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ABSTRACT

This dissertation mainly addresses the problem of a voice activity detection (VAD)
failed in poor signal-to-noise ratio (SNR) and in dynamically time-varying
background. So far, the commonly used VAD algorithms always assume that the
background noise level is stationary. Since the feature extractions from conventional
algorithms are closely depended on the estimation of energy level, the corresponding
performances are easily contaminated by the variable noise-level. For example, may
usually exit in car due to movements, engine running, speed change, braking, slam,
etc. To solve the problem, the VAD algorithms based on two types of robust feature

parameters are proposed in turn. In the first presented approach, it is found that the



nature of banded line is highly efficient, compact representation for the time-varying

characteristics of speech signals according to the appearance of banded line on voice

spectrogram resulted from formant frequency. For frequency band analysis, an

entropy-based VAD is presented herein. First, the input signal is decomposed into 32

uniform subbands to locate the formant frequency bands. A measure of entropy

defined in subband domain, regarded as banded spectrum entropy (BSE) parameter, is

then proposed to sufficiently exploit the inherent nature of banded lines on voice

spectrogram. Due to that the some decomposed subbands can be contaminated by

noise, a strategy of subband self-extraction (SSE).based on adaptive threshold skill is

presented herein to execute the-extraction of uiseful subbands with time and is further

used to let the BSE be robust against to noises. The banded lines on voice

spectrogram, in practice, are only suitable for characterizing voiced speech. In order

to enhance the part of unvoiced speech, the ratio of low-band energy to full-band

energy (RLF) is presented to discriminating the unvoiced sound from background
gy p g g

noises. Compare to other VAD approaches, experimental results shown that the two

BSE and RLF parameters used for determining voice activity successfully exploit the

characteristic of speech signal and is nearly robust against variable noise level. A

technology of VAD, in practice, plays an essential role in noise spectrum estimator.

The VAD scheme is frequently employed into noise spectrum estimator as an

vi



indicator of updating noise spectrum. Enclosed herein the proposed noise spectrum

estimation employs an entropy-based VAD above mentioned as an indicator of

updating noise spectrum. In addition, a recursive averaging-based formula and an

adaptive smoothing factor are then involved herein for quickly adapting to variable

level of noise.

In the alternative VAD method, wavelet analysis is used for extracting speech

signals to further exploit the transient components and non-stationary property. First,

we divide the input signal into four non-uniform subbands via discrete wavelet

transform (DWT). In addition, a .nonlinear Teager energy operator (TEO) is then

utilized into each subband signals: We show-that the-TEO can decrease the influence

of noise on subbands significantly. Besides, the other advantage is suitable for the

result of subband auto-correlation function (SACF). To obtain the amount of

periodicity, a Mean-Delta (MD) operator is then applied into SACF on each subband.

Summing up the all MDSACFs derived from each decomposed subband, a robust

wavelet-based feature parameter is then proposed. Finally, we adopt an adaptive

threshold method as VAD decision to form a complete VAD. The simulation result

shows the wavelet-based VAD is robust against changing noise level and is an

efficient and simple approach as comparing with other methods.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The purpose of voice activity detection (VAD).is the determination of the presence
or absence of a voice component i1 a given signal; especially the determination of the
beginnings and endings of voice segments, and it is also called speech detection,
endpoints detection, and speech/non-speech segmentation. Such a technique is one of
the essential parts for entire speech processing and required in many applications such
as mobile telecommunication for discontinuous transmission (DTX) mode [1], noise
reduction for speech enhancement [2], speech coding [3], [50], and speech recognition
[4]. In GSM (Global System for Mobil communication cellular) system, a VAD
scheme for DTX is required to determine whether a slice of speech waveform is voice
or silence. After that, only the “voice” slices are transmitted by DTX to lengthen the

battery life of the terminals by suppressing the overall transmitting data [5], [6].



Similarly, in speech recognition system a VAD strategy used as front-end process can
improve the recognition ratio and reduce the computing power waste induced by
incorrect speech detection even in the presence of noise. Besides, a good use of VAD
can be used in speech coding system to control the average bit rate and the overall

coding quality of speech in a variable bit rate [3].

1.2 The Classification of Speech Signal

Speech sounds can be classified into three distinct classes, voice sounds, unvoiced
sounds, and silences which are resulted from their mechanism of speech production
[8]. Voiced sounds are generated by forcing air through the glottis or an opening
between the vocal folds. The tension of the vocal ¢ords is adjusted so that they vibrate
in oscillatory fashion. Thus, voiced sounds show periodicity. All the vowels including
the semivowels and the diphthongs are voiced sounds. Unvoiced sounds are produced
by forming a construction at some point in the vocal tract, and forcing air through the
formed construction at a high velocity to generate turbulence. Unlike voiced sounds,
unvoiced sounds do not have any prominent periodic components. Silences are the
parts of the speech sequence during which no sound is produced by the human speech
production mechanism. In many ordinary environments, silences in the speech

sequence are dominated by the background noise which varies dynamically in energy



level and spectral characteristics.

1.3 The Categories of Background Acoustical Noises
In general, the speech signal is corrupted by additive background acoustical noises

that we can divide into two categories based on the environment. The first category is
background noise from an office-type environment. The office-type environment
contains some, but not a lot of, background noise. Office-type background noise
varies slowly both in terms of volume and statistical characteristics. The second
category is dynamic background noise from outside office environment. This category
can be frequently occurred and-be significantly less controlled; the background noise
exhibits a wide dynamic range and varies rapidly.-and unpredictably. Besides, impulse
noise may perturb the waveform of speech signals. The above-mentioned categories
are illustrated as below:
a.  Office-type background noise

1. also called fixed-level noise

ii.  short-term quasi-stationary noise

iii.  strictly speaking, background noise is present throughout the entire signal,

although it is mostly embedded in the voice signal

iv. associated with ambient background noise



V.

Vi.

can be considered as low-energy, white noise

is subject to a statistical characterization in two steps on the basis of its

mean energy, the standard deviation of the energy, and mean zero-crossings.

Dynamic background noise

L.

il

1il.

1v.

also called variable-level noise or non-stationary noise

sporadic noise from a multitude of sources

may appear at any moment in record

duration is very variable

energy is variable too, although generally lower in comparison with that of

the section of speech with most enetgy

Impulse noise

il

1il.

1v.

perturbations of the waveform, primarily in the last part of the speech signal,

due to exhalation

noises made by the tough and/or lips in preparation for speech

does not always appear

energy is variable: may be confused with other sporadic noises, or even

speech

can be dealt with by using time duration

So far, the existing VAD algorithms all assumed the additive noise as an office-type



background noise. However, the so-called non-stationary noises frequently exist in

recordings. So, the detection of voice activity in dynamical noise environment is a

challenging task.

1.4 Prior Art

The accurate determination of speech in the presence of background noise plays a

significant role in many areas of speech processing. Over the past decade numerous

studies have been proposed for the developments of the robust VAD algorithms

operating in adverse acoustic noisy.environments. In general, for the establishment of

a complete VAD algorithm it mainly comprises two parts shown as bellows:

»  Parameter extraction: Relevant parameters are extracted from the speech signal.

In order to allow a good detection of the speech signal regions, the chosen

parameters have to show a discriminability between speech and non-speech

segments.

»  Thresholding: A threshold is applied to the extracted parameter in order to divide

the speech signal between speech and non-speech segments. This threshold can

be fixed or adaptive. In general, the adaptive threshold is used to adapt to

variable noise level.

Most of the early algorithms are based on the feature parameters of short-time



energy [10], zero-crossing rate (ZCR) [12], [13], timing, pitch information [11] and

the LPC coefficients [9]. Cepstral features [14], adaptive noise modeling of voice

signals [15] and the periodicity measure [16] are some of the recent ideas in VAD

designs. Unfortunately, these algorithms have some problems at low signal-to-noise

ratios (SNRs), especially when the noise is non-stationary. For example, the

energy-based estimate and ZCR are inadequate for distinguishing speech from noise

at low SNRs. The performances of energy-based VADs degrade significantly when

the speech level is smaller than the noise level. Moreover, the ZCR is highly sensitive

to various types of noise. Additionally, the reliability of the LPC coefficients have

been observed to depend strongly on the noise in adverse environment and not

particularly suitable for nasal sound, “fricative, etc. Although pitch information can

help to detect speech, extracting the correct pitch in noisy environments is difficult.

Some of the algorithms perform well in adverse environments; even so, the algorithms

must be required more computing complexity. Various procedures for speech

detection have been described in the literature so far. Sohn et al. [17] presented a VAD

algorithm that uses a novel noise spectrum adaptation applying soft decision

techniques. The decision rule drew from the generalized likelihood ratio test by

assuming the noise statistics to be known a prior estimate. Cho et al. [18] presented

improved version of the algorithm designed by Sohn. Specifically, Cho presented a



smoothed likelihood ratio test to reduce the detection errors. Furthermore, Beritelli et

al. [19] developed a fuzzy VAD using a pattern matching block comprising a set of six

fuzzy rules. Nemer et al. [20] designed a robust algorithm based on higher order

statistics (HOS) in the residual domain of the linear prediction coding coefficients

(LPC). The International Telecommunication Union-Telecommunications Sector

(ITU-T) designed G.729B VAD [21] comprising a set of metrics including line

spectral frequencies (LSFs), low band energy, ZCR and full-band energy.

Besides, Chen et al. [22] proposed speech detection algorithm using microphone

array in a noisy environments. However, the assumption of stationary may result in

estimation errors from the above method du¢ to the-non-stationary nature of speech

signals, the limited length of observed'data and the size of the microphone array. To

determine the presence or absence of speech, the observed signal statistics in the

current frame are compared with the estimated noise statistics according to some

decision rules. In [23], using the assumption that the Discrete Fourier Transform (DFT)

coefficients of speech and noise are asymptotically independent Gaussian random

variable, a statistical model-based VAD has been successfully proposed. Recently, S.

Gazor et al. [24] proposed a VAD that uses a Laplacian distribution model for speech

and outperforms the previous VADs that use a Gaussian model. Those algorithms,

however, require extensive training of a Hidden Markov Model with the set of speech



prototypes to be encountered. In general, different applications need different
algorithms to meet their specific requirements in terms of computational accuracy,

complexity, robustness or sensitivity, response time, etc.

1.5 Objectives

Even if the noise is generated from a computer, an air conditioning system, or an
automobile are not perfectly stationary. In practice, the background noise level usually
varies with time. In this dissertation we mainly focus to propose a set of robust feature
parameter for sufficiently characterizing speech .signal even in variable noise level
and/or in low SNRs. In addition to feature extraction, the adaptive threshold strategy
is also considered as a VAD decision to adapt to:.the changes of the noise conditions.
Enclosed herein we suggest a recursive-averaging based noise estimator containing
the above-mentioned VAD to estimate noise spectrum continuously, quickly and

accurately when existing a rapidly increasing noise level.

1.5.1 Frequency band analysis for voice activity detection using a measure of
banded spectral entropy
The nature of banded lines on voice spectrogram generated from formant frequency

band is a highly efficient, compact representation of the time-varying characteristics



of speech, especially for voiced sounds. Making good use of the representation, we

can determine the detection of voice activity. In fact, the darkness of the

corresponding spectrogram reacts where high powers concentrate. Through frequency

band analysis, the input signal is firstly decomposed into 32 uniform subbands. The

representation of peak and valley within subband power indicates the existence and

absence of banded lines. Comparing with other feature parameter given from energy

level, a measure of entropy defined in subband domain, regarded as banded spectrum

entropy (BSE), is then presented to exploit the inherent nature. In practice, the BSE

can be invalid when some subbands can be corrupted by noise. To avoid considering

the harmful information resulting in erroneous detection of voice activity, an

automatic band-selection method is approptiate to perform well in on-line, called

subband self-extraction (SSE). In addition, the ratio of low-band energy to full-band

energy (RLF) is presented to discriminating the unvoiced sound from background
gy p g g

noises for compensating the limitation of entropy-based measure for modeling

unvoiced sounds. Finally, the first approach for determining voice activity is regarded

as entropy-based VAD algorithm.

1.5.2 A Noise Estimator with Rapid Adaptation in Variable-Level of Noisy

Environments



Enclosed herein we propose a method for tracking the noise spectrum quickly, even

when the noise levels suddenly increase. An explicit use of speech/silence detection is

needed for estimating noise spectrum. So, the entropy-based VAD mentioned-above is

used to continuously classify each frame of speech into the voice active/absent frames,

and the noise spectrum estimate is updated using constant smoothing factor for voice

absent frames and a time-frequency dependent smoothing factor for voice active

frames. The time-frequency dependent smoothing factor is chosen as a Sigmoid

function that changes with the voice present probabilities in frequency bins. The voice

present probability is determined by computing'the ratio of the noisy speech power

spectrum to its local minimum.-To speed up -the minimum tracking, a fast method for

tracking the minimum of the noiSy speech power spectrum is presented. Additionally,

to allow detection with entropy-based VAD under colored noise conditions, we

propose to subtract the current spectrum by the estimated noise spectrum iteratively

from the previous frame.

1.5.3 Voice activity detection based on wavelet analysis using a measure of

auto-correlation function and Teager energy operator

To further exploit the transient components and non-stationary property for

extracting speech signals, the alternative VAD approach is based on wavelet analysis.

10



In this method, the structure of three-layer wavelet decomposition is utilized to

decompose speech signal into four non-uniform subbands here. In general, the

well-known ‘“Auto-Correlation Function (ACF)” is commonly used to detect

periodicity of speech. Herein the ACF is defined in subband domain and then called as

“subband auto-correlation function (SACF)”. In fact, the voiced sound has more

significant periodicity than unvoiced sound and noise signal and the periodicity

almost concentrates low frequency bands. So, we let the low frequency bands have

high resolution to enhance the periodic property by decomposing only low band on

each level. In addition, a nonlinear,Teager energy.operator (TEO) is then utilized into

each subband signals. We show-that the TEO can enhance the discrimination between

speech and noise, and TEO is beneficial for the result of auto-correlation function

(ACF) since it can provide a better representation of formant information.

Finally, to count accurately the intensity of periodicity on the envelope of the SACF

on each subband, a Mean-Delta (MD) method [47] is utilized on each subband. So,

the sum of Mean-Delta values of Subband Auto-Correlation Function (MDSACF)

derived from the wavelet coefficients of three detailed scales and one appropriated

scale is defined as a new robust feature parameter and called as “speech activity

envelope (SAE)”. Comprising an adaptive threshold strategy, a robust wavelet-based

VAD approach is further presented for extracting the boundary of voice activity
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especially in variable noise level and low SNRs.

1.6 Organization of This Dissertation

The dissertation is organized as follows. In Chapter 2, we would illustrate the
derivation of the two measures of BSE and RLF. In addition, a subband
self-extraction (SSE) strategy is shown to automatically select useful information on
some subband for compensate a complete measure of BSE. Afterwards, Chapter 3
would state a noise spectrum estimator with rapid adaptation algorithm for highly
non-stationary noises. The above-mentioned VAD will be modified to employ into a
noise spectrum estimator as an-indicator of updating noise. Continuously, Chapter 4
presents the alternative VAD approach'based on wavelet analysis for detecting voice
activity. The Teager energy and mean-delta (MD) operators are respectively employed
into auto-correlation function (ACF) of each subband to form a new SMDSACF (sum
of mean delta of subband auto-correlation function) parameter. Ultimately, Chapter 5

summarizes our conclusion and gives some future developments.
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CHAPTER 2

FREQUENCY BAND ANALYSIS FOR VOICE
ACTIVITY DETECTION USING A MEASURE
OF BANDED SPECTRAL ENTROPY

The formant frequency representation is a highly efficient, compact representation
of the time-varying characteristics of speech, especially for voiced sounds. In addition,
the magnitude arrangement of spectral response during formant frequency is relatively
important for characterizing speech signals. The so-called Banded Spectral Entropy
(BSE), which is a measure of spectral entropy defined in subband domain, is then
presented for extracting voice activity. In fact, noises can focus on some subbands to
contaminate the useful information that results in error decision of detecting voice
activity with BSE. In order to compensate this finds, a method of automatically
selecting subband is then presented to meet the requirement, which is regarding as

subband self-extraction (SSE). Besides, the ratio of low-band energy to full-band
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energy (RLF) is presented to discriminating the unvoiced sound from background

noises since entropy-based measure can provide only for detection of unvoiced

sounds.

2.1 Introduction

A feature parameter that can sufficiently characterize speech signals or be robust

against the highly noisy environments is relatively required. So far, the current

algorithms are based on short-time or spectral energy, zero-crossing rate (ZCR) and

duration parameters [25]-[27]. All.of these parameters, however, are rather sensitive

to noise and cannot fully specify the characteristics of a speech signal. For example,

the energy-based parameter and ZCR are not sufficient to distinguish a speech from a

noise at low SNRs. In particular, the ZCR is very sensitive to various types of noise.

Several other parameters have also been proposed, including linear prediction

coefficients (LPCs), Cepstral coefficients and pitch [9], [11], [14]. Although these

parameters are quite effective in expressing the characteristics of speech signals, the

performance of VAD using such parameters remains poor in adverse environments.

The reliability of the LPCs has been observed to depend strongly on the noise in

adverse environment. Pitch information can help to detect speech; even so, extracting

the correct pitch in noisy environments is difficult. Additionally, some algorithms
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cannot be implemented for practical applications due to their high computational

complexity, even though they perform well [28]. Among such approaches, however,

Junqua et al. [29] proposed a time-frequency (TF) parameter to detect speech, which

assumes that frequency information in the frequency ranges 250-3500 Hz is less

contaminated by noise. The TF parameter is composed of both frequency energy in

the fixed frequency bands and time energy. Based on the motivation that the

frequency energies of various types of noise are concentrated in different frequency

bands, Wu et al. [7] used the multi-band technique to analyze noisy speech signals,

and then proposed an adaptive  band-selection (ABS) method to cancel noise

effectively by selecting useful -bands. An adaptive time-frequency (ATF) parameter

extended from TF parameter was proposed by them:

Although the ATF-based algorithm outperforms several algorithms commonly used

for detecting voice activity in the presence of various types of noise, it cannot be

reliably implemented in practical environments. It is found that the selection of useful

bands depends on the information of an entire recorded signal. Additionally, the ATF

parameter is also energy-based parameter and therefore less reliable in the presence of

non-stationary noise or in a changing noise level. J. L. Shen et al. [30] firstly used the

entropy-based parameter to detect speech signals. Their study indicated that the

spectral entropy of a speech segment differed significantly from that of a noise
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segment. In fact, the result of spectral entropy relies on the variance of spectral

magnitude to distinguish a speech signal from a noise signal, but the variance of

spectral magnitude depends strongly on the noisy environments. L. S. Huang [31]

integrated both the time energy and spectral entropy to form a new feature parameter

(EE-feature), since the spectral entropy failed under multi-talker babble and

background music, but the energy performed well because of its additive property: the

energy of the sum of speech plus noise always exceed the energy of noise. Although

the EE-feature parameter proposed by L. S. Huang improved the endpoint detection

under babble noise, it is unreliable?when the noise level greatly exceeds the speech

level.

The appearance of banded line on voice spectrogram resulted from formant

frequency is a highly efficient, compact representation of the time-varying

characteristics of speech, especially for voiced sounds. Since the locations of banded

lines reveal that high powers concentrate on the some frequency bands, the band

decomposition is used for locating formant frequency components by obtaining peaks

while non-formant frequency components are characterized by obtaining valleys. It

has been sufficient to display the location of power of formant frequency when the

bandwidth of each subband is approximately 125 Hz [8]. A measure of entropy is

defined in subband domain and is regarded as banded spectrum entropy (BSE)
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parameter. In fact, the magnitude arrangement of spectral response during formant

frequency is alternative relatively important factor for characterizing speech signals.

So, a set of weighting factors among those subbands are also employed into BSE

measure to discriminate the magnitude arrangement between speech signals and noise.

According to the experimental result from Wu et al. [7], some subbands contaminated

by noise can provide harmful information resulting in error decision of voice activity

detection (VAD) with BSE. So, an automatic band-selection method derived from the

refined version of the adaptive band selection (ABS) method proposed by Wu et al. is

preferable to perform well in on-ling, called subband self-extraction (SSE). In order to

compensate the limitation of BSE measure for modeling unvoiced sounds, the ratio of

low-band energy to full-band “energy (RLF) is-presented to discriminating the

unvoiced sound from background noises.

This Chapter 2 is organized as the followings. Section 2.2 will introduce the theory

of entropy. What is the motivation of using the entropy measure to describe the nature

of banded lines on voice spectrogram? Additionally, the proposed feature parameters

are stated, respectively. In Section 2.3, we derive the so-called subband self-extraction

(SSE) method, which is extended from ABS and can adaptively select useful bands in

on-line. And then, the procedure for implementing the proposed entropy-based VAD

algorithm based on the measures of BSE and RLF and the strategy of SSE is outlined.
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Section 2.4 discusses the performance of the proposed VAD algorithm under various

noise conditions and compares its performance with that of ATF-based one. Finally,

Section 2.5 summarizes the findings and discusses possible directions for future work.

2.2 The Robust Feature Parameters

This section introduces the theory of entropy and further shows the motivation of

using the entropy for detecting speech. In addition, the robust feature parameters will

be illustrated herein in detail.

2.2.1 Motivation

Fig. 2-1 displays that the waveform of a mixed signal comprising vehicle noise,

multi-talker babble noise, factory noise, speech, and white noise and the

corresponding spectrogram. Regarding to Fig. 2-1 (b), the voice-active spectrogram is

dominated by the inherent nature of banded lines (or called formant traces). It is

found that the nature is able to sufficiently discriminate speech signal from

background noise. Fig. 2-2 displays the spectrograms of clean speech and noisy

speech with four kinds of noise at 0 dB. In this figure, the nature of banded lines on

voice spectrogram is seen to be existed against various types of additive noise. So, the

formant frequency representation is a highly efficient, compact representation of the
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time-varying characteristics of speech. The following statements will show how to use
the representation of banded lines to detect voice activity by using a measure of
entropy.

Entropy, firstly used in information theory by C. Shannon [32], is regarded as the
amount of information that must be provided about a random signal x in order to
specify it uniquely. It measures the degree of organization (uncertainty) of the signal
and is defined by

H(x)= ) P(x,)-log[l/P(x,)], 2-1)

where x={x,} and P(x,) i the probability of x, .

0<k<N-1

How to use the definition of entropy for characterizing speech signal? Regarding to
Fig. 2-3, the waveform of a Mandarin‘digit “cight’ uttered by native speaker and the
corresponding spectrogram are shown in Fig. 2-3(a)-(b), respectively. Since the pitch
varies continuously within a speech segment for speech production, the banded lines
on voice-active spectrogram are also continuous. When such a clear set of banded
lines exist in some frequency bands for a long enough time, the voice activity can be
quite certainly presented [33]. Fig. 2-2(c)—(d) show the spectrum magnitude of voice
activity obtained by the short-time Fourier transform (STFT) over a solid-line region

in Fig. 2-3(a) and that of voice inactivity obtained segment by STFT over a
g y

dashed-line region in Fig. 2-3(a), respectively. Inspecting the difference between the
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spectrum magnitude of voice activity and that of voice inactivity, we can regard that
the amount of variance (uncertainty) from the spectral magnitude during voice activity
indeed exceeds that during voice-inactivity. Consequently, a measure of spectral
entropy can be used for discriminating the spectral difference between during voice

activity and during voice inactivity even if noise level is greater than speech level.

2.2.2 A Measure of Conventional Spectral Entropy (SE)

J. L. Shen et al. [30] firstly used a measure of entropy for detecting speech
segments under adverse conditions.'The measure.was defined in spectral domain and
named as spectral entropy (SE).-Their experimental results have been revealed that the
result of SE during voice activity differs from ‘that during voice-inactivity. The
deviation for calculating SE parameter is described as follows.

The STFT of a given time frame s(n,/) is accomplished by

N, -1
X(w,l)= Z W(n)-s(n,0)-exp(-=j2zewn/N,), 0<o<N, -1, (2-2)

=0
where X(w,l) represents the spectral magnitude of the @™ frequency bin of the
[" frame. N, is the total number of frequency bins in STFT for each frequency
frame. W(n) is a Hamming window. The spectral energy of each frame,

X, . (o,]),1s described as follows.

energy

X e (@.1) =|X(0,D|", 0<@ <N, /2-1. (23)
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Then, the probability associated with each spectral energy component, P(i,/), can

be estimated by normalizing:

Xenergy (k’ Z)

N, /2-1

Z Xenergv (Cl), l)

w=1

P(k,0) = , 0<k<N, /2-1. (2-4)

Following normalization, the corresponding SE, H(/), is defined as follows.

N, /2-1

H()= Z P(w,l)-log[1/ P(w,])]. (2-5)
o
2.2.3 A Measure of The Proposed Banded Spectrum Entropy (BSE)
In fact, the SE measure performs well in white or quasi-white noise, but fails in
colored noise. The magnitudé associated with® each frequency bin is easily
contaminated by noise. This “results “in" degradation of the efficiency of VAD
performing in seriously low SNRs. So, frequency band analysis is employed into a
measure of SE for improving the robustness.
Next, we decompose the input signals into 32 uniform subbands. The subband

energy, E,(m,l),1s given by

(n1—1)xNW/2+[N“’/2—1]
Nh b

E, (m,])= > X, . (0,0, 1<m<N,, (2-6)

energy
N, /2

b

w=(m—1)x

where N, is the number of total decomposed subband on each frame. The limits of

the summation denote the boundary of each subband. For example, if m = 1", the

boundary of the first subband means that &£ 1is 0 to 3.
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Consequently, we modify (2-4) as (2-7) shown as below:
Ny,
P, (m,l)=E,(m,l)| Y E,(k,l), 1<m<N,. (2-7)
k=1

where F,(w,l) is the probability associated with band energy.

Then, the measure of banded spectral entropy (BSE), H,(/), is given by

H, (1) =%B,(m,l)-10g[1/3,(m,l)]- (2-8)
el

In fact, the magnitude arrangement of spectral response during formant frequency

is alternative relatively important factor for characterizing speech signals. So, the
order of subband power must be considered for describing the magnitude arrangement.
The well-known measure of entropy, however, cannot indicate a distribution (spatial
information) of the data sequence. Fig. 2-4 denotes the power distribution of all
decomposed 32 subband during voice-active frames and voice-absent frames. It
illustrates that the classical spectral entropy is not able to discriminate the difference
between the duration of speech and the duration of non-speech for the distribution of
subband energy. The distribution of subband energy during a speech segment and that
during a non-speech segment are shown in Fig. 2-4(a) and Fig. 2-4(b). Measuring on
the two kinds of distributions of subband energy by spectral entropy, we can get the
same logarithmic BSE value ( H=21.9601). Major cause is resulted form the invalid

description in the nature of banded lines on voice-active spectrogram.

To solve this problem, a set of weighting factors W (m,/) among those subbands
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are employed into BSE measure to discriminate the magnitude arrangement between

speech signals and noise.

D)= ¥ (e~ =y 2 e (2-9)
,_min[B)
"B (m-1,1)
o = minlBO] (2-10)
" RmD

_ min[R(D)]

" P (m+1,1)’

where e, means the biased energy of subbands. W(m,[) represents the variance
amount among the three biased energy of subbands. min[F, (/)] is the minimal
spectral energy among all 32 subbands and regarded as a normalized factor. If
W(m,l) on the m" subband s great, this"implies that the banded line may be
located around these subbands from the (7 —1)" subband to the (m+1)" subband.
Conversely, if the W(m,l) value is low, it indicates that the banded line is not
located on these subbands. By using the set of weighting factors W (m,/), the
magnitude arrangement of spectral response can be explicated the nature of banded

lines on voice-active spectrogram and (2-8) is modified as (2-11) as follows:
Ny,
H,,(Z):ZW(m,l)-BJ(m,l)-log[l/B)(m,l)]. (2-11)
m=1

Fig. 2-5 clearly indicates that the proposed BSE parameter, using the method of

band decomposition and a set of weighting factors W(m,l), more sufficiently

characterizes the speech signals than other entropy-based parameter so that SE
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parameter proposed J. L. Shen et al. [30].

In fact, the frequency energies of difference types of noise are concentrated on
different frequency bands [7], as shown in Fig. 2-6. This observation demonstrates
that the subbands with larger noisy energy more contaminate the useful frequency
information than do the other bands. The bands with larger noisy energy can be
regarded as harmful subbands afterworld and must be discarded accurately to yield
more accurate frequency information. Although the BSE remains a good feature
parameter, the detection sometimes fails at seriously low SNRs, especially when
relatively harmful bands are inveolved. How to. discard the harmful subbands or
preserve the useful subbands becomes a serious task. The number of harmful bands
(or useful subbands) is relatively.related to the background noise level [7]. To easily
estimate the background noise level, we extend the MiMSB parameter [34] to
adaptively choose one subband with minimum energy for estimating the varying noise
level roughly. Regardless of changing level of noise, a normalized minimum band
energy (NMinBE) parameter is proposed to estimate the background noise level for
precisely deciding the number of useful subbands. The NMinBE parameter is

determined as follow:
N,
NMinBE(/) = —log[min {Eb (m, l)} / Z E, (m,l)], (2-12)
m=1

where the min{-} operator selects the minimum band energy among all 32 subband
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energies for a given frame, and log[-] is the logarithmic operation. The number of
useful subbands, N, (/), required to yield reliable information. Fig. 2-7 displays the
(/) and NMinBE(/).

relation between N

ub

30 NMinBE(/) < 5;
N,()= [36.5-1—%]3]:)(1)&4—30)] 5<NMinBE(/)<25; (2-13)
4 otherwise.

It is observed that a large N_,(/) should be used at a low noise level
(corresponding to a high SNR), and a small N, (/) should be used at a high noise
level (corresponding to a low SNR). According to (2-13), for the [ frame the first
(32-N, (1)) frequency bands with:larger energies are adaptively selected to remove
noise component. Finally, the measure of BSE parameter with a strategy of extracting
the useful subband is achieved by:the follows:

Ny ()
H,(l)= Z W(m,l)-PF,(m,l)-log[1/ B,(m,[)). (2-14)
o

The variable noise level and the varying statistics of noise, in general, results in a
varying N, (/) over an entire signal. According to the relationship between N, (/)
and noise level described in (2-13), we can evaluate the efficiency of a strategy of
extracting the useful subband on a measure of BSE. Fig. 2-8(a) and 2-8(b) plots the
waveform of someone’s saying the Mandarin digit “eight” with increasing-level of

factory noise and the corresponding spectrogram, respectively. The voice activity is

not easily detected in an adverse environment due to a measure of BSE involving
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some harmful subbands, as shown in Fig. 2-8(c). Regarding to the Fig. 2-8(d), it is
shown that the proposed NMinBE parameter can reflect the variation of noise level.
According to the relation in Fig. 2-7, the number of useful subbands can be
determined as shown in Fig. 2-8(e). Fig. 2-8(f) displays that a measure of BSE with a
manual extraction of useful subbands can greatly improve the performance of
detecting voice activity, especially at variable level of noise. Consequently, how to
automatically extract useful subbands with time is crucial and discussed in next

section.

2.2.4 The Ratio of Low-band Energy to Full-band Energy (RLF)
Unlike voiced sounds, unvoiced sounds do not-have any component of formant
frequency. By measuring the energy level, the unvoiced sound is difficultly
discriminated from background noise. The majority of unvoiced sounds, however,
display string spectral concentration in higher frequency range. The background noise
display uniform spectral distribution, It is possible to distinguish between
speech-active and background noise by examining the distribution of energy along the

frequencies. Low-band energy, E, (/), measured on the below 1000 Hz, is computed

ow

as follows:

w=r/4 2

E, () =10xl0g( Y77 X, (@), (2-15)
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where X is obtained by ignoring the harmful subbands.

energy

Similarly, full-band energy, E,,(/), measured on entire frequency bandwidth
(0~4000 Hz), is given by
E (D = IOxlog( T R s (@ 1)). (2-16)
So, the ratio of low-band energy to full-band energy, R,(/), is given by
R, ()= % (2-17)
Jull
2.3 The Proposed Entropy-based VAD Algorithm
According to [26], the required characteristics of an ideal voice activity detector are
reliability, robustness, accuracy, |adaptation, simplicity and real-time processing.
Although some existing VAD algorithms are extremely accurate, they all depend on
complicated computation and are not reliable in real applications. For example, Wang
et al. [28] proposed a robust algorithm based on wavelet analysis, but it indeed
performs in off-line. E. Nemer ef al. [20] used higher-order-statistics (HOS) parameter
to detect speech, but the calculation of this parameter required too much computing
time. Wu et al. [7] suggested an adaptive band-selection (ABS) method, which can
select useful bands automatically, as noise cancellation to perform ATF parameter
well. However, the execution of ABS method depends on the obtainment of all

information from the entire recorded signals. Although those algorithms are
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inappropriate for practical implementation, some ideas related to those algorithms are

adopted herein. The ABS method proposed by Wu et al. [7] is strong with respect to

noise cancellation. The ABS was used to preserve the useful bands (or discard the

harmful bands) for each frame, but the execution of band selection depends on entire

recorded signal. The drawbacks of ABS are thus as the following:

-- Firstly, the decision of band selection is not immediately determined. Since the

method is an off-line strategy, its decision must be determined by analyzing an

entire recorded signal.

-- Secondly, the indexes associated with the harmful bands vary with time for

entire recorded signals in practice. However, Wu ef al. assumed that the indexes

of harmful bands were fixed: This‘assumption does not hold.

So, how to detect whenever the index of harmful bands vary with time is relatively

required. Regarding to the Fig. 2-8(f) again, we observe that the selected subbands are

not contaminated by noise. The corresponding BSE value in voice absence is small

and smoothly and slightly varies with time as comparing with Fig. 2-8(c). Conversely,

regarding to Fig. 2-8(c), the selected bands are contaminated by background factory

noise. However, the entropy value in voice absence is large and its variation is also

violent. In the conclusion, it reveals that the determined entropy value is quite large

and violently varying whenever the considered subbands include harmful subbands;
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the determined entropy value is small and its variation is very smooth if the
considered subbands do not include harmful subbands. This finding provides a hint

about how to detect whenever the indexes of harmful bands vary with time.

2.3.1 An Adaptive Threshold Method

In order to extract the harmful subbands automatically, an adaptive thresholding
not only provides a decision of VAD, but also determines what time is execution of
selecting the useful subbands. Herein, an adaptive threshold with minimal processing
delay [35] is employed to on-line work. The work of adaptive threshold method used
for a VAD decision is illustrated as below. To adapt-to time-varying characteristic of
noise, the detection method must sets'an adaptive-threshold to classify voice-active
frames or voice-absent frames. During a short period of initialization, the mean and
variance of the logarithmic value of BSE measure is estimated over voice-absence
after manual extracting useful subbands. The adaptive speech threshold, 7., is
initially computed from the local noise statistics shown as below

IL=p+a-o, (2-18)

where ¢ and o are the mean and variance of the logarithmic value of BSE
respectively, and « is an adjustment coefficient determined in experiment.

Then, the threshold 7 is compared to the value of logarithmic BSE of the previous

N
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frame. Whenever the difference surpasses a specified threshold, voice-active frame is

detected. If a given frame is detected to fall in a non-speech period, the speech

threshold 7, is updated.

During voice activity, we remain the speech threshold until voice absence. The mean

and variance of the logarithmic value of BSE measure are updated as follows.

My =P-u+1=5)-H, (1), (2-19)

O-new = \/‘H[imean (l) - /’ljew ’ (2_20)

H; oo D) = B Hy o (=D + (1= ) H (1), (2-21)
2 1 k=init | period: s . >

Hb,mean (l_l) = —Zk:l Hb,mean (l_k) s (2_22)

init _ period,

where [ is also experimentally determined:

Fig. 2-9 depicts that an adaptive threshold method is used as a VAD decision
performing in on-line. In this figure, an utterance of the Mandarin word for “one” is
together with the logarithmic value of BSE measure and adaptive speech threshold 7.
The results indicate clearly that the speech threshold 7, is updated in voice absence
and maintained in voice activity. In addition, it is found that the value of adaptive

threshold is indeed adaptive to time-varying noisy environment.

2.3.2 The Strategy of Subband Self-Extraction (SSE)

What time is execution of selecting the useful subband? In this subsection, the
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strategy of subband self-extraction (SSE) used for automatically extracting the useful
subbands would be illustrated in detail. The execution of SSE depends on the fact that
whenever the value of logarithmic BSE exceeds the adaptive threshold. If the value of
logarithmic BSE exceeds the adaptive threshold, it means two kinds of probabilistic
results. One is that the voice activity is detected. Other is error of VAD detection
resulted from the consideration of harmful subbands when computing a measure of
BSE.

An indicator for execution of band extraction (EOBE) parameter is used to stand for
binary decision of performing band’selection oneach frame. The EOBE is defined as

follows.

high  H, (1) > T

] (2-23)
low otherwise.

EOBE = {

If indicator of EOBE is low for a given frame, it implies that the considered
subbands do not include any harmful subbands and the indexes of harmful subbands
within noise power do not vary violently with time. In general, the indexes can be
maintained from the previous frame to the current frame until EOBE is high so that
the task of harmful subbands detection cannot be executed which results in significant
decrease of computing complexity. Similarly, if indicator of EOBE is high for a given
frame, it implies that the considered subbands maybe include some harmful subbands

resulting in an abrupt change in contour of BSE. The indexes of harmful subbands
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maybe vary violently with time so that the task of harmful bands detection is
performed right now.

Fig 2-10 illustrates the SSE strategy in detail. When the current BSE value with the
previous estimated useful subbands exceeds the adaptive threshold 7., one of two
possibilities obtains: one implies that the voice activity is detected, and another means
that the BSE value in error due to the inclusion of harmful subbands so that the
harmful bands must be detected again. If the re-detected BSE value remains greater
than 7, the voice-active frame is detected and 7, is not updated. Conversely, if the
re-detected BSE value is indeed lessithan 7, itrmean that the voice-absent frame is

detected and 7, must be updatedsIn additien, we further assume that the subbands

where noise is concentrated are the same as in the previous frame.

2.3.3 The Block Diagram

The proposed entropy-based VAD algorithm is diagramed in Fig. 2-11 and each of
VAD is illustrated in detail.
1) Decomposition of 32-uniform subband:
For the frequency band analysis, the input noisy speech is decomposed into 32
uniform subbands as preprocessing of developing a robust feature parameter.

2) Computation of a set of weighting factors:
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When formulating a measure of BSE, we exploit the magnitude arrangement to

discriminate the ambiguity between the short-time spectral magnitude during voice

activity and that during voice-inactivity

3) The strategy of subband self-extraction (SSE):

In fact, some subbands can be contaminated by noise to result in the harmful

information for detecting voice activity. So, automatically extracting useful subbands

via the result of adaptive thresholding (AT) would avoid the occurrence of error BSE

value.

4) The computation of BSE measure:

After the computation of a set of weighting factors and excitation of SSE strategy on

each frame, a measure of entropy.is defined in the selected subbands.

5) The computation of RLF measure:

By ignoring the estimated harmful subbands, the robust RLF measure can be reached.

Regarding to Fig. 2-12, it illustrates more detail for the configuration of proposed

entropy-based VAD.

6) An adaptive thresholding (AT):

Performing AT strategy to adapt the two thresholds to time-varying statistics of noise,

the boundaries of voiced and unvoiced sounds are detected.

A voiced sound flag, f, is set by the following equation,

33



£ e I, if HO)>T, (2-24)
"0, otherwise.
In addition, a unvoiced sound flag, f, , is set according to following equation
f;w _ 0, lf ]—;/q S Rgf (l) < T['fZ (2-25)
I, otherwise

where T, and T, are the adaptive thresholds for unvoiced and voiced speech,

respectively.

Fig. 2-12 shows the result of RLF measure tested in recorded speech sentence /start/.

It is can be seen that the existence of the unvoiced sound in phoneme /s/. Fig. 2-13

states the process of developing the two feature parameters more clearly.

7) The VAD Decision:

Using (2-24) and (2-25) the VAD result' of the proposed method is now given by
vAD() = f,(Dv £,,(D) (2-26)

The zero and non-zero of VAD result mean the voice-inactive frame and voice-active

frame, respectively.

2.4 Evaluation
To evaluate the proposed VAD algorithm comprising the two measures of BSE and
RLF, the recorded signal is tested in four kinds of noise including vehicle, multi-talker

babble, factory, and white noises taken from the NOISEX-92 database [49] at various
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SNRs. In addition, the probabilities of correct and false detection are used as objective
measurement and defined as bellows:

--Probability of correctly detecting speech frames, P : computed as the ratio of
correct speech detections to the total number of hand-labeled speech frames.
--Probability of falsely detecting speech frames, P: computed as the ratio of falsely
classified speech frames to the total number of hand-labeled speech frames.

In the following experiment, the speech corpora are collected from MAT (Mandarin
across Taiwan) database including a set of isolated utterances of the ten digits in
Mandarin. The sampling rate was §°&kHz and the’speech was stored as 16-bit integers.
The decomposed band size N, =32, window size- N, = 256, and overlap size =
N,/2. The recordings are also tested in a real car environment with musical

background noise.

2.4.1 Artificially Added Noise

The four noise signals were added to the recorded speech signals with different
SNRs (the SNRs is herein defined as the ratio of the power of the entire recordings
containing silence and voice parts to the power of additive noise) including -5 dB,

0dB, 10 dB, and 40 dB to generate noisy speech signals. Using these various types of

noise and different SNRs, the P, and Py of proposed algorithm were compared
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with those of the ATF-based algorithm. TABLE 2-I displays the comparisons between

the presented entropy-based and ATF-based VADs. It is clearly found that the

proposed entropy-based VAD algorithm is superior to the ATF-based algorithm,

especially at low SNRs. At high SNRs the ATF-based algorithm performs as well as

the RABS-BSE-based one; however, at low SNRs the ATF parameter related to pure

energy-based feature is no longer valid. Although ABS associated with ATF-based

algorithm claims that it can extract useful subbands, the claim cannot reflex the

correct information within the selected subbands. In addition, the indexes of the

harmful subbands from ATF-basedVAD are assumed to be fixed with time, and this

assumption is incorrect so that the performance of ATF-based VAD is seriously

degraded under adverse conditions. Using the measure of spectrum entropy defined in

subbands, the nature of banded lines on voice spectrogram can be exploited and

further classified voice-active frame or voice-absent frame. For vehicle and white

noises, whose frequencies are spread simply over the spectrum, the proposed

algorithm is superior to the ATF-based one. Especially for white noise, it is proved

that the VAD based on spectral entropy performs well in this case. Besides, the two

types of noises have no any prominent banded lines on the corresponding voice

spectrograms. The factory noise is also same as described above. The babble noise is

pronounced by multi-talker, but the nature of banded lines of babble noise is weaker
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than that in speech signal. Our experimental result shows that the proposed
entropy-based VAD algorithm still successfully outperforms the ATF-based algorithm
under babble noise. For the average probability of correct detection of speech frames,
P, the proposed algorithm exceeds the ATF-based algorithm by around 8.73%.

C

Similarly, for the average probability of false detection speech frames, P, the

/S’

proposed algorithm is less than the ATF-based algorithm by around 7.08%.

2.4.2 Recordings in a Car

To evaluate the effectiveness of the proposed feature parameter in a real
environment, the musical noise-is!generated-around the recordings in a real car. Fig.
2-14 shows the comparison between various types of feature parameter under musical
background noise inside a car. Fig. 2-14(a) displays an utterance in Chinese, “Guo Li
Chiao Tung Da Xue” made with musical background noise in a car. The
corresponding spectrogram also shows in Fig. 2-14(b) and clearly displays that the
banded nature appears only in voice-active spectrogram. Fig. 2-14(c) and 2-14(d)
demonstrate that the short-time energy and ZCR both fail in a car environment. Fig.
2-14(e) shows that the ATF parameter outperforms the other two due to that the ATF
parameter can extract useful frequency information by selecting proper subbands;

however, it is still a purely energy-based parameter so that the ATF parameter fails in
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a rapid increase of noise. Fig. 2-14(f) indicates that the BSE parameter is superior to

the other parameters, especially in a rapid increase of noise since BSE parameter

catches only the profiles of banded lines not their energy levels. In TABLE 2-II, the

proposed entropy-based VAD is compared with the ATF-based VAD [7] testing in

musical background noise within a car. The speech database used in the experiments

contains ten isolated controlled-commands in Mandarin Chinese produced by 15

native speakers. The employed speech recognizer is based on a DTW-based

recognizer. During the entire process, the car was moving and its radio was on. It is

observed that the total probability.of correct detection of the proposed algorithm is

greater than that of the ATF-based one by about 10:6%, and the total probability of

false detection of the proposed VAD algorithm is'smaller than that of the ATF-based

one by about 5.9%.

2.5 Discussion & Future Work

In Chapter 2, the objective mainly exploits the nature of the banded lines (or called

formant traces) on voice-active spectrogram to regard as a robust feature. Via

frequency band analysis, the inherent nature can be characterized by a measure of

entropy defined subband domain. In fact, some subbands can be contaminated by

noise to result in error of BSE value. Consequently, an on-line SSE strategy is used to
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automatically extract the useful subbands. So, the BSE parameter with an SSE

strategy can correctly detect the boundary of voice activity. In additional to the BSE

parameter, the alternative parameter, RLF (ratio of low-band energy to full-band

energy) is then presented to compensate the limitation of BSE for characterizing

unvoiced speech. Compare the presented parameter with others, it certainly provides a

reliable performance even in variable noise level. Experimental results show that the

proposed VAD comprising the two BSE and RLF feature parameters and adaptive

thresholding, which is used for a VAD decision and an indicator of executing subband

extraction, is prior to other VAD, especially at'low SNRs and at variable level of

noise.

However, the subband extraction is'either discarded or preserved. It is not good

enough to help the result of VAD. Although some subbands are contaminated by nosie,

they still offer some useful information. In future work, each subband has respective

weighting and the total weighting is 1. The weighting in harmful subband is lower

than that in useful subband. Due to that the SSE strategy assume the larger subband

power as harmful band, however this power is speech power (useful band) for a clean

signal. So, this false subband discard may reduce the accurate rate of detection. In this

case, the rate of correct detection can reduce to about 3%. Similarly, the rate of false

detection can increase to about 1.7%. According this find, an improved subband
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extraction for testing in a clean signal must be required.

In addition, the number of decomposed subbands is no longer fixed. The number of

decomposed subband, in practice, varies with time. So, the rough solution is that we

use a peak/valley detection on spectrum for each frame to locate the varying banded

lines.
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TABLE 2-1

COMPARISON BETWEEN THE PROPOSED ENTROPY-BASED VAD AND
ATF-BASED VAD [7] UNDER VARIOUS NOISE CONDITIONS

Noise Conditions

Proposed entropy-based VAD

ATF-based VAD [7]

Probability of correct Probability of false Probability of correct Probability of false

Type SNR(dB) detection, P (%) detection, Py (%) detection, P, (%) detection, Py (%)
40 98.4 1.2 96.5 1.8
Vehicle 10 94.2 39 86.3 9.8
Noise 0 91.3 4.6 85.1 143
-5 89.3 6.5 81.2 17.2
40 96.1 2.6 94.8 3.8
Babble 10 89.2 5.8 80.4 10.8
Noise 0 84.8 7.4 78.9 153
-5 79.6 10.4 69.4 21.2
40 97.9 2.1 95.5 3.2
Factory 10 91.7 4.6 83.4 10.5
Noise 0 86.3 7.8 79.3 15.1
-5 84.1 9.1 68.1 18.4
40 99.8 0.9 95.3 3.4
White 10 96.6 1.9 82.6 9.5
Noise 0 93.1 2.2 76.5 14.5
-5 91.9 29 713 18.4

Average 91.52 4.62 82.79 11.7
TABLE 2-I1

COMPARISON OF THE PROPOSED ENTROPY-BASED ALGORITHM AND ATF-BASED VAD
TESTING IN CAR WITH MUSICAL BACKGROUND NOISE

VAD types Total probability of correct detection, P (%) Total probability of false detection, P (%)
Proposed entropy-based 89.2 3.5
ATF-based VAD [7] 78.6 9.4
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Fig. 2-1 Inherent characteristic of banded lines (formant traces) only appears on
voice-active spectrogram: (a) Mixed signal waveform is composed of vehicle noise,
multi-talker babble noise, factory noise, and speech signal and white noises in turn. (b)

Spectrogram of the corresponding mixed signal.
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of Mandarin digit “eight”. (b) The continuous, banded lines only appearing on the
corresponding voice-active spectrogram. (¢) Spectrum magnitude of voice activity. (d)
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Fig. 2-4 Power distributions of all 32 uniform subbands with the same entropy
(logarithmic BSE=21.9601): (a) During voice-active frame. (b) During voice-absent

frame.
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CHAPTER 3

A SINGLE CHANNEL NOISE SPECTRUM
ESTIMATION WITH RAPID ADAPTATION
IN VARIABLE-LEVEL OF NOISY
ENVIRONMENTS

In this Chapter 3, a single channel noise estimation algorithm using only the power
spectrum of noisy speech is presented. The proposed method can track the noise
spectrum quickly, even when the noise levels suddenly increase. An explicit use of
speech/silence detection is needed for estimating noise spectrum. So, the
entropy-based VAD mentioned-above is used to continuously classify each frame of
speech into the voice active/absent frames, and the noise spectrum estimate is updated
using constant smoothing factor for voice absent frames and a time-frequency
dependent smoothing factor for voice active frames. Time-frequency dependent

smoothing factor is chosen as a Sigmoid function that changes with the voice-active
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probabilities in frequency bins. And, voice-active probability is determined by

computing the ratio of the noisy speech power spectrum to its local minimum. To

speed up the minimum tracking, a fast method is presented for tracking the minimum

of the noisy speech power spectrum. In addition, to allow detection with

entropy-based VAD under colored noise conditions, we herein propose to subtract the

current spectrum from the estimated noise spectrum of the previous frame.

3.1 Introduction

Most of the existing single channel noise estimations are slow in adapting to

increasing levels of noise. This-results in a perceptually annoying residual noise and

speech distortion in aspect of speech’enhancement. In general, noise estimation is

usually done by explicit detection of speech detection. However, this can be very

difficult in the case of varying background noise so that the background noise is

assumed to be related stationary between speech pause.

Martin [36] proposed a method of noise spectrum estimation that is based on

minimum statistics (MS). The noise spectrum is estimated by tracking the minimum

of the noisy speech power spectrum over a particular window. Furthermore, Cohen et

al. [37] introduced a minima-controlled recursive averaging (MCRA) method

extended from the MS to estimate the noise power spectrum using a smoothing
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parameter that is defined as the voice-active probability in the frequency bins. The

VAD is carried out by comparing the probability with a specific threshold and then

determines whether to update the estimate of the noise. However, its VAD decision

clearly depends on energy level and performs poorly when noise level is higher than

speech level. In addition, the noise estimation does not adapt quickly to a rapid

change in noise level. Recently, Lin et al. [38] developed an adaptive noise estimation

to easily implement. Its smoothing parameter can be chosen as a Sigmoid function

changing with posteriori SNR. However, the stability of posteriori SNR is sensitive to

a variable noise-level. So far, these’kinds of algorithms contain no explicit VAD and

their performances depend on the energy level: Accordingly, the noise estimation does

not adapt quickly in situations involving rapid change of noise level. To overcome this

problem, a noise spectrum estimation with rapid adaptation in variable-level of noisy

environments is relatively required.

Enclosed herein we propose a method for tracking the noise spectrum quickly, even

when the noise levels suddenly increase. An explicit use of speech/silence detection is

needed for estimating noise spectrum. So, the entropy-based VAD mentioned-above is

used to continuously classify each frame of speech into the voice active/absent frames,

and the noise spectrum estimate is updated using constant smoothing factor for voice

absent frames and a time-frequency dependent smoothing factor for voice active
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frames. The time-frequency dependent smoothing factor is chosen as a Sigmoid

function that changes with the voice-active probabilities in frequency bins. And, the

voice-active probability is determined by computing the ratio of the noisy speech

power spectrum to its local minimum. To speed up the minimum tracking, an efficient

method extended from [52] for tracking the minimum of the noisy speech power

spectrum is presented. Besides, to allow the decision of entropy-based VAD under

colored noise conditions, we suggest that the current spectrum is subtracted from the

estimated noise spectrum of the previous frame. After the subtraction, the resulting

spectrum is similar to the white noise in voice=absence. In order to make sure of the

BSE and RLF values in the next frame well;"a subtractive-type method presented by

Berouti ef al. [39] is used heréin todecrease significantly the annoying “musical

noise” that is introduced by subtracting the estimated noise spectrum from the noisy

speech spectrum.

This chapter is organized as follows. Section 3.2 details the configuration of the

proposed noise estimation algorithm for quickly adapting variable noise level In

addition, the entropy-based VAD above mentioned is modified into the noise

estimation algorithm. Section 3.3 evaluates the proposed noise estimation algorithm in

variable noise level as comparing with others. Finally, Section 3.4 would summarize

the conclusions.
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3.2 Proposed Noise Estimation Algorithm

We use two different sceneries to update the noise estimate. The first strategy
updates the noise power spectrum during voice-absent frames, and the second strategy
updates the noise power spectrum during voice-active frames. In general, the noisy
speech can be denoted in time domain as

y(n) = x(n) +u(n), (3-1)

where x(n) is the clean speech and u(n) is additive noise.

First, the smoothing power spectrim of noisy:speech, P(w,/), can be given using
the recursive averaging formula-as follows:

2
s

P(w,0)=n-P(w,])+(1—-n){¥(o,1)

(3-2)
where |Y (a),l)|2 is the short-time power spectrum of noisy speech and 7 is a
smoothing constant determined experimentally.

Fig. 3.1 displays the flow diagram of the proposed algorithm for updating noise

estimate in detail.

3.2.1. A modified entropy-based VAD
A decision of voice-absent/active derived from entropy-based VAD in Chapter 2 is

regarded as an indicator of updating noise spectrum illustrated in Fig. 3.2 modified
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from Fig. 2-13. To allow detection with entropy-based VAD under colored noise
conditions, we propose to subtract the current spectrum from the estimated noise
spectrum of the previous frame. In order to make sure of BSE measured well in next
frame, a subtractive-type algorithm presented by Berouti et al. [39] is used here to
decrease significantly the annoying “musical noise” that is introduced by subtracting

the estimated noise spectrum from the noisy speech spectrum.

3.2.2. Update of noise spectrum during voice absent frames
The one scenery is that the noise estimate. is then updated with a constant
smoothing factor if the frame s classified as voice-absent frame. This rule can be

stated as follows
If 1())=1
Ul =a, - Ulw,l-)+(1-a)- Y (@) (3-3)

end

where /(/) denotes an indicator of updating noise spectrum. ¢, is a constant

smoothing factor. U(w,/) is the estimated noise power.

3.2.3. Update of noise spectrum during voice active frames
The alternative scenery for updating noise spectrum in voice-active frames is
depended on the voice-active probability in each frequency bin for each frame.

Tracking the minimum of the noisy speech spectrum, the ratio of noisy speech power
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to its local minimum is regarded as a voice-active probability in frequency bins. Then,
the probability is used to determine a time-frequency dependent smoothing factor
a,(®,1) according to a Sigmoid function as shown in next section. Eventually, the
estimated noise power is updated during voice-active frames.

U(a,0) = a,(o,0)-Uw,l-1)+(1-a,(o,0) Y (@) . (3-4)

3.2.3.1. Tracking the local minimum

To maintain the ability of quickly adapting to increasing noise level, we avoid the
constraint of any window length to track the local minimum. The minimum of the
noisy speech by continuously-averaging the past spectral values [52] is achieved

shown as below.
If P, (0,/-1)<P(w,l),
then P, (@,))=y-P  (0,]-1)+ 11_—; (P(w,l)- - P(w,l-1)), (3-5)

else P

min

(w,1)=P(w,l),

where P (w,l) represents the local minimum of the noisy speech power spectrum.

min

y and f are constants determined experimentally. The look-ahead factor S

controls the adaptation time of the local minimum.

3.2.3.2. The calculation of time-frequency dependent smoothing factor

After the tracking of local minimum, the time-frequency smoothing factor

61



a,(®,1) is then chosen as a Sigmoid function changing with voice-active probability

in frequency bins. First, the voice-active probability in each frequency bin is
determined using the ratio of noisy speech power spectrum and its local minimum [37]

defined as

P(w,l)

P (w,]) =m,

(3-6)
where P (w,l) is the ratio of noisy speech power spectrum and its local minimum.
Referring to Fig. 3.3, it is clearly displayed that the time-frequency dependent

smoothing factor changes with the voice-active probability on each frequency bin.

The time-frequency dependent smoothing factor is given by

1

—k-(P,. ((u,l)—T((u)) 2

a, (o) = | (3-7)

+e
where T(w) 1is the frequency dependent threshold whose optimal value is

determined experimentally. % is a curve ratio generally defined in experiment.

3.3 Experimental Results

To evaluate the availability of the proposed noise approach, we test the tracking
capability of the noise estimator and measure the segmental relative estimation error
given types and levels of noise. Four additive noise types are discussed in Chapter and

are taken from the Noisex92 database. They are White noise, Vehicle noise, Factory
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noise and Babble noise in turn. The speech database is sampled at 8000 Hz and
linearly quantized at 16 bits per sample.

Fig. 3-4 shows a comparison between MCRA [37] and our proposed noise
estimation for the case where there was a sudden increase in noise power level. Fig.
3-4(a) depicts a noisy speech sentence /May I Help You?/ spoken by a native man.
The additive Factory noise suddenly increases in 23000” sample (or 2.875 sec). The
corresponding spectrogram shows in Fig. 3-4(b) is found that the inherent nature of
banded lines is robust against the change of noise-level. Fig. 3-4(c) plots the tracking
capability between MCRA [37] andiour proposed.noise estimation. From the figure it
can be seen that the proposed noise estimation for estimating noise (for single
frequency bin @ = 60 ) can track fast changes in the noise-level as comparing MCRA.
In addition, the noise estimated by the proposed method (thick-line) is closer to the
ideal spectrum (dotted-line) than that estimated by the MCRA (broken-line). An

objective measure of segmental relative estimation error (SegErr) is defined by

|y 20@h-U(@DF

E —- [2)
SegErr N ; ZUz(a),l)

: (3-8)

where N, denotes the number of frames in recorded signal. U and U are
estimated and real noise powers.
Table 3-1 shows the outcomes of the SegErr measured by the proposed estimation

method for four noise types with the SNRs range [-5 to 40dB]. The proposed
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RMCRA approach is superior to the MCRA method over all SNRs. The S/N ratio in

each subband is depicted in Fig. 3-5. Comparison between clean speech and mixed

speech by adding a factory noise, it can be seen that the S/N ratios in lower frequency

band decrease greatly than that in other bands because factory noise mainly focuses in

lower frequency band. The distinct difference between ideal S/N and estimated S/N is

also usually occurred in lower subbands required more adaptive time.

3.4 Discussion

Compare to the MCRA, the proposed noiserestimation is superior because this

noise estimation algorithm contains an explicit VAD-scheme discussed in Chapter 2.

This chapter makes use of the“:employed VAD’s benefit of being robust against

variable-level in noise to update noise spectrum. In addition, two sceneries are

respectively used to accurately update noise power when being voice-active or

voice-absent frames. Unlike MCRA, the adaptation of this time-frequency dependent

smoothing parameter is not depended on a specific time window so that it can adapt

quickly. Experimental results illustrate that the proposed noise estimation adapts to

noise level faster than the MCRA.
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Table 3-1 SEGERR FOR FOUR NOISE TYPES AND LEVELS

‘White Noise Vehicle Noise Factory Noise Babble Noise
Input SegSNR [dB] | Propose | MCRA | Propose | MCRA | Propose | MCRA | Propose | MCRA
method method method method
40 0.062 0.098 0.085 0:138 0.089 0.139 0.102 0.158
10 0.061 0.084 0.078 0.129 0.086 0.132 0.098 0.146
0 0.058 0.081 0.069 0.115 0.076 0.118 0.087 0.127
-5 0.055 0.078 0.065 0107 0.072 0.109 0.085 0.114
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Compute smoothly the noisy speech
power spectrum  Pla,l)

Voice-active frame?

Compute ratio of noisy speech
power spactrum to its local
minimum 7 (@, [}

Update noise spectrum estimate
using constant smoothing factor

Obtaining a time-frequency dependent
smoothing factor Gy {0} via a Sigmoid
function

Update noise spectrum estimate using
time-frequency dependent smoothing
factor oy (a, )

Fig. 3.1 Flow diagram of the proposed algorithm for updating noise estimate.
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time Fourier Transform (STFT)
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l
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L—— Voiced Activity Decision [-———
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l

Estimating noise power spectrum
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Fig. 3-2 Flow diagram of a modified entropy-based VAD.
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Fig. 3-4 Tracking capability of the noise estimator tested in noisy speech with a

sudden increase in the level of factory noise.

68



—e— S/N ratio for clean speech
-=+- |deal S/N ratio for added factory noise
-+- Estimated S/N ratio for added factory noise

S/N Ratio (dB)
T

| | | | | | | |
00 1000 1500 2000 2800 3000 3800 4000
Frequency (Hz)

Fig. 3-5 The S/N ratio in each frequency subband (32 equally frequency bands):

(o)= clean speech, (+)= added factory noise, (*)= estimated noise.
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CHAPTER 4

VOICE ACTIVITY DETECTION BASED ON
WAVELET ANALYSIS USING A MEASURE
OF AUTO-CORRELATION FUNCTION AND
TEAGER ENERGY OPERATOR

According to the multi-resolttion “analysis' (MRA) property of discrete wavelet
transform (DWT), the dissimilarity among of voiced, unvoiced speech sounds and
background noises from wavelet coefficients can be discriminated sufficiently [53]. In
Chapter 4, the well-known auto-correlation function is defined in decomposed
subband and regarded as subband auto-correlation function (SACF) here. A nonlinear
Teager energy operator (TEO) is then utilized into each subband signal to decrease the
influence of noise on subbands significantly before computing SACF. Besides, the
other advantage of TEO is suitable for the result of SACF. To obtain the amount of

periodicity, a Mean-Delta (MD) operator is then applied into each of SACF. Summing
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up the all MDSACF’s values for each frame, a robust wavelet-based feature

parameterr, speech activity envelop (SAE) parameter, is then proposed. Finally, we

adopt an adaptive thresholding as a VAD decision. Compared to other two

wavelet-based approaches respectively proposed by S. H. Chen et al. [28],[40] and

Stegmann et al. [53], experimental results show that the proposed wavelet-based VAD

is prior to other two wavelet-based methods and can work in a dynamically varying

background noise. In addition, the proposed wavelet-based VAD is indeed an efficient

and simple approach for a determination of existence of voice activity..

4.1 Introduction

So far, those common feature .parameters used for the existed VAD are based on

averages over windows of fixed length or derived from an analysis based on a

uniform time-frequency resolution. For example, the conventional Fourier transform

(FT) works well in wide sense stationary signals but fails in non-stationary since it

achieves only uniform-resolution analysis. The discrete wavelet transform (DWT)

[41], in contrast, calculates the decomposition into the time-frequency domain which

leads to low-frequency but high-temporal resolution at high frequency bands and

low-temporal but high-frequency resolution at low frequency bands. It is well known

that speech signals contain many transient components and non-stationary property.
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Making use of the multi-resolution analysis (MRA) property of the DWT, the

classification of speech into voiced, unvoiced or transient components can be

distinctly discriminated [53]. S. H. Chen et al. [28], [40] has been proposed a

wavelet-based VAD, but their approach must requires too computation and memory

requirements to meet on-line issue.

In general, the well-known “Auto-Correlation Function (ACF)” is commonly used

to detect periodicity of speech. Herein the ACF is defined in subband domain and then

regarded as subband auto-correlation function (SACF). In fact, the voiced sound has

more significant periodicity than unveiced sound.and noise signal and the periodicity

almost concentrates low frequency bands. So; we let the low frequency bands have

high resolution to enhance the petiodi¢ property by decomposing only low band on

each layer. The structure of three-layer wavelet decomposition is herein utilized to

decompose speech signal into four non-uniform subbands. Although wavelet

transform provides the property of MRA, how to resolve the problem about noise

suppression on wavelet coefficients is mostly crucial part. Generally speaking, the

noise suppressions are almost based on frequency domain. Those approaches,

however, almost waste too much computing power to on-line work. We try to

eliminate the noise components from the wavelet coefficients on each subband and to

consider the appropriate way in terms of computing complexity. Teager energy
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operator (TEO) is a powerful nonlinear operator and has been successfully used in

various speech processing applications [42-45]. It is experimentally observed that the

TEO which is derived from non-uniform subbands in Mel-scale can suppress the car

engine noise and is easily implemented through time domain [46]. Based on the

finding, we handle the process of TEO upon each subband of wavelet coefficients. In

addition, the work of TEO also results in a better representation of formants so that

the discriminability between speech and noise can be enhanced significantly. To

accurately count the intensity of periodicity from the envelope of the SACF on each

subband, the Mean-Delta (MD) method [47] 18 then utilized upon each subband. In

[47], the MD-based feature parameter has been presented for the robust development

of VAD, but is not performed well in the non-stationary noise shown in the followings.

So, the sum of Mean-Delta values of Subband Auto-Correlation Function (MDSACF)

derived from the wavelet coefficients of three detailed scales and one appropriated

scale is defined as a robust feature parameter and regarded as speech activity envelope

(SAE). Experimental results show that the proposed VAD has overall better

performance than other two wavelet-based VAD algorithms when encountering

variable-level of background noise. In addition, the proposed VAD is a simple,

efficient, and robust algorithm working in a dynamically varying background noise.

Chapter 4 is organized as follows. Section 4.2 describes the concept of discrete
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wavelet transform (DWT) and shows the used structure of three-layer wavelet

decomposition. Section 4.3 introductions the derivation of Teager energy operator

(TEO) and displays the efficiency of subband noise suppression. Section 4.4 describes

the proposed feature parameter, and the block diagram of proposed wavelet-based

VAD algorithm is outlined in Section 4.5. Section 4.6 evaluates the performance of

the algorithm and compare to other two wavelet-based VAD algorithms. Finally,

Section 4.7 discusses the conclusions of experimental results.

4.2 Wavelet Transform

The Fourier transform (FT)-is/‘as a mathematical-technique for transforming our

view of the signal from time-baseéd to frequency-based. It is found that time

information is lost while in transforming to the frequency domain. However, most

interesting signals contain numerous non-stationary or transitory characteristics.

These characteristics are often the most important part of the signal. So, the FT is

appropriate for wide sense stationary signals, but is not suitable for non-stationary

signals.

The wavelet transform (WT), in contrast, is based on a time-frequency signal

analysis. The wavelet analysis represents a windowing technique with variable-sized

regions. It allows the use of long time intervals where we want more precise
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low-frequency information, and shorter regions where we want high-frequency

information. It is well known that speech signals contain many transient components

and non-stationary property. Making use of the MRA property of the WT, better

time-resolution is needed a high frequency range to detect the rapid changing transient

component of the signal, while better frequency resolution is needed at low frequency

range to track the slowly time-varying formants more precisely. Through the MRA

analysis, the classification of speech into voiced, unvoiced or transient components

can be further exploited.

In fact, the WT is a time-scale transformation: The wavelet implied in the WT is a

small wave from which many waves derived from the signal analyzed by translation

and scaling. The multi-resolution.capability relies on being able to dilate and translate

the wavelet continuously. If we choose scales and positions based on powers of two --

so-called dyadic scales and positions -- then our analysis will be much more efficient

and just as accurate. We obtain such an analysis from the DWT. An efficient way to

implement this DWT using filter banks was developed in 1988 by Mallat [48]. In

Mallat’s algorithm, the approximations and details of input signal are accomplished

by using quadrature mirror filters (QMF). Fig. 4-1 shows the basic DWT structure

using filter banks for decomposing signal. Regarding to the figure, the approximated

signal L1 and the detailed signal H1 are generated by respectively using the
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high-pass filter and low-pass filter by the 18-tap Daubechies wavelet shown in Fig.
4-2, and the symbol {2 is denoted as operator of downsampling by 2.

In order to extract speech activity accurately, the periodicity detection by using
ACF is commonly used for voice activity detection. However, different frequency
band provides various intensities of periodicity. In general, the strong intensity of
periodicity is mainly focused on the low frequency band. Based on the finding, the
input speech signal is divided into a multi-band form by using DWT. Fig. 4-3 displays
the utilized structure of three-layer wavelet decomposition leading into four
non-uniform subbands. The j-layef: approximiations L; and details Hj of input
signal are resulted form the decomposition layer. The later experiment will prove that
the wavelet decomposition structure “will obtain ‘the more significant intensity of

periodicity in sub-band domain than that in full-band domain.

4.3 Teager Energy Operator (TEO)
The Teager energy operator (TEO) is a powerful nonlinear operator, and can track the
modulation energy and identify the instantaneous amplitude and frequency [42-45].
In continuous-time, the TEO is defined as
¥ [sO1=[(T =s()3(0), (4-1)

where s(¢) is a continuous-time signal and $ = ds/dt . In discrete-time, the TEO can
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be approximate by

¥, [s(n)]=s(n)’ —s(n+1)s(n-1), (4-2)
where s(n) is a discrete-time signal.
Let us consider a speech signal s(n) degraded by uncorrelated additive noise u(n).
The resulting signal is then

y(n)=s(n)+u(n). (4-3)
The Teager energy of the noisy speech signal ¥ ,[y(n)] is given by

¥, m] =Y, [s(m]+ W [u(m)]+ 2, [s(n), u(n)], (4-4)
where W ,[s(n)] and ¥, [u(n)] are the Teagetrenergy of the speech signal and the
additive noise, respectively. ‘Pd[s(n),u(n)] is the -cross-¥, energy of s(n) and
v(n), such that

‘i’d [s(n),u(n)]=s(n)u(n)—0.5s(n—1)eu(n+1)—0.5s(n+1)su(n—1), (4-5)
where the symbol « is inner product. Since s(n) and u(n) are zero mean and
independent, the Y, [s(n),u(n)] equals to zero. Thus, the derived formulation is
approximated as below:

E{¥,[y(m]}=E{¥ [s(m]}+E{¥ [u(n)]}. (4-6)
According to [46], if u(n) is the car engine noise with lowpass in nature the
expected value of Teager energy of noise can be neglected due to first three

autocorrelation values close to each other.
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E{¥,[u(m]}=R,(0)~R,(2)=0
So, the Teager energy of the observed signals almost equal speech signals.

E{Y, [y(m]} = E{Y [s(m)]} . (4-7)
Although the TEO is valid only for noise with lowpass in nature to suppress noise, Fig.
4-4 displays that for the subband range D1~A3 the WT coefficient after TEO can
discriminate speech from additive noise even if the additive noise has no lowpass
nature. Inspecting the corresponding spectrograms, the voice-active durations are
dominated by the some distinct harmonic frequency bands. These results are better for
the periodicity detection by using subband ACE (SACF). Fig. 4-5 shows that the TEO

is useful for SACF to discriminate'the difference between speech and noise in detail.

4.4 The Robust Feature Extraction Derived From MDSACF

The well-known definition of the term “Auto-Correlation Function (ACF)” is
usually used for measuring the self-periodic intensity of subband signal sequences
shown as below:

p—k

R(k)=) s(n)s(n+k), k=0,1,....p, (4-8)

where p isthe length of ACF. k& denotes as the shift of sample.

In general, the ACF is commonly used method to estimate pitch which is based on

detecting the highest value of the ACF in the region of interest. In order to increase
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the efficiency of ACF about making use of periodicity detection for detecting speech,
the ACF is defined in subband domain, which called as “subband auto-correlation
function (SACF)”, and sufficiently discriminates the dissimilarity among of voiced,
unvoiced speech sounds and background noises from wavelet coefficients. In general,
the voiced or vowel speech sound has more significant value of periodicity than
unvoiced sound and noise signal, and the periodicity almost concentrates low
frequency bands. Fig. 4-6 displays that the normalized SACFs (R(0)=1) of each
subband, respectively. It is observed that the SACF of voiced speech has more
obviously peaks than that of unyoiced speech.and white noise. In addition, for
unvoiced speech the ACF has greater periodic intensity than white noise especially in
the approximation A3.

The intensity of periodicity on each subband is evaluated by utilizing a Mean-Delta
(MD) method [47] over the envelope of each SACF. First, a measure which similar to
delta cepstrum evaluation is mimicked to estimate the periodic intensity of SACEF,
namely “Delta Subband Auto-Correlation Function (DSACF)”, shown below:

u m(R(k+m)j
R(0)

R, (k)=""
> m
m=—M

M

; (4-9)

where R,, is DSACF over an M -sample neighborhood.

It is observed that the DSACF measure is almost like the local variation over the
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SACF. Second, averaging the delta of SACF over a M -sample neighborhood R,,, a
mean of the absolute values of the DSACF (MDSACF) is given by

_ 1 M.

R, = EZ‘RM (k). (4-10)

=0

Observing the above formulations, the Mean-Delta method can be used to value the
number and amplitude of peak-to-valley from the envelope of SACF. To develop a
robust feature parameter (SAE), we sum up the four values of MDSACFs derived
from the wavelet coefficients of three detailed scales and one appropriated scale.

Fig. 4-7 displays that the MRA property is important to the development of SAE
feature parameter. The proposed SAE feature parameter is respectively developed
with/without  band-decomposition. In Fig.” 4-7(b), the SAE without
band-decomposition only provides obscure periodicity and confuses the word
boundaries. Fig. 4-7(c)~Fig. 4-7(f) respectively show each value of MDSACF from
D1 subband to A3 subband. It implies that the value of MDSACF can provide the
corresponding periodic intensity for each subband. Summing up the four values of
MDSACFs, we can form a robust SAE parameter. In Fig. 4-7(g), the SAE with

band-decomposition can point out the word boundaries accurately from its envelope.

4.5 Proposed Voice Activity Detection (VAD) Algorithm

In this section, the proposed VAD algorithm based on DWT and TEO is presented.
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Fig. 4-8 displays the block diagram of the proposed wavelet-based VAD algorithm in
detail. For a given layer j, the wavelet transform decomposed the noisy speech
signal into j+1 subbands corresponding to wavelet coefficients sets w;f’n. In this
case, three-layer wavelet decomposition is used to decompose noisy speech signal
into four non-uniform subbands including three detailed scales and one appropriated
scale. Let layer j=3,

w,,, =DWT{s(n),3}, n=1...N, k=1..4, (4-11)
where w,f’m defines the m"” coefficient of the k” subband. N denotes as
window length. The decomposed length of each'subband is N / 2" in turn.

For each subband signal, the TEO processing [46] is then used to suppress the noise
component, and also enhance the periodicity detection. In TEO processing,

o, =w w1, k=1.4. (4-12)
Next, the SACF measures the ACF defined in subband domain, and it can sufficiently
discriminate the dissimilarity among of voiced, unvoiced speech sounds and
background noises from wavelet coefficients. The SACF derived from the Teager
energy of noisy speech is given by

R}, =R[£,], k=1.4. (4-13)

m

where R[-] means the auto-correlation operator.

To count the intensity of periodicity from the envelope of the SACF accurately, the
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Mean-Delta (MD) method [47] is utilized on each subband.
The DSACEF is given by
R, =AR] 1, k=1.4. (4-14)
where A[-] denotes the operator of delta.
Then, the MDSACEF is obtained by
R} =E[R],]. (4-15)

where E[-] denotes the operator of mean.

Finally, we sum up the values of MDSACFs derived from the wavelet coefficients
of three detailed scales and one.iappropriated .scale and denote as SAE feature

parameter given by
4
SAE=YR;. (4-16)
k=1
In order to point out the boundary of voice activity carefully, the VAD decision is
usually performed by adaptive thresholding. To estimate the time-varying noise
characteristics accurately, in this section an adaptive threshold value is derived from
the statistics of SAE feature parameter during noise-only frame, and the VAD decision
recursively updates the threshold using the mean and variance of the values of SAE
parameters.

The above statement is same as section 2.3.1 and herein repeated. We compute the

initial noise mean and variance with the first five frames, assuming that the first five
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frames contain noise only. We then compute the thresholds for the speech and noise

by the following:
L=p,+a-0, (4-17)
I,=u,+p,-0o, (4-18)

where 7, and 7, indicate the speech threshold and the noise threshold, respectively.

Similarly, x#, and o, represent the mean and the variance among the values of

SAE parameters, respectively. o, =5 and S =-1 are the adjustment constants

which are used to determine the threshold, and are experimentally selected.

The VAD decision rule are defined.as

if (SAE(t)>T,) VAD(t)=1
else if (SAE(¢t)<T,) VAD(1)=0; (4-19)
else VAD(t)=VAD(t—1).

If the detection result shows a noise ‘period; the'mean and variance among the values

of the SAE are updated by using the following:

1, () =y w4, (t=1)+(1—y)- SAE(t) (4-20)
0,(0) = \[SAE Yy ~L10, 00T (4-21)
[SAE, 10" Lean () = 7 [SAE, 3, e (t = 1) + (1= ) - SAE (1)’ (4-22)

where y =0.95 is chosen by experiment. [SAE,WB,.Z],,W (t—1) is a mean among the
buffer of SAE value during noise-only frame. We then update the thresholds using the
updated mean and variance of the values of SAE parameters. Fig. 4-9 displays the

VAD decision based on the adaptive threshold strategy. It is clearly found that the
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boundary of voice activity is accurately extracted. The two thresholds are updated

during voice-inactivity while the two thresholds are both kept during voice activity.

4.6 EXPERIMENTAL RESULTS

We evaluate the performance of proposed wavelet-based VAD and compare to other

two wavelet-based approaches [28], [53] in two experiments. In our first experiment,

the results of speech activity detection are tested in three kinds of background noise

under various values of the SNR. In the second experiment, we adjust the variable

noise-level of background noise and:mix it into the testing speech signal.

4.6.1. Test Environment and Noisy Speech Database

The test environment is similar to Chapter 2, the speech corpora are collected from

MAT (Mandarin across Taiwan) database including a set of isolated utterances of the

ten digits in Mandarin. To vary the testing conditions, noise is added to the clean

speech signal to create noisy signals at specific SNR of 40, 10, 0db and -5 dB (the

SNRs is herein defined as the ratio of the power of the entire recordings containing

silence and voice parts to the power of additive noise). Four noise types, including

babble noise, white noise, vehicle noise and factory noise, are taken from the

Noisex-92 database in turn [49]. The proposed wavelet-based VAD algorithm is based
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on frame-by-frame basis, frame length N = 256 samples (or 32ms), overlap =

N,/2 (16ms).

4.6.2. Evaluation in Stationary Noise

In this experiment we only consider stationary noise environment. The proposed
wavelet-based VAD is tested under three types of noise sources and three specific
SNR values mentioned above. To evaluate the performance of the proposed VAD,
two objective measures mentioned in Chapter 2 are applied here. The probability of

correctly detecting speech frames P

G

¢ 1s defined as the ratio of the correct speech
decisions to the hand-labeled speech frames, while the probability of falsely detecting
speech frames P is defined <as the ‘ratio of .the false speech decisions to the
hand-labeled speech frames.

Table 4-1 shows the comparison among the proposed wavelet-based VAD, other two
wavelet-based VAD respectively proposed by Chen et al. [28, 40] and J. Stegmann
[53]. The results from all the cases involving various noise types and SNR levels are
averaged and summarized in the bottom row of this table. From Table I, the proposed
wavelet-based VAD and Chen’s VAD algorithms are all superior to Stegmann’s VAD
over all SNRs under various types of noise. In terms of the average correct and false

speech detection probability, the proposed wavelet-based VAD is comparable to
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Chen’s VAD algorithm. Both the algorithms are based on the DWT and TEO

processing. However, Chen et al. decomposed the input speech signal into 17

critical-subbands by using perceptual wavelet packet transform (PWPT). To obtain a

robust feature parameter, called as “VAS” parameter, each critical subband after their

processing is synthesized individually while other 16 subband signals are set to zero

values. Next, the VAS parameter is developed by merging the values of 17

synthesized bands. Compare to the analysis/synthesis of wavelet from S. H. Chen et

al., we only consider analysis of wavelet. The structure of three-level decomposition

leads into four non-uniform bandsas front-end:processing. For the development of

feature parameter, we do not again waste extra computing power to synthesize each

band. Besides, Chen’s VAD algotithm ‘must be performed in entire speech signal. The

algorithm is not appropriate for real-time issue since it does not work on frame-based

processing. Conversely, in our method the decisions of voice activity can be

accomplished by frame-by-frame processing. Table 4-1I indicates that the subjective

evaluations of listening test for the extracted voice activity. The clean speech is

obtained by a subtractive-type algorithm presented by Berouti et al. [39] to avoid the

annoying “musical noise” introduced by subtracting the estimated noise spectrum

from the observed speech signals. A five-scale absolute opinion from 1 (poor) to 5

(excellent) was adopted to subjectively evaluate the six listeners. Table 4-11I displays
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the computing time for the listed VAD algorithms running Matlab programming in

Celeron 2.0G CPU for processing 118 frames of an entire recording. It is found that

the computing time of Chen’s VAD is nearly four times greater than that of other two

VADs. Besides, the computing time of Chen’s VAD is closely relative to the entire

length of recording.

4.6.3. Evaluation in Non-stationary Noise

To evaluate the performance of the presented VAD in highly non-stationary whose

statistical properties change over time, we add the decreasing and increasing level of

background noise on a clean speech sentence in'English and the SNR is set 0 dB.

Comparisons among proposed swavelet-based -VVAD, other wavelet-based VAD

proposed by S. H. Chen et al. [28, 40] and MD-based VAD proposed by A. Ouzounov

[47] are exhibited in Fig. 4-10. From the figure, the mixed noisy sentence “May I help

you?” is shown in Fig. 4-10(a). The increasing noise-level and decreasing noise-level

are added into the front and the back of clean speech signal. Additionally, an abrupt

change of noise is also added in the middle of clean sentence. The three envelopes of

VAS, MD and SAE feature parameters are showed in Fig. 4-10(b)~Fig. 4-10(d),

respectively. It is found that the performance of Chen’s VAD algorithm seems not

good in this case. The envelope of VAS parameter closely depends on the variable
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level of noise. Similarly, the envelope of MD parameter fails in variable level of noise.

Conversely, the envelope of proposed SAE parameter is insensitive to variable-level

of noise. So, the proposed wavelet-based VAD algorithm is performed well in

non-stationary noise. Fig. 4-11 illustrates the performance of Stegmann’s VAD [53]

for four energy-based parameters and VAD decision. It is found that the associated

energy-based parameters are close to the variation of noise and these parameters cause

Stegmann’s VAD to fails in a variable-level of noise. Fig. 4-12 illustrates the

performance of the proposed VAD for an utterance produced continuously. Similarly,

the envelope of SAE parameter is;more able torextract the exact boundary of voice

activity than the envelope of VAS parameter despite the variable noise level.

4.7 Discussion & Future Work

In discussion, a new feature parameter is based on the sum of the values of

MDSACFs derived from the wavelet coefficients of three detailed scales and one

appropriated scale to develop a robust VAD algorithm. The robust VAD is a

multi-band based algorithm using DWT and TEO processing. By means of the MRA

property of DWT, the ACF defined in subband domain sufficiently discriminates the

dissimilarity among of voiced, unvoiced speech sounds and background noises from
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wavelet coefficients. For the problem about noise suppression on wavelet coefficients,

a nonlinear TEO is then utilized into each subband signals. Additionally, we have

shown that the Teager energy set of wavelet coefficients is beneficial for the result of

ACF since TEO can provide a better representation of formants resulting distinct

periodicity. Experimental results have shown that the proposed feature parameter can

point out the boundary of speech activity and its envelope is insensitive to variable

noise-level environment. Compare to other two VAD approaches, the three major

advantages of proposed VAD are shown as below:

4.7.1. Comparison

»  Suitable for on-line work:

Stegmann’s VAD [53] and the proposed MDSSACF-based VAD algorithm are both

performed on-line. Compare with Chen’s wavelet-based VAD, the proposed

MDSSACF-based VAD algorithm can be performed on frame-by-frame basis. An

on-line adaptive thresholding strategy is just used for deciding the result of VAD

immediately, so our method more meets the on-line issue than Chen’s wavelet-based

VAD. In fact, the processing of the Chen’s VAD must require much memory space to

store entire input speech.
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»  Efficient and simple implementation:

In the architecture of proposed wavelet-based VAD, we can only consider the

decomposition of wavelet and do not again waste extra computing power to

synthesize each subband for wavelet reconstruction. In fact, input speech is

decomposed into four non-uniform subbands resulted from three-layer wavelet

decomposition. In order to obtain the VAS feature parameter, we only sum up four

values of MDSACFs on each subband. In addition, the determination about MDSACF

also needs only the little computing complexity. Similar to proposed wavelet-based

VAD, Stegmann’s VAD also only,considers the.wavelet decomposition and further

uses the logical combination among a set of detections: silence detection, stationary

detection and background-noise-detection. It seems to be easily implemented for

extracting voice active frames.

Conversely, in Chen’s wavelet-based VAD algorithm [18],[40], the input speech

signal is decomposed into 17 critical-subbands by using perceptual wavelet packet

transform (PWPT). Each critical subband is then synthesized individually while other

16 subband signals are set to zero values. Next, the VAS parameter is developed by

summing up the values of 17 synthesized bands. So, Chen’s wavelet-based VAD

needs extra computing time to achieve the wavelet reconstruction and its computing

complexity is more than other two wavelet-based methods: Stegmann’s VAD and
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proposed VAD.

»  Reliable performance in variable noise-level environments:

Of all the listed VADs in this paper, the proposed wavelet-based is prior to other two

VADs in variable-level of background noise. From experimental results, the proposed

SAE feature parameter can point out the boundaries of the noisy sentence in variable

noise-level conditions. It is found that the SAE parameter relies on the periodicity of

SACF defined in each subband. Through the subband TEO processing and

normalization of SACF, the value of Mean:Delta on SACF is insensitive to

variable-level of noise.

Conversely, in [53] the VAD décision' is determined by a set of four energy-based

parameters is derived from the WT coefficients and compared to fixed thresholds

resulting in four binary flags that indicates silence, stationary and background noise in

two different frequency regions, respectively. Finally, these flags are combined to get

the VAD decision. It is found that the energy-based parameter is relatively sensitive to

variable-level on noise and the fixed thresholds are also relatively appropriate for this

case. In addition, the VAS parameter derived from Chen’s VAD is observed that its

envelope is closely depended on the variable noise level even though the de-noising

processing is utilized into 17 critical subbands.
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4.7.2. Future Work

The well-known speech enhancement based on wavelet thresholding is recently

used for obtaining desired non-annoying speech signals. In this method, the subband

threshold is usually assumed uniform or non-uniform for each subband. In fact, the

value of subband threshold must be adapted to time-varying noise, especially in

classification of voice activity/absence. During voice-absent frames, we can further

adjust the value of subband threshold to obtain silence-like signals. Conversely,

during voice-active frames, the adjustment of subband threshold is assumed to be

related to masking properties of-.the human auditory system.
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TABLE 4-1

COMPARISON BETWEEN THE THREE VAD ALGORITHMS TESTING IN VARIOUS
NOISE CONDITIONS

Noise Conditions Py (%) Py (%)
Type SNR(dB) Proposed VAD Chen’s VAD Stegmann’s Proposed VAD Chen’s VAD Stegmann’s
[28],[40] VAD [54] [28],[40] VAD [54]
40 99.6 97.7 93.3 1.8 29 5.4
Vehicle 10 97.8 96.1 85.7 25 33 9.1
Noise 0 94.9 93.2 76.5 2.6 6.9 143
-5 91.9 88.2 71.9 2.9 9.9 20.9
40 97.9 95.8 93.4 3.2 48 7.9
Babble 10 92.4 89.4 82.5 5.6 8.3 145
Noise 0 87.4 85.6 75.9 73 14.9 20.1
-5 82.2 81.8 69.1 10.3 16.8 29.8
40 98.1 97.4 92.6 3.4 5.3 6.3
Factory 10 93.2 94.1 80.8 42 72 12.8
Noise 0 88.4 88.3 76.1 6.8 12.7 18.4
-5 85.8 85.6 70.7 9.4 15.4 26.2
40 97.5 97:6 95,4 12 1.9 43
White 10 93.3 98.1 90.3 1.7 24 7.9
Noise 0 90.4 91.9 80.2 2.1 3.1 10.6
-5 88.4 85:4 774 3.1 3.9 14.8
Average 92.45 91.64 81.99 4.26 7.48 13.96
TABLE 4-11

SUBJECTIVE EVALUATION OF LISTENING TEST

VAD types Avg. of score
Proposed VAD 4.6
Chen’s VAD 4.1
Stegmann’s VAD 3.2

TABLE 4-I11

ILLUSTRATION OF EFFICIENCY FOR THE FOUR VAD

VAD types Computing time (sec)
Proposed VAD 0.089
Chen’s VAD 0.436
Stegmann’s VAD 0.097
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Waveform of mixed noisy sentence
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CHAPTER 5

CONCLUSIONS

In this dissertation, we attempt to generate a robust feature set for classifying
voice activity/absence frames. In Chapter 2 and.Chapter 4, the banded lines existing
only on voice-active spectrogram and periodicity measured in subband domain are
used for characterizing speech-signal, respectively. Experimental results show that
the proposed two feature parameters are indeed robust against various types of
noises. Consequently, the two types of voice activity detection (VAD) algorithms
are built in turn. In addition, the two VAD algorithms can provide on-line work
being suitable for real-world. In Chapter 3, an extended application of VAD
strategy is outlined to form a fast adaptive algorithm for estimating noise power in
non-stationary environments.

Based on the above experimental results, the comparisons between the proposed

two VAD algorithms can be summarized as below:
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The proposed two VAD algorithms not only perform well at low SNRs but also

are insensitive to changes in the noise level, even if noise rapidly changes in level

(or called dynamic background noise)

Due to the robustness of feature extraction for the two VADs, we can almost use

fixed thresholds as VAD decisions so that the computing complexity can be

significantly decreased.

The proposed two methods provide easy and interesting ideas for implementing a

robust VAD.

Finally, compare to frequency: band analysis, the second presented VAD via

wavelet analysis is better than the first presented VAD based on entropy

measurement shown in TABLE 5-1. Especially: for low SNRs, the wavelet-based

VAD is prior to the entropy-based VAD in term of P, . Similarly, in term of the

average false speech detection probability, the wavelet-based VAD is also prior to

the entropy-based VAD, especially in noise source with low frequency power so

that vehicle noise since the noises with low frequency power is decreased using

TEO applied into each wavelet coefficient.

In addition, for the entropy-based VAD the number of decomposed subband is

assumed fixed and subband bandwidth is uniform, it does not meet the

time-varying banded lines on voice-active spectrogram. Conversely, wavelet
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analysis is more suitable for speech processing than frequency analysis.

TABLE 5-1
COMPARISON BETWEEN PROPOSED ENTROPY-BASED VAD AND
WAVELET-BASED VAD
Noise Conditions Pg (%) Py (%)
Type SNR(AB) Proposed Proposed Proposed Proposed
entropy-based VAD wavelet-based VAD entropy-based VAD entropy-based VAD
40 98.4 99.6 12 1.8
Vehicle 10 94.2 97.8 39 2.5
Noise 0 91.3 949 46 26
-5 89.3 919 6.5 2.9
40 96.1 97.9 2.6 32
Babble 10 89.2 92.4 5.8 5.6
Noise 0 84.8 874 7.4 7.3
-5 79.6 822 10.4 10.3
40 97.9 98.1 2.1 3.4
Factory 10 91.7 93.2 4.6 4.2
Noise 0 86.3 88.4 7.8 6.8
-5 84.1 85.8 9.1 94
40 99.8 97.5 0.9 12
White 10 96.6 93.3 1.9 1.7
Noise 0 93.1 90.4 22 2.1
-5 91.9 88.4 2.9 3.1
Average 91.52 92.45 4.62 4.26
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