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Abstract—A new construction of good, easily encodable, and
soft-decodable codes is proposed in this paper. The construction is
based on serially concatenating several simple 1+D convolutional
codes as the outer code, and a rate-1 1/(1+D) accumulate code
as the inner code. These codes have very low encoding complexity
and require only one shift-forward register for each encoding
branch. The input-output weight enumerators of these codes are
also derived. Divsalar’s simple bound technique is applied to
analyze the bit error rate performance, and to assess the minimal
required signal-to-noise ratio (SNR) for these codes to achieve
reliable communication under AWGN channel. Simulation results
show that the proposed codes can provide good performance
under iterative decoding.

Index Terms—Low-density parity-check (LDPC) codes, accu-
mulate codes, convolutional codes.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes [1] have at-
tracted much attention during the last decade due to

their remarkable capability in achieving near-capacity error
performance. LDPC codes can be decoded by the well-known
“belief propagation” (BP) algorithm, also known as sum-
product algorithm (SPA) or min-sum algorithm [2], [3]. Most
of good LDPC codes found in the literature, while having
near-capacity error performance, have a computer-generated
pseudo-random parity-check matrix and do not possess a
simple encoding structure. Thus the encoding complexity of
these pseudo-random LDPC codes can be as high as O(n2),
where n is the codeword length, if direct matrix multiplication
is performed.

In order to have a low-complexity encoder, several capacity-
approaching LDPC codes with structures have been proposed
[4]–[6], and the encoders of these codes can be easily im-
plemented by using shift-register circuits. Another type of
capacity-approaching codes, called repeat-accumulate (RA)
codes, is proposed in [7]. The RA code is a serial concate-
nation of a repetition code and a rate-1 accumulate code.
They can be easily encoded and have a remarkable error
performance under iterative decoding [7]–[9]. By parallel
concatenating several 1/(1 + D) convolutional codes with
regular puncturing pattern, the resulting codes, termed zigzag
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codes, are proposed in [10]. The encoders of zigzag codes are
also very simple and can be decoded using low-complexity
soft-in/soft-out decoders.

Recently, in [12], the authors proposed two classes of
product accumulate (PA) codes, termed PA-I and PA-II codes.
The PA codes are constructed based on the serial concatenation
of an outer product code, an interleaver, and an accumulate
code. For serial concatenated codes, it was shown [7], [13]
that, to have a better interleaving gain, the outer code should
have minimum Hamming distance greater than or equal to 3.
Therefore, the key task is to construct an outer code meeting
this condition, or at least so that the number of weight-2 code-
words is as small as possible [12]. In [12], the outer code of
PA codes is a direct product or turbo product of single-parity
check (SPC) codes. In this paper, we propose another method
to construct the outer code to meet the above requirement.
The motivation is to construct easily encodable, and soft-
decodable codes with good error performance. The proposed
code consists of several simple 1 + D convolutional codes as
the outer code, and a rate-1 1/(1 + D) accumulate code as
the inner code. The outer code has a very simple encoder, just
one shift-forward register for each encoding branch, and has
relatively low density of 1’s in its parity-check matrix; hence,
it is suitable for decoding using conventional BP decoding
algorithm. To further understand these codes, we derive the
corresponding input-output weight enumerators (IOWEs) and
apply the simple bound technique [14] to analyze the BER
performance of these codes as well as the minimal required
signal-to-noise ratio (SNR) for these codes to achieve reliable
communication under AWGN channel. Through theoretical
analysis and computer simulations, we find that the error
performances of the proposed codes are remarkably good.

This paper is organized as follows. The code construction
is given in Section II. Section III presents the IOWEs of
these codes. Simulations and numerical results are provided
in Section IV. Section V concludes the paper.

II. CODE CONSTRUCTION

Fig. 1 shows the overall structure of the proposed single-
feedforward-register convolutional accumulate (SFRCA)
codes. The k = mr information bits are first de-multiplexed
into m blocks, each of size r. Then the m blocks are
independently encoded by a rate-1/2 convolutional code with
systematic generator matrix [1, 1 + D], which can be easily
implemented by a feed-forward register, as shown in Fig. 1.
The parity bits from each encoder, except those from the first
encoder, are further independently interleaved by interleavers
Π1, . . . ,Πm−1. The interleaved bits from each 1+D encoder
are summed together, using modulo-2 addition, at the encoder
output to yield r parity bits. Thus the total number of output
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Fig. 1. Proposed accumulate code with 1 + D convolutional encoders.

coded bits at outer encoder, including information bits, equals
(m + 1)r. These (m + 1)r coded bits are interleaved again
by an interleaver of size (m + 1)r, denoted by Π in Fig. 1.
Finally, a rate-1 convolutional code with generator 1/(1+D),
also known as the accumulate code, is employed as the inner
code for the second-round encoding. It is obvious that the
overall code is an (n, k) = ((m + 1)r, mr) linear code with
rate R = m/(m + 1), for m ≥ 1.

It can be shown that the parity-check matrix of the proposed
outer code has the following form:

H =
[

GT
1+D ΠT

1 GT
1+D . . . ΠT

m−1G
T
1+D Ir

]
, (1)

where

G1+D =

⎡
⎢⎢⎢⎣

1 1 0 · · · 0
0 1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎦ , (2)

and Πi, i = 1, . . . , m − 1, are permutation matrices acting
as interleavers. It can be easily seen from (1) and (2) that
the number of 1’s in H is small. The row weights of H
are at most 2m + 1 and the column weights are at most 2;
hence, the proposed code can be efficiently decoded by BP
algorithm. The iterative decoding algorithm can be found in
[12]. In addition, the decoder does not have to store the whole
parity-check matrix (1) for decoding, since the parity-check
matrix can be easily generated if the interleavers are known
at decoder end.

For codes with accumulate codes acting as inner codes, it
is known [12] that the number of weight-2 codewords of the
outer code should be as small as possible. In our construction
it can be shown that the average number of weight-2 outer
codewords is of the order O(m2). As a result, the number
of weight-2 outer codewords depends only on the parameter
m, which is related only to the rate of the constructed code,
not to the block length. Though the outer code itself is not a
good code, the interleaver Π preceding the inner 1/(1 + D)
code works as a random scrambler that can map low-weight
codewords to high-weight codewords, and therefore yields a
good distance spectrum.

III. INPUT-OUTPUT WEIGHT ENUMERATOR

In this section, we will investigate the input-output weight
enumerator (IOWE) of the proposed code. The IOWE of an

(n, k) binary linear block code C is defined as

AC(x, y) =
k∑

w=0

n∑
h=0

AC
w,hxwyh, (3)

where AC
w,h is the number of codewords in C having Hamming

weight h, provided that the corresponding input message vec-
tors are of Hamming weight w. Let C be an (n, k) systematic
binary linear block code generated by a k × n generator
matrix G = [Ik|P ]. For every codeword c ∈ C, its first k
bits are termed input (or message) bits, and the last n − k
bits are termed redundancies. The input-redundancy weight
enumerator (IRWE) of C is defined as

BC(x, y) =
k∑

w=0

n−k∑
h=0

BC
w,hxwyh, (4)

where BC
w,h is the number of codewords in C having re-

dundancy weight h, provided that the corresponding input
message vectors are of Hamming weight w. It is easy to see
AC(x, y) = BC(xy, y).

We first focus on the IRWE of the outer code. We will
assume that {Π1, · · · ,Πm−1} are independent and uniform
interleavers [15]. Let Co denote the set of codewords of the
outer code. It can be shown that the dual code C⊥

o of Co is
actually a simple turbo code, concatenated in parallel with m
identical 1 + D encoders and m − 1 interleavers. Therefore,
by extending results of [15], we have the following theorem.

Theorem 1: The IRWE of code C⊥
o is given by

BC⊥
o (x, y) =

r∑
w=0

mr∑
h=0

B
C⊥

o

w,hxwyh (5)

=
r∑

w=0

xw

[
1(
r
w

)]m−1 [
r∑

q=0

A1+D
w,q yq

]m

,

where

A1+D
w,h =

(
r − w

�h/2�
) (

w − 1
�h/2� − 1

)
is the IOWE of a 1+D convolutional code truncated to length
r.
We are now in position to relate the IOWE of the dual code
C⊥

o to that of Co. Given the generator matrix of C⊥
o in the

form [P |Ir], we will set the generator of Co as [Imr|P T ]. In
this case, the first mr bits of codeword c ∈ Co are termed
input bits and the last r bits are termed redundancies. On the
other hand, the first mr bits of codeword c ∈ C⊥

o are termed
redundancies and the last r bits are termed input bits. Now,
we may keep track of the weights of two parts separately.
Such weight separation falls into the category of split weight
enumerator considered in [11], [16] and is reproduced below.

Definition 1: For any c = (c1, c2, . . . , cmr, cmr+1,
. . . ,c(m+1)r) ∈ C⊥

o , let wL(c) = wH(c1, c2, . . . , cmr) and
wR(c) = wH(cmr+1, · · · , c(m+1)r) be respectively the left-
and right-weights of c, where wH(·) is the Hamming metric of
a binary vector. The split weight enumerator of C⊥

o is defined
as

ΛC⊥
o (x, y, X, Y ) =

∑
c∈C⊥

o

xr−wR(c)ywR(c)Xmr−wL(c)Y wL(c).
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Notice that the IRWE BC⊥
o (x, y) = ΛC⊥

o (1, x, 1, y). Analo-
gous to the well-known MacWilliams transform that relates the
weight enumerator of a code to that of its dual, such relation
also exists for split weight enumerators.

Lemma 2: Let ΛC⊥
o and ΛCo be respectively the split

weight enumerators of C⊥
o and its dual Co. Then

ΛCo(x, y, X, Y ) =
1

|C⊥
o |Λ

C⊥
o (x + y, x − y, X + Y, X − Y )

Lemma 2 implies the following result, which relates BCo(x, y)
to BC⊥

o (x, y).
Theorem 3: Let BC⊥

o (x, y) be the IRWE of the code C⊥
o .

Then the IRWE of outer code Co is given by

BCo(x, y) =
(1 + x)mr(1 + y)r

2r
BC⊥

o

(
1 − y

1 + y
,
1 − x

1 + x

)
. (6)

Proof: Note that

BCo(x, y) =
mr∑

w=0

r∑
h=0

BCo

w,hxwyh = ΛCo(1, y, 1, x)

and the rest follows from Lemma 2.
The IOWE of a 1/(1 + D) convolutional code truncated to
length (m + 1)r is given by

A
1/(1+D)
w,h =

(
(m + 1)r − h

�w/2�
)(

h − 1
�w/2� − 1

)
.

Finally, by taking account of interleaver Π and rate-1 accu-
mulate convolutional encoder 1/(1+D), the overall IOWE of
the proposed code is

AC(x, y) =
mr∑

w=0

r∑
h=0

⎛
⎝ r∑

p=0

BCo
w,pA

1/(1+D)
p+w,h(

(m+1)r
p+w

)
⎞
⎠

︸ ︷︷ ︸
≡AC

w,h

xwyh,

where BCo
w,p is the IRWE of the outer code given in (6). Based

on the above, we apply the simple bound technique [14] to
analyze the BER performance of these codes as well as to
assess the minimal required SNR for these codes to achieve
reliable communication under AWGN channel. The results are
presented in the next section.

IV. SIMULATION AND NUMERICAL RESULTS

Here we consider four codes with design parameters
(n, k) = (10000, 5000), (3000, 1500), (3000, 2000), and
(2000, 1500), respectively. The IOWE AC(x, y) for each code
is first computed based on results in Section III. The simple
bound [14] on BER is then employed to yield a performance
upper bound as a benchmark. We also conduct computer
simulations of these codes. The simulation results are obtained
with 100 iterations and with at least 5× 109 information bits
for high SNR region. Two types of interleavers are considered
here. The first one is the random interleaver which is generated
uniformly. The second one is the S-random interleaver [17].
An S-random interleaver (where S is a positive integer)
is a “semirandom” interleaver constructed as follows. Each
randomly selected integer is compared with S previously
selected random integers. If the difference between the current
selection and S previous selections is smaller than S, the
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Fig. 2. Simulation and simple bound on the bit error rate.

random integer is rejected. This process is repeated until all
distinct integers have been selected. The S parameters for the
inner interleaver Π and outer interleavers Πi, i = 1, . . . , m−1,
are denoted as SI and SO, respectively. Note that the inter-
leavers in our simulation are only generated once for each
code and are fixed for subsequent simulation runs.

For the cases of random interleavers, as observed from
simulation results shown in Fig. 2, the iterative decoding con-
verges very well and the simple bounds faithfully predict the
BER performances, even the error floors. As the error floors
may still be pronounced in certain applications, to improve
performance, S-random interleavers are often employed to
replace random interleavers and to reduce the correlation of
bit metrics between two successive decoding processes [17].
We remark that in our coding scheme, the ordering of coded
bits from the outer code does affect the performance when S-
random interleaver is employed. In our simulations, the coded
bits from outer code are ordered such that every m systematic
bits are followed by a parity bit generated by encoders at
lower branch shown in Fig. 1. The S parameters SI and SO

of each simulation case are indicated in Fig. 2. The results
show that the slopes of error floors are improved significantly
when S-random interleavers are employed.

A. Asymptotic Performance and Long Code Simulation

We consider eleven codes of different rates from 1/2 to
32/33. For all codes, the information length is approximately
equal to 64000 bits. For a clear comparison, in Fig. 3, we
plot the Shannon capacity of BPSK modulation over AWGN
channel, the SNR thresholds based on the simple bound [14],
and the required SNR in real code simulations for BER at
10−5. The results show that the proposed codes perform fairly
close to the Shannon limits. For low rate code, i.e., the rate-
1/2 code, the SNR gap is about 0.85dB. However, for high
rate code, e.g. the rate-32/33 code, the SNR gap is reduced
to only 0.47dB. These codes are not the best code found
in the literatures. However, from practical point of view, the
simplicities in encoding and decoding schemes are the major
advantages.
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Fig. 3. Asymptotic performance of the proposed codes.
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B. Comparison with PA-I Codes

Since PA-I codes in general have better performance
than PA-II codes [12], in this simulation, we compare the
performances of the proposed codes with those of PA-I
codes. We consider rate-3/4 codes with parameters (n, k) =
(1336, 1002), (5336, 4002), and (21336, 16002), respectively.
Simulation results are given in Fig. 4, and it can be seen that
there is no significant difference between these codes at the
same length.

V. CONCLUSIONS

A new construction of concatenated code with the simplest
[1, 1 + D] convolutional code as the outer code and the rate-1

accumulate code as the inner code is presented in this paper.
Since the outer code encoder contains only one feedforward
register for each branch, the code is called single-feedforward-
register convolutional accumulate (SFRCA) code. Although
the code is very simple in terms of encoding structure, it
provides remarkable performance especially in the high rate

regime. We derive the corresponding input-output weight
enumerators (IOWEs) and apply Divsalar’s simple bound
technique to analyze the BER performances of these codes.
Through the simple bound, we compute the minimal required
SNR for the codes to achieve reliable communication under
AWGN channel. Simulations are also provided to show that
the iterative decoder of these codes converges very well and
provides good performance.
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