
國 立 交 通 大 學

電機與控制工程研究所

博 士 論 文

用於高階合成之派翠網路式系統階層驗證技術

Petri-Net based System-level Verification

Techniques on High-level Synthesis

研 究 生：江宗錫

指導教授：董蘭榮 教授

中 華 民 國 九 十 六 年 七 月

National Chiao Tung University

Hsinchu City, Taiwan

Petri-Net based System-level Verification

Techniques on High-level Synthesis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Control Engineering

by

Tsung-Hsi Chiang

July, 2007

c© Copyright by

Tsung-Hsi Chiang

2007

To my father and mother …

~ among so many other things ~

Vita

1976 Born, Taichung City, Taiwan, ROC.

1994–1998 B.S. (Electrical Engineering), I-Shou University, Kaohsiung

County, Taiwan.

1998–2000 M.S. (Computer Science and Engineering), Yuan-Ze University,

Taoyuan County, Taiwan.

2000–2007 Ph.D. (Electrical and Control Engineering), National Chiao

Tung University, Hsinchu City, Taiwan.

i

用於高階合成之派翠網路式
系統階層驗證技術

學生：江宗錫 指導教授：董蘭榮 教授

國立交通大學電機與控制工程研究所 博士班

摘要

本論文提出創新的系統階層驗證(system-level verification)技術，驗證的目標是高階

合成(high-level synthesis)的設計結果，驗證的範圍是針對資料流系統(dataflow)或數

位信號處理導向(DSP-driven)的演算法，驗證的理論是基於派翠網路(Petri net)圖型

理論與技術。系統階層驗證的意義，主要在於驗證系統架構(architecture)的正確性，

其目的與在 RTL 階層所做的功能性(functionality)驗證是不同的。通常，資料流或

數位信號處理導向的演算法需要利用系統階層之演算法轉換技術 (arithmetic

transformation)作系統架構的最佳化設計，目的是為了使受設系統能夠符合系統規

範，或藉由改善系統架構，來達成效能最佳化；另一方面，將演算法實現到硬體

架構之前，所有運算工作也必須明確的被排程或將工作指派給某些運算單元依序

執行。然而，系統階層的演算法轉換技術與運算元排程需要仰賴複雜的演算法來

達成，而這樣的設計流程是非常容易出錯的。為了能夠偵測系統階層設計時候的

設計錯誤，在系統階層的設計流程中，我們引入了系統階層驗證技術來驗證高階

合成結果的正確性。不同於傳統複雜邏輯推論的驗證方法，我們提出以 Petri net

ii

圖型理論與技術作為基礎，用來偵測資料流系統在高階合成階段可能發生的設計

錯誤。首先，我們會利用所提出的圖型轉換法則，將原始的資料流圖型轉換成 Petri

net 圖型。然後，以我們所提出的兩個系統階層驗證架構，使受測系統能在 Petri net

圖型領域中進行系統階層的驗證工作。與傳統的驗證技術比較起來，我們將驗證

的工作從 RTL 階層提升到系統階層，因此，在系統階層設計初期，就能偵測可能

產生的設計錯誤。越早在設計初期偵測設計的錯誤，就越能夠減少重新設計的成

本並且縮短產品上市的時間。利用本論文所提出的驗證方式，我們也實現了幾種

不同的系統階層的驗證演算法用來驗證高階合成的設計結果，並從實驗數據中，

歸納出最佳的驗證演算法。

iii

Petri-Net based System-level Verification
Techniques on High-level Synthesis

Student: Tsung-Hsi Chiang Advisors: Dr. Lan-Rong Dung

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

This thesis presents a novel verification technique for detecting design faults of

high-level synthesis (HLS) results of the dataflow or DSP-driven algorithms by using

Petri net (PN) theory. System-level or high-level verification means architecture

verification, which is different from functional verification in register transfer level

(RTL). Generally, dataflow or DSP-driven algorithms need algorithmic transformations

to achieve optimal goals and also need scheduling algorithms to allocate processor

resources for all execution tasks before mapping on a silicon. However, the optimization

procedures of the algorithmic transformations and the design scheduling in HLS are

error-prone and complex. In order to detect high-level faults, PN based high-level

verification flow is introduced and applied in HLS. Instead of applying Boolean algebra

in conventional verification, the PN based verifier adopts mathematical matrix

iv

manipulation of linear algebra. In the proposed verification flow, we first convert a

dataflow or DSP-driven design in the form of FSFG graph into PN domain by using

proposed graph based conversion method. Then, two PN based verifier frameworks are

proposed to verify the correctness of the HLS results. While comparing to the

conventional verification techniques, we put the verification work beyond the RTL or

gate level, thus high-level design faults can be detected in the early stage of the design

flow. Early fault detection in system-level design flow is helpful for reducing

redesigning cost and time-to-market cycle time. Base on the proposed method, we also

implement several algorithms of HLS verifiers. From the experimental results of the

verification algorithms, we conclude the best approach algorithm of the verifier.

Table of Contents

1 Introduction . 1

1.1 Significance of the Research . 1

1.2 Review of Previous Works . 3

1.3 Contributions of this research . 4

1.4 Outline . 6

2 Background Review . 7

2.1 Levels of Abstraction . 7

2.2 HLS: High-Level Synthesis . 9

2.2.1 FSFG: Fully-Specified Signal Flow Graph 11

2.2.2 Retiming . 14

2.2.3 FSFG Unfolding . 16

2.2.4 FSFG Scheduling . 17

2.3 PN: Petri Net . 20

3 Modeling and Formal Verification of Dataflow Graph in System-

Level Design Using Petri Net . 26

3.1 Introduction . 26

3.2 Conversion from FSFG to PN model 29

3.3 High-Level Verification . 34

3.3.1 Static Verification . 34

3.3.2 PN Unfolding . 35

v

3.3.3 Retiming . 38

3.3.4 Dynamic Verification . 39

3.4 Implementation and Result . 40

3.5 Summary . 41

4 On Verification on Dataflow Scheduling 43

4.1 Introduction . 43

4.2 Background . 46

4.2.1 Equivalence Checking . 46

4.2.2 BDD: Binary Decision Diagrams 46

4.2.3 SAT: Boolean Satisfiability 47

4.3 Model Checking . 47

4.3.1 CTL: Computation Tree Logic 49

4.4 Admissible Conditions for Scheduling 50

4.5 Proposed verification flow for HLS 53

4.5.1 Verification Flow . 53

4.5.2 Relation Between Marking Sets 56

4.6 Verification Algorithms . 57

4.6.1 First stage: Two approaches for candidate search 57

4.6.2 Second stage: The model-checking approach 62

4.7 The complexity analysis . 62

4.8 Experimental Results . 65

4.9 Summary . 66

vi

5 Verification Method of Dataflow Algorithms in High-Level Syn-

thesis . 67

5.1 Introduction . 67

5.2 System Specification . 70

5.2.1 Execution of a task . 70

5.2.2 System Specification . 71

5.3 High-Level Verification . 76

5.3.1 Verification Flow . 76

5.3.2 The candidate marking . 79

5.3.3 Proposed Verification Method 80

5.3.4 First stage: Breadth-First traverse procedure 83

5.3.5 Second stage: Depth-First traverse method 91

5.4 The Complexity Analysis . 95

5.5 Experimental Results . 96

5.6 Summary . 97

6 Conclusion and Future Works . 99

6.1 Petri Net Modeling Limitation . 100

6.1.1 Loop Shrunk . 100

6.1.2 Look-Ahead . 102

6.2 SystemC using Petri Net Modeling 103

References . 107

vii

List of Figures

2.1 The Y-chart . 8

2.2 The high-level DSP synthesis system 10

2.3 The example FSFG graphs . 12

2.4 The performance matrices of the second order IIR filter 14

2.5 (a) An example of dataflow graph, (b) retimed dataflow graph . . 15

2.6 (a) Original FSFG with IPB=2, (b) Unfolding by 2 with IPB=2

(since two iterations are completed resulting in an equivalent IPB

of 2 in the original FSFG) . 17

2.7 An example schedule of the second order IIR filter of Figure. 2.3(a) 19

2.8 (a) A Petri Net to illustrate the construction of a reachability tree,

(b) the reachability tree of the Petri Net 25

3.1 System-level design flow and the PN-based verification 28

3.2 Transformation from FSFG to Petri net 30

3.3 FSFG with delay elements and Petri net with tokens 31

3.4 Fork point in FSFG domain and pseudo-transition in PN domain 31

3.5 PN model of the second order IIR filter 32

3.6 A PN graph and the matrix representation to the third-order IIR

filter of Figure. 2.3(b). 33

3.7 Flowchart of static phase verification. 35

3.8 (a) A example PN model, (b) the 2-folded PN model , (c) PN

characteristic matrix of (a) and (d) PN characteristic matrix of (b) 37

viii

3.9 Flowchart of dynamic phase verification. 40

3.10 (a) Static verification, and (b) dynamic verification of second-order

IIR filter by using proposed HiVED verification software. 42

4.1 (a) A example BDD of Boolean function (x ⊕ y ⊕ z), (b) BDD

reduction rules, and (c) final ordered redundant BDD graph. . . . 48

4.2 Precedence property of operation nodes 51

4.3 Task 9 is preempted by operation task 11 52

4.4 Flowchart for the proposed high-level verification method 55

4.5 The relation between reachable, candidate and solution marking sets 56

4.6 The traverse order of early-terminated approach 58

4.7 The early-terminated approach 59

4.8 Merge the redundant nodes in optimal approach 60

4.9 The optimal traverse approach . 61

4.10 The behavioral description of FSM for the third-order IIR filter . 63

5.1 Executing duration of a task . 71

5.2 A sample schedule of the third-order IIR filter in Figure. 2.3(b) . . 72

5.3 Task 9 is preempted by operation node op′ 73

5.4 Precedence property of two operation tasks 75

5.5 Flowchart for the proposed high-level verification method 78

5.6 Check whether a marking is a candidate marking 80

5.7 An example schedule and 2nd order IIR filter 81

5.8 The relation between reachable, candidate and solution marking sets 82

ix

5.9 Build reachability tree with Breadth-First search algorithm 84

5.10 The exhaustive approach . 85

5.11 The traverse order of early-terminated approach 87

5.12 The early-terminated approach 88

5.13 Merge the redundant node in optimal traverse approach 89

5.14 The optimal traverse approach . 90

5.15 Verify schedule with Depth-First search algorithm 92

5.16 Path traverse with Depth-First search algorithm 93

5.17 One more deep step firing . 94

6.1 (a) Original segment of a loop, (b) loop shrunk by associativity of

addition . 101

6.2 (a) Original segment of a loop, (b) distributivity interchanges the

multiplication and addition, allowing application of associativity

to shrink the loop . 102

6.3 (a) Original FSFG with IPB = 3 and Latency = 4, (b) IPB = 2

after associativity . 102

6.4 (a) Original IIR filter with IPB = 2(Tm + Ta)/2, (b) IPB =

(Tm + Ta)/2 after lookahead . 104

6.5 Applying M−1 steps IIR filter of the lookahead design in previous

case, with IPB = (Tm + Ta)/M 105

6.6 System-level design flow and the PN-based verification 106

x

List of Tables

2.1 Design objects on different abstraction levels [45] 8

2.2 Typical interpretations of places and transitions 21

4.1 The statistics of test designs . 65

4.2 The experimental results . 66

5.1 The statistics of test designs . 96

5.2 The experimental results . 97

xi

CHAPTER 1

Introduction

1.1 Significance of the Research

The growing advances in semiconductor technique and the great complexity of

DSP-driven hardware design along with stringent time-to-market requirements

pose serious challenges for verification to ensure that designs are relatively cor-

rect. A complete verification is not only the important issue for less redesigning

costs and shorter tape out cycle time, it is a prerequisite for successful system

design. Therefore, there is up to 80% of the overall design costs are due to

verification efforts for a modern circuit. In industrial, practical simulation and

test still remain the mainstream for verification issues. The scalability of these

methods is easily applicable at any level from abstraction to physical of the de-

sign flow. Under a stand-alone environment, practical methods can detect simple

bugs easily and quickly. However, simulation and test can provide the presence

of bugs rather than the absence and face low error coverage problem. Unlike

practical method, formal verification technique, which gain confidence through

mathematical reasoning, has been getting much attention for its ensuring 100%

design error coverage [1]. By using mathematical model, formal method conducts

exhaustive exploration of all possible behaviors of design and proves or disproves

the correctness of design intention underlying system specification or property.

Various formal verification methods have matured over the last decades to put

1

the state of art [2–5]. In lectures [6,7], the authors give excellent survey of formal

verification techniques, and the major trends can be classified into two categories

of equivalence checking [7–9] and model checking [10, 11]. Equivalence checking

technique is used to prove functional equivalence of two design representations

modeled at the same or different levels of abstraction. While model checking is

an automatic technique for checking a design model that is satisfied for a given

specification covers all the properties that the system should hold. The theory

and algorithms of both techniques have become available for today’s commercial

EDA (Electronic Design Automation) tools. However, these approaches tend to

verify designs at RTL (Register Transfer Level) or gate level rather than high

level.

This thesis concerns formal verification of detecting high-level faults for high-

level synthesis (HLS) of DSP-driven or dataflow design. High-level design also

means architecture design which is crucial to the success of modern hardware. In

order to map DSP algorithms on a circuit, DSP algorithms may require arithmetic

transformation to improve performance to meet specification under architecture

constraints, such as silicon area, throughput rate and power consumption. Then,

scheduling, allocation and assignment techniques may proceed iteratively to find

optimal or suboptimal tasks schedules in HLS. The HLS design procedures usually

require complex recursive processes and evaluations. Even without low level

techniques, HLS still dominates the performance of a system. However, one may

suffer from several design faults at high level in that. For instance, designer

may make incomplete description on Integer Linear Programming (ILP) to apply

retiming or scheduling technique and cause serious design faults. To unveil high-

level faults, high-level verification must be taken into consideration in HLS design

flow.

2

The proposed high-level verification is based on Petri Net (PN) theory [12–18].

The PN based verifier can be considered as a model checker. The inputs to

the verifier include a PN model and a set of design properties. Given a DUV

(Design-Under-Verification) of Dataflow Graph (DFG) or Fully-Specified Signal

Flow Graph (FSFG) of a design, the PN model is obtained by using proposed

conversion method that converts a FSFG graph of a design to PN domain. Each

converted PN model is expressed by a PN characteristic matrix, which is sufficient

to represent the characteristic of original design. The design specifications or

properties to the verifier can be derived from the relationships of each node pair

of PN graph and expressed by matrix equations. In PN domain, each HLS design

procedures of the DSP algorithms can be seen a series PN token movements of

a PN model. The HLS result is valid if and only if all the PN matrix equations

are satisfied.

Based on such scenario, novel verification framework based on PN theory is

presented in this thesis. Before introducing the proposed high-level verification

method, some review works are made in Section 1.2.

1.2 Review of Previous Works

While surveying the related works, most existential verification methods usually

utilize classical techniques, such as BDD (Binary Decision Diagrams) [19–24],

Boolean SAT (Satisfiability) solver [25–27], symbolic model checking [28–34] and

theorem proving [35, 36]. These techniques are extremely powerful but must be

applied in RTL level. In order to verify the correctness of HLS result, most

literatures focused on developing a strategy for RTL validation between the syn-

thesized RTL result and its abstract level description. In [37,38], the verification

task is partitioning into two subtasks, verifying the validity of register sharing

3

and checking the correctness of RTL for the interconnection and control sig-

nals. Similarly in [39–42], a high-level design is decomposed into the control part

and the datapath part and modeled by using FSMD (Finite State Machine with

Data Path) [43]. These verification methods basically decompose and divide a

high-level scheduled design into control and datapath. Therefore, the existential

equivalent checking [7, 44] can be applied to check the correctness of datapath,

and the model checking [10] can be used to verify the correctness of the control

part.

Unlike traditional approaches, the proposed verification method is based on

PN theory. Instead of using Boolean algebra, PN based method checks the cor-

rectness of HLS result by using mathematical matrix equations. When comparing

with the existential methods, the proposed verification is to check the validity

of high-level design in abstract level rather in synthesized RTL level. There-

fore, high-level design faults that violate the non-preemption, job completion

and precedence properties can be found, and reworks may be performed in the

early stage of the design flow.

1.3 Contributions of this research

We list several contributions of this research in following items.

• The proposed verification is capable of detect high-level faults in system-level

rather than in RTL or gate level.

Conventionally, high-level faults may not be detected before the RTL or

gate level results being generated. In this research, we put the verification

tasks beyond the low level to the higher abstraction level. Since, early fault

detection in system level design flow may take benefits from reducing re-

4

designing cost and also speeding up the time-to-market cycle time especially

for the consumer productions.

• The verification flow starts from PN modeling by using proposed conversion

method, then the HLS results are verified in PN domain.

Unlike applying conventional Boolean algebra, this research presents a novel

PN based method to verify the DSP-driven algorithms or dataflow designs.

A given original dataflow graph is first modeled and converted into a PN

graph. In PN domain, the HLS procedures represents a series PN token-

movements in PN domain. Thus, we can detect design errors of HLS result

by checking the validity of the PN token-movements [16].

• The proposed verification frameworks can be used to verify both static ar-

chitecture and dynamical behavior of the dataflow design.

PN theory provides a different domain viewpoint and analytical method

to verify the design system. The proposed PN based verification method

concerns both static architecture and dynamical behavior of the dataflow

design. In static verification, PN based verifier is used to check the cor-

rectness of the high-level arithmetic transformations, such as retiming and

unfolding techniques. In dynamical verification, PN based verifier checks

the correctness of a dataflow schedule by checking the validity of PN tokens

firing rules [12–15,18].

• The performance of the proposed PN based verifier is efficient.

In conventional approaches, a high-level design is first synthesized in RTL

or gate level, then the existential Boolean based tools can be used in ver-

ification flow. Instead of using Boolean algebra, PN based verifier gains

confidence in mathematical equations derived from PN characteristic ma-

trix and verifies the correctness of the design in higher level. By using

5

mathematical linear algebra, high-level faults of the HLS results can be

detected in PN based verification method. While comparing to the con-

ventional approaches, PN based verifier does not need complex Boolean

manipulations. And hence, PN based verifier is more efficient than tradi-

tional approaches [12–15,18].

• The proposed hybrid verification frameworks can be integrated into existen-

tial verification tools.

The concept of the proposed hybrid verification framework is to verify

HLS arithmetic transformations in the first stage and check the correct-

ness of HLS scheduling in the second stage. Such hybrid framework can

be integrated into existential verification tools, such as the SMV model

checker [14, 15].

1.4 Outline

This thesis is organized as following. In Chapter. 2, some background and re-

view of the related researches are given. In order to verify dataflow design in PN

domain, the dataflow modeling and conversion methods are introduced in Chap-

ter. 3. In Chapter. 4, the hybrid verification framework combines PN theory and

SMV-model checker is proposed. The PN-based two-folded verification technique

for the dataflow graph is addressed in Chapter. 5. At last, some conclusions are

made in Chapter. 6.

6

CHAPTER 2

Background Review

2.1 Levels of Abstraction

The terminology of design synthesis is defined by [45] as a translation process

from a behavioral description into a structural description. Usually, the tripar-

tite representation of Y-chart [46,47] is used to represent different types of design

synthesis. As showing in Figure. 2.1, the Y-chart has three axes including behav-

ioral, structural and physical domains in it. Along each axis, as we move farther

away from the center of the Y-chart, the level of description becomes more ab-

stract. Each circle intersects the Y axis at a particular level of representation

within a domain. The outer circle is the system, the next is the register-transfer

(RTL) level, followed by the logic and circuit levels. Table. 2.1 lists these levels

and design objects on different abstraction levels.

To distinguish different tasks of synthesis works, we bravely describe the syn-

thesis subtasks as follows [48]. As showing in Figure. 2.1, the most outside arc is

the System synthesis or high-level synthesis (HLS). HLS consists of generating an

optimized structural view of an architectural level model of a design. The process

corresponds to determining resources assignment or interconnection of modules

as well of executing schedules. On register-transfer synthesis, time is divided into

intervals called control states or steps. Designers use a register-transfer descrip-

tion, which specifies for each control state the condition to be tested, all register

7

Behavioral

domain

Structural

domain

Physical

domain

Flowcharts, algorithms

Register transfers

Boolean expressions

Transistor functions

Processors,

Memories, Buses

Registers, ALUs, MUXs

Gates, flip-flops

Transistors

Transistor layouts

Cells

Chips

Boards, MCMs

System synthesis (or HLS)

Register-transfer synthesis

Logic synthesis

Circuit synthesis

Figure 2.1: The Y-chart

Table 2.1: Design objects on different abstraction levels [45]

Level name Behavioral domain Structural domain Physical domain
System Spec. charts Processors Cabinets
level Flowcharts Controllers Boards

Algorithms Memories MCMs
Bues Chips

RTL Register transfers ALUs Chips
level Multipliers Floorplans

MUXs Module floorplans
Registers
Memories

Logic Boolean equations Gates Modules
level Sequencers Flip-flops Cells

Circuit Transfer functions Transistors Transistor layouts
level Connections Wire segments

Contacts

8

transfers to be executed, and the next control state to be entered. Logic synthesis

is the task of generating a structural view of a logic-level model. Logic synthesis

determines the gate-level structure of a circuit, and transforming a logic model

into an interconnection of instances of library cells. Circuit synthesis consists

of creating a physical view of the circuit level. It entails the specification of all

geometric patterns defining the physical layout of the chip.

In this thesis, we only concern the verification on system-level synthesis of

dataflow algorithms. Several major HLS optimization techniques are addressed

in the next section.

2.2 HLS: High-Level Synthesis

As mentioned in previous section, the goal of system-level synthesis or HLS is to

generate optimized structural architecture of design. The typical design flow of

a high-level DSP synthesis system is illustrated in Figure. 2.2 [49]. The first step

in HLS is to convert the behavioral description into a graph-based internal repre-

sentation in the form of a FSFG (Fully-Specified Flow Graph) or DFG (Dataflow

Graph). The intermedia tasks in HLS include high-level optimization, scheduling

and resource allocation, module binding, and control generation. The final ar-

chitecture produced by HLS is typically at the RTL and can be represented by a

netlist that consists of a network of functional units, registers, multiplexers, and

buses. Several major optimization HLS techniques are utilized in system-level

synthesis and are introduced in the following subsections.

9

Graphical Representation

Dataflow graph (DFG or FSFG)

R1 R2 R3 R4 R5

2:1 2:1

2:1 2:1 2:1 2:1

ALU1 ALU2
t

0

1

2

3

4

5

6

7

8

9

10

PE

Num. of

resource

mul 1

add 1

PE

Num. of

resource

add 2

mul 2

D

D

D

D

Retiming

D

D

A

B

Module binding and control circuit

generation (RTL)

High-level optimation
Retiming Unfolding

Scheduling Architecture, topology,

resource selection

Goals and

constraints
Resources

PE

A

Exec.

time

B

C

1

1

1

Unfolding

by 2

B1

A1 B2

A2

C2

C2

D

D

A B C
D

D

Figure 2.2: The high-level DSP synthesis system

10

2.2.1 FSFG: Fully-Specified Signal Flow Graph

Before addressing the HLS optimization techniques, we first state the graph rep-

resentation for dataflow design and several measurement matrices for evaluating

performance of dataflow graph.

Usually, the dataflow graph design can be represented by Fully-Specified Sig-

nal Flow Graph (FSFG) [50]. Let GFSFG (V,E,D), where V = {v1, . . . , vn} and

E = {e1, . . . , em}, be a three-tuple directed and edge-weighted graph. Vertex

set V represents atomic operation of functional units. A vertex may have a

zero execution delay, such as the signal duplicator; or may be assumed to take

non-zero unit time, such as adder or multiplier. Directed edge set E describes

the direction of flow of data between functional units. Inter data dependencies

between functional units are denoted by weighted edges or mapping function

D : e → {0, 1, 2, · · · }, e ∈ E. If a weighted edge e ∈ E is labeled by D while

D(e) = 1, we say that edge e has a delay element with it. Figure. 2.3(a), for

instance, shows a second order IIR filter in the form of FSFG. Another example

of FSFG of the third order IIR filter is also shown in Figure. 2.3(b).

To measure the efficiency of the implementation of a FSFG on a synchronous

multiprocessor system, a number of bounds have been used [50–54]. Three com-

monly used flow graph bounds are IPB (Iteration Period Bound), PDB (Period

Delay Bound) and PB (Processor Bound). We redefine these matrices as following

for convenience:

• Iteration Period Bound (IPB)

Let di be the executing delay of vertex vi ∈ V . The IPB is defined as the

minimum achievable latency between iterations of the given dataflow graph.

If L is the set of loops and nl is the number of delay elements around loop

11

x[n] y[n]

b1

b2

a1

a2

v1 v2 v3

v4 v5 v6 v7

v8

v9
v10 v11

e3D

e8D

e7e5 e6

e2

e12 e13

e9

e11 e14

e4 e10

e1

1 time units adder

1 time units multiplier

zero time unit signal

duplicator

(a) A second order IIR filter in the form of FSFG

1 time units adder

2 time units multiplier

v16
e20 e21

v9

e18

v10
e15

e17 D

e14e13

e10 D

v15
v8

b2

b3

v14

b1
v7

v11

e4

e2
v12

y [n]

e3 D

v13

e19

a3

a2

e16

v2
x [n]

v1

v3

e9

a1
v4

v5

v6

e12

e1

e11

e8e7e6e5

zero time unit signal

duplicator

(b) A third order IIR filter in the form of FSFG

Figure 2.3: The example FSFG graphs

12

l ∈ L, then the IPB is formulated by:

IPB = max











∑

j∈l

dj

nl











, l ∈ L. (2.1)

Note that, a FSFG is called perfect rate if and only if it has one delay

in every loop. All perfect rate FSFGs can be statically scheduled at the

iteration period bound.

• Period Delay Bound (PDB)

The Period Delay Bound represents the minimum average throughput delay

from input to output at a given iteration period. Let P be the set of paths

from input to output and np be the number of delay elements in path p,

then the PDB is defined by:

PDB = max

⌈

∑

j∈p

dj − np · IPB

⌉

, p ∈ P. (2.2)

• Processor Bound (PB)

The Processor Bound represents a lower bound on the number of processors

needed to meet the IPB. Let N be the set of all nodes, then processor bound

is defined by:

PB =









∑

j∈N

dj

IPB









. (2.3)

Figure. 2.4 illustrates the performance matrices of the second order IIR filter.

As showing in figure, the IPB is 20 on loop 2→ 4→ 2, the periodic delay Di/o

is 30 on path 1→ 2→ 8, and the processor bound PB is 4.

13

x[n]

y[n]

v1

v2

v3

v4

v5

v6

v7

v8

D

D

loop 1-2-3-1:

loop 2-4-2:

15
2

2

1

1 =
⋅+

= addmult

l

l TT

n

d

Tmult : 10 units delay

Tadd : 10 units delay

20
1

2

2 =
+

= addmult

l

l TT

n

d

IPB

(iteration period bound):

IPB =

max[15, 20] = 20

!

"
"
"

"

#

=

$
=

IPB

d

PB
Nj

j

...1

PB (processor bound):

() 804
...1

=+⋅=$
=

addmult

Nj

j TTd

4
20

8080
===

IPB
PB

Periodic delay bound (Di/o):

PpIPBndD
pj

pjoi ∈

!
"
"

#
⋅−= $

∈

,max/

path 1-2-8:

302003 =⋅−⋅=

⋅−$
∈

add

pj

pj

T

IPBnd

Di/o = max[30] = 30

Figure 2.4: The performance matrices of the second order IIR filter

In the follows of the optimization procedures of HLS, these performance ma-

trices of the dataflow can be used to measure the efficiency of the dataflow graph

meeting the iteration period, delay and processor bounds of optimal goals.

2.2.2 Retiming

Retiming algorithms address the problem of moving the structural location of

delay elements in a dataflow graph to improve its execution performance, silicon

area, or power consumption in such a way that preserves the functional behavior

of a design. The retiming algorithm was first described by Leiserson and Saxe

[55, 56] using a graph model that abstracts the computation performed at each

vertex of the dataflow graph design.

A retiming of a dataflow graph G (V,E,D,w) is an integer-valued vertex

14

labeling r : V 7→ Z. The integer r(u) associated with vertex u ∈ V denotes the

number of delay elements being removed from each of the fanouts of u and being

added to each of the fanins of u. (See Figure. 2.5). The retiming transforms

graph G into the graph Gr = (V,E,D,wr), where the new edge-weight wr(e) of

an edge u
e
→ v is given by wr(e) = w(e)+ r(v)− r(u). Therefore, the path weight

Wr(p) of path p = v0
e1→ v1

e2→· · ·
ek−1

→ vk−1
ek→ vk in the retimed graph is given by

Equation. 2.4.

Wr (p) =
k

∑

i=1

(w (ei) + r (vi)− r (vi−1))

= r (vk)− r (v0) +W (p)

(2.4)

Note that in the special case of p being a cycle, Wr(p) equals W (p). Thus, the

path weight (i.e. the path delay) of a cycle remains invariant during retiming.

A retiming is valid if for each e ∈ E,wr(e) ≥ 0. This is a very important

property for checking the retiming validity.

D

D

D

r(u)

+1

-1

u v

(a) (b)

u v

Figure 2.5: (a) An example of dataflow graph, (b) retimed dataflow graph

In practical application, retiming problem is usually modeled by using ILP

(Integer Linear Programming) [57]. Given a dataflow design, its FSFG graph

may not be rate-optimal; in other words, the FSFG graph does not reach the

optimal IPB bound. Retiming is a process that may help making sample rate

equal to IPB. With delay transfer or nodal transfer, it is possible to make a loop

15

achieve IPB. ILP for retiming problem has been proposed by [58]. We redescribe

in Algorithm. 1.

Algorithm 1 ILP modeling for retiming problem
1: Minimize: IPB
2: Subject: Precedence constraints: Node v precedes node w (i.e. arc of v → w)
3:

4: tw − tv > dw − nvw · IPB, ∀e (v, w) ∈ E.
5: Non-negativity constraints: IPB, tj ≥ 0, for i = 1, · · · , N

2.2.3 FSFG Unfolding

In previous subsection, we know that retiming technique can be used to convert a

FSFG graph to an optimal FSFG design reaching its IPB bound. However, not all

of the FSFG graphs can be made to rate-optimal only using retiming. To solve

this problem, Parhi and Messerschmitt proposed the graph-domain unfolding

transformation for FSFG graph in their works [49, 59, 60]. For a given FSFG

graph, if there is N nodes, the f -unfolded FSFG has f×N nodes, and the IPB is

also f times larger than the original FSFG. The total number of delay elements

remains unchanged. The Parhi-Messerschmitt unfolding (by f) algorithm that

operates directly on the FSFG is redescribed by Algorithm. 2.

An example of FSFG unfolding is given in Figure. 2.6. In the original FSFG

Figure. 2.6(a), its iteration period boubd IPB is 2, however, not all of two loops

in (a) have only one delay in it. In other words, the original FSFG is not a

perfect rate FSFG. After unfolding by 2, the unfolded graph in Figure. 2.6(b) is a

perfect rate FSFG with IPB = 4, however, two iterations are completed in that,

resulting in an equivalent IPB = 2 in the original FSFG.

16

Algorithm 2 Unfolding a FSFG by f

1: for all vj ∈ V do

2: draw f nodes labeled vi
j , i = 1, · · · , f

3: end for

4:

5: for all edge e ∈ E(u, v) with zero dealys in original FSFG do

6: draw arcs uk to vk with zero delay, k = 1, · · · , f
7: end for

8: for edge e ∈ E(u, v) with i dealys in original FSFG do

9: if i < f then

10: draw arcs uq−i to vq with zero delay, q = i+ 1, · · · , f
11: draw arcs uf−i+q to vq with one delay, q = 1, · · · , i
12: else if i ≥ f then

13: draw arcs um to vq with z delays, m = (z × f)− i+ f
14: and z = ⌈(i− q + 1)/f⌉, q = 1, · · · , f
15: end if

16: end for

PE

A

Exec.

time

B

C

1

1

1

Unfolding

by 2

B1

A1 B2

A2

C2

C2

D

D

A B C
D

D

(a) (b)

Figure 2.6: (a) Original FSFG with IPB=2, (b) Unfolding by 2 with IPB=2 (since
two iterations are completed resulting in an equivalent IPB of 2 in the original
FSFG)

2.2.4 FSFG Scheduling

Before mapping an FSFG design into a hardware, the execution start time of each

task must be determined. A static schedule of a cycle FSFG is a repeated pat-

tern of an execution of the corresponding loop. And a static schedule must obey

17

the precedence relations of the directed acyclic graph (DAG) portion of a FSFG

design that is obtained by removing all edges with delays from that FSFG. A

sequencing graph is a DAG Gs(V,E), where vertex set V = {vi | i = 1, 2, . . . , n}

is in one-to-one correspondence with the set of the FSFG design, and edge set

E = {(vi, vj) | i, j = 1, 2, . . . , n; i 6= j} is representing their dependencies. Differ-

ent scheduling algorithms have been proposed in [58, 59, 61] addressing different

constrained problems to find the desired schedule. The desired schedule have to

satisfy the precedence constraints specified by the sequencing graph. A sched-

ule S to the FSFG design is represented in space-time (P × T) domain. The

abscissa denotes time axis, [1, le(S)], where le(S) is the length of the schedule.

The ordinate denotes the processor space, [1, nres], where nres is the total number

of processors that implement each task. During the period of the i-th iteration,

schedule determines the start times of all nodes in FSFG. Let opi
j be a task, which

is corresponded to each vertex vj ∈ V of a given FSFG in the ith iteration. A

schedule of the given FSFG, GFSFG = (V,E,D), is a function ϕ : V → Z
+, which

arranges each task node opi
j to begin its execution at the time step ϕ

(

opi
j

)

, where

Z
+ = {1, 2, . . .} is the positive integer.

Assuming dj is the execution delay for each task node opi
j, the length le (S)

of a schedule S is the latest finish time of all the operations scheduled, that

is le (S) = max
{

ϕ
(

opi
j

)

+ dj − 1|∀opi
j ∈ V

}

. For each task node opi
j ∈ V , a

schedule of the given FSFG is as following:

• Start time: tij = ϕ
(

opi
j

)

, ϕ : V → Z
+ = {1, 2, . . .}

• Execution delay: dj ∈ Z = {0, 1, 2, . . .}

• Finish time: εj = ϕ
(

opi
j

)

+ dj − 1

• Task assignment:

18

pei
j = τ(opi

j), τ : V → {1, 2, . . . , nres}

• Length of the schedule:

le(S) = max
{

ϕ
(

opi
j

)

+ dj − 1|∀opi
j ∈ V

}

• The earliest task-finished step:

tetf = min
{

ϕ
(

opi
j

)

+ dj − 1|∀opi
j ∈ V

}

An example schedule of the second order IIR filter, for instance, is shown in

Figure. 2.7.

op5
1

op9
1

time

PE

PE1

PE2

1 2 3 4

op7
1

op11
1

op4
1

op1
1

op8
1

op3
1

PE3

PE4

v5 v9

v4 v11v7

v1 v8

v3

Figure 2.7: An example schedule of the second order IIR filter of Figure. 2.3(a)

In practical application, four scheduling algorithms are commonly used in

HLS, and they are ASAP (as soon as possible) / ALAP (as late as possible)

19

scheduling [48], list scheduling [62], force-directed scheduling [63] and ILP (Inte-

ger Linear Programming) scheduling [57, 64]. The first four algorithms are also

called the heuristic method. The heuristic method initially utilizes ASAP / ALAP

scheduling [48], then the algorithm iteratively selects and schedules one opera-

tion at a time into an appropriate control step. Since the greedy strategies make

a series of local decisions, it may miss the globally optimal solution. However,

heuristic method do produce results quickly, and the results may be sufficient for

practical application. The last scheduling algorithm is based on solving formulas.

The ILP method is guaranteed to find globally optimal schedule, although at the

cost of more processing time. In contrast to the first one, ILP based scheduling

produces a schedule for all operations simultaneously.

2.3 PN: Petri Net

Petri Net is a graphical and mathematical modeling tool applicable to many

applications, especially the parallel or concurrency systems. The primary concept

was original from Carl Adam Petri in his Ph.D thesis since 1962 [65]. Readers

may refer more literatures about history and survey works from [66–73].

Formally, a Petri Net GPN (P, T,W,M0) can be represented by a four-tuple

graph [70], where P = {p1, . . . , pn} and T = {t1, . . . , tm} are finite sets of place

and transition, W is the weighted flow relation, and M0 is the initial marking.

Visually in graph, places are drown as circles and transitions as boxes or bars.

A marking (state) is a mapping function M : P → {0, 1, 2, · · · }. If M (pi) = k

for place pi, we say that place pi is marked with k tokens. In graphic, we draw

k block dots (tokens) inside place pi if M(pi) = k. The initial marking M0

denotes the number of tokens that all places are marked initially. A marking

M is said to be a valid state if and only if M (pi) > 0, ∀pi ∈ P . Let u and

20

v be two arbitrary adjacent nodes of PN. If W (u, v) > 0, then there is an arc

from u to v with weight W (u, v). In this research, we assume that W (u, v) = 1

for each node pair. For a node u in P ∪ T , •u (the pre-set of u) is specified

by: •u = {v ∈ P ∪ T |W (v, u) > 0} and u• (the post-set of u) is specified by:

u• = {v ∈ P ∪ T |W (u, v) > 0}. In our work, for each place pi ∈ P , we only alow

pi has only one output transition, that is ∀pi ∈ P, |pi
•| = 1.

When considering a condition-event system, places with marking (state) rep-

resent the conditions, while transitions represent the events. A transition (event)

has certain number of input and output places representing the pre-conditions

and post-conditions of the event. The presence of a token in a place is interpreted

as holding the truth of the condition associated with the place. In [67], the author

gave some typical interpretations of places and transitions. We redescribe these

interpretations in Table. 2.2.

Table 2.2: Typical interpretations of places and transitions

Input places Transition Output places
Preconditions Event Postconditions
Input data Computation step Output data
Input signals Signal processor Output signals
Resources needed Task or job Resources released
Conditions Clause in logic Conclusions
Buffers Processor Buffers

The execution of a Petri Net is controlled by the number and distribution of

tokens. Tokens reside in the places and control the execution of the transitions of

the net. A Petri Net executes by firing transitions. A transition fires by removing

tokens from its input places and creating new tokens which are distributed to its

output places. A transition may fire if it is enabled. A transition tr is enabled at

marking M (denoted by M [tr〉) if ∀p ∈ •tr : M (p) > W (p, tr). Once a transition

tr is enabled at M , it may fire and then reach a new marking M ′ (denoted by

21

M [tr〉M ′). The occurrence of tr lead to a new marking M ′, defined for each

place p by

M ′ (p) = M (p)−W (p, tr) +W (tr, p) . (2.5)

A sequence of transitions σ = tr1 · · · trk−1 ∈ T ∗ is a firing sequence from a

marking M1 to a marking Mk if and only if there exist markings M2, . . . ,Mk−1

such that

Mi[tri〉Mi+1, for 1 6 i 6 k − 1. (2.6)

Marking Mk is said to be reachable from M0 if and only if there exists a firing

sequence σ : M0[σ〉Mk. [M〉 is the set of markings reachable from M by firing

any sequence of transitions, i.e., M ′ ∈ [M〉 ⇔ ∃σ ∈ T ∗ : M [σ〉M ′. [M0〉 is the

set of all markings reachable from M0.

Matrix representation of PN is defined by incidence matrix A (also called the

characteristic matrix), which is a |P | × |T |-matrix with entries

Aij = W (trj , pi)−W (pi, trj) . (2.7)

The matrix representation usually gives a complete characterization of PN.

Let xj = {trj} = (. . . , 0, 1, 0, . . .) be the unit |T | × 1 column vector which is

zero everywhere except in the j-th element. Also, let µ is the |P | × 1 column

vector respected to a marking M0 with entries µi = M0 (pi). The transition trj

is represented by the column vector xj . A transition trj is enabled at a marking

M0(denoted by M0[trj〉) if µ > A · xj . And the result marking, µ′, of firing

enabled transition trj in a marking µ0 is represented by

22

µ′ = δ (µ0, trj) = µ0 + A · xj . (2.8)

Where δ : M × T → M is a transition function mapping current marking

state µ0 and current firing transition into the next next marking state µ′. For a

sequence of transition firing σ : M0[σ〉Mk and Mi[tri〉Mi+1, 1 6 i 6 k − 1, we

have:

δ (µ0; σ) = δ (µ0; tr1tr2tr3 . . . trk−1)

= µ0 +
∑k−1

1 A · xj

= µ0 + A · f (σ) .

(2.9)

The vector f (σ) is firing vector of the sequence σ = tr1 . . . trk−1. The i-th

element of f (σ), f (σ)i ∈ Z, is the number of times that transition tri fires.

The reachability tree is the important technique analyzing the reachability

marking set of a PN model. The tree structure shows which states of the PN

can be reached with arbitrary transition firing sequences starting from the initial

marking state M0. A reachability tree is a hierarchical graph with directed arcs.

The nodes of the tree represent PN marking state and the arcs represent transi-

tions firing. The root node represents the initial net state and the leaf nodes are

reachable net states. Duplicate nodes reflect multiple net states in the tree. The

terminal nodes represent the end of valid paths through the tree and can also rep-

resent net states. To prevent infinite number of markings which result from loops

in a PN model, a special symbol ω is introduced in reachability analysis [66,67].

For any constant a, ω is defined by:

23

w + a = w

w − a = w

a < w

w 6 w

(2.10)

By using ω notation, an PN tree constructing algorithm is given in Algo-

rithm. 3. An example PN is given in Figure. 2.8(a), and its reachability using ω

notation is given in Figure. 2.8(b).

Algorithm 3 Algorithm of constructing a reachability tree from a PN

1: Initialize the root node of the tree with x = µ0

2: for all node µ to be inserted, evaluate δ(x, trj), ∀trj ∈ T do

3: if δ(x, trj) is undefined, ∀tj ∈ T then

4: the x is a terminal node
5: else if δ(x, trj) is defined for at least one trj ∈ T then

6: create a new node x′ = δ(x, tj)
7: if x′(pi) = ω, ∀pi ∈ P then

8: defien x′(pi)← ω
9: else if a node y exists and x′(pi) > y(pi), ∀pi ∈ P then

10: set x′(pi)← ω, ∀pi ∈ P
11: else

12: x′(pi)← x′(pi)
13: end if

14: end if

15: end for

16: if all nodes are either terminal nodes or duplicate nodes then

17: stop tree construction
18: end if

24

p1

p2

p3

p4
t1

t2

t3

1

0

1

0

1

0

0

1

1

w

1

0

1

w

0

0

1

w

0

1

1

w

1

0

t3 t2

t1

t3 t2

(a) (b)

Figure 2.8: (a) A Petri Net to illustrate the construction of a reachability tree,
(b) the reachability tree of the Petri Net

25

CHAPTER 3

Modeling and Formal Verification of Dataflow

Graph in System-Level Design Using Petri Net

3.1 Introduction

In this chapter, we address a PN (Petri Net) based formal verification method for

dataflow or DSP-driven algorithms of HLS (High-Level Synthesis) result. Tradi-

tionally, given a DSP-driven algorithm, the arithmetic transformations [60], such

as retiming and unfolding techniques [59, 61], and the scheduling techniques are

used to achieve optimal system specification goals in HLS. These system-level

design techniques are usually applied iteratively and error-prone. In order to

detect design faults of system-level design, system-level verification is introduced

in design flow. In this work, two-phases verification including static and dynamic

phases are proposed, and Figure. 3.1 illustrates the verification flowchart.

As showing in flowchart, the dataflow algorithm is usually represented by a

Fully-Specified Signal Flow Graph (FSFG). To check a DSP-driven algorithm

in PN domain, the design is first converted into a PN (Petri Net) model by

using proposed conversion method and then apply verification techniques in PN

domain. In static phase, the target is to verify the arithmetic transformations of

HLS. Since, the procedures of retiming or unfolding in FSFG domain can be seen

a serial token movement in PN domain, the verifier can check the correctness of

26

the arithmetic transformations by checking the validation of PN token movements

in PN domain.

In dynamic phase, PN model is used to verify the schedule schemes of given

FSFG. In order to map DSP algorithm on a hardware circuit, scheduling tech-

niques are applied to find suitable schedules of FSFG. For high performance

issues, such as smaller silicon area, higher throughput rate, and lower power

consumption, these algorithms start from as-late-as-possible (ALAP) to as-soon-

as-possible (ASAP) schedule time and assign the starting time of each task of

FSFG [74]. The execution of all tasks is referred to as an iteration. Within

an iteration, the execution sequences are different from various scheduling al-

gorithms, but the original behavior is not changed. Once a schedule scheme of

FSFG is produced from scheduling algorithms, the permanent behavior of system

and schedule scheme are transformed and verified in PN domain as well in static

phase.

The PN-based verification can be considered as a model checker with ca-

pability of checking a number of properties that should be hold under system

specification. In PN domain, the inputs to the model checker include a char-

acteristic matrix describing the system and the system properties described in

matrix equations. By applying mathematics theory and matrix manipulation,

the model checker reports whether the design is valid. When comparing with

FSFG, designing DSP algorithm at FSFG domain and verifying it at PN do-

main provides double-checking verification solution. Additionally, PN theory

also provides primary property analysis techniques of system, such as reachabil-

ity, liveness, safeness, boundedness, and reversibility [75] that FSFG can not be

offered.

This chapter is organized as follows. First, we describe the methodology of

27

Algorithm

Development

Algorithm

transformation
System

static model

using Petri net

Static

Verification

Algorithm

scheduling

assignment

Dynamic

Verification

System

dynamic model

using Petri net

System level design

(In FSFG domain) Petri Net Based

VerificationDesign

specification

Resources

Goals and

constraints

High level optimization

Scheduling and Resource

Allocation

RTL Level

Figure 3.1: System-level design flow and the PN-based verification

28

conversion from FSFG to PN model. Then, PN based high-level verification

flow is presented in Section. 3.3. In Section. 3.4, we introduce our verification

software application tool called HiVED (High-Level Verification Engine for DSP)

and show some experimental results. Finally, we make some concluding remarks

in the latest section.

3.2 Conversion from FSFG to PN model

The FSFG is attractive to algorithm developers because it directly models the

equations of DSP algorithm. Yet, it does not sufficiently unveil the dynamic

behavior and the implementation limits in terms of the degree of parallelism and

the memory requirement. Thus, we use Petri net to model DSP algorithms.

It also allows us to discover the characteristic of the target architecture and to

observe the dynamic behavior of the algorithm.

The FSFG GFSFG (V,E,D) of a DSP-driven algorithm can be modeled as PN

GPN(P, T,W,M0) by applying following rules:

1. Vertex set V , whose elements have the computational power, in FSFG

domain is transformed into transition set T in PN domain.

2. Edge set E in FSFG domain is transformed into place set P in PN domain.

3. Since each place in PN has only one output transition, the pseudo transition

is added as the signal duplicator which is corresponded to the fork node in

FSFG.

4. The delay element set D in FSFG domain is corresponded to the number of

tokens in places in PN domain. In static analysis, tokens in a PN model can

represent delay elements of a FSFG; thus, retiming delay elements between

29

edges in a FSFG graph can be seen as moving tokens between places in a

PN model. In dynamic analysis, executions of vertices in a FSFG graph

can represent moving tokens between places in a PN model.

FSFG domain

Vertex set
v1~v2

Transition set
tr1~tr2

Edge set
e1~e5

Place set
p1~p5

PN domain

Transformation table

v1

v2

e3

e2

e4

e5

e1 p1
p2

tr1

p3
p4

tr2

p5

FSFG Petri net

Figure 3.2: Transformation from FSFG to Petri net

Figure. 3.2, for instance, illustrates the transformation from vertex set V and

edge set E to transition set T and place set P . The vertex set V = {v1, v2}

and the edge set E = {e1, e2, e3, e4, e5} in FSFG domain are transformed into

the transition set T = {tr1, tr2} and the place set P = {p1, p2, p3, p4, p5} in PN

domain with respect. Another example is given in Figure. 3.3, a FSFG graph

with delay elements is transformed into a Petri net. The vertex set V = {a, b, c}

and the edge set E = {e1, e2, e3} of FSFG are transformed into the transition

set T = {tr1, tr2, tr3} and the place set P = {p1, p2, p3} of PN model. The delay

elements in FSFG domain is donated by the number of tokens in places, such

that M0(p1) = 0,M0(p2) = 1 and M0(p3) = 2.

In FSFG domain, a computing result of a functional element is one or more

other functional elements’ inputs. Data source in the prior functional element

causes a data fork point. A fork point in FSFG can be modeled as a pseudo-

transition in PN model. The pseudo-transition duplicates copies of data source

30

b

2D D

e1

e2e3

tr1

p1

tr2

p2

tr3

p3

FSFG with delay elements

Petri net with tokens

FSFG domain

Delay on

edge

Token in

place

PN domain

Transformation table

D

a

c

Figure 3.3: FSFG with delay elements and Petri net with tokens

FSFG domain

Fork point
Pseudo

transition

PN domain

Transformation table
v1 v2

Fork point

e4 e5

e2 e3

e1

p1 Pseudo transition

p2 p3

t1 t2

p4 p5

FSFG Petri net

Figure 3.4: Fork point in FSFG domain and pseudo-transition in PN domain

31

as many as the output nodes in FSFG graph. The equivalence graph of fork point

in FSFG domain and pseudo-transition in PN domain is shown in Figure. 3.4. In

Figure. 3.5, a PN model example of the second-order IIR filter of Figure. 2.3(a)

is shown. Anther example illustrating the PN model of the third-order IIR filter

of Figure. 2.3(b) by applying above transformation rules shows in Figure. 3.6

while the characteristic matrix A with the initial marking m shows the matrix

representation of the PN model.

tr1

p4

tr4

p5

tr9

p11

p12 p13

p8

tr10

p7tr6

p3

p1
tr2

p8

tr5 tr7

tr11

p6 p9

tr8

p14

p10

p2 tr3

Figure 3.5: PN model of the second order IIR filter

32

tr2
p19

p16

tr1

p12

tr5

tr6

p13

p20 tr16 p21

p17

p14

tr8

tr9

p15

p18

tr10

p11

tr11

p10

tr14
tr7

p7 p8

p6
tr4

p5

p9

tr3

p1

tr13
p2

p3 p4

tr12

tr15

tr1

 0

 0

 0

 0

 0

 0

 0

 0

 1

 0

 0

-1

 0

 0

 0

-1

 0

 0

 0

 0

 0

tr2

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 1

 0

 0

-1

 0

 0

tr3

 1

 0

 0

 0

-1

 0

 0

 0

-1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

tr4

 0

 0

 0

 0

 1

-1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

tr5

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 1

-1

 0

 0

 0

 0

 0

 0

 0

 0

tr6

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 1

-1

 0

tr7

 0

 0

 0

 0

 0

 0

-1

 1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

tr8

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

-1

 1

 0

 0

 0

 0

 0

 0

tr9

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 1

 0

 0

-1

tr10

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 1

 0

 0

 0

-1

 0

 0

-1

 0

 0

 0

tr11

 0

 0

 0

 1

 0

 0

 0

-1

 0

 0

-1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

tr12

 0

-1

 0

-1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

tr13

-1

 1

 1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

tr14

 0

 0

-1

 0

 0

 1

 1

 0

 0

 1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

tr15

 0

 0

 0

 0

 0

 0

 0

 0

 0

-1

 0

 0

 1

 1

 0

 0

 1

 0

 0

 0

 0

tr16

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

-1

 0

 0

 1

 1

P/T

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

[A] = m =

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

Figure 3.6: A PN graph and the matrix representation to the third-order IIR
filter of Figure. 2.3(b).

33

3.3 High-Level Verification

In last section, we have addressed the conversion method to convert a FSFG

graph into PN domain and use PN characteristic matrix to represent a design

system. Since, retiming process or tasks executing for the HLS of the original

FSFG design can be seen token movement of PN model in PN domain. Therefore,

we can use PN theory to check the correctness of arithmetic transformations or

scheduling of HLS. In the following, two-phases verification method including

static and dynamic phases are presented.

3.3.1 Static Verification

The target of the static phase verification is to verify the arithmetic transfor-

mations including the unfolding and retiming techniques. In FSFG domain, the

arithmetic transformations are applied to the original FSFG design attempting

to obtain optimal FSFG [59–61]. These optimization techniques are typically

used to reduce the critical path delay, silicon area, number of latches and power

consumption. However, these algorithms are error-prone and have a lot cost that

limits their use. High-level verification for the arithmetic transformations can

check the correctness of HLS in the early stage of the design flow. In design-

ers’ point of view, if we can quickly tell whether the HLS result of the design is

correct, then the redesigning time or costs can be reduced.

The flowchart to the static phase verification flow is shown in Figure. 3.7. In

HLS, designs may apply arithmetic transformations on DUV design iteratively

in their design flow. We have stated in previous section that the designing pro-

cedures of arithmetic transformations can be seen a serious token movements in

PN domain. The designing parameters, which include delay Ri, unfolding factor

34

f , and final delay Rf of DUV, are transformed into PN model as initial token

µ0(|P |×1), unfolding factor f , and final token µ′
(|P |×1) with respect. While com-

paring to the unfolding technique in FSFG domain, the converted PN model is

also unfolded in PN domain. Before applying retiming checking, we first address

unfolding algorithm of PN model in next section.

()0: 'x n A xµ µ∃ − ⋅ = ⋅

Original FSFG design

Retimed FSFG

Unfolded PN

Model

Retiming

algorithm

Unfolding

algorithm

Unfolded FSFG

Arithmetic transformations

Rf, f

Ri

Unfolding

algorithm

Set of properties:

A, Di, Df

true false

FSFG domain Petri net domain

DUV

Figure 3.7: Flowchart of static phase verification.

3.3.2 PN Unfolding

Let A(|P |×|T |) and d(|P |×1) be the characteristic matrix and the initial delay vector

of a PN model. Assuming its unfolding PN model has PN matrix A′
f ·|P |×f ·|T |

and initial delay vector bd(f ·|P |×1). For each element a′(i, j) in A, there is a sub-

matrix bi,j in dimension (f × f) with it. The value of all element bi,j(s, t) and

bdi(s) depend on delay d(i) and following PN unfolding Algorithm. 4.

35

Algorithm 4 Unfolding a Petri Net by f

1: for all s = 1, 2, · · · , f and t = 1, 2, · · · , f do

2: if d(i) = 0 then

3: bi,j(s, s) = 1
4: bdi(s) = 0, s = {1, 2, · · · , f}
5: else if d(i) < f then

6: if a(i, j) = 1 then

7: bi,j(s, s) = 1
8: else if a(i, j) = −1 then

9: bi,j(s, s+ d(i)) = −1, s = {1, 2, · · · , f − d(i)}
10: bdi(p− s+ 1) = 1, s = {1, 2, · · · , d(i)}
11: end if

12: else if d(i) = f then

13: if a(i, j) = −1 then

14: bij(s, s) = −1
15: else if a(i, j) = 1 then

16: bij(s, s) = 1
17: bdi(s) = 1, s = {1, 2, · · · , f}
18: end if

19: else if d(i) > f then

20: if a(i, j) = −1 then

21: bi,j(s, s) = −1
22: else if a(i, j) = 1 then

23: bi,j(s, f −mod(d(i), f) + 1) = 1,
24: bdi(s) = ⌈d(i)/p⌉, s = {1, 2, · · · , mod(d(i), f)};
25: bi,j(s+mod(d(i), f), s) = 1,
26: bdi(s) = ⌊d(i)/f⌋, s = {1, 2, · · · , f −mod(d(i), f)}.
27: end if

28: end if

29: end for

36

Di=[1 0 0 1]
-1

a
b

c
p1

p3

p2

p4

Petri Net domain

Unfolded PN Di=[0 1 | 0 0 | 0 0 | 0 1]
-1

p1
2

b1

a1

c1

a2

b2 c2

p2
1

p4
1

p3
2

p2
2

p3
1

p1
1

p4
2

1 0 0

0 1 -1

0 0 1

0 0 0

-1 0 0

0 0 0

0 -1 0

1 0 -1

-1 0 1

0 -1 0

0 -1 0

-1 0 0

0 0 0

1 0 0

0 1 0

0 0 1

a1 a2 b1 b2 c1 c2

p1
1

p1
2

p2
1

p2
2

p3
1

p3
2

p4
1

p4
2

Characteristic matrix

1 -1 0

0 1 -1

-1 1 0

-1 0 1

p1

p2

p3

p4

a b c

(a)

(b)

(c)

(d)

Figure 3.8: (a) A example PN model, (b) the 2-folded PN model , (c) PN char-
acteristic matrix of (a) and (d) PN characteristic matrix of (b)

37

Figure. 3.8(a) is an example PN model, and Figure. 3.8(b) is its unfolded PN

model by using the above rules. Figure. 3.8(c) and (d) are the PN characteristic

matrices of (a) and (b) respectively.

3.3.3 Retiming

After applying PN unfolding rule, the unfolded PN model with PN characteristic

matrix, initial and final marking states are used to check the correctness of retim-

ing process. Let µ0 be the initial marking state, A be the characteristic matrix,

x be the firing transition vector and µ′ be the marking state after x firing. The

firing process can be expressed by a matrix equation by Equation. (2.8) and is

rewritten by Equation. (3.1):

µ′ = µ0 + A · xj . (3.1)

The delays of FSFG can also be scaled by a positive integer number n without

affecting the functional behavior of the FSFG, thus it becomes:

µ′ = n · µ0 + A · x, or A · x = (µ′ − n · µ0) . (3.2)

By using linear system theory [76], equation y = A · x has a unique solution

x if and only if matrix [A] and matrix [A|y] have the same rank. In our case,

y = (µ′ − n · µ0) is known and A is the characteristic matrix of PN. Therefore,

we can check the correctness of HLS result by checking the equivalence of the

matrix rank. Finally, as showing in Figure. 3.7, the verifier reports true if x has

solution and false else.

38

3.3.4 Dynamic Verification

In dynamic phase, the target is to verify the tasks executing schedule of FSFG

design. The flowchart to the dynamic verification flow is shown in Figure. 3.9.

In FSFG domain, scheduling algorithms are applied to the FSFG and produce

desired schedule schemes. A schedule of a given FSFG includes the start time

s(j) = tj and execution delay c(j) = dj of each PE (process element) vj of FSFG,

that is:

s(vj) = {tj ∈ N|0 ≤ tj ≤ IP}, (3.3)

c(vj) = {dj ∈ N|vj ∈ V = {v1, · · · , vn}}. (3.4)

Within one iteration period (IP), a schedule scheme gives the executing se-

quence of all PE of V . Generally, various schedule schemes that need to be

verified are either solved by Integer Linear Programming (ILP) [74, 77] or found

by heuristic method. The solution of schedule scheme is in binary decision vari-

able matrix X or Gantt chart form. When a schedule of FSFG design is produced,

the DUV schedule and the original FSFG are transformed into PN model. As

describing in previous section, moving tokens between places is meaning firing

the executable transitions. Thus, schedule verification in PN domain can be seen

as PN reachability problem.

Considering timing interval within one IP, the marking µl, where l ∈ N and

1 ≤ l ≤ IP is the token state of the corresponded time step. For each time step

l, the executable PE set xl is defined as:

39

xl = {vj ∈ V |s(vj) + c(vj)− 1 = l}. (3.5)

Therefore, there exists firing sequence set σ in PN domain with respected to

xl in FSFG domain. The verifier check whether there is only one initial marking

M0 for each time step that satisfied the following equation:

∃M0 : M0[σ〉Ml. (3.6)

Original FSFG

design

Schedule Scheme

(DUV)

Scheduling

algorithms
Petri Net Model

Petri Net domainFSFG domain

Set of

properties:

A, s

Schedule

true false

lMMM σ[: 00∃

Figure 3.9: Flowchart of dynamic phase verification.

3.4 Implementation and Result

In order to prove our methodology, we develop verification software HiVED (High

Level Verification Engine for DSP) in this study. The software application is

40

implemented by using Borland C++ Builder on Microsoft Windows XP. In static

phase, as shown in Figure. 3.10(a), the inputs to HiVED are PN characteristic

matrix of two-order IIR filter in Figure. 2.3(a), the initial and retimed vectors. In

a few time, HiVED will report the retimed vector is correct or not. In dynamic

phase, Figure. 3.10(b), the inputs to HiVED are PN characteristic matrix and

scheduling schemes from various schedule algorithms. In the center of HiVED

workplace, it shows the schedule from input file. After push the aided buttons,

HiVED will show the result step by step animatedly.

3.5 Summary

In this chapter, we explored the modeling and formal verification of dataflow

graph in system level design using PN model. The verification flow includes two

phases, static and dynamical. In static phase, proposed methodology checks sys-

tem architecture design using PN characteristic matrix equations. In dynamical

phase, a FSFG schedule also can be verified by checking reachability of PN firing

sequence.

The main contribution of our work is to put formal verification beyond RTL

level by using PN model. PN theory also provides analysis methods that FSFG

can not offer. The implementation software HiVED also proves our verification

methodology. We believe to have contributed fostering the evidence that high-

level verification to be widely used in DSP system design beyond RTL level.

41

Figure 3.10: (a) Static verification, and (b) dynamic verification of second-order
IIR filter by using proposed HiVED verification software.

42

CHAPTER 4

On Verification on Dataflow Scheduling

4.1 Introduction

This work presents a hybrid verification algorithm to verify high-level synthesis

(HLS) results of dataflow algorithms. Typically, given a dataflow graph (DFG)

or a DSP (Digital Signal Processing) design and a set of design constraints, the

HLS aims to generate tasks schedules with processor resources assignment. The

HLS performs high-level algorithmic transformations including retiming, scaling,

and unfolding techniques on the DFG to meet the architectural constraints and

then allocates processor resources accordingly [61, 74, 77–79]. In general, most

solutions to the scheduling problem can be found by heuristic and Integer Linear

Programming (ILP) [80,81]. Heuristic method finds good solutions for large prob-

lems quickly but suffers with tightly constrained problems where early pruning

decisions exclude candidates leading to superior solutions. On the other hand,

the theoretical framework of ILP based method commonly uses several ILP map-

ping techniques with cost functions as model of constrained-based schedule. The

cost functions may combine several performance measurements such as Iteration

Period Bound (IPB), Periodic Delay Bound (PDB) and Processor Bound (PB),

which reflect the absolute limits on computation rate, latency and area of hard-

ware implementation [59, 60, 77]. ILP method exactly solves scheduling but has

difficulties with time complexity and constraint formulation. Heuristic and ILP

43

scheduling methods produce a single schedule at a time. In order to find optimal

one, scheduling algorithms may be applied iteratively. The overall error-prone

refining process and the complexity increasing with more constraints added to

problem formulations make scheduling algorithms difficult to solve. Herein, any

mistake or incomplete description made in the scheduling procedures may lead

an illegal solution and defeat following synthesis results. In our opinion, intro-

ducing high-level verification in system design flow may take benefit to speed

up the scheduling procedure by filtering out invalid scheduling and prevent from

scheduling faults. Therefore, this work intends to present a formal verification

method to unveil the faults produced in HLS.

The proposed verification method is two-folded, and the verifier utilizes both

techniques including Petri Net theory and SMV model checker in it. In the first

folded, a high-level dataflow design is converted into a Petri Net model. Petri

Net model can hold data dependence of dataflow design, therefore, any legal

high-level algorithmic transformation has to conform to the firing rules of the

Petri Net model. In the second folded, SMV model checker is used to check

the correctness of a Finite State Machine (FSM) for the data-path scheduling.

An admissible FSM schedule must satisfy system specification of the dataflow

design. In the proposed verifier, given a DUV (design-under-verification), two

inputs including system description and tasks schedule are required. The system

description is basically a Fully-Specified Signal Flow Graph (FSFG) [50]. The

FSFG represents the behavioral of the dataflow algorithm which is also a design

entry of HLS. In order to meet architectural constraints, high-level algorithmic

transformations normally reconstruct the original FSFG design and find the opti-

mal tasks schedule. To verify the correctness of the algorithmic transformations,

the reconstructed FSFG and its original FSFG design are converted into Petri Net

domain. In PN domain, each Petri Net graph can be represented by a PN char-

44

acteristic matrix. Two PN characteristic matrices including the reconstructed

FSFG design and its original FSFG graph must satisfy PN characteristic matrix

equation. By using two proposed traverse algorithms, the verifier tries to find

the candidate reconstructed FSFGs from PN reachability tree. Each candidate

reconstructed FSFG can be seen as a high-level algorithmic transformed design

which is corresponded to its original FSFG design. All the relationships of the

data dependence between each operation-pair of the reconstructed FSFG graph

can be seen as the system specifications of all the composed operators of the

FSFG graph. The system specifications are classified into three classes includ-

ing the non-preemption, job completion and precedence properties. Each legal

executing sequence of the FSFG graph must satisfy those system specifications.

Another input to the verifier is the tasks schedule expressed in the format of

processor-time chart (or P × T chart). The P × T chart equally shows the exe-

cuting sequence of all tasks of dataflow algorithms. In order to verify the tasks

schedule, P × T chart is re-represented by a FSM description. Then, the SMV

model checker is used to verify the FSM machine which must satisfy the system

specifications.

The remainder of this work is organized as follows. Section 4.2 introduces

some backgrounds of the state-of-art formal verification techniques. Section 4.4

describes the admissible conditions for FSFG schedule in HLS. The proposed

high-level verification flow is presented in Section 4.5. The proposed two-stage

verification algorithm is discussed in Section 4.6. In Section 4.7, we discuss the

complexity analysis of the verification algorithms. In section 4.8 some experi-

mental results are given. Section 4.9 gives the summary of this work.

45

4.2 Background

Formal verification gains the confidence from mathematical reasoning in the cor-

rectness of various aspects of the complex system design. The trends of formal

method can be roughly divided into two mainstreams: equivalence checking [7]

and model checking [10]. This section introduces the background of both tech-

niques for the formal verification.

4.2.1 Equivalence Checking

The purpose of the equivalence checking is to prove functional equivalence of

two design representations modeled at the same or different levels of abstraction.

Generally, two Boolean reasoning techniques including BDD (Binary Decision

Diagrams) [19–21] and Boolean SAT (Satisfiability) [25, 26] are used in formal

equivalence checking. Both extensional techniques are applied in RTL or gate

level.

4.2.2 BDD: Binary Decision Diagrams

A BDD is a data structure for representing a Boolean function. The basic idea

from which the data structure was created is the Shannon expansion. And the

full potential for efficient algorithms based on the data structure is investigated

by Bryant [19–21]. Conceptually, a Boolean function can be constructed and

represented by a BDD tree as follows. First, a Boolean function is split into two

sub-functions (cofactors) or if-then-else normal form by assigning one variable.

Each sub-functions is split iteratively along any path from root to leaf, no variable

appears more than once, and the variables always appear in the same order. Next,

apply the following two reduction rules: merge any duplicate nodes, and delete

46

one of the child pointers of a node point to the same descendant. A BDD example

of Boolean function (x⊕y⊕z) is given by Figure. 4.1(a). After applying reduction

rules of Figure. 4.1(b), the resulting direct, acyclic graph is the ordered redundant

BDD in Figure. 4.1(c). In practical, BDDs are generated and manipulated in the

full reduced form without ever building the decision tree. Bryant [20] also provides

a detailed exposition on BDDs and surveys some applications and variables.

4.2.3 SAT: Boolean Satisfiability

Boolean Satisfiability (SAT) [25–27] is the decision problem of determining whether

the variables of a given Boolean function can be assigned in which to make

the function evaluate to Boolean true. The SAT problem is known to be NP-

complete [82]. However, in practical, there has been tremendous progress in SAT

solvers technique over the years [83].

Most SAT solvers use a Conjunctive Normal Form (CNF) representation of

the Boolean formula. In CNF, the formula is represented as a conjunctive of

clauses, each clause is a disjunction of literals, and a literal is a variable or its

negation. Note that the CNF formula is satisfied if and only if all clauses are

satisfied, i.e. all clauses must evaluate to Boolean true. In practical application,

a Boolean circuit may be encoded as a satisfiability equivalent CNF formula using

the method of [84]. And then, the existential SAT solver, zChaff [85] solver for

instance, may work directly on the Boolean circuit representation.

4.3 Model Checking

Over the last decades, model checking has been widely used for verification of

FSM (Finite-State Machine) system, such as hardware design and communication

47

(a)

a a
0

0
1

1

a a
0

0
1

1

become

a

0 1

become

a

0 1

(b)

x

y

z

0

y

z

1

0 1

0 0

1 1

0 0

1 1

z

0 1

0 1
z

1 0

0 1
z

1 0

0 1
z

0 1

0 1

y
0 1

y
0 1

x
0 1

(c)

x y z

f(x,y,z) = x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f
0

1

1

0

1

0

0

1

Figure 4.1: (a) A example BDD of Boolean function (x⊕y⊕z), (b) BDD reduction
rules, and (c) final ordered redundant BDD graph.

48

protocols. The verification process is to check whether a given implementation

system satisfies a given specification. The specification of the system is formu-

lated as a temporal logic formula, while the implementation is described as a FSM

system. When surveying the kernel algorithms of model checking, some papers

utilize Symbolic Model Checking [10, 11, 29, 86] that represents state space sym-

bolically using Binary Decision Diagrams (BDD). And most literatures use SAT

based model checking and perform the graph search to improve model checking

performance [25, 27, 30, 87].

Formally, given a desired property, expressed as a temporal logic formula ϕ,

and a modelM with initial state s, the model checking problem can be stated that

decide if M, s |= ϕ. In generally, ϕ is usually described by using Computation

Tree Logic (CTL) [88], which is a branching temporal logic for describing prop-

erties of the transition system. In Section 4.3.1, some definitions and properties

of CTL formula are introduced as following.

4.3.1 CTL: Computation Tree Logic

The Computation Tree Logic (CTL) [88] is a branching temporal logic for de-

scribing properties of the transition systems. CTL formula is defined over an

alphabet set AP of atomic propositions. CTL formulas are constructed from two

path quantifiers and several temporal operators. The path quantifiers include:

A, meaning ”for all transition paths”, and E, meaning ”there exists a path”. The

temporal operators include: X meaning ”next time”, F meaning ”eventually in

the future”, G meaning ”globally in the future”, and U meaning ”until”. Let AP

be a set of atomic propositions, a CTL formula over AP is defined as one of the

following:

• true, false, ϕ, or ¬ϕ, for ϕ ∈ AP .

49

• ϕ ∧ ψ, ϕ ∨ ψ, or ϕ→ ψ, where ϕ and ψ are CTL formulas.

• EXϕ, EFϕ, AXϕ, AFϕ, or AGϕ, where ϕ is a CTL formula.

• EϕUψ, or AϕUψ, where ϕ and ψ are CTL formulas.

• (ϕ), where ϕ is a CTL formula.

4.4 Admissible Conditions for Scheduling

In HLS, designers may apply high-level transformation techniques on their orig-

inal FSFG design and obtain the desired optimal or suboptimal schedule from

its restructured FSFG. For all operation nodes in a FSFG design, schedule de-

termines the start time of each task. The executing order of all tasks in the

schedule must satisfy the system specification, such as job completion, prece-

dence and non-preemptive conditions. In the following sections, we will address

these conditions. The false cause and the false detection for the schedule using

CTL (computational tree logic) formulas are also discussed.

4.4.0.1 Job Completion Condition

Let f be the unfolding factor of the design. An admissible schedule must ensure

that each operation node in vertex set V of the FSFG is scheduled at exact

once. Thus, during the period of the ith-iteration of S, it must ensure that each

operation node in vertex set V of the FSFG must be scheduled at exact f times

during the length of S, that is:

tij > 0, tij = ϕ(opi
j), 1 ≤ i ≤ f, ∀opi

j ∈ V. (4.1)

50

Job completion fault occurs while one or more operation nodes are not sched-

uled in S. For example, the start time of operation node opi
j is tij = 0. Let p

be the atomic proposition that opi
j executes at the c-th step of schedule S. The

CTL formula of job completion property is represented by

EF (p) & (p→ EF (¬p)) (4.2)

4.4.0.2 Precedence Condition

Let DAG graph Gs(V,E) be the scheduled sequencing graph of the given sched-

ule S, where node set V represents operation nodes, and edge set E describes

dependencies between the nodes. For each edge e(opi
j, op

i
k) ∈ E, the precedence

property ensures that operation opi
j should be completed before operation opi

k

can start, that is:

tik ≥ tij + di
j. (4.3)

task 9

time

PE3 task 10

PN model

tr9 tr10Firing sequence

Figure 4.2: Precedence property of operation nodes

In Figure. 4.2, for instance, operator v1 is a successor of operator v4, thus,

the execution order of these two operation nodes must ensure that op4 → op1.

Schedule S violates precedence property if these two operation nodes execute in

reverse order. Let p and q be the atomic propositions that two operators opj

51

and opk execute at some steps of schedule S respectively. And operator opj is

precedent to opk. The CTL logic of precedence property is represented by

AG((p)&(¬q)→ AF ((¬p)&(q))) (4.4)

4.4.0.3 Non-Preemption Condition

An admissible schedule must ensure that a computation is not preempted by

another that is scheduled on the same processor at the same time. On the other

word, if the deterministic busy time of a single task opi
j in the i-th iteration is

di
j, then for each time unit during its busy period, the same processor pei

j must

execute that task, such that:

PEr(u) = pei
j , pe

i
j = τ(opi

j), t
i
j ≤ u < tij + di

j. (4.5)

task 9

time

PE3

Start time t9 End time ε9

Executing delay d9

task 9

Schedule

Task 9 is preempted by task 11

task 11

task 11

Figure 4.3: Task 9 is preempted by operation task 11

Where PEr(u) is the assignment function for resource r, 0 < u ≤ le(S). In

Figure. 4.3, for instance, the executing delay of task 9 is d9. During executing

interval d9, task 9 is preempted by operation task 11. An admissible schedule

must avoid such preemptive execution. Let p be the atomic proposition that task

52

opi
j executes during the period tij ≤ u < tij + di

j using PEr. And q be the atomic

proposition that each of the other task opi
k uses the same resource PEr during

the period u. The CTL logic of non-preemptive property is represented by

AG((p) & (¬q)) (4.6)

4.5 Proposed verification flow for HLS

4.5.1 Verification Flow

Figure. 4.4 shows the flowchart to illustrate our verification method. The inputs

to the flow include a given schedule and the original FSFG graph. Before per-

forming two-stage verification method, the preprocessing on each input is applied

separately. First, given schedule is the DUV (design under verification) that needs

to be verified. In system-level design flow, designers may use unfolding algorithm

to pursue perfect FSFG achieving MASP on their original FSFG design. Usually,

the FSFG of the DSP algorithm describes one iteration of the computation. By

applying unfolding algorithm on the FSFG is to unfold the original FSFG by

a factor f which implies f consecutive iterations of the design. In contrast, we

perform unfolding checking in our verification flow to detect the unfolding factor

f from given schedule. Another input to the flow is the original FSFG graph. It

is transformed into a PN model by using proposed transformation.

The delay elements of the original FSFG design can be seen as the initial

marking state of its transformed PN model. In PN domain, each marking state

reached from the initial marking is a retimed version of its original design. Some

of these markings, called the candidate markings, may be the correct restructured

FSFGs for the given DUV. They can be found by using initial tasks obtained from

53

the given schedule. After preprocessing, two-stage verification method is applied

continuously.

At the first stage of the flow, we build the reachability tree rooted by initial

marking. Let m be one of the marking in the tree. We use vector κ, which

includes all initial tasks of the given schedule, to be the firing vector of PN.

Marking m is said to be a candidate marking if and only if its result marking m′,

which is obtained by taking m and κ into PN matrix equation 2.8, is valid. A

valid marking, m′, also means that each element in m′ is a non-negative integer.

Two Breadth-First traverse algorithms are applied to find all candidate markings

from the reachability tree at this stage. If there is no candidate marking found,

the erroneous message is reported, since there does not exist any candidate mark-

ing leading all initial tasks valid. On the other hand, if there exists candidate

marking, the flow continues verifying the schedule by using model checker.

At the second stage, we verify the DUV schedule by using SMV model checker.

The inputs to the model checker include the behavioral description of FSM and

the set of CTL formulas. FSM is directly obtained from given schedule. CTL for-

mulas, which contain job-completion, precedence and non-preemptive properties,

are generated according to the retimed FSFG corresponded to each candidate

marking. If the FSM model satisfies all the CTL formulas, we say that the can-

didate marking is satisfied. Given schedule is said to be correct if and only if all

the candidate markings are satisfied. If one or more than one of the candidate

markings violates its CTL formulas, the erroneous message is reported and the

counterexample of the schedule is given by the model checker. On the other hand,

if all candidate markings satisfy all the CTL formulas, we say that given schedule

is valid.

54

Find initial tasks from
DUV

Obtain
system specification

from retimed FSFG

Obtain finite state
machine from DUV

Second stage: Verify schedule with SMV model checker

First stage: Find the candidate markings

Detect unfolding factor
Transform FSFG into PN

model

Build the reachability tree

The original
FSFG design

Given schedule
(DUV)

Obtain retimed FSFG
from candidate marking

Generate SMV file

 Does candidate
marking exist?

Report :
Given schedule is valid.

Report :
Given schedule is invalid.

The counterexample of the firing

sequence is given.

 Check whether all
candidates are satisfied?

yes

yes

no

no

Done Done

Candidate

markings

Figure 4.4: Flowchart for the proposed high-level verification method

55

4.5.2 Relation Between Marking Sets

Since the nodes of reachability tree are exponential growth with the height of the

tree, the policy to shorten the searching space is to find candidate markings to

reduce the searching space at the first stage . And then, it verifies the schedule

by checking the correctness of the candidate retimed FSFG at the second stage.

S3: Solution set

S2: Candidate set

S1: Reachable set

Figure 4.5: The relation between reachable, candidate and solution marking sets

Assuming there are n operations in a given FSFG and n transitions in the

correspond PN model. Let f be the unfolding factor of a given schedule. At

the first stage, the algorithm tries to find the candidate marking set from the

reachable marking set in reachability tree and fires each transition once each

time. The height of each node in the reachability tree is the distance from the

root node to itself. Since, during one iteration period of the schedule S, le(S),

each scheduled task must be fired one time, the height can also be seen as the

number of transitions that have been fired from the root node. Thus, for an

n-tasks schedule, the upper height-bound of the reachability tree is bounded by

Hup = f × n. At the second stage, it continually finds the solution marking set

from the candidate marking set. The set relation between three marking sets is

shown in Figure. 4.5, that is S3 ⊆ S2 ⊆ S1. The purpose of the first stage is

trying to reduce the searching space from reachable marking set S1 to candidate

marking set S2, while the second stage is trying to find solution marking set S3

56

from candidate marking set S2.

4.6 Verification Algorithms

4.6.1 First stage: Two approaches for candidate search

At first stage, two approaches including the early-terminated and the optimal

methods are proposed. We will discuss in the following sections.

4.6.1.1 The early-terminated approach

The first approach is the early-terminated traverse method. Before introducing

early-terminated traverse algorithm, we first consider Lemma 4.1.

Lemma 4.1 Let Ttree be a reachability tree which is bounded by upper height-

bound Hup and m1 be any one of the candidate markings in Ttree. For any other

candidate marking m2 in the successor path of marking m1, m2 is in the solution

marking set S3 if and only if m1 is in S3.

Proof: Let etf set be the earliest task-finished set of a given schedule and

transition sequence σ1 be a firing sequence that leads m1 ∈ S2 from root marking

mr of Ttree to be a candidate marking, that is mr
σ1→m1. Assuming there exists

another candidate marking m2 ∈ S3, m2 6= m1, with firing sequence σ2 that leads

m2 from root marking mr of Ttree to be a candidate marking, that is mr
σ2→m2,

and is in the successor path of marking m1.

As defined in Definition 1, it must be satisfied that etf set ⊆ σ1 and etf set ⊆

σ2 where the elements of σ1 and σ2 are all in {nop} ∪ {etf set}. As described in

assumption, m2 is in the successor path of marking m1, it is still satisfied that

57

m2

m4

m1

m

m3 m5

c

c

m6 m7 m8 m9

c

m10

root

Figure 4.6: The traverse order of early-terminated approach

σ2 = σ1 ∪ {nop}. This implies m2 is in solution marking set S3 if and only if m1

is in S3.

The early-terminated approach tries to minimize the size of candidate set

S2 from reachable set S1. When an enqueued unvisited marking is candidate,

the early-terminated algorithm ignores the candidate marking and marks it as a

visited node. Then, it proceeds other unvisited nodes in queue Q until all the

markings have been visited. In Figure. 4.6, as an example, the traverse order

of the early-terminated approach is m,m1, m2, m3, . . . , m10. The pseudo-code of

the earliest-terminated traverse method is shown in Figure. 4.7. In lines 12 to 14,

it ignores the candidate marking and proceeds other unvisited nodes.

4.6.1.2 The optimal approach

The second approach to verify a schedule is the optimal approach which is im-

proved from the early-terminated approach. In order to reduce reachable marking

set S1, it tries to merge the redundant nodes when it proceeds Breadth-First tra-

verse.

Let m be an unvisited node to be processed. If m is a candidate marking,

it ignores this node by using Lemma 4.1 and proceeds other unvisited nodes in

58

1: procedure bfs build tree early terminated(m0)
2: Initialize Queue structure Q
3: Allocate new node nn ⊲ initialize root node
4: nn.visited← false
5: nn.marking ← m0

6: nn.height← 0
7: nn.candidate← is candidate(nn)
8: Q.enqueue(nn)
9:

10: for all unvisited node n ∈ Q do

11: n.visit← true
12: if n.candidate = true then

13: continue to the next node ⊲ Lemma 4.1
14: end if

15: if n.height 6 H then

16: ebl set← find enabled trans(n.marking)
17: for all transition tr ∈ ebl set do

18: m← n.marking
19: κ← make firing vector from(tr)
20: m′ ← m+ [A] · κ ⊲ Eq.2.8
21: Allocate new node nn
22: nn.marking ← m′
23: nn.visited← false
24: nn.height← n.height+ 1
25: nn.candidate← is candidate(nn)
26: create branch(n, nn)
27: Q.enqueue(nn)
28: end for

29: end if

30: end for

31: end procedure

Figure 4.7: The early-terminated approach

59

queue. If m is not a candidate marking, it finds enabled set of transitions and

creates new node on each enabled transition. For each new produced node with

marking m′, if there exists another node in the reachability tree, and has the

same marking associated with it, then the node with marking m′ is a duplicate

node. Since, the marking m′ has appeared in the tree, this new produced node

is redundant. Then, it merges this redundant node to the existential node and

creates transition link from marking m to the existential node. As an example in

Figure. 4.8, when it proceeds marking m5, it founds the new created node with

marking m7 is a duplicate node. It merges these nodes and creates transition

from m5 to m7. Then, the algorithm continually proceeds other unvisited nodes

in queue.

m0

m1

m4 m5

m6

m9

c

tr6 tr10

m3

tr5
tr10

tr7

m7

c

tr7tr10

c m8m7 c

c

tr5 tr10

tr10

m2

root

Figure 4.8: Merge the redundant nodes in optimal approach

The pseudo-code of the optimal approach is shown in Figure. 4.9. In lines 12

to 14, if the node n is a candidate marking, then it ignores this node by using

Lemma 4.1 and proceeds the other nodes in queue Q. In lines 26 to 32, function

find dual node checks whether the new created node nn is duplicate. If there

exists a duplicate node, it ether returns the dual node to dual node or returns

null. It continually proceeds other unvisited nodes until all nodes are visited.

60

1: procedure bfs build tree optimal(m0)
2: Initialize Queue structure Q
3: Allocate new node nn ⊲ initialize root node
4: nn.visited← false
5: nn.marking ← m0

6: nn.height← 0
7: nn.candidate← is candidate(nn)
8: Q.enqueue(nn)
9:

10: for all unvisited node n ∈ Q do

11: n.visit← true
12: if n.candidate = true then

13: continue to the next node ⊲ Lemma 4.1
14: end if

15: if n.height 6 H then ⊲ max. height H
16: ebl set← find enabled trans(n.marking)
17: for all transition tr ∈ ebl set do

18: m← n.marking
19: κ← make firing vector from(tr)
20: m′ ← m+ [A] · κ ⊲ Eq.2.8
21: Allocate new node nn
22: nn.marking ← m′
23: nn.visited← false
24: nn.height← n.height+ 1
25: nn.candidate← is candidate(nn)
26: dual node← find dual node(nn)
27: if dual node 6= null then

28: create branch(n, dual node)
29: else

30: create branch(n, nn)
31: Q.enqueue(nn)
32: end if

33: end for

34: end if

35: end for

36: end procedure

Figure 4.9: The optimal traverse approach

61

4.6.2 Second stage: The model-checking approach

At the second stage, we verify the given DUV schedule on all candidate markings

aided by using SMV model checker. The inputs to the model checker are a FSM

and a set of system specification that needs to be verified. FSM of the DUV is au-

tomatically generated by the verification flow. Each candidate marking obtained

from the first stage can be seen a restructured FSFG. System specification, CTL

formulas, to the DUV is generated from each restructured FSFG.

Schedule S can be converted into a Moore machine. A Moore machine is

defined as a 6-tuple M(W,Σ,∆, δ, λ, w0), where W , Σ and ∆ are the finite set

of state, input signal and output signal with respect. Transition function δ :

W × Σ → W is a mapping function from state and an input to the next state.

Output function λ : W → ∆ is a mapping function from each state to the output

signal. And, w0 is an initial state. Figure. 4.10 is an DUV schedule of a third-

order IIR filter. The length of schedule S is le(S) = 6, and it can be seen as a

FSM with le(S) + 1 states, where s0 is the initial state. Each state of the FSM

is actually represented as a control step in S. For each task opj
i in S, there is an

enabled signal op i j on it to indicate whether opj
i is enabled in each control step

of S. For example, task op1
6 is scheduled at step 1 to step 2, and let op i j be its

enabled signal. The behavioral description of FSM for task op6
1 is described at

the bottom in Figure. 4.10.

4.7 The complexity analysis

Assuming there are n operations in a given FSFG, f be the unfolding factor of a

given schedule. Thus, the upper-height of the reachability tree of the correspond

PN model is bounded by Hup = f × n.

62

MODULE main

VAR

 state: 0..6;

 done : 0..1;
 op_i1_t1 : 0..1;

 op_i1_t2 : 0..1;

 op_i1_t3 : 0..1;

 op_i1_t4 : 0..1;

 op_i1_t5 : 0..1;
 op_i1_t6 : 0..1;

 op_i1_t7 : 0..1;

 op_i1_t8 : 0..1;

 op_i1_t9 : 0..1;

 op_i1_t10 : 0..1;
 op_i1_t11 : 0..1;

 op_i1_t12 : 0..1;

ASSIGN

init(state) := 0;
next(state) := case

 (state < 6) : state + 1;

 (state = 6) : 1;

 1 : state;

esac;

init(done) := 0;

next(done) := case

 (state=6) : 1;

 1 : 0;
esac;

init(op_i1_t2) := 0;

next(op_i1_t2) := case

 (state=3) : 1;
 1 : 0;

esac;

init(op_i1_t6) := 0;

next(op_i1_t6) := case
 (state=1) : 1;

 (state=2) : 1;

 1 : 0;

esac;

(other operations...)

v6 v5 v8

v9

v10

v11

v7
v2

v1

v4

v3

v12

1

2

3

4

5

6

s1

s0

s2

s3

s4

s5

s6

Initial
state

done

FSMSchedule

Figure 4.10: The behavioral description of FSM for the third-order IIR filter

63

At the first stage, there are two approaches to perform the Breadth-First

traverse procedure. Considering exhaustive search, each node of the reachability

tree has n enabled transitions in worse case. Then, the total number of nodes is:

1 + n+ n2 + . . .+ nf ·n =
(

nf ·n+1 − 1
)

/ (n− 1) (4.7)

In the first approach, the early-terminated approach, the algorithm stops

traversing a node while it is a candidate. Let p, p ≤ (f · n), be the deepest level

that Breadth-First traverse procedure can reach. Thus, the complexity of the

first approach is O(Np), p ≤ f · n.

In the second approach, the optimal approach, the algorithm merges duplicate

markings in order to reduce the reachable marking set of the reachability tree. Let

x ∈ Z = {1, 2, · · · } be the merging radio in the reachability tree. The complexity

of the two approach is O((N/x)p), p ≤ f · n.

Thus, the relation of the complexity between two approaches is:

O(Np) > O((N/x)p). (4.8)

At the second stage, the verification flow performs SMV model checking to

verify a given schedule by checking the precedence, job completion and non-

preemptive properties on given DUV. Let Ω be the size of the FSM converted

from DUV, Ψ be the size of the CTL formulas, le(S) be the steps of DUV schedule

and c be the number of candidate markings. The complexity of the model checker

in the second stage is about O(Ω×Ψ× le(S)× c), in worse case.

64

4.8 Experimental Results

We have implemented these two approaches in our study. Each of these ap-

proaches is applied to several dataflow algorithms. Figure 4.1 shows the statistics

of these designs.

Table 4.1: The statistics of test designs

Design num. num. num. Size of PN Schedule Unfolding
name vertices edges delays (Place x Trans.) length factor

iir2d-sch1 8 14 2 (14 x 11) 6 1
iir2d-sch2 8 14 2 (14 x 11) 4 1
iir2d-sch3 8 14 2 (14 x 11) 4 1
iir2d-sch4 8 14 2 (14 x 11) 4 1
iir3d-sch1 12 21 3 (21 x 16) 6 1
iir3d-sch2 12 21 3 (21 x 16) 6 1
p243-sch1 5 7 5 (7 x 5) 96 6
p243-sch2 5 7 5 (7 x 5) 96 6
ewf-sch1 34 47 0 (47 x 34) 40 1
ewf-sch2 34 47 0 (47 x 34) 40 1

In Table. 4.1, design iir2d-sch1 to iir3d-sch2 [50] are the second and third

Infinite Impulse Response filters. Design p243 [50] is a design with unfolding

factor 6, the lengths of schedule p243-sch1 and p243-sch2 are both 96 steps.

Design ewf-sch1 and ewf-sch2 are low power schedules for the Elliptic Wave

Filter in [74].

Table 4.2 shows the experimental results of using two approaches. There

are two columns on each approach including execution time in seconds and the

resource usage in unit number of allocated nodes of the reachability tree. Accord-

ing to experimental results, early-terminated approach suffers the state explosion

problem while it traverses the reachability tree in iir3d-sch1 and iir3d-sch2. In

average, optimal approach takes more benefit than early-terminated approach.

According to experimental results, the optimal approach outperforms the others

65

in terms of time and resource usage in average.

Table 4.2: The experimental results

Early-terminated Optimal
Test Time Res. num. of Time Res. num. of

schedule (sec) usage candidates (sec) usage candidates
iir2d-sch1 93.81 44972 1005 1.01 376 9
iir2d-sch2 94.27 44972 1005 1.02 376 9
iir2d-sch3 148.82 114867 635 0.84 319 8
iir2d-sch4 1610.29 49502 15486 1.85 237 21
iir3d-sch1 n/a n/a n/a 28.58 24676 166
iir3d-sch2 n/a n/a n/a 77.22 22613 335
p243-sch1 0.84 2 1 0.76 2 1
p243-sch2 0.81 2 1 0.8 2 1
ewf-sch1 0.66 2 1 0.64 2 1
ewf-sch2 0.73 2 1 0.62 2 1

4.9 Summary

This work aims to exploit formal verification techniques for high-level synthesis.

In the top-down design flow, design errors should be removed as early as possible;

otherwise, errors detected at the later stages will result a costly, time-consuming

redesign cycles. Although formal verification for logic synthesis has been studied

very extensively, little work has been done for high-level synthesis. The paper

presents a verification flow that can efficiently detect the design errors from the

results of high-level synthesis. As shown in the experimental results, we can

apply the optimal approach for the first phase to efficiently verify complex design

cases.

66

CHAPTER 5

Verification Method of Dataflow Algorithms in

High-Level Synthesis

5.1 Introduction

The System-On-Chip (SOC) design encompasses a large design space. Typically,

the designer explores the possible architectures, selecting algorithms, choosing

architectural elements, and constructing candidate architectures. Designing such

a complex system is hard; designing such a system that will work correctly is even

harder. Design errors should be removed as early as possible; otherwise, errors

detected at the later stages will result a costly and time-consuming redesign

cycles. Thus, the designer should face two distinct tasks in SOC design; carrying

out design process itself and establishing the correctness of a design. Design

correctness is the main theme of this work. Since most of SOC design efforts are

on digital signal processing or dataflow computing, this work aims on the formal

verification for HLS (High-Level Synthesis) of dataflow computing.

This chapter presents a verification algorithm to verify HLS of dataflow algo-

rithms. Given a dataflow graph (DFG) and architectural constraints, the HLS

aims to generate the task schedule with processor assignment. Typically, the HLS

performs algorithmic transformation, such as retiming, scaling, and unfolding, on

the DFG to meet the architectural constraints, and allocates resources accord-

67

ingly [61, 74, 77–79]. Both algorithmic transformation and resource allocation

require complex procedures. These procedures are rather heuristic and error-

prone. The integer linear programming (ILP), for instance, is one of the popular

techniques applied for HLS. The success of ILP is relied on the completeness of

clauses. Any mistake or incomplete description made in the ILP may result in an

illegal solution and affect the correctness of following synthesis results. This work

intends to present a formal verification algorithm to unveil the faults produced

in HLS.

In the proposed algorithm, we employed the Petri Net model as the formal

description to check the correctness of dataflow behavior. Since the Petri Net

model executes the data-driven behavior, it has the nature of dataflow computing

and hence a good tool for the verification of algorithmic transformations and

datapath scheduling. The use of the Petri Net is two-folded. First, the Petri

Net model of dataflow algorithm can hold the data dependence and hence any

legal transformation has to conform to the firing rules of the Petri Net model.

Secondly, the scheduling candidates are correct if and only if the initiation of each

task is allowed in the Petri Net model. Comparing with the traditional model

checking [10, 11, 25] techniques, the first use can provide simple but thorough

model for restructured algorithms while the second use can avoid false negative

problems.

The inputs to the proposed formal verification are the system description and

task schedule. The system description is basically a fully-specified Signal Flow

Graph (FSFG) [50]. The FSFG represents the behavioral specification of the

dataflow algorithm which is also a design entry of HLS. In HLS, to meet the

architectural constraints, the algorithmic transformation normally reconstructs

the initial FSFG to find out optimal scheduling results. The reconstructed FSFG

68

is admissible if and only if it is equivalent to the initial FSFG. To verify the

correctness of the task schedule, the proposed algorithm first converts the initial

FSFG to a Petri Net model which is expressed by Petri Net characteristic matrix,

because any admissible reconstructed FSFG has to have the same characteristic

matrix.

Another input is the schedule, the DUV (design under verification), generated

by HLS. The schedule is expressed in the format of processor-time chart (or

P × T chart). The P × T chart equally shows the firing sequence. The proposed

verification uses the firing sequence to unveil the legal algorithmic transformations

applied for the original FSFG. The legal algorithmic transformations will then

be the candidates to trace the firing sequence of the given schedule.

Based on the inputs, the proposed verification first extracts the initial firing

pattern to determine the candidate reconstructed FSFGs. The candidates will

then be verified with the Petri Net model. If at least one candidate exists who

can allow the firing sequence to execute legally (without against the firing rules),

the HLS result is claimed as a correct solution; otherwise, the verification will

show the counter example in proof of the incorrectness. In this work, we propose

three approaches to realize the PN-based formal verification and conclude the

best one that outperforms the others in terms of processing speed and resource

usage.

The remainder of this chapter is organized as follows. Section 5.2 presents the

system specifications to the FSFG design. The proposed high-level verification

technique and verification algorithms are presented in section 5.3. In section

5.4, we discuss the complexity analysis of three verification algorithms and some

experimental results. Section 5.6 gives the summary of this work.

69

5.2 System Specification

For a given DUV schedule of the FSFG design, PEs must execute their tasks

under system specifications. In this section, we first describe the execution of a

task in FSFG corresponded to the transitions firing in PN domain. The system

specification for the given schedule is then presented later.

5.2.1 Execution of a task

For a given FSFG design, the nodes represent computational tasks, while the arcs

represent data dependencies, buffering, and direction of data transfer between

task nodes. A task node cannot execute until sufficient data is ready on its

input arcs. When the data-amount has been reached on each of its input arcs,

a task node can execute. When a task node executes, it consumes data from its

input arcs, executes the task through the duration of the executing delay of that

task, and it produces data onto its output arcs. The same executing process can

cross-refer from FSFG to PN model. In PN domain, transitions represent task

nodes and places represent arcs, while token movements between places represent

the firing sequence of transitions. A transition cannot fire until sufficient tokens

are ready on its input places. When each of its input places has at least one

token, a transition can fire. If there exists more tokens on its input places, a

transition may fire several times. When a transition fires, it consumes tokens

from each of its input arcs, and it produces tokens onto its output places.

As showing in Figure. 5.1, task 9 is a task node of the schedule. Where t9

is the start time, d9 is the executing delay, and the finish time of this task is

ε9. The executing process of this task node can be divided into three durations:

before task executing, during task executing, and after task executing. In PN

70

domain, a task of FSFG can be transformed into a transition tr9 of PN model.

Before task executing, tr9 may or may not enable. Then, tr9 is enabled during

task executing. At last, transition tr9 fires instantaneously at the moment after

finishing the execution of task 9. An example of FSFG schedule of the third-order

IIR filter of Figure. 2.3(b) is shown in Figure. 5.2(a), and the corresponded firing

transitions to the task schedule is illustrated in Figure. 5.2(b). At each step of

the schedule in Figure. 5.2(c), enabled transitions may fire at the end of each

step. The tasks schedule and its firing transitions are illustrated.

task 9

time

Schedule

Start time t9 End time ε9

Executing delay d9

tr9 is enabled
PN domain

After tr9 fires

tr9 fires at ε9

Figure 5.1: Executing duration of a task

5.2.2 System Specification

The mentioned system is the given schedule, or the DUV. In HLS, designers may

apply high-level transformation techniques on their original FSFG design and

obtain the desired optimal or suboptimal schedule from its restructured FSFG.

For all operation nodes in a FSFG design, schedule determines the start time

of each task. The executing order of all tasks in the schedule must satisfy the

system specification, which can be extracted from the restructured FSFG. Let

opi
j and opi

k be two distinguish tasks in i-th iteration of S. The properties to the

system are defined as following. We also describe the false-cause and its detection

71

v6 v5 v8

v9

v10

v11

v7
v2

v1

v4

v3

v12

1

2

3

4

5

6

(a) A sample schedule

op6
1 op4

1

op8
1 op7

1

op9
1

op10
1
op11

1

op5
1

op2
1

op1
1

op3
1
op12

1

time

PE

PE1

PE2

PE3

PE4

1 2 3 4 5 6

Firing transitions
tr5

tr6

tr8

tr2

tr9

tr1

tr4

tr7

tr10

tr3

tr11
tr12

(b) The schedule in space-time domain

Step

1

2

3

4

5

6

Tasks schedule

op5
1, op6

1, op8
1

op9
1

op2
1
, op4

1
, op7

1

op1
1
, op10

1

op3
1
, op11

1

op12
1

Step

1

2

3

4

5

6

Firing transitions

{tr5, tr6, tr8}

{tr2, tr9}

{tr1, tr4, tr7, tr10}

{tr3, tr11}

{tr12}

{ non }

(c) Tasks schedule and firing transitions

Figure 5.2: A sample schedule of the third-order IIR filter in Figure. 2.3(b)

72

in PN domain.

1. Non-Preemption Property

• Definition: Let opi
j be one of the task in schedule S. An admissible

schedule must ensure that a computation is not preempted by another

that is scheduled on the same processor at the same time. On the

other word, if the deterministic executing delay of a single task opi
j in

the i-th iteration is di
j, then for each time unit during its executing

delay, the same processor pei
j must execute that task, such that:

PEk(u) = pei
j , pe

i
j = τ(opi

j), t
i
j ≤ u < tij + di

j. (5.1)

Where PEk(u) is the assignment function for resource k, 1 ≤ u ≤

le(S).

• Fault-cause: In Figure. 5.3, for instance, the executing delay of task 9

is d9. During executing delay d9, task 9 is preempted by operation node

op′. An admissible schedule must avoid such preemptive execution.

task 9

time

PE3

Start time t9 End time ε9

Executing delay d9

task 9 op'

tr9 is enabled

tr9 fires

Schedule

PN domain

Figure 5.3: Task 9 is preempted by operation node op′

73

• Detection: At the s-th step of schedule length le(S), the marking state

µs to the s-th step is a (|P | × 1)-column vector, which indicates the

number of tokens on each places. During executing delay di
j of task

opi
j , the PN transition trj with respect to its operation node opi

j must

be enabled, that is:

µs(p) > 0, ∀p ∈ •trj , 1 ≤ s ≤ le(S). (5.2)

2. Job Completion Property

• Definition: Let f be the unfolding factor, which implies f consecutive

iterations of the design. During one period of the ith-iteration of S,

an admissible schedule must ensure that each operation node in vertex

set V of the FSFG is scheduled at exact once. Thus, job completion

property must ensure that each operation node in vertex set V of the

FSFG must be scheduled at exact f times during the length of S, that

is:

tij > 0, tij = ϕ(opi
j), 1 ≤ i ≤ f, ∀opi

j ∈ V. (5.3)

• Fault-cause: Schedule S violates job completion property if one or

more operation nodes are not scheduled in S. For example, the start

time of operation node opi
j is tij = 0.

• Detection: Let f be the unfolding factor obtained from given schedule

S, and s be the index of the s-th step of S. Let firing vector κs be

a (|T | × 1)-column vector. If the j-th element of the firing vector is

κs(j) = 1, it indicates the transition trj , corresponded to the operator

node opi
j at ith-iteration, fires at the s-th step. An acceptable sched-

74

ule must ensure that each operation node opi
j at the ith-iteration is

scheduled exact once during the schedule length le(S). On the other

word, transition trj must fire f times totally during the length le(S).

3. Precedence Property

• Definition: Let DAG graph Gs(V,E) be the scheduled sequencing

graph to the given schedule S, where the set of nodes V represents op-

eration nodes, and the set of edges E describes dependencies between

the nodes. For each edge e(opi
j , op

i
k) ∈ E, the precedence property

must ensure that operation opi
j should be completed before operation

opi
k can start, that is:

tik ≥ tij + di
j . (5.4)

Where tij = ϕ(opi
j), t

i
k = ϕ(opi

k) are the start times of operation nodes,

and di
j is the executing delay of opi

j.

• Fault-cause: In Figure. 5.4, transition tr10 is a successor of transition

tr9, thus the execution order of these two operation nodes must ensure

tr9 → tr10. Schedule S violates precedence property if these two

operation nodes execute in reverse order.

task 9

time

PE3 task 10

PN model

tr9 tr10Firing sequence

Figure 5.4: Precedence property of two operation tasks

75

• Detection: At the s-th step of S, the firing vector κs is a (|T | × 1)-

column vector. If the j-th element of the firing vector is κs(j) = 1, it

indicates the operation node opi
j fires at the s-th step. Let µs be the

marking state at the s-th step of S, next marking µs+1 can be obtained

by using Equation. 5.5, that is:

µs+1 = µs + A · κs, 1 ≤ s ≤ le(S). (5.5)

Vector κs is said to be a valid firing if resulting marking µs+1 from µs

is valid. If all the resulting markings are valid, schedule S is satisfied

under the precedence property.

5.3 High-Level Verification

In this section, proposed two-stages verification technique is introduced. The

algorithms to both stages are also presented separately as the implementations.

5.3.1 Verification Flow

A flowchart illustrating our verification flow is shown in Figure. 5.5. There are two

inputs to the flow: a given schedule and the original FSFG. The given schedule

is the DUV (design under verification) that needs to be verified. The original

FSFG reserves the characteristics of the system that the DUV must be satisfied.

The proposed verification method tries to find the correct restructured FSFG,

which is candidate to the DUV at the first stage, and then, it checks whether the

executing sequence, the DUV, of the PN model corresponded to the candidate is

satisfied at the second stage. Before introducing two-stages verification method,

we address the preprocessing on both inputs separately.

76

One of the inputs is the given schedule. In system-level design flow, designers

may use unfolding algorithm to pursue perfect FSFG achieving iteration period

bound on their original FSFG design. Usually, the FSFG of the DSP algorithm

describes one iteration of the computation. By applying unfolding algorithm on

the FSFG is to unfold the original FSFG by a factor f which implies f consec-

utive iterations of the design. In contrast, we perform unfolding checking in our

verification flow to detect the unfolding factor f from given schedule. Another

input to the verification flow is the original FSFG graph. It is transformed into

a PN model by proposed transformation rules.

In PN domain, the markings, which can be reached from the initial marking,

can be seen as the retimed FSFGs of the original design. Some reachable markings

are the correct restructured FSFGs for the given schedule. These markings, which

dominate the correctness of the given schedule, are said to be the candidate

markings. In order to find the candidate markings, Breadth-First algorithm is

used to traverse all the markings of PN reachability tree at the first stage. If the

candidate marking does not exist, it means the correct retimed FSFG does not

exist, it reports the given schedule is not valid due to absent of the candidate

marking. If the candidate marking exists, we continuously apply Depth-First

algorithm on each candidate marking.

The given schedule is valid if there exists an initial marking, the candidate

marking, of the PN model leading a firing sequence of the schedule valid. At the

second state, we apply Depth-First traverse procedure on each candidate marking

to check whether the given schedule is valid by checking the firing sequence of

the schedule. At last, if there exists such candidate marking, the flow is done and

reports given schedule is valid, or a counterexample of invalid firing sequence is

reported if given schedule is invalid.

77

Second stage: Verify schedule with Depth-first traverse

First stage:

Build the reachability tree with Bread-first traverse,
and find the candidate markings

Detect unfolding factor

Transform FSFG

into PN model

The original
FSFG design

Given schedule
(DUV)

 Does candidate

marking exist?

Report :
Given schedule is valid.

Report :

Given schedule is invalid.
The counterexample of the firing

sequence is given.

Does there exist any

reachable marking?

yes

yes

no

no

Done Done

Job-completion

check ?

Check job-completion

no

yes

Figure 5.5: Flowchart for the proposed high-level verification method

78

5.3.2 The candidate marking

The candidate marking set is a subset of the reachable marking set of a Petri

net. A candidate marking is probably the correct initial marking, it also means

correct retimed FSFG, which leads the firing sequence of a given schedule being

valid.

Let S be a schedule of a FSFG. The earliest task-finished set etf set of S are

the tasks which are finished at the earliest task-finished step tetf in S, such that

etf set =
{

opi
j |ε

i
j = tetf , ∀op

i
j ∈ V

}

. (5.6)

Assuming m is a marking of the PN model. A firing sequence σ : tr1 . . . trk

of transitions is denoted by m
σ
→mk, where m1 . . . mk are valid states, such that

m
tr1→m1

tr2→· · ·
trk→mk. (5.7)

Marking m is defined as a candidate marking , if marking m and firing

sequence σ satisfy Definition 1.

Definition 1 Marking m is said to be a candidate marking if and only if

there exists a firing sequence σ : tr1 . . . trk, such that for all tasks op ∈ etf set

are covered by all the transitions in σ, i.e. etf set ⊆ σ. And it is also satisfied

that each firing transition trj ∈ σ is either a pseudo transition, dj = 0, or an

earliest task-finished transition, εj = tetf .

As an example, Figure. 5.6 shows the procedure to check whether a marking

is candidate. For a given schedule in Figure. 5.7, the earliest task-finished step

is tetf = 1, and the earliest task-finished set is etf set =
{

opi
j |ε

i
j = tetf = 1

}

=

79

{v5, v9}. Marking m = [00000112000000] is said to be a candidate mark-

ing of the corresponded PN model. Since, there exists a firing sequence σ :

tr10 tr10 tr5 tr9, m
σ
→m4, such that etf set ⊆ σ. The markings, m1 . . .mk, of

the firing sequence, m
tr10→ m1

tr10→ m2
tr5→m3

tr9→m4, are valid states, where m1 =

[00000111000110], m2 = [00000110000220], m3 = [00001010000220], and m4 =

[00001010001120].

m

tr5 tr7 tr10

tr9 tr10 tr11

tr9
tr11tr5

tr7

m1

m2

m3

m4

tr7 tr9 tr11

Enabled

{tr5, tr7, tr10}

Earliest task-finished set: {tr5, tr9}

nop

{tr10}

Depth fired

tr10{tr5, tr9}

Remained

{tr5, tr9}

{tr9, tr10, tr11} {tr10} tr10 {tr5, tr9}

{tr5, tr7, tr9, tr11} { } tr5 {tr9}

{tr5, tr9}

{tr5, tr9}

{tr9} {tr7, tr9, tr11} { } tr9 { }

ebl_set

[0 0 0 0 0 1 1 2 0 0 0 0 0 0]

[0 0 0 0 0 1 1 1 0 0 0 1 1 0]

[0 0 0 0 0 1 1 0 0 0 0 2 2 0]

[0 0 0 0 1 0 1 0 0 0 0 2 2 0]

[0 0 0 0 1 0 1 0 0 0 1 1 2 0]

m

m1

m2

m3

m4

Markings

Figure 5.6: Check whether a marking is a candidate marking

5.3.3 Proposed Verification Method

The proposed high-level verification method includes two stages: the Breadth-

First and the Depth-First traverse procedures. At the first stage, the Breadth-

First traverse procedure tries to find candidate markings, the correct retimed

80

op5
1

op9
1

time

PE

PE1

PE2

1 2 3 4

Firing transitions tr5

tr9

op7
1

op11
1

op4
1

op1
1

op8
1

op3
1

PE3

PE4

tr7

tr11

tr4

tr1

tr8
tr3

tr1

p4

tr4

p5

tr9

p11

p12 p13

p8

tr10

p7tr6

p3

p1
tr2

p8

tr5 tr7

tr11

p6 p9

tr8

p14

p10

p2 tr3

Figure 5.7: An example schedule and 2nd order IIR filter

81

FSFGs, from reachability tree. At the second stage, the Depth-First traverse

procedure verifies given schedule by checking the candidate markings. Since, the

nodes of reachability tree are exponential growth with the height of the tree,

two-stages method is the better policy. The verification method shortens the

searching space by finding candidate markings at the first stage. At the second

stage, it verifies given schedule by checking candidate markings rather than all

the reachable markings of reachability tree.

S3: Solution set

S2: Candidate set

S1: Reachable set

Figure 5.8: The relation between reachable, candidate and solution marking sets

Assuming there are n operations in a given FSFG, and hence there are n

transitions in the corresponded PN model. Let f be the unfolding factor of a

given schedule while designers performing unfolding technique on their FSFG

design. At the first stage, the procedure tries to find the candidate marking set

from the reachable marking set from the reachability tree and fires each transition

once each time. The height of each marking in reachability tree is the distance

from the root node to itself. Since, during one iteration period of the schedule

S, le(S), each scheduled task must be fired once, the height can also be seen as

the number of transitions that have been fired since the root node. Thus, for an

n-tasks schedule, the upper height-bound of the reachability tree is bounded by

Hup = f · n. At the second stage, it continually finds the solution marking set

from the candidate marking set. The set relation between three marking sets is

shown in Figure. 5.8, that is S3 ⊆ S2 ⊆ S1. The purpose of the first stage is

82

trying to reduce the searching space from reachable marking set S1 to candidate

marking set S2, while the second stage is trying to find solution marking set S3

from candidate marking set S2.

5.3.4 First stage: Breadth-First traverse procedure

At the first stage of the verification method, we apply Breadth-First traverse

procedure to find the candidate markings from the reachability tree. Three ap-

proaches, which include the exhaustive, the early-terminated and the optimal

approaches, are proposed in this work and discussed in the following sections.

5.3.4.1 The exhaustive approach

The first approach to verify a given schedule of a FSFG is the exhaustive ap-

proach. It tries to build reachability tree with Breadth-First traverse procedure.

The reachability tree contains all the reachable markings of a Petri net. As an

example, Figure. 5.9 shows a reachability tree of the Petri net in Figure. 5.7. In

Figure. 5.9, each node in the tree associated with a reachable marking of the Petri

net. The root node of the reachability tree is the initial marking m of a given

PN model. In this marking, two transitions are enabled: tr6 and tr10. For each

enabled transition, the procedure creates new nodes in reachability tree for the

reachable markings which result from firing both transitions. An arc, labeled by

the transition fired, leads from the initial marking to each new node. Then it

applies candidate checking for each new node to check whether a marking is can-

didate. The procedure continually builds reachability tree for each new produced

node until reach the upper height-bound Hup, which is bounded by Hup = f ·n for

a finite n-tasks schedule. The pseudo-code of the exhaustive approach is shown

in Figure. 5.10.

83

m3

c c

c

c

cm4

c c

c

c

cm7m6 c

c c

m5 c m8 c

c c

m2

tr6
tr9 tr11

c

m

tr6 tr10

root

c

m1 c

tr5
tr10

tr7

Candidate

C

C

C

-

C

C

C

C

C

Branches

{tr6, tr10}

{tr5, tr10, tr7}

{tr9, tr6, tr11}

{tr10, tr7}

{tr9,tr5,tr10,tr11,tr7}

{tr5, tr10}

{tr6, tr11}

{tr9,tr5,tr10,tr11,tr7}

{tr9, tr6}

0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 2 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 1 0 1 2 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 1 1 0

0 0 0 0 0 1 0 2 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 1 1 0 0 0 1 1 0

0 0 1 0 0 0 0 0 0 0 0 1 0 1

States

m

m1

m2

m3

m4

m5

m6

m7

m8

#.

Figure 5.9: Build reachability tree with Breadth-First search algorithm

84

1: procedure bfs build tree exhaustive(µ0) ⊲ root marking µ0

2: Initialize Queue structure Q
3: Allocate new node nn ⊲ initialize root node
4: nn.visited← false
5: nn.marking ← µ0

6: nn.height← 0
7: nn.candidate← is candidate(nn) ⊲ candidate check
8: Q.enqueue(nn)
9:

10: for all unvisited node n ∈ Q do

11: n.visit← true
12: if n.height 6 H then ⊲ max. height H
13: ebl set← find enabled trans(n.marking) ⊲ negative test
14: for all transition tr ∈ ebl set do

15: µ← n.marking
16: κ← make firing vector from(tr)
17: µ′ ← µ+ [A] · κ ⊲ Eq.5.5
18: Allocate new node nn
19: nn.marking ← µ′

20: nn.visited← false
21: nn.height← n.height+ 1
22: nn.candidate← is candidate(nn)
23: create branch(n, nn) ⊲ create branch from n to nn
24: Q.enqueue(nn)
25: end for

26: end if

27: end for

28: end procedure

Figure 5.10: The exhaustive approach

In the beginning of Figure. 5.10, function is candidate checks whether the

marking µ is candidate. Then, marking µ is marked unvisited and enqueued in a

queue structure Q. For each unvisited node in Q, the algorithm finds enabled set

of transitions, creates breaching nodes and applies candidate checking on each

new produced node. At last, new produced nodes are enqueued in Q and wait

for next iteration, in lines 10 to 27.

85

The queue structure Q is a first-in-first-out queue. The markings in Q need

to be processed are in ascending order with respected to their height. As an

example in Figure. 5.9, the traverse order of the reachability tree which is rooted

by marking m is m,m1, m2, . . . , m8,

5.3.4.2 The early-terminated approach

The second approach to verify a schedule of a given FSFG is called the early-

terminated approach which improves the exhaustive approach. Before introduc-

ing the improved approach, we first consider Lemma 5.1.

Lemma 5.1 Let Ttree be a reachability tree which is bounded by upper height-

bound Hup and m1 be any one of the candidate markings in Ttree. For any other

candidate marking m2 in the successor path of marking m1, m2 is in the solution

marking set S3 if and only if m1 is in S3.

Proof: Let etf set be the earliest task-finished set of a given schedule and

transition sequence σ1 be a firing sequence that leads m1 ∈ S2 from root marking

mr of Ttree to be a candidate marking, that is mr
σ1→m1. Assuming there exists

another candidate marking m2 ∈ S3, m2 6= m1, with firing sequence σ2 that leads

m2 from root marking mr of Ttree to be a candidate marking, that is mr
σ2→m2,

and is in the successor path of marking m1.

As defined in Definition 1, it must be satisfied that etf set ⊆ σ1 and etf set ⊆

σ2 where the elements of σ1 and σ2 are all in {nop} ∪ {etf set}. As described in

assumption, m2 is in the successor path of marking m1, it is still satisfied that

σ2 = σ1 ∪ {nop}. This implies m2 is in solution marking set S3 if and only if m1

is in S3.

86

m2

m4

m1

m

m3 m5

c

c

m6 m7 m8 m9

c

m10

root

Figure 5.11: The traverse order of early-terminated approach

The early-terminated approach is based on the exhaustive approach and uses

Lemma 5.1. It tries to minimize the size of candidate set S2 from reachable set

S1. The difference between the exhaustive and the early-terminated approaches

is that when an enqueued unvisited marking is candidate, the early-terminated

approach ignores the candidate marking and marks as a visited node. Then,

it proceeds other unvisited nodes in queue Q until all the markings have been

visited. In Figure. 5.11, as an example, the traverse order of the early-terminated

approach is m,m1, m2, m3, . . . , m10. The pseudo-code of the earliest-terminated

traverse method is shown in Figure. 5.12. In lines 12 to 14, it ignores the candidate

marking and proceeds other unvisited nodes.

5.3.4.3 The optimal approach

The third approach to verify a schedule of a given FSFG is the optimal approach

which is improved from the early-terminated approach. In order to reduce reach-

able marking set S1 of the reachability tree, it tries to merge the redundant nodes

when it proceeds Breadth-First traverse.

Let m be an unvisited node to be processed. If m is a candidate marking,

it ignores this node by using Lemma 5.1 and proceeds other unvisited nodes in

87

1: procedure bfs build tree early terminated(µ0) ⊲ root marking µ0

2: Initialize Queue structure Q
3: Allocate new node nn ⊲ initialize root node
4: nn.visited← false
5: nn.marking ← µ0

6: nn.height← 0
7: nn.candidate← is candidate(nn)
8: Q.enqueue(nn)
9:

10: for all unvisited node n ∈ Q do

11: n.visit← true
12: if n.candidate = true then

13: continue to the next node ⊲ Early-terminate Lemma 5.1
14: end if

15: if n.height 6 H then

16: ebl set← find enabled trans(n.marking) ⊲ negative test
17: for all transition tr ∈ ebl set do

18: µ← n.marking
19: κ← make firing vector from(tr)
20: µ′ ← µ+ [A] · κ ⊲ Eq.5.5
21: Allocate new node nn
22: nn.marking ← µ′

23: nn.visited← false
24: nn.height← n.height+ 1
25: nn.candidate← is candidate(nn)
26: create branch(n, nn)
27: Q.enqueue(nn)
28: end for

29: end if

30: end for

31: end procedure

Figure 5.12: The early-terminated approach

88

queue. If m is not a candidate marking, it finds enabled set of transitions and

creates new node on each enabled transition. For each new produced node with

marking m′, if there exists another node in the reachability tree, and has the

same marking associated with it, then the node with marking m′ is a duplicate

node. Since, the marking m′ has appeared in the tree, this new produced node

is redundant. Then, it merges this redundant node to the existential node and

creates transition link from marking m to the existential node. As an example in

Figure. 5.13, when it proceeds marking m5, it founds the new created node with

marking m7 is a duplicate node. It merges these nodes and creates transition

from m5 to m7. Then, it continually proceeds other unvisited nodes in queue.

m0

m1

m4 m5

m6

m9

c

tr6 tr10

m3

tr5
tr10

tr7

m7

c

tr7tr10

c m8m7 c

c

tr5 tr10

tr10

m2

root

Figure 5.13: Merge the redundant node in optimal traverse approach

The pseudo-code of the optimal approach is shown in Figure. 5.14. In lines

12 to 14, if the node n is a candidate marking, then it ignores this node by using

Lemma 5.1 and proceeds the other nodes in queue Q. In lines 26 to 32, function

find duplicate node checks whether the new created node nn is duplicate. If

there exists a duplicate node, it ether returns the dual node to dual node or

returns null. It continually proceeds other unvisited nodes until all nodes are

visited.

89

1: procedure bfs build tree optimal(µ0) ⊲ root marking µ0

2: Initialize Queue structure Q
3: Allocate new node nn ⊲ initialize root node
4: nn.visited← false
5: nn.marking ← µ0

6: nn.height← 0
7: nn.candidate← is candidate(nn)
8: Q.enqueue(nn)
9:

10: for all unvisited node n ∈ Q do

11: n.visit← true
12: if n.candidate = true then

13: continue to the next node ⊲ Early-terminate Lemma 5.1
14: end if

15: if n.height 6 H then ⊲ max. height H
16: ebl set← find enabled trans(n.marking) ⊲ negative test
17: for all transition tr ∈ ebl set do

18: µ← n.marking
19: κ← make firing vector from(tr)
20: µ′ ← µ+ [A] · κ ⊲ Eq.5.5
21: Allocate new node nn
22: nn.marking ← µ′

23: nn.visited← false
24: nn.height← n.height+ 1
25: nn.candidate← is candidate(nn)
26: dual node← find duplicate node(nn)
27: if dual node 6= null then

28: create branch(n, dual node)
29: else

30: create branch(n, nn)
31: Q.enqueue(nn)
32: end if

33: end for

34: end if

35: end for

36: end procedure

Figure 5.14: The optimal traverse approach

90

5.3.5 Second stage: Depth-First traverse method

At the second stage, we apply Depth-First traverse procedure to verify a sched-

ule on candidate markings rather than all reachable markings in PN model. As

showing in Figure. 5.15, a candidate marking m which is found in the first stage

is probably the correct marking, the correct retimed FSFG, that leads a given

schedule being valid. For a given schedule in Figure. 5.7, task tr5 and task tr9 are

scheduled and finished at the first step of the schedule. The procedure tries to fire

one transition of these scheduled tasks or enabled nop operations once each time

during the first scheduled step. At the end of the first step, marking m1 is ob-

tained from candidate marking m by firing transition sequence σ : tr6 tr5 tr10 tr9,

that is m
σ
→m1, where transition tr6 and tr10 are nop operations. The proce-

dure continually traverses entire length of the schedule step-by-step until all the

scheduled tasks are fired. A given schedule is said to be valid if and only if all

the markings in the traverse path are valid.

The pseudo-code of the second stage is shown in Figure. 5.16. At the be-

ginning, the procedure marks all nodes in queue Q unvisited in line 3. For all

unvisited candidate markings, it traverses all entire length of the schedule, applies

procedure go further depth firing at each scheduled step in line 12. Procedure

go further depth firing has three parameters: the absolute step s of a given

schedule, the current marking µ and the output marking µ′. It returns true if

and only if the firing markings during step s are valid. A valid schedule exists if

and only if all the firing markings of the entire length of the schedule are valid.

At last in lines 19 to 21, all solution markings are added to sol set.

91

Candidate marking c

m=[00100001000000]

m1 = [00001011001010]

Depth-first search

m2 = [00010000100111]

m3 = [10000000010110]

m4 = [01000000000110]

Firing: tr6, tr5,

tr10, tr9

Firing: tr10, tr7,
tr11, tr4

Firing: tr1, tr8

Firing: tr2, tr3

Step 1

Step 2

Step 3

Step 4

Figure 5.15: Verify schedule with Depth-First search algorithm

92

1: procedure dfs traverse path(Q) ⊲ queue structure Q
2: Initialize schedule structure sch
3: Mark all node n ∈ Q unvisited
4:

5: for all unvisited candidate node n ∈ Q do

6: n.visit← true
7: µ← n.marking
8: for all control step s ∈ [1, 2, . . . , sch.max step] do

9: if there is no task end at step s then

10: continue to next s
11: end if

12: valid← go further depth firing(s, µ, µ′)
13: if valid = true then ⊲ depth firing is valid at step s
14: µ← µ′

15: else ⊲ depth firing is not valid at step s
16: break

17: end if

18: end for

19: if valid = true then

20: sol set← {sol set ∪ n.marking} ⊲ solution set
21: end if

22: end for

23: end procedure

Figure 5.16: Path traverse with Depth-First search algorithm

93

1: procedure go further depth firing(s, µ, out mark)
2: tran set← find all tasks finished at step(s)
3:

4: cm← µ ⊲ current marking cm
5: violate← false
6: while ({tran set} is not empty) and (violate = false) do

7: fired← false
8: ebl set← find enabled trans(cm) ⊲ negative test
9: for i← 1, |T | do ⊲ total number of transitions |T |

10: tr ← the ith transition
11: if tr ∈ {ebl set} ∩ {nop} then ⊲ fire nop transition
12: µ′ ← fire transition(cm, tr)
13: fired← true
14: else if tr ∈ {ebl set} ∩ {tran set} then ⊲ fire tran set transition
15: tran set← {tran set} \ tr ⊲ delete tr from tran set
16: µ′ ← fire transition(cm, tr)
17: fired← true
18: end if

19: if fired = true then ⊲ one firing each time
20: break

21: end if

22: end for ⊲ next transition
23: if fired = false then ⊲ there is no firing occurred
24: violate← true
25: else if is marking valid(µ′) = false then ⊲ marking is not valid
26: violate← true
27: else

28: cm← µ′ ⊲ next iteration
29: end if

30: end while

31: if violate← false then

32: out mark ← cm ⊲ out mark is the output marking
33: return true
34: else

35: return false
36: end if

37: end procedure

Figure 5.17: One more deep step firing

94

5.4 The Complexity Analysis

Assuming there are n non-nop operations in a given FSFG. Let f be the unfolding

factor of a given schedule. As described in previous section, the upper-height

of the reachability tree of the corresponded PN model is bounded by Hup =

f × n. The complexity analysis of the proposed two-stages verification method

is discussed as following.

At the first stage, three approaches are proposed including the exhaustive,

the early-terminated and the optimal traverse methods. In the first approach,

each node in the reachability tree has n enabled transitions in worse case, the

level 0 (the root node) has one node.

Level 1 has n nodes

Level 2 has (n)(n) = n2 nodes

Level 3 has (n2)(n) = n3 nodes

.

Level f · n has (nf ·n−1)(n) = nf ·n nodes

The total number of nodes is:

1 + n+ n2 + . . .+ nf ·n =
(

nf ·n+1 − 1
)

/ (n− 1) (5.8)

Thus, the space complexity of the heuristic approach is O(Nf ·N), in worse

case.

In the second approach, the early-terminated approach, the algorithm stops

traversing a node while it is candidate. Let p, p ≤ (f · n), be the deepest level

that Breadth-First traverse procedure can reach. The complexity of the second

approach is O(Np), p ≤ f · n.

95

In the third approach, the optimal approach, the algorithm merges duplicate

markings in order to reduce the reachable marking set of the reachability tree. Let

x ∈ Z = {1, 2, · · · } be the merging radio in the reachability tree. The complexity

of the three approach is O((N/x)p), p ≤ f ·n. Thus, the relation of the complexity

between three approaches is:

O
(

Nf ·n
)

> O (Np) > O ((N/x)p) . (5.9)

At the second stage, the algorithm performs Depth-First traverse to verify a

given schedule by checking the firing sequence, which contains f · n transitions ,

of the PN model. Thus, the complexity is O(f · n), in worse case.

5.5 Experimental Results

We have implemented these three approaches as the proposed formal verification

algorithms. Each of these approaches is applied to several dataflow algorithms.

Table. 5.1 shows the statistics of these designs.

Table 5.1: The statistics of test designs

Design num. num. num. Size of PN Schedule Unfolding
name vertices edges delays (Place x Trans.) length factor

iir2d-sch1 8 14 2 (14 x 11) 6 1
iir2d-sch2 8 14 2 (14 x 11) 4 1
iir2d-sch3 8 14 2 (14 x 11) 4 1
iir2d-sch4 8 14 2 (14 x 11) 4 1
iir3d-sch1 12 21 3 (21 x 16) 6 1
iir3d-sch2 12 21 3 (21 x 16) 6 1
p243-sch1 5 7 5 (7 x 5) 96 6
p243-sch2 5 7 5 (7 x 5) 96 6
ewf-sch1 34 47 0 (47 x 34) 40 1
ewf-sch2 34 47 0 (47 x 34) 40 1

96

Table 5.2: The experimental results

Exhaustive Early-terminated Optimal
Test Time Res. Time Res. Time Res.

schedule (sec) usage (sec) usage (sec) usage
iir2d-sch1 171.01 168648 0.17 16 0.19 16
iir2d-sch2 180.38 168648 0.2 14 0.2 14
iir2d-sch3 206.81 168701 24.80 34084 0.33 244
iir2d-sch4 179.47 171341 19.845 35720 0.32 293
iir3d-sch1 n/a n/a 0.19 19 0.21 19
iir3d-sch2 n/a n/a 0.18 19 0.21 19
p243-sch1 n/a n/a 0.2 32 0.21 32
p243-sch2 n/a n/a 0.22 32 0.21 32
ewf-sch1 n/a n/a 0.26 36 0.28 36
ewf-sch2 n/a n/a 0.3 36 0.28 36

Design iir2d-sch1 to iir2d-sch4 and design iir3d-sch1 to iir3d-sch1 [50] are

the second-order and the third-order Infinite Impulse Response filters. Design

p243 [50] is a design with unfolding factor 6, the lengths of schedule p243-sch1

and p243-sch2 are both 96 steps. Design ewf-sch1 and ewf-sch2 are low power

schedules for the Elliptic Wave Filter in [74].

Table. 5.2 shows the experimental results of using three approaches. The

optimal approach outperforms the others in terms of time and resource usage.

5.6 Summary

This work aims to exploit formal verification techniques for high-level synthesis.

In the top-down design flow, design errors should be removed as early as possible;

otherwise, errors detected at the later stages will result a costly, time-consuming

redesign cycles. Although formal verification for logic synthesis has been studied

very extensively, little work has been done for high-level synthesis. The work

presents a novel verification flow that can efficiently detect the design errors from

97

the results of high-level synthesis. As shown in the experimental results, we can

apply the optimal approach for the first phase to efficiently verify complex design

cases.

98

CHAPTER 6

Conclusion and Future Works

The existential formal verification techniques including equivalence checking and

model checking have proven to be successful verification methods that be applied

to real industrial design. However, since it requires the design to be synthesized at

RTL or gate level, high-level faults may not be revealed until the RTL generated.

This thesis investigates system-level verification method using Petri Net model

to detect high-level faults of HLS result for DSP-driven or dataflow systems.

While comparing to the conventional RTL verification, early faults detection may

reduce redesigning time and costs, and hence it speeds up time-to-market cycle

time. We studied Petri Net theory in verifying the HLS of dataflow system design.

The verification methodology starts from dataflow graph modeling as mentioned

in Chapter. 2. The proposed PN conversion method converts the dataflow FSFG

graph into PN model. In PN domain, HLS optimal manipulations, such as arith-

metic transformation and scheduling, can be seen a serial token-state movements

of PN model. Valid optimization techniques must satisfy the validity of PN to-

ken movement rules. Based on the PN theory, two verification frameworks are

proposed in Chapter. 4 and Chapter. 5. Both verification flows are two-folded

corresponded to the static and dynamic phase verification. In the first phase,

PN theory is utilized to verify the arithmetic transformations of HLS, such as

the retiming and unfolding techniques. Several tree traversal based methods are

proposed in Chapter. 4 and Chapter. 5 to find the candidate FSFG design from

99

PN reachability tree. In the second phase, the verifier in Chapter. 4 attempts

to verify schedule scheme by using PN theory, and Chapter. 5 addresses a SMV-

based model checker to check the correctness of schedule. We also conclude the

best traverse algorithm from the experimental results.

Although, this thesis provides the whole new verification concepts, which men-

tion the PN conversion, high-level fault modeling, verifying technique developing

and the implementation of the frameworks, there still exists some possible sub-

jects for further studies. We will address some limitation and further work in the

following sections.

6.1 Petri Net Modeling Limitation

Essentially, the introducing of PN modeling for the dataflow graph can handle

all kinds HLS optimization techniques as we mention in Chapter 2. However,

PN based modeling still suffers from a couple known limitations. We state these

limitations in the next subsections.

6.1.1 Loop Shrunk

Loop shrunk [50] is an optimization technique that it reduce the iteration period

bound (IPB) would be to reduce the computational latency of the critical loop,

effectively reducing the IPB bound.

Considering the loop segment shown in Figure. 6.1(a) where the chain of two

additions within the loop is reduced to one addition within the loop in Fig-

ure. 6.1(b). This is an application of associativity, such that x = (a + b) + c =

a + (b + c). Distributivity (followed by associativity) can be used to shrink the

computational latency in the loop as shown in Figure. 6.2(a)-(b). The distributiv-

100

ity interchanges the multiplication and addition operations, which when followed

by an associativity operation can shrink the loop. As a consequence, the IPB

can be reduced, if the other loops do not increase their computational latencies

at the same time.

x

a

b

c

(a) x = (a + b) + c

x

a

b c

(b) x = a + (b + c)

Associativity

Figure 6.1: (a) Original segment of a loop, (b) loop shrunk by associativity of
addition

As an example, consider the second order IIR filter shown in Figure. 6.3(a).

By simple associativity at the input, the IPB can be reduced from 3 to 2 as shown

in Figure. 6.3(b).

The limitation of the proposed verification is that PN based verification can

only detect the high-level faults of HLS result under the architecture of the design

unchanged. The loop shrunk optimization is based on arithmetic associativity

and distributivity rules. Such optimization does change the positions of the pro-

cess elements from the original design. Even the functionality remains unchange,

loop shrunk optimization does change the architecture of the original design.

101

a

b

c

d

e

x

d

b

c

e

x

a

(a) x = d x ((a x b) + c) + e (b) x = (d x(a x b) + d x c) + e

Distributivity

Figure 6.2: (a) Original segment of a loop, (b) distributivity interchanges the
multiplication and addition, allowing application of associativity to shrink the
loop

D

D

1 unit execution delay

x[n]
y[n]

Latency = 4

IPB = 3

(a)

D

D

1 unit execution delay

x[n]

y[n]

Latency = 4

IPB = 2

(b)

Figure 6.3: (a) Original FSFG with IPB = 3 and Latency = 4, (b) IPB = 2 after
associativity

6.1.2 Look-Ahead

Lookahead is a HLS optimization technique introduced by Prihi and Messer-

schmitt in [89, 90]. The basic idea of lookahead requires either pipelining or

102

unfolding to achieve optimal efficiency. A case of the IIR filter design is given

in Figure. 6.4(a), the original FSFG has a IPB = 2(Tm + Ta)/2. After using

arithmetic lookahead or distributivity optimization technique, the result design

in Figure. 6.4(b) has a less iteration period bound with IPB = (Tm + Ta)/2. In

general case, design may apply M − 1 steps IIR filter of the lookahead design of

Figure. 6.4(b). The result M − 1 steps IIR filter with IPB = (Tm + Ta)/M is

shown in Figure. 6.5.

As showing in previous cases, lookahead optimization technique first utilizes

the arithmetic distributivity, then the unfolding and retiming techniques are ap-

plied to achieve optimal iterator period bound. We can see that even the function-

ality remains the same, the architecture of the original design has been changed

after lookahead. The proposed verification technique may not be used to detect

such kind of architecture changes yet.

6.2 SystemC using Petri Net Modeling

The FSFG representation is commonly used in high-level design, however, the lan-

guage based descriptions, such as SystemC [91,92], have more numerous practical

applications. SystemC is a modeling platform consisting of C++ class libraries

and a simulation kernel for design at the system-behavioral and RTL level. One

of the major advantages of SystemC is that it can be used to describe a system

at several levels of function description and down to synthesizable RTL. In [93],

the authors gave the DSP recommended design flow. In the recommended flow,

designs still need refinement or optimization techniques in their design flow. As

showing in Figure. 6.6, the verification to check HLS design faults also becomes

a challenge work.

103

D

2D

a

a

b

b

y (n+2)

u (n+1) u (n)

y (n)

y (n)

y (n+2) = a[a y(n) + b u(n)] + b u(n+1)

Tm executing time

Ta executing time
IPB = 2 (Tm + Ta) / 2

(a)

D

2D

b
ab

a
2

y (n)

u (n)u (n+1)

(b)

y (n+2)

y (n+2) = a
2

y(n) + ab u(n) + b u(n+1)

IPB = (Tm + Ta) / 2

Figure 6.4: (a) Original IIR filter with IPB = 2(Tm + Ta)/2, (b)
IPB = (Tm + Ta)/2 after lookahead

104

D

b
ab

u (n + M -1)
u (n + M - 2)

D

a
M-1

b a
M
b

M D

y (n+M)

IPB = (Tm + Ta) / M

() () ()
−

=

−−+⋅⋅+⋅=+
1

0

1

M

i

iM iMnubanyaMny

Figure 6.5: Applying M − 1 steps IIR filter of the lookahead design in previous
case, with IPB = (Tm + Ta)/M

HLS is crucial for the success of the design, the verification for HLS is even a

challenge work. Except low level technique, HLS still dominates the performance

of a system. PN based verification open the way to the development of the HLS

formal verification techniques. We hope PN based verification method can handle

more complex design in the future.

105

C algorithm

Matlab design

SystemC

Behavior

Software - FW SystemC RTL

Verilog

Compile

Gate level

simulation

Equivalence

checking
Synthesized

High-level

optimization

HLS

verification

System level

RTL / gate level

HLS

optimization

Abstraction

Implementation

Figure 6.6: System-level design flow and the PN-based verification

106

References

[1] Rolf Drechsler, “Towards formal verification on the system level”, Proceed-
ings of the 15th IEEE International Workshop on Rapid System Prototyping,
vol. 28, no. 30, pp. 2–5, jun 2004.

[2] Alan John Hu and Andrew K. Martin, Formal Methods In Computer-aided
Design, Springer, 2004.

[3] William K. Lam, Hardware Design Verification: Simulation and Formal
Method-Based Approaches, Prentice Hall, 2005.

[4] Carl Pixley, “Guest editor’s introduction: Formal verification of commercial
integrated circuits”, IEEE Design and Test, vol. 18, no. 4, pp. 4–5, jul 2001.

[5] Vigyan Singhal, Carl Pixley, Adnan Aziz, and Robert K. Brayton, “The-
ory of safe replacements for sequential circuits”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 2,
pp. 249–265, feb 2001.

[6] Aarti Gupta, “Formal hardware verification methods: a survey”, Formal
Methods in System Design, vol. 1, no. 2-3, pp. 151–238, oct 1992.

[7] Christoph Kern and Mark R. Greenstreet, “Formal verification in hardware
design: a survey”, ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 4, no. 2, pp. 123–193, apr 1999.

[8] Randal E. Bryant and James H. Kukula, “Formal methods for functional
verification”, International Conference on Computer-Aided Design (IC-
CAD), 2002.

[9] Jun Yuan, Carl Pixley, Adnan Aziz, and Ken Albin, “A framework for
constrained functional verification”, International Conference on Computer
Aided Design, pp. 142–145, nov 2003.

[10] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, Model Checking,
MIT Press, 1999.

[11] Kedar S. Namjoshi and E. Allen Emerson, Verification, Model Checking,
And Abstract Interpretation, Springer, 2006.

[12] Tsung-Hsi Chiang and Lan-Rong Dung, “System level verification on high-
level synthesis of dataflow algorithms using Petri net”, WSEAS Transactions
on Circuits and Systems, vol. 5, no. 6, pp. 790–796, 2006.

107

[13] Tsung-Hsi Chiang and Lan-Rong Dung, “Verification method of dataflow
algorithms in high-level synthesis”, Journal of System and Software, vol. 80,
no. 8, pp. 1256–1270, 2007.

[14] Tsung-Hsi Chiang and Lan-Rong Dung, “On verification on dataflow
scheduling”, to be appeared in International Journal of Software Engineering
and Knowledge Engineering, 2007.

[15] Tsung-Hsi Chiang and Lan-Rong Dung, “Hybrid verification technique for
high-level synthesis of dataflow algorithms”, WSEAS Transactions on Cir-
cuits and Systems, vol. 6, no. 3, pp. 348–354, 2007.

[16] Tsung-Hsi Chiang and Lan-Rong Dung, “Modeling and formal verification of
dataflow graph in system-level design using Petri net”, IEEE International
Symposium on Circuits and Systems (ISCAS 2005), 2005.

[17] Tsung-Hsi Chiang and Lan-Rong Dung, “System-level verification of
dataflow graph using Petri net model”, 16th VLSI Design/CAD Taiwan,
2005.

[18] Tsung-Hsi Chiang and Lan-Rong Dung, “System-level verification on high-
level synthesis of dataflow graph”, IEEE International Symposium on Cir-
cuits and Systems (ISCAS 2006), 2006.

[19] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant, “Efficient imple-
mentation of a BDD package”, Proceedings of the 27th ACM/IEEE confer-
ence on Design automation, pp. 40–45, 1991.

[20] Randal E. Bryant, “Symbolic Boolean manipulation with ordered binary-
decision diagrams”, ACM Computing Surveys, vol. 24, no. 3, pp. 293–318,
sep 1992.

[21] Randal E. Bryant, “Graph-based algorithms for Boolean function manipu-
lation”, IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691, aug
1986.

[22] Rolf. Drechsler, Rudiger Ebendt, and Gorschwin Fey, Advanced BDD Opti-
mization, Springer, 2005.

[23] Ruy J. G. B. de Queiroz, Logic for Concurrency and Synchronisation,
Springer, 2003.

[24] Jun Yuan, Kurt Shultz, Carl Pixley, Hillel Miller, and Adnan Aziz, “Model-
ing design constraints and biasing in simulation using BDDs”, IEEE/ACM
International Conference on Computer-Aided Design, pp. 584–589, 1999.

108

[25] Kenneth L. McMillan, “Applying SAT methods in unbounded symbolic
model checking”, 14th International Conference on Computer Aided Verifi-
cation, pp. 250–264, jul 2002.

[26] G. Parthasarathy, K-T. Cheng, and C-Y Huang, “An analysis of ATPG
and SAT algorithms for formal verification”, Proceedings of the Sixth IEEE
International High-Level Design Validation and Test Workshop (HLDVT
’01), pp. 177–182, 2001.

[27] Mukul R. Prasad, Armin Biere, and Aarti Gupta, “A survey of recent
advances in SAT-based formal verification”, Software Tools for Technology
Transfer, vol. 7, no. 2, pp. 156–173, 2005.

[28] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic model checking with
partitioned transition relations”, Proceeding of International Conference on
Very Large Scale Integration, , no. 49–58, 1991.

[29] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan,
and David L. Dill, “Symbolic model checking for sequential circuit verifica-
tion”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, no. 4, pp. 401–424, apr 1994.

[30] Hyeong-Ju Kang and In-Cheol Park, “SAT-based unbounded symbolic
model checking”, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 24, no. 2, pp. 129–140, feb 2005.

[31] Ganapathy Parthasarathy, Madhu K. Iyer, Kwang-Ting Cheng, and Li-C.
Wang, “Safety property verification using sequential sat and bounded model
checking”, IEEE Design and Test of Computers, vol. 21, no. 2, pp. 132–143,
mar 2004.

[32] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential
circuit verification using symbolic model checking”, In 27th ACM/IEEE
Design Automation Conference, 1990.

[33] Edmund M. Clarke and David E. Long, “Model checking and abstraction”,
ACM Transactions on Programming Languages and Systems, 1992.

[34] Matt Kaufmann, Andrew Martin, and Carl Pixley, “Design constraints in
symbolic model checking”, Proceedings of the 10th International Conference
on Computer Aided Verification, vol. 1427, pp. 477–487, 1998.

[35] Joseph Kljaich, Brian T. Smith, and Anthony S. Wojcik, “Formal verifica-
tion of fault tolerance using theorem-proving techniques”, IEEE Transac-
tions on Computers, vol. 38, no. 3, pp. 366–376, mar 1989.

109

[36] Mark D Ryan and Michael Huth, Logic in Computer Science: Modelling
and Reasoning about Systems, Cambridge University Press, 2004.

[37] Pranav Ashar, Subhrajit Bhattacharya, Anand Raghunathan, and Akira
Mukaiyama, “Verification of RTL generated from scheduled behavior in a
high-level synthesis flow”, Proceedings of the 1998 IEEE/ACM international
conference on Computer-aided design, pp. 517–524, 1998.

[38] D. Sarkar, “Register transfer operation analysis during data path verifi-
cation”, Proceedings of the 2002 conference on Asia South Pacific design
automation / VLSI Design, pp. 172–177, jan 2002.

[39] C. Bolchini, R. Montandon, F. Salice, and D. Sciuto, “Design of VHDL-
based totally self-checking finite-state machine anddata-path descriptions”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8,
no. 1, pp. 98–103, feb 2000.

[40] Dominique Borrione, Julia Dushina, and Laurence Pierre, “A compositional
model for the functional verification of high-levelsynthesis results”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 5,
pp. 526–530, oct 2000.

[41] C Karfa, C Mandal, D Sarkar, S R. Pentakota, and Chris Reade, “A formal
verification method of scheduling in high-level synthesis”, Proceedings of the
7th International Symposium on Quality Electronic Design, pp. 71–78, 2006.

[42] Nazanin Mansouri and Ranga Vemuri, “Automated correctness condition
generation for formal verification of synthesized RTL designs”, Journal of
Formal Methods in System Design, vol. 16, no. 1, pp. 59–91, jan 2000.

[43] Daniel D. Gajski and Loganath Ramachandran, “Introduction to high-level
synthesis”, IEEE Design and Test, vol. 11, no. 4, pp. 44–54, oct 1994.

[44] Luciano Lavagno, Grant Martin, and Louis Scheffer, Electronic Design Au-
tomation for Integrated Circuits Handbook, CRC, 2006.

[45] Daniel Gajski, Nikil Dutt, Allen Wu, and Steve Lin, High-level synthesis :
introduction to chip and system design, Kluwer academic publishers, 1992.

[46] Daniel Gajski and Robert H. Kuhn, “New VLSI tools - guest editors’ intro-
duction”, IEEE Computer, vol. 16, no. 12, pp. 11–14, 1983.

[47] Donald E. Thomas, Elizabeth D. Lagnese, Robert A. Walker, Jayanth V.
Rajan, Robert L. Blackburn, and John A. Nestor, Algorithmic and Register-
Transfer Level Synthesis: The System Architect’s Workbench, Springer,
1989.

110

[48] Giovanni De Micheli, Synthesis and optimization of digital circuits,
McGraw-Hill, 1994.

[49] Keshab K. Parhi, VLSI Digital Signal Processing Systems: Design and Im-
plementation, Wiley, 1999.

[50] Vijay K. Madisetti, VLSI Digital Signal Processors, IEEE Press, 1995.

[51] A. Fettweis, “Realizability of digital filter networks”, Archiv fur Elektronik
und Ubertragungstechnik, vol. 30, no. 2, pp. 90–96, 1976.

[52] Markku Renfors and Yrjo Neuvo, “Fast multiprocessor realizations of digital
filters”, IEEE International Conference on ICASSP’80 Acoustics, Speech,
and Signal Processing, vol. 5, pp. 916–919, apr 1980.

[53] Thomas P. Barnwell, C.J.M. Hodges, and Mark Randolph, “Optimum im-
plementation of single time index signal flow graphs on synceronous multi-
processor machines”, IEEE International Conference on ICASSP’82 Acous-
tics, Speech, and Signal Processing, vol. 7, pp. 679–682, aug 1982.

[54] T. Barnwell, C. Hodges, and M. Randolph, “Optimum implementation
of single time index signal flow graphs on synceronous multiprocessor ma-
chines”, IEEE International Conference on ICASSP’82 Acoustics, Speech,
and Signal Processing, vol. 7, pp. 679–682, 1982.

[55] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems”, Journal
of VLSI and Computer Systems, vol. 1, no. 1, pp. 41–67, 1983.

[56] Charles E. Leiserson and James B. Saxe, “Retiming synchronous circuitry”,
Algorithmica, vol. 6, no. 1, pp. 5–35, 1991.

[57] Alexander Schrijver, Theory of Linear and Integer Programming, John
Wiley and Sons, 1998.

[58] Cheng-Tsung Hwang, Jiahn-Hurng Lee, and Yu-Chin Hsu, “A formal ap-
proach to the scheduling problem in high level synthesis”, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 10,
no. 4, pp. 464–475, apr 1991.

[59] Keshab K. Parhi and David G. Messerschmitt, “Static rate-optimal schedul-
ing of iterative data-flow programs via optimum unfolding”, IEEE Transac-
tions on Computers, vol. 40, no. 2, pp. 178–195, feb 1991.

[60] Keshab K. Parhi, “Algorithm transformations for concurrent processors”,
In Proceedings of the IEEE, vol. 77, no. 12, pp. 1879–1895, dec 1989.

111

[61] Liang-Fang Chao and Edwin Hsing-Mean Sha, “Scheduling data-flow graphs
via retiming and unfolding”, IEEE Transactions on Parallel and Distributed
Systems, vol. 8, no. 12, pp. 1259–1267, dec 1997.

[62] Nikil D. Dutt and Daniel D. Gajski, “Design synthesis and silicon compila-
tion”, IEEE Design and Test, vol. 7, no. 6, pp. 8–23, nov 1990.

[63] Pierre G. Paulin and John P. Knight, “Algorithms for high-level synthesis”,
IEEE Design and Test, vol. 6, no. 6, pp. 18–31, nov 1989.

[64] Robert A. Walker and Samit Chaudhuri, “Introduction to the scheduling
problem”, IEEE Design and Test, vol. 12, no. 2, pp. 60–69, jun 1995.

[65] Carl Adam Petri, Communication with automata, PhD thesis, University of
Bonn, 1966.

[66] James L. Peterson, Petri net theory and the modeling of system, Prentice-
Hall, 1981.

[67] Tadao Murata, “Petri nets: properties, analysis and applications”, Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, apr 1989.

[68] Christos G. Cassandras and Stephane Lafortune, Introduction to Discrete
Event Systems, Kluwer Academic Publishers, 1999.

[69] Rene David and Hassane Alla, Petri Nets and Grafcet: tools for modelling
discrete event systems, Prentice Hall International, 1992.

[70] Wolfgang Reisig and Grzegorz Rozenberg, Lectures on Petri nets I: Basic
Models, Springer, 1998.

[71] Wolfgang Reisig and Grzegorz Rozenberg, Advances in Petri Nets - Lectures
on Petri nets II: Applications, Springer, dec 1998.

[72] Jorg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, Lectures on Concur-
rency and Petri Nets, Springer, 2004.

[73] Grzegorz Rozenberg, Advances in Petri Nets 1984, 1986, 1988, 1990 - Lec-
ture Notes in Computer Science, Springer, 1984.

[74] Lan-Rong Dung and Hsueh-Chih Yang, “On multiple-voltage high-level syn-
thesis using algorithmic transformations”, dec 2004, number 12, pp. 3100–
3108.

[75] Claude Girault and Rudiger Valk, Petri nets for systems engineering,
Springer, 2003.

112

[76] Harvey E. Rose, Linear Algebra: A Pure Mathematical Approach, Springer,
2002.

[77] Kazuhito Ito, Lori E. Lucke, and Keshab K. Parhi, “ILP-based cost-optimal
DSP synthesis with module selection and dataformat conversion”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 6, no. 4,
pp. 582–594, dec 1998.

[78] Vijay K. Madisetti and Bryce A. Curtis, “A quantitative methodology for
rapid prototyping and high-levelsynthesis of signal processing algorithms”,
IEEE Transactions on Signal Processing, vol. 42, no. 11, pp. 3188–3208, nov
1994.

[79] Keshab K. Parhi, “High-level algorithm and architecture transformations
for DSP synthesis”, Journal of VLSI Signal Processing Systems, vol. 9, no.
1-2, pp. 121–143, jan 1995.

[80] Xun Liu, Papaefthymiou, Marios C. Papaefthymiou, and Eby G. Friedman,
“Retiming and clock scheduling for digital circuit optimization”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 21, no. 2, pp. 184–203, feb 2002.

[81] George A. Constantinides, Peter Y. K. Cheung, and Wayne Luk, “Optimum
and heuristic synthesis of multiple word-length architectures”, IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 1, pp.
39–57, jan 2005.

[82] Michael R. Garey and David S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman, 1990.

[83] Lintao Zhang and Sharad Malik, “The quest for efficient Boolean satisfiabil-
ity solvers”, Proceedings of the 14th International Conference on Computer
Aided Verification, pp. 17–36, jul 2002.

[84] Tracy Larrabee, “Test pattern generation using Boolean satisfiability”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4–15, jan 1992.

[85] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik, “Chaff: engineering an efficient SAT solver”, Proceedings of
Design Automation Conference, pp. 530–535, 2001.

[86] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. G. Hwang,
“Symbolic model checking 10exp20 states and beyond”, In Logic in Com-
puter Science, pp. 428–439, 1990.

113

[87] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using SAT procedures instead of BDDs”, Proceedings of the 36th
ACM/IEEE conference on Design automation, pp. 317–320, 1999.

[88] Edmund M. Clarke and E. Allen Emerson, “Design and synthesis of synchro-
nization skeletons using branching time temporal logic”, in Lecture Notes
In Computer Science. 1981, vol. 131, pp. 52–71, Springer-Verlag.

[89] Keshab K. Parhi and David G. Messerschmitt, “Pipelined VLSI recursive
filter architectures using scattered look-ahead and decomposition”, Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP-88),
vol. 4, pp. 2120–2123, apr 1988.

[90] Keshab K. Parhi and David G. Messerschmitt, “Pipeline interleaving and
parallelism in recursive digital filters.i. pipelining using scattered look-ahead
and decomposition”, IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 7, pp. 1099–1117, jul 1989.

[91] ”, SystemC community, http://www.systemc.org/.

[92] “SystemC version 2.0 users guide”, Synopsys Inc, 2003.
http://www.systemc.org/.

[93] Itai Yarom and Gabi Glasser, “SystemC opportunities in chip design flow”,
Proceedings of the 2004 11th IEEE International Conference on Electronics,
Circuits and Systems ICECS 2004, vol. 13, no. 15, pp. 507–510, 2004.

114

