第四章 系統驗證與結果

本章將說明整個檢測所使用到的設備、相關的參數實驗設定、及各個項目的 檢測結果。章節安排如下:4.1節為實驗設備;4.2節為系統整合實驗,包括檢測 解析度說明及取像檢測流程說明;4.3節為PLED發光點檢測實驗說明,包括4.3.1 亮度不均檢測實驗說明和4.3.2暗點檢測實驗說明,而暗點檢測實驗又分為 4.3.2.1 PF 層檢測實驗和 4.3.2.2 節之 Metal 層檢測實驗說明;4.4 節為外觀檢測實 驗說明,包括4.4.1 節表面刮傷檢測實驗說明和4.4.2 節之膠寬檢測實驗說明。

4.1 實驗設備

本研究實驗所使用之相關軟、硬體設備及實驗環境設置整理描述如下。

- 個人電腦(PC):使用 CPU 為 Pentium4 (1.7 GHz)個人電腦,記憶體為 512MB DDR。
- 影像撷取卡 (Frame Grabber):使用 MATROX 公司所製造的 Meteor II /Multi-Channel (PCI 介面)影像處理卡。
- CCD:使用 CIS 880A 黑白 CCD 攝影機取像, CCD 最高解析度為 1600*1200
 像素點。搭配變焦鏡頭,使得影像解析度可達 25μm。
- 光源系統:使用 27w 高頻日光燈並搭配散色版,作為背光照明之用;使用 LED 同軸光源,用來照明 PLED;使用 LED 紫外光,用來激發 PF 層。
- 運動控制卡:使用 Galil 公司之控制卡,將個人電腦所下達的指令傳送給步進馬達並驅動步進馬達。
- 步進馬達:用來移動 PLED 治具到達取像地點。
- 影像處理工具: Inspector2.2 版、MIL (Matrox Imaging Library) 7.01 版函式 庫,提供實驗中影像資料之運算與處理分析。
- 程式語言: Visual Basic6.0。

4.2 系統整合實驗

本實驗的樣品為一厚 15mm、長 71.5mm 寬 42.3mm 之 PLED,其上有 64*128 個發光點,每個發光點為 0.3mm*0.4mm。擷取到的影像,每張大小為 1600pixel*1200pixel,FOV(Field of View)為 40mm*30mm,一個影像點對應實際 的尺寸大小為 0.025mm,共需要 3 張影像(分別命名為 view1、view2、view3)來 涵蓋一整片的 PLED。其影像擷取方式為,將 PLED 固定在治具上,而治具固定 在步進馬達上,依照不同檢測之光源系統,開啟該光源;當要檢測時,先移動治 具到 view1 的位置,然後取像,同時間治具移動到 view2 的位置,當治具移動的 同時,進行 view1 的檢測,重複此步驟,直到 3 個 view 都檢測完畢,其流程如 圖 4.1 所示,各個光源取像完成如圖 4.2 所示,其中 view1 和 view2 影像重疊部 分約 17mm,而 view2 和 view3 影像重疊部分約為 2.5mm,整體的硬體架構如圖 4.3 所示。

1. Begin	
2. Loading	THE NAME TO BE AND A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBEROFOF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER
3. Move to view1	1 Martinetter
4. For i=1 to 3	
5. {	
6. Grab image(i)	
7. If i=3 then	
8. Move to original J	position
9. Else	
10. Move(i)	// i=1 move to view 2;i=2 move to view 3
11. End If	
12. Inspect	
13. }	
14. End	

圖 4.1 自動檢測演算法

圖 4.2(a) PLED 點燈取像完成圖

圖 4.2 (b) PLED UV 光取像完成圖

圖 4.2 (c) PLED 背光取像完成圖 圖 4.2 (d) PLED 同軸光取像完成圖

圖 4.2 各種光源取像完成圖

圖 4.3 檢測硬體架構

檢測流程可以分為線上檢測和離線檢測,線上檢測只要一發現瑕疵便更換下 一片 PLED,而離線檢測則可對所有的檢測項目進行檢測,每個檢測項目是獨立 的。

4.3 PLED 發光點檢測實驗說明

發光點檢測分為亮度不均檢測和暗點檢測,在線上檢測時可以先檢測亮度不均,如果檢測出亮度不均,即可更換下一片 PLED 進行檢測,如果沒有亮度不均, 則再進行暗點檢測;若是離線檢測,則可以依序檢測亮度均勻性、暗點及分析 PF 層和 Metal 層是否有瑕疵。以下各小節將詳述之。

4.3.1 亮度不均檢測說明

根據 3.1.5 節所提出的演算法,首先將擷取到的影像做區域分割,如圖 4.4 所示,圖中綠色部分涵蓋 PLED 之發光區,為各個 view 之檢測範圍,在大範圍 分割,每個 view 之檢測範圍其水平方向分割為 2 區而小範圍分割為 16 區,垂直 方向在大範圍分割為 2 區,而小範圍分割依據該 view 之發光點個數之總和自動 分割為 4 的倍數,例如圖 4.4(b)垂直方向分為 14 區,該影像垂直方向有 14*4+2 =58 個發光點,但本研究以 4*4 個發光點為一區,所以會自動計算到 4 的倍數 而以該點之座標作為該 view 之檢測終點 Y 座標,圖 4.4(c、d)之分割方法亦是以 此為原則。圖 4.4 之黃色部分代表的是每個分割的子區塊,編號方式由左而右, 由上而下。

圖 4.5 為一亮度不均之 PLED 樣品的完整取像,依本研究所提出的演算法對 亮度不均之瑕疵品檢驗,其檢測結果如圖 4.6 (a、b、c)所示,每個紅色矩形涵蓋 4*4 的發光點,表示其和周圍的鄰居灰階差異明顯,表 4.1(a、b、c)顯示亮度不 均匀處之子區域其最高灰階值,由表中可以得知其灰階差異皆在所設定的標準 (10 個灰階值)以上,因此判斷其有亮度不均的情形,而單張影像(1600*1200 pixel) 檢測的時間為 0.9449 秒(本研究其他樣本的檢測結果,請見附錄一)。

50

圖 4.4(b) view1 之檢測範圍及分割示意圖

圖 4.4 (d) view3 之檢測範圍及分割示意圖

圖 4.5 亮度不均之 PLED 樣品的完整取像

圖 4.6(a) view1 亮度不均瑕疵檢測結果

				表	4.1(a) view	/I 甲	 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	个均易	乱之于	上 區垣	氐] 東	一 尚	階值		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1						1	1	2.10		23						
2						162	151	4000	1111							
3			163													
4		153	150													
5		164	161	156	158					139	128			119	132	
6				171	169	157	137		140				125	124	135	
7		174	170	173	169	158	135		127	134			137	136		
8		154	148	149	148	143	141	124	133	145						
9		142	155	151	143	140			133	144					140	125
10		162	171	162	156	152	135									
11		164	168			157	143	129								
12		144	151	163	162							126	137			
13				148	148											
14																

表 4.1(a) view1 中亮度不均處之子區域其最高灰階值

NILLING DE

圖 4.6(b) view2 亮度不均瑕疵檢測結果

						- 23	5			8 5						
	1 2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1		1	55				3	<u> </u>		3						
2	168	8 1	68	158	153	150	150	400	LUL	144	130				136	125
3	179) 1	77	173	169	161	139		138			132	133		137	125
4	175	5 1	77	169	169	159	137		127	141		145	145			
5	151	. 1	45	144	144	142	145	134	136	150						
6	154	+ 1	61	159	152	146									142	127
7	168	8 1	75		166	157	140									
8	166	5 1	66			159	145									
9	155	5 1	54			156	144			142	130					
10						161	147	133		144						
11							150	138		130	136	150			157	145
12				157			153	139		140		142	158			
13				168		154	143			151						
14	171						157	145								
15	160)					159	145							148	134
16	160)					145								157	143
17	179)														

表 4.1(b) view2 中亮度不均處之子區域其最高灰階值

ANIMAR .

圖 4.6(c) view3 亮度不均瑕疵檢測結果

圖 4.6 亮度不均瑕疵檢測結果

							E					• • • •	• • •			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1				156		1				3						
2				179		163	149	139	126						152	135
3			191	177	164			142	128	126	138				148	136
4		204	192	180				146	132							
5			193	188	174				144	130					146	133
6		187	175	177	171	168			152	139	123		127	140	146	132
7				175	160	156				141	127			135	139	127
8				176	159					142	124			121	125	
9				181	160		161	150	141	131	115			123	129	
10				191	164	149	146	136	121				123	134	145	
11			195	188	166	157	129	121		115	111	116	129	133	146	
12			178	171		146				135	132	127		149	162	

表 4.1(c) view3 中亮度不均處之子區域其最高灰階值

4.3.2 暗點檢測實驗說明

本研究以2片 PLED(分別命名樣本1和樣本2)之暗點檢測結果來說明本研 究所提出的方法確實有效。樣本1、2在點燈檢測時皆可偵測到暗點瑕疵,樣本 1進一步利用背光和UV光照射時,可以發現 PF 層和 Metal 層皆有缺陷,而樣 本2在背光照射時正常,UV 光照射時可以偵測出缺陷,因此可以判斷該瑕疵源 於 PF 層缺陷。本節將先說明點燈檢測之結果,而 PF 層和 Metal 層之實驗說明分 別詳述於 4.3.2.1 節和 4.3.2 節。

圖 4.7 是樣本 1 之完整取像圖,將 view1 和 view3 放大於圖 4.8(a)和圖 4.9(a), 從圖中可以看到暗點瑕疵, blob 面積設定為大於 16 個像素點(0.01 mm²)則認定 不通過, view1 和 view3 經由 3.1.2 節所提出之「暗點抽出」檢測演算法運算之 結果分別列於表 4.2 和表 4.3,其面積皆大於所設定的規格,將偵測到的瑕疵輪 廓以紅色突顯並放大顯示於圖 4.8(b)和圖 4.9(b),結果為不合格,單張影像檢測 速度約 3 秒。

樣本2僅 view1 有瑕疵,所以顯示其 view1 之影像於圖 4.10(a),將其瑕疵部 位的影像放大於圖 4.10(b),而瑕疵部位之檢測結果放大於圖 4.10(c),其大小及 位置資訊則列於表 4.4,從樣本 1、2 的檢測結果,本演算法確實可以偵測出暗點 瑕疵的存在,如果需要進一步分析,可以再進行 PF 層和 Metal 層的檢測,如果 只是要確定是否為良品或不良品,則進行點燈檢測即可由結果判斷。(本研究其 他樣本的檢測結果,請見附錄二)

57

圖 4.7 樣本 1 完整取像結果

圖 4.8(b) 瑕疵部位檢測結果放大

圖 4.8 view1 影像分析

圖 4.9(b) 瑕疵部位檢測結果放大

圖 4.9 view3 影像分析

圖 4.10(b) 樣本 2 之瑕疵部位放大圖 圖 4.10(c) 樣本 2 瑕疵部位檢測結果放大圖

圖 4.10 樣本 2 之 view1 影像分析

表 4.4 瑕疵位置及大小資料(樣本 2)

X position	Y position	Area (mm^2)
279	987	0.2475

4.3.2.1 PF 層檢測實驗說明

樣本1經點燈檢驗後偵測到暗點瑕疵的存在,進一步分析是否為 PF 層有缺陷,所以用 UV 光照射,發現在 view3 位置上有缺陷,如圖 4.11(a)箭頭所指之處, 而樣本2因其 view1 在點燈檢驗時,偵測到暗點瑕疵,所以擷取其 view1 之 UV 光照射後影像如圖 4.12(a)所示,經由 3.1.4 節所提出的 PF 層演算法,其檢測結 果分別列於圖 4.11(b)和圖 4.12(b),將瑕疵輪廓以紅色突顯出來,而 blob 面積下 限和點燈檢驗之設定相同,偵測到的瑕疵結果位置及大小分別列於表 4.5 和表 4.6,由檢測結果可以發現樣本1 和樣本2之 PF 層瑕疵大小皆比點燈檢驗的暗點 瑕疵面積來的小,單張影像的檢測速度為 0.8430 秒。

圖 4.11(a) 樣本 1 view3 之 UV 光取像結果, 箭頭所指之處為瑕疵

圖 4.11(b) (a)之瑕疵部位檢測結果放大圖

圖 4.11 樣本 1 之 PF 層影像分析

表 4.5 瑕疵位置及大小資料(樣本 1)

X position	Y position	Area (mm^2)
1185	390	1.744375

圖 4.12(a) 樣本 2 view1 之 UV 光取像結果,箭頭所指之處為瑕疵

4.12(b) (a)之瑕疵部位檢測結果放大圖

圖 4.12 樣本 2 之 PF 層影像分析

4.3.2.2 Metal 層檢測實驗說明

樣本1和樣本2雖然在PF層檢測時皆發現瑕疵的存在,但不能因此就下結 論是PF層導致,尚須進一步檢測Metal層。樣本1在背光照射之後,Metal層的 影像呈現完整無瑕疵,檢測結果亦判斷為無瑕疵,而樣本2在背光照射後,在 view1圖4.13(a)箭頭1所指之處可以看到一白色的小點,此為Metal層破損之瑕 疵,根據Metal層為不透明之材質,所以經背光照射後的影像應如圖4.13(a)箭頭 2所指之處,為黑色的影像,經由3.1.4節所提出之Metal層檢測演算法,執行檢 測結果如圖4.13(b)所示,可以確實找出瑕疵所在,其大小及座標位置列於表4.7, blob面積之設定同於暗點檢測,瑕疵部位檢測結果放大於圖4.13(c),單張影像 檢測速度為0.8629秒。

and there

由樣本1、2之 PF 層和 Metal 層檢測之結果可以說明當 PF 層或 Metal 層有 瑕疵時,確實會造成暗點瑕疵的產生,而本研究所提出之演算法,確實可以偵測 出哪一層有瑕疵。

表 4.6 瑕疵位置及大小資料(樣本 2)

X position	Y position	Area (mm^2)
278	977	0.12875

圖 4.13(b) 樣本 2 檢測結果影像

圖 4.13(c) (b)之瑕疵部位檢測結果放大

圖

圖 4.13 樣本 2 之 Metal 層影像分析

表 4.7 瑕疵位置及大小資料(樣本 2)

X position	Y position	Area (mm^2)
278	975	0.01875

4.4 PLED 外觀檢測實驗說明

外觀檢測包括表面刮傷和膠寬不足兩項檢測項目,首先在4.4.1節說明表面 刮傷檢測之二值化閥值選擇和演算法驗證結果,接著於4.4.2節說明膠寬檢測之 演算法驗證結果。

4.4.1 表面刮傷檢測說明

當執行 Metal 層演算法之影像相減步驟後,分析正常樣品之灰階直方圖可得 到表 4.8 之灰階分佈資料,由表中可得背景灰階值集中在 0~30 的範圍之間,達 到總灰階個數的 99.99%(圖 4.14),而有瑕疵樣品的灰階值高於此範圍,因此以灰 階值 30 作為表面刮傷二值化閥值之依據。

根據 3.2.2 節所提出的演算法,檢測結果如圖 4.15(a)所示,箭頭所指之處為 刮痕瑕疵所在,將偵測到的瑕疵輪廓以紅色表示之,圖 4.15(b) 擷取自該瑕疵原 始的影像並放大之,圖 4.15(c)為圖 4.15(a)之瑕疵部位檢測結果放大圖,blob 面 積設定為 16 個像素點,即當面積大於 0.01 mm² 則視為瑕疵,檢測結果資料列於 表 4.9,單張影像(1600*1200 pixel)的檢測時間為 0.4924 秒。

圖 4.14 相減完後影像之灰階個數累積百分比

灰階值	個數	累加值	百分比	灰階值	個數	累加值	百分比
0	380250	380250	19.80469	20	139	1919475	99.97266
1	217208	597458	31.1176	21	75	1919550	99.97656
2	246572	844030	43.9599	22	62	1919612	99.97979
3	234324	1078354	56.16427	23	39	1919651	99.98182
4	197999	1276353	66.47672	24	32	1919683	99.98349
5	160121	1436474	74.81635	25	28	1919711	99.98495
6	128927	1565401	81.5313	26	29	1919740	99.98646
7	102837	1668238	86.8874	27	24	1919764	99.98771
8	79128	1747366	91.00865	28	23	1919787	99.98891
9	59325	1806691	94.09849	29	11	1919798	99.98948
10	41964	1848655	96.28411	30	17	1919815	99.99036
11	28293	1876948	97.75771	31	14:50	1919829	99.99109
12	18020	1894968	98.69625	32	16	1919845	99.99193
13	10998	1905966	99.26906	33	13	1919858	99.9926
14	6342	1912308	99.59938	34	12	1919870	99.99323
15	3502	1915810	99.78177	35	10	1919880	99.99375
16	1798	1917608	99.87542	36	2	1919882	99.99385
17	994	1918602	99.92719	37	9	1919891	99.99432
18	460	1919062	99.95115	38	7	1919898	99.99469
19	274	1919336	99.96542	39	7	1919905	99.99505

表 4.8 正常樣品之灰階直方圖資料

圖 4.15 (b) 瑕疵部位原始影像

圖 4.15 (c) 瑕疵部位檢測結果放大圖

圖 4.15 表面刮傷影像分析

表 4.9 瑕疵位置及大小資料

X position	Y position	Area (mm^2)
951	895	0.119375

4.4.2 膠寬不足檢測說明

圖 4.16 是膠寬不足樣本的完整取像,經由 3.2.4 節所提出的演算法檢測結果 如圖 4.17(a)(b) (c)所示,圖中綠色之十字標記為膠寬不足處的位置,本研究以每 隔 10 個像素點計算其寬度,亦即每間隔 0.25mm 計算寬度,在 view1 和 view3 除了左右兩側之膠寬還包括了水平膠寬,所以膠寬結果資料顯示分為上下左右的 膠寬值,檢測結果會列出膠寬不足處的位置和寬度值,在左右膠寬的結果部分, 列出其 Y 座標如表 4.10(a),而上下膠寬的檢測結果部分列出其 X 座標如表 4.10(c),檢測時間約為 1.6 秒,因為內膠部分並無不足之瑕疵,故列出其量測到 的座標影像如圖 4.18 所示,紅色之十字標記為內膠寬度座標。

圖 4.16 膠寬不足樣本之完整取像

1			
2			
5		m 10	
ŧ			

圖 4.17(a) view1 檢測演算法所判斷之膠寬過窄

表 4.10(a) view1 左膠寬不足處之座標及其寬度值

Y position	左膠寬(mm)				
1133	2.191077				
1143	2.186577				
1153	2.164886				
1163	2.170708				
1173	2.168426				

1896

Ē

圖 4.17(b)view2 檢測演算法所判斷之膠寬過窄

					20	
Y	position	左膠寬(mm)	Y position	左膠寬(mm)	Y position	左膠寬(mm)
695		2.191077	955	2.045662	1125	2.133623
705		2.181293	965	2.128947	1135	2.165689
715		2.155556	975	2.123962	1145	2.168852
725		2.168426	985	2.169075	1155	2.129909
805		2.199808	1055	1.990483	1165	2.061141
815		2.180448	1065	1.928078	1175	1.994249
825		2.191194	1075	1.889361	1185	1.944651
915		2.119602	1085	1.885018		
925		2.063618	1095	1.922684		
935		2.037649	1105	1.972969		
945		2.039231	1115	2.054721		

表 4.10(b) view2 左膠寬不足處之座標及其寬度值

圖 4.17(c) view3 檢測演算法所判斷之膠寬過窄 圖 4.17 膠寬瑕疵影像檢測結果

Y position	左膠寬(mm)	Y position	左膠寬(mm)	Y position	左膠寬(mm
5	2.077863953	125	2.081947009	245	2.103338675
15	2.142460317	135	2.043415313	255	2.047509807
25	2.16582384	145	1.981215584	265	1.813949204
35	2.166028081	155	1.938029035	275	1.789919355
45	2.116099709	165	1.911114009	285	1.792549861
55	2.055323388	175	1.915460405	295	1.838805122
65	1.981559497	185	1.945354809	305	1.885428226
75	1.944323671	195	1.976787391	315	2.025324675
85	1.960892274	205	2.038234954	325	2.126236643
95	2.011263636	215	2.087243357	335	2.145993266
105	2.074841746	225	2.139420634	345	2.144735957
115	2.096713291	235	2.143459967	355	2.097343454

表 4.10(c) view3 左膠寬不足處之座標及其寬度值

Y position	左膠寬(mm)	Y position	左膠寬(mm)	Y position	左膠寬(mm)
365	2.051363636	475	1.7593935	585	1.808324353
375	2.011021635	485	1.75190358	595	1.963618827
385	1.959454078	495	1.744232607	605	1.963618827
395	1.919742714	505	1.735931155	635	1.97041842
405	1.86674015	515	1.760139614	645	1.805767652
415	1.836006773	525	1.754269042	655	1.765178571
425	1.805091667	535	1.762599097	665	1.774558081
435	1.797067268	545	1.752133577	675	1.784075126
445	1.776262059	555	1.732892292	685	1.796839549
455	1.762664104	565	1.651247248	695	1.81375
465	1.744150748	575	1.749867257	705	1.788079246
Y position	左膠寬(mm)	Y position	左膠寬(mm)	Y position	左膠寬(mm)
715	1.720731288	815	1.811590909	915	1.95900438
725	1.731330128	825	1.797808998	925	2.093819444
735	1.772857287	835	1.748477233		
745	1.799008363	845 🍯	1.7517507		
755	1.802131342	855 💈	1.728844189	°/-	
765	1.812713068	865 🗧	1.70311779	July 1	
775	1.809128921	875	1.697858925	Le .	
785	1.804344175	885	1.705867017		
795	1.789057274	895	1.752363143		
805	1.793936466	905	1.847348278		

表 4.10(c) view3 左膠寬不足處之座標及其寬度值(續)

表 4.10(c) view3 下膠寬不足處之座標及其寬度值(續)

X position	下膠寬(mm)	X position	下膠寬(mm)	X position	下膠寬(mm)
211	2.126515152	331	2.186739927	521	2.126001275
221	2.070644677	371	2.180113636	531	2.144762631
231	2.073854393	381	2.127763831	541	2.178367983
241	2.115777425	391	2.10499223	551	2.177670627
251	2.117227564	401	2.09591933	561	2.158182346
261	2.12622012	411	2.119242759	571	2.147879483
271	2.118011587	421	2.183888889	581	2.173651961
281	2.102702746	481	2.193518592	591	2.167902982

X position	下膠寬(mm)	X position	下膠寬(mm)	X position	下膠寬(mm)
291	2.056660279	651	2.170550303	891	2.189347166
301	2.054739623	661	2.178134531	901	2.165096654
321	2.124989737	671	2.195899648		
491	2.154983974	731	2.187895928		
501	2.135685612	741	2.162936696		
511	2.12894604	751	2.139100985		
601	2.147858404	761	2.131614068		
611	2.127710036	771	2.147140243		
621	2.127175698	781	2.193925989		
631	2.140939024	871	2.199756479		
641	2.164377354	881	2.186845035		

表 4.10(c) view3 下膠寬不足處之座標及其寬度值(續)

圖 4.18 內膠檢測結果

討論1:在演算法測試時,有一種瑕疵是封膠上有氣泡,而此種瑕疵亦會影響 PLED之壽命,目前本研究所提出的方法,可以偵測出該部位膠寬的異常,如圖 4.19所示,但尚無法正確計算其真正的寬度值。因為若要正確計算該部位的寬度 值,則需先求得氣泡的寬度值,而要求得氣泡的寬度值,需先判斷是否有氣泡瑕 疵的存在,目前此部分仍待克服。

圖 4.19 膠寬處有氣泡之檢測結果影像(原圖逆時針旋轉90°)

討論 2:在進行演算法測試時,發現有的樣本其膠寬是正常的,但因為和陰極的 位置過近,造成該不良品通過檢驗,在此定義這種不良品的瑕疵項目為內膠與陰 極過窄瑕疵,其距離設定為 0.25mm,其影像如圖 4.20 所示,檢測演算法詳述如 下。

圖 4.20 內膠與陰極過窄瑕疵影像(瑕疵為箭頭所指之處)

膠寬與陰極過窄檢測演算法:

陰極面積比發光區面積來的大,如圖 4.21 所示,若陰極和發光區之間的距 離關係是固定的,則由暗點檢測演算法所求得的發光點座標可以去推算陰極位 置,而另一種方式則是直接計算陰極的位置,本研究採用後者的方式,直接計算 陰極位置。

以Find Stripe 方法先量測出陰極位置, 在 view1、view3 除了求得左右的 X 座標外,分別再求 Y_u和 Y_i座標如圖 4.21 所示。得到座標值後,再分別與相對應 之上下左右的內膠位置相減(內膠位置已於之前的方法求得),相減完後的值,即 為陰極和內膠之距離,最後判斷是否有不足情形。檢測影像結果如圖 4.22 所示, 而檢測結果資料列於表 4.11。

圖 4.22(a)內膠與陰極過窄檢測結果

圖 4.22(b) (a)之檢測結果局部放大圖

圖 4.22 內膠與陰極過窄檢測結果

	á	Ý	ESTA			
表 4.11 陰極與內膠過窄檢測結果資料						
X Position	陰極和下內膠距離	(mm)	1896			
1047	0.248623827	and a				
1097	0.239436123	-	anne.			
1127	0.235822469					
1137	0.237154036					
1167	0.242564961					
1177	0.241719049					
1187	0.244046896					
1197	0.239358845					
1207	0.239126122					
1217	0.237083859					
1227	0.239661253					
1297	0.245064659					
1307	0.208110332					