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摘   要 

 

在運籌網絡之中，固定設施選址是一重要決策問題，其提供運籌系統

整體的類型、結構以及形式。選址決策包括了定義供應中心的數量、位址

與容量。本篇論文提出求解 p-中心問題的新程序。根據 p-中心問題的解答

所做出的系統設計是一個可供考量的選擇。我們針對每一個選擇計算出八

項指標，包括了最短之最遠距離、每項貨物之平均運送距離及其變異係數、

每顧客端之平均運送距離及其變異係數、總固定設置成本、以及取決於各

中心容量之兩項成本：變動建設成本與運輸成本。我們評估具備這八項指

標之所有可能選項。數個柏拉圖有效率之選項將被選出。 

 

關鍵字：p-中心、運籌管理、服務水準、多目標、資料包絡分析法、整數規

劃、柏拉圖有效率 
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ABSTRACT 

 
 Locating fixed facilities throughout the logistics network is an important 
decision problem that gives form, structure and shape to the entire logistics 
system. Location decisions involve determining the number, locations and 
capacities of the supply centers to be used. The paper presents a new procedure 
to solve the minimax problem or p-center problem. The system design according 
to the solutions of the p-center problem is an alternative under selection. We 
compute the eight parameters for each alternative such as the minimax distance, 
average and coefficient of variation of transportation distance per unit of goods, 
average and coefficient of variation of transportation distance per site, the total 
fixed setup cost for the centers, and the two total costs that depend on the 
capacity of the centers: variable construction cost and transportation cost. All the 
possible alternatives with the eight parameters are evaluated. Several 
Pareto-efficient alternatives would be selected. 
 
Keywords: p-center, Logistics Management, Service Level, Multiple Criteria, 

Data Envelopment Analysis, Integer Programming, Pareto-Efficient 
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1. Introduction 

 

 Locating fixed facilities throughout the logistics network is an important decision 

problem that gives form, structure and shape to the entire logistics system. Location decisions 

involve determining the number, location and capacity of the supply centers to be used. We 

consider the location problem to determine the number of supply centers required to serve all 

the customers with minimum coverage distance. Each potential site has the variable cost to 

the capacity. The location and demand of each customer are given. The cost to transport a unit 

of demand from a potential site to each customer depends on the method employed. 

 Location theory was first formally introduced by Alfred Weber (1909), who considered 

the problem of locating a single warehouse to minimize the total travel distance between the 

warehouse and a set of spatially distributed customers. 

 The traditional p-center problem is to select the centers under the given p value. 

However, the decision maker may be incapable of determining the appropriate p value before 

solving the p-center problem. Considering the multiple criteria such as distance, cost, and 

service level, the decision maker is hard to determine the p value and select p centers with 

multiple objectives simultaneously. After solving the M p-center problems, we could obtain 

the minimax distance, allocation, cost level, and service level of all the M p-center problems. 

With the prior information, the decision maker could evaluate the multiple criteria to 

determine the appropriate p value. 

 In Section 2, we introduce an efficient exact procedure for solving the set-covering-based 

p-center problem that is inspired by BsearchEx (Elloumi et al., 2004). We present our new 

efficient exact procedure, a slim bisecting search, called as p-SBsearch. Our new 

mixed-integer programming formulation (PC-SC2) is embedded in p-SBsearch to improve the 

solution. In Section 3, we present computational results of symmetric p-center problems with 

p-SBsearch and make comparison with other past research. In Section 4, we present a 
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mixed-integer programming formulation for allocating customers to the centers with 

minimum total cost. Furthermore, in Section 5 we show an efficient procedure to compute 

throughout the M p-center problems. The system design according to the solutions of each 

p-center problem is an alternative under selection. We compute the eight parameters for each 

alternative such as the minimax distance, average and coefficient of variation of transportation 

distance per unit of goods, average and coefficient of variation of transportation distance per 

site, the total fixed setup cost for the centers, and the two total costs that depend on the 

capacity of the centers: variable construction cost and transportation cost. In Section 6, we 

evaluate the M alternatives with the eight parameters. Several Pareto-efficient alternatives 

would be selected. Conclusions are outlined in Section 7. 
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2. The modified formulation (PC-SC2) and the efficient exact procedure 

 

 Facility location models can be classified under four main topics, see Owen and Daskin 

(1998): 

 p-center problem: it minimizes the maximum distance between any customer and its 

nearest center. 

 p-median problem: it minimizes the average (total) distance between customers and 

centers. 

 Location Set Covering Problem: it locates the least number of centers that are required to 

cover all customers. 

 Maximum Covering Location Problem: it seeks the maximal coverage with a given 

number of centers. 

 Let N be the number of customers, M be the number of potential sites or facilities, and dij 

be the distance from customer i to facility j. The p-center problem consists of locating p 

centers and assigning each customer to its closest center so as to minimize the maximum 

distance between a customer and the center it is assigned to. 

 The location of emergency service facilities such as hospitals or fire stations is frequently 

modeled by the p-center problem; see Daskin (1995) and Marinov and ReVelle (1995). The 

p-center problem is NP-hard; see Kariv and Hakimi (1979) and Masuyama et al. (1981). 

 Many authors consider the particular case where the facilities are identical to the 

customers, i.e., N=M, and distances are symmetric and satisfy triangle inequalities. We call 

this particular case the symmetric p-center problem. 

 Main mathematical location methods may be categorized as heuristic and exact. Exact 

methods refer to those procedures with the capability to guarantee either a mathematically 

optimum solution to the location problem or at least a solution of known accuracy, see 

Drezner (1984), Handler (1990) and Daskin (1995). In many respects, this is an ideal 
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approach to the location problem; however, the approach can result in long computer running 

times, huge memory requirements, and a compromised problem definition when applied to 

practical problems. 

 Heuristics can be referred to as any principles or concepts that contribute to reducing the 

average time to search for a solution, see Chandrasekaran and Tamir (1982), Drezner (1984) 

and Pelegrin (1991). Although heuristic methods do not guarantee that an optimum solution 

has been found, the benefits of reasonable computer running times and memory requirements, 

good representations of reality and a satisfactory solution quality are reasons to consider the 

heuristic approach to warehouse location. 

 The formulation (PC-SC) due to BsearchEx (Elloumi et al., 2004) is to solve the p-center 

problem, which is based on its well-known relation to the set-covering problem, by using a 

polynomial algorithm for computing a tighter lower bound and then solving the exact solution 

method. In that paper, the authors show that its linear programming relaxation provides a 

lower bound tighter than the classical p-center (PC) formulation, the lower bound can be 

computed on polynomial time, their method outperforms the running time of other recent 

exact methods by an order of magnitude, and it is the first one to solve large instances of size 

up to N=M=1817. 

 Though the formulation (PC-SC) performs better than does formulation (PC) for given 

values of the lower bound and the upper bound, it is hard to solve the large scale problem by 

directly solving (PC-SC) within reasonable time limit. The authors proposed two algorithms 

to obtain the optimal solution, with complex programming procedure, complicated heuristics, 

and difficult concept in linear programming such as reduced cost. In this paper, we introduce a 

modified formulation (PC-SC2) and an easier repeating procedure, p-SBsearch, to transform a 

large scale problem into several small scale problems, and then obtain the optimal solution 

within reasonable time limit. 
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 Let Dmin = D0 < D1 < D2 < … < DK-1 < DK = Dmax be the sorted different values in the 

distance matrix. The formulation (PC-SC2) is the following: 

(PC-SC2) 

kz  min                         (1) 

;    ..
1

pyts
M

j
j =∑

=

                      (2) 

;,...,2,1  ,1        
:

Niyz
k

ij Ddj
j

k =≥+ ∑
<

                      (3) 

{ };1,0        ∈kz                       (4) 

{ } Mjy j ,...,2,1  ,1,0        =∈                     (5) 

where yj and zk are binary decision variables. Let the superscript “*” denotes the optimal 

solution of the decision variable. yj
* =1 if and only if facility j is open, and zk* =0 only if it is 

possible to choose p centers and cover all the customers i within the radius Dk-1. Constraint (2) 

limits the number of centers to p; constraints (3) mean that, for a given k, zk* =0, if and only if 

all customers can be served at a distance strictly lower than Dk. 

 In the optimal solution of (PC-SC2), note that zk = 0 implies zk+1 = zk+2 = …= zK = 0. 

Similarly, zk = 1 implies zk-1 = zk-2 = … = z1 =1. zk* = 1 and z(k+1)*= 0 implies the optimal 

min-max value Δp
* is the exact solution of the p-center problem. The integer programming 

problem (PC-SC2) needs at least (√2)M+1 linear programming problem (Sierksma G., 2002). 

Contrast to the (PC-SC) with KN+1 constraints and M+K binary variables, there are just N+1 

constraints and M+1 binary variables in (PC-SC2). For the small case with M=N=100 and 

K=5000, the problem size of (PC-SC2) is about 250000 times smaller than the problem size of 

(PC-SC). 

  (PC-SC2) is embedded in the proposed bisecting search procedure p-SBsearch that at 

most O(log2(MN)) recursions. Given the p value, by executing the p-SBsearch procedure one 

would obtain the optimal solution Δp
* that is equal to DLp*. DL and DU are respectively 

updated lower and upper bounds in each recursion in searching the optimal solution. 
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 Step 1 is using the bisecting search method to decide the value of k. Step 2 is performing 

(PC-SC2) to obtain the preliminary optimal solution zk. Step 3 is performed to check the 

p-center problem optimality of the current solution zk. Until reaching the optimality, we 

continue to solve (PC-SC2) with updating the upper bound DU and the lower bound DL. 

p-SBsearch 

Initialization: given p, D0, …, DK, set L = 0, U = K and Δp
* = DU

Step 1. k=⎣(L+U)/2⎦. 

Step 2. Solving (PC-SC2) with Dk to obtain the optimal solution zk*. 

Step 3. If zk*=1, then let L=k, 

 Step 3.1. If zk+1=0, then STOP, set Δp
* =DL, Lp

*=L and Up
*=U; else, goto step 1; 

  else If zk=0, then let U=k, 

 Step 3.2. If zk-1=1, then STOP, set Δp
* =DL, Lp

*=L and Up
*=U; else, goto step 1. 
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3. Computational Results for p-SBsearch 

 

 We use a notebook with 512 MB of RAM and Intel P-M 1.30 GHz of CPU. The 

p-SBsearch procedure was implemented with the code written by C++ and the MIP solver of 

CPLEX 7.1. We set the time limit parameters of MIP solver to 3600, so the solution of 

sub-problem stops if no integer solution is found after one hour of CPU time. We report the 

computational results obtained with p-SBsearch on OR-Lib (Beasley 1990) p-median and 

TSP-Lib (Reinelt 1991) instances. We also make comparison of p-SBsearch with Daskin 

(2000), Ilhan et al. (2001) and Elloumi et al. (2004). Daskin (2000) performed a binary search 

based on solving the maximal covering problem; Ilhan et al. (2001) proposed a two-phase 

algorithm with solving the IP feasibility problems; Elloumi et al. (2004) presented (PC-SC) 

and a resolution method based on the set-covering problem. 

 The results of the comparison on 40 OR-Lib p-median instances are given in Table 1. 

The first three columns characterize the instance, and the optimal radius is in column 4. 

Columns 5 through 7 report the CPU time of Daskin (2000), Taylan et al. (2001) and Elloumi 

et al. (2004). Column 8 gives the CPU time of p-SBsearch. Even if it is not straightforward to 

compare CPU time on different machines, we can show the maximum and the average CPU 

time as indication in Table 1. Furthermore, we calculate the Coefficient of Variation (CV) to 

compare the computing stability with the increasing p value. The Coefficient of Variation is 

the standard deviation σ divided by the mean μ. 
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Table 1  Results of 40 OR-Lib instances 

Total CPU Time in seconds Instance N=M p Opt
Daskin Ilhan et al. Elloumi et al. p-SBsearch

Pmed1 100 5 127 5.8 2.1 0.9 0.2
Pmed2 100 10 98 2.7 0.9 0.2 0.1
Pmed3 100 10 93 2.2 0.8 0.1 0.1
Pmed4 100 20 74 2.4 0.6 0.1 0.1
Pmed5 100 33 48 0.2 0.6 0.1 0.1
Pmed6 200 5 84 14.8 6.1 1.1 0.6
Pmed7 200 10 64 9.8 2.7 0.5 0.3
Pmed8 200 20 55 10.8 1.9 0.4 0.4
Pmed9 200 40 37 3.6 1.7 0.1 0.3
Pmed10 200 67 20 3.9 1.4 0.3 0.1
Pmed11 300 5 59 17.1 9.1 2.1 0.9
Pmed12 300 10 51 20.3 8.2 1.3 1.0
Pmed13 300 30 36 9.2 4.2 0.8 0.9
Pmed14 300 60 26 9.3 3.4 0.9 0.5
Pmed15 300 100 18 4.8 2.7 1.0 0.3
Pmed16 400 5 47 35.1 13.9 1.6 1.4
Pmed17 400 10 39 39.2 13.4 2.1 2.0
Pmed18 400 40 28 16.6 19.4 1.4 1.4
Pmed19 400 80 18 6.9 4.9 0.8 0.5
Pmed20 400 133 13 8.9 4.1 1.8 0.4
Pmed21 500 5 40 87.0 42.3 5.2 2.4
Pmed22 500 10 38 38.6 130.5 11.2 6.6
Pmed23 500 50 22 211.0 35.8 3.3 2.3
Pmed24 500 100 15 9.9 7.8 4.5 1.2
Pmed25 500 167 11 6.3 7.1 2.7 0.8
Pmed26 600 5 38 93.9 121.7 14.9 3.5
Pmed27 600 10 32 87.2 73.5 8.2 4.5
Pmed28 600 60 18 24.4 18.2 2.1 3.3
Pmed29 600 120 13 23.6 10.2 5.1 1.6
Pmed30 600 200 9 8.6 10.0 5.4 1.1
Pmed31 700 5 30 191.1 108.2 8.1 4.4
Pmed32 700 10 29 1402.5 460.3 58.4 7.2
Pmed33 700 70 15 39.7 32.4 7.4 7.5
Pmed34 700 140 11 24.9 15.6 6.5 1.5
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Pmed35 800 5 30 246.2 66.5 13.7 6.7
Pmed36 800 10 27 441.8 342.1 55.7 25.6
Pmed37 800 80 15 58.7 35.2 2.0 14.8
Pmed38 900 5 29 102.3 96.0 18.5 11.5
Pmed39 900 10 23 252.1 536.5 48.5 27.2
Pmed40 900 90 13 89.1 404.9 7.8 6.4

Maximum 1402.5 536.5 58.4 27.2
Average 91.6 66.4 7.7 3.8

Coefficient of Variation (%) 249.5 195.4 182.5 161.6

 

 Table 2 gives the results for TSPLIB instances and makes comparison of p-SBsearch 

with Elloumi et al. (2004). The first three columns characterize the instance. Columns 4 

through 8 give the results of algorithm Bsearch and BsearchEx (2004). Columns LB* and UB* 

give the lower bound and upper bound obtained by Bsearch, and Column cpu1 is the CPU 

time devoted to Bsearch. Column Opt gives the optimal solution or the best found solution 

obtained by BsearchEx, and Column cpu2 is the CPU time devoted to BsearchEx. 

 Columns 9 through 12 give the results of p-SBsearch. There is tradeoff between solution 

time and the preciseness of solution in large scale problems. Based on the update of max and 

min of p-SBsearch, we could set the bound tolerance in advance to obtain a narrow solution 

bound in shorter CPU time. If the relative bound tolerance (Dmax-Dmin)/Dmin does not exceed 

5% for any sub-problem, we stop p-SBsearch and record the current bound. Column 5% 

Bound gives the results of 5% bound tolerance, and Column cpu3 is the CPU time of 5% 

bound tolerance. Column Opt2 gives the results of p-SBsearch, and Column cpu4 is the CPU 

time of our p-SBsearch procedure. If the optimal solution is not reached in an hour, set zk = 1 

and L = k to solve the next sub-problem. When this happens we are no longer sure that our 

solution is optimal, and then we give the best solved bound in Column Opt2. 
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Table 2  Results of TSPLIB instances 

Elloumi et al. p-SBsearch Instance N=M p 

LB* UB* Opt cpu1 cpu2 5% Bound Opt2 cpu3 cpu4

u1060 1060 10 2273 2273 2273 27 53 2272-2386 2273 36 52 

u1060 1060 20 1556 1768 1581 63 2778 1531-1590 1581 135 2329 

u1060 1060 30 1205 1275 1208 50 298 1185-1210 1208 36 257 

u1060 1060 40 1013 1079 1021 35 366 1005-1029 1021 26 121 

u1060 1060 50 895 963 905 21 383 905-921 905 191 273 

u1060 1060 60 765 807 781 21 233 761-790 781 4 437 

u1060 1060 70 707 761 711 17 135 708-738 710* (708-721) 7 3608 

u1060 1060 80 652 711 652 18 60 640-670 652 2 8 

u1060 1060 90 604 636 608 19 38 600-609 608 2 6 

u1060 1060 100 570 570 570 18 29 570-599 570 1 2 

u1060 1060 110 539 539 539 18 30 538-552 539 1 1 

u1060 1060 120 510 538 510 29 44 510-515 510 3 3 

u1060 1060 130 495 510 500 28 44 495-510 500 1 3 

u1060 1060 140 452 500 452 28 46 452-474 452 1 2 

u1060 1060 150 430 447 447 34 50 447-452 447 1 1 

 

rl1323 1323 10 3062 3329 3077 106 1380 3017-3155 3077 62 265 

rl1323 1323 20 2008 2152 2016 115 480 1949-2036 2016 97 2543 

rl1323 1323 30 1611 1797 1632 99 900 1587-1640 1632 193 5147 

rl1323 1323 40 1334 1521 1352 76 3000 1339-1381 1365* (1339-1366) 3233 14132

rl1323 1323 50 1165 1300 1187 61 8580 1164-1197 1187* (1164-1188) 156 14571

rl1323 1323 60 1047 1194 1063 55 9120 1048-1076 1066* (1048-1067) 23 13382

rl1323 1323 70 959 1040 972 42 1740 970-1018 980* (872-981) 3603 16665

rl1323 1323 80 889 948 895 37 420 894-936 903* (805-904) 3603 18116

rl1323 1323 90 830 857 832 30 120 824-864 834* (832-835) 3 7503 

rl1323 1323 100 777 803 787 26 120 763-796 788* (779-789) 145 8645 

 

u1817 1817 10 455 467 458 611 2700 457-480 458 789 3973 

u1817 1817 20 306 342 310* 660 4920 306-318 314* (306-315) 937 8499 

u1817 1817 30 240 287 250* 355 16500 251-257 251* (232-252) 7718 8321 

u1817 1817 40 205 234 210* 247 6420 211-221 216* (169-217) 4344 9049 

u1817 1817 50 180 205 187* 242 9840 183-190 189* (145-190) 4287 15087

u1817 1817 60 163 183 163 177 1260 162-169 162 175 348 

u1817 1817 70 148 152 148 166 420 143-149 148 82 106 

 10



u1817 1817 80 137 148 137 150 1140 142-148 137* (127-140) 3696 3814 

u1817 1817 90 127 148 130* 161 7202 127-131 130* (127-131) 96 7296 

u1817 1817 100 127 130 127 159 300 126-130 127* (126-128) 13 3670 

u1817 1817 110 108 127 109 119 420 109-111 109 181 453 

u1817 1817 120 108 108 108 131 120 107-109 108 12 18 

u1817 1817 130 105 109 108* 121 3720 105-108 107* (99-108) 3605 7212 

u1817 1817 140 102 108 105* 121 4020 102-107 105* (97-107) 3606 7212 

u1817 1817 150 92 108 94* 144 5640 99-102 99* (89-102) 7256 7256 

  Note. “*” = opt2 is the best found solution for that instance. 

       The range in brackets is the best-solved value of p-SBsearch. 

       Columns cpu1, cpu2, cpu3 and cpu4 are recorded in seconds. 

        

 Finally, as Elloumi et al. (2004), we generated a few random Euclidean instances and 

random instances with N=M=100, p=5, 10, 15. In the random Euclidean instances Euc100, 

coordinates of the points are randomly generated in [0, 100]; and Euclidean distances are 

computed between the points. In the random instances Rand100, distances are randomly and 

uniformly generated in [0, 100] and satisfy dij = 0 and dij = dji. Table 3 reports the results 

obtained for these instances. 

 

Table 3  Results of Random Instances 

Instance N=M p Opt cpu 
(in seconds)

Euc100 100 5 32 0.1
Euc100 100 10 20 0.1
Euc100 100 15 16 0.1
Rand100 100 5 27 13.2
Rand100 100 10 12 9.3
Rand100 100 15 7 1.4
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4. The allocation of the p-center problem 

 

 The formulation (PC-SC2) does not give the allocation of the customers in an explicit 

way. In the p-center problem, one may determine the assignment of customer i to the closest 

center by looking for center jo (Elloumi et al., 2004) such that 

ijyjij dd
jo 1: *min
=

=                          (6) 

 We propose a minimum total cost model (MTC) for the allocation problem to the 

selected p centers. Suppose the i-th customer has a demand of qi. Let xij = 1 if we assign the 

customer i to the center j and the cost to increase the capacity for each additional unit of 

goods is vj. The cost to transport a unit of goods for a unit distance from center j, denoted as cj, 

depends on the transportation method which is employed. One may solve the following model 

to determine the allocation of the p-center problem: 

(MTC) 

∑ ∑∑ ∑
= Δ≤= Δ≤

+
1: :1: : * ** *

  min
j pijj pij yj di

ijijij
yj di

ijij xdqcxqv    (7) 

;:  ,1    .. *

1: *
pij

yj
ij dixts

j

Δ≤=∑
=

   (8) 

{ } .1:  ,:  ,1,0        ** =Δ≤∈ jpijij yjdix    (9) 

 Constraints (8) limit the customer i to be assigned to only one center. After minimizing 

the total cost for the system with p centers, one could obtain the allocation Ej, the set of 

customers assigned to the center j. 

 We use a set of data for illustration. There are 20 potential sites, and we want to select 3 

of them to be distribution centers. Distance between sites, demand of each site, fixed setup 

cost, and the variable cost to each center are given as follows: 
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Table 4  Distance between 20 Sites 

dij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 65 67 33 60 73 45 27 34 27 107 5 100 87 116 105 63 118 79 96

2 65 0 43 32 29 27 28 47 40 38 67 70 56 24 64 49 9 68 26 32

3 67 43 0 48 14 69 58 66 63 46 40 71 35 44 53 46 34 54 28 55

4 33 32 48 0 36 42 16 19 15 9 85 38 76 55 89 76 32 92 50 63

5 60 29 14 36 0 55 45 56 51 37 48 65 40 36 56 46 21 58 22 47

6 73 27 69 42 55 0 27 48 40 51 92 78 80 42 84 69 35 90 51 43

7 45 28 58 16 45 27 0 22 14 25 91 50 81 52 91 76 32 95 52 58

8 27 47 66 19 56 48 22 0 8 21 104 31 95 71 107 94 49 111 69 79

9 34 40 63 15 51 40 14 8 0 20 99 38 89 64 101 87 43 105 62 71

10 27 38 46 9 37 51 25 21 20 0 85 32 77 60 91 79 37 94 54 70

11 107 67 40 85 48 92 91 104 99 85 0 111 13 53 25 32 60 21 41 59

12 5 70 71 38 65 78 50 31 38 32 111 0 105 92 121 110 68 123 84 101

13 100 56 35 76 40 80 81 95 89 77 13 105 0 40 19 21 49 19 29 47

14 87 24 44 55 36 42 52 71 64 60 53 92 40 0 42 27 23 48 16 11

15 116 64 53 89 56 84 91 107 101 91 25 121 19 42 0 15 59 6 39 44

16 105 49 46 76 46 69 76 94 87 79 32 110 21 27 15 0 45 21 26 29

17 63 9 34 32 21 35 32 49 43 37 60 68 49 23 59 45 0 63 20 33

18 118 68 54 92 58 90 95 111 105 94 21 123 19 48 6 21 63 0 43 50

19 79 26 28 50 22 51 52 69 62 54 41 84 29 16 39 26 20 43 0 27

20 96 32 55 63 47 43 58 79 71 70 59 101 47 11 44 29 33 50 27 0
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Table 5  Design parameters for each site 

Site i/j Demand 
qi

Fixed Setup
Cost fj

Construction
Cost vj

Transportation 
Cost cj

1 21 13500 33 8 
2 31 12500 58 9 
3 40 12100 56 11 
4 22 14400 30 8 
5 25 11600 40 7 
6 30 13800 60 4 
7 21 11700 56 2 
8 44 12700 59 6 
9 40 12400 33 7 
10 23 13800 56 7 
11 31 16000 50 3 
12 34 13700 49 11 
13 45 13900 46 3 
14 23 13200 41 5 
15 24 14400 43 5 
16 50 15100 30 10 
17 25 14900 49 4 
18 47 11300 34 11 
19 27 12200 58 8 
20 29 14900 39 7 

 

 In the optimal solution of p-Sbsearch, we select sites 1, 2 and 13 to be distribution 

centers with minimax distance Δp
* = 35. One may determine the allocation of each customer 

by (6). The results of the allocation and the cost are shown in Table 6. 
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Table 6  Allocation to the nearest center and the total variable cost 

Center 
j 

Allocated 
site i 

Demand 
qi

Construction 
Cost vj* qi

Transportation 
Cost cj* qi * dij

Total 
Demand 

Total 
Cost 

1 21 693 0 
8 44 1452 9504 
9 40 1320 10880 
10 23 759 4968 

1 

12 34 1122 1360 

162 32058

2 31 1798 0 
4 22 1276 6336 
5 25 1450 6525 
6 30 1740 7290 
7 21 1218 5292 
14 23 1334 4968 
17 25 1450 2025 
19 27 1566 6318 

2 

20 29 1682 8352 

233 60620

3 40 1840 4200 
11 31 1426 1209 
13 45 2070 0 
15 24 1104 1368 
16 50 2300 3150 

13 

18 47 2162 2679 

237 23508

The total variable cost of the 3 centers: $116186 

 

 If we revise the allocation by solving the allocation model (MTC), we obtain the new 

allocation and the lower total cost in Table 7. The difference between original allocation and 

new allocation is that we assign site 4 to be served by center 1 instead of center 2, and site 19 

to be served by center 13 instead of center 2. The reason for site 4 and 19 not to be assigned to 

center 2 is that the variable cost v2 and c2 are the largest among the three centers. Though the 

assigned distance increases, we could save $5371 in the total cost and still keep the minimum 

radius at the same time. 
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Table 7  New allocation with minimum cost and the lower total cost 

Center 
j 

Allocated 
site i 

Demand 
qi

Construction 
Cost vj* qi

Transportation 
Cost cj* qi * dij

Total 
Demand 

Total 
Cost 

1 21 693 0 
*4 22 726 5808 
8 44 1452 9504 
9 40 1320 10880 
10 23 759 4968 

1 

12 34 1122 1360 

184 38592

2 31 1798 0 
5 25 1450 6525 
6 30 1740 7290 
7 21 1218 5292 
14 23 1334 4968 
17 25 1450 2025 

2 

20 29 1682 8352 

184 45124

3 40 1840 4200 
11 31 1426 1209 
13 45 2070 0 
15 24 1104 1368 
16 50 2300 3150 
18 47 2162 2679 

13 

*19 27 1242 2349 

264 27099

The total variable cost of the 3 centers: $110815 

(*): The different allocation between Table 6 and 7 
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5. Computing throughout the M p-center problems 

 

 The p-center problem consists of locating p centers among the M potential facilities and 

assigning each customer to its closest center so as to minimize the maximum distance 

between a customer and the center it is assigned to. For a logistic system design purpose, one 

may need to obtain the solutions for all the M p-center problems where p alternatively equals 

to 1, 2, throughout M. Given the p value, the parameters yj
* and Ej are determined by 

employing p-SBsearch procedure.  

 The procedure proposed in this paper also has the advantage for computing throughout 

the M p-center problems. There are three possible solving strategies. The first strategy is to 

employ p-SBsearch procedure to solve the problems with larger p, say pa-center problem 

where pa > p. The pa-SBsearch procedure is identical to the p-SBsearch procedure except in 

the initialization step setting U=Up
* in the preceding problem. One may solve the problems 

one after the other, p=1, 2, 3, …, M.  

 The second strategy is to employ p-SBsearch procedure to solve the problems with 

smaller p, say pb-center problem where pb < p. The pb-SBsearch procedure is identical to the 

p-SBsearch procedure except in the initialization step setting L=Lp
* in the preceding problem. 

One may solve the problems one after the other, p=M, M-1, …, 3, 2, 1. 

 The third computation strategy is initiated by employing p-SBsearch procedure for p=1 

and pa-SBsearch procedure for p=M. Then, alternate with pb-SBsearch and pa-SBsearch to 

solve the problems with p values (2, M-1), (3, M-3), …, (M/2) in turns, repsectively. In each 

turn, L=Lp
* or U=Up

* is updated for the p-SBsearch procedure. 

Apparently, the number of sub-problems in pa-SBsearch and pb-SBsearch are less than 

p-SBsearch and the global optimal solution still reached. Without starting from L=0 and U=K 

to every p value, savings in computation time for the three strategies are benefited. 
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6. Determining the p value 

 

 The traditional p-center problem assumes that the decision maker has determined the 

parameter p. In the real-world case, however, the decision maker may be incapable of 

determining the appropriate p value before solving the p-center problem. In a logistic system, 

one may consider the minimax condition of the p-center problem and the fixed setup cost, 

variable construction cost for the supplier centers, the transportation cost and the service level 

for the designed system as well. The service level for a logistic system may be interpreted 

varieties factors such response time of the demand, shortage of goods and cost to maintain the 

service level, etc (refer to the text book by Ballou). In this research we chose eight parameters 

to measure the logistic system design alternatives. The criteria should not be limited.  

 We use the same data in Section 4 to illustrate how to determine the p value for the 

logistic system. First, after solving the M p-center problems by the p-SBsearch procedure and 

the allocation model (MTC), the results are shown in Table 8. Note that we does not solve the 

problems with p = 19 and 20 because there are zero value in x1, x3, or x5, and it is irrational to 

select almost all the sites to be centers for the general p-center problem. 

 Column Z1 denotes the optimal solution Δp
* of the p-SBsearch procedure. Columns Z2 to 

Z5 characterize the service level of the system. We ignore the demand while the assigned 

distance dij = 0 to obtain the appropriate average transportation distance and CV. Column Z2 

denotes the average transportation distance per unit, and the value increases with the larger p. 

z2j= ∑ ∑∑ ∑
= <= < 1  : 0  :

*

1  : 0  :

*

**
j ijj ij yj di

iji
yj di

ijiji xqxdq                                                           (10) 

 Column Z3 denotes the dispersion level of the transportation distance per unit, the 

coefficient of variation, to evaluate the stability of the service distance. Columns Z4 and Z5 

consider the emergent demand of each site, so we don’t take the demand qi into account. 
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z4j= ∑ ∑∑ ∑
= <= < 1  : 0  :

*

1  : 0  :

*

**
j ijj ij yj di

ij
yj di

ijij xxd                                                               (11) 

 Columns Z6 to Z8 characterize the cost level of the system. The total cost is divided into 

three part: the fixed setup cost, the construction cost, and the transportation cost. 

z6j=                                                                 (12) ∑
=1: *

jyj
jf

z7j=                                                          (13) ∑ ∑
= Δ≤1: :

*

* *
j pijyj di

ijij xqv

z8j=                                                        (14) ∑ ∑
= Δ≤1: :

*

* *
j pijyj di

ijijij xdqc
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Table 8  Results of solving the p-center problems and the related index 

Index 

Notation 

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

 

Pj
M

in
iM

ax
 

D
is

ta
nc

e 

Av
er

ag
e 

Tr
an

sp
or

ta
tio

n 

D
is

ta
nc

e 
pe

r 
un

it 

C
V

 o
f T

ra
ns

po
rt

at
io

n 

D
is

ta
nc

e 
pe

r 
un

it 
(%

) 

Av
er

ag
e 

Tr
an

sp
or

ta
tio

n 

D
is

ta
nc

e 
pe

r 
si

te
 

C
V

 o
f T

ra
ns

po
rt

at
io

n 

D
is

ta
nc

e 
pe

r 
si

te
 (%

) 

To
ta

l 

 F
ix

ed
 S

et
up

 C
os

t 

To
ta

l 

C
on

st
ru

ct
io

n 
C

os
t 

To
ta

l 

Tr
an

sp
or

ta
tio

n 
C

os
t 

1 65 43.89 32.06 43.26 32.26 11600 25280 186473

2 43 27.76 35.45 27.17 37.14 26600 30076 130160

3 35 24.07 35.44 24.18 35.1 39900 28888 81927

4 28 20.86 31.11 20.94 30.42 53400 33683 53110

5 27 18.76 34.3 18.87 34.01 66000 29430 35426

6 24 16.34 31.37 16 32.3 80900 28652 39798

7 21 14.91 31.28 14.31 32.02 92900 26264 35298

8 19 14.12 30.97 13.75 31.44 108000 25464 32148

9 16 10.99 34.6 11.09 34.05 122100 28641 24239

10 15 10.46 33.64 10.4 32.24 133400 28149 21723

11 14 9.72 33.32 9.89 31.78 148500 27499 17973

12 14 10.28 33.54 10.13 32.17 160500 30046 14571

13 13 8.66 31.45 8.71 29.23 172300 28622 11771

14 11 7.88 24.25 8 25 186400 29322 9811

15 9 7.31 20.3 7.4 21.96 201300 29264 8216

16 9 7.04 23.74 7.25 24.63 214000 30408 5976

17 8 6.6 18.02 6.33 19.69 230600 28467 4805

18 6 5.6 8.18 5.5 9.09 243300 29611 2565

 

 There are 18 possible p values for selection, p = 1, 2, …, 18. The parameter zij denotes 

the value of Pj in the ith index. Since these eight indices are expected to be minimum, we 

could set the weights vi to obtain the performance index ωj, an aggregate weighted index: 

∑
=

=
8

1i
iijj vzω  (15) 

 However, it is hard to determine arbitrarily the appropriate weights by the decision maker. 

To evaluate the multiple criteria to determine the appropriate p value, we use an evaluation 
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model (PI) inspired by the Data Envelopment Analysis (DEA) (Charnes et al., 1978) to obtain 

the performance value. The DEA model classifies the DMUs as efficient or inefficient 

(Cooper et al., 2000), based on multiple inputs and multiple outputs. The following model (PI) 

is employed for measuring the relative performance score, ωo of Po against the n alternatives. 

(PI) 

∑
=

=
8

1
  min

i
iioo vzω  (16) 

;,...,2,1  ,100    s.t.
8

1
njvz

i
iij =≥∑

=

 (17) 

;        
8

2
11 ∑

=

≥
i

iioo vzvz  (18) 

;        
8

6

5

2
i

i
io

i
iio vzvz ∑∑

==

≥  (19) 

.6,...,2,1  ,        =≥ ivi ε  (20) 

 The objective function (16) is to minimize the ωo of Po, so we resolve the model with o = 

1, 2, …, n. In each turn, this model determines the most favorable weights to DMUo. 

Constraints (17) set DMUj‘s lower bound of the performance index ≧100. Any 

lower bound value will not affect the final solution. Constraint (18) confirms that the 

contribution in the performance index by the minimax distance index, the most important 

condition of the p-center problem, is greater than or equal to the total contribution of the other 

indices. Constraint (19) confirms that the contribution in the performance index by the service 

level index is greater than or equal to the contribution by the cost level. In this case we 

assume that the service level of the system is more important than the cost level. 

∑
=

=
8

1i
iijj vzω

 To solve the (PI) model without setting the value of ε, we solve the following two-phase 

LP problem. 
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Phase I 

We solve the dual model (DPI) of (PI) as follows: 

(DPI) 

∑
=

=
n

j
jo

1

100  max λη  (21) 

;    s.t. 111
1

1 oo

n

j
jj zzz ≤+∑

=

γλ  (22) 

;5,4,3,2  ,        21
1

=≤+−∑
=

izzzz ioijij

n

j
jij γγλ  (23) 

;8,7,6  ,        21
1

=≤−−∑
=

izzzz ioijij

n

j
jij γγλ  (24) 

;,...,2,1  ,0        njj =≥λ  (25) 

021 ≥γγ ,        (26) 

where λj, γ1 and γ2 are the corresponding dual variables to the constraints (17), (18), and (19). 

If the optimal solution ηo
* of (DPI) is equal to 100, we solve the next model (DP2). 

 

Phase II 

(DP2) 

∑
=

8

1
   max

i
is  (27) 

;100100    s.t.
1

=∑
=

n

j
jλ  (28) 

;        1111
1

1 oo

n

j
jj zszz =++∑

=

γλ  (29) 

;5,4,3,2  ,        21
1

==++−∑
=

izszzz ioiijij

n

j
jij γγλ  (30) 

;8,7,6  ,        21
1

==+−−∑
=

izszzz ioiijij

n

j
jij γγλ  (31) 

;,...,2,1  ,0        njj =≥λ  (32) 

;0 21 ≥γγ ,        (33) 

8,...,2,1  ,0        =≥ isi  (34) 
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where we fix the performance index of Po and maximize the sum of all the slack variables si. 

Only the alternatives with ηo
*=1 in (DP1) and si

* = 0 for all i in (DP2) are Pareto-efficient 

alternatives. 

 Table 9 shows the computational results of (DP1) and (DP2). DMU 1, 2, 4, and 18 are 

the Pareto-efficient alternatives with ηo
* = 1 and si

* = 0 for all i. To the alternatives with 1, 2, 4, 

or 18 centers are the appropriate choice by considering the minimax distance, the service level, 

and the cost level 

 

Table 9  The optimal solution of (DP1) and (DP2) and the contribution 

DMU j ηj
*

*

*
11

j

jvz
ω

 *

*
22

j

jvz
ω

 
*

*
33

j

jvz
ω

 *

*
44

j

jvz
ω

 *

*
55

j

jvz
ω

 *

*
66

j

jvz
ω

 *

*
77

j

jvz
ω

 *

*
88

j

jvz
ω

 

1 100 50% 25% 8% 17%
2 100 50% 13% 12% 23% 2%
3 104.82   
4 100 50% 25% 18% 7%
5 103.70   
6 105.13   
7 112.29   
8 121.79   
9 123.00   
10 126.61   
11 130.22   
12 137.09   
13 134.15   
14 128.75   
15 118.62   
16 122.49   
17 116.82   
18 100 50% 25% 25% 
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 If the decision maker is still incapable of determining the p value, we propose another 

model (PI2) to rank these efficient alternatives and to exclude the alternatives which are not 

robust in the adverse condition. 

 (PI2) 

∑
=

=
8

1
ax  

i
iioo vzm π  (35) 

;,...,2,1  ,100    s.t.
8

1
njvz

i
iij =≤∑

=

 (36) 

;        
8

2
11 ∑

=

≥
i

iioo vzvz  (37) 

;        
8

6

5

2
∑∑
==

≥
i

iio
i

iio vzvz  (38) 

.6,...,2,1  ,        =≥ ivi ε  (39) 

 We revise the bound constraints (36) to set the upper bound of the performance index 

≦100. The model (PI2) is to maximize the performance index and determine the 

most adverse weights to P

∑
=

=
8

1i
iijj vzπ

o. If any Pj performs efficient with the favorable weights in (PI) and 

is distance from the upper bound with the adverse weights in (PI2), we assume that this kind 

of alternative is stable and robust in performance. The results of (PI2) are showed in Table 10. 

 

Table 10  Results of (PI2) 

DMUj ωj
* in (PI) πj

* in (PI2) Rank
1 100 100 4 
2 100 87.17 3 
4 100 67.90 2 
18 100 15.83 1 

 

 To the decision maker, p=18 might be the best choice if we rank these alternatives by πj
* 

in (PI2). However, all the value of the parameters in our data is artificial and unreal, and we 

never know the authentic relationship of importance between the minimax distance, cost level, 

and service level. Based on the different circumstance and the specific service or cost 
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conditions, the decision maker could select the appropriate p value from p = 2, 4, and 18 in 

this case. 
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7. Conclusion and discussion 

 

 Our computational results are showed in the Table 1 to 3. To the OR-Lib instances with 

network structure, the TSPLIB instances that are usually devoted to the traveling salesman 

problem, the random Euclidean instances that satisfy the triangle inequalities, and the random 

instances for which the triangle inequalities are not satisfied, the proposed procedure 

p-SBsearch is efficient in the reasonable time limit and exact with good quality of the solution 

bounds. 

 There may be some other considerations to allocate customers to centers for specific 

industry. The model presented in Section 4 could be reformulated. One may have less or more 

parameters for evaluating the possible alternatives. Furthermore, one may add constraints for 

the relationship among the parameters. Literature in the area of Data Envelopment Analysis 

(DEA) would be a good source for reference the multiple criteria assessment. The model 

presented in Section 6 is modified accordingly. 

 The paper provides a new concept to determine the proper number of supply centers for 

the logistic system. Other system may have same interest for the problem settings. 
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