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摘要 

本論文主要是針對語音偵測系統(voice activity detection)在弱的訊號與噪音比

值(the signal-to-noise ratio, SNR)及劇烈性的噪音程度變動下之所面臨的問題作些

探討。迄今，所提出的語音偵測系統都是假定環境噪音程度是穩定的(stationary)。

然而，由於傳統演算法的特徵參數都取決於能量的估測，因此其效能易受到實際

噪音程度的變動所影響。比如在車上，劇烈的噪音變動就可能因為移動、引檠運

轉、車速、煞車及關車門聲而經常地產生。為了要解決這個問題，我們先後提出

兩種具強健性(robust)特徵參數為基礎的語音偵測系統。在第一種方法中，根據

共鳴頻率(formant frequency)造成在聲音光譜圖(voice spectrogram)的帶狀性紋路

(banded line)現象，我們可發現此帶狀性紋路可有效及簡單地表示出具時變特性

(time-varying property)語音的存在。透過頻帶分析，我們提出一個以熵為基礎的

語音偵測系統。首先，將訊號切成三十二個均勻大小的子頻帶以區隔出共振音頻
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的分佈。論文中提出一個定義在子頻帶上的帶狀性頻譜熵值(banded spectrum 

entropy, BSE) 以充分地利用帶狀性紋路在聲音光譜圖上的固有特性。由於所切

出的子頻帶可能被噪音干擾，為了增加 BSE 參數對噪音的抗雜訊能力，我們利

用可適性臨界方式(adaptive threshold method)的技巧，建立一個稱作子頻帶自我

擷取(subband self-extraction)的方法以能立即地擷取有效的子頻帶。但事實上，聲

音光譜圖上帶狀性紋路現像只適合用來特徵有聲的語音訊號。為了要強化語音訊

號的無聲部份，其低頻能量對全頻帶能量的比值(the ratio of low-band to full-band 

energy, RLF)可用來區隔無聲語音與背景噪音特性的差別。相較於其它方法，實

驗結果可發現用以建立具強健性的語音偵測系統的 BSE 及 RLF 特徵參數可成功

地特徵語音特性且不易受噪音程度變動。事實上，語音偵測技術使也在噪音估測

器中扮演非常重要的角色；一般都採用語音偵測系統的技術作為判斷何時追蹤噪

音頻譜變動的指示器。為了針對噪音程度極遽變動情況下，所提出的噪音估測器

加入以熵為基礎的語音偵測技術並以疊代平均的方法及可調適的平滑因子為基

礎。  

而在另一種語音偵測系統，我們利用語音的暫態及非穩定性的特性最為擷取語

音訊號的依據，採以小波作為訊號的分析。首先，離散小波轉換將輸入訊號分成

四個不均勻大小的子頻帶，而在每個子頻帶上採用一種非線性(non-linear)的

Teager 能量運算(Teager Energy Operator, TEO)以有效抑制噪音在各子頻帶的影

響，而另一優點就是有助於子頻帶自我相關函示(spectral auto-correlation function, 
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SACF)之結果。為了量化個子頻帶上的自我相關函示採用 Mean-Delta(MD)運算

以估測各頻帶的週期強度，最後並相加各子頻帶的 MDSACF 參數以建立一個以

小波為基礎的強健性特徵參數。為了建立完整的語音偵測系統，我們採用一個可

適性臨界方式作為判斷語音偵測結果的機制。相較於其他方法，實驗結果證實了

以小波為基礎的語音偵測方法可提供在可變噪音程度下的強健性且具高效率及

易實現的方法。 
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ABSTRACT 

This dissertation mainly addresses the problem of a voice activity detection (VAD) 

failed in poor signal-to-noise ratio (SNR) and in dynamically time-varying 

background. So far, the commonly used VAD algorithms always assume that the 

background noise level is stationary. Since the feature extractions from conventional 

algorithms are closely depended on the estimation of energy level, the corresponding 

performances are easily contaminated by the variable noise-level. For example, may 

usually exit in car due to movements, engine running, speed change, braking, slam, 

etc. To solve the problem, the VAD algorithms based on two types of robust feature 

parameters are proposed in turn. In the first presented approach, it is found that the 



 vi

nature of banded line is highly efficient, compact representation for the time-varying 

characteristics of speech signals according to the appearance of banded line on voice 

spectrogram resulted from formant frequency. For frequency band analysis, an 

entropy-based VAD is presented herein. First, the input signal is decomposed into 32 

uniform subbands to locate the formant frequency bands. A measure of entropy 

defined in subband domain, regarded as banded spectrum entropy (BSE) parameter, is 

then proposed to sufficiently exploit the inherent nature of banded lines on voice 

spectrogram. Due to that the some decomposed subbands can be contaminated by 

noise, a strategy of subband self-extraction (SSE) based on adaptive threshold skill is 

presented herein to execute the extraction of useful subbands with time and is further 

used to let the BSE be robust against to noises. The banded lines on voice 

spectrogram, in practice, are only suitable for characterizing voiced speech. In order 

to enhance the part of unvoiced speech, the ratio of low-band energy to full-band 

energy (RLF) is presented to discriminating the unvoiced sound from background 

noises. Compare to other VAD approaches, experimental results shown that the two 

BSE and RLF parameters used for determining voice activity successfully exploit the 

characteristic of speech signal and is nearly robust against variable noise level. A 

technology of VAD, in practice, plays an essential role in noise spectrum estimator. 

The VAD scheme is frequently employed into noise spectrum estimator as an 
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indicator of updating noise spectrum. Enclosed herein the proposed noise spectrum 

estimation employs an entropy-based VAD above mentioned as an indicator of 

updating noise spectrum. In addition, a recursive averaging-based formula and an 

adaptive smoothing factor are then involved herein for quickly adapting to variable 

level of noise. 

In the alternative VAD method, wavelet analysis is used for extracting speech 

signals to further exploit the transient components and non-stationary property. First, 

we divide the input signal into four non-uniform subbands via discrete wavelet 

transform (DWT). In addition, a nonlinear Teager energy operator (TEO) is then 

utilized into each subband signals. We show that the TEO can decrease the influence 

of noise on subbands significantly. Besides, the other advantage is suitable for the 

result of subband auto-correlation function (SACF). To obtain the amount of 

periodicity, a Mean-Delta (MD) operator is then applied into SACF on each subband. 

Summing up the all MDSACFs derived from each decomposed subband, a robust 

wavelet-based feature parameter is then proposed. Finally, we adopt an adaptive 

threshold method as VAD decision to form a complete VAD. The simulation result 

shows the wavelet-based VAD is robust against changing noise level and is an 

efficient and simple approach as comparing with other methods. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

 

1.1 Motivation 

The purpose of voice activity detection (VAD) is the determination of the presence 

or absence of a voice component in a given signal, especially the determination of the 

beginnings and endings of voice segments, and it is also called speech detection, 

endpoints detection, and speech/non-speech segmentation. Such a technique is one of 

the essential parts for entire speech processing and required in many applications such 

as mobile telecommunication for discontinuous transmission (DTX) mode [1], noise 

reduction for speech enhancement [2], speech coding [3], [50], and speech recognition 

[4]. In GSM (Global System for Mobil communication cellular) system, a VAD 

scheme for DTX is required to determine whether a slice of speech waveform is voice 

or silence. After that, only the “voice” slices are transmitted by DTX to lengthen the 

battery life of the terminals by suppressing the overall transmitting data [5], [6]. 
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Similarly, in speech recognition system a VAD strategy used as front-end process can 

improve the recognition ratio and reduce the computing power waste induced by 

incorrect speech detection even in the presence of noise. Besides, a good use of VAD 

can be used in speech coding system to control the average bit rate and the overall 

coding quality of speech in a variable bit rate [3]. 

 

1.2 The Classification of Speech Signal 

Speech sounds can be classified into three distinct classes, voice sounds, unvoiced 

sounds, and silences which are resulted from their mechanism of speech production 

[8]. Voiced sounds are generated by forcing air through the glottis or an opening 

between the vocal folds. The tension of the vocal cords is adjusted so that they vibrate 

in oscillatory fashion. Thus, voiced sounds show periodicity. All the vowels including 

the semivowels and the diphthongs are voiced sounds. Unvoiced sounds are produced 

by forming a construction at some point in the vocal tract, and forcing air through the 

formed construction at a high velocity to generate turbulence. Unlike voiced sounds, 

unvoiced sounds do not have any prominent periodic components. Silences are the 

parts of the speech sequence during which no sound is produced by the human speech 

production mechanism. In many ordinary environments, silences in the speech 

sequence are dominated by the background noise which varies dynamically in energy 
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level and spectral characteristics. 

 

1.3 The Categories of Background Acoustical Noises 

In general, the speech signal is corrupted by additive background acoustical noises 

that we can divide into two categories based on the environment. The first category is 

background noise from an office-type environment. The office-type environment 

contains some, but not a lot of, background noise. Office-type background noise 

varies slowly both in terms of volume and statistical characteristics. The second 

category is dynamic background noise from outside office environment. This category 

can be frequently occurred and be significantly less controlled; the background noise 

exhibits a wide dynamic range and varies rapidly and unpredictably. Besides, impulse 

noise may perturb the waveform of speech signals. The above-mentioned categories 

are illustrated as below: 

a. Office-type background noise  

i. also called fixed-level noise 

ii. short-term quasi-stationary noise 

iii. strictly speaking, background noise is present throughout the entire signal, 

although it is mostly embedded in the voice signal 

iv. associated with ambient background noise 
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v. can be considered as low-energy, white noise 

vi. is subject to a statistical characterization in two steps on the basis of its 

mean energy, the standard deviation of the energy, and mean zero-crossings. 

b. Dynamic background noise 

i. also called variable-level noise or non-stationary noise 

ii. sporadic noise from a multitude of sources 

iii. may appear at any moment in record 

iv. duration is very variable 

v. energy is variable too, although generally lower in comparison with that of 

the section of speech with most energy 

c. Impulse noise 

i. perturbations of the waveform, primarily in the last part of the speech signal, 

due to exhalation 

ii. noises made by the tough and/or lips in preparation for speech 

iii. does not always appear 

iv. energy is variable: may be confused with other sporadic noises, or even 

speech 

v. can be dealt with by using time duration 

So far, the existing VAD algorithms all assumed the additive noise as an office-type 
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background noise. However, the so-called non-stationary noises frequently exist in 

recordings. So, the detection of voice activity in dynamical noise environment is a 

challenging task. 

 

1.4 Prior Art 

The accurate determination of speech in the presence of background noise plays a 

significant role in many areas of speech processing. Over the past decade numerous 

studies have been proposed for the developments of the robust VAD algorithms 

operating in adverse acoustic noisy environments. In general, for the establishment of 

a complete VAD algorithm it mainly comprises two parts shown as bellows:  

 Parameter extraction: Relevant parameters are extracted from the speech signal. 

In order to allow a good detection of the speech signal regions, the chosen 

parameters have to show a discriminability between speech and non-speech 

segments. 

 Thresholding: A threshold is applied to the extracted parameter in order to divide 

the speech signal between speech and non-speech segments. This threshold can 

be fixed or adaptive. In general, the adaptive threshold is used to adapt to 

variable noise level. 

Most of the early algorithms are based on the feature parameters of short-time 
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energy [10], zero-crossing rate (ZCR) [12], [13], timing, pitch information [11] and 

the LPC coefficients [9]. Cepstral features [14], adaptive noise modeling of voice 

signals [15] and the periodicity measure [16] are some of the recent ideas in VAD 

designs. Unfortunately, these algorithms have some problems at low signal-to-noise 

ratios (SNRs), especially when the noise is non-stationary. For example, the 

energy-based estimate and ZCR are inadequate for distinguishing speech from noise 

at low SNRs. The performances of energy-based VADs degrade significantly when 

the speech level is smaller than the noise level. Moreover, the ZCR is highly sensitive 

to various types of noise. Additionally, the reliability of the LPC coefficients have 

been observed to depend strongly on the noise in adverse environment and not 

particularly suitable for nasal sound, fricative, etc. Although pitch information can 

help to detect speech, extracting the correct pitch in noisy environments is difficult. 

Some of the algorithms perform well in adverse environments; even so, the algorithms 

must be required more computing complexity. Various procedures for speech 

detection have been described in the literature so far. Sohn et al. [17] presented a VAD 

algorithm that uses a novel noise spectrum adaptation applying soft decision 

techniques. The decision rule drew from the generalized likelihood ratio test by 

assuming the noise statistics to be known a prior estimate. Cho et al. [18] presented 

improved version of the algorithm designed by Sohn. Specifically, Cho presented a 
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smoothed likelihood ratio test to reduce the detection errors. Furthermore, Beritelli et 

al. [19] developed a fuzzy VAD using a pattern matching block comprising a set of six 

fuzzy rules. Nemer et al. [20] designed a robust algorithm based on higher order 

statistics (HOS) in the residual domain of the linear prediction coding coefficients 

(LPC). The International Telecommunication Union-Telecommunications Sector 

(ITU-T) designed G.729B VAD [21] comprising a set of metrics including line 

spectral frequencies (LSFs), low band energy, ZCR and full-band energy.  

Besides, Chen et al. [22] proposed speech detection algorithm using microphone 

array in a noisy environments. However, the assumption of stationary may result in 

estimation errors from the above method due to the non-stationary nature of speech 

signals, the limited length of observed data and the size of the microphone array. To 

determine the presence or absence of speech, the observed signal statistics in the 

current frame are compared with the estimated noise statistics according to some 

decision rules. In [23], using the assumption that the Discrete Fourier Transform (DFT) 

coefficients of speech and noise are asymptotically independent Gaussian random 

variable, a statistical model-based VAD has been successfully proposed. Recently, S. 

Gazor et al. [24] proposed a VAD that uses a Laplacian distribution model for speech 

and outperforms the previous VADs that use a Gaussian model. Those algorithms, 

however, require extensive training of a Hidden Markov Model with the set of speech 
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prototypes to be encountered. In general, different applications need different 

algorithms to meet their specific requirements in terms of computational accuracy, 

complexity, robustness or sensitivity, response time, etc.  

 

1.5 Objectives 

Even if the noise is generated from a computer, an air conditioning system, or an 

automobile are not perfectly stationary. In practice, the background noise level usually 

varies with time. In this dissertation we mainly focus to propose a set of robust feature 

parameter for sufficiently characterizing speech signal even in variable noise level 

and/or in low SNRs. In addition to feature extraction, the adaptive threshold strategy 

is also considered as a VAD decision to adapt to the changes of the noise conditions. 

Enclosed herein we suggest a recursive-averaging based noise estimator containing 

the above-mentioned VAD to estimate noise spectrum continuously, quickly and 

accurately when existing a rapidly increasing noise level. 

 

1.5.1 Frequency band analysis for voice activity detection using a measure of 

banded spectral entropy 

The nature of banded lines on voice spectrogram generated from formant frequency 

band is a highly efficient, compact representation of the time-varying characteristics 
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of speech, especially for voiced sounds. Making good use of the representation, we 

can determine the detection of voice activity. In fact, the darkness of the 

corresponding spectrogram reacts where high powers concentrate. Through frequency 

band analysis, the input signal is firstly decomposed into 32 uniform subbands. The 

representation of peak and valley within subband power indicates the existence and 

absence of banded lines. Comparing with other feature parameter given from energy 

level, a measure of entropy defined in subband domain, regarded as banded spectrum 

entropy (BSE), is then presented to exploit the inherent nature. In practice, the BSE 

can be invalid when some subbands can be corrupted by noise. To avoid considering 

the harmful information resulting in erroneous detection of voice activity, an 

automatic band-selection method is appropriate to perform well in on-line, called 

subband self-extraction (SSE). In addition, the ratio of low-band energy to full-band 

energy (RLF) is presented to discriminating the unvoiced sound from background 

noises for compensating the limitation of entropy-based measure for modeling 

unvoiced sounds. Finally, the first approach for determining voice activity is regarded 

as entropy-based VAD algorithm. 

 

1.5.2 A Noise Estimator with Rapid Adaptation in Variable-Level of Noisy 

Environments 
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Enclosed herein we propose a method for tracking the noise spectrum quickly, even 

when the noise levels suddenly increase. An explicit use of speech/silence detection is 

needed for estimating noise spectrum. So, the entropy-based VAD mentioned-above is 

used to continuously classify each frame of speech into the voice active/absent frames, 

and the noise spectrum estimate is updated using constant smoothing factor for voice 

absent frames and a time-frequency dependent smoothing factor for voice active 

frames. The time-frequency dependent smoothing factor is chosen as a Sigmoid 

function that changes with the voice present probabilities in frequency bins. The voice 

present probability is determined by computing the ratio of the noisy speech power 

spectrum to its local minimum. To speed up the minimum tracking, a fast method for 

tracking the minimum of the noisy speech power spectrum is presented. Additionally, 

to allow detection with entropy-based VAD under colored noise conditions, we 

propose to subtract the current spectrum by the estimated noise spectrum iteratively 

from the previous frame. 

 

1.5.3 Voice activity detection based on wavelet analysis using a measure of 

auto-correlation function and Teager energy operator 

To further exploit the transient components and non-stationary property for 

extracting speech signals, the alternative VAD approach is based on wavelet analysis. 



 11

In this method, the structure of three-layer wavelet decomposition is utilized to 

decompose speech signal into four non-uniform subbands here. In general, the 

well-known “Auto-Correlation Function (ACF)” is commonly used to detect 

periodicity of speech. Herein the ACF is defined in subband domain and then called as 

“subband auto-correlation function (SACF)”. In fact, the voiced sound has more 

significant periodicity than unvoiced sound and noise signal and the periodicity 

almost concentrates low frequency bands. So, we let the low frequency bands have 

high resolution to enhance the periodic property by decomposing only low band on 

each level. In addition, a nonlinear Teager energy operator (TEO) is then utilized into 

each subband signals. We show that the TEO can enhance the discrimination between 

speech and noise, and TEO is beneficial for the result of auto-correlation function 

(ACF) since it can provide a better representation of formant information. 

Finally, to count accurately the intensity of periodicity on the envelope of the SACF 

on each subband, a Mean-Delta (MD) method [47] is utilized on each subband. So, 

the sum of Mean-Delta values of Subband Auto-Correlation Function (MDSACF) 

derived from the wavelet coefficients of three detailed scales and one appropriated 

scale is defined as a new robust feature parameter and called as “speech activity 

envelope (SAE)”. Comprising an adaptive threshold strategy, a robust wavelet-based 

VAD approach is further presented for extracting the boundary of voice activity 
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especially in variable noise level and low SNRs.  

 

1.6 Organization of This Dissertation 

The dissertation is organized as follows. In Chapter 2, we would illustrate the 

derivation of the two measures of BSE and RLF. In addition, a subband 

self-extraction (SSE) strategy is shown to automatically select useful information on 

some subband for compensate a complete measure of BSE. Afterwards, Chapter 3 

would state a noise spectrum estimator with rapid adaptation algorithm for highly 

non-stationary noises. The above-mentioned VAD will be modified to employ into a 

noise spectrum estimator as an indicator of updating noise. Continuously, Chapter 4 

presents the alternative VAD approach based on wavelet analysis for detecting voice 

activity. The Teager energy and mean-delta (MD) operators are respectively employed 

into auto-correlation function (ACF) of each subband to form a new SMDSACF (sum 

of mean delta of subband auto-correlation function) parameter. Ultimately, Chapter 5 

summarizes our conclusion and gives some future developments. 
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CHAPTER 2 

 

FREQUENCY BAND ANALYSIS FOR VOICE 

ACTIVITY DETECTION USING A MEASURE 

OF BANDED SPECTRAL ENTROPY 

 

 

 

 

The formant frequency representation is a highly efficient, compact representation 

of the time-varying characteristics of speech, especially for voiced sounds. In addition, 

the magnitude arrangement of spectral response during formant frequency is relatively 

important for characterizing speech signals. The so-called Banded Spectral Entropy 

(BSE), which is a measure of spectral entropy defined in subband domain, is then 

presented for extracting voice activity. In fact, noises can focus on some subbands to 

contaminate the useful information that results in error decision of detecting voice 

activity with BSE. In order to compensate this finds, a method of automatically 

selecting subband is then presented to meet the requirement, which is regarding as 

subband self-extraction (SSE). Besides, the ratio of low-band energy to full-band 
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energy (RLF) is presented to discriminating the unvoiced sound from background 

noises since entropy-based measure can provide only for detection of unvoiced 

sounds. 

 

2.1 Introduction 

A feature parameter that can sufficiently characterize speech signals or be robust 

against the highly noisy environments is relatively required. So far, the current 

algorithms are based on short-time or spectral energy, zero-crossing rate (ZCR) and 

duration parameters [25]-[27]. All of these parameters, however, are rather sensitive 

to noise and cannot fully specify the characteristics of a speech signal. For example, 

the energy-based parameter and ZCR are not sufficient to distinguish a speech from a 

noise at low SNRs. In particular, the ZCR is very sensitive to various types of noise. 

Several other parameters have also been proposed, including linear prediction 

coefficients (LPCs), Cepstral coefficients and pitch [9], [11], [14]. Although these 

parameters are quite effective in expressing the characteristics of speech signals, the 

performance of VAD using such parameters remains poor in adverse environments. 

The reliability of the LPCs has been observed to depend strongly on the noise in 

adverse environment. Pitch information can help to detect speech; even so, extracting 

the correct pitch in noisy environments is difficult. Additionally, some algorithms 
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cannot be implemented for practical applications due to their high computational 

complexity, even though they perform well [28]. Among such approaches, however, 

Junqua et al. [29] proposed a time-frequency (TF) parameter to detect speech, which 

assumes that frequency information in the frequency ranges 250-3500 Hz is less 

contaminated by noise. The TF parameter is composed of both frequency energy in 

the fixed frequency bands and time energy. Based on the motivation that the 

frequency energies of various types of noise are concentrated in different frequency 

bands, Wu et al. [7] used the multi-band technique to analyze noisy speech signals, 

and then proposed an adaptive band-selection (ABS) method to cancel noise 

effectively by selecting useful bands. An adaptive time-frequency (ATF) parameter 

extended from TF parameter was proposed by them. 

Although the ATF-based algorithm outperforms several algorithms commonly used 

for detecting voice activity in the presence of various types of noise, it cannot be 

reliably implemented in practical environments. It is found that the selection of useful 

bands depends on the information of an entire recorded signal. Additionally, the ATF 

parameter is also energy-based parameter and therefore less reliable in the presence of 

non-stationary noise or in a changing noise level. J. L. Shen et al. [30] firstly used the 

entropy-based parameter to detect speech signals. Their study indicated that the 

spectral entropy of a speech segment differed significantly from that of a noise 
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segment. In fact, the result of spectral entropy relies on the variance of spectral 

magnitude to distinguish a speech signal from a noise signal, but the variance of 

spectral magnitude depends strongly on the noisy environments. L. S. Huang [31] 

integrated both the time energy and spectral entropy to form a new feature parameter 

(EE-feature), since the spectral entropy failed under multi-talker babble and 

background music, but the energy performed well because of its additive property: the 

energy of the sum of speech plus noise always exceed the energy of noise. Although 

the EE-feature parameter proposed by L. S. Huang improved the endpoint detection 

under babble noise, it is unreliable when the noise level greatly exceeds the speech 

level. 

The appearance of banded line on voice spectrogram resulted from formant 

frequency is a highly efficient, compact representation of the time-varying 

characteristics of speech, especially for voiced sounds. Since the locations of banded 

lines reveal that high powers concentrate on the some frequency bands, the band 

decomposition is used for locating formant frequency components by obtaining peaks 

while non-formant frequency components are characterized by obtaining valleys. It 

has been sufficient to display the location of power of formant frequency when the 

bandwidth of each subband is approximately 125 Hz [8]. A measure of entropy is 

defined in subband domain and is regarded as banded spectrum entropy (BSE) 
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parameter. In fact, the magnitude arrangement of spectral response during formant 

frequency is alternative relatively important factor for characterizing speech signals. 

So, a set of weighting factors among those subbands are also employed into BSE 

measure to discriminate the magnitude arrangement between speech signals and noise. 

According to the experimental result from Wu et al. [7], some subbands contaminated 

by noise can provide harmful information resulting in error decision of voice activity 

detection (VAD) with BSE. So, an automatic band-selection method derived from the 

refined version of the adaptive band selection (ABS) method proposed by Wu et al. is 

preferable to perform well in on-line, called subband self-extraction (SSE). In order to 

compensate the limitation of BSE measure for modeling unvoiced sounds, the ratio of 

low-band energy to full-band energy (RLF) is presented to discriminating the 

unvoiced sound from background noises.  

This Chapter 2 is organized as the followings. Section 2.2 will introduce the theory 

of entropy. What is the motivation of using the entropy measure to describe the nature 

of banded lines on voice spectrogram? Additionally, the proposed feature parameters 

are stated, respectively. In Section 2.3, we derive the so-called subband self-extraction 

(SSE) method, which is extended from ABS and can adaptively select useful bands in 

on-line. And then, the procedure for implementing the proposed entropy-based VAD 

algorithm based on the measures of BSE and RLF and the strategy of SSE is outlined. 
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Section 2.4 discusses the performance of the proposed VAD algorithm under various 

noise conditions and compares its performance with that of ATF-based one. Finally, 

Section 2.5 summarizes the findings and discusses possible directions for future work. 

 

2.2 The Robust Feature Parameters 

This section introduces the theory of entropy and further shows the motivation of 

using the entropy for detecting speech. In addition, the robust feature parameters will 

be illustrated herein in detail. 

 

2.2.1  Motivation 

Fig. 2-1 displays that the waveform of a mixed signal comprising vehicle noise, 

multi-talker babble noise, factory noise, speech, and white noise and the 

corresponding spectrogram. Regarding to Fig. 2-1 (b), the voice-active spectrogram is 

dominated by the inherent nature of banded lines (or called formant traces). It is 

found that the nature is able to sufficiently discriminate speech signal from 

background noise. Fig. 2-2 displays the spectrograms of clean speech and noisy 

speech with four kinds of noise at 0 dB. In this figure, the nature of banded lines on 

voice spectrogram is seen to be existed against various types of additive noise. So, the 

formant frequency representation is a highly efficient, compact representation of the 
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time-varying characteristics of speech. The following statements will show how to use 

the representation of banded lines to detect voice activity by using a measure of 

entropy. 

Entropy, firstly used in information theory by C. Shannon [32], is regarded as the 

amount of information that must be provided about a random signal x  in order to 

specify it uniquely. It measures the degree of organization (uncertainty) of the signal 

and is defined by 

 ( ) ( ) log[1 ( )],k k
k

H x P x P x= ⋅∑  (2-1) 

where { }0 1k k N
x x

≤ ≤ −
=  and ( )kP x  is the probability of kx . 

How to use the definition of entropy for characterizing speech signal? Regarding to 

Fig. 2-3, the waveform of a Mandarin digit “eight” uttered by native speaker and the 

corresponding spectrogram are shown in Fig. 2-3(a)-(b), respectively. Since the pitch 

varies continuously within a speech segment for speech production, the banded lines 

on voice-active spectrogram are also continuous. When such a clear set of banded 

lines exist in some frequency bands for a long enough time, the voice activity can be 

quite certainly presented [33]. Fig. 2-2(c)–(d) show the spectrum magnitude of voice 

activity obtained by the short-time Fourier transform (STFT) over a solid-line region 

in Fig. 2-3(a) and that of voice inactivity obtained segment by STFT over a 

dashed-line region in Fig. 2-3(a), respectively. Inspecting the difference between the 
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spectrum magnitude of voice activity and that of voice inactivity, we can regard that 

the amount of variance (uncertainty) from the spectral magnitude during voice activity 

indeed exceeds that during voice-inactivity. Consequently, a measure of spectral 

entropy can be used for discriminating the spectral difference between during voice 

activity and during voice inactivity even if noise level is greater than speech level. 

 

2.2.2  A Measure of Conventional Spectral Entropy (SE) 

J. L. Shen et al. [30] firstly used a measure of entropy for detecting speech 

segments under adverse conditions. The measure was defined in spectral domain and 

named as spectral entropy (SE). Their experimental results have been revealed that the 

result of SE during voice activity differs from that during voice-inactivity. The 

deviation for calculating SE parameter is described as follows.  

The STFT of a given time frame ( , )s n l  is accomplished by 

 
1

0
( , ) ( ) ( , ) exp( 2 / ),   0 1,

wN

w w
n

X l W n s n l j n N Nω πω ω
−

=

= ⋅ ⋅ − ≤ ≤ −∑  (2-2) 

where ( , )X lω  represents the spectral magnitude of the thω  frequency bin of the 

thl  frame. wN  is the total number of frequency bins in STFT for each frequency 

frame. ( )W n  is a Hamming window. The spectral energy of each frame, 

( , )energyX lω , is described as follows. 

 2( , ) ( , ) ,   0 2 1.energy wX l X l Nω ω ω= ≤ ≤ −  (2-3) 
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Then, the probability associated with each spectral energy component, ( , )P i l , can 

be estimated by normalizing: 

 2 1

1

( , )
( , ) ,   0 2 1.

( , )
w

energy
wN

energy

X k l
P k l k N

X l
ω

ω
−

=

= ≤ ≤ −

∑
 (2-4) 

Following normalization, the corresponding SE, ( )H l , is defined as follows. 

 
2 1

1
( ) ( , ) log[1/ ( , )].
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ω

ω ω
−

=
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2.2.3  A Measure of The Proposed Banded Spectrum Entropy (BSE) 

In fact, the SE measure performs well in white or quasi-white noise, but fails in 

colored noise. The magnitude associated with each frequency bin is easily 

contaminated by noise. This results in degradation of the efficiency of VAD 

performing in seriously low SNRs. So, frequency band analysis is employed into a 

measure of SE for improving the robustness. 

Next, we decompose the input signals into 32 uniform subbands. The subband 

energy, ( , )bE m l , is given by 

 

/ 2 / 2( 1) 1

/ 2( 1)

( , ) ( , ),   1 ,

w w

b b

w

b

N Nm
N N

b energy b
Nm

N

E m l X l m N
ω

ω

⎛ ⎞
− × + −⎜ ⎟

⎝ ⎠

= − ×

= ≤ ≤∑  (2-6) 

where bN  is the number of total decomposed subband on each frame. The limits of 

the summation denote the boundary of each subband. For example, if 1thm = , the 

boundary of the first subband means that k  is 0 to 3. 
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Consequently, we modify (2-4) as (2-7) shown as below: 

 
1

( , ) ( , ) ( , ) ,   1 .
bN

b b b b
k

P m l E m l E k l m N
=

= ≤ ≤∑  (2-7) 

where ( , )bP lω  is the probability associated with band energy.  

Then, the measure of banded spectral entropy (BSE), ( )bH l , is given by 

 
1

( ) ( , ) log[1/ ( , )].
bN

b b b
m

H l P m l P m l
=

= ⋅∑  (2-8) 

In fact, the magnitude arrangement of spectral response during formant frequency 

is alternative relatively important factor for characterizing speech signals. So, the 

order of subband power must be considered for describing the magnitude arrangement. 

The well-known measure of entropy, however, cannot indicate a distribution (spatial 

information) of the data sequence. Fig. 2-4 denotes the power distribution of all 

decomposed 32 subband during voice-active frames and voice-absent frames. It 

illustrates that the classical spectral entropy is not able to discriminate the difference 

between the duration of speech and the duration of non-speech for the distribution of 

subband energy. The distribution of subband energy during a speech segment and that 

during a non-speech segment are shown in Fig. 2-4(a) and Fig. 2-4(b). Measuring on 

the two kinds of distributions of subband energy by spectral entropy, we can get the 

same logarithmic BSE value ( =21.9601H ). Major cause is resulted form the invalid 

description in the nature of banded lines on voice-active spectrogram.  

To solve this problem, a set of weighting factors ( , )W m l  among those subbands 
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are employed into BSE measure to discriminate the magnitude arrangement between 

speech signals and noise. 
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where me  means the biased energy of subbands. ( , )W m l  represents the variance 

amount among the three biased energy of subbands. min[ ( )]bP l  is the minimal 

spectral energy among all 32 subbands and regarded as a normalized factor. If 

( , )W m l  on the thm  subband is great, this implies that the banded line may be 

located around these subbands from the th( 1)m −  subband to the th( 1)m +  subband. 

Conversely, if the ( , )W m l  value is low, it indicates that the banded line is not 

located on these subbands. By using the set of weighting factors ( , )W m l , the 

magnitude arrangement of spectral response can be explicated the nature of banded 

lines on voice-active spectrogram and (2-8) is modified as (2-11) as follows: 

 
1

( ) ( , ) ( , ) log[1/ ( , )].
bN

b b b
m
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=
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Fig. 2-5 clearly indicates that the proposed BSE parameter, using the method of 

band decomposition and a set of weighting factors ( , )W m l , more sufficiently 

characterizes the speech signals than other entropy-based parameter so that SE 
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parameter proposed J. L. Shen et al. [30].  

In fact, the frequency energies of difference types of noise are concentrated on 

different frequency bands [7], as shown in Fig. 2-6. This observation demonstrates 

that the subbands with larger noisy energy more contaminate the useful frequency 

information than do the other bands. The bands with larger noisy energy can be 

regarded as harmful subbands afterworld and must be discarded accurately to yield 

more accurate frequency information. Although the BSE remains a good feature 

parameter, the detection sometimes fails at seriously low SNRs, especially when 

relatively harmful bands are involved. How to discard the harmful subbands or 

preserve the useful subbands becomes a serious task. The number of harmful bands 

(or useful subbands) is relatively related to the background noise level [7]. To easily 

estimate the background noise level, we extend the MiMSB parameter [34] to 

adaptively choose one subband with minimum energy for estimating the varying noise 

level roughly. Regardless of changing level of noise, a normalized minimum band 

energy (NMinBE) parameter is proposed to estimate the background noise level for 

precisely deciding the number of useful subbands. The NMinBE parameter is 

determined as follow: 

 { }
1

NMinBE( ) log[min ( , ) / ( , )],
bN

b b
m

l E m l E m l
=

= − ∑  (2-12) 

where the {}min ⋅  operator selects the minimum band energy among all 32 subband 
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energies for a given frame, and [ ]log ⋅  is the logarithmic operation. The number of 

useful subbands, ( )ubN l , required to yield reliable information. Fig. 2-7 displays the 

relation between ( )ubN l  and NMinBE( )l . 

 

               30                                      NMinBE( ) 5;
NMinBE( )( ) [36.5 (4 30)]          5<NMinBE( )<25;

(25 5)
                4                                        otherwise.

ub

l
lN l l

⎧ <
⎪
⎪= + × −⎨ −⎪
⎪⎩

 (2-13) 

It is observed that a large ( )ubN l  should be used at a low noise level 

(corresponding to a high SNR), and a small ( )ubN l  should be used at a high noise 

level (corresponding to a low SNR). According to (2-13), for the thl  frame the first   

(32 ( ))ubN l−  frequency bands with larger energies are adaptively selected to remove 

noise component. Finally, the measure of BSE parameter with a strategy of extracting 

the useful subband is achieved by the follows: 

 
( )

1
( ) ( , ) ( , ) log[1/ ( , )].

ubN l

b b b
m

H l W m l P m l P m l
=

= ⋅ ⋅∑  (2-14) 

The variable noise level and the varying statistics of noise, in general, results in a 

varying ( )ubN l  over an entire signal. According to the relationship between ( )ubN l  

and noise level described in (2-13), we can evaluate the efficiency of a strategy of 

extracting the useful subband on a measure of BSE. Fig. 2-8(a) and 2-8(b) plots the 

waveform of someone’s saying the Mandarin digit “eight” with increasing-level of 

factory noise and the corresponding spectrogram, respectively. The voice activity is 

not easily detected in an adverse environment due to a measure of BSE involving 
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some harmful subbands, as shown in Fig. 2-8(c). Regarding to the Fig. 2-8(d), it is 

shown that the proposed NMinBE parameter can reflect the variation of noise level. 

According to the relation in Fig. 2-7, the number of useful subbands can be 

determined as shown in Fig. 2-8(e). Fig. 2-8(f) displays that a measure of BSE with a 

manual extraction of useful subbands can greatly improve the performance of 

detecting voice activity, especially at variable level of noise. Consequently, how to 

automatically extract useful subbands with time is crucial and discussed in next 

section. 

 

2.2.4  The Ratio of Low-band Energy to Full-band Energy (RLF) 

Unlike voiced sounds, unvoiced sounds do not have any component of formant 

frequency. By measuring the energy level, the unvoiced sound is difficultly 

discriminated from background noise. The majority of unvoiced sounds, however, 

display string spectral concentration in higher frequency range. The background noise 

display uniform spectral distribution, It is possible to distinguish between 

speech-active and background noise by examining the distribution of energy along the 

frequencies. Low-band energy, ( )lowE l , measured on the below 1000 Hz, is computed 

as follows: 

 ( )4

0
ˆ( ) 10 log ( , ) ,low energyE l X lω π

ω
ω=

=
= × ∑  (2-15) 
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where ˆ
energyX  is obtained by ignoring the harmful subbands.  

Similarly, full-band energy, ( )fullE l , measured on entire frequency bandwidth 

(0~4000 Hz), is given by  

 ( )0
ˆ( ) 10 log ( , ) .full energyE l X lω π

ω
ω=

=
= × ∑  (2-16) 

So, the ratio of low-band energy to full-band energy, ( )lfR l , is given by 

 ( )( ) .
( )

low
lf

full

E lR l
E l

=  (2-17) 

 

2.3 The Proposed Entropy-based VAD Algorithm 

According to [26], the required characteristics of an ideal voice activity detector are 

reliability, robustness, accuracy, adaptation, simplicity and real-time processing. 

Although some existing VAD algorithms are extremely accurate, they all depend on 

complicated computation and are not reliable in real applications. For example, Wang 

et al. [28] proposed a robust algorithm based on wavelet analysis, but it indeed 

performs in off-line. E. Nemer et al. [20] used higher-order-statistics (HOS) parameter 

to detect speech, but the calculation of this parameter required too much computing 

time. Wu et al. [7] suggested an adaptive band-selection (ABS) method, which can 

select useful bands automatically, as noise cancellation to perform ATF parameter 

well. However, the execution of ABS method depends on the obtainment of all 

information from the entire recorded signals. Although those algorithms are 
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inappropriate for practical implementation, some ideas related to those algorithms are 

adopted herein. The ABS method proposed by Wu et al. [7] is strong with respect to 

noise cancellation. The ABS was used to preserve the useful bands (or discard the 

harmful bands) for each frame, but the execution of band selection depends on entire 

recorded signal. The drawbacks of ABS are thus as the following: 

-- Firstly, the decision of band selection is not immediately determined. Since the 

method is an off-line strategy, its decision must be determined by analyzing an 

entire recorded signal. 

-- Secondly, the indexes associated with the harmful bands vary with time for 

entire recorded signals in practice. However, Wu et al. assumed that the indexes 

of harmful bands were fixed. This assumption does not hold. 

So, how to detect whenever the index of harmful bands vary with time is relatively 

required. Regarding to the Fig. 2-8(f) again, we observe that the selected subbands are 

not contaminated by noise. The corresponding BSE value in voice absence is small 

and smoothly and slightly varies with time as comparing with Fig. 2-8(c). Conversely, 

regarding to Fig. 2-8(c), the selected bands are contaminated by background factory 

noise. However, the entropy value in voice absence is large and its variation is also 

violent. In the conclusion, it reveals that the determined entropy value is quite large 

and violently varying whenever the considered subbands include harmful subbands; 
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the determined entropy value is small and its variation is very smooth if the 

considered subbands do not include harmful subbands. This finding provides a hint 

about how to detect whenever the indexes of harmful bands vary with time. 

 

2.3.1  An Adaptive Threshold Method 

In order to extract the harmful subbands automatically, an adaptive thresholding  

not only provides a decision of VAD, but also determines what time is execution of 

selecting the useful subbands. Herein, an adaptive threshold with minimal processing 

delay [35] is employed to on-line work. The work of adaptive threshold method used 

for a VAD decision is illustrated as below. To adapt to time-varying characteristic of 

noise, the detection method must sets an adaptive threshold to classify voice-active 

frames or voice-absent frames. During a short period of initialization, the mean and 

variance of the logarithmic value of BSE measure is estimated over voice-absence 

after manual extracting useful subbands. The adaptive speech threshold, sT , is 

initially computed from the local noise statistics shown as below 

 ,sT µ α σ= + ⋅   (2-18) 

where µ  and σ  are the mean and variance of the logarithmic value of BSE 

respectively, and α  is an adjustment coefficient determined in experiment.  

Then, the threshold sT  is compared to the value of logarithmic BSE of the previous 
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frame. Whenever the difference surpasses a specified threshold, voice-active frame is 

detected. If a given frame is detected to fall in a non-speech period, the speech 

threshold sT  is updated.  

During voice activity, we remain the speech threshold until voice absence. The mean 

and variance of the logarithmic value of BSE measure are updated as follows. 

 (1 ) ( )new bH lµ β µ β= ⋅ + − ⋅ , (2-19) 

 2 2
, ( )new b mean newH lσ µ= − , (2-20) 

 2 2 2
, ,( ) ( 1) (1 ) ( )b mean b mean bH l H l H lβ β= ⋅ − + − ⋅ , (2-21) 

 
_2 2

, ,1

1( 1) ( )
_

k init period
b mean b meank

H l H l k
init period

=

=
− = −∑ , (2-22) 

where β  is also experimentally determined. 

Fig. 2-9 depicts that an adaptive threshold method is used as a VAD decision 

performing in on-line. In this figure, an utterance of the Mandarin word for “one” is 

together with the logarithmic value of BSE measure and adaptive speech threshold sT . 

The results indicate clearly that the speech threshold sT  is updated in voice absence 

and maintained in voice activity. In addition, it is found that the value of adaptive 

threshold is indeed adaptive to time-varying noisy environment. 

 

2.3.2  The Strategy of Subband Self-Extraction (SSE) 

What time is execution of selecting the useful subband? In this subsection, the 
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strategy of subband self-extraction (SSE) used for automatically extracting the useful 

subbands would be illustrated in detail. The execution of SSE depends on the fact that 

whenever the value of logarithmic BSE exceeds the adaptive threshold. If the value of 

logarithmic BSE exceeds the adaptive threshold, it means two kinds of probabilistic 

results. One is that the voice activity is detected. Other is error of VAD detection 

resulted from the consideration of harmful subbands when computing a measure of 

BSE. 

An indicator for execution of band extraction (EOBE) parameter is used to stand for 

binary decision of performing band selection on each frame. The EOBE is defined as 

follows. 

 
high      ( ) ;

EOBE
low       otherwise.

b sH l T>⎧
= ⎨
⎩

  (2-23) 

If indicator of EOBE is low for a given frame, it implies that the considered 

subbands do not include any harmful subbands and the indexes of harmful subbands 

within noise power do not vary violently with time. In general, the indexes can be 

maintained from the previous frame to the current frame until EOBE is high so that 

the task of harmful subbands detection cannot be executed which results in significant 

decrease of computing complexity. Similarly, if indicator of EOBE is high for a given 

frame, it implies that the considered subbands maybe include some harmful subbands 

resulting in an abrupt change in contour of BSE. The indexes of harmful subbands 
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maybe vary violently with time so that the task of harmful bands detection is 

performed right now. 

Fig 2-10 illustrates the SSE strategy in detail. When the current BSE value with the 

previous estimated useful subbands exceeds the adaptive threshold sT , one of two 

possibilities obtains: one implies that the voice activity is detected, and another means 

that the BSE value in error due to the inclusion of harmful subbands so that the 

harmful bands must be detected again. If the re-detected BSE value remains greater 

than sT , the voice-active frame is detected and sT  is not updated. Conversely, if the 

re-detected BSE value is indeed less than sT , it mean that the voice-absent frame is 

detected and sT  must be updated. In addition, we further assume that the subbands 

where noise is concentrated are the same as in the previous frame.  

 

2.3.3  The Block Diagram 

The proposed entropy-based VAD algorithm is diagramed in Fig. 2-11 and each of 

VAD is illustrated in detail.  

1) Decomposition of 32-uniform subband:  

For the frequency band analysis, the input noisy speech is decomposed into 32 

uniform subbands as preprocessing of developing a robust feature parameter. 

2) Computation of a set of weighting factors:  
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When formulating a measure of BSE, we exploit the magnitude arrangement to 

discriminate the ambiguity between the short-time spectral magnitude during voice 

activity and that during voice-inactivity  

3) The strategy of subband self-extraction (SSE):  

In fact, some subbands can be contaminated by noise to result in the harmful 

information for detecting voice activity. So, automatically extracting useful subbands 

via the result of adaptive thresholding (AT) would avoid the occurrence of error BSE 

value. 

4) The computation of BSE measure:  

After the computation of a set of weighting factors and excitation of SSE strategy on 

each frame, a measure of entropy is defined in the selected subbands. 

5) The computation of RLF measure:  

By ignoring the estimated harmful subbands, the robust RLF measure can be reached. 

Regarding to Fig. 2-12, it illustrates more detail for the configuration of proposed 

entropy-based VAD. 

6) An adaptive thresholding (AT):  

Performing AT strategy to adapt the two thresholds to time-varying statistics of noise, 

the boundaries of voiced and unvoiced sounds are detected. 

A voiced sound flag, vf , is set by the following equation, 
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1, if  ( ) ,
0, otherwise.

s
v

H l T
f

>⎧
= ⎨
⎩

 (2-24) 

In addition, a unvoiced sound flag, uvf , is set according to following equation 

 1 20, if  ( )

1, otherwise
lf lf lf

uv

T R l T
f

≤ ≤⎧
= ⎨
⎩

 (2-25) 

where 1lfT  and 2lfT  are the adaptive thresholds for unvoiced and voiced speech, 

respectively.  

Fig. 2-12 shows the result of RLF measure tested in recorded speech sentence /start/. 

It is can be seen that the existence of the unvoiced sound in phoneme /s/. Fig. 2-13 

states the process of developing the two feature parameters more clearly. 

7) The VAD Decision: 

Using (2-24) and (2-25) the VAD result of the proposed method is now given by  

 ( ) ( ) ( )v uvVAD l f l f l= ∪  (2-26) 

The zero and non-zero of VAD result mean the voice-inactive frame and voice-active 

frame, respectively. 

 

2.4 Evaluation 

To evaluate the proposed VAD algorithm comprising the two measures of BSE and 

RLF, the recorded signal is tested in four kinds of noise including vehicle, multi-talker 

babble, factory, and white noises taken from the NOISEX-92 database [49] at various 
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SNRs. In addition, the probabilities of correct and false detection are used as objective 

measurement and defined as bellows:  

--Probability of correctly detecting speech frames, cSP : computed as the ratio of 

correct speech detections to the total number of hand-labeled speech frames. 

--Probability of falsely detecting speech frames, fSP : computed as the ratio of falsely 

classified speech frames to the total number of hand-labeled speech frames. 

In the following experiment, the speech corpora are collected from MAT (Mandarin 

across Taiwan) database including a set of isolated utterances of the ten digits in 

Mandarin. The sampling rate was 8 kHz and the speech was stored as 16-bit integers. 

The decomposed band size bN  = 32, window size wN  = 256, and overlap size = 

2wN . The recordings are also tested in a real car environment with musical 

background noise. 

 

2.4.1  Artificially Added Noise 

The four noise signals were added to the recorded speech signals with different 

SNRs (the SNRs is herein defined as the ratio of the power of the entire recordings 

containing silence and voice parts to the power of additive noise) including -5 dB, 

0dB, 10 dB, and 40 dB to generate noisy speech signals. Using these various types of 

noise and different SNRs, the cSP  and fSP  of proposed algorithm were compared 
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with those of the ATF-based algorithm. TABLE 2-I displays the comparisons between 

the presented entropy-based and ATF-based VADs. It is clearly found that the 

proposed entropy-based VAD algorithm is superior to the ATF-based algorithm, 

especially at low SNRs. At high SNRs the ATF-based algorithm performs as well as 

the RABS-BSE-based one; however, at low SNRs the ATF parameter related to pure 

energy-based feature is no longer valid. Although ABS associated with ATF-based 

algorithm claims that it can extract useful subbands, the claim cannot reflex the 

correct information within the selected subbands. In addition, the indexes of the 

harmful subbands from ATF-based VAD are assumed to be fixed with time, and this 

assumption is incorrect so that the performance of ATF-based VAD is seriously 

degraded under adverse conditions. Using the measure of spectrum entropy defined in 

subbands, the nature of banded lines on voice spectrogram can be exploited and 

further classified voice-active frame or voice-absent frame. For vehicle and white 

noises, whose frequencies are spread simply over the spectrum, the proposed 

algorithm is superior to the ATF-based one. Especially for white noise, it is proved 

that the VAD based on spectral entropy performs well in this case. Besides, the two 

types of noises have no any prominent banded lines on the corresponding voice 

spectrograms. The factory noise is also same as described above. The babble noise is 

pronounced by multi-talker, but the nature of banded lines of babble noise is weaker 
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than that in speech signal. Our experimental result shows that the proposed 

entropy-based VAD algorithm still successfully outperforms the ATF-based algorithm 

under babble noise. For the average probability of correct detection of speech frames, 

cSP , the proposed algorithm exceeds the ATF-based algorithm by around 8.73%. 

Similarly, for the average probability of false detection speech frames, fSP , the 

proposed algorithm is less than the ATF-based algorithm by around 7.08%. 

 

2.4.2  Recordings in a Car 

To evaluate the effectiveness of the proposed feature parameter in a real 

environment, the musical noise is generated around the recordings in a real car. Fig. 

2-14 shows the comparison between various types of feature parameter under musical 

background noise inside a car. Fig. 2-14(a) displays an utterance in Chinese, “Guo Li 

Chiao Tung Da Xue” made with musical background noise in a car. The 

corresponding spectrogram also shows in Fig. 2-14(b) and clearly displays that the 

banded nature appears only in voice-active spectrogram. Fig. 2-14(c) and 2-14(d) 

demonstrate that the short-time energy and ZCR both fail in a car environment. Fig. 

2-14(e) shows that the ATF parameter outperforms the other two due to that the ATF 

parameter can extract useful frequency information by selecting proper subbands; 

however, it is still a purely energy-based parameter so that the ATF parameter fails in 
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a rapid increase of noise. Fig. 2-14(f) indicates that the BSE parameter is superior to 

the other parameters, especially in a rapid increase of noise since BSE parameter 

catches only the profiles of banded lines not their energy levels. In TABLE 2-II, the 

proposed entropy-based VAD is compared with the ATF-based VAD [7] testing in 

musical background noise within a car. The speech database used in the experiments 

contains ten isolated controlled-commands in Mandarin Chinese produced by 15 

native speakers. The employed speech recognizer is based on a DTW-based 

recognizer. During the entire process, the car was moving and its radio was on. It is 

observed that the total probability of correct detection of the proposed algorithm is 

greater than that of the ATF-based one by about 10.6%, and the total probability of 

false detection of the proposed VAD algorithm is smaller than that of the ATF-based 

one by about 5.9%. 

 

2.5 Discussion & Future Work 

In Chapter 2, the objective mainly exploits the nature of the banded lines (or called 

formant traces) on voice-active spectrogram to regard as a robust feature. Via 

frequency band analysis, the inherent nature can be characterized by a measure of 

entropy defined subband domain. In fact, some subbands can be contaminated by 

noise to result in error of BSE value. Consequently, an on-line SSE strategy is used to 
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automatically extract the useful subbands. So, the BSE parameter with an SSE 

strategy can correctly detect the boundary of voice activity. In additional to the BSE 

parameter, the alternative parameter, RLF (ratio of low-band energy to full-band 

energy) is then presented to compensate the limitation of BSE for characterizing 

unvoiced speech. Compare the presented parameter with others, it certainly provides a 

reliable performance even in variable noise level. Experimental results show that the 

proposed VAD comprising the two BSE and RLF feature parameters and adaptive 

thresholding, which is used for a VAD decision and an indicator of executing subband 

extraction, is prior to other VAD, especially at low SNRs and at variable level of 

noise. 

However, the subband extraction is either discarded or preserved. It is not good 

enough to help the result of VAD. Although some subbands are contaminated by nosie, 

they still offer some useful information. In future work, each subband has respective 

weighting and the total weighting is 1. The weighting in harmful subband is lower 

than that in useful subband. Due to that the SSE strategy assume the larger subband 

power as harmful band, however this power is speech power (useful band) for a clean 

signal. So, this false subband discard may reduce the accurate rate of detection. In this 

case, the rate of correct detection can reduce to about 3%. Similarly, the rate of false 

detection can increase to about 1.7%. According this find, an improved subband 
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extraction for testing in a clean signal must be required. 

In addition, the number of decomposed subbands is no longer fixed. The number of 

decomposed subband, in practice, varies with time. So, the rough solution is that we 

use a peak/valley detection on spectrum for each frame to locate the varying banded 

lines. 
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TABLE 2-I 
COMPARISON BETWEEN THE PROPOSED ENTROPY-BASED VAD AND 

ATF-BASED VAD [7] UNDER VARIOUS NOISE CONDITIONS 
Noise Conditions Proposed entropy-based VAD ATF-based VAD [7] 

Type SNR(dB) 
Probability of correct 

detection, cSP (%) 
Probability of false 
detection, fSP (%) 

Probability of correct 
detection, cSP (%) 

Probability of false 
detection, fSP (%) 

40 98.4 1.2 96.5 1.8 

10 94.2 3.9 86.3 9.8 

0 91.3 4.6 85.1 14.3 
Vehicle 
Noise 

-5 89.3 6.5 81.2 17.2 

40 96.1 2.6 94.8 3.8 

10 89.2 5.8 80.4 10.8 

0 84.8 7.4 78.9 15.3 
Babble 
Noise 

-5 79.6 10.4 69.4 21.2 

40 97.9 2.1 95.5 3.2 

10 91.7 4.6 83.4 10.5 

0 86.3 7.8 79.3 15.1 
Factory 
Noise 

-5 84.1 9.1 68.1 18.4 

40 99.8 0.9 95.3 3.4 

10 96.6 1.9 82.6 9.5 

0 93.1 2.2 76.5 14.5 
White 
Noise 

-5 91.9 2.9 71.3 18.4 

Average 91.52 4.62 82.79 11.7 

 

 

 

TABLE 2-II 
COMPARISON OF THE PROPOSED ENTROPY-BASED ALGORITHM AND ATF-BASED VAD 

TESTING IN CAR WITH MUSICAL BACKGROUND NOISE 

VAD types Total probability of correct detection, cSP (%) Total probability of false detection, fSP (%) 

Proposed entropy-based 89.2 3.5 

ATF-based VAD [7] 78.6 9.4 
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Fig. 2-1  Inherent characteristic of banded lines (formant traces) only appears on 
voice-active spectrogram: (a) Mixed signal waveform is composed of vehicle noise, 
multi-talker babble noise, factory noise, and speech signal and white noises in turn. (b) 
Spectrogram of the corresponding mixed signal. 
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Fig. 2-2 Illustration of the banded lines existing in various types of noises. 
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Fig. 2-3  Nature of banded lines on voice-active spectrogram: (a) A signal waveform 
of Mandarin digit “eight”. (b) The continuous, banded lines only appearing on the 
corresponding voice-active spectrogram. (c) Spectrum magnitude of voice activity. (d) 
Spectrum magnitude of voice-absent frame. 
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Fig. 2-4  Power distributions of all 32 uniform subbands with the same entropy 
(logarithmic BSE=21.9601): (a) During voice-active frame. (b) During voice-absent 
frame. 
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Fig. 2-5  Illustration of characterizing speech signals by using entropy-based feature 
parameter: (a) Waveform of a Mandarin digit “eight”. (b) The corresponding 
spectrogram. (c) Contour of SE proposed by J. L. Shen et al. [30]. (d) Contour of the 
proposed BSE. 
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Fig. 2-6  Different types of noises focusing on different frequency subbands. 
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Fig. 2-7  Relation between the number of useful subbands and NMinBE parameter. 
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Fig. 2-8  Illustration of the efficiency of NMinBE parameter for applying in BSE 
parameter: (a) Waveform of the Mandarin digit “eight” at SNR -5 dB with 
increasing-level of factory noise. (b) The corresponding spectrogram. (c) The contour 
of BSE measure. (d) The NMinBE parameter. (e) The number of useful subbands 
varying with time. (f) The contour of BSE parameter obtained by manual selecting 
useful bands according to Fig. 2-7. 
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Fig. 2-9  An adaptive threshold method for VAD decision: (a) Waveform of an 
utterance of the digit “one”. (b) Detection of speech segments together with the 
logarithmic BSE value and speech threshold sT . 
 
 
 
 
 
 
 
 
 
 



 51

 
 
 
 

 

Fig. 2-10  Flowchart of SSE strategy for automatically extracting the useful 
subbands. 
 
 
 
 
 

 
Fig. 2-11  Block diagram of the proposed entropy-based VAD algorithm. 
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Fig. 2-12  Result of RLF measure tested in recorded speech sentence /start/. (a) 
Waveform of a noisy speech sentence. (b) The envelope of RLF measure. 
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Fig. 2-13  Measurement of the two BSE and RLF parameters.  
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Fig. 2-14  Comparison between different feature parameters for VAD algorithm 
testing an utterance with musical background noise inside a car: (a) Waveform of an 
utterance in Chinese: “Guo Li Chiao Tung Da Xue (National Chiao Tung University)”. 
(b) The corresponding spectrogram (c) Contour of spectral energy. (d) Contour of 
ZCR. (e) Contour of ATF (f) Contour of BSE. 
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CHAPTER 3 

 

A SINGLE CHANNEL NOISE SPECTRUM 

ESTIMATION WITH RAPID ADAPTATION 

IN VARIABLE-LEVEL OF NOISY 

ENVIRONMENTS 

 

 

 

 

In this Chapter 3, a single channel noise estimation algorithm using only the power 

spectrum of noisy speech is presented. The proposed method can track the noise 

spectrum quickly, even when the noise levels suddenly increase. An explicit use of 

speech/silence detection is needed for estimating noise spectrum. So, the 

entropy-based VAD mentioned-above is used to continuously classify each frame of 

speech into the voice active/absent frames, and the noise spectrum estimate is updated 

using constant smoothing factor for voice absent frames and a time-frequency 

dependent smoothing factor for voice active frames. Time-frequency dependent 

smoothing factor is chosen as a Sigmoid function that changes with the voice-active 
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probabilities in frequency bins. And, voice-active probability is determined by 

computing the ratio of the noisy speech power spectrum to its local minimum. To 

speed up the minimum tracking, a fast method is presented for tracking the minimum 

of the noisy speech power spectrum. In addition, to allow detection with 

entropy-based VAD under colored noise conditions, we herein propose to subtract the 

current spectrum from the estimated noise spectrum of the previous frame. 

 

3.1 Introduction 

Most of the existing single channel noise estimations are slow in adapting to 

increasing levels of noise. This results in a perceptually annoying residual noise and 

speech distortion in aspect of speech enhancement. In general, noise estimation is 

usually done by explicit detection of speech detection. However, this can be very 

difficult in the case of varying background noise so that the background noise is 

assumed to be related stationary between speech pause. 

Martin [36] proposed a method of noise spectrum estimation that is based on 

minimum statistics (MS). The noise spectrum is estimated by tracking the minimum 

of the noisy speech power spectrum over a particular window. Furthermore, Cohen et 

al. [37] introduced a minima-controlled recursive averaging (MCRA) method 

extended from the MS to estimate the noise power spectrum using a smoothing 
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parameter that is defined as the voice-active probability in the frequency bins. The 

VAD is carried out by comparing the probability with a specific threshold and then 

determines whether to update the estimate of the noise. However, its VAD decision 

clearly depends on energy level and performs poorly when noise level is higher than 

speech level. In addition, the noise estimation does not adapt quickly to a rapid 

change in noise level. Recently, Lin et al. [38] developed an adaptive noise estimation 

to easily implement. Its smoothing parameter can be chosen as a Sigmoid function 

changing with posteriori SNR. However, the stability of posteriori SNR is sensitive to 

a variable noise-level. So far, these kinds of algorithms contain no explicit VAD and 

their performances depend on the energy level. Accordingly, the noise estimation does 

not adapt quickly in situations involving rapid change of noise level. To overcome this 

problem, a noise spectrum estimation with rapid adaptation in variable-level of noisy 

environments is relatively required. 

Enclosed herein we propose a method for tracking the noise spectrum quickly, even 

when the noise levels suddenly increase. An explicit use of speech/silence detection is 

needed for estimating noise spectrum. So, the entropy-based VAD mentioned-above is 

used to continuously classify each frame of speech into the voice active/absent frames, 

and the noise spectrum estimate is updated using constant smoothing factor for voice 

absent frames and a time-frequency dependent smoothing factor for voice active 
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frames. The time-frequency dependent smoothing factor is chosen as a Sigmoid 

function that changes with the voice-active probabilities in frequency bins. And, the 

voice-active probability is determined by computing the ratio of the noisy speech 

power spectrum to its local minimum. To speed up the minimum tracking, an efficient 

method extended from [52] for tracking the minimum of the noisy speech power 

spectrum is presented. Besides, to allow the decision of entropy-based VAD under 

colored noise conditions, we suggest that the current spectrum is subtracted from the 

estimated noise spectrum of the previous frame. After the subtraction, the resulting 

spectrum is similar to the white noise in voice-absence. In order to make sure of the 

BSE and RLF values in the next frame well, a subtractive-type method presented by 

Berouti et al. [39] is used herein to decrease significantly the annoying “musical 

noise” that is introduced by subtracting the estimated noise spectrum from the noisy 

speech spectrum. 

This chapter is organized as follows. Section 3.2 details the configuration of the 

proposed noise estimation algorithm for quickly adapting variable noise level In 

addition, the entropy-based VAD above mentioned is modified into the noise 

estimation algorithm. Section 3.3 evaluates the proposed noise estimation algorithm in 

variable noise level as comparing with others. Finally, Section 3.4 would summarize 

the conclusions. 
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3.2 Proposed Noise Estimation Algorithm 

We use two different sceneries to update the noise estimate. The first strategy 

updates the noise power spectrum during voice-absent frames, and the second strategy 

updates the noise power spectrum during voice-active frames. In general, the noisy 

speech can be denoted in time domain as 

 ( ) ( ) ( ),y n x n u n= +  (3-1) 

where ( )x n  is the clean speech and ( )u n  is additive noise. 

First, the smoothing power spectrum of noisy speech, ( , )P lω , can be given using 

the recursive averaging formula as follows: 

 2( , ) ( , ) (1 ) ( , ) ,P l P l Y lω η ω η ω= ⋅ + − ⋅  (3-2) 

where 2( , )Y lω  is the short-time power spectrum of noisy speech and η  is a 

smoothing constant determined experimentally. 

Fig. 3.1 displays the flow diagram of the proposed algorithm for updating noise 

estimate in detail. 

 

3.2.1. A modified entropy-based VAD 

A decision of voice-absent/active derived from entropy-based VAD in Chapter 2 is 

regarded as an indicator of updating noise spectrum illustrated in Fig. 3.2 modified 
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from Fig. 2-13. To allow detection with entropy-based VAD under colored noise 

conditions, we propose to subtract the current spectrum from the estimated noise 

spectrum of the previous frame. In order to make sure of BSE measured well in next 

frame, a subtractive-type algorithm presented by Berouti et al. [39] is used here to 

decrease significantly the annoying “musical noise” that is introduced by subtracting 

the estimated noise spectrum from the noisy speech spectrum. 

 

3.2.2. Update of noise spectrum during voice absent frames 

The one scenery is that the noise estimate is then updated with a constant 

smoothing factor if the frame is classified as voice-absent frame. This rule can be 

stated as follows 

 2

If  ( ) 1

   U( , ) U( , 1) (1 ) ( , )
end

c c

I l

l l Y lω α ω α ω

=

= ⋅ − + − ⋅� �  (3-3) 

where ( )I l  denotes an indicator of updating noise spectrum. cα  is a constant 

smoothing factor. U( , )lω�  is the estimated noise power. 

 

3.2.3. Update of noise spectrum during voice active frames 

The alternative scenery for updating noise spectrum in voice-active frames is 

depended on the voice-active probability in each frequency bin for each frame. 

Tracking the minimum of the noisy speech spectrum, the ratio of noisy speech power 
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to its local minimum is regarded as a voice-active probability in frequency bins. Then, 

the probability is used to determine a time-frequency dependent smoothing factor 

( , )tf lα ω  according to a Sigmoid function as shown in next section. Eventually, the 

estimated noise power is updated during voice-active frames. 

 2( , ) ( , ) ( , 1) (1 ( , )) ( , ) .tf tfU l l U l l Y lω α ω ω α ω ω= ⋅ − + − ⋅� �  (3-4) 

 

3.2.3.1. Tracking the local minimum  

To maintain the ability of quickly adapting to increasing noise level, we avoid the 

constraint of any window length to track the local minimum. The minimum of the 

noisy speech by continuously averaging the past spectral values [52] is achieved 

shown as below. 

 

min

min min

min

If    ( , 1) ( , ),
1then  ( , ) ( , 1) ( ( , ) ( , 1)),
1

else  ( , ) ( , ),

P l P l

P l P l P l P l

P l P l

ω ω
γω γ ω ω β ω
β

ω ω

− <
−

= ⋅ − + ⋅ − ⋅ −
−

=

 (3-5) 

where min ( , )P lω  represents the local minimum of the noisy speech power spectrum. 

γ  and β  are constants determined experimentally. The look-ahead factor β  

controls the adaptation time of the local minimum.  

 

3.2.3.2. The calculation of time-frequency dependent smoothing factor 

After the tracking of local minimum, the time-frequency smoothing factor 



 62

( , )tf lα ω  is then chosen as a Sigmoid function changing with voice-active probability 

in frequency bins. First, the voice-active probability in each frequency bin is 

determined using the ratio of noisy speech power spectrum and its local minimum [37] 

defined as 

 
min

( , )( , ) ,
( , )r

P lP l
P l

ωω
ω

=  (3-6) 

where ( , )rP lω  is the ratio of noisy speech power spectrum and its local minimum. 

Referring to Fig. 3.3, it is clearly displayed that the time-frequency dependent 

smoothing factor changes with the voice-active probability on each frequency bin. 

The time-frequency dependent smoothing factor is given by 

 ( )( , ) ( )

1( , ) ,
1 rtf k P l Tl

e ω ωα ω
− ⋅ −

=
+

 (3-7) 

where ( )T ω  is the frequency dependent threshold whose optimal value is 

determined experimentally. k  is a curve ratio generally defined in experiment. 

 

3.3 Experimental Results 

To evaluate the availability of the proposed noise approach, we test the tracking 

capability of the noise estimator and measure the segmental relative estimation error 

given types and levels of noise. Four additive noise types are discussed in Chapter and 

are taken from the Noisex92 database. They are White noise, Vehicle noise, Factory 
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noise and Babble noise in turn. The speech database is sampled at 8000 Hz and 

linearly quantized at 16 bits per sample.  

Fig. 3-4 shows a comparison between MCRA [37] and our proposed noise 

estimation for the case where there was a sudden increase in noise power level. Fig. 

3-4(a) depicts a noisy speech sentence /May I Help You?/ spoken by a native man. 

The additive Factory noise suddenly increases in 23000th  sample (or 2.875 sec). The 

corresponding spectrogram shows in Fig. 3-4(b) is found that the inherent nature of 

banded lines is robust against the change of noise-level. Fig. 3-4(c) plots the tracking 

capability between MCRA [37] and our proposed noise estimation. From the figure it 

can be seen that the proposed noise estimation for estimating noise (for single 

frequency bin 60ω = ) can track fast changes in the noise-level as comparing MCRA. 

In addition, the noise estimated by the proposed method (thick-line) is closer to the 

ideal spectrum (dotted-line) than that estimated by the MCRA (broken-line). An 

objective measure of segmental relative estimation error (SegErr) is defined by 
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where lN  denotes the number of frames in recorded signal. U�  and U  are 

estimated and real noise powers. 

Table 3-I shows the outcomes of the SegErr measured by the proposed estimation 

method for four noise types with the SNRs range [-5 to 40dB]. The proposed 
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RMCRA approach is superior to the MCRA method over all SNRs. The S/N ratio in 

each subband is depicted in Fig. 3-5. Comparison between clean speech and mixed 

speech by adding a factory noise, it can be seen that the S/N ratios in lower frequency 

band decrease greatly than that in other bands because factory noise mainly focuses in 

lower frequency band. The distinct difference between ideal S/N and estimated S/N is 

also usually occurred in lower subbands required more adaptive time. 

 

3.4 Discussion 

Compare to the MCRA, the proposed noise estimation is superior because this 

noise estimation algorithm contains an explicit VAD scheme discussed in Chapter 2. 

This chapter makes use of the employed VAD’s benefit of being robust against 

variable-level in noise to update noise spectrum. In addition, two sceneries are 

respectively used to accurately update noise power when being voice-active or 

voice-absent frames. Unlike MCRA, the adaptation of this time-frequency dependent 

smoothing parameter is not depended on a specific time window so that it can adapt 

quickly. Experimental results illustrate that the proposed noise estimation adapts to 

noise level faster than the MCRA. 
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Table 3-1 SEGERR FOR FOUR NOISE TYPES AND LEVELS 

White Noise Vehicle Noise Factory Noise Babble Noise 

Input SegSNR [dB] Propose 

method 

MCRA Propose 

method 

MCRA Propose 

method 

MCRA Propose 

method 

MCRA 

40 0.062 0.098 0.085 0.138 0.089 0.139 0.102 0.158 

10 0.061 0.084 0.078 0.129 0.086 0.132 0.098 0.146 

0 0.058 0.081 0.069 0.115 0.076 0.118 0.087 0.127 

-5 0.055 0.078 0.065 0.107 0.072 0.109 0.085 0.114 
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Fig. 3.1  Flow diagram of the proposed algorithm for updating noise estimate. 
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Fig. 3-2  Flow diagram of a modified entropy-based VAD. 
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Fig. 3.3  Sigmoid function for computing a time-frequency dependent smoothing 

factor. 

 

 

 

Fig. 3-4  Tracking capability of the noise estimator tested in noisy speech with a 

sudden increase in the level of factory noise. 
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Fig. 3-5  The S/N ratio in each frequency subband (32 equally frequency bands): 

(o)= clean speech, (+)= added factory noise, (*)= estimated noise. 
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CHAPTER 4 

 

VOICE ACTIVITY DETECTION BASED ON 

WAVELET ANALYSIS USING A MEASURE 

OF AUTO-CORRELATION FUNCTION AND 

TEAGER ENERGY OPERATOR 

 

 

 

 

According to the multi-resolution analysis (MRA) property of discrete wavelet 

transform (DWT), the dissimilarity among of voiced, unvoiced speech sounds and 

background noises from wavelet coefficients can be discriminated sufficiently [53]. In 

Chapter 4, the well-known auto-correlation function is defined in decomposed 

subband and regarded as subband auto-correlation function (SACF) here. A nonlinear 

Teager energy operator (TEO) is then utilized into each subband signal to decrease the 

influence of noise on subbands significantly before computing SACF. Besides, the 

other advantage of TEO is suitable for the result of SACF. To obtain the amount of 

periodicity, a Mean-Delta (MD) operator is then applied into each of SACF. Summing 
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up the all MDSACF’s values for each frame, a robust wavelet-based feature 

parameterr, speech activity envelop (SAE) parameter, is then proposed. Finally, we 

adopt an adaptive thresholding as a VAD decision. Compared to other two 

wavelet-based approaches respectively proposed by S. H. Chen et al. [28],[40] and 

Stegmann et al. [53], experimental results show that the proposed wavelet-based VAD 

is prior to other two wavelet-based methods and can work in a dynamically varying 

background noise. In addition, the proposed wavelet-based VAD is indeed an efficient 

and simple approach for a determination of existence of voice activity.. 

 

4.1 Introduction 

So far, those common feature parameters used for the existed VAD are based on 

averages over windows of fixed length or derived from an analysis based on a 

uniform time-frequency resolution. For example, the conventional Fourier transform 

(FT) works well in wide sense stationary signals but fails in non-stationary since it 

achieves only uniform-resolution analysis. The discrete wavelet transform (DWT) 

[41], in contrast, calculates the decomposition into the time-frequency domain which 

leads to low-frequency but high-temporal resolution at high frequency bands and 

low-temporal but high-frequency resolution at low frequency bands. It is well known 

that speech signals contain many transient components and non-stationary property. 
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Making use of the multi-resolution analysis (MRA) property of the DWT, the 

classification of speech into voiced, unvoiced or transient components can be 

distinctly discriminated [53]. S. H. Chen et al. [28], [40] has been proposed a 

wavelet-based VAD, but their approach must requires too computation and memory 

requirements to meet on-line issue. 

In general, the well-known “Auto-Correlation Function (ACF)” is commonly used 

to detect periodicity of speech. Herein the ACF is defined in subband domain and then 

regarded as subband auto-correlation function (SACF). In fact, the voiced sound has 

more significant periodicity than unvoiced sound and noise signal and the periodicity 

almost concentrates low frequency bands. So, we let the low frequency bands have 

high resolution to enhance the periodic property by decomposing only low band on 

each layer. The structure of three-layer wavelet decomposition is herein utilized to 

decompose speech signal into four non-uniform subbands. Although wavelet 

transform provides the property of MRA, how to resolve the problem about noise 

suppression on wavelet coefficients is mostly crucial part. Generally speaking, the 

noise suppressions are almost based on frequency domain. Those approaches, 

however, almost waste too much computing power to on-line work. We try to 

eliminate the noise components from the wavelet coefficients on each subband and to 

consider the appropriate way in terms of computing complexity. Teager energy 
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operator (TEO) is a powerful nonlinear operator and has been successfully used in 

various speech processing applications [42-45]. It is experimentally observed that the 

TEO which is derived from non-uniform subbands in Mel-scale can suppress the car 

engine noise and is easily implemented through time domain [46]. Based on the 

finding, we handle the process of TEO upon each subband of wavelet coefficients. In 

addition, the work of TEO also results in a better representation of formants so that 

the discriminability between speech and noise can be enhanced significantly. To 

accurately count the intensity of periodicity from the envelope of the SACF on each 

subband, the Mean-Delta (MD) method [47] is then utilized upon each subband. In 

[47], the MD-based feature parameter has been presented for the robust development 

of VAD, but is not performed well in the non-stationary noise shown in the followings. 

So, the sum of Mean-Delta values of Subband Auto-Correlation Function (MDSACF) 

derived from the wavelet coefficients of three detailed scales and one appropriated 

scale is defined as a robust feature parameter and regarded as speech activity envelope 

(SAE). Experimental results show that the proposed VAD has overall better 

performance than other two wavelet-based VAD algorithms when encountering 

variable-level of background noise. In addition, the proposed VAD is a simple, 

efficient, and robust algorithm working in a dynamically varying background noise. 

Chapter 4 is organized as follows. Section 4.2 describes the concept of discrete 
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wavelet transform (DWT) and shows the used structure of three-layer wavelet 

decomposition. Section 4.3 introductions the derivation of Teager energy operator 

(TEO) and displays the efficiency of subband noise suppression. Section 4.4 describes 

the proposed feature parameter, and the block diagram of proposed wavelet-based 

VAD algorithm is outlined in Section 4.5. Section 4.6 evaluates the performance of 

the algorithm and compare to other two wavelet-based VAD algorithms. Finally, 

Section 4.7 discusses the conclusions of experimental results. 

 

4.2 Wavelet Transform 

The Fourier transform (FT) is as a mathematical technique for transforming our 

view of the signal from time-based to frequency-based. It is found that time 

information is lost while in transforming to the frequency domain. However, most 

interesting signals contain numerous non-stationary or transitory characteristics. 

These characteristics are often the most important part of the signal. So, the FT is 

appropriate for wide sense stationary signals, but is not suitable for non-stationary 

signals.  

The wavelet transform (WT), in contrast, is based on a time-frequency signal 

analysis. The wavelet analysis represents a windowing technique with variable-sized 

regions. It allows the use of long time intervals where we want more precise 
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low-frequency information, and shorter regions where we want high-frequency 

information. It is well known that speech signals contain many transient components 

and non-stationary property. Making use of the MRA property of the WT, better 

time-resolution is needed a high frequency range to detect the rapid changing transient 

component of the signal, while better frequency resolution is needed at low frequency 

range to track the slowly time-varying formants more precisely. Through the MRA 

analysis, the classification of speech into voiced, unvoiced or transient components 

can be further exploited. 

In fact, the WT is a time-scale transformation. The wavelet implied in the WT is a 

small wave from which many waves derived from the signal analyzed by translation 

and scaling. The multi-resolution capability relies on being able to dilate and translate 

the wavelet continuously. If we choose scales and positions based on powers of two -- 

so-called dyadic scales and positions -- then our analysis will be much more efficient 

and just as accurate. We obtain such an analysis from the DWT. An efficient way to 

implement this DWT using filter banks was developed in 1988 by Mallat [48]. In 

Mallat’s algorithm, the approximations and details of input signal are accomplished 

by using quadrature mirror filters (QMF). Fig. 4-1 shows the basic DWT structure 

using filter banks for decomposing signal. Regarding to the figure, the approximated 

signal 1L  and the detailed signal 1H  are generated by respectively using the 
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high-pass filter and low-pass filter by the 18-tap Daubechies wavelet shown in Fig. 

4-2, and the symbol 2↓  is denoted as operator of downsampling by 2.  

In order to extract speech activity accurately, the periodicity detection by using 

ACF is commonly used for voice activity detection. However, different frequency 

band provides various intensities of periodicity. In general, the strong intensity of 

periodicity is mainly focused on the low frequency band. Based on the finding, the 

input speech signal is divided into a multi-band form by using DWT. Fig. 4-3 displays 

the utilized structure of three-layer wavelet decomposition leading into four 

non-uniform subbands. The -layerj  approximations Lj  and details Hj  of input 

signal are resulted form the decomposition layer. The later experiment will prove that 

the wavelet decomposition structure will obtain the more significant intensity of 

periodicity in sub-band domain than that in full-band domain. 

 

4.3 Teager Energy Operator (TEO) 

The Teager energy operator (TEO) is a powerful nonlinear operator, and can track the 

modulation energy and identify the instantaneous amplitude and frequency [42-45].  

In continuous-time, the TEO is defined as 

 2[ ( )] [ ( )] ( ) ( )c s t s t s t s tΨ = −� �� , (4-1) 

where ( )s t  is a continuous-time signal and s ds dt=� . In discrete-time, the TEO can 
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be approximate by  

 2[ ( )] ( ) ( 1) ( 1)d s n s n s n s nΨ = − + − , (4-2) 

where ( )s n  is a discrete-time signal. 

Let us consider a speech signal ( )s n  degraded by uncorrelated additive noise ( )u n . 

The resulting signal is then 

 ( ) ( ) ( )y n s n u n= + . (4-3) 

The Teager energy of the noisy speech signal [ ( )]d y nΨ  is given by  

 [ ( )] [ ( )] [ ( )] 2 [ ( ), ( )]d d d dy n s n u n s n u nΨ = Ψ +Ψ + Ψ� , (4-4) 

where [ ( )]d s nΨ  and [ ( )]d u nΨ  are the Teager energy of the speech signal and the 

additive noise, respectively. [ ( ), ( )]d s n u nΨ�  is the cross- dΨ  energy of ( )s n  and 

( )v n , such that 

 [ ( ), ( )] ( ) ( ) 0.5 ( 1) ( 1) 0.5 ( 1) ( 1)d s n u n s n u n s n u n s n u nΨ = − − + − + −� i i i , (4-5) 

where the symbol i  is inner product. Since ( )s n  and ( )u n  are zero mean and 

independent, the [ ( ), ( )]d s n u nΨ  equals to zero. Thus, the derived formulation is 

approximated as below: 

 { } { } { }[ ( )] [ ( )] [ ( )]d d dE y n E s n E u nΨ = Ψ + Ψ . (4-6) 

According to [46], if ( )u n  is the car engine noise with lowpass in nature the 

expected value of Teager energy of noise can be neglected due to first three 

autocorrelation values close to each other. 
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{ }[ ( )] (0) (2) 0d u uE u n R RΨ = − ≈  

So, the Teager energy of the observed signals almost equal speech signals. 

 { } { }[ ( )] [ ( )]d dE y n E s nΨ ≈ Ψ . (4-7) 

Although the TEO is valid only for noise with lowpass in nature to suppress noise, Fig. 

4-4 displays that for the subband range D1~A3 the WT coefficient after TEO can 

discriminate speech from additive noise even if the additive noise has no lowpass 

nature. Inspecting the corresponding spectrograms, the voice-active durations are 

dominated by the some distinct harmonic frequency bands. These results are better for 

the periodicity detection by using subband ACF (SACF). Fig. 4-5 shows that the TEO 

is useful for SACF to discriminate the difference between speech and noise in detail. 

 

4.4 The Robust Feature Extraction Derived From MDSACF 

The well-known definition of the term “Auto-Correlation Function (ACF)” is 

usually used for measuring the self-periodic intensity of subband signal sequences 

shown as below: 
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( ) ( ) ( ),   0,1,......
p k

n
R k s n s n k k p

−

=

= + =∑ , (4-8) 

where p  is the length of ACF. k  denotes as the shift of sample. 

In general, the ACF is commonly used method to estimate pitch which is based on 

detecting the highest value of the ACF in the region of interest. In order to increase 
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the efficiency of ACF about making use of periodicity detection for detecting speech, 

the ACF is defined in subband domain, which called as “subband auto-correlation 

function (SACF)”, and sufficiently discriminates the dissimilarity among of voiced, 

unvoiced speech sounds and background noises from wavelet coefficients. In general, 

the voiced or vowel speech sound has more significant value of periodicity than 

unvoiced sound and noise signal, and the periodicity almost concentrates low 

frequency bands. Fig. 4-6 displays that the normalized SACFs ( (0) 1R = ) of each 

subband, respectively. It is observed that the SACF of voiced speech has more 

obviously peaks than that of unvoiced speech and white noise. In addition, for 

unvoiced speech the ACF has greater periodic intensity than white noise especially in 

the approximation 3A . 

The intensity of periodicity on each subband is evaluated by utilizing a Mean-Delta 

(MD) method [47] over the envelope of each SACF. First, a measure which similar to 

delta cepstrum evaluation is mimicked to estimate the periodic intensity of SACF, 

namely “Delta Subband Auto-Correlation Function (DSACF)”, shown below: 
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where MR�  is DSACF over an M -sample neighborhood. 

It is observed that the DSACF measure is almost like the local variation over the 
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SACF. Second, averaging the delta of SACF over a M -sample neighborhood MR , a 

mean of the absolute values of the DSACF (MDSACF) is given by 
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= ∑ � . (4-10) 

Observing the above formulations, the Mean-Delta method can be used to value the 

number and amplitude of peak-to-valley from the envelope of SACF. To develop a 

robust feature parameter (SAE), we sum up the four values of MDSACFs derived 

from the wavelet coefficients of three detailed scales and one appropriated scale.  

Fig. 4-7 displays that the MRA property is important to the development of SAE 

feature parameter. The proposed SAE feature parameter is respectively developed 

with/without band-decomposition. In Fig. 4-7(b), the SAE without 

band-decomposition only provides obscure periodicity and confuses the word 

boundaries. Fig. 4-7(c)~Fig. 4-7(f) respectively show each value of MDSACF from 

D1 subband to A3 subband. It implies that the value of MDSACF can provide the 

corresponding periodic intensity for each subband. Summing up the four values of 

MDSACFs, we can form a robust SAE parameter. In Fig. 4-7(g), the SAE with 

band-decomposition can point out the word boundaries accurately from its envelope.  

 

4.5 Proposed Voice Activity Detection (VAD) Algorithm 

In this section, the proposed VAD algorithm based on DWT and TEO is presented. 
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Fig. 4-8 displays the block diagram of the proposed wavelet-based VAD algorithm in 

detail. For a given layer j , the wavelet transform decomposed the noisy speech 

signal into 1j +  subbands corresponding to wavelet coefficients sets ,
j

k nw . In this 

case, three-layer wavelet decomposition is used to decompose noisy speech signal 

into four non-uniform subbands including three detailed scales and one appropriated 

scale. Let layer 3j = , 

 3
, { ( ),3},    1.... ,  1....4k mw DWT s n n N k= = = , (4-11) 

where 3
,k mw  defines the thm  coefficient of the thk  subband. N  denotes as 

window length. The decomposed length of each subband is 2kN  in turn. 

For each subband signal, the TEO processing [46] is then used to suppress the noise 

component, and also enhance the periodicity detection. In TEO processing, 

 3 3
, ,[ ],   1...4k m d k mt w kψ= = . (4-12) 

Next, the SACF measures the ACF defined in subband domain, and it can sufficiently 

discriminate the dissimilarity among of voiced, unvoiced speech sounds and 

background noises from wavelet coefficients. The SACF derived from the Teager 

energy of noisy speech is given by 

 3 3
, ,[ ],   1...4k m k mR R t k= = . (4-13) 

where [ ]R ⋅  means the auto-correlation operator. 

To count the intensity of periodicity from the envelope of the SACF accurately, the 
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Mean-Delta (MD) method [47] is utilized on each subband. 

The DSACF is given by 

 3 3
, ,[ ],   1...4k m k mR R k= ∆ =� . (4-14) 

where [ ]∆ ⋅  denotes the operator of delta. 

Then, the MDSACF is obtained by  

 3 3
,[ ]k k mR E R= � . (4-15) 

where [ ]E ⋅  denotes the operator of mean. 

Finally, we sum up the values of MDSACFs derived from the wavelet coefficients 

of three detailed scales and one appropriated scale and denote as SAE feature 

parameter given by  

 
4

3

1
k

k
SAE R

=

=∑ . (4-16) 

In order to point out the boundary of voice activity carefully, the VAD decision is 

usually performed by adaptive thresholding. To estimate the time-varying noise 

characteristics accurately, in this section an adaptive threshold value is derived from 

the statistics of SAE feature parameter during noise-only frame, and the VAD decision 

recursively updates the threshold using the mean and variance of the values of SAE 

parameters.  

The above statement is same as section 2.3.1 and herein repeated. We compute the 

initial noise mean and variance with the first five frames, assuming that the first five 
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frames contain noise only. We then compute the thresholds for the speech and noise 

by the following: 

 s n s nT µ α σ= + ⋅  (4-17) 

 n n n nT µ β σ= + ⋅  (4-18) 

where sT  and nT  indicate the speech threshold and the noise threshold, respectively. 

Similarly, nµ  and nσ  represent the mean and the variance among the values of 

SAE parameters, respectively. 5sα =  and 1nβ = −  are the adjustment constants 

which are used to determine the threshold, and are experimentally selected. 

The VAD decision rule are defined as 

 
if  ( ( ) )   ( )=1
else if  ( ( ) )   ( )=0;
else  ( )= ( 1).
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SAE t T VAD t
SAE t T VAD t

VAD t VAD t

>
<

−
 (4-19) 

If the detection result shows a noise period, the mean and variance among the values 

of the SAE are updated by using the following: 

 ( ) ( 1) (1 ) ( )n nt t SAE tµ γ µ γ= ⋅ − + − ⋅  (4-20) 

 2 2( ) [ ] [ ( )]n buffer mean nt SAE tσ µ= −  (4-21) 

 2 2 2[ ] ( ) [ ] ( 1) (1 ) ( )buffer mean buffer meanSAE t SAE t SAE tγ γ= ⋅ − + − ⋅  (4-22) 

where 0.95γ =  is chosen by experiment. 2[ ] ( 1)buffer meanSAE t −  is a mean among the 

buffer of SAE value during noise-only frame. We then update the thresholds using the 

updated mean and variance of the values of SAE parameters. Fig. 4-9 displays the 

VAD decision based on the adaptive threshold strategy. It is clearly found that the 
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boundary of voice activity is accurately extracted. The two thresholds are updated 

during voice-inactivity while the two thresholds are both kept during voice activity. 

 

4.6 EXPERIMENTAL RESULTS 

We evaluate the performance of proposed wavelet-based VAD and compare to other 

two wavelet-based approaches [28], [53] in two experiments. In our first experiment, 

the results of speech activity detection are tested in three kinds of background noise 

under various values of the SNR. In the second experiment, we adjust the variable 

noise-level of background noise and mix it into the testing speech signal. 

 

4.6.1. Test Environment and Noisy Speech Database 

The test environment is similar to Chapter 2, the speech corpora are collected from 

MAT (Mandarin across Taiwan) database including a set of isolated utterances of the 

ten digits in Mandarin. To vary the testing conditions, noise is added to the clean 

speech signal to create noisy signals at specific SNR of 40, 10, 0db and -5 dB (the 

SNRs is herein defined as the ratio of the power of the entire recordings containing 

silence and voice parts to the power of additive noise). Four noise types, including 

babble noise, white noise, vehicle noise and factory noise, are taken from the 

Noisex-92 database in turn [49]. The proposed wavelet-based VAD algorithm is based 
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on frame-by-frame basis, frame length wN = 256 samples (or 32ms), overlap = 

2wN  (16ms).  

 

4.6.2. Evaluation in Stationary Noise 

In this experiment we only consider stationary noise environment. The proposed 

wavelet-based VAD is tested under three types of noise sources and three specific 

SNR values mentioned above. To evaluate the performance of the proposed VAD, 

two objective measures mentioned in Chapter 2 are applied here. The probability of 

correctly detecting speech frames cSP  is defined as the ratio of the correct speech 

decisions to the hand-labeled speech frames, while the probability of falsely detecting 

speech frames fSP  is defined as the ratio of the false speech decisions to the 

hand-labeled speech frames. 

Table 4-I shows the comparison among the proposed wavelet-based VAD, other two 

wavelet-based VAD respectively proposed by Chen et al. [28, 40] and J. Stegmann 

[53]. The results from all the cases involving various noise types and SNR levels are 

averaged and summarized in the bottom row of this table. From Table I, the proposed 

wavelet-based VAD and Chen’s VAD algorithms are all superior to Stegmann’s VAD 

over all SNRs under various types of noise. In terms of the average correct and false 

speech detection probability, the proposed wavelet-based VAD is comparable to 
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Chen’s VAD algorithm. Both the algorithms are based on the DWT and TEO 

processing. However, Chen et al. decomposed the input speech signal into 17 

critical-subbands by using perceptual wavelet packet transform (PWPT). To obtain a 

robust feature parameter, called as “VAS” parameter, each critical subband after their 

processing is synthesized individually while other 16 subband signals are set to zero 

values. Next, the VAS parameter is developed by merging the values of 17 

synthesized bands. Compare to the analysis/synthesis of wavelet from S. H. Chen et 

al., we only consider analysis of wavelet. The structure of three-level decomposition 

leads into four non-uniform bands as front-end processing. For the development of 

feature parameter, we do not again waste extra computing power to synthesize each 

band. Besides, Chen’s VAD algorithm must be performed in entire speech signal. The 

algorithm is not appropriate for real-time issue since it does not work on frame-based 

processing. Conversely, in our method the decisions of voice activity can be 

accomplished by frame-by-frame processing. Table 4-II indicates that the subjective 

evaluations of listening test for the extracted voice activity. The clean speech is 

obtained by a subtractive-type algorithm presented by Berouti et al. [39] to avoid the 

annoying “musical noise” introduced by subtracting the estimated noise spectrum 

from the observed speech signals. A five-scale absolute opinion from 1 (poor) to 5 

(excellent) was adopted to subjectively evaluate the six listeners. Table 4-III displays 
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the computing time for the listed VAD algorithms running Matlab programming in 

Celeron 2.0G CPU for processing 118 frames of an entire recording. It is found that 

the computing time of Chen’s VAD is nearly four times greater than that of other two 

VADs. Besides, the computing time of Chen’s VAD is closely relative to the entire 

length of recording. 

 

4.6.3. Evaluation in Non-stationary Noise 

To evaluate the performance of the presented VAD in highly non-stationary whose 

statistical properties change over time, we add the decreasing and increasing level of 

background noise on a clean speech sentence in English and the SNR is set 0 dB. 

Comparisons among proposed wavelet-based VAD, other wavelet-based VAD 

proposed by S. H. Chen et al. [28, 40] and MD-based VAD proposed by A. Ouzounov 

[47] are exhibited in Fig. 4-10. From the figure, the mixed noisy sentence “May I help 

you?” is shown in Fig. 4-10(a). The increasing noise-level and decreasing noise-level 

are added into the front and the back of clean speech signal. Additionally, an abrupt 

change of noise is also added in the middle of clean sentence. The three envelopes of 

VAS, MD and SAE feature parameters are showed in Fig. 4-10(b)~Fig. 4-10(d), 

respectively. It is found that the performance of Chen’s VAD algorithm seems not 

good in this case. The envelope of VAS parameter closely depends on the variable 
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level of noise. Similarly, the envelope of MD parameter fails in variable level of noise. 

Conversely, the envelope of proposed SAE parameter is insensitive to variable-level 

of noise. So, the proposed wavelet-based VAD algorithm is performed well in 

non-stationary noise. Fig. 4-11 illustrates the performance of Stegmann’s VAD [53] 

for four energy-based parameters and VAD decision. It is found that the associated 

energy-based parameters are close to the variation of noise and these parameters cause 

Stegmann’s VAD to fails in a variable-level of noise. Fig. 4-12 illustrates the 

performance of the proposed VAD for an utterance produced continuously. Similarly, 

the envelope of SAE parameter is more able to extract the exact boundary of voice 

activity than the envelope of VAS parameter despite the variable noise level. 

 

 

4.7 Discussion & Future Work 

In discussion, a new feature parameter is based on the sum of the values of 

MDSACFs derived from the wavelet coefficients of three detailed scales and one 

appropriated scale to develop a robust VAD algorithm. The robust VAD is a 

multi-band based algorithm using DWT and TEO processing. By means of the MRA 

property of DWT, the ACF defined in subband domain sufficiently discriminates the 

dissimilarity among of voiced, unvoiced speech sounds and background noises from 
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wavelet coefficients. For the problem about noise suppression on wavelet coefficients, 

a nonlinear TEO is then utilized into each subband signals. Additionally, we have 

shown that the Teager energy set of wavelet coefficients is beneficial for the result of 

ACF since TEO can provide a better representation of formants resulting distinct 

periodicity. Experimental results have shown that the proposed feature parameter can 

point out the boundary of speech activity and its envelope is insensitive to variable 

noise-level environment. Compare to other two VAD approaches, the three major 

advantages of proposed VAD are shown as below: 

 

4.7.1. Comparison 

 Suitable for on-line work: 

Stegmann’s VAD [53] and the proposed MDSSACF-based VAD algorithm are both 

performed on-line. Compare with Chen’s wavelet-based VAD, the proposed 

MDSSACF-based VAD algorithm can be performed on frame-by-frame basis. An 

on-line adaptive thresholding strategy is just used for deciding the result of VAD 

immediately, so our method more meets the on-line issue than Chen’s wavelet-based 

VAD. In fact, the processing of the Chen’s VAD must require much memory space to 

store entire input speech. 
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 Efficient and simple implementation: 

In the architecture of proposed wavelet-based VAD, we can only consider the 

decomposition of wavelet and do not again waste extra computing power to 

synthesize each subband for wavelet reconstruction. In fact, input speech is 

decomposed into four non-uniform subbands resulted from three-layer wavelet 

decomposition. In order to obtain the VAS feature parameter, we only sum up four 

values of MDSACFs on each subband. In addition, the determination about MDSACF 

also needs only the little computing complexity. Similar to proposed wavelet-based 

VAD, Stegmann’s VAD also only considers the wavelet decomposition and further 

uses the logical combination among a set of detections: silence detection, stationary 

detection and background-noise detection. It seems to be easily implemented for 

extracting voice active frames.  

Conversely, in Chen’s wavelet-based VAD algorithm [18],[40], the input speech 

signal is decomposed into 17 critical-subbands by using perceptual wavelet packet 

transform (PWPT). Each critical subband is then synthesized individually while other 

16 subband signals are set to zero values. Next, the VAS parameter is developed by 

summing up the values of 17 synthesized bands. So, Chen’s wavelet-based VAD 

needs extra computing time to achieve the wavelet reconstruction and its computing 

complexity is more than other two wavelet-based methods: Stegmann’s VAD and 
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proposed VAD. 

 

 Reliable performance in variable noise-level environments: 

Of all the listed VADs in this paper, the proposed wavelet-based is prior to other two 

VADs in variable-level of background noise. From experimental results, the proposed 

SAE feature parameter can point out the boundaries of the noisy sentence in variable 

noise-level conditions. It is found that the SAE parameter relies on the periodicity of 

SACF defined in each subband. Through the subband TEO processing and 

normalization of SACF, the value of Mean-Delta on SACF is insensitive to 

variable-level of noise. 

Conversely, in [53] the VAD decision is determined by a set of four energy-based 

parameters is derived from the WT coefficients and compared to fixed thresholds 

resulting in four binary flags that indicates silence, stationary and background noise in 

two different frequency regions, respectively. Finally, these flags are combined to get 

the VAD decision. It is found that the energy-based parameter is relatively sensitive to 

variable-level on noise and the fixed thresholds are also relatively appropriate for this 

case. In addition, the VAS parameter derived from Chen’s VAD is observed that its 

envelope is closely depended on the variable noise level even though the de-noising 

processing is utilized into 17 critical subbands. 
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4.7.2. Future Work 

The well-known speech enhancement based on wavelet thresholding is recently 

used for obtaining desired non-annoying speech signals. In this method, the subband 

threshold is usually assumed uniform or non-uniform for each subband. In fact, the 

value of subband threshold must be adapted to time-varying noise, especially in 

classification of voice activity/absence. During voice-absent frames, we can further 

adjust the value of subband threshold to obtain silence-like signals. Conversely, 

during voice-active frames, the adjustment of subband threshold is assumed to be 

related to masking properties of the human auditory system. 
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TABLE 4-I 
COMPARISON BETWEEN THE THREE VAD ALGORITHMS TESTING IN VARIOUS 

NOISE CONDITIONS 

Noise Conditions cSP (%) fSP (%) 

Type SNR(dB) Proposed VAD 
Chen’s VAD 

[28],[40] 

Stegmann’s 

VAD [54] 
Proposed VAD

Chen’s VAD 

[28],[40] 

Stegmann’s 

VAD [54] 

40 99.6 97.7 93.3 1.8 2.9 5.4 

10 97.8 96.1 85.7 2.5 3.3 9.1 

0 94.9 93.2 76.5 2.6 6.9 14.3 

Vehicle 

Noise 

-5 91.9 88.2 71.9 2.9 9.9 20.9 

40 97.9 95.8 93.4 3.2 4.8 7.9 

10 92.4 89.4 82.5 5.6 8.3 14.5 

0 87.4 85.6 75.9 7.3 14.9 20.1 

Babble 

Noise 

-5 82.2 81.8 69.1 10.3 16.8 29.8 

40 98.1 97.4 92.6 3.4 5.3 6.3 

10 93.2 94.1 80.8 4.2 7.2 12.8 

0 88.4 88.3 76.1 6.8 12.7 18.4 

Factory 

Noise 

-5 85.8 85.6 70.7 9.4 15.4 26.2 

40 97.5 97.6 95.4 1.2 1.9 4.3 

10 93.3 98.1 90.3 1.7 2.4 7.9 

0 90.4 91.9 80.2 2.1 3.1 10.6 

White 

Noise 

-5 88.4 85.4 77.4 3.1 3.9 14.8 

Average 92.45 91.64 81.99 4.26 7.48 13.96 

 
TABLE 4-II  

SUBJECTIVE EVALUATION OF LISTENING TEST 
VAD types Avg. of score 

Proposed VAD 4.6 
Chen’s VAD 4.1 
Stegmann’s VAD 3.2 

 
 

TABLE 4-III 
ILLUSTRATION OF EFFICIENCY FOR THE FOUR VAD 

VAD types Computing time (sec) 
Proposed VAD 0.089 
Chen’s VAD 0.436 
Stegmann’s VAD 0.097 
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Fig. 4-1  Discrete wavelet transform (DWT) using filter banks. 

 

 

 

 
Fig. 4-2  18-tap Daubechies Wavelets. 
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Fig. 4-3  Structure of three-layer wavelet decomposition. 

 
 

 
 
 

 
Fig. 4-4   Illustration of efficiency of TEO for four subbands. 
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Fig. 4-5   Illustration of TEO for enhancing the discrimination between speech and 
noise. 
 
 

 
Fig. 4-6  Examples of normalized SACF for voiced sound, unvoiced sound and 
white noise on each subband. 
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Fig. 4-7  Examples of the SAE parameters without band-decomposition and derived 
from four subbands. 

 
 
 
 
 

 
Fig. 4-8  Block diagram of proposed wavelet-based VAD. 
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Fig. 4-9  Adaptive thresholding strategy for extracting the boundary of voice activity. 
 
 
 

 
Fig. 4-10  Comparisons among VAS, MD and proposed SAE feature parameters. 



 99

 
Fig. 4-11  Illustration of performance for Stegmann’s VAD [53] containing four 
energy-based parameter and VAD decision. 
 
 

 
Fig. 4-12  Effects of a variable noise-level on proposed SAE and Chen’s VAS 
parameters under a noisy speech sentence consisting continuous words. 
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CHAPTER 5 

 

CONCLUSIONS 

 

 

 

 

In this dissertation, we attempt to generate a robust feature set for classifying 

voice activity/absence frames. In Chapter 2 and Chapter 4, the banded lines existing 

only on voice-active spectrogram and periodicity measured in subband domain are 

used for characterizing speech signal, respectively. Experimental results show that 

the proposed two feature parameters are indeed robust against various types of 

noises. Consequently, the two types of voice activity detection (VAD) algorithms 

are built in turn. In addition, the two VAD algorithms can provide on-line work 

being suitable for real-world. In Chapter 3, an extended application of VAD 

strategy is outlined to form a fast adaptive algorithm for estimating noise power in 

non-stationary environments. 

Based on the above experimental results, the comparisons between the proposed 

two VAD algorithms can be summarized as below: 
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1. The proposed two VAD algorithms not only perform well at low SNRs but also 

are insensitive to changes in the noise level, even if noise rapidly changes in level 

(or called dynamic background noise) 

2. Due to the robustness of feature extraction for the two VADs, we can almost use 

fixed thresholds as VAD decisions so that the computing complexity can be 

significantly decreased. 

3. The proposed two methods provide easy and interesting ideas for implementing a 

robust VAD. 

4. Finally, compare to frequency band analysis, the second presented VAD via 

wavelet analysis is better than the first presented VAD based on entropy 

measurement shown in TABLE 5-I. Especially for low SNRs, the wavelet-based 

VAD is prior to the entropy-based VAD in term of cSP . Similarly, in term of the 

average false speech detection probability, the wavelet-based VAD is also prior to 

the entropy-based VAD, especially in noise source with low frequency power so 

that vehicle noise since the noises with low frequency power is decreased using 

TEO applied into each wavelet coefficient. 

5. In addition, for the entropy-based VAD the number of decomposed subband is 

assumed fixed and subband bandwidth is uniform, it does not meet the 

time-varying banded lines on voice-active spectrogram. Conversely, wavelet 
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analysis is more suitable for speech processing than frequency analysis. 

 

 

 

 

TABLE 5-I 
COMPARISON BETWEEN PROPOSED ENTROPY-BASED VAD AND 

WAVELET-BASED VAD 
Noise Conditions cSP (%) fSP (%) 

Type SNR(dB) 
Proposed 

entropy-based VAD 

Proposed 

wavelet-based VAD 

Proposed 

entropy-based VAD 

Proposed 

entropy-based VAD 

40 98.4 99.6 1.2 1.8 
10 94.2 97.8 3.9 2.5 

0 91.3 94.9 4.6 2.6 

Vehicle 

Noise 

-5 89.3 91.9 6.5 2.9 

40 96.1 97.9 2.6 3.2 
10 89.2 92.4 5.8 5.6 

0 84.8 87.4 7.4 7.3 

Babble 

Noise 

-5 79.6 82.2 10.4 10.3 

40 97.9 98.1 2.1 3.4 
10 91.7 93.2 4.6 4.2 

0 86.3 88.4 7.8 6.8 

Factory 

Noise 

-5 84.1 85.8 9.1 9.4 

40 99.8 97.5 0.9 1.2 
10 96.6 93.3 1.9 1.7 

0 93.1 90.4 2.2 2.1 

White 

Noise 

-5 91.9 88.4 2.9 3.1 

Average 91.52 92.45 4.62 4.26 
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