneously carried out in a 
single logical step; (3) No certificate is needed for validating the public keys. Further, the elliptic curve variant with short key 
lengths especially suits the cryptographic applications with limited computing power and storage space, e.g., smart cards. As 
compared with the previous work that was implemented with the certificate-based public-key systems, the proposed schemes give 
better performance in terms of communication bandwidth and computation efforts. 
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INTRODUCTION  
 

Since Diffie and Hellman (1976) first proposed 
the public-key cryptosystem for solving the problem 
of key management, public-key systems have been 
widely used in various applications such as e-cash, 
e-market, and e-voting. In a public-key cryptosystem, 
each one has a private key and a corresponding public 
key. To achieve the security requirements of authen-
tication, data integrity and non-repudiation, one can 
use his/her own private key to generate a digital sig-
nature for the given message by using a digital sig-
nature scheme. The digital signature will be verified 
by the signer’s public key. Extending the concept of 

digital signatures, Mambo et al.(1996a; 1996b) first 
introduced the concept of proxy signatures. In a proxy 
signature scheme, an authorized person, called the 
proxy signer, is delegated from the original signer to 
generate a proxy signature on behalf of the original 
signer.  

So far, there are four different sorts of delega-
tions: full delegation, partial delegation, delegation by 
warrant, and partial delegation with warrant. In the 
full delegation (Mambo et al., 1996a; 1996b), the 
proxy signer’s signing key is the same as the original 
signer’s private key so that all (proxy) signatures are 
generated with the same private key. Consequently, it 
cannot offer secure mechanisms to protect the origi-
nal signer or the proxy signer from being framed by 
the other. In the partial delegation (Mambo et al., 
1996a; 1996b), the proxy signature key is computed 
from the original signer’s private key, while the latter 
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cannot be derived from the former. However, it is 
hard to identify the actual signer of a given signature, 
since a malicious original signer can impersonate the 
proxy signer to forge a valid proxy signature. In the 
delegation by warrant (Varadharajan et al., 1991; 
Neuman, 1993), the original signer prepares the 
warrant that contains some necessary proxy informa-
tion, and then sends it to the proxy signer as the 
delegation authorization. It requires extra efforts to 
certify and transmit the warrant. Partial delegation 
with warrant (Kim et al., 1997) preserves the merits 
of partial delegation and delegation by warrant. It is 
computationally infeasible for the proxy signer to 
derive the original signer’s private key from the proxy 
signature key. Certification of the warrant and vali-
dation of the signature can be simultaneously carried 
out in a single step. Obviously, the fourth approach, 
partial delegation with warrant, is more flexible and 
secure as compared with the other three, and thus is 
adopted to implement our proposed schemes. 

Generally a secure proxy signature scheme sat-
isfies the following two properties (Mambo et al., 
1996a): (1) Unforgeability—No one but the desig-
nated proxy signer can generate a valid proxy signa-
ture; (2) Verifiability—Any receiver of the proxy 
signature can verify its legitimacy. 

Since we adopt partial delegation with warrant to 
implement our proposed schemes, the following 
properties should also be considered (Mambo et al., 
1996a): (1) Proxy signer’s deviation—The proxy 
signer cannot create a valid proxy signature with 
respect to another proxy signer; (2) Distinguishability 
—A valid proxy signature is distinguishable from a 
valid original signature; (3) Identifiability—An 
original signer can identify the actual proxy signer 
from a given proxy signature; (4) Secret-keys’ de-
pendence—The proxy signer’s secret key is com-
puted from the original signer’s secret key; (5) Un-
deniability—The proxy signer cannot deny his/her 
signatures. Up to now, lots of variations of proxy 
signatures have been proposed (Kim et al., 1997; Lee 
et al., 1998; Sun et al., 1999; Hwang and Shi, 2000; 
Hwang et al., 2000; Yi et al., 2000; Hsu et al., 2001; 
Hwang and Chen, 2001; Lin et al., 2002; Tzeng et al., 
2004; Xue and Cao, 2004a; 2004b).  

In a multi-proxy signature, the original signer 
delegates his signing power to two or more proxy 
signers, and all of the proxy signers must coopera-

tively sign on behalf of the original signer. This paper 
gives a solution to the most common problem of the 
delegation in enterprise management. For example, 
two or more vice presidents can corporately make a 
significant decision or sign an important document on 
behalf of the president in his absence. 

Consider the scenario that a malicious adversary 
may plot the impersonation attack by substituting the 
fake public key for the genuine one (Michels and 
Horster, 1996). In this case, it is necessary to authen-
ticate the public key before using it. A certificate- 
based public-key system (Kohnfelder, 1978; ISO/IEC 
9798-3, 1993; ISO/IEC 14888-3, 1998) is a com-
monly used solution, in which each public key is 
accompanied with a certificate issued by the certifi-
cation authority (CA). One can perform certificate 
verification to make sure the authenticity of the re-
ceived public key before using it. It is obvious that 
extra computation efforts and communication over-
heads are required for verifying and transmitting the 
certificate. Shamir (1984) introduced the concept of 
ID-based public-key cryptosystems, where the public 
key is defined as the identifier of the user. Obviously, 
the authenticity of the public key can be explicitly 
verified without any extra certificate, since the public 
identifier of each user is intrinsically known. The 
security of the system heavily relies on the system 
authority, since all private keys are generated by the 
system authority. Girault (1991) introduced the con-
cept of a self-certified public-key system. The user 
can determine his private key, while the public key of 
the user is generated by CA. In the subsequent sig-
nature verification or other cryptographic applications, 
the verification of the signature and the authentication 
of the public keys are simultaneously carried out in a 
single logical step. As compared with certificate- 
based systems, this approach greatly reduces the 
computation efforts and communication overheads, 
since no additional certificates are required. From the 
above discussions, one can see that the self-certified 
public-key system might be a better choice for im-
plementing secure and efficient cryptographic  
applications. 

The main advantage of the message recovery 
signature scheme is that the message can be recovered 
from the received signature. Hence, the message is 
unnecessary to be transmitted along with the signa-
ture, which results in more bandwidth savings. In this 
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paper, we adopt the merits of the self-certified public- 
key systems and the message recovery signature 
scheme to implement efficient multi-proxy signature 
schemes. A significant feature of our proposed 
schemes is that the tasks of verifying the signature, 
authenticating the public keys and recovering the 
message are simultaneously carried out within one 
step. That is, the proposed schemes can improve the 
efficiency of communication and computation. 

Elliptic curve cryptography (ECC) (ANSI X9.31, 
1998; ANSI X9.62, 1998; ISO/IEC 14888-3, 1998; 
IEEE P1363, 2000; ANSI X9.63, 2001; ISO/IEC 
15946-3, 2002), first introduced by Miller (1985) and 
Koblitz (1987), especially suits the applications with 
limited computing power and insufficient storage 
space, such as smart cards. To achieve the same level 
of security as conventional cryptography, ECC re-
quires shorter key lengths, which ensure faster exe-
cution and more bandwidth savings (Jurisic and 
Menezes, 1997; Stallings, 2002). In this paper, we 
further present an elliptic curve variant of our pro-
posed multi-proxy signature scheme. 

The remainder of this paper is organized as fol-
lows. In Section 2, we propose a multi-proxy signa-
ture scheme based on the discrete logarithms over a 
finite field. An elliptic curve variant based on the 
elliptic curve discrete logarithms is given in Section 3. 
Section 4 discusses some security considerations and 
the performance evaluation. Also, we compare our 
proposed scheme with two existing multi-proxy sig-
nature schemes. Finally, conclusions are given in 
Section 5. 
 
 
PROXY SIGNATURE SCHEME BASED ON 
DISCRETE LOGARITHMS 
 

In this section, we propose a multi-proxy sig-
nature scheme over a finite field. In the system, there 
exists a trusted CA whose tasks are to set up the sys-
tem and to generate users’ private and public-key 
pairs in the registration stage. Initially, the CA de-
termines the following parameters: p, q—two large 
primes, and q|p−1; g—a generator with order q over 
GF(p); h(·)—a secure one-way hash function that 
accepts input of any length and generates a 
fixed-length output; (δ, β)—the CA’s private and 
public keys, where δ∈RZq

* (In this paper, we denote 

“∈R” as “randomly chosen from”), and  

β=gδ mod p.                           (1) 
 

The parameters p, q, g, β and the hash function h 
are made public, while the CA’s private key δ is kept 
secret. The proposed scheme consists of three stages: 
registration, proxy share generation, and multi-proxy 
signature generation and verification. Details of each 
stage are described below. 

1. Registration stage 
Each user Ui associated with the identifier IDi 

performs the following interactive steps with the CA: 
Step 1: Ui chooses an integer ti∈RZq

*, computes  

 
( || ) mod  ,i ih t ID

iv g p=                        (2) 
 
and sends (vi, IDi) to the CA, where “||” is the con-
catenation symbol.  

Step 2: After receiving (vi, IDi), the CA chooses 
ai∈RZq

*, computes 
 

1( )  mod  ,ia
i i iy v h ID g p−=                (3) 

( || ) mod  ,i i i iw a h y ID qδ= +              (4) 
 
and returns (yi, wi) to Ui.  

Step 3: Ui first computes 
 

( || ) mod  ,i i i ix w h t ID q= +                  (5) 
 
and verifies its validity by checking if 
 

( || ) ( ) (mod  ).i i ih y ID x
i ih ID y g pβ =             (6) 

 
If Eq.(6) holds, user Ui accepts (xi, yi) as his/her 

private and public keys.  
Note that Eq.(6) also validates the authenticity of 

yi with respect to xi. Accordingly, there is no need to 
transmit any certificate along with the public key yi. 
Eq.(6) can be easily verified as follows: 

 
( || ) ( || )

( || )

( || ) ( || )

( || )

( )              by Eq.(3)

             by Eq.(1)
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2. Proxy share generation stage 
Let 

1 2
{ , ,  ...,  }

np p pG U U U=  be the set of n 

designated proxy signers and U0 the original signer 
who wants to delegate his/her signing power to the 
designated proxy group G. U0 distributes proxy shares 
to the members in G with the following steps: 

Step 1: U0 chooses an integer ki∈RZq
* (for i=1, 

2, …, n) and computes 
 

 mod  ,ik
iK g p=                           (7) 

1

mod  ,
n

i
i

K K p
=

=∏                        (8) 

1
0 w( || ) mod  ,i ix n k h m K qσ −= +             (9) 

 
where mw is the warrant consisting of the original and 
the proxy signers’ identifiers, the delegation duration, 
and so on. 

Step 2: U0 sends (σi, mw) to 
ipU G∈  via a secure 

channel and broadcasts (Ki, K). 
Step 3: 

ipU G∈  verifies the validity of (σi, mw) 

by checking that 
 

1
0 0 w( || ) ( || )

0 0( ( ) ) (mod  ).i h y ID h m Kn
ig h ID y K pσ β

−

=   (10) 
 

The correctness of Eq.(10) is shown as follows. 
By raising both sides of Eq.(9) to exponent with base 
g, we have 

 
1 1

0 w 0 w

1
0 0 w

( || ) ( || )

( || ) ( || )
0 0

               by Eq.(7)

     ( ( ) ) (mod ). by Eq.(6)

i ix n k h m K x n h m K
i

h y ID h m Kn
i

g g g K

h ID y K p

σ

β

− −

−

+= =

=
 

3. Multi-proxy signature generation and verifi-
cation stage 

For signing m on behalf of the original signer U0, 
each 

ipU G∈  performs the following steps: 

Step 1: Choose an integer zi∈RZq
*, compute 

 

 mod  ,iz
ir g p=                            (11) 

 
and broadcast ri to all other proxy signers. 

Step 2: After receiving all rj’s (j=1, 2, ..., n; j≠i) 
from other proxy signers, compute r and si with the 
following equations: 

1

( || ( ))  mod  ,j
n

r
j

j

r m h m r p
=

= ∏             (12) 

( ) ( || ) mod ,i i i i is z r x h r K qσ= + +          (13) 
 

and then broadcast si to all other proxy signers. 
Step 3: Validate (rj, sj) sent from the proxy signer 

jpU G∈  (j≠i) by checking that 
 

(
)

1 1
0 0

1
w

( || ) ( || )
0

( || )
( || )

0

( )

        ( ) (mod  ).

j j j js r n h y ID h y ID n
j

h r K
h m Kn

j j j

g r h ID

h ID y y K p

β
− −

−

+=

⋅
 (14) 

 
If Eq.(14) holds, proceed to the next step; oth-

erwise, sj is requested to be sent again. 
Step 4: Compute s with all collected sj’s (j=1, 

2, ..., n) as  
 

1
mod  .

n

j
j

s s q
=

= ∑                       (15) 

 
The multi-proxy signature of m is (K, r, s, mw). 

Note that the message m is unnecessary to be trans-
mitted, since it can be recovered from the signature. 
To check the validity of the multi-proxy signature, the 
verifier first computes  

 

0 w

( || )
( || ) ( || )

0

|| ( )

( ) (mod ).
n

i ii

h r Kn
h y ID h m Ks

i i
i

m h m

rg h ID y K pβ =−

=

⎛ ⎞⎛ ⎞∑= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏
(16) 

 
With the recovered m and h(m), along with the 

public one-way function h, the verifier can check the 
integrity of the message and the validity of the 
multi-proxy signature as well. Since the public keys 
y0 and yi’s are combined into Eq.(16), no additional 
public-key verification is needed before multi-proxy 
signature verification. Thus, the message recovery 
procedure, the authentication of the public keys, and 
the validation of the multi-proxy signature are si-
multaneously carried out in one single equation, 
Eq.(16). 
Theorem 1    If an individual proxy signature (ri, si) is 
properly generated by 

ipU G∈  with Steps 1 and 2 of 

the multi-proxy signature generation stage, then it 
satisfies Eq.(14) (See Appendix for the proof). 
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Theorem 2    The verifier can perform Eq.(16) to 
recover the message m from the multi-proxy signature 
(K, r, s, mw) and to check the validity of the signature 
as well as the signers’ public keys (See Appendix for 
the proof). 
 
 
MULTI-PROXY SIGNATURE SCHEME BASED 
ON ELLIPTIC CURVE DISCRETE LOGARITHMS 
 

In this section, we propose the elliptic curve 
variant based on our first scheme. A significant 
property of the variant is that the key length required 
is shorter than that of our first scheme at the same 
level of security. In general, the elliptic curve cryp-
tography of a 160-bit modulus is almost as secure as 
our first scheme of a 1024-bit modulus (Jurisic and 
Menezes, 1997; Stallings, 2002). Furthermore, the 
computational efforts required for ECC and for the 
traditional public-key cryptosystems are considered 
comparable for equal key lengths. Hence, the elliptic 
curve variant is more efficient in terms of computa-
tional complexities and communication overheads, 
which especially appeals to smart card applications 
with limited computing power and insufficient stor-
age space. 

In the system initialization, the CA determines 
the following parameters: p—a large prime; a, b— 
two parameters for Zp satisfying 4a3+27b2 mod p≠0; 

Ep(a, b)—an elliptic curve y2=x3+ax+b (mod p); q—a 
large prime such that q is a divisor of the number of 
points on the elliptic curve Ep(a, b); O—a point at 
infinity over Ep(a, b); Q—the base point of order q 
over Ep(a, b); h(·)—a secure one-way hash function 
that accepts input of various lengths and generates 
output of a fixed length (note that input of a point over 
Ep(a, b) means input of the concatenation of the x- and 
y-coordinate of that point); (δ, B)—the CA’s private 
and public keys, where δi∈RZq

* and  

 
B=δQ.                                (17) 

 
The parameters p, q, O, Q, B, the hash function h, 

and the elliptic curve Ep(a, b) are made public, while 
the CA’s private key δ is kept secret. In the following, 
all elliptic curve point operations are manipulated 
over Ep(a, b). We further denote x(P) as the 

x-coordinate of point P. The proposed ECC variant 
also consists of three stages like those of the proposed 
first scheme. Details of each stage are stated below. 

1. Registration stage 
Each user Ui associated with the identifier IDi 

performs the following interactive steps with the CA. 
Step 1: Ui chooses an integer ti∈RZq

*, computes 

 
( || ) ,i i iV h t ID Q=                        (18) 

 
and sends (Vi, IDi) to the CA. 

Step 2: After receiving (Vi, IDi), the CA chooses 
ai∈RZq

*, computes 
 

1( ) ( ),i i i iY h ID V a Q−= +                   (19) 
( || ) mod  ,i i i iw a h Y ID qδ= +                (20) 

 
and returns (Yi, wi) to Ui. 

Step 3: Ui first computes 
 

( || ) mod  ,i i i ix w h t ID q= +                 (21) 
 

and verifies its validity by checking that 
 

( || ) ( ) .i i i i ih Y ID Β h ID Y x Q+ =               (22) 
 

If Eq.(22) holds, user Ui accepts (xi, Yi) as his/her 
private and public keys.  

Note that Eq.(22) also validates the authenticity 
of Yi with respect to xi. Consequently, it is unneces-
sary to transmit any extra certificate with the public 
key Yi. The correctness of Eq.(22) is given as follows: 

 
( || ) ( )

    ( || )          by Eq.(19)
    ( ( || ) )       by Eq.(17)

                                    by Eq.(20)
     ( ( || ))                by Eq

i i i i

i i i i

i i i i

i i

i i i

h Y ID Β h ID Y
h Y ID Β V a Q

h Y ID a Q V
w Q V
w h t ID Q

δ

+

= + +

= + +

= +

= + .(18)
     .                                     by Eq.(21)ix Q=

 

 
That is, if (Yi, Wi) is correctly generated by the CA, it 
will pass the test of Eq.(22). 

2. Proxy share generation stage 
Let 

1 2
{ ,  ,  ... ,  }

np p pG U U U=  be the set of n 

designated proxy signers and U0 the original signer 
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who wants to delegate his/her signing power to the 
designated proxy signers G. U0 distributes proxy 
shares to the members in G with the following steps: 

Step 1: U0 chooses an integer ki∈RZq
* (for i=1, 

2, …, n) and computes 
 

,i iK k Q=                              (23) 

1

,
n

i
i

K K
=

= ∑                           (24) 

1
0 w( || ) mod  ,i ix n k h m K qσ −= +           (25) 

 
where mw is defined as in the proposed first scheme. 

Step 2: U0 broadcasts (Ki, K) and further sends 
(σi, mw) to 

ipU G∈  via a secure channel. 

Step 3: 
ipU G∈  verifies the validity of (σi, mw) 

by checking that 
 

1 1
0 0 0 0

w

( ( || )) ( ( ))
          ( || ) .                             (26)

i

i

Q n h Y ID Β n h ID Y
h m K K

σ − −= +

+
 

 
The correctness of Eq.(26) is shown as follows. 

Multiplying both sides of Eq.(25) with the base point 
Q, we have 

 
1

0 w

1
0 w

1 1
0 0 0 0

w

( ( || ))

      ( ) ( || )  by Eq.(23)

      ( ( || )) ( ( ))
         ( || ) .                              by Eq.(22)

i i

i

i

Q x n k h m K Q

x n Q h m K K

n h Y ID B n h ID Y
h m K K

σ −

−

− −

= +

= +

= +

+

 

 
Therefore, the test of Eq.(26) is successful on condi-
tion that (K, σi, mw) is correctly generated by U0. 

3. Multi-proxy signature generation and verifi-
cation stage 

For signing m on behalf of the original signer U0, 
each user 

ipU G∈  performs the following steps: 

Step 1: Choose an integer zi∈RZq
*, compute 

 

,i iR z Q=                              (27) 
 

and then broadcast Ri to all other proxy signers. 
Step 2: After receiving all Rj’s (j=1, 2, ..., n and 

j≠i) from other proxy signers, compute r and si with  

1

1

( || ( )) ( )  mod ,
n

j j
j

r m h m x x R R P
−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑      (28) 

( ( )) ( ) ( || ) mod  ,i i i i is z x R x h r K qσ= + +     (29) 
 

and then broadcast si to all other proxy signers. 
Step 3: Validate (Rj, sj) sent from the proxy 

signer 
jpU G∈  (j≠i) by checking that 

 
1

0 0

1
0 0 w

( ) ( || )[( ( || ) ( || ))

  ( ) ( ) ( || ) ].      (30)
j j j j j

j j j

s Q x R R h r K n h Y ID h Y ID B

n h ID Y h ID Y h m K K

−

−

= + +

+ + +

 
If Eq.(30) holds, proceed to the next step; oth-

erwise, sj is requested to be sent again. 
Step 4: Compute s with all collected sj’s (j=1, 

2, ..., n) as 

1
mod .

n

j
j

s s q
=

= ∑                       (31) 

 
The multi-proxy signature of m is (K, r, s, mw). 

Note that the signing message is unnecessary to be 
transmitted, since any verifier can recover it from the 
signature. To check the validity of the signature, the 
verifier first computes  

 

( )
0

w

|| ( ) ( || ) ( || ) ( )

          ( || ) ( || )  mod  .            (32)

n

i i i i
i

m h m rx sQ h r K h Y ID B h ID Y

h m K h r K K p

=

⎛= − +⎜
⎝

⎞− ⎟
⎠

∑

∑

 
Then one can use the public one-way function h 

to ensure the integrity of the message and the validity 
of the multi-proxy signature. Since the public keys Y0 
and Yi’s are combined into Eq.(32), additional public- 
key verifications are not required before the multi- 
proxy signature verification. Thus the authentication 
of the public keys, the validation of the multi-proxy 
signature, and the message recovery procedure are 
simultaneously carried out in a single equation, 
Eq.(32). 
Theorem 3    (Ri, si) that can be correctly generated by 
Steps 1 and 2 of the multi-proxy signature generation 
stage of the elliptic curve variant satisfies Eq.(30) 
(See Appendix for the proof). 
Theorem 4    A valid multi-proxy signature (K, r, s, 
mw) for the message m can be used to recover m with 
Eq.(32) (See Appendix for the proof). 
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SECURITY CONSIDERATIONS AND PER-
FORMANCE EVALUATION 
 

In this section, we discuss some security con-
siderations and analyze the performance of our pro-
posed schemes. 
 
Security considerations 

The security of the proposed first scheme is 
primarily based on the cryptographic assumptions of 
the discrete logarithm problem (DLP) (Diffie and 
Hellman, 1976; Menezes et al., 1997) and the 
one-way hash function (OHF) (Diffie and Hellman, 
1976; Menezes et al., 1997). The security of the el-
liptic curve variant is primarily based on the assump-
tion of the elliptic curve discrete logarithm problem 
(ECDLP) (Menezes, 1993; Blake et al., 1999; IEEE 
P1363, 2000), instead of the DLP. Since the elliptic 
curve variant and our first scheme have almost the 
same structure, we make a merged discussion rather 
than separate ones. In the following, security consid-
erations are analyzed from three perspectives: the 
intractability of private keys, the authenticity of pub-
lic keys and the unforgeability of the multi-proxy 
signature.  

1. Intractability of private keys 
Consider the attack that an outsider wants to de-

rive the CA’s private key δ from Eq.(1)/(17). He/She 
will face the intractability of the DLP/ECDLP as-
sumption. Further, if a malicious member tries to 
derive δ from Eq.(4)/(20), he/she has to know ai, a 
secret number chosen by the CA and under the pro-
tection of the DLP/ECDLP assumption in Eq.(3)/(19). 
Hence, the CA’s private key δ is secure against both 
inside and outside attacks. 

The security of the user’s private key xi, com-
puted from Eq.(5)/(21), depends on the random value 
h(ti||IDi), which is protected by the DLP/ECDLP as-
sumption in Eq.(2)/(18). If any proxy signer attempts 
to derive the original signer’s private key x0 from 
Eq.(9)/(25), he/she has to know the secret value ki 
chosen by U0. However, it is infeasible to obtain ki, 
since Ki is protected by the DLP/ECDLP assumption 
in Eq.(7)/(23). In addition, an adversary may try to 
reveal the original or the proxy signers’ private key(s) 
from some intercepted information, including the (ri, 
si), the resulting multi-proxy signature (K, r, s, mw), 
and the corresponding signing message m. Substi-
tuting σi in Eq.(13)/(29) with Eq.(9)/(25), we have 

1
0 w( ( || ) ) ( || ) mod  ,i i i i is z r x n k h m K x h r K q−= + + +  

1
0 w( ( )) ( ( || ) ) ( || ) mod  ,i i i i is z x R x n k h m K x h r K q−= + + +

 
respectively. It can be seen that, besides the private 
keys x0 and xi, there are two unknown random values 
ki and zi protected by the DLP/ECDLP assumption in 
Eq.(7)/(23) and Eq.(11)/(27), respectively. That is to 
say, it is impossible for the attacker to obtain the 
private keys x0 and xi. 

2. Authenticity of public keys 
Note that a valid public key yi with respect to xi 

and IDi has to satisfy the verification equality, 
Eq.(6)/(22). A malicious adversary may attempt to 
forge a valid pair (IDadv, xadv, yadv) satisfying 
Eq.(6)/(22). The malicious adversary can first arbi-
trarily choose his/her identifier IDadv and private key 
xadv, and then tries to compute the forged valid public 
key yadv. Obviously, it is infeasible since he/she will 
face the intractability of the DLP assumption. Simi-
larly, if he/she first fixes (IDadv, yadv), and tries to 
obtain xadv, the situation is the same as the previous 
one. What is more, to generate a valid IDadv with the 
arbitrarily chosen xadv and yadv, the adversary will be 
confronted with the difficulty of the DLP/ECDLP and 
the OHF assumptions. 

3. Unforgeability of multi-proxy signature 
To forge a valid multi-proxy signature (K, r, s, 

mw) passing the test of Eq.(16)/(32), the adversary 
may first choose a message m along with (K, r, mw), 
and then tries to compute s from Eq.(16)/(32). How-
ever, the adversary will face the problem of comput-
ing discrete logarithms/elliptic curve discrete loga-
rithms and fail to make it under the DLP/ECDLP 
assumption. 

On the other hand, if the adversary first fixes (K, 
r, s, mw) and then tries to obtain a message m satis-
fying Eq.(16)/(32), he/she cannot successfully plot 
the attack unless he/she has the ability to reverse the 
OHF. Thus, potential forgery attacks cannot succeed 
in the proposed scheme under the protection of the 
DLP/ECDLP and the OHF assumptions. 

Consider the well-known chosen-ciphertext at-
tack (Bellare et al., 1998). An adversary may submit 
different arbitrarily chosen signatures (K, r, s, mw) to 
the decryption oracle D(·), which will return the cor-
responding plaintext to obtain the desired message. 
However, the probability of obtaining a meaningful 
plaintext is negligible. Thus, the chosen-ciphertext 
attack does not work in our proposed schemes. 
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Performance evaluation 
In this subsection we will make some compari-

sons among our proposed first scheme, Lin et 
al.(2002)’s scheme (the LWH scheme for short), and 
the Xue-Cao scheme (the XC scheme for short) (Xue 
and Cao, 2004b). These two schemes have structures 
with partial delegation similar to ours and both seem 
secure so far. For convenience, we define Th, Tm, Ti, 
and Te as the time for performing an OHF h, a 
modular multiplication computation, a modular in-
verse computation, and a modular exponentiation 
computation, respectively. 

The time for performing the modular addition is 
negligible compared to the computation time of per-
forming other operations, and thus is ignored here. In 
the following comparisons, we assume that all hash 
functions are implemented with the VSH (Contini et 
al., 2006), an efficient and provable collision-resistant 
hash function. Contini et al.(2006) also claimed that a 
VSH hash function requires only 4 modular multi-
plications, i.e., Th≈4Tm. Ti and Te can be further con-
verted into computational units in Tm (Koblitz et al., 
2000) for facilitating the evaluation of the computa-
tional complexities. The relations between Ti, Te and 
Tm are: Ti≈3Tm, Te≈240Tm. Detailed comparisons of 
the computational complexities and communication 
overheads among these three multi-proxy signature 
schemes are demonstrated by Tables 1 and 2,  
respectively. 

Since our proposed scheme integrates 
self-certified public-key systems and the message 
recovery signature schemes, the tasks of authenticat-
ing the public keys, verifying the signature and 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

recovering the message can be simultaneously carried 
out in a single logical step, which helps reduce the 
computational complexities. Further, it is unnecessary 
to transmit the signing message since the signing 
message can be recovered from the signature, which 
helps with the bandwidth saving. The rough estima-
tion results in Table 1 for the entire scheme show that 
our proposed scheme outperforms the LWH and the 
XC schemes by (1647n+2426)Tm and (915n+2419)Tm, 
respectively. Table 2 shows that the total communi-
cation cost of our scheme is less than that of the LWH 
and the XC schemes, both by (n2+n−1)|p|+(6n+3)|q|. 
Therefore, we conclude that the proposed scheme is 
better than the LWH and the XC schemes in terms of 
computation effort and communication cost. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 2  Comparison of communication overheads 
Phase Scheme Communication cost 

LWH n|p|+3n|q|* 
XC n|p|+3n|q|* 

Proxy share 
generation 

Proposed (n+1)|p|+2n|q| 
LWH (n2+2n)|p|+(4n+2)|q|* 
XC (n2+2n)|p|+(4n+2)|q|* 

Multi-proxy 
signature  
generation Proposed n|p|+n|q| 

LWH 2|p|+(2n+4)|q|* 
XC 2|p|+(2n+4)|q|* 

Multi-proxy 
signature  
verification Proposed 2|p|+3|q| 

LWH (n2+3n+2)|p|+(9n+6)|q|* 
XC (n2+3n+2)|p|+(9n+6)|q|* Total cost 
Proposed (2n+3)|p|+(3n+3)|q| 

* The cost for transmitting each public-key certificate of the LWH 
and the XC schemes is implemented with ElGamal signature (El-
Gamal, 1985), i.e., 2|q|. LWH: Lin et al.(2006)’s scheme; XC: Xue 
and Cao (2004b)’s scheme 

Table 1  Comparison of computational complexities 
Phase Scheme Time complexity Rough estimation 

LWH 8nTe+(5n+1)Tm+(n+1)Ti 
* (1928n+4)Tm 

XC 7nTe+3nTm
* 1683nTm 

Proxy share 
generation 

Proposed 5nTe+5nTm+(n+1)Ti+(3n+1)Th (1220n+7)Tm 
LWH (n2+8n+4)Te+(n2+7n+2)Tm+Ti+(n+1)Th

* (241n2+1931n+969)Tm 
XC (n2+6n+4)Te+(n2+4n+1)Tm+Th

* (241n2+1444n+965)Tm 
Multi-proxy 
signature  
generation Proposed (n2+7n−4)Te+(n2+5n−5)Tm+(4n−3)Th (241n2+1701n−977)Tm 

LWH (3n+6)Te+(2n+3)Tm+Th
* (722n+1447)Tm 

XC (3n+6)Te+(2n+4)Tm+Th
* (722n+1448)Tm 

Multi-proxy 
signature  
verification Proposed 4Te+5nTm+(2n+2)Th (13n+968)Tm 

LWH (n2+19n+10)Te+(n2+14n+6)Tm+(n+2)Ti+(n+2)Th
* (241n2+4581n+2420)Tm 

XC (n2+16n+10)Te+(n2+9n+5)Tm+2Th
* (241n2+3849n+2413)Tm Total costs 

Proposed (n2+12n)Te+(n2+15n−5)Tm+(n+1)Ti+9nTh (241n2+2934n−6)Tm 
* The cost for verifying each public-key certificate of the LWH and the XC schemes is implemented with ElGamal signature verification 
(ElGamal, 1985), i.e., Tm+3Te. LWH: Lin et al.(2006)’s scheme; XC: Xue and Cao (2004b)’s scheme 
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CONCLUSION 
 

We have proposed two multi-proxy signature 
schemes mainly based on the DLP and the ECDLP 
assumptions, respectively. Preserving the merits of 
self-certified public-key systems and message re-
covery signature schemes, our proposed schemes are 
more efficient than the existing schemes, which were 
implemented with certificate-based public-key sys-
tems. The characteristics of our proposed schemes 
are: 

(1) The validation of the multi-proxy signature, 
the authentication of the public keys, and the message 
recovery procedure are simultaneously carried out 
within a single logical step. 

(2) No certificate is required for authenticating 
the public keys, so as to reduce computation effort 
and communication overhead. 

(3) The signing message is unnecessary to be 
transmitted with the signature, since it can be recov-
ered from the signature, i.e., it gains more bandwidth 
savings. 

As compared with our first scheme, the elliptic 
curve variant with shorter key lengths is more attrac-
tive to the applications with limited computing power 
and insufficient storage space, like smart cards. 
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APPENDIX: PROOFS OF THEOREMS 1~4 
 
Proof of Theorem 1 

By raising both sides of Eq.(13) to exponent with 
base g, we have 
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which implies Eq.(14). 
 
Proof of Theorem 2 

Raising both sides of Eq.(15) to exponent with 
base g yields 
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The above equation can be further rewritten as 
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Multiplying the above equation by Eq.(12) and re- 
arranging the result, we have 
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Hence, the verifier can correctly recover the message 
m from Eq.(16). With the assistance of the public 
OHF, the verifier can check the integrity of the mes-
sage and the validity of the multi-proxy signature as 
well. The public keys of the original signer and all 
proxy signers are also authenticated. 

 
Proof of Theorem 3 

By multiplying both sides of Eq.(29) with base Q, 
we have 
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Proof of Theorem 4 
Multiplying both sides of Eq.(31) with base Q 

yields 
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The above equation can be further rewritten as 
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Combining the above equation with Eq.(28), we have 
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Hence, the verifier can correctly recover m||h(m). 
With the public OHF, the verifier can check not only 
the integrity of the recovered message but also the 
validity of the multi-proxy signature. 
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