
國立交通大學
工業工程與管理學系

博士論文

粒子群演算法於離散最佳化問題之研究

A Study on Particle Swarm Optimization for

Discrete Optimization Problems

研究生 ： 徐誠佑
指導教授 ： 沙永傑 博士

陳文智 博士

中華民國九十六年五月

粒子群演算法於離散最佳化問題之研究

A Study on Particle Swarm Optimization for Discrete
Optimization Problems

研 究 生： 徐誠佑 Student： Cheng-Yu Hsu

指導教授： 沙永傑 Advisor： Dr. David Yung-Jye Sha

陳文智 Dr. Wen-Chih Chen

國 立 交 通 大 學
工 業 工 程 與 管 理 學 系

博 士 論 文

A Dissertation

Submitted to Department of Industrial Engineering and Management

College of Management

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Industrial Engineering and Managemen

May 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年五月

 I

粒子群演算法於離散最佳化問題之研究
學生：徐誠佑 指導教授： 沙永傑博士

陳文智博士
國立交通大學工業工程與管理系

中 文 摘 要

粒子群演算法(Particle Swarm Optimization, PSO)是一種群體搜尋最佳化演

算法，於 1995 年被提出。原始的 PSO 是應用於求解連續最佳化問題。當 PSO

用來求解離散最佳化問題時，我們必須修改粒子位置、粒子移動以及粒子速度的

表達方式，讓 PSO 更適於求解離散最佳化問題問題。本研究之主要貢獻為提出

數種適合求解離散最佳化問題之 PSO 設計。這些新的設計和原始的設計不同且

更適合求解離散最佳化問題。

在本篇論文中，我們將分別提出適合求解零壹多限制式背包問題

(Multidimensional 0-1 Knapsack Problem, MKP)、零工式排程問題 (Job Shop

Scheduling Problem JSSP)以及開放式排程問題(Open Shop Scheduling Problem,

OSSP)的 PSO。在求解MKP的 PSO中，我們以零壹變數表達粒子位置，以區塊

建立(building blocks)的概念表達粒子移動方式。在求解 JSSP的 PSO中，我們以

偏好列表(preference-list)表達粒子位置，以交換運算子(swap operator)表達粒子移

動方式。在求解 OSSP的 PSO中，我們以優先權重(priority)表達粒子位置，以插

入運算子(insert operator)表達粒子移動方式。除此之外，我們在求解MKP的 PSO

中加入區域搜尋法(local search)，在求解 JSSP的 PSO與塔布搜尋(tabu search)混

合，以及將求解 OSSP的 PSO與集束搜尋法(beam search)混合。計算結果顯示，

我們的 PSO比其它傳統的啟發式解法要來的好。

關鍵字：粒子群演算法、零壹多限制式背包問題、零工式排程問題、開放式排程

問題、啟發式解法

 II

A Study on Particle Swarm Optimization for Discrete
Optimization Problems

Student：Cheng-Yu Hsu Advisor： Dr. David Yung-Jye Sha
Dr. Wen-Chih Chen

Department of Industrial Engineering and Management
National Chiao Tung University

ABSTRACT

Particle Swarm Optimization (PSO) is a population-based optimization algorithm,

which was developed in 1995. The original PSO is used to solve continuous

optimization problems. Due to solution spaces of discrete optimization problems are

discrete, we have to modify the particle position representation, particle movement,

and particle velocity to better suit PSO for discrete optimization problems. The

contribution of this research is that we proposed several PSO designs for discrete

optimization problems. The new PSO designs are better suit for discrete optimization

problems, and differ from the original PSO.

In this thesis, we propose three PSOs for three discrete optimization problems

respectively: the multidimensional 0-1 knapsack problem (MKP), the job shop

scheduling problem (JSSP) and the open shop scheduling problem (OSSP). In the

PSO for MKP, the particle position is represented by binary variables, and the particle

movement are based on the concept of building blocks. In the PSO for JSSP, we

modified the particle position representation using preference-lists and the particle

movement using a swap operator. In the PSO for OSSP, we modified the particle

position representation using priorities and the particle movement using an insert

operator. Furthermore, we hybridized the PSO for MKP with a local search procedure,

the PSO for JSSP with tabu search (TS), and the PSO for OSSP with beam search

(BS). The computational results show that our PSOs are better than other traditional

metaheuristics.

Keywords: Particle swarm optimization, Multidimensional 0-1 Knapsack Problem,

Job shop scheduling problem, Open shop scheduling problem, Metaheuristic

 III

誌 謝

經過四年的時間終於取得了博士學位。首先要感謝我的指導教授沙永傑老師

的教導，以及共同指導教授陳文智老師協助我處理系上相關規定，讓我能夠順利

畢業。也感謝其它四位口試委員在論文口試中的悉心指導，交通大學鍾淑馨教

授、清華大學許棟樑教授、中華大學謝玲芬教授、雲林科技大學駱景堯教授。有

了他們的悉心指導，讓這篇論文更臻完善。

感謝陪我渡過這幾年的研究室學長姊、學弟妹以及同學們，讓我留下美好的

回憶。感謝陪我吃到飽的朋友們，讓我在四年內胖了十五公斤。感謝俊仁學長和

嘉若學姊，這幾年來他們提供我兼課的機會，讓我的生活費有所著落。感謝在明

新科技大學的學生們，讓我體驗愉快的教學經驗。感謝實驗室的戰友們，讓我在

低潮的時候有發洩情緒的地方。感謝佳樺，這幾年來我一直沒辦法給她承諾，但

她總是一路陪著我。

最後要感謝家人的支持，已經30多歲的我，這四年來沒有賺過一毛錢回家，

讓我心中常覺虧欠。但他們還是支持我，讓我在最好的環境下完成學業。

 IV

CONTENTS

中文摘要 ..Ⅰ

ABSTRACT ..Ⅱ

誌謝 ..Ⅲ

CONTENTS ..Ⅳ

LIST OF FIGURES ...Ⅶ

LIST OF TABLES..Ⅷ

CHAPTER 1 INTRODUCTION..1

1.1 Research Motivations ..1

1.2 Research Objectives...1

1.3 Organization...2

CHAPTER 2 LITERATURE REVIEW ..3

2.1 Particle Swarm Optimization ...3

2.2 Multidimensional 0-1 Knapsack Problem ...3

2.3 Job Shop Scheduling Problem ..9

2.4 Open Shop Scheduling Problem... 11

CHAPTER 3 DEVELOPING A PARTICLE SWARM OPTIMIZATION FOR A
DISCRETE OPTIMIZATION PROBLEM13

3.1 Particle Position Representation ..13

3.2 Particle Velocity and Particle Movement...14

3.3 Decoding Operator ..15

 V

3.4 Other Search Strategies...15

3.5 The Process to Develop a New Particle Swarm Optimization16

CHAPTER 4 A DISCRETE BINARY PARTICLE SWARM OPTIMIZATION
FOR THE MULTIDIMENSIONAL 0-1 KNAPSACK PROBLEM
..18

4.1 Particle Position Representation ..19

4.2 Particle Velocity..20

4.3 Particle Movement...21

4.4 Repair Operator...22

4.5 The Diversification Strategy..24

4.6 The Selection Strategy ...25

4.7 Local Search ...26

4.8 Computational Results ..28

4.9 Concluding Remarks ...31

4.10 Appendix ...33

CHAPTER 5 A PARTICLE SWARM OPTIMIZATION FOR THE JOB SHOP
SCHEDULING PROBLEM..34

5.1 Particle Position Representation ..34

5.2 Particle Velocity..44

5.3 Particle Movement...45

5.4 The Diversification Strategy..50

5.5 Local Search ...51

5.6 Computational Results ..53

5.7 Concluding Remarks ...62

 VI

5.8 Appendix ...64

CHAPTER 6 A PARTICLE SWARM OPTIMIZATION FOR THE OPEN SHOP
SCHEDULING PROBLEM..65

6.1 Particle Position Representation ..65

6.2 Particle Velocity..68

6.3 Particle Movement...70

6.4 Decoding Operators ...72
6.4.1 Decoding Operator 1 (A-ND) ...75
6.4.2 Decoding Operator 2 (mP-ASG) ..75
6.4.3 Decoding Operator 3 (mP-ASG2) ..77
6.4.4 Decoding Operator 4 (mP-ASG2+BS) ...79

6.5 The Diversification Strategy..81

6.6 Computational Results ..81
6.6.1 Comparison of Decoding Operators ...82
6.6.2 Comparison with Other Metaheuristics ..85

6.7 Concluding Remarks ...93

6.8 Appendix ...95

CHAPTER 7 CONCLUSION AND FUTURE WORK..96

7.1 Conclusions ……..………………………………………………………………96

7.2 Future Works …………………………………………………………………...97

References …………………………………………………………..………………98

 VII

LIST OF FIGURES

Figure 2.1 The relationship of semi-active, active, and nondelay schedules.........10

Figure 2.2 The process of particle swarm optimization. ..5

Figure 3.1 The process to develop a new particle swarm optimization17

Figure 4.1 Pseudo code of updating velocities. ..21

Figure 4.2 Pseudo code of particle movement. ..22

Figure 4.3 Pseudo code of repair operator ..23

Figure 4.4 Psudo code of updating pbest solutions. ..24

Figure 4.5 Pseudo code of selection strategy..25

Figure 4.6 Pseudo code of local search procedure. ...27

Figure 5.1 The G&T algorithm...36

Figure 5.2 An illustration of decoding a particle position into a schedule............37

Figure 5.3 The pseudo code of updating velocities..45

Figure 5.4 An instance of particle movement. ...48

Figure 5.5 Pseudo code of particle movement. ..49

Figure 5.6 Pseudo code of updating pbest solution and gbest solution with
diversification strategy. ...51

Figure 5.7 An illustration of neighborhoods in tabu search...................................53

Figure 6.1 The pseudo code of updating velocities..70

Figure 6.2 The pseudo code of particle movement..72

Figure 6.3 The G&T algorithm for OSSP. ...74

Figure 6.4 Parameterized active schedules. ...76

Figure 6.5 The pseudo code of the decoding operator mP-ASG2+BS...................80

 VIII

LIST OF TABLES

Table 2.1 References of PSO for discrete optimization problems............................6

Table 4.1 Computational results ...30

Table 4.2 The percentage gaps between DPSO+LS and Fix+LP+LS (Vasquez and
Vimont, 2005) ...31

Table 4.3 Summary of the DPSO for MKP ...32

Table 5.1 A 4×4 job shop problem example ...35

Table 5.2 Computational result of FT and LA test problems.................................57

Table 5.3 Computation time of FT and LA test problems (in CPU seconds).59

Table 5.4 Computational result of TA test problems. ...60

Table 5.5 Comparison with TSSB (Pezzella & Merelli, 2000) on TA test problems.
...62

Table 5.6 Summary of the HPSO for JSSP..63

Table 6.1(a) Computational results of four decoding operators with mutation
operator...84

Table 6.2 Results of the test problems proposed by Taillard (1993)......................87

Table 6.3 Results of the test problems proposed by Brucker et al. (1997)89

Table 6.4 Results of the test problems proposed by Guéret and Prins (1999)91

Table 6.5 Summary of the PSO for OSSP..94

 1

CHAPTER 1

INTRODUCTION

1.1 Research Motivations

In an optimization problem, limited resources need to be allocated for maximum

profit. When an optimization problem has discrete solution space, solving such a

problem amounts to making discrete choice such that an optimal solution is found

among a finite or a countable infinite number of alternatives. Such problems are

called discrete optimization problems. Typically, the task is complex, limiting the

practical utility of combinatorial, mathematical programming and other analytical

methods in solving discrete optimization problems effectively.

To find exact solutions of discrete optimization problems a branch-and-bound or

dynamic programming algorithm is often used. However, many discrete optimization

problems are NP-hard, which means that the problem cannot be exactly solved in a

reasonable computation time. Using problem-specific information sometimes reduces

search space, even though the problem is still difficult to solve exactly. Therefore,

heuristic algorithms are developed to obtain the approximate optimal solution.

Metaheuristic is one of the most popular and the most efficient method to obtain the

approximate optimal solution. Among the meta-heuristics, particle swarm

optimization (PSO) is new and extensively implemented in recent years. However, the

original intent of PSO is to solve continuous optimization problems, and PSO

methods that work well for discrete optimization problems are still scarce.

1.2 Research Objectives

The objective of this work is to development PSOs for three discrete

 2

optimization problems: the multidimensional 0-1 knapsack problem (MKP), the job

shop scheduling problem (JSSP) and the open shop scheduling problem (OSSP).

Since the original intent of PSO is to solve continuous optimization problems,

we have to modify the original PSO when we implement PSO to a discrete

optimization problem. PSO can be separated several parts to discuss: position

representation, particle velocity, and particle movement. We will develop various PSO

designs in this work. On the other hand, the PSO developed in this work can be an

example of PSO design for other discrete optimization problems.

1.3 Organization

The organization of the remaining chapters for this research is as follows.

Chapter 2 reviews the literatures of the background of the multidimensional 0-1

knapsack problem, shop scheduling problems and PSO. Chapter 3 infers the possibly

success factors of PSO design. Chapter 4 shows a PSO for MKP, chapter 5 shows a

PSO for JSSP, and chapter 6 shows a PSO for OSSP. In chapter 7 we draw our

conclusion and indicate the direction for further research.

 3

CHAPTER 2

LITERATURE REVIEW

2.1 Particle Swarm Optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart

(1995). The original intention was to simulate the movement of organisms in a bird

flock or fish school, and it has since been introduced as an optimization technique.

PSO is a population-based optimization algorithm. Each particle is an individual, and

the swarm is composed of particles. The relationship between swarm and particles in

PSO is similar to the relationship between population and chromosomes in genetic

algorithm (GA).

In PSO, the problem solution space is formulated as a search space. Each

position in the search space is a correlated solution of the problem. For example,

when PSO is applied to a continuous optimization problem with d variables, the

solution space can be formulated as a d dimensional search space, and the value of jth

variable is formulated as the position on jth dimension. Particles cooperate to find the

best position (best solution) in the search space (solution space). The particle

movement is mainly affected by three factors: inertia, particle best position (pbest),

and global best position (gbest). The inertia is the velocity of the particle in the latest

iteration, and it can be controlled by inertia weight. The intention of the inertia is to

prevent particles from moving back to their current positions. The pbest position is the

best solution found by each particle itself so far, and each particle has its own pbest

position. The gbest position is the best solution found by the whole swarm so far.

Each particle moves according to its velocity. The velocity is randomly generated

toward pbest and gbest positions. For each particle k and dimension j, the velocity and

 4

position of particles can be updated by the following equations:

)()(2211 kjjkjkjkjkj xgbestrandcxpbestrandcvwv −××+−××+×← (2.1)

kjkjkj vxx +← (2.2)

In equation (2.1) and equation (2.2), kjv is the velocity of particle k on

dimension j, which value is limited to the parameter maxV , that is, maxVvkj ≤ . The

kjx is the position of particle k on dimension j, which value is limited to the

parameter maxX , that is, maxXxkj ≤ . The kjpbest is the pbest position of particle k

on dimension j, and jgbest is the gbest position of the swarm on dimension j. The

inertia weight w was first proposed by Shi and Eberhart (1998a, 1998b), and it is

used to control exploration and exploitation. The particles maintain high velocities

with a larger w , and low velocities with a smaller w . A larger w can prevent

particles from becoming trapped in local optima, and a smaller w encourages

particles exploiting the same search space area. The constants 1c and 2c are used to

decide whether particles prefer moving toward a pbest position or gbest position. The

1rand and 2rand are random variables between 0 and 1. The process of PSO is

shown as Figure 2.1.

 5

Initialize a population of particles with random positions and velocities on
d dimensions in the search space.

repeat

for each particle k do

Update the velocity of particle k, according to equation (1).

Update the position of particle k, according to equation (2).

Map the position of particle k in the solution space and evaluate
its fitness value according to the desired optimization fitness
function.

Update pbest and gbest position if necessary.

end for

until a criterion is not met, usually a sufficient good fitness or a maximum
number of iterations.

Figure 2.1 The process of particle swarm optimization.

The original PSO is suited to a continuous solution space. Therefore, the

applications of PSO for discrete optimization problems are still scarce. Table 2.1

shows the references of PSO for discrete optimization problems.

 6

Table 2.1 References of PSO for discrete optimization problems

Problem References

Binary Unconstrained Optimization Kennedy & Eberhart (1997)

A first discrete version of PSO for
binary variables.

Rastegar et al. (2004)
Based on Kennedy & Eberhart
(1997), hybridized with learning
automata.

Constrained layout optimization Li (2004)

Represent a layout problem by
continuous variables.

Multi-objective task allocation Yin et al. (2007a)

Particle represented by integer
variables, which indicates the index
of the allocated processor for each
module.

Task assignment problem Salman et al. (2002)

The positions of tasks are
represented by continuous
variables.

Yin et al. (2007b)
Hybridized with a parameter-wise
hill-climbing heuristic.

Traveling salesman problem Wang et al. (2003)

Applied sequential ordering
representation and swap operator.

Pang et al. (2004)
Represent the particle position by a
fuzzy matrix.

Zhi et al. (2004)
The particles movement is based on
a one-point crossover.

Vehicle routing problem Wu et al. (2004)

Applied swap operator and 2-opt
local search.

 7

Table 2.1 (cont.)

Problem References

Scheduling Problems:
– Assembly scheduling Allahverdi & Al-Anzi (2006)

Hybridized with tabu search.

– Flow shop scheduling Lian et al. (2006)

Proposed three crossover operators.
Tasgetiren et al. (2007)

Real number representation and
local search.

Liao et al. (2007)
Represent the operation sequence
by 0-1 variables.

– Job shop scheduling Lian et al. (2006)

Proposed four crossover operators.

– Multi-objective flexible job-shop

scheduling
Xia & Wu (2005)

Hybridized with simulated
annealing.

– Resource constraint project

scheduling
Zhang & Li (2006)
Zhang & Li (2007)

Compared priority based
representation and sequential
ordering representation.

 8

2.2 Multidimensional 0-1 Knapsack Problem

The multidimensional 0-1 knapsack problem (MKP) is a well-known NP-hard

problem. The problem can be formulated as:

maximize ∑
=

n

j
jj xp

1

,

subject to ∑
=

≤
n

j
ijij bxr

1

, for mi ,,1K= ,

}1,0{∈jx , for nj ,,1K= ,

with 0>jp , for all j,

iij br ≤≤0 , for all i, j,

∑
=

<
n

j
iji rb

1

, for all i.

Where m is the number of knapsack constraints and n is the number of items.

Each item j requires ijr units of resource consumption in the ith knapsack and yields

jp units of profit upon inclusion. The goal is to find a subset of items that yields

maximum profit without exceeding resource capacities. The MKP can be seen as a

general model for any kind of binary problems with positive coefficients, and it can be

applied to many problems such as cargo loading, capital budgeting, project selection,

etc. The most recent surveys on MKP can be found in (Fréville, 2004) and (Fréville

and Hanafi, 2005).

The MKP is an NP-hard problem, so it cannot be exactly solved in a reasonable

computation time for large instances. However, metaheuristics can obtain approximate

optimal solutions in a reasonable computation time. For that reason, metaheuristics for

MKP such as simulated annealing (SA) (Drexl, 1988), tabu search (TS) (Glover and

Kochenberger, 1996; Hanafi and Fréville; 1998; Vasquez and Hao, 2001; Vasquez and

Vimont, 2005), and genetic algorithm (GA) (Chu and Beasley, 1998) have arisen

 9

during the last decade.

2.3 Job Shop Scheduling Problem

The job shop scheduling problem (JSSP) is one of the most difficult

combinatorial optimization problems. The JSSP can be briefly stated as follows

(French, 1982; Gen & Cheng, 1997). There are n jobs to be processed through m

machines. We shall suppose that each job must pass through each machine once and

once only. Each job should be processed through the machines in a particular order,

and there are no precedence constraints among different job operations. Each machine

can process only one job at a time, and it cannot be interrupted. Furthermore, the

processing time is fixed and known. In this work, the problem is to find a schedule to

minimize the makespan (maxC), that is, the time required to complete all jobs. The

constraints in the classical JSSP is listed as follows (Bagchi, 1999):

• No two operations of one job occur simultaneously.

• No pre-emption (i.e. process interruption) of an operation is allowed.

• No job is processed twice on the same machine.

• Each job is processed to its completion, though there may be waits and

delays between the operations performed.

• Jobs may be started at any time; hence no release time exists.

• Jobs must wait for the next machine to be available.

• No machine may perform more than one operation at a time.

• Set-up times for the operations are sequence-independent and included

in processing times.

• There is only one of each type of machine.

• Machines may be idle within the schedulable period.

• Machines are available at any time.

 10

• The technological (usually related to processing) constraints are known

in advance and are immutable.

Solution Space

Semi-active

Active

Non-delay

Figure 2.2 The relationship of semi-active, active, and nondelay schedules.

In JSSP, there are three distinct schedules can be identified as follows:

• Semi-active schedule: in an active schedule, the processing sequence is

such that no operation can be started any earlier without changing the

operation sequence on a machine.

• Active schedule: in an active schedule, the processing sequence is such

that no operation can be started any earlier without delaying some

other operation.

• Nondelay schedule: in a nondelay schedule, no machine is kept idle at

a time when it could begin processing other operations.

Figure 2.2 shows the relationship of semi-active, active, and nondelay schedules. The

optimal JSSP solution should be an active schedule. To reduce the search solution

space, the tabu search proposed by Sun et al. (1995) searches solutions within the set

of active schedules. Gonçalves and Beirão (1999) proposed the concept of

 11

parameterized active schedules. The main purpose of parameterized active schedules

is to reduce the search area but not to exclude the optimal solution. The basic idea of

parameterized active schedules is to control the search area by controlling the delay

times that each operation is allowed. If all of the delay times are equal to zero, the set

of parameterized active schedules is equivalent to non-delay schedules. On the

contrary, if all of the delay times are equal to infinity, the set of parameterized active

schedules is equivalent to the active schedules.

Garey et al. (1976) demonstrated that JSSP is NP-hard, so it cannot be exactly

solved in a reasonable computation time. Many meta-heuristics have been developed

in the last decade to solve JSSP, such as simulated annealing (SA) (Lourenço, 1995),

tabu search (TS) (Sun et al., 1995; Nowicki & Smutnicki, 1996; Pezzella & Merelli,

2000), and genetic algorithm (GA) (Bean, 1994; Kobayashi et al., 1995; Wang &

Zheng, 2001; Gonçalves et al., 2005).

2.4 Open Shop Scheduling Problem

The open shop scheduling problem (OSSP) can be stated as follows (Gonzalez &

Sahni, 1976): there is a set of n jobs that have to be processed on a set of m machines.

Every job consists of m operations, each of which must be processed on a different

machine for a given process time. The operations of each job can be processed in any

order. At any time, at most one operation can be processed on each machine, and at

most one operation of each job can be processed. In this research, the problem is to

find a non pre-emptive schedule to minimize the makespan (maxC), that is, the time

required to complete all jobs.

The constraints in the classical OSSP are similar to the classical JSSP but there

are no precedence constraints among the same job operations. The OSSP is NP-hard

 12

for 3≥m (Gonzalez & Sahni, 1976), so it cannot be exactly solved in a reasonable

computation time. Guéret and Prins (1998) proposed two fast heuristics, the results of

which are better than other classical heuristics. Domdorf et al. (2001) proposed a

branch-and-bound method, which is the current best method to solve OSSP exactly.

Many metaheuristic algorithms have been developed in the last decade to solve OSSP,

such as simulated annealing (SA) (Liaw, 1999), tabu search (TS) (Alcaide & Sicilia,

1997; Liaw, 1999), genetic algorithm (GA) (Liaw, 2000; Prins, 2000), ant colony

optimization (ACO) (Blum, 2005), and neural network (NN) (Colak & Agarwal,

2005).

 13

CHAPTER 3

DEVELOPING A PARTICLE SWARM OPTIMIZATION

FOR A DISCRETE OPTIMIZATION PROBLEM

The original PSO is suited to a continuous solution space. We have to modify the

original PSO in order to better suit it to discrete optimization problems. In this chapter,

we will discuss the probably success factors to develop a PSO design for a discrete

optimization problem. We separated a PSO design into several parts to discuss:

particle position representation, particle velocity, particle movement, decoding

operator, and other search strategies.

3.1 Particle Position Representation

PSO represents the solutions by particle positions. There are various particle

position representations for a discrete optimization problem. How to represent

solutions by particle positions is a research topic when we develop a PSO design.

Generally, the Lamarckian property is used to discriminate between good and

bad representations. The Lamarckian property is that the offspring can inherit

goodness from its parents. For example, if there are six operations to be sorted on a

machine, and we implement the random key representation (Bean, 1994) to represent

a sequence, there are two positions of two particle positions as follows:

position 1: [0.25, 0.27, 0.21, 0.24, 0.26, 0.23]

position 2: [0.22, 0.25, 0.23, 0.26, 0.24, 0.21]

Then the operation sequence can be generated by sort the operations according to the

increasing order of their position values as follows:

 14

permutation 1: [251463]

permutation 2: [425316]

We can find that these two permutations are quite different even though their positions

are very close to each other. This is because the location in the permutation of one

operation depends on the position values of other operations. Hence, the random key

representation has no Lamarckian.

If we directly implement the original PSO design (i.e. the particles search

solutions in a continuous solution space) to a scheduling problem, we can implement

the random key representation to represent a sequence of operations on a machine.

However, the PSO will be more efficient if the particle position representation is with

higher Lamarckian.

3.2 Particle Velocity and Particle Movement

The particle velocity and particle movement are designed for the specific particle

position representation. In each iteration, a particle moves toward pbest and gbest

positions, that is, the next particle position is determined by current position, pbest

position, and gbest position. Furthermore, particle moves according to its velocity and

movement mechanisms. Each particle moves from current position (solution) to one

of the neighborhood positions (solutions). Therefore, the particle movement

mechanism should be designed according the neighborhood structure. The advantage

of neighborhood designs can be estimated by following properties (Mattfeld, 1996):

• Correlation: the solution resulting from a move should not differ much

from the starting one.

• Feasibility: the feasibility of a solution should be preserved by all

moves.

 15

• Improvement: all moves in the neighborhood should have a good

chance to improve the objective of a solution.

• Size: the number of moves in the neighborhood should be reasonably

small to avoid excessive computational cost of their evaluation.

• Connectivity: it should be possible to reach the optimal solution from

any starting one by performing a finite number of neighborhood

moves.

We believe that the PSO will be more efficient if we design the particle velocity

and the particle movement mechanisms according to these properties.

3.3 Decoding Operator

Decoding operator is used to decode a particle position into a solution. The

decoding operator is designed according the specific particle position representation

and the characteristics of the problem. A superior decoding operator can map the

positions to the solution space in a smaller region but not excluding the optimal

solution. In chapter 6, we designed four decoding operators for OSSP. The results

show that the decoding operator design extremely influences the solution quality.

3.4 Other Search Strategies

．Diversification Strategy

We can also consider implementing other search strategies. The purpose of most

search strategies is to control the intensification and the diversification. One of the

search strategies is the structure of gbest and pbest solutions. In the original PSO

design, each particle has its own pbest solution and the swam has only one gbest

solution. Eberhart and Shi (2001) show a “local” version of the particle swarm. In this

version, particles have information only of their own and their neighbors’ bests, rather

 16

that that of the entire group. Instead of moving toward a kind of stochastic average of

pbest and gbest (the best location of the entire group), particles move toward points

defined by pbest and “lbest,” which is the index of the particle with the best

evaluation in the particle’s neighborhood.

In this research, we proposed a diversification strategy. In this strategy, the pbest

solution of each particle is not the best solution found by the particle itself, but one of

the best N solutions found by the swarm so far where N is the size of the swarm.

．Selection Strategy

Angeline (1998) proposed a selection strategy, which is performed as follows.

After all the particles move to new positions, select the s best particles. The better

particle set),,,{ 21 skkkS K= replaces the positions and velocities of the other

particles. The addition of this selection strategy should provide the swarm with a more

exploitative search mechanism that should find better optima more consistently.

In chapter 4, we modified the method proposed by Angeline (1998) based on the

concept of building blocks where a block is part of a solution, and a good solution

should include some superior blocks. The concept of building blocks is that if we can

precisely find out the superior blocks and accumulate the superior blocks in the

population, the genetic algorithm will perform better (Goldberg, 2002).

3.5 The Process to Develop a New Particle Swarm Optimization

As mentioned above, we separated PSO into several parts. The particle position

representation determines the program data structure and other parts are designed for

the specific particle position representation. Therefore, the first step of developing a

new PSO is to determine the particle position representation. Then design particle

velocity, particle movement and decoding operator for the specific particle position

 17

representation. Finally implement some search strategies for further improving

solution quality. Figure 3.1 shows the process to develop a new particle swarm

optimization. All the PSOs in this research are developed by the process described as

Figure 3.1.

Figure 3.1 The process to develop a new particle swarm optimization

Design particle position representation

Design particle velocity and
particle movement for the
specific particle position
representation

Design decoding operator for the
specific particle position
representation

Implement other search
strategies
(#optional)

 18

CHAPTER 4

A DISCRETE BINARY PARTICLE SWARM

OPTIMIZATION FOR THE MULTIDIMENSIONAL 0-1

KNAPSACK PROBLEM

Kennedy and Eberhart (1997) proposed a discrete binary particle swarm

optimization (DPSO), which was designed for discrete binary solution space. Rastegar

et al. (2004) proposed another DPSO based on learning automata. In both of the

DPSOs, when particle k moves, its position on the jth variable kjx equals 0 or 1 at

random. The probability that kjx equals 1 is obtained by applying a sigmoid

transformation to the velocity kjv))exp(1/1(kjv−+ . In the above two DPSOs, the

positions and velocities of particles can be updated by the following equations:

)()(2211 kjjkjkjkjkj xgbestrandcxpbestrandcvv −××+−××+← (4.1)

01))exp(1/1((←←−+< kjkjkj xelsexthenvrandif (4.2)

where rand, 1rand , and 2rand are random numbers between 0 and 1. The

value of kjv is limited by a value maxV , a parameter of the algorithm, that is,

max|| Vvkj ≤ . For instance, if maxV = 6, the probability that kjx equals 1 will be limited

between 0.9975 and 0.0025.

The DPSOs proposed by Kennedy and Eberhart (1997) and Rastegar et al. (2004)

are designed for discrete binary optimization problems with no constraint. However,

there are resource constraints in MKP. If we want to solve MKP by DPSO, we have to

modify DPSO to fit the MKP characteristics.

There are two main differences between the DPSO in this chapter and the DPSOs

 19

in previous research: (i) particle velocity and (ii) particle movement. The particle

velocity is modified based on the tabu list and the concept of building blocks, and

then the particle movement is modified based on the crossover and mutation of the

genetic algorithm (GA). Besides, we applied the repair operator to repair solution

infeasibility, the diversification strategy to prevent particles becoming trapped in local

optima, the selection strategy to exchange good blocks between particles, and the

local search to further improve solution quality. The computational results show that

our DPSO effectively solves MKP and better than other traditional algorithms.

4.1 Particle Position Representation

In out DPSO, the particle position is represented by binary variables. For a MKP

with n items, we represent the particle k position by n binary variables, i.e.

],,,[21 knkkk xxxx K=

Where kjx { }1,0∈ denotes the value of jth variable of particle k’s solution. Each time

we start a run, DPSO initializes a population of particles with random positions, and

initializes the gbest solution by a surrogate duality approach (Pirkul, 1987). We

determine the pseudo-utility ratio ∑ =
=

m

i ijijj rypu
1

/ for each variable, where iy is

the shadow price of the ith constraint in the LP relaxation of the MKP. To initialize the

gbest solution, we set 0←jgbest for all variable j and then add variables

(1←jgbest) into the gbest solution by descending order of ju as much as possible

without violating any constraint.

Initializing the gbest solution has two purposes. The first is to improve the

consistency of run results. Because the solutions of DPSO are generated randomly, the

computational results will be different in each run. If we give DPSO the same initial

point of gbest solution in each run, it may improve result consistency. The second

 20

purpose is to improve result quality. Similar to other local search approaches, a good

initial solution can accelerate solution convergence with better results.

4.2 Particle Velocity

When PSO is applied to solve problems in a continuous solution space, due to

inertia, the velocity calculated by equation (4.1) not only moves the particle to a better

position, but also prevents the particle from moving back to the previous position. The

larger the inertia weight, the harder the particle backs to the current position. The

DPSO velocities proposed by Kennedy and Eberhart (1997) and Rastegar et al. (2004)

move particles toward the better position, but cannot prevent the particles from being

trapped in local optima.

We modified the particle velocity based on the tabu list, which is applied to

prevent the solution from being trapped in local optima. In our DPSO, each particle

has its own tabu list, the velocity. There are two velocity values, kjv and kjv′ , for

each variable kjx . If kjx changes when particle k moves, we set kjv ←1 and kjv′ ←

kjx . When kjv equals 1, it means that kjx has changed, variable j was added into the

tabu list of particle k, and we should not change the value of kjx in the next few

iterations. Therefore, the velocity can prevent particles from moving back to the last

position in the next few iterations. The value of kjv′ is used to record the value of kjx

after the value of kjx has been changed. The set of variable kjv′ is a “block” which

is a part of a solution that particle k obtained from the pbest solution and gbest

solution. It is applied to the selection strategy with the concept of building blocks that

we will describe in section 4.6.

In our DPSO, we also implement inertia weight w to control particle velocities

where w is between 0 and 1. We randomly update velocities at the beginning of each

 21

iteration. For each particle k and jth variable, if kjv equals 1, kjv will be set to 0 with

probability (1- w). This means that if variable kjx is in the tabu list of particle k,

variable kjx will be dropped from the tabu list with probability (1- w). Moreover, the

exploration and exploitation can be controlled by w . The variable kjx will be held

in the tabu list for more iterations with a larger w and vice versa. The pseudo code

of updating velocities is given in Figure 4.1.

for each particle k and variable j do
rand ~ U(0,1)
if)()1(wrandandvkj ≥= then

0←kjv
end if

end for

Figure 4.1 Pseudo code of updating velocities.

4.3 Particle Movement

In the DPSO we proposed, particle movement is similar to the crossover and

mutation of GA. When particle k moves, if kjx is not in the tabu list of particle k (i.e.

kjv =0), the value of kjx will be set to kjpbest with probability 1c (if

kjx ≠ kjpbest), set to jgbest with probability 2c (if kjx ≠ jgbest), set to (1- kjx)

with probability 3c , or not changed with probability (1- 1c - 2c - 3c). Where 1c , 2c ,

and 3c are parameters of the algorithm with 1321 ≤++ ccc and 0≥ic , i=1, 2, 3.

Since the value of kjx may be changed by repair operator or local search

procedure (we will describe them in section 4.4 and in section 4.7 respectively), if kjx

is in the tabu list of particle k (i.e. kjv = 1), the value of kjx will be set to the value of

kjv′ which is the latest value that kjx obtained from the pbest solution or gbest

solution. At the same time, if the value of kjx changes, we update kjv and kjv′ as

we mentioned in section 4.2. The pseudo code of particle movement is given in Figure

 22

4.2.

for j←1 to n do
rand ~ U(0,1)

thenif)0(=kjv
thenandif)()(1 kjkj pbestxcrand ≠≤

kjkjkjkjkj xvvpbestx ←′←← ;1;
thenandif)()(211 jkj gbestxccrandc ≠+≤<

kjkjkjjkj xvvgbestx ←′←← ;1;
thenif)(32121 cccrandcc ++≤<+

kjkjkjkjkj xvvxx ←′←−← ;1);1(
else

kjkj vx ′←
end if

end for

Figure 4.2 Pseudo code of particle movement.

4.4 Repair Operator

After a particle generates a new solution, we apply the repair operator to repair

solution infeasibility and to improve it. There are two phases to the repair operator.

The first is the drop phase. If the particle generates an infeasible solution, we need to

drop (0←kjx , if 1=kjx) some variables to make it feasible. The second phase is the

add phase. If the particle finds a feasible solution, we add (1←kjx , if 0=kjx) more

variables to improve it. Each phase is performed twice: the first time we consider the

particle velocities, and the second time we do not consider the particle velocities.

Similar to initializing the gbest solution described in section 4.1, we applied the

Pirkul (1987) surrogate duality approach to determine the variable priority for adding

or dropping. First, we determine the pseudo-utility ratio ∑ =
= m

i ijijj rypu
1

/ for each

variable, where iy is the shadow price of the ith constraint in the LP relaxation of the

MKP. We drop variables by ascending order of ju until the solution is feasible, and

then we add variables by descending order of ju as much as possible without

 23

violating any constraint. The pseudo code of repair operator is given in Figure 4.3.

Ri = the accumulated resources of constraint i
U← permutation of (1,2,…,n) with]1[][+≥ jUjU uu (j = 1,…, n-1)

∑ =
∀← n

j kjiji ixrR
1

, ;

beginphaseDrop//
dotofor 1nj ←

thenandandif)0(),()1(][][=>= jkUiijkU vianyforbRx
;0][←jkUx

;),(][irRR jiUii ∀−←
ifend

forend
dotofor 1nj ←

thenandandif)1(),()1(][][=>= jkUiijkU vianyforbRx
;0][←jkUx

;),(][irRR jiUii ∀−←
ifend

forend
endphaseDrop//

beginphaseAdd//
dotofor nj 1←

thenandandif)0(),()0(][][][=∀≤+= jkUijiUijkU vibrRx
1][←jkUx ;

irRR jiUii ∀+←),(][;
ifend

forend
dotofor nj 1←

thenandandif)1(),()0(][][][=∀≤+= jkUijiUijkU vibrRx
1][←jkUx ;

irRR jiUii ∀+←),(][;
ifend

forend
endphaseAdd//

Figure 4.3 Pseudo code of repair operator

 24

4.5 The Diversification Strategy

If the pbest solutions are all the same, the particles will be trapped in local

optima. To prevent such a situation, we propose a diversification strategy to keep the

pbest solutions different. In the diversification strategy, the pbest solution of each

particle is not the best solution found by the particle itself, but one of the best N

solutions found by the swarm so far where N is the size of the swarm.

The diversification strategy is performed according to the following process.

After all of the particles generate new solutions, for each particle, compare the

particle’s fitness value with pbest solutions. If the particle’s fitness value is better than

the worst pbest solution and the particle’s solution is not equal to any of the pbest

solutions, replace the worst pbest solution with the solution of the particle. At the

same time, if the particle’s fitness value is better than the fitness value of the gbest

solution, replace the gbest solution with the solution of the particle. The pseudo code

of updating pbest solutions is given in Figure 4.4.

*k is the index of the worst pbest solution
for k ← 1 to N do

{ })(minarg*
k

k
pbestfk ′

′∀
= ;

thenif))()((*kk pbestfxf >
thenif),(' kpbestx kk ′∀≠

kk xpbest ←* ;
end if

thenif))()((gbestfxf k >

kxgbest ← ;
end if

end if
end for

Figure 4.4 Psudo code of updating pbest solutions.

 25

4.6 The Selection Strategy

Angeline (1998) proposed a selection strategy, which is performed as follows.

After all the particles move to new positions, select the s best particles. The better

particle set),,,{ 21 skkkS K= replaces the positions and velocities of the other

particles. The addition of this selection strategy should provide the swarm with a more

exploitative search mechanism that should find better optima more consistently.

We modified the method proposed by Angeline (1998) based on the concept of

building blocks where a block is part of a solution, and a good solution should include

some superior blocks. The concept of building blocks is that if we can precisely find

out the superior blocks and accumulate the superior blocks in the population, the

genetic algorithm will perform better (Goldberg, 2002).

Find out the s best particles),,,{ 21 skkkS K=
1←l ;

dotofor Nk 1←
thenif)(Sk ∉

lkk vv ← ;

lkk vv ′←′ ;
thenif)(sl >
1←l ;

else
1+← ll ;

end if
end if

end for

Figure 4.5 Pseudo code of selection strategy.

In our DPSO, the velocities },,,{ 21 knkkk vvvv ′′′=′ K is a block that particle k

obtained from pbest solution and gbest solution in each iteration. The kv′ may be a

superior block if the solution of particle k is better then others. Therefore, in our

modified selection strategy, the better particle set S only replaces the velocities (i.e.

 26

kv and kv′) of the other particles. The pseudo code of selection strategy is given in

Figure 4.5.

4.7 Local Search

We implement a local search procedure after a particle generates a new solution

for further improved solution quality. The classical add/drop neighborhood is that we

remove a variable from the current solution and add another variable to it without

violating any constraint at the same time. We modified the neighborhood with the

concept of building blocks to reduce the neighborhood size. We focus on the block

when we implement a local search. The variables are classified to 4 sets:

}0|{0 == kjxjJ , }1|{1 == kjxjJ , }10|{0 =∧==′ kjkj vxjJ , and 1|{1 ==′ kjxjJ

}1=∧ kjv . The modified neighborhood is defined as follows: add (or drop) one

variable from 0J ′ (or 1J ′) and drop (or add) one variable from 1J (or 0J) without

violating any constraint at the same time. In our experiment, the size of the modified

neighborhood is about twenty times smaller then the classical one. Besides, we add

variables by descending order of jp as much as possible without violating any

constraint after the add/drop process.

 27

Ri = the accumulated resources of constraint i
P← permutation of (1,2,…,n) with]1[][+≥ jPjP pp (j = 1,…, n-1)

∑ =
∀← n

j kjiji ixrR
1

,

dotofor 41←times
// Add/drop local search begin

0*
0 ←j ; 0*

1 ←j ;)(*
kxff ← ;

dotofor nj 1←′
thenif)(1Jj ′∈′

},|{maxarg 00 ibrrRandJjpj iijjiij
j

∀≤+−∈= ′
∀

thenif))((*
0

fppxf jjk >+− ′
jj ′←*

0 ; 0
*
1 jj ← ;))((

0
*

jjk ppxff +−← ′ ;
ifend

ifend
thenif)(0Jj ′∈′

},|{minarg 11 ibrrRandJjpj iijjiij
j

∀≤−+∈= ′
∀

thenif))((*
1

fppxf jjk >−+ ′

1
*
0 jj ← ; jj ′←*

1 ;))((
1

*
jjk ppxff −+← ′ ;

ifend
ifend

forend

;0*
0

←jkx ;1*
1

←jkx ;),(*
0

*
1

irrRR jijiii ∀−+←

// Add/drop local search end
// Add more variables begin

dotofor nj 1←
thenandif),()0(][][ibrRx ijiPijkP ∀≤+=

1][←jkPx ; irRR jiPii ∀+←),(][;
ifend

forend
// Add more variables end
forend

Figure 4.6 Pseudo code of local search procedure.

 28

We do not repeat the local search until the solution reaches the local optima. The

local search procedure is performed four times at most for reducing the computation

time and preventing being trapped in local optima. The pseudo code of local search is

given in Figure 4.6.

4.8 Computational Results

Our DPSO was tested on the problems proposed by Chu and Beasley (1998).

These problems are available on the OR-Library web site (Beasley, 1990) (URL:

http:// people.brunel.ac.uk/~mastjjb/jeb/info.html). The number of constraints m was

set to 5, 10, and 30, and the number of variables n was set to 100, 250, and 500. For

each m-n combination, thirty problems are generated, and the tightness ratio α

(∑ =
= n

j iji rb
1

/α) was set to 0.25 for the first ten problems, to 0.5 for the next ten

problems, and to 0.75 for the remaining problems. Therefore, there are 27 problem

sets for different n-m-α combinations, ten problems for each problem set, and 270

problems in total.

The program was coded in Visual C++, optimized by speed, and run on an AMD

Athlon 1800+ PC. The numeric parameters are set to 7.01 =c , 1.02 =c , nc /13 = ,

N = 100, and s = 20. The inertia weight w is decreased linearly from 0.7 to 0.5

during a run. All of the numeric parameters are determined empirically. There are two

versions of our DPSO. The first version, DPSO, does not implement the local search

procedure, and the second, DPSO+LS, implements the local search procedure. Each

run will be terminated after 10,000 iterations on DPSO and 15,000 iterations on

DPSO+LS, respectively.

The program performs 10 runs for each of the 270 problems. The term ‘Best’ is

applied to the best solution obtained in 10 runs of each problem and averaged

 29

according to the 10 problems of the problem set. The term ‘Average’ is applied to the

average solution of 10 runs of each problem and averaged according to the 10

problems of the problem set.

t* is the average time in seconds that the DPSO or DPSO+LS takes to first reach

the final best solution in a run, and T is the total time in seconds that the DPSO or

DPSO+LS takes before termination in a run. The surrogate duality was pre-calculated

by MATLAB, so the computation times in Table 4.1 do not include the computation

time of calculating surrogate duality. The average computation time for solving LP

relaxation problems was less then 1 CPU second, so the surrogate duality calculation

is not important to computation time.

The computational results are shown in Table 4.1. The algorithms have different

computation times, so we compared DPSO with GA (Chu and Beasley, 1998) since

their computation times are similar. The computational results show that DPSO

performed better than GA (Chu and Beasley, 1998) in 20 of 27 problem sets.

We compared DPSO+LS with Fix+Cuts (Osorio et al., 2002) and LP+TS

(Vasquez and Hao, 2001). The Fix+Cuts (Osorio et al., 2002) takes 3 hours on a

Pentium III 450 MHz PC for each run, and LP+TS (Vasquez and Hao, 2001) takes

about 20-40 minutes on a Pentium III 500 MHz PC for each run. Our DPSO+LS takes

less than 8 minutes on the largest problems and our machine is about four times faster

than Fix+Cuts (Osorio et al., 2002) and LP+TS (Vasquez and Hao, 2001), so the

computation time that DPSO+LS takes is similar to LP+TS (Vasquez and Hao, 2001)

and much less than Fix+Cuts (Osorio et al., 2002). The computational results show

that DPSO+LS performed better than Fix+Cuts (Osorio et al., 2002) in 15 of 27

problem sets, and better than LP+TS (Vasquez and Hao, 2001) in all of the 9 largest

problem sets.

 30

Table 4.1 Computational results
Problem DPSO DPSO+LS

n m α

GA
(Chu and
Beasley,

1998)

Fix+Cuts
(Osorio et
al., 2002)

LP+TS
(Vasque

z and
Hao,
2001)

Fix+LP+TS
(Vasquez and
Vimont, 2005) Best Average t* T Best Average t* T

100 5 0.25 24197 24197 24197 24197.2 0.5 10.2 24197 24197.2 0.3 68.8
100 5 0.5 43253 43253 43253 43252.9 0.5 10.1 43253 43252.9 0.2 67.7
100 5 0.75 60471 60471 60471 60471.0 0.3 9.8 60471 60471.0 0.2 61.6
100 10 0.25 22602 22602 22602 22595.8 1.7 11.1 22602 22601.9 1.7 77.5
100 10 0.5 42659 42661 42661 42658.2 1.4 11.2 42661 42660.6 2.6 77.0
100 10 0.75 59556 59556 59556 59554.2 0.3 11.2 59556 59555.6 0.3 68.9
100 30 0.25 21654 21656 21654 21651.0 2.4 13.0 21660 21658.2 4.1 86.1
100 30 0.5 41431 41437 41435 41430.7 2.4 13.7 41440 41439.9 7.2 85.1
100 30 0.75 59199 59202 59199 59196.5 1.8 14.1 59202 59201.0 3.2 78.7
250 5 0.25 60410 60413 60414 60407.1 8.0 26.4 60414 60412.3 34.5 199.0
250 5 0.5 109285 109293 109293 109287.2 9.9 26.3 109293 109292.8 19.2 198.3
250 5 0.75 151556 151560 151560 151556.5 6.2 25.6 151560 151560.3 8.5 181.2
250 10 0.25 58994 59019 59010 58985.8 10.6 28.4 59014 59009.5 60.0 215.2
250 10 0.5 108706 108607 108724 108705.7 10.1 29.1 108727 108722.4 49.9 204.0
250 10 0.75 151330 151363 151339 151329.4 8.8 28.9 151342 151339.9 24.3 196.4
250 30 0.25 56876 56959 56893 56855.7 11.3 32.9 56911 56891.4 55.8 218.1
250 30 0.5 106674 106686 106682 106654.6 13.0 34.9 106708 106692.4 80.2 217.5
250 30 0.75 150444 150467 150457 150427.6 13.6 36.4 150471 150461.9 55.9 206.1
500 5 0.25 120616 120610 120623 120628 120623 120609.8 24.3 54.5 120630 120623.9 174.8 440.3
500 5 0.5 219503 219504 219507 219512 219507 219502.5 17.0 54.5 219513 219510.7 138.6 422.3
500 5 0.75 302355 302361 302360 302363 302360 302355.1 18.1 53.4 302362 302360.3 82.9 401.1
500 10 0.25 118566 118584 118600 118629 118569 118540.8 26.4 58.0 118605 118580.7 242.8 467.5
500 10 0.5 217275 217297 217298 217326 217295 217260.6 25.6 59.4 217312 217288.6 216.0 459.0
500 10 0.75 302556 302562 302575 302603 302572 302553.4 22.1 59.5 302591 302577.3 165.8 434.0
500 30 0.25 115474 115520 115547 115624 115481 115435.6 31.0 69.8 115559 115493.0 208.1 454.6
500 30 0.5 216157 216180 216211 216275 216188 216138.2 28.8 73.8 216221 216184.8 189.4 452.0
500 30 0.75 302353 302373 302404 302447 302369 302343.7 26.4 76.7 302405 302382.9 193.2 438.0

Average 120153.7 120162.7 120161.6 120146.5 11.9 34.5 120173.4 120163.8 74.8 239.9
t* = average best-solution time (CPU seconds); T = average execution time (CPU seconds).

 31

Table 4.2 The percentage gaps between DPSO+LS and Fix+LP+LS (Vasquez and Vimont, 2005)

Problem DPSO+LS

n m α Best Average
500 5 0.25 -0.0019% 0.0034%
500 5 0.5 -0.0003% 0.0006%
500 5 0.75 0.0003% 0.0009%
500 10 0.25 0.0204% 0.0407%
500 10 0.5 0.0063% 0.0172%
500 10 0.75 0.0039% 0.0085%
500 30 0.25 0.0562% 0.1133%
500 30 0.5 0.0248% 0.0417%
500 30 0.75 0.0138% 0.0212%
Average 0.0137% 0.0275%

We do not compare our algorithms with Fix+LP+TS (Vasquez and Vimont, 2005),

since Fix+LP+TS (Vasquez and Vimont, 2005) takes 7.6-33 hours on a Pentium4

2GHz PC to obtain the solution for each problem. In general, a metaheuristic does not

perform such a long time and the solution quality of Fix+LP+TS (Vasquez and

Vimont, 2005) could not be reached in a short computation time. However, we show

the percentage gaps between our DPSO+LS and Fix+LP+TS (Vasquez and Vimont,

2005) in Table 4.2. The percentage gaps show that the results of our DPSO+LS very

close to Fix+LP+TS (Vasquez and Vimont, 2005) in a short computation time.

4.9 Concluding Remarks

In this chapter we have presented a new discrete binary particle swarm

optimization (DPSO) for solving multidimensional 0-1 knapsack problems and a local

search procedure based on the concept of building blocks. The proposed DPSO

adopted new concepts of particle velocity and particle movement, and obtained good

solutions in a reasonable CPU time.

There are two possible extensions to this study for future research. First, the

 32

proposed DPSO can be extended for solving similar combinatorial optimization

problems: for example, multidimensional 0-1 knapsack problems with generalized

upper bound constraints. Second, the proposed DPSO can be extended for sequencing

and scheduling problems. Similar to this chapter, we may modify the velocity based

on the tabu list and the concept of building blocks, and modify particle movement

based on crossover and mutation of genetic algorithm. Furthermore, we may develop

the repair operator based on scheduling strategies for scheduling problems. Table 4.3

shows the summary of the DPSO for MKP.

Table 4.3 Summary of the DPSO for MKP

 Components The concept of this components

1
Particle Position
Representation

Binary variables

Since the solution of MKP is 0-1
variables, we represent the particle
position by binary variables, which have
the most Lamarckian.

Particle Velocity Blocks
2

Particle Movement Crossover operator

The binary variables is very appropriate to
build blocks, so we implement the concept
of building blocks and the relational
crossover operator.

3
Decoding
Operator

Repair operator
based on
pseudo-utility ratio

Restrict the search area in the feasible
region.

4 Other Strategies
Diversification
Selection
Local search

The diversification strategy can prevent
particles rapped in local optima.
The selection strategy can further
accelerate the speed of building blocks.
The local search can further improve the
solution quality,

 33

4.10 Appendix

A pseudo code of the DPSO for MKP is given below:

Initialize a population of particles with random positions and velocities.

Initialize the gbest solution by surrogate duality approach

repeat

update velocities according to Figure 4.1.

for each particle k do

move particle k according to Figure 4.2.

repair the solution of particle k according to repair operator (Figure 4.3).

calculate the fitness value of particle k.

perform local search on particle k (Figure 4.6).

end for

update gbest and pbest solutions according to diversification strategy (Figure
4.4).

perform selection according to selection strategy (Figure 4.5).

until maximum iterations is attained

 34

CHAPTER 5

A PARTICLE SWARM OPTIMIZATION FOR THE JOB

SHOP SCHEDULING PROBLEM

The original PSO is used to solve continuous optimization problems. Since the

solution space of a shop scheduling problem is discrete, we have to modify the

particle position representation, particle movement, and particle velocity to better suit

PSO for scheduling problems. In the PSO for JSSP, we modified the particle position

representation using preference-lists and the particle movement using a swap operator.

Moreover, we propose a diversification strategy and a local search procedure for

better performance.

5.1 Particle Position Representation

We implement the preference list-based representation (Davis, 1985), which has

half-Lamarckian (Cheng et al., 1996). In the preference list-based representation,

there is a preference list for each machine. For an n-job m-machine problem, we can

represent the particle k position by an m×n matrix, and the ith row is the preference list

of machine i, i.e.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

xxx

xxx
xxx

X

L

M

L

L

21

22221

11211

.

Where k
ijx { }n,,2,1 K∈ denotes the job on location j in the preference list

of machine i. Similar to GA (Kobayashi et al., 1995) decoding a chromosome

into a schedule, we also use Giffler & Thompson’s heuristic (Giffler &

 35

Thompson, 1960) to decode a particle’s position to an active schedule. The G&T

algorithm is shown as Figure 5.1. For example, there are 4 jobs and 4 machines

as shown on

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2143
1432
4312
3421

kX .

Table 5.1, and the position of particle k is

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2143
1432
4312
3421

kX .

Table 5.1 A 4×4 job shop problem example

jobs machine sequence processing times
1 1, 2, 4, 3 11p = 5, 21p = 4, 41p = 2, 31p = 2
2 2, 1, 3, 4 22p = 4, 12p = 3, 32p = 3, 42p = 2
3 4, 1, 3, 2 43p = 2, 13p = 2, 33p = 3, 23p = 4
4 3, 1, 4, 2 34p = 3, 14p = 2, 44p = 3, 24p = 4

We can decode kX to an active schedule following the G&T algorithm:

Initialization

S =φ ; },,,{ 34432211 oooo=Ω .

Iteration 1

11s = 0, 22s = 0, 43s =0, 34s =0; 11f = 5, 22f = 4, 43f = 2, 34f = 3; *f =

min{ 11f , 22f , 43f , 34f } = 2, *m =4.

Identify the operation set }{ 43oO = ; choose operation 43o , which is ahead

of others in the preference list of machine 4, and add it into schedule

S , as illustrated in Figure 5.2(a).

Update Ω ={ 34132211 ,,, oooo }.

 36

Notation:

ijo : the operation of job j that needs to be processed on machine i.

S : the partial schedule that contains scheduled operations.

Ω : the set of schedulable operations.

ijs : the earliest time at which Ω∈ijo could be started.

ijp : the processing time of ijo .

ijf : the earliest time at which Ω∈ijo could be finished, ijf = ijs + ijp .

G&T algorithm:

Initialize S ← φ ; Ω is initialized to contain all operations without

predecessors.

repeat

Determine }{min*
ij

o
ff

ij Ω∈
← and the machine *m on which *f

could be realized.

Identify the operation set Ο ← },,|{ ** miofso ijijij =Ω∈< .

Choose *
ijo from the operation set O , where *

ijo is ahead of

others in the preference list of machine *m ; add *
ijo to S ,

and assign ijs as the starting time of *
ijo .

Delete *
ijo from Ω and include its immediate successor in Ω

if *
ijo is not the last operation of job j.

Until Ω is empty.

Figure 5.1 The G&T algorithm

 37

M1

M2

M3

M4 (4,3)

time 5 10 15 20 25

Figure 5.2(a) Partial schedule after the operation 43o scheduled.

Iteration 2

11s = 0, 22s = 0, 13s =2, 34s =0; 11f = 5, 22f = 4, 13f = 4, 34f = 3; *f =

min{ 11f , 22f , 13f , 34f } = 3, *m =4.

Identify the operation set }{ 34oO = ; choose operation 34o , which is ahead

of others in the preference list of machine 3, and add it into schedule

S , as illustrated in Figure 5.2(b).

Update Ω ={ 14132211 ,,, oooo }.

M1

M2

M3 (3,4)

M4 (4,3)

time 5 10 15 20 25

Figure 5.2(b) Partial schedule after the operation 34o scheduled.

Iteration 3

11s = 0, 22s = 0, 13s =2, 14s =3; 11f = 5, 22f = 4, 13f = 4, 14f = 5; *f =

min{ 11f , 22f , 13f , 14f } = 3, *m =1.

Identify the operation set },{ 1311 ooO = ; choose operation 11o , which is

ahead of others in the preference list of machine 1, and add it into

schedule S , as illustrated in Figure 5.2(c).

Update Ω ={ 14132221 ,,, oooo }.

 38

M1 (1,1)

M2

M3 (3,4)

M4 (4,3)

time 5 10 15 20 25

Figure 5.2(c) Partial schedule after the operation 11o scheduled.

Iteration 4

21s = 5, 22s = 0, 13s =5, 14s =5; 21f = 9, 22f = 4, 13f = 7, 14f = 7; *f =

min{ 21f , 22f , 13f , 14f } = 4, *m =2.

Identify the operation set }{ 22oO = ; choose operation 22o , which is ahead

of others in the preference list of machine 2, and add it into schedule

S , as illustrated in Figure 5.2(d).

Update Ω ={ 14131221 ,,, oooo }.

M1 (1,1)

M2 (2,2)

M3 (3,4)

M4 (4,3)

time 5 10 15 20 25

Figure 5.2(d) Partial schedule after the operation 22o scheduled.

Iteration 5

21s = 5, 12s = 5, 13s =5, 14s =5; 21f = 9, 12f = 7, 13f = 7, 14f = 7; *f =

min{ 21f , 12f , 13f , 14f } = 7, *m =1.

Identify the operation set },,{ 141312 oooO = ; choose operation 12o , which is

ahead of others in the preference list of machine 1, and add it into

schedule S , as illustrated in Figure 5.2(e).

Update Ω ={ 14133221 ,,, oooo }.

 39

M1 (1,1) (1,2)

M2 (2,2)

M3 (3,4)

M4 (4,3)

time 5 10 15 20 25

Figure 5.2(e) Partial schedule after the operation 12o scheduled.

Iteration 6

21s = 5, 32s = 8, 13s =8, 14s =8; 21f = 9, 32f = 11, 13f = 9, 14f = 9; *f =

min{ 21f , 32f , 13f , 14f } = 9, *m =2.

Identify the operation set }{ 21oO = ; choose operation 21o , which is ahead

of others in the preference list of machine 2, and add it into schedule

S , as illustrated in Figure 5.2(f).

Update Ω ={ 14133241 ,,, oooo }.

M1 (1,1) (1,2)

M2 (2,2) (2,1)

M3 (3,4)

M4 (4,3)

time 5 10 15 20 25

Figure 5.2(f) Partial schedule after the operation 21o scheduled.

Iteration 7

41s = 9, 32s = 8, 13s =8, 14s =8; 41f = 11, 32f = 11, 13f = 9, 14f = 9; *f =

min{ 41f , 32f , 13f , 14f } = 9, *m =1.

Identify the operation set },{ 1413 ooO = ; choose operation 14o , which is

ahead of others in the preference list of machine 1, and add it into

schedule S , as illustrated in Figure 5.2(g).

Update Ω ={ 44133241 ,,, oooo }.

 40

M1 (1,1) (1,2) (1,4)

M2 (2,2) (2,1)

M3 (3,4)

M4 (4,3)

time 5 10 15 20 25

Figure 5.2(g) Partial schedule after the operation 14o scheduled.

Iteration 8

41s = 9, 32s = 8, 13s =10, 44s =10; 41f = 11, 32f = 11, 13f = 12, 44f = 13;

*f = min{ 41f , 32f , 13f , 44f } = 11, *m =4.

Identify the operation set },{ 4441 ooO = ; choose operation 44o , which is

ahead of others in the preference list of machine 4, and add it into

schedule S , as illustrated in Figure 5.2(h).

Update Ω ={ 24133241 ,,, oooo }.

M1 (1,1) (1,2) (1,4)

M2 (2,2) (2,1)

M3 (3,4)

M4 (4,3) (4,4)

time 5 10 15 20 25

(h) Partial schedule after the operation 44o scheduled.

Iteration 9

41s = 13, 32s = 8, 13s =10, 24s =13; 41f = 15, 32f = 11, 13f = 12, 24f = 17;

*f = min{ 41f , 32f , 13f , 44f } = 11, *m =3.

Identify the operation set }{ 32oO = ; choose operation 32o , which is ahead

of others in the preference list of machine 3, and add it into schedule

S , as illustrated in Figure 5.2(i).

Update Ω ={ 24134241 ,,, oooo }.

 41

M1 (1,1) (1,2) (1,4)

M2 (2,2) (2,1)

M3 (3,4) (3,2)

M4 (4,3) (4,4)

time 5 10 15 20 25

Figure 5.2(i) Partial schedule after the operation 32o scheduled.

Iteration 10

41s = 13, 42s = 11, 13s =10, 24s =13; 41f = 15, 42f = 13, 13f = 12, 24f = 17;

*f = min{ 41f , 42f , 13f , 24f } = 12, *m =1.

Identify the operation set }{ 13oO = ; choose operation 13o , which is ahead

of others in the preference list of machine 1, and add it into schedule

S , as illustrated in Figure 5.2(j).

Update Ω ={ 24334241 ,,, oooo }.

M1 (1,1) (1,2) (1,4) (1,3)

M2 (2,2) (2,1)

M3 (3,4) (3,2)

M4 (4,3) (4,4)

time 5 10 15 20 25

Figure 5.2(j) Partial schedule after the operation 13o scheduled.

Iteration 11

41s = 13, 42s = 11, 33s =12, 24s =13; 41f = 15, 42f = 13, 33f = 15, 24f = 17;

*f = min{ 41f , 42f , 33f , 24f } = 13, *m =4.

Identify the operation set }{ 42oO = ; choose operation 42o , which is ahead

of others in the preference list of machine 4, and add it into schedule

S , as illustrated in Figure 5.2(k).

Update Ω ={ 243341 ,, ooo }.

 42

M1 (1,1) (1,2) (1,4) (1,3)

M2 (2,2) (2,1) (4,2)

M3 (3,4) (3,2)

M4 (4,3) (4,4)

time 5 10 15 20 25

Figure 5.2(k) Partial schedule after the operation 42o scheduled.

Iteration 12

41s = 13, 33s =12, 24s =13; 41f = 15, 33f = 15, 24f = 17; *f = min{ 41f ,

33f , 24f } = 15, *m =4.

Identify the operation set }{ 41oO = ; choose operation 41o , which is ahead

of others in the preference list of machine 4, and add it into schedule

S , as illustrated in Figure 5.2(l).

Update Ω ={ 243331 ,, ooo }.

M1 (1,1) (1,2) (1,4) (1,3)

M2 (2,2) (2,1) (4,2)

M3 (3,4) (3,2)

M4 (4,3) (4,4) (4,1)

time 5 10 15 20 25

Figure 5.2(l) Partial schedule after the operation 41o scheduled.

Iteration 13

31s = 15, 33s =12, 24s =13; 31f = 17, 33f = 15, 24f = 17; *f = min{ 31f ,

33f , 24f } = 15, *m =3.

Identify the operation set },{ 3331 ooO = ; choose operation 33o , which is

ahead of others in the preference list of machine 3, and add it into

schedule S , as illustrated in Figure 5.2(m).

Update Ω ={ 242331 ,, ooo }.

 43

M1 (1,1) (1,2) (1,4) (1,3)

M2 (2,2) (2,1) (4,2)

M3 (3,4) (3,2) (3,3)

M4 (4,3) (4,4) (4,1)

time 5 10 15 20 25

Figure 5.2(m) Partial schedule after the operation 33o scheduled.

Iteration 14

31s = 15, 23s =15, 24s =13; 31f = 17, 33f = 19, 24f = 17; *f = min{ 31f ,

23f , 24f } = 17, *m =3.

Identify the operation set }{ 31oO = ; choose operation 31o , which is ahead

of others in the preference list of machine 3, and add it into schedule

S , as illustrated in (n).

Update Ω ={ 2423 , oo }.

M1 (1,1) (1,2) (1,4) (1,3)

M2 (2,2) (2,1) (4,2)

M3 (3,4) (3,2) (3,3) (3,1)

M4 (4,3) (4,4) (4,1)

time 5 10 15 20 25

Figure 5.2(n) Partial schedule after the operation 31o scheduled.

Iteration 15

23s =15, 24s =13; 33f = 19, 24f = 17; *f = min{ 23f , 24f } = 17, *m =2.

Identify the operation set },{ 2423 ooO = ; choose operation 23o , which is

ahead of others in the preference list of machine 2, and add it into

schedule S , as illustrated in (o).

Update Ω ={ 24o }.

 44

M1 (1,1) (1,2) (1,4) (1,3)

M2 (2,2) (2,1) (4,2) (2,3)

M3 (3,4) (3,2) (3,3) (3,1)

M4 (4,3) (4,4) (4,1)

time 5 10 15 20 25

Figure 5.2(o) Partial schedule after the operation 23o scheduled.

Iteration 16

24s =19; 24f = 23; *f = min{ 24f } = 23, *m =2.

Identify the operation set }{ 24oO = ; choose operation 24o , which is ahead

of others in the preference list of machine 2, and add it into schedule

S , as illustrated in Figure 5.2(p).

Update φ=Ω , and then stops.

M1 (1,1) (1,2) (1,4) (1,3)

M2 (2,2) (2,1) (4,2) (2,3) (2,4)

M3 (3,4) (3,2) (3,3) (3,1)

M4 (4,3) (4,4) (4,1)

time 5 10 15 20 25

Figure 5.2(p) Partial schedule after the operation 24o scheduled.
Figure 5.2 An illustration of decoding a particle position into a schedule.

5.2 Particle Velocity

When a particle moves in a continuous solution space, due to inertia, the particle

velocity not only moves the particle to a better position, but also prevents the particle

from moving back to the current position. The velocity can be controlled by inertia

weight w in equation (2.1). The larger the inertia weight, the harder the particle backs

to the current position.

If we implement preference list-based representation, the velocity of operation

ijo of particle k is denoted by k
ijv , }1,0{∈k

ijv , where ijo is the operation of job j

 45

that needs to be processed on machine i. When k
ijv equals 1, it means that operation

ijo in the preference list of particle k (the position matrix, kX) has just been moved

to the current location, and we should not move it in this iteration. On the contrary, if

operation ijo is moved to a new location in this iteration, we set k
ijv ←1, indicating

that ijo has been moved in this iteration and should not been moved in the next few

iterations. The particle velocity can prevent recently moved operations from moving

back to the original location in the next iterations.

Just as the original PSO is applied to a continuous solution space, inertia weight

w is used to control particle velocities. We randomly update velocities at the

beginning of the iteration. For each particle k and operation ijo , if k
ijv equals 1, k

ijv

will be set to 0 with probability (1- w). This means that if operation ijo is fixed on

the current location in the preference list of particle k, ijo is allowed to move in this

iteration with probability (1- w). The newly moved operations will then be fixed for

more iterations with larger inertia weight, and fixed for less iterations with smaller

inertia weight. The pseudo code for updating velocities is given as Figure 5.3.

for each particle k and operation ijo do
rand ~ U(0,1)
if)()0(wrandandvk

ij ≥≠ then
0←k

ijv
end if

end for

Figure 5.3 The pseudo code of updating velocities.

5.3 Particle Movement

The particle movement is based on the swap operator. If k
ijv =0, the job j on k

ix

will be moved to the corresponding location of k
ipbest with probability 1c , and will

 46

be moved to the corresponding location of igbest with probability 2c . Where k
ix

is the preference list of machine i of particle k, k
ipbest is the preference list of

machine i of kth pbest solution, igbest is the preference list of machine i of gbest

solution, 1c and 2c are constant between 0 and 1, and 121 ≤+ cc . The process is

described as follows:

Step 1: Randomly choose a location l in k
ix .

Step 2: Denote the job on location l in k
ix by 1J .

Step 3: Find out the location of 1J in k
ipbest with probability 1c ,

or find out the location of 1J in igbest with probability

2c . Denote the location that has been found in k
ipbest or

igbest by l ′ , and denote the job in location l ′ in k
ix by

2J .

Step 4: If 2J has been denoted, k
iJv

1
=0, and k

iJv
2
=0, then swap 1J

and 2J in k
ix , and set k

iJv
1
←1.

Step 5: If all the locations in k
ix have been considered, then stop.

Otherwise, if nl < , then set 1+← ll , else 1←l , and go

to Step 2, where n is the number of jobs.

For example, there is a 5-job problem, and k
ix , k

ipbest , igbest , and k
iv are

showed as Figure 5.4(a). We set 1c =0.5 and 2c =0.3 in this instance.

In Step 1, we randomly choose a location l =3. In Step 2, the job in the 3rd

location in k
ix is job 4, i.e. 1J = 4. In Step 3, we generate a random variable rand

between 0 and 1, and the generated random variable rand is 0.6. Since

211 ccrandc +≤< , we find out the location of 1J in igbest . The location l ′=5, and

the job in the 5th location in k
ix is job 5, i.e. 2J =5. Step 1 to Step 3 is shown as

 47

Figure 5.4(b). In Step 4, since 04 =k
iv and 05 =k

iv , swap job 4 and job 5 in k
ix and

set k
iv 4←1 is shown as Figure 5.4(c). In Step 5, set 4←l , and go to Step 2. Repeat

the procedure until all the locations in k
ix have been considered.

We also adopt a mutation operator in our algorithm. After a particle moves to a

new position, we randomly choose a machine and two jobs on the machine, and then

swap these two jobs, disregarding k
ijv . The particle movement pseudo code is given

as Figure 5.5.

 48

}00100{=k
iv

k
ipbest 4 3 1 5 2

igbest 2 1 5 3 4

k
ix 3 1 4 2 5

(a) The k
ix , k

ipbest , igbest , and k
iv .

}00100{=k
iv

k
ipbest 4 3 1 5 2

igbest 2 1 5 3 4

k
ix 3 1 4 2 5

4,3 1 == Jl 5,5 2 ==′ Jl
(b) Randomly choose l and denote J1 and J2.

}01100{=k
iv

k
ipbest 4 3 1 5 2

igbest 2 1 5 3 4

k
ix 3 1 5 2 4

(c) Swap job4 and job5 in k

ix ; set k
iv 4←1.

Figure 5.4 An instance of particle movement.

 49

for i←1 to m do //for machine 1 to machine m
n1 tobetweennumberrandomintegeranlstart ←

startll ←
for j←1 to n do //for all location

rand ~ U(0,1)
thenif)(1crand ≤

k
ilxJ ←1

k
ipbestinJoflocationthel 1←′

k
lixJ ′←2

thenandandif)()0()0(2121
JJvv k

iJ
k
iJ ≠==

2Jxk
il ← ; 1Jxk

li ←′ ; 1
1

←k
iJv

ifend
ifend

thenif)(211 ccrandc +≤<
k
ilxJ ←1

igbestinJoflocationthel 1←′
k
lixJ ′←2

thenandandif)()0()0(2121
JJvv k

iJ
k
iJ ≠==

2Jxk
il ← ; 1Jxk

li ←′ ; 1
1

←k
iJv

ifend
ifend

jll start +←
thenif)(nl >

nll −←
ifend

forend
forend

//mutation operator
mtobetweenmachineachooserandomlyM 1←

n1 tobetweenlocationachooserandomlyl ←
n1 tobetweenlocationachooserandomlyl ←′

k
lMxJ ←1 ; k

lMxJ ′←2

2Jxk
lM ← ; 1Jxk

lM ←′
1

1
←k

JMv ; 1
2

←k
JMv

//mutation operator

Figure 5.5 Pseudo code of particle movement.

 50

5.4 The Diversification Strategy

If all the particles have the same pbest solutions, they will be trapped into local

optima. To prevent such a situation, we proposed a diversification strategy to keep the

pbest solutions different (i.e. keeps the makespans of pbest solutions different). In the

diversification strategy, the pbest solution of each particle is not the best solution

found by the particle itself, but one of the best N solutions found by the swarm so far

where N is the size of the swarm. Once any particle generates a new solution, the

pbest and gbest solutions will be updated in these three situations:

1. If the particle’s fitness value is better than the fitness value of the gbest

solution, set the worst pbest solution equal to the current gbest solution, and

set the gbest solution equal to the particle solution.

2. If the particle’s fitness value is worse than the gbest solution, but better then

the worst pbest solution and not equal to any gbest or pbest solution, set the

worst pbest solution equal to the particle solution.

3. If the particle’s fitness value is equal to any pbest or gbest solution, replace

the pbest or gbest solution (whose fitness value is equal to the particle

fitness value) with the particle solution.

The pseudo code for updating the pbest solution and gbest solution with

diversification strategy is given as Figure 5.6.

 51

N: the size of the swarm
kS : the schedule generated by particle k

worstpbest : the worst solution of pbest solutions

maxC (kS): the makespan of kS
//↓ situation 1 as described in 3.4

thenif))()((maxmax gbestCSC k <
gbestpbest worst ← ; kSgbest ←

//↑ situation 1 as described in 3.4

thenifelse))()((C maxmax
worstk pbestCS ≤

//↓ situation 3 as described in 3.4
the_same = 0

thenif))()((maxmax gbestCSC k =
kSgbest ← ; the_same = 1

else
dotofor Nk 1←′

thenif))()((maxmax
kk pbestCSC ′=

kk Spbest ←′ ; the_same = 1
break
ifend

forend
ifend

//↑ situation 3 as described in 3.4
//↓ situation 2 as described in 3.4

thenif)0_(=samethe
kworst Spbest ←

ifend
//↑ situation 2 as described in 3.4
ifend

Figure 5.6 Pseudo code of updating pbest solution and gbest solution with diversification strategy.

5.5 Local Search

The tabu search is a metaheuristic approach and a strong local search mechanism.

In the tabu search, the algorithm starts from an initial solution and improves it

iteratively to find a near-optimal solution. This method was proposed and formalized

primarily by Glover (1986, 1989, 1990). We applied the tabu search proposed by

Nowicki and Smutnicki (1996) but without back jump tracking. We briefly describe

Nowicki and Smutnicki’s method as follows:

 52

．The neighborhood structure

Nowicki and Smutnicki’s method randomly chooses a critical path in the current

schedule, and then represents the critical path in terms of blocks. The neighborhood

exchanges the first two and the last two operations in every block, but excludes the

first and last operations in the critical path. The research of Jain et al. (2000) shows

that the strategy used to generate the critical path does not materially affect the final

solution. Therefore, in this research, we randomly choose one critical path if there is

more than one critical path. For example, there is a schedule for a 4-job, 3-machine

problem, as shown in Figure 5.7(a). We can find that there are two critical paths:

CP1={o31, o11, o13, o33} and CP2={o31, o32, o22, o21, o24, o14}, where ijo is the

operation of job j that needs to be processed on machine i. If we randomly choose CP2,

we can represent CP2 in terms of blocks: {o31, o32}, {o22, o21, o24}, and {o14}. The

possible moves in this schedule are exchanging {o22, o21} or {o21, o24} (see Figure

5.7(b)).

 o11 o13 o12 o14

o23 o22 o21 o24

o31 o32 o34 o33

M1

M2

M3

(a) An instance of job shop schedule.

 o11 o13 o12 o14

o23 o22 o21 o24

o31 o32 o34 o33

M1

M2

M3

 (b) Neighborhood defined by Nowicki & Smutnicki (1996).

 53

Figure 5.7 An illustration of neighborhoods in tabu search.

．Tabu list

The tabu list consists of maxt operation pairs that have been moved in the last

maxt moves in the tabu search. If a move {
1iJo ,

2iJo } has been performed, this move

replaces the oldest move in the tabu list, and moving these same two operations is not

permitted while the move is recorded in the tabu list.

．Back jump tracking

When finding a new best solution, store the current state (the new best solution,

set of moves, and tabu list) in a list L. After the tabu search algorithm performs

maxiter_tabu iterations, restart the tabu search algorithm from the latest recorded state,

and repeat it until the list L is empty. We did not implement the back jump tracking in

our algorithm to reduce computation time.

We implement a tabu search procedure after a particle generates a new solution

for further improved solution quality. The tabu search will be stopped after 100 moves

that do not improve the solution. The research of Jain et al. (2000) shows that the

solution quality of tabu search (Nowicki & Smutnicki, 1996) is mainly affected by its

initial solution. Therefore, in the hybrid PSO, the purpose of the PSO process is to

provide good and diverse initial solutions to the tabu search.

5.6 Computational Results

There are three PSOs we tested: (1) priority-based PSO, of which the particle

position is represented by the priorities of operations, and implements the original

PSO design; (2) preference list-based PSO, of which the particle position is

represented by a preference list of machines; (3) hybrid PSO (HPSO), which is the

 54

preference list-based PSO with a local search mechanism. The PSOs were tested on

Fisher and Thompson (1963) (FT06, FT10 and FT20), Lawrence (1984) (LA01 to

LA40) and Taillard (1993) (TA01 to TA80) test problems. These problems are

available on the OR-Library web site (Beasley, 1990) (URL: http://people.brunel.

ac.uk/~mastjjb/jeb/info.html) and Taillard’s web site (URL:

http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonnance

ment.html).

In the preliminary experiment, four swarm sizes N (10, 20, 30, 50) were tested,

where N=30 was superior and used for all further studies. The other parameters of the

priority-based PSO were set to the same common settings as most of the previous

research: 0.21 =c , 0.22 =c , the inertia weight w is decreased linearly from 0.9 to

0.4 during a run, and the maximum value of ijx and ijv , Xmax and Vmax are equal

to the number of jobs n and n/5 respectively.

The parameters of the preference list-based PSO are determined experimentally.

The parameters 1c and 2c were tested between 0.1 and 0.5 in increments of 0.1,

and the parameter w was tested between 0 and 0.9 in increments of 0.1. The settings

5.01 =c , 3.02 =c and 5.0=w were superior. The length of the tabu list maxt was

set to 8 where the value is derived from Nowicki and Smutnicki (1996). The tabu

search will be stopped after 100 moves that do not improve the solution. The

priority-based PSO and the preference list-based PSO will be terminated after 105

iterations, and HPSO will be terminated after 103 iterations. The number of iterations

is determined by the computation time compared with Pezzella and Merelli (2000)

and Gonçalves et al. (2005).

The program was coded in Visual C++, optimized by speed, and run on an AMD

 55

Athlon 1700+ PC twenty times for each of the 123 problems. The proposed algorithm

is compared with Shifting Bottleneck (Adams et al., 1988; Balas & Vazacopoulos,

1998), Tabu Search (Sun et al., 1995; Nowicki & Smutnicki, 1996; Pezzella & Merelli,

2000), and Genetic Algorithm (Wang & Zheng, 2001; Gonçalves et al., 2005).

The computational results of FT and LA test problems are shown as Table 5.2.

The results show that the preference list-based PSO we proposed is much better than

the original design, the priority-based PSO. Since the number of instances tested by

each method is different, we cannot compare the result by average gap directly.

Nevertheless, the result obtained by HPSO is better then other algorithms that tested

all of the 43 instances, and the HPSO obtained the best-known solution for 41 of the

43 instances.

Table 5.3 shows the average computation time on FT and LA test problems in

CPU seconds. The ‘best-solution time’ is the average time that the algorithm takes to

first reach the final best solution, and the ‘total time’ is the average total computation

time that the algorithm takes during a run. In HPSO, there is about 99% computation

time spent on local search process. As mentioned in section 5.5, the solution quality of

tabu search (Nowicki & Smutnicki, 1996) is mainly affected by its initial solution, and

the main purpose of the PSO process is to provide good and diverse initial solutions to

tabu search. Therefore, the computational results show that the hybrid method, HPSO,

performs better than both TSAB and PSO, and its average gap is 0.356% less than

PSO.

We further tested HPSO on TA test problems (Taillard, 1993). The computational

results are shown in Table 5.4, and we particularly compared HPSO with TSSB

(Pezzella & Merelli, 2000) in Table 5.5. Since the maximum computation time of

TSSB is about 3×104 seconds and our machine is about ten times faster then TSSB

 56

(Pezzella & Merelli, 2000), we limited the maximum computation time of HPSO in 3

×103 seconds. As mentioned above, 99% of the computation time is spent on the local

search process in HPSO. Therefore, we do not reduce the computation time by

decreasing the number of iterations, but decreasing the percentage of particles that

perform a local search procedure. The HPSO will also be terminated after 103

iterations, but there are only 34.6% of particles randomly chosen to perform the local

search procedure in each iteration on TA51 to TA60 test problems, 26.6% on TA61 to

TA70 test problems, and 6.4% on TA71 to TA80 test problems.

Table 5.5 shows the comparison with TSSB (Pezzella & Merelli, 2000). The

HPSO performs better than TSSB on 7 of 8 problem sizes, and only worse than TSSB

on the 100×20 problem size. In the 100×20 problem sizes, the final best solutions are

obtained after 890 iterations of the average (so the best-solution time is very close to

the total time). Since the HPSO only performs 103 iterations for each run, it shows

that the particles of HPSO did not converge in 103 iterations, and can further improve

the solutions by increasing the maximum iteration. However, since we want to

compare HPSO with TSSB, we do not consider increasing the maximum iteration

because it takes too much computation time.

 57

Table 5.2 Computational result of FT and LA test problems.
 Shifting Bottleneck Tabu Search
 SBI SBII SB-RGLS1 SB-RGLS2 ACM TSAB TSSB

Problem Size
(n×m)

Best
Known
Solution
(BKS)

Adams et al.
(1988)

Balas
 &

Vazacopoulos
(1998)

Sun
et al.

(1995)

Nowicki
 &

Smutnicki
(1996)

Pezzella
 &

Merelli
(2000)

FT06 6×6 55 55 55 – – – 55 55
FT10 10×10 930 1015 930 930 930 930 930 930
FT20 20×5 1165 1290 1178 – – – 1165 1165
LA01 10×5 666 666 666 – – – 666 666
LA02 10×5 655 720 669 655 655 – 655 655
LA03 10×5 597 623 605 – – – 597 597
LA04 10×5 590 597 593 – – – 590 590
LA05 10×5 593 593 593 – – – 593 593
LA06 15×5 926 926 926 – – – 926 926
LA07 15×5 890 890 890 – – – 890 890
LA08 15×5 863 868 863 – – – 863 863
LA09 15×5 951 951 951 – – – 951 951
LA10 15×5 958 959 959 – – – 958 958
LA11 20×5 1222 1222 1222 – – – 1222 1222
LA12 20×5 1039 1039 1039 – – – 1039 1039
LA13 20×5 1150 1150 1150 – – – 1150 1150
LA14 20×5 1292 1292 1292 – – – 1292 1292
LA15 20×5 1207 1207 1207 – – – 1207 1207
LA16 10×10 945 1021 978 – – 975 945 945
LA17 10×10 784 796 787 – – 784 784 784
LA18 10×10 848 891 859 – – 848 848 848
LA19 10×10 842 875 860 842 842 842 842 842
LA20 10×10 902 924 914 – – 902 902 902
LA21 15×10 1046 1172 1084 1048 1046 1074 1047 1046
LA22 15×10 927 1040 944 – – 941 927 927
LA23 15×10 1032 1061 1032 – – 1032 1032 1032
LA24 15×10 935 1000 976 937 935 954 939 938
LA25 15×10 977 1048 1017 977 977 1010 977 979
LA26 20×10 1218 1304 1224 – – 1218 1218 1218
LA27 20×10 1235 1325 1291 1235 1235 1277 1236 1235
LA28 20×10 1216 1256 1250 – – 1245 1216 1216
LA29 20×10 1157 1294 1239 1164 1164 1234 1160 1168
LA30 20×10 1355 1403 1355 – – 1355 1355 1355
LA31 30×10 1784 1784 1784 – – 1784 1784 1784
LA32 30×10 1850 1850 1850 – – 1850 1850 1850
LA33 30×10 1719 1719 1719 – – 1719 1719 1719
LA34 30×10 1721 1721 1721 – – 1721 1721 1721
LA35 30×10 1888 1888 1888 – – 1888 1888 1888
LA36 15×15 1268 1351 1305 1268 1268 1303 1268 1268
LA37 15×15 1397 1485 1423 1397 1397 1422 1407 1411
LA38 15×15 1196 1280 1255 1198 1196 1245 1196 1201
LA39 15×15 1233 1321 1273 1233 1233 1269 1233 1240
LA40 15×15 1222 1326 1269 1226 1224 1255 1229 1233
Average Gap 3.8796% 1.3838% 0.1157% 0.0591% 1.5184% 0.0501% 0.1015%
of instance 43 43 13 13 26 43 43
of BKS obtained 16 20 8 11 13 37 36

 58

Table 5.2 (Continued)
Genetic Algorithm Particle Swarm Optimization

GASA HGA-Param PSO-priority based PSO-permutation based HPSO
Wang

&
Zheng
(2001)

Gonçalves

et al.
(2005)

Best

solution Average Best
solution Average Best

solution Average

55 55 55 58.9 55 55.0 55 55.0
930 930 1007 1086.0 937 965.2 930 932.0

1165 1165 1242 1296.7 1165 1178.8 1165 1165.0
666 666 681 705.0 666 666.0 666 666.0

– 655 694 729.7 655 662.1 655 655.0
– 597 633 657.5 597 602.3 597 597.0
– 590 611 648.1 590 592.9 590 590.0
– 593 593 601.1 593 593.0 593 593.0

926 926 926 940.2 926 926.0 926 926.0
– 890 890 941.0 890 890.0 890 890.0
– 863 863 896.6 863 863.0 863 863.0
– 951 953 991.8 951 951.0 951 951.0
– 958 958 976.1 958 958.0 958 958.0

1222 1222 1222 1235.3 1222 1222.0 1222 1222.0
– 1039 1039 1058.4 1039 1039.0 1039 1039.0
– 1150 1150 1179.0 1150 1150.0 1150 1150.0
– 1292 1292 1292.2 1292 1292.0 1292 1292.0
– 1207 1232 1271.7 1207 1207.0 1207 1207.0

945 945 1006 1033.5 945 969.8 945 945.2
– 784 833 883.5 784 787.1 784 784.0
– 848 901 959.9 848 856.8 848 848.0
– 842 895 945.8 842 851.5 842 842.0
– 907 963 1014.0 907 913.3 902 902.3

1058 1046 1201 1247.5 1055 1085.5 1046 1049.8
– 935 1046 1142.5 935 950.5 927 927.0
– 1032 1146 1205.1 1032 1032.0 1032 1032.0
– 953 1082 1140.9 937 967.8 935 937.9
– 986 1107 1176.6 983 1005.9 977 978.2

1218 1218 1409 1468.0 1218 1219.7 1218 1218.0
– 1256 1437 1495.4 1252 1269.1 1235 1251.4
– 1232 1434 1487.4 1216 1241.7 1216 1216.0
– 1196 1359 1429.8 1179 1215.8 1163 1168.8
– 1355 1517 1557.0 1355 1355.0 1355 1355.0

1784 1784 1886 1942.5 1784 1784.0 1784 1784.0
– 1850 2000 2065.6 1850 1850.0 1850 1850.0
– 1719 1832 1896.8 1719 1719.0 1719 1719.0
– 1721 1876 1953.5 1721 1721.0 1721 1721.0
– 1888 2027 2074.5 1888 1888.0 1888 1888.0

1292 1279 1437 1541.0 1291 1317.5 1268 1271.3
– 1408 1539 1628.0 1442 1475.1 1397 1401.6
– 1219 1370 1445.1 1228 1251.1 1196 1200.5
– 1246 1436 1499.4 1233 1285.6 1233 1233.0
– 1241 1380 1457.4 1236 1258.0 1224 1226.2

0.2764% 0.3916% 7.4021% 12.0940% 0.3719% 1.3491% 0.0159% 0.1091%
11 43 43 43 43
9 31 10 31 41

 59

Table 5.3 Computation time of FT and LA test problems (in CPU seconds).
 Particle Swarm Optimization**

HGA-Param
Gonçalves et
al. (2005)* PSO-priority

based
PSO-permutation

based HPSO

Problem Size
(n×m) Total time

Best
solution

time

Total
time

Best
solution

time

Total
time

Best
solution

time
 Total

time

FT06 6×6 13 0.0 34 0.0 32 0.0 28
FT10 10×10 292 1.0 112 21.7 91 4.1 157
FT20 20×5 204 3.0 180 19.2 138 19.8 219
LA01-05 10×5 40 0.4 60 5.3 50 0.5 38
LA06-10 15×5 94 1.0 114 0.1 92 0.1 61
LA11-15 20×5 192 3.5 177 0.5 143 0.1 100
LA16-20 10×10 227 0.6 109 15.5 90 19.9 139
LA21-25 15×10 602 4.8 208 37.2 164 59.6 295
LA26-30 20×10 1303 12.6 325 103.1 259 90.5 579
LA31-35 30×10 3691 46.9 652 31.4 520 3.0 1462
LA36-40 15×15 1920 7.4 331 68.4 254 105.2 471
* Run on an AMD Thunderbird 1.333 GHz PC.
**Run on an AMD Athlon 1700+ PC.

 60

Table 5.4 Computational result of TA test problems.
 TSAB TSSB HPSO

Problem Size
(n×m)

Optimal
solution
(or upper
bound)

Nowicki
 &

Smutnicki
(1996)

Pezzella
 &

Merelli
(2000)

Best
solution Average

TA01 15×15 1231 1241 1231 1236
TA02 15×15 1244 1244 1244 1244 1245
TA03 15×15 1218 1222 1222 1218 1224
TA04 15×15 1175 1175 1175 1180
TA05 15×15 1224 1233 1229 1224 1233
TA06 15×15 1238 1245 1238 1248
TA07 15×15 1227 1228 1228 1229
TA08 15×15 1217 1220 1220 1217 1220
TA09 15×15 1274 1282 1291 1274 1283
TA10 15×15 1241 1259 1250 1249 1264
TA11 20×15 (1359) 1371 1366 1386
TA12 20×15 (1367) 1377 1379 1370 1380
TA13 20×15 (1342) 1362 1350 1364
TA14 20×15 1345 1345 1345 1345 1350
TA15 20×15 (1339) 1360 1350 1364
TA16 20×15 (1360) 1370 1368 1377
TA17 20×15 1462 1481 1473 1480
TA18 20×15 (1396) 1413 1426 1407 1425
TA19 20×15 (1335) 1352 1351 1335 1353
TA20 20×15 (1348) 1362 1366 1358 1373
TA21 20×20 (1644) 1659 1658 1679
TA22 20×20 (1600) 1623 1614 1625
TA23 20×20 (1557) 1573 1559 1578
TA24 20×20 (1646) 1659 1654 1664
TA25 20×20 (1595) 1606 1616 1632
TA26 20×20 (1645) 1657 1666 1662 1679
TA27 20×20 (1680) 1697 1690 1712
TA28 20×20 (1603) 1622 1617 1627
TA29 20×20 (1625) 1629 1635 1634 1645
TA30 20×20 (1584) 1614 1589 1613
TA31 30×15 1764 1766 1771 1766 1772
TA32 30×15 (1795) 1841 1840 1823 1848
TA33 30×15 (1791) 1832 1833 1818 1834
TA34 30×15 (1829) 1846 1844 1879
TA35 30×15 2007 2007 2007 2010
TA36 30×15 1819 1825 1825 1843
TA37 30×15 1771 1815 1813 1795 1808
TA38 30×15 1673 1700 1697 1681 1701
TA39 30×15 1795 1811 1815 1796 1810
TA40 30×15 (1674) 1720 1725 1698 1714

 61

Table 5.4 (Continued)
 TSAB TSSB HPSO

Problem Size
(n×m)

Optimal
solution
(or upper
bound)

Nowicki
 &

Smutnicki
(1996)

Pezzella
 &

Merelli
(2000)

Best
solution Average

TA41 30×20 (2018) 2045 2047 2071
TA42 30×20 (1949) 1979 1970 1984
TA43 30×20 (1858) 1898 1899 1928
TA44 30×20 (1983) 2036 2019 2039
TA45 30×20 (2000) 2021 2010 2032
TA46 30×20 (2015) 2047 2041 2070
TA47 30×20 (1903) 1938 1935 1958
TA48 30×20 (1949) 2001 1996 1994 2022
TA49 30×20 (1967) 2013 1992 2015
TA50 30×20 (1926) 1975 1975 1998
TA51 50×15 2760 2760 2760 2760
TA52 50×15 2756 2756 2756 2758
TA53 50×15 2717 2717 2717 2717
TA54 50×15 2839 2839 2839 2840
TA55 50×15 2679 2679 2684 2679 2694
TA56 50×15 2781 2781 2781 2785
TA57 50×15 2943 2943 2943 2943
TA58 50×15 2885 2885 2885 2885
TA59 50×15 2655 2655 2655 2666
TA60 50×15 2723 2723 2723 2732
TA61 50×20 2868 2868 2868 2868 2896
TA62 50×20 2869 2902 2942 2930 2958
TA63 50×20 2755 2755 2755 2755 2774
TA64 50×20 2702 2702 2702 2702 2718
TA65 50×20 2725 2725 2725 2735 2759
TA66 50×20 2845 2845 2845 2848 2869
TA67 50×20 2825 2841 2865 2840 2861
TA68 50×20 2784 2784 2784 2784 2802
TA69 50×20 3071 3071 3071 3071 3096
TA70 50×20 2995 2995 2995 3005 3041
TA71 100×20 5464 5464 5519 5595
TA72 100×20 5181 5181 5211 5305
TA73 100×20 5568 5568 5581 5655
TA74 100×20 5339 5339 5355 5412
TA75 100×20 5392 5392 5466 5563
TA76 100×20 5342 5342 5396 5504
TA77 100×20 5436 5436 5444 5493
TA78 100×20 5394 5394 5394 5476
TA79 100×20 5358 5358 5363 5434
TA80 100×20 5183 5183 5183 5209 5364
Average Gap 0.7792% 0.8122% 0.5659% 1.4651%
of instance 33 80 80
of BKS obtained 12 31 27

 62

Table 5.5 Comparison with TSSB (Pezzella & Merelli, 2000) on TA test problems.
 TSSB* HPSO**

Problem Size
(n×m) Average gap Total time Average gap Time to get

best solution Total time

TA01-10 15×15 0.4502% 2175 0.0726% 99 514
TA11-20 20×15 1.1537% 2526 0.5023% 345 855
TA21-30 20×20 1.0840% 34910 0.7029% 401 1238
TA31-40 30×15 1.4475% 14133 0.7654% 1185 2026
TA41-50 30×20 1.9474% 11512 1.6133% 1734 2769
TA51-60 50×15 0.0187% 421 0.0000% 565 2909***

TA61-70 50×20 0.3960% 6342 0.3463% 2322 2862***
TA71-80 100×20 0.0000% 231 0.5244% 2797 3137***
Total Average Gap 0.8122% 0.5659%
* Run on a Pentium 133 MHz PC.
**Run on an AMD Athlon 1700+ PC.
***Decreasing the percentage to perform local search procedure reduces the computation time.

5.7 Concluding Remarks

We have presented a PSO for the job shop scheduling problem. We modified the

representation of particle position, particle movement, and particle velocity to better

suit it for JSSP. We also applied Tabu Search to improve solution quality. The

computational results show that HPSO can obtain better solutions than other methods.

For further research, if the HPSO we proposed is implemented to other sequential

ordering problems, there are two aspects for discussion: (1) Modify particle position

representation for better suitability to the problem. In the original PSO design, the

particles search solutions in a continuous solution space. Although most sequential

ordering problems can be represented by the priority-based representation, it may not

suit the sequential ordering problems. Preference list-based representation or other

representations will better suit the algorithm for sequential ordering problems. (2)

Design other particle movement methods and particle velocity for the modified

particle position representation. In addition, which particle movement method or

particle velocity is better could be a further research topic. Table 5.6 shows the

summary of the HPSO for JSSP.

 63

Table 5.6 Summary of the HPSO for JSSP

 Components The concept of this components

1
Particle Position
Representation

Preference-list
The preference-list representation has
more Lamarckian than priority-based
representation

Particle Velocity Tabu list
2

Particle Movement Swap operator

The swap operator is appropriate to
preference-list representation. It also fits
in with the concept of correlation and
connectivity.

3
Decoding
Operator

G&T algorithm
The G&T algorithm can restrict the search
area but not exclude the optimal solution.

4 Other Strategies
Diversification
Local search

The diversification strategy can prevent
particles rapped in local optima.
The local search can further improve the
solution quality,

 64

5.8 Appendix

The pseudo code of the PSO for JSSP is given below:

initialize a population of particles with random positions.

for each particle k do

apply G&T algorithm to decode kX into a schedule kS .

set the kth pbest solution (kpbest) equal to kS , kpbest ← kS .

end for

set gbest solution equal to the best kpbest .

repeat

update velocities according to Figure 5.3.

for each particle k do

move particle k according to Figure 5.5.

apply G&T algorithm to decode kx into kS .

update pbest solutions and gbest solution according to Figure 5.6.

apply tabu search on
*kS .

update pbest solutions and gbest solution according to Figure 5.6.

end for

until maximum iterations is attained

 65

CHAPTER 6

A PARTICLE SWARM OPTIMIZATION FOR THE OPEN

SHOP SCHEDULING PROBLEM

This chapter presents a new particle swarm optimization (PSO) for the open shop

scheduling problem (OSSP). Compared with the original PSO, we modified the

particle position representation using priorities, and the particle movement using an

insert operator. We also implemented a modified parameterized active schedule

generation algorithm (mP-ASG) to decode a particle position into a schedule. In

mP-ASG, we can reduce or increase the search area between non-delay schedules and

active schedules by controlling the maximum delay time allowed. Furthermore, we

hybridized our PSO with beam search. The computational results show that our PSO

found many new best solutions of the unsolved problems.

6.1 Particle Position Representation

In the previous researches (Liaw, 2000) and (Prins, 2000), an OSSP solution is

represented by a permutation list, which is an ordered list of operations. For example,

the following is a permutation list for a 3-job 2-machine problem:

][
654321

:
:

121323212211 oooooonpermutatio
index

Where ijo is the operation of job j that needs to be processed on machine i. In the list,

the prior operation has higher priority to be put into schedule. In our algorithm, we

represent the particle k position by an m×n priority matrix for an n-job m-machine

problem, i.e.

 66

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

xxx

xxx
xxx

X

L

M

L

L

21

22221

11211

.

Where k
ijx denotes the priority of operation ijo of particle k . We can transfer the

permutation list to a priority matrix. We randomly set k
ijx between)5.0(−p and

)5.0(+p , that is, 5.02 −+← randpxk
ij , where p is the location of ijo in the

permutation list, and 2rand is a random variable between 0 and 1. Therefore, the

operation with smaller k
ijx has higher priority to be put into schedule. The

permutation list mentioned above can be randomly transferred to

⎥
⎦

⎤
⎢
⎣

⎡
=

9.31.23.3
2.58.56.0kX .

When we implement insert operator, the advantage of the priority matrix is to

reduce the computation complexity. For example, in the permutation list mentioned

above, when we want to insert 12o into the third location of the permutation list, we

first need to move 13o to the sixth location, move 23o to fifth location, move 21o

to the fourth location, and than insert 12o to the third location, i.e.

][
654321

:
:

132321122211 oooooonpermutatio
index

On the average, the insert operator costs)2(nO steps for each insertion.

However, if we implement insert operator on a priority matrix, we only need to

set 5.03 2 −+← randxk
ij when we want to insert 12o to the third location of the

permutation list. Therefore, there is only one step needed for each insertion. For

 67

example, if the random number 2rand equals 0.9, the following is the kX after

12o inserted into the third location:

⎥
⎦

⎤
⎢
⎣

⎡
=

9.31.23.3
2.54.36.0kX .

In kX , both 12o and 21o are on the third location of the permutation list (i.e.

both kx12 and kx21 are between 2.5 and 3.5), but the values of kx12 and kx21 are

different due to the random variable 2rand . Consequently, the order of 12o and 21o

to be put into the schedule is also randomly determined. This means that, if the

priority matrix shows that there are more than two operations located on the same

location of the permutation list, the order of the operations on the same location is

randomly determined by the random variable 2rand . The detail of the particle

movement operator is described in section 6.3.

The PSO we proposed differs from the original PSO design in that the gbest and

pbest solutions do not record the best positions found so far, but rather the best

schedules generated by the decoding operator. In our algorithm, the decoding operator

puts the operations one by one into a schedule. The sequential order of the operations

that the decoding operator puts them into the schedule can be formulated as an

operation sequence. Then we can transfer the operation sequence to an m×n matrix

kS , i.e.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

sss

sss
sss

S

L

M

L

L

21

22221

11211

.

Where k
ijs denotes the location of operation ijo in the operation sequence. For

example, if the operation sequence generated by the decoding operator is as follows:

 68

][
654321

:
:

211123122213 oooooosequenceoperation
index

we can transfer the operation sequence to the matrix kS :

⎥
⎦

⎤
⎢
⎣

⎡
=

426
135kS .

When we update pbest and gbest solutions, we do not record the best positions

found so far (i.e. kX), but rather the locations of the operations in the operation

sequence, which is generated by the decoding operator (i.e. kS).

6.2 Particle Velocity

In the original PSO, the update of the particle velocity depends on the gbest and

the pbest solutions; and then each particle moves according to its velocity. There are

two purposes of the particle velocity: (a) moving a particle toward the gbest and the

pbest solutions; (b) keeping inertia to prevent particles getting trapped in local optima.

In our PSO, the particle velocity does not move particles toward the pbest and

the gbest solution, but only prevents particles getting trapped in local optima. If the

priority value is increased or decreased in this iteration, we keep the priority value

increasing or decreasing at the beginning of the next iteration with probability w ,

which is the inertia weight in our PSO. The larger the w , the more iterations the

priority value keeps increasing or decreasing, and it is harder for the particle to return

to the current position. For an n-job m-machine problem, we represent the velocity of

particle k by an m×n matrix, i.e.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

vvv

vvv
vvv

V

L

M

L

L

21

22221

11211

.

 69

Where k
ijv is the velocity of the operation ijo of particle k , }1,0,1{−∈k

ijv .

Compared with the original PSO, the velocity in our PSO only considers whether

the value of k
ijx is larger or smaller than k

ijpbest (ijgbest), but does not consider the

distance from k
ijx to k

ijpbest (ijgbest). In our algorithm, if k
ijx is reduced in this

iteration, that is, k
ijpbest (ijgbest) is smaller than k

ijx and k
ijx is set toward

k
ijpbest (ijgbest), we set k

ijv ← –1, indicating that k
ijx should be kept decreasing

one (i.e. 1−← k
ij

k
ij xx) in the next iteration with probability w . On the contrary, if

k
ijx is increased in this iteration, that is, k

ijpbest (ijgbest) is larger than k
ijx and k

ijx

is set toward k
ijpbest (ijgbest), we set k

ijv ← 1, indicating that k
ijx should be keep

increasing one (i.e. 1+← k
ij

k
ij xx) in the next iteration with probability w .

The velocity can be controlled by inertia weight w . We randomly update

velocities at the beginning of the iteration. For each particle k and operation ijo , if

k
ijv does not equal 0, k

ijv will be set to 0 with the probability (1– w). This means that

if k
ijx keeps increasing or decreasing, k

ijx stops keeping increasing or decreasing in

this iteration with the probability (1– w). The pseudo code for updating velocities is

given in Figure 6.1. The complexity of updating particle velocity for each particle is

)(mnO , where mn is the number of operations.

 70

for each particle k and operation ijo do
rand ~ U(0,1)
if)()0(wrandandvk

ij ≥≠ then

0←k
ijv

end if
end for

Figure 6.1 The pseudo code of updating velocities.

6.3 Particle Movement

In our PSO, the particle movement is based on the insert operator. As mentioned

in section 6.1, we set +← pxk
ij 2rand – 0.5 if we want to insert ijo to the pth

location in the permutation list. In addition, the location of operation ijo in the

operation sequence of kth pbest and gbest solution are k
ijpbest and ijgbest

respectively. When particle k moves, for all ijo , if k
ijv equals 0, the k

ijx will be set

to k
ijpbest + 2rand – 0.5 with probability 1c and set to ijgbest + 2rand – 0.5 with

probability 2c , where 2rand is a random variable between 0 and 1, and 1c and 2c

are constants between 0 and 1, and 121 ≤+ cc . For example, assume that kV , kX ,

kpbest , gbest , 1c , and 2c are as follows:

⎥
⎦

⎤
⎢
⎣

⎡−
=

00
01kV , ⎥

⎦

⎤
⎢
⎣

⎡
=

2.43.1
3.35.2kX , ⎥

⎦

⎤
⎢
⎣

⎡
=

23
41kpbest , ⎥

⎦

⎤
⎢
⎣

⎡
=

21
43

gbest ,

7.01 =c , 1.02 =c .

For 11o :

Because 011 ≠kv , kkk vxx 111111 +← , that is, 5.111 =kx .

For 12o :

Because 012 =kv , randomly generated random variable 1rand = 0.6.

 71

Because 1rand 1c≤ , randomly generated random variable 2rand = 0.3.

Because kk xpbest 1212 ≥ , set 112 ←kv , and then kx12
kpbest12← + 2rand - 0.5,

that is, 8.312 =kx .

For 21o :

Because 021 =kv , generate random variable 1rand = 0.9.

Because 1rand > 21 cc + , we do not change the value of kx21 .

For 22o :

Because 022 =kv , randomly generated random variable 1rand = 0.75.

Because 2111 ccrandc +≤< , randomly generated random variable 2rand =

0.8.

Because kxgbest 2222 < , set ←kv22 -1, and then kx22 22gbest← + 2rand - 0.5, that

is, 3.222 =kx .

Therefore, the kV and kX after particle k is moved are:

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

10
11

kV and ⎥
⎦

⎤
⎢
⎣

⎡
=

3.23.1
8.35.1kX .

Furthermore, we adopt a mutation operator in our algorithm. After a particle

moves to a new position, we randomly choose an operation and then mutate its

priority value k
ijx disregarding k

ijv . If)2/(mnxk
ij ≤ , we randomly set the value of

k
ijx between)(nmn − and mn , and set 1←k

ijv . If)2/(mnxk
ij > , we randomly set

the value of k
ijx between 0 and n , and set ←k

ijv –1. The pseudo code of particle

movement is given in Figure 6.2. The complexity of each particle movement is

)(mnO .

 72

for i←1 to m do //for all operations
for j←1 to n do

thenif)0(=k
ijv

1rand ~ U(0,1)
thenif)(11 crand ≤

thenif)(k
ij

k
ij xpbest ≥ 1=k

ijv else 1−=k
ijv

2rand ~ U(0,1)
5.02 −+← randpbestx k

ij
k
ij

ifend
thenif)(2111 ccrandc +≤<

thenif)(k
ijij xgbest ≥ 1=k

ijv else 1−=k
ijv

2rand ~ U(0,1)
5.02 −+← randgbestx ij

k
ij

ifend
ifend

forend
forend

//↓mutation operator
←),(ji Randomly choose an operation

1rand ~ U(0,1)
thenif))2/((nmxk

ij ×≤

1randnnmxk
ij ×−×← ; 1=k

ijv
else

1randnxk
ij ×← ; 1−=k

ijv
ifend

//↑mutation operator
Figure 6.2 The pseudo code of particle movement.

6.4 Decoding Operators

If we want to decode a particle position matrix into a schedule, we can put the

operations into a schedule by ascending order of k
ijx . However, if we directly put the

operations into a schedule by ascending order of k
ijx , it will be a semi-active schedule.

The set of semi-active schedules is very large and has poor quality in terms of

makespan. Therefore, we need an efficient decoding operator to decode the particle

 73

position into a schedule within a schedule set, which set size is smaller and with better

solution quality.

Because there is no precedence relation between the operations of each job in

OSSP, the solution space of OSSP is much larger than flow shop and job shop

scheduling problems. Therefore, a decoding operator, which can reduce the search

area but does not exclude the optimal solution, will improve the efficiency of PSO.

The optimal OSSP solution should be an active schedule. In an active schedule,

the processing sequence is such that no operation can be started any earlier without

delaying another operation (French , 1982). However, the set of active schedules is

usually very large and with poor quality in terms of makespan. The set of non-delay

schedules is a subset of active schedules. In a non-delay schedule, no machine is kept

idle at a time when it could begin processing other operations (French , 1982). The set

of non-delay schedules is much smaller than the active schedules, and usually with

better quality in terms of makespan. However, the optimal solution is not a non-delay

schedule in most of the test problems.

We will describe four different decoding operators that generate schedules

between a non-delay set and an active set. All the decoding operators are based on

Giffler and Thompson’s algorithm (Giffler & Thompson, 1960), which can decode a

particle position into an active schedule. We briefly describe the G&T algorithm for

OSSP in Figure 6.3. If we modify the operation set O in the G&T algorithm as

follows, this algorithm will decode the particle position into a non-delay schedule:

Determine }{min*
ijo

ss
ij Ω∈

← .

Identify the operation set Ο ← },|{ * Ω∈= ijijij osso .

 74

Moreover, we can generate schedules between a non-delay set and an active set by

modifying the operation set O in the G&T algorithm.

Notation:

ijo : the operation of job j that needs to be processed on machine i.

S : the partial schedule that contains scheduled operations.

Ω : the set of schedulable operations.

ijs : the earliest time at which Ω∈ijo could be started.

ijp : the processing time of ijo .

ijf : the earliest time at which Ω∈ijo could be finished, ijf = ijs + ijp .

G&T algorithm for OSSP:

Initialize S ← φ ; Ω is initialized to contain all operations.

repeat

Determine }{min*
ijo

ff
ij Ω∈

← .

Identify the operation set Ο ← },|{ * Ω∈< ijijij ofso .

Choose *
ijo from the operation set O with the smallest k

ijx , add

*
ijo to S , and assign ijs as the starting time of *

ijo .

Delete *
ijo from Ω .

Until Ω is empty.

Figure 6.3 The G&T algorithm for OSSP.

 75

6.4.1 Decoding Operator 1 (A-ND)

The first decoding operator randomly identifies the operation set O in the

active set or the non-delay set. It was first proposed in (Prins, 2000) and was also

proposed in (Blum, 2005). It can be reached by modifying the operation set O in the

G&T algorithm:

Determine }{min*
ij

o
ss

ij Ω∈
← and }{min*

ij
o

ff
ij Ω∈

← .

Randomly identify the operation set Ο equal to },|{ * Ω∈< ijijij ofso

or },|{ * Ω∈= ijijij osso with probability 0.5 respectively.

To determine *s and *f costs)(mnO each, and to choose *
ijo from the

operation set O with the smallest k
ijx also costs)(mnO . There are mn

operations needing to be schedule, hence the complexity of decoding operator 1 is

)(22nmO .

6.4.2 Decoding Operator 2 (mP-ASG)

Gonçalves et al. (2005) proposed a parameterized active schedule generation

algorithm (P-ASG) for the job shop scheduling problem. We (Sha & Hsu, 2006)

modified the algorithm based on the G&T algorithm for better performance and so it

is easier to implement. The modified parameterized active schedule generation

algorithm (mP-ASG) can also be applied to OSSP.

The basic idea of parameterized active schedules is to control the search area by

controlling the delay times that each operation is allowed. If all of the delay times are

equal to zero, the set of parameterized active schedules is equivalent to non-delay

schedules. On the contrary, if all of the delay times are equal to infinity, the set of

 76

parameterized active schedules is equivalent to the active schedules. Therefore, the set

of parameterized active schedules is between the non-delay schedules and the active

schedules. Fig. 5 (Gonçalves et al., 2005) shows the relationship between the sets of

semi-active, active, non-delay, and parameterized active schedules. It also shows that

the size of the parameterized active schedules depends upon the delay times that each

operation is allowed.

 Semi-Active

Active

Non-Delay

Semi-Active

Active

Non-Delay

Parameterized active

Delay Time 1 Delay Time 2

Delay Time 1 < Delay Time 2

Figure 6.4 Parameterized active schedules.

In our mP-ASG, we defined the delay time delay ← tdelayweighsf ×−)(** , so

that modifying the operation set O in the G&T algorithm can generate the

parameterized active schedules:

Determine }{min*
ijo

ss
ij Ω∈

← , }{min*
ijo

ff
ij Ω∈

← , and delay ← ×−)(** sf

tdelayweigh .

Identify the operation set Ο ← },|{ * Ω∈+≤ ijijij odelaysso .

The value of tdelayweigh is between 0 and 1 for controlling the search area.

When tdelayweigh equals 0, the operation set Ο is equal to the non-delay set. On

 77

the contrary, when tdelayweigh equals 1, the operation set Ο is equal to the active

set. In our PSO, tdelayweigh increases linearly from 0 to 1 during a run. This means

that the PSO searches solutions near to the non-delay set in earlier iterations for better

initial solutions, and then enlarges the search area to prevent missing the optimal

solution. As with decoding operator 1, the complexity of decoding operator 2 is

)(22nmO .

6.4.3 Decoding Operator 3 (mP-ASG2)

We implement fathoming constraints in mP-ASG to further reduce the size of the

operation set Ο . The fathoming constraints originate from one of the fathoming

criteria in the branch-and-bound algorithm. One of the fathoming criteria in the

branch-and-bound algorithm is that, if the lower bound of a partial solution is larger

than the current upper bound (for a minimization problem), the partial solution is

fathomed. Hence the partial solution need not be investigated any further because it

does not yield a better solution than the current upper bound.

In OSSP, the lower bound of a partial schedule after ijo is put into it can be

roughly estimated by },max{ J
jij

M
iij rsrs ++ , where M

ir (J
jr) is the sum of the

remaining process times on machine i (job j). Therefore, we can fathom whether

the lower bound of a partial schedule after ijo is put into it is larger than current

upper bound — the makespan of the gbest solution,)(max gbestC , by whether ijo fits

in with the following constraint:

)(},max{ max gbestCrsrs J
jij

M
iij ≤++ (5.1)

that is,

 78

M
iij rgbestCs −≤)(max (5.2)

and

J
jij rgbestCs −≤)(max (5.3)

However, we cannot ensure that the lower bounds of all the generated partial

schedules are less than)(max gbestC . If the lower bound of a partial schedule is larger

than)(max gbestC , there is no unscheduled operation to fit in with constraints (5.2)

and (5.3). To avoid such a situation, we modify the constraints by:

})(,max{ max
M

i
M
iij rgbestCss −≤ (5.4)

and

})(,max{ max
J
j

J
jij rgbestCss −≤ (5.5)

where }|{min Ω∈=
∀

ijij
j

M
i oss and }|{min Ω∈=

∀
ijij

i

J
j oss . This means that

when there is no unscheduled operation to fit in with constraints (5.2) and (5.3) on

some machines or jobs in the partial schedule, we prevent the machines or jobs being

idle as much as possible.

We name the constraints (5.4) and (5.5) “fathoming constraints”. The fathoming

constraints are used to reduce further the size of the operation set Ο . The

parameterized active schedules with fathoming constraints can be generated by

modifying the operation set O in the G&T algorithm:

Determine }{min*
ij

o
ss

ij Ω∈
← , }{min*

ij
o

ff
ij Ω∈

← , delay ← ×−)(** sf

tdelayweigh , and M
is , J

js , M
ir , J

jr for all i , j .

 79

Identify the operation set Ο ← { ,,| * Ω∈+≤ ijijij odelaysso

})(,max{ max
M

i
M
iij rgbestCss −≤ , }})(,max{ max

J
j

J
jij rgbestCss −≤ .

To determine *s , *f costs)(mnO , and to determine all the M
is , J

js , M
ir , J

jr

also costs)(mnO , so the complexity of decoding operator 3 is)(22nmO .

6.4.4 Decoding Operator 4 (mP-ASG2+BS)

Blum (2005) hybridizes the solution construction mechanism of ant colony

optimization (ACO) with beam search (BS). He also shows that the ACO hybridized

with BS performs much better than standard ACO. Since both the solution

construction mechanism of ACO and our PSO are based on the G&T algorithm, we

can also hybridize the decoding operators with BS in the same way.

BS is an adaptation of the branch-and-bound method in which only some nodes

are evaluated in the search tree. In each step, bwk partial solutions at most are

allowed to extend, and the partial solutions can only extend in extk possible ways at

most. The extendable partial solution set, B , is called the beam and the largest size of

the set, bwk , is called the beam width. The partial schedule is evaluated by its lower

bound, which can be easily computed as follows (Gonzalez & Sahni, 1976):

{ }YXLB ,max= (5.6)

where

{ }Ω∈∀+= ij
J
j

J
j orsX |max (5.7)

{ }Ω∈∀+= ij
M

i
M
i orsY |max (5.8)

We chose the decoding operator mP-ASG2 to hybridize with BS, because it

 80

outperforms others as we will illustrate in section 6.6.1. We briefly describe the

procedure of mP-ASG2+BS in Figure 6.5.

Initialize S ← φ ; choose *
ijo with the smallest k

ijx ; add *
ijo to S ; B← }{S .

repeat

Initialize extB ←φ .

for each partial schedule S in B do

extO ←Select at most extk operations from the operation set O

identified as mP-ASG2 with the smallest k
ijx .

for each extij Oo ∈ do

S ′ ← Extend S by adding ijo , and then add S ′ to extB .

end for

end for

if extext kB ≤|| then

extBB ← .

else

B ← Select extk best partial schedules in extB with the

smallest lower bound.

end if

until each S in B contains all operations.

Output the best schedule with the smallest makespan in B as the

schedule generated by particle k .

Figure 6.5 The pseudo code of the decoding operator mP-ASG2+BS.

In decoding operator 4, for each partial schedule S in B , it costs)(mnO to

 81

select at most extk operations from the operation set O identified as mP-ASG2 with

the smallest k
ijx . There are mn levels of the search tree and bwk partial schedules

in B at most. Therefore, the complexity of decoding operator 4 is)(22nmkO ext .

Blum (2005) sets mnkbw = , so the complexity of Beam-ACO to construct a solution

is)(33nmO . It is evident that the computation time of BS massively increases

following the problem size increasing. We modified the parameter settings in (Blum,

2005) to prevent such a situation as much as possible. In our algorithm, There is only

one node in the first level of the search tree, and we set 2=extk , the smallest setting

value of extk , and nkbw 2= . The parameter bwk is dependent upon the number of

jobs (n) rather than the number of operations (mn), so the computation time of BS is

more insensitive to the problem size than (Blum, 2005). Consequently, the complexity

of decoding operator 4 is)(32nmO . We will test and compare these four decoding

operators in section 6.6.1.

6.5 The Diversification Strategy

We also implement the diversification strategy as described in section 5.4. The

diversification strategy keeps the pbest solutions different (i.e. it keeps the makespans

of pbest solutions different). In the diversification strategy, the pbest solution of each

particle is not the best solution found by the particle itself, but one of the best N

solutions found by the swarm so far where N is the size of the swarm. The complexity

of updating the gbest and pbest solutions with diversification strategy for each particle

is)(NmnO .

6.6 Computational Results

We tested our PSO on the benchmark problems proposed by Taillard (1993)

(tai_*×*_*), Brucker et al. (1997) (j*-per*-*), and Guéret and Prins (1999) (gp*-*).

 82

The program was coded in Visual C++ and run 20 times on each problem under

Windows XP on an AMD Athlon 1800+ PC. In the preliminary experiment, four

swarm sizes N (10, 30, 60, 100) were tested, where N=60 was superior and used for

all further studies. The parameters 1c and 2c were tested between 0.1 and 0.7 in

increments of 0.2. The inertia weight w was decreased linearly from maxw to minw

during a run. The parameter maxw was tested on 0.5, 0.7, and 0.9. Another parameter

minw was tested on 0.1, 0.3, and 0.5. The settings 7.01 =c , 1.02 =c , 9.0max =w ,

and 3.0min =w were superior. As mentioned before, the parameter tdelayweigh in

mP-ASG, mP-ASG2, and mP-ASG2+BS increases linearly from 0 to 1 during a run.

All of the numeric parameters are determined empirically. The program only stops at

the CPU time limits even if the lower bound reached. We set the CPU time limit of

each run referring to ACO (Blum, 2005). Because the results of ACO (Blum, 2005)

were obtained on an 1100 MHz PC, and the machine is slower than ours, we set the

time limits of each run at only half of ACO (Blum, 2005) to confirm that the spent

CPU time is not longer than ACO (Blum, 2005).

6.6.1 Comparison of Decoding Operators

We tested these four decoding operators on the hardest problem sets: j8-per*-*

and gp10*-*. We set the time limits of each run on the j8-per*-* and gp10-* to 245

and 500 CPU seconds respectively. As mentioned above, the time limit of each run is

half of ACO (Blum, 2005). Each program was run 20 times on each problem.

Moreover, to show whether the mutation operator can improve the solution quality,

we also tested our PSO, which does not implement the mutation operator.

Table 6.1(a) shows the computational results of the four decoding operators, and

Table 6.1(b) shows the computational results, in which we do not implement the

mutation operator. In the tables, the terms ‘Best’ and ‘Average’ mean the best and

 83

average solution of the 20 runs respectively. The ‘BKS’ is the best-known solution. If

the BKS is not proved to be optimal, it is bracketed. The BKSs in the tables include

our method. If the BKS is marked an asterisk, it means that the value is obtained by

one of our PSOs. If the solution value is indicated in bold, it means that the value is

equal to the BKS. For each problem, the solution gap is defined by

BKSBKSC /)(max − as a percentage, where maxC is the makespan of the solution.

Therefore, the average gap is obtained by averaging the solution gaps.

Compare the results between Table 6.1(a) and Table 6.1(b). All the average gaps

in Table 6.1(a) are smaller than those in Table 6.1(b). This shows that the mutation

operator improves the solution quality. In Table 6.1(a) and Table 6.1(b), the results

show that the average gap of mP-ASG2 is less than A-ND and mP-ASG. It is evident

that the fathoming constraints in mP-ASG2 can successfully reduce the search area

without excluding the optimal solution, and thus obtain better results. In Table 6.1(a),

the mP-ASG2+BS obtains the best result on j8-per*-* test problems, and the

mP-ASG2 obtains the best result on gp10-* test problems. Therefore, we chose

mP-ASG2 and mP-ASG2+BS for further tests, and compared the results with other

metaheuristics.

 84

Table 6.1(a) Computational results of four decoding operators with mutation operator
A-ND mP-ASG mP-ASG2 mP-ASG2+BS Problem BKS

Best Average Best Average Best Average Best Average
j8-per0-1 (1039) 1059 1067.50 1039 1050.65 1045 1051.65 1039 1043.25
j8-per0-2 (1052) 1057 1066.60 1055 1063.45 1052 1058.30 1052 1053.60
j8-per10-0 (1020) 1029 1034.50 1020 1034.80 1024 1033.05 1020 1026.10
j8-per10-1 (1002)* 1011 1019.95 1008 1015.35 1008 1018.25 1002 1007.55
j8-per10-2 (1002)* 1009 1024.05 1002 1014.70 1002 1012.45 1002 1005.95
j8-per20-0 1000 1003 1006.55 1000 1000.95 1000 1000.90 1000 1000.60
j8-per20-1 1000 1000 1000.00 1000 1000.00 1000 1000.00 1000 1000.00
j8-per20-2 1000 1001 1004.70 1000 1004.10 1000 1003.15 1000 1000.00
Average gap 0.660% 1.334% 0.111% 0.846% 0.196% 0.771% 0.000% 0.271%
gp10-01 (1093)* 1093 1096.00 1093 1096.25 1093 1097.40 1093 1096.75
gp10-02 (1097)* 1097 1097.15 1097 1097.05 1097 1097.00 1097 1099.05
gp10-03 (1081) 1087 1094.85 1081 1087.90 1081 1087.10 1084 1090.30
gp10-04 (1083)* 1089 1091.30 1086 1089.10 1086 1089.10 1083 1092.10
gp10-05 (1073)* 1084 1091.15 1082 1087.70 1073 1086.50 1082 1092.15
gp10-06 (1071)* 1071 1092.80 1071 1071.00 1071 1071.00 1071 1074.25
gp10-07 (1080)* 1081 1081.40 1081 1081.60 1080 1080.95 1081 1081.05
gp10-08 (1095)* 1095 1096.45 1095 1097.80 1095 1097.25 1097 1097.55
gp10-09 (1115)* 1116 1122.15 1116 1118.30 1115 1117.80 1123 1127.00
gp10-10 (1092) 1092 1094.95 1092 1092.05 1092 1092.15 1092 1093.95
Average gap 0.232% 0.724% 0.130% 0.358% 0.028% 0.335% 0.211% 0.590%

The time limits for each run on problems j8-per*-* and gp10-* are 245 and 500 CPU seconds
respectively.
*The BKS is found by one of our PSOs.

Table 6.1 (b) Computational results of four decoding operators without mutation operator
A-ND mP-ASG mP-ASG2 mP-ASG2+BS Problem BKS

Best Average Best Average Best Average Best Average
j8-per0-1 (1039) 1056 1064.85 1046 1054.95 1047 1054.80 1042 1043.95
j8-per0-2 (1052) 1057 1068.25 1064 1064.00 1064 1064.00 1053 1058.85
j8-per10-0 (1020) 1030 1039.65 1022 1035.25 1022 1035.80 1020 1028.30
j8-per10-1 (1002)* 1016 1023.25 1009 1015.70 1009 1015.65 1002 1008.20
j8-per10-2 (1002)* 1009 1024.20 1002 1015.50 1002 1014.30 1002 1006.40
j8-per20-0 1000 1002 1008.30 1000 1000.80 1000 1001.05 1000 1000.45
j8-per20-1 1000 1000 1000.05 1000 1000.00 1000 1000.00 1000 1000.00
j8-per20-2 1000 1000 1006.60 1000 1005.10 1000 1005.00 1000 1000.00
Average gap 0.673% 1.474% 0.339% 0.934% 0.351% 0.926% 0.048% 0.381%
gp10-01 (1093)* 1095 1100.00 1095 1101.05 1095 1099.45 1093 1097.40
gp10-02 (1097)* 1099 1109.25 1097 1100.55 1097 1100.75 1098 1100.35
gp10-03 (1081) 1088 1100.90 1088 1096.05 1087 1095.00 1085 1093.00
gp10-04 (1083)* 1090 1094.50 1090 1090.90 1090 1091.75 1087 1092.70
gp10-05 (1073)* 1086 1094.90 1084 1092.25 1083 1092.20 1082 1090.10
gp10-06 (1071)* 1071 1093.00 1071 1078.80 1071 1077.35 1071 1072.05
gp10-07 (1080)* 1082 1087.60 1081 1081.65 1081 1081.80 1081 1081.15
gp10-08 (1095)* 1098 1099.80 1097 1100.45 1098 1099.65 1096 1098.60
gp10-09 (1115)* 1117 1127.40 1116 1131.55 1116 1126.40 1125 1131.35
gp10-10 (1092) 1092 1097.40 1092 1094.00 1092 1094.55 1092 1093.85
Average gap 0.393% 1.218% 0.335% 0.870% 0.324% 0.792% 0.332% 0.721%

The time limits for each run on problems j8-per*-* and gp10-* are 245 and 500 CPU seconds
respectively.
*The BKS is found by one of our PSOs.

 85

6.6.2 Comparison with Other Metaheuristics

We compared our PSOs with the GA proposed by Liaw (2000) (denoted by

GA-Liaw), the GA proposed by Prins (2000) (denoted by GA-Prins), and the ACO

hybridized with beam search proposed by Blum (2005) (denoted by Beam-ACO). Our

results were obtained by 20 runs on each problem, and the time limit of each run is

half of Beam-ACO. The program only stops at the CPU time limits even if the lower

bound reached. It is important to remember that both our PSO and Beam-ACO

performed 20 runs, but the two GAs, GA-liaw and GA-Prins, performed only one run.

Moreover, in our PSO and Beam-ACO, the computation time of each run is

substantially longer than GA-liaw and GA-Prins. Therefore, we will mainly compare

our computational results with Beam-ACO.

Table 6.2 shows the results of the test problems proposed by Taillard (1993). The

term ‘t’ is the average time needed by one run to get its best makespan value.

Compared with other test problem sets, Taillard test problems are easier to solve.

Therefore, Beam-ACO and PSO-mP-ASG2+BS obtained all of the optimal solutions,

but PSO-mP-ASG2+BS is slightly better than Beam-ACO on average gaps. The t of

PSO-mP-ASG2 and PSO-mP-ASG2+BS are quite similar on the problem set tai_4×

4_*. The reason for this is that the search area of these two PSOs is restricted by the

parameter tdelayweigh . In the decoding operator, the tdelayweigh increases

linearly form 0 to 1 during a run. This means that the search area of PSO is near to the

non-delay set in earlier iterations, and then enlarges after tdelayweigh increases. If

the problem size is quite small but the t is rather large, it means that the optimal

solution is far from the non-delay set, and the PSO can only obtain the optimal

solution when tdelayweigh increases.

Table 6.3 shows the results of the test problems proposed by Brucker et al.

 86

(1997). Although there are two best solutions obtained by PSO-mP-ASG2+BS worse

than Beam-ACO on test problem j7-per0-0 and j7-per20-1, all the average gaps

obtained by PSO-mP-ASG2+BS are better than Beam-ACO. Furthermore,

PSO-mP-ASG2+BS obtained new best-known solutions on test problem j8-per10-1

and j8-per10-2.

 87

Table 6.2 Results of the test problems proposed by Taillard (1993)
 Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Liaw GA-Prins

 Best Average Best Average t Best Average t limit(s)
tai_4×4_1 193 193 193 193 193.0 193 193.0 4.7 193 193.0 4.7 8
tai_4×4_2 236 236 239 236 236.0 236 236.0 3.7 236 236.0 3.7 8
tai_4×4_3 271 271 271 271 271.0 271 271.0 4.7 271 271.0 5.0 8
tai_4×4_4 250 250 250 250 250.0 250 250.0 2.3 250 250.0 2.3 8
tai_4×4_5 295 295 295 295 295.0 295 295.0 2.9 295 295.0 2.9 8
tai_4×4_6 189 189 189 189 189.0 189 189.0 2.1 189 189.0 2.1 8
tai_4×4_7 201 201 201 201 201.0 201 201.0 6.5 201 201.0 6.5 8
tai_4×4_8 217 217 217 217 217.0 217 217.0 6.4 217 217.0 7.0 8
tai_4×4_9 261 261 261 261 261.0 261 261.0 1.3 261 261.0 1.3 8
tai_4×4_10 217 217 221 217 217.0 217 217.0 1.7 217 217.0 1.7 8
Average gap 0.000% 0.311% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
tai_5×5_1 300 300 301 300 300.0 300 300.0 1.2 300 300.0 1.1 25
tai_5×5_2 262 262 263 262 262.0 262 262.0 2.1 262 262.0 2.1 25
tai_5×5_3 323 323 335 323 323.0 323 323.0 14.4 323 323.0 14.4 25
tai_5×5_4 310 310 316 310 310.0 310 310.0 10.4 310 310.0 10.1 25
tai_5×5_5 326 326 330 326 326.0 326 326.0 9.9 326 326.0 9.3 25
tai_5×5_6 312 312 312 312 312.0 312 312.0 8.4 312 312.0 7.9 25
tai_5×5_7 303 303 308 303 303.0 303 303.0 7.4 303 303.0 7.3 25
tai_5×5_8 300 300 304 300 300.0 300 300.0 13.5 300 300.0 12.7 25
tai_5×5_9 353 353 358 353 353.0 353 353.0 11.5 353 353.0 7.9 25
tai_5×5_10 326 326 328 326 326.0 326 326.0 5.1 326 326.0 5.1 25
Average gap 0.000% 1.261% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
tai_7×7_1 435 435 436 435 435.0 435 435.0 6.6 435 435.0 2.9 49
tai_7×7_2 443 443 447 443 443.0 443 443.1 16.0 443 443.0 12.2 49
tai_7×7_3 468 468 472 468 468.0 468 468.1 16.8 468 468.0 9.2 49
tai_7×7_4 463 463 463 463 463.0 463 463.0 5.6 463 463.0 3.0 49
tai_7×7_5 416 416 417 416 416.0 416 416.0 2.8 416 416.0 2.9 49
tai_7×7_6 451 451 455 451 451.4 451 451.8 19.6 451 451.0 13.5 49
tai_7×7_7 422 422 426 422 422.2 422 422.5 10.5 422 422.0 13.6 49
tai_7×7_8 424 424 424 424 424.0 424 424.0 1.4 424 424.0 2.3 49
tai_7×7_9 458 458 458 458 458.0 458 458.0 0.6 458 458.0 1.3 49
tai_7×7_10 398 398 398 398 398.0 398 398.0 1.8 398 398.0 2.8 49
Average gap 0.000% 0.406% 0.000% 0.011% 0.000% 0.029% 0.000% 0.000%
tai_10×10_1 637 637 637 637 637.4 637 639.1 18.2 637 637.0 9.4 50
tai_10×10_2 588 588 588 588 588.0 588 588.1 5.6 588 588.0 3.5 50
tai_10×10_3 598 598 598 598 598.0 598 599.8 22.9 598 598.0 10.1 50
tai_10×10_4 577 577 577 577 577.0 577 577.0 3.2 577 577.0 2.6 50
tai_10×10_5 640 640 640 640 640.0 640 640.9 17.4 640 640.0 4.0 50
tai_10×10_6 538 538 538 538 538.0 538 538.0 0.5 538 538.0 1.1 50
tai_10×10_7 616 616 616 616 616.0 616 616.3 11.4 616 616.0 3.9 50
tai_10×10_8 595 595 595 595 595.0 595 595.6 17.5 595 595.0 7.0 50
tai_10×10_9 595 595 595 595 595.0 595 595.0 11.7 595 595.0 4.1 50
tai_10×10_10 596 596 596 596 596.0 596 596.1 9.8 596 596.0 5.0 50
Average gap 0.000% 0.000% 0.000% 0.005% 0.000% 0.091% 0.000% 0.000%

 88

Table 6.2 (continued)
 Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Liaw GA-Prins
 Best Average Best Average t Best Average t limit(s)

tai_15×15_1 937 937 937 937 937.0 937 937.0 4.6 937 937.0 4.3 112.5
tai_15×15_2 918 918 918 918 918.0 918 918.9 20.5 918 918.0 9.1 112.5
tai_15×15_3 871 871 871 871 871.0 871 871.0 5.0 871 871.0 4.3 112.5
tai_15×15_4 934 934 934 934 934.0 934 934.0 3.2 934 934.0 3.9 112.5
tai_15×15_5 946 946 946 946 946.0 946 946.4 16.1 946 946.0 5.7 112.5
tai_15×15_6 933 933 933 933 933.0 933 933.0 10.0 933 933.0 4.7 112.5
tai_15×15_7 891 891 891 891 891.0 891 891.6 22.3 891 891.0 10.4 112.5
tai_15×15_8 893 893 893 893 893.0 893 893.0 1.2 893 893.0 17.3 112.5
tai_15×15_9 899 899 899 899 899.7 899 903.3 46.6 899 899.2 26.6 112.5
tai_15×15_10 902 902 902 902 902.0 902 903.0 12.7 902 902.0 6.9 112.5
Average gap 0.000% 0.000% 0.000% 0.007% 0.000% 0.079% 0.000% 0.002%
tai_20×20_1 1155 1155 1155 1155 1155.0 1155 1155.8 24.9 1155 1155.0 16.6 200
tai_20×20_2 1241 1241 1241 1241 1241.0 1242 1245.2 56.8 1241 1241.0 23.5 200
tai_20×20_3 1257 1257 1257 1257 1257.0 1257 1257.0 5.5 1257 1257.0 19.6 200
tai_20×20_4 1248 1248 1248 1248 1248.0 1248 1248.0 4.0 1248 1248.0 19.6 200
tai_20×20_5 1256 1256 1256 1256 1256.0 1256 1256.0 7.9 1256 1256.0 19.6 200
tai_20×20_6 1204 1204 1204 1204 1204.0 1204 1204.1 12.0 1204 1204.0 19.6 200
tai_20×20_7 1294 1294 1294 1294 1294.0 1294 1296.6 48.5 1294 1294.0 25.4 200
tai_20×20_8 1169 1177 1171 1169 1170.3 1173 1177.6 80.9 1169 1170.0 50.9 200
tai_20×20_9 1289 1289 1289 1289 1289.0 1289 1289.0 2.7 1289 1289.0 78.2 200
tai_20×20_10 1241 1241 1241 1241 1241.0 1241 1241.0 1.2 1241 1241.0 78.2 200
Average gap 0.068% 0.017% 0.000% 0.011% 0.042% 0.134% 0.000% 0.008%

 89

Table 6.3 Results of the test problems proposed by Brucker et al. (1997)
 Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Liaw GA-Prins
 Best Average Best Average t Best Average t limit(s)

j5-per0-0 1042 1042 1050 1042 1042.0 1042 1042.0 6.4 1042 1042.0 6.3 125
j5-per0-1 1054 1054 1054 1054 1054.0 1054 1054.0 0.0 1054 1054.0 1.3 125
j5-per0-2 1063 1063 1085 1063 1063.0 1063 1063.0 24.6 1063 1063.0 24.6 125
j5-per10-0 1004 1004 1004 1004 1004.0 1004 1004.0 34.9 1004 1004.0 34.8 125
j5-per10-1 1002 1002 1002 1002 1002.0 1002 1002.0 25.3 1002 1002.0 25.2 125
j5-per10-2 1006 1006 1006 1006 1006.0 1006 1006.0 25.2 1006 1006.0 25.1 125
j5-per20-0 1000 1000 1004 1000 1000.0 1000 1000.0 19.1 1000 1000.0 17.6 125
j5-per20-1 1000 1000 1000 1000 1000.0 1000 1000.0 1.0 1000 1000.0 2.7 125
j5-per20-2 1012 1012 1012 1012 1012.0 1012 1012.0 0.0 1012 1012.0 0.0 125
Average gap 0.000% 0.360% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
j6-per0-0 1056 1056 1080 1056 1056.0 1056 1056.0 37.2 1056 1056.0 42.1 180
j6-per0-1 1045 1045 1045 1045 1049.7 1045 1045.0 51.1 1045 1045.0 59.7 180
j6-per0-2 1063 1063 1079 1063 1063.0 1063 1063.0 70.5 1063 1063.0 72.6 180
j6-per10-0 1005 1005 1016 1005 1005.0 1005 1005.0 41.0 1005 1005.0 45.5 180
j6-per10-1 1021 1021 1036 1021 1021.0 1021 1021.0 20.9 1021 1021.0 21.0 180
j6-per10-2 1012 1012 1012 1012 1012.0 1012 1012.0 8.2 1012 1012.0 8.5 180
j6-per20-0 1000 1000 1018 1000 1003.6 1000 1000.6 98.4 1000 1000.0 77.5 180
j6-per20-1 1000 1000 1000 1000 1000.0 1000 1000.0 0.4 1000 1000.0 1.5 180
j6-per20-2 1000 1000 1001 1000 1000.0 1000 1000.0 29.1 1000 1000.0 30.6 180
Average gap 0.000% 0.916% 0.000% 0.090% 0.000% 0.007% 0.000% 0.000%
j7-per0-0 (1048) 1063 1071 1048 1052.7 1052 1053.8 94.5 1050 1051.2 104.9 245
j7-per 0-1 1055 1058 1076 1057 1057.8 1055 1061.0 126.8 1057 1058.8 155.8 245
j7-per 0-2 1056 1059 1082 1058 1059.0 1056 1059.7 97.1 1056 1057.0 124.5 245
j7-per10-0 1013 1022 1036 1013 1016.7 1016 1018.3 103.3 1013 1016.1 183.8 245
j7-per10-1 1000 1014 1010 1000 1002.5 1000 1000.0 76.6 1000 1000.0 81.9 245
j7-per10-2 1011 1020 1035 1016 1019.4 1013 1019.5 71.4 1013 1014.9 125.6 245
j7-per20-0 1000 1000 1000 1000 1000.0 1000 1000.0 0.3 1000 1000.0 1.9 245
j7-per20-1 1005 1011 1030 1005 1007.6 1007 1008.1 148.7 1007 1008.0 143.2 245
j7-per20-2 1003 1010 1020 1003 1007.3 1003 1004.1 134.1 1003 1004.7 160.9 245
Average gap 0.719% 1.830% 0.097% 0.346% 0.119% 0.360% 0.086% 0.211%
j8-per0-1 (1039) - 1075 1039 1048.7 1045 1051.7 147.4 1039 1043.3 220.8 320
j8-per 0-2 (1052) - 1073 1052 1057.1 1052 1058.3 244.6 1052 1053.6 271.9 320
j8-per10-0 (1020) - 1053 1020 1026.9 1024 1033.1 181.6 1020 1026.1 205.0 320
j8-per10-1 (1002)* - 1029 1004 1012.4 1008 1018.3 70.7 1002 1007.6 202.2 320
j8-per10-2 (1002)* - 1027 1009 1013.7 1002 1012.5 137.8 1002 1006.0 162.8 320
j8-per20-0 1000 - 1015 1000 1001.0 1000 1000.9 158.9 1000 1000.6 136.9 320
j8-per20-1 1000 - 1000 1000 1000.0 1000 1000.0 1.3 1000 1000.0 4.5 320
j8-per20-2 1000 - 1014 1000 1000.6 1000 1003.2 97.9 1000 1000.0 105.8 320
Average gap 2.098% 0.112% 0.555% 0.196% 0.771% 0.000% 0.271%

*The BKS is found by one of our PSOs.

 90

Table 6.4 shows the results of the test problems proposed by Guéret and Prins

(1999). In this problem set, PSO-mP-ASG2 performs better than other algorithms and

obtained 16 new best-known solutions. The PSO hybridized with beam search does

not perform well, because the instances from (Guéret & Prins, 1999) are designed to

maximize a new lower bound greater than the traditional one. Therefore, the

traditional lower bound calculated by equations (5.6), (5.7), and (5.8) is hard to

discriminate in the good and bad partial solutions in this problem set (Guéret & Prins,

1999).

Consequently, better solutions can be obtained when the PSO performs much

more iterations instead of spending computation time on an inefficient beam search.

However, it is evident that both the PSOs outperform Beam-ACO in this problem set.

 91

Table 6.4 Results of the test problems proposed by Guéret and Prins (1999)
Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Prins

Best Average Best Average t Best Average t limit(s)
gp03-01 1168 1168 1168 1168.0 1168 1168.0 0.0 1168 1168.0 0.0 45
gp03-02 1170 1170 1170 1170.0 1170 1170.0 0.0 1170 1170.0 0.0 45
gp03-03 1168 1168 1168 1168.0 1168 1168.0 0.0 1168 1168.0 0.0 45
gp03-04 1166 1166 1166 1166.0 1166 1166.0 0.0 1166 1166.0 0.0 45
gp03-05 1170 1170 1170 1170.0 1170 1170.0 0.0 1170 1170.0 0.0 45
gp03-06 1169 1169 1169 1169.0 1169 1169.0 0.0 1169 1169.0 0.0 45
gp03-07 1165 1165 1165 1165.0 1165 1165.0 0.0 1165 1165.0 0.0 45
gp03-08 1167 1167 1167 1167.0 1167 1167.0 0.0 1167 1167.0 0.0 45
gp03-09 1162 1162 1162 1162.0 1162 1162.0 0.0 1162 1162.0 0.0 45
gp03-10 1165 1165 1165 1165.0 1165 1165.0 0.0 1165 1165.0 0.0 45
Average gap 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
gp04-01 1281 1281 1281 1281.0 1281 1281.0 0.0 1281 1281.0 0.0 80
gp04-02 1270 1270 1270 1270.0 1270 1270.0 0.3 1270 1270.0 0.3 80
gp04-03 1288 1288 1288 1288.0 1288 1288.0 0.3 1288 1288.0 0.3 80
gp04-04 1261 1261 1261 1261.0 1261 1261.0 30.0 1261 1261.0 30.0 80
gp04-05 1289 1289 1289 1289.0 1289 1289.0 30.0 1289 1289.0 30.0 80
gp04-06 1269 1269 1269 1269.0 1269 1269.0 30.0 1269 1269.0 30.0 80
gp04-07 1267 1267 1267 1267.0 1267 1267.0 30.2 1267 1267.0 30.2 80
gp04-08 1259 1259 1259 1259.0 1259 1259.0 22.7 1259 1259.0 30.2 80
gp04-09 1280 1280 1280 1280.0 1280 1280.0 2.9 1280 1280.0 2.9 80
gp04-10 1263 1263 1263 1263.0 1263 1263.0 2.9 1263 1263.0 2.9 80
Average gap 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
gp05-01 1245 1245 1245 1245.0 1245 1245.0 0.0 1245 1245.0 0.2 125
gp05-02 1247 1247 1247 1247.0 1247 1247.0 0.0 1247 1247.0 0.0 125
gp05-03 1265 1265 1265 1265.0 1265 1265.0 0.0 1265 1265.0 0.1 125
gp05-04 1258 1258 1258 1258.6 1258 1258.0 104.6 1258 1258.0 105.2 125
gp05-05 1280 1280 1280 1280.0 1280 1280.0 10.5 1280 1280.0 31.5 125
gp05-06 1269 1269 1269 1269.1 1269 1269.0 18.0 1269 1269.0 18.0 125
gp05-07 1269 1269 1269 1269.0 1269 1269.0 0.0 1269 1269.0 2.7 125
gp05-08 1287 1287 1287 1287.0 1287 1287.0 0.0 1287 1287.0 0.0 125
gp05-09 1262 1262 1262 1262.0 1262 1262.0 22.0 1262 1262.0 22.0 125
gp05-10 1254 1254 1254 1254.6 1254 1254.0 63.0 1254 1254.0 63.5 125
Average gap 0.000% 0.000% 0.010% 0.000% 0.000% 0.000% 0.000%
gp06-01 1264 1264 1264 1264.7 1264 1264.0 176.3 1264 1264.0 176.1 180
gp06-02 1285 1285 1285 1285.7 1285 1285.0 140.0 1285 1285.0 147.8 180
gp06-03 (1255) 1255 1255 1255.0 1255 1255.2 166.7 1255 1255.6 133.1 180
gp06-04 1275 1275 1275 1275.0 1275 1275.0 60.1 1275 1275.0 60.8 180
gp06-05 1299 1300 1299 1299.2 1299 1299.0 159.6 1299 1299.0 159.6 180
gp06-06 1284 1284 1284 1284.0 1284 1284.0 96.6 1284 1284.0 109.4 180
gp06-07 (1290) 1290 1290 1290.0 1290 1290.0 0.4 1290 1290.0 1.6 180
gp06-08 1265 1266 1265 1265.2 1265 1265.2 151.9 1265 1265.5 134.3 180
gp06-09 (1243) 1243 1243 1243.0 1243 1243.0 141.6 1243 1243.1 156.5 180
gp06-10 (1254) 1254 1254 1254.0 1254 1254.0 80.5 1254 1254.0 79.8 180
Average gap 0.016% 0.000% 0.013% 0.000% 0.003% 0.000% 0.009%

 92

Table 6.4 (continued)
 Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Prins
 Best Average Best Average t Best Average t limit(s)

gp07-01 (1159) 1159 1159 1159.0 1159 1159.0 180.5 1159 1159.3 223.7 245
gp07-02 (1185) 1185 1185 1185.0 1185 1185.0 0.3 1185 1185.0 1.2 245
gp07-03 1237 1237 1237 1237.0 1237 1237.0 3.9 1237 1237.0 9.5 245
gp07-04 (1167) 1167 1167 1167.0 1167 1167.0 188.2 1167 1167.0 160.4 245
gp07-05 1157 1157 1157 1157.0 1157 1157.0 130.3 1157 1157.0 139.1 245
gp07-06 (1193) 1193 1193 1193.9 1193 1193.0 153.1 1193 1193.1 198.6 245
gp07-07 1185 1185 1185 1185.1 1185 1185.0 0.4 1185 1185.0 1.4 245
gp07-08 (1180) 1181 1180 1181.4 1180 1180.0 139.1 1180 1180.0 139.4 245
gp07-09 (1220) 1220 1220 1220.1 1220 1220.0 123.6 1220 1220.0 143.9 245
gp07-10 1270 1270 1270 1270.1 1270 1270.0 0.1 1270 1270.0 0.5 245
Average gap 0.008% 0.000% 0.020% 0.000% 0.000% 0.000% 0.003%
gp08-01 1130 1160 1130 1132.4 1130 1143.5 204.3 1133 1140.3 277.3 320
gp08-02 (1135) 1136 1135 1136.1 1135 1135.0 192.5 1135 1135.4 258.3 320
gp08-03 1110 1111 1111 1113.7 1110 1110.8 229.0 1110 1114.0 240.3 320
gp08-04 (1153)* 1168 1154 1156.0 1153 1153.0 306.3 1153 1153.2 308.1 320
gp08-05 1218 1218 1219 1219.8 1218 1218.0 297.2 1218 1218.9 56.6 320
gp08-06 (1115)* 1128 1116 1123.2 1115 1117.2 224.7 1115 1126.9 249.6 320
gp08-07 (1126) 1128 1126 1134.6 1126 1127.7 288.6 1126 1129.8 287.3 320
gp08-08 (1148) 1148 1148 1149.0 1148 1148.0 133.1 1148 1148.0 179.3 320
gp08-09 1114 1120 1117 1119.0 1114 1114.0 156.0 1114 1114.3 223.6 320
gp08-10 (1161) 1161 1161 1161.5 1161 1161.1 289.3 1161 1161.4 217.1 320
Average gap 0.602% 0.062% 0.311% 0.000% 0.161% 0.027% 0.284%
gp09-01 (1129)* 1143 1135 1142.8 1129 1129.4 363.0 1129 1133.2 376.3 405
gp09-02 (1110)* 1114 1112 1113.7 1110 1111.8 284.2 1112 1114.1 335.9 405
gp09-03 (1116)* 1118 1118 1120.4 1116 1117.0 235.2 1117 1117.0 313.4 405
gp09-04 1130 1131 1130 1140.0 1130 1130.7 355.5 1130 1135.8 328.7 405
gp09-05 1180 1180 1180 1180.5 1180 1180.0 6.6 1180 1180.0 22.3 405
gp09-06 (1093) 1117 1093 1195.6 1093 1095.1 319.0 1093 1094.1 277.2 405
gp09-07 (1091)* 1119 1097 1101.4 1094 1096.7 344.1 1091 1096.5 376.4 405
gp09-08 (1106) 1110 1106 1113.7 1108 1108.0 186.8 1108 1108.3 334.6 405
gp09-09 (1123)* 1132 1127 1132.5 1123 1124.6 219.1 1126 1126.5 358.6 405
gp09-10 (1112)* 1130 1120 1126.3 1112 1124.8 214.1 1122 1126.5 297.7 405
Average gap 0.941% 0.252% 1.601% 0.046% 0.252% 0.162% 0.374%
gp10-01 (1093)* 1113 1099 1109.0 1093 1097.4 396.3 1093 1096.8 455.7 500
gp10-02 (1097)* 1120 1101 1107.4 1097 1097.0 348.7 1097 1099.1 382.7 500
gp10-03 (1081) 1101 1082 1098.0 1081 1087.1 404.6 1084 1090.3 450.8 500
gp10-04 (1083)* 1090 1093 1096.6 1086 1089.1 294.0 1083 1092.1 371.8 500
gp10-05 (1073)* 1094 1083 1092.4 1073 1086.5 288.1 1082 1092.2 314.1 500
gp10-06 (1071)* 1074 1088 1104.6 1071 1071.0 148.5 1071 1074.3 289.7 500
gp10-07 (1080)* 1083 1084 1091.5 1080 1081.0 133.0 1081 1081.1 167.4 500
gp10-08 (1095)* 1098 1099 1104.8 1095 1097.3 358.8 1097 1097.6 324.5 500
gp10-09 (1115)* 1121 1121 1128.7 1115 1117.8 357.5 1123 1127.0 428.2 500
gp10-10 (1092) 1095 1097 1106.7 1092 1092.2 479.3 1092 1094.0 487.9 500
Average gap 1.002% 0.618% 1.470% 0.028% 0.335% 0.211% 0.590%

*The BKS is found by one of our PSOs.

 93

6.7 Concluding Remarks

We have presented a PSO for open shop scheduling problems in this chapter. We

modified the representation of particle position, particle movement, and particle

velocity to better suit it for OSSP. We also proposed a new decoding operator

(mP-ASG), which decodes particle positions into parameterized active schedules.

Furthermore, we added fathoming constraints to mP-ASG and then hybridized it with

beam search. The computational results show that our PSO can obtain many new

best-known solutions of the test problems.

For further research, we will try to apply our PSO to other shop scheduling

problems. In addition, further research topics include how to modify the particle

position representation, particle movement, and particle velocity to better suit them to

the problem. Table 6.5 shows the summary of the PSO for OSSP.

 94

Table 6.5 Summary of the PSO for OSSP

 Components The concept of this components

1
Particle Position
Representation

Priority weights
We represent the preference-list by
priorities, which can save computation
time when we implement insert operator.

Particle Velocity Inertia

2
Particle Movement Insert operator

Because there is no preference constraint
between the operations of a job, if we
swap two operations at the same time, the
new solution will be much different than
the original one and lose the correlation
property. Therefore, we implement the
insert operator, just move one operation at
a time, and earn more correlation property.

3
Decoding
Operator

G&T algorithm
mP-ASG
Beam search

The mP-ASG can much restrict the search
area but not exclude the optimal solution.

4 Other Strategies Diversification

The diversification strategy can prevent
particles rapped in local optima.
We do not implement the local search
strategy, because the neighborhood size of
OSSP is huge and the local search strategy
is in efficient.

 95

6.8 Appendix

A pseudo code of the PSO for OSSP is given below:

//↓initializing

Initialize a population of particles with random positions.

for each particle k do

Decode kX (the position of particle k) into a schedule kS .

Set the kth pbest solution (kpbest) equal to kS , kpbest ← kS .

end for

Set gbest solution equal to the best kpbest .

//↑initializing

repeat

Update velocities according to Figure 6.1.

for each particle k do

Move particle k according to Figure 6.2.

Decode kX into kS .

Update pbest solutions and gbest solution according to Figure 5.6.

end for

until maximum CPU time limit is reached.

 96

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

The original PSO is used to solve continuous optimization problems. Due to

solution spaces of discrete optimization problems are discrete, we have to develop

new PSO designs to better suit it for discrete optimization problems. The contribution

of this research is that we proposed several PSO designs for discrete optimization

problems. The new PSO designs are better suit for discrete optimization problems,

and differ from the original PSO. In this research, we separated a PSO design into five

parts: particle position representation, particle velocity, particle movement, decoding

operator, and other search strategies. We can develop a new PSO design by redesign

these five parts.

In chapter 4, we presented a binary PSO for the multidimensional 0-1 knapsack

problem (MKP). This PSO design focuses on the concept of building blocks, which is

the basis of another evolution computation algorithm—genetic algorithm. The particle

velocity is represented by blocks. Particles obtain new blocks from gbest and pbest

solutions. Moreover, the selection strategy can recognize superior blocks and and

accumulate the superior blocks in the swarm. The computational results show that the

concept of building blocks works in PSO design. Therefore, we can design other new

PSOs based on the concept of building blocks.

In chapter 5, we presented a PSO for the job shop scheduling problem (JSSP).

This PSO design focuses on the particle position representation. In this PSO, the

particle position is represented by preference list-based representation, which has

more Lamarckian than the original PSO design—priority based representation. We

 97

also tested and compared these two particle position representations. The

computational results show that the preference list-based representation we proposed

outperforms the priority based representation. It also demonstrated that the particle

position representation with more Lamarckian performs better. Therefore, we can

design new particle position representation based on Lamarckian property in further

researches.

In chapter 6, we presented a PSO for the open shop scheduling problem (OSSP).

This PSO design focuses on comparing decoding operators. In this PSO, we

implemented a modified parameterized active schedule generation algorithm

(mP-ASG), which decodes particle positions into parameterized active schedules. In

mP-ASG, we can reduce or increase the search area between non-delay schedules and

active schedules by controlling the maximum delay time allowed. Furthermore, we

added fathoming constraints to mP-ASG and then hybridized it with beam search. The

computational results show that a decoding operator, which can map the positions to

the solution space in a smaller region but not excluding the optimal solution, is

performs better.

7.2 Future Works

There are two aspects for further research: (1) new PSO designs, and (2) other

applications. We described some principles for new PSO designs in chapter 3. In the

further research, we can develop new PSO designs by these principles and find out

new design principles at the same time.

On the other hand, we can also implement the new PSO designs to other

combinatorial optimization problems for example: assignment problems, network

problems, multiobject combinatorial optimization problems…etc.

 98

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job
shop scheduling. Management Science, 34(3), 391-401.

Alcaide, D., Sicilia, J., & Vigo, D. (1997). Heuristic approaches for the minimum
makespan open shop problem. Trabajos de Investigación Operativa, 5(2),
283-296.

Allahverdi, A, & Al-Anzi, F.S. (2006). A PSO and a tabu search heuristics for the
assembly scheduling problem of the two-stage distributed database application.
Computers and Operations Research, 33(4), 1056-1080.

Angeline, P.J. (1998). Using selection to improve particle swarm optimization.
Proceedings of the IEEE International Conference on Evolutionary
Computation, 84–89.

Bagchi, T.P. (1999). Multiobjective scheduling by genetic algorithms. Kluwer
Academic Publishers.

Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for
job shop scheduling. Management Science, 44(2), 262-275.

Bean, J. (1994). Genetic algorithms and random keys for sequencing and optimization.
Operations Research Society of America (ORSA) Journal on Computing, 6,
154-160.

Beasley J.E. (1990). OR-Library: distributing test problems by electronic mail.
Journal of the Operational Research Society, 14, 1069-1072.

Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search:
and application to open shop scheduling. Computers & Operations Research, 32,
1565-1591.

Brucker, P., Hurink, J., Jurisch, B., & Wöstmann, B. (1997). A branch & bound
algorithm for the open-shop problem. Discrete Applied Mathematics, 76, 43-59.

Chu, P.C., & Beasley, J.E. (1998). A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristic, 4, 63–86.

Colak, S., & Agarwal, A. (2005). Non-greedy heuristics and augmented neural
networks for the open-shop scheduling problem. Naval Research Logistics, 52,
631-644.

 99

Davis, L. (1985). Job shop scheduling with genetic algorithm. Proceedings of the first
International Conference on Genetic Algorithms, 163-140.

Dorndorf, U., Pesch, E., & Phan-Huy, T. (2001). Solving the open-shop scheduling
problem. Journal of scheduling, 4(3), 157-174.

Drexl, A. (1988). A simulated annealing approach to the multiconstraint zero-one
knapsack problem. Computing, 40, 1–8.

Eberhart R., & Shi Y. (2001). Particle swarm optimization: developments, applications
and resources. Proceedings of the 2001 IEEE Congress on Evolutionary
Computation, 81-86.

Fisher, H., & Thompson, G.L. (1963). Industrial Scheduling. Englewood Cliffs, NJ:
Prentice-Hall.

French, S. (1982). Sequencing and scheduling: an introduction to the mathematics of
the job-shop. UK: Horwood.

Fréville, A. (2004). The multidimensional 0–1 knapsack problem: An overview.
European Journal of Operational Research, 155(1), 1–21.

Fréville, A., & Hanafi, S. (2005). The multidimensional 0-1 knapsack problem —
bounds and computational aspects. Annals of Operations Research, 139,
195–227.

Garey, M.R., Johnson, D.S., & Sethi, R. (1976). The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1, 117-129.

Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. New York:
Wiley.

Giffler, J., & Thompson, G.L. (1960). Algorithms for solving production scheduling
problems. Operations Research, 8, 487-503.

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research, 13, 533-549.

Glover, F. (1989). Tabu search: Part I. ORSA Journal on Computing, 1, 190-206.

Glover, F. (1990). Tabu search: Part II. ORSA Journal on Computing, 2, 4-32.

Glover, F., & Kochenberger G.A. (1996). Critical event tabu search for
multidimensional knapsack problems, in I.H. Osman, and J.P. Kelly, (Eds.),
Metaheuristics: The Theory and Applications, Kluwer Academic Publishers,

 100

Dordrecht, pp.407–427.

Goldberg, D.E. (2002). The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers, Dordrecht.

Gonçalves, J.F., & Beirão, N.C., (1999). Um Algoritmo Genético Baseado em Chaves
Aleatórias para Sequenciamento de Operações. Revista Associação Portuguesa
de Desenvolvimento e Investigação Operacional 19, 123-137 (in Portuguese).

Gonçalves, J.F., Mendes, J.J. M., & Resende, M.G.C. (2005). A hybrid genetic
algorithm for the job shop scheduling problem. European Journal of
Operational Research, 167(1), 77-95.

Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time.
Journal of the ACM, 23(4), 665-679.

Guéret, C., & Prins, C. (1998). Classical and new heuristics for the open-shop
problem: a computational evaluation, European Journal of Operational
Research, 107(2), 306-314.

Guéret, C., & Prins, C. (1999). A new lower bound for the open-shop problem. Annals
of Operations Research, 92, 165-183.

Hanafi, S., & Fréville, A. (1998). An efficient tabu search approach for the 0-1
multidimensional knapsack problem. European Journal of Operational
Research, 106, 659–675.

Jain, A.S., Rangaswamy, B., & Meeran, S. (2000). New and “stronger” job-shop
neighbourhoods: a focus on the method of Nowicki and Smutnicki (1996).
Journal of Heuristics, 6, 457-480.

Jin, Y.X., Cheng, H.Z., Yan, J.Y., Zhang, L. (2007). New discrete method for particle
swarm optimization and its application in transmission network expansion
planning. Electric Power Systems Research, 77(3-4), 227-233.

Kennedy, J., & Eberhart, R.C. (1995). Particle swarm optimization. Proceedings of
the 1995 IEEE International Conference on Neural Networks, 4, 1942-1948.

Kennedy, J., & Eberhart, R.C. (1997). A discrete binary version of the particle swarm
algorithm. Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, 5, 4104–4108.

Kobayashi, S., Ono, I., & Yamamura, M. (1995). An efficient genetic algorithm for
job shop scheduling problems. Proceedings of the Sixth International

 101

Conference on Genetic Algorithms, 506-511.

Lawrence, S., (1984). Resource constrained project scheduling: An experimental
investigation of heuristic scheduling techniques. Graduate School of Industrial
Administration (GSIA), Carnegie Mellon University, Pittsburgh, PA.

Li, N., Liu, F., Sun, D., & Huang, C. (2004). Particle Swarm Optimization for
Constrained Layout Optimization. Proceedings of Fifth World Congress on
Intelligent Control and Automation (WCICA 2004), 3, 2214-2218.

Lian, Z., Gu, X., & Jiao, B. (2006). A similar particle swarm optimization algorithm
for permutation flowshop scheduling to minimize makespan. Applied
Mathematics and Computation,175(1), 773-785.

Liao, C.J., Tseng, C.T., & Pin, L. (2007). A discrete version of particle swarm
optimization for flowshop scheduling problems. Computers and Operations
Research, 34(10), 3099-3111.

Liaw, C-F. (1999a). Applying simulated annealing to the open shop scheduling
problem. IIE Transactions, 31, 457-465.

Liaw, C-F. (1999b). A tabu search algorithm for the open shop scheduling problem.
Computers & Operations Research, 26, 109-126.

Liaw, C-F (2000). A hybrid genetic algorithm for the open shop scheduling problem.
European Journal of Operational Research, 124, 28-42.

Lourenço, H.R. (1995). Local optimization and the job-shop scheduling problem.
European Journal of Operational Research, 83, 347-364.

Mattfeld, D.C. (1996). Evolutionary Search and the Job Shop: Investigations on
Genetic Algorithms for Production Scheduling. Physica-Verlag, Heidelberg,
Germany.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop
problem. Management Science, 42(6), 797-813.

Osorio, M.A., Glover, F., & Hammer, P. (2002). Cutting and surrogate constraint
analysis for improved multidimensional knapsack solutions. Annals of
Operations Research, 117, 71–93.

Ow, P.S., & Morton, T.E. (1988). Filtered beam search in scheduling. International
Journal of Production Research, 26, 297-307.

Pang, W., Wang, K.P., Zhou, C.G.., Dong, L.J., Liu, M., Zhang, H.Y., & Wang, J.Y.

 102

(2004). Modified particle swarm optimization based on space transformation for
solving traveling salesman problem. Proceedings of 2004 International
Conference on Machine Learning and Cybernetics, 4, 2342-2346.

Pezzella, F., & Merelli, E. (2000). A tabu search method guided by shifting bottleneck
for the job shop scheduling problem. European Journal of Operational Research,
120(2), 297-310.

Pirkul, H. (1987). A heuristic solution procedure for the multiconstraint zero-one
knapsack problem. Naval Research Logistics, 34, 161–172.

Prins, C. (2000). Competitive genetic algorithms for the open-shop scheduling
problem. Mathematical Methods of Operations Research, 52, 389-411.

Rastegar, R., Meybodi, M.R., & Badie, K. (2004). A new discrete binary particle
swarm optimization based on learning automata. Proceedings of the IEEE
International Conference on Machine Learning and Applications, 456–465.

Salman, A., Ahmad, I., & Al-Madani, S. (2002). Particle swarm optimization for task
assignment problem. Microprocessors and Microsystems, 26(8), 363-371.

Sha, D.Y., & C.-Y. Hsu. (2006). “A modified parameterized active schedule
generation algorithm for the job shop scheduling problem,” Proceedings of the
36th International Conference on Computers and Industrial Engineering (ICCIE
2006), pp. 702-712, Taiwan, ROC.

Shi Y, & Eberhart R.C. (1998a). Parameter selection in particle swarm optimization.
Proceedings of the 7th International Conference on Evolutionary Programming,
591-600.

Shi Y, & Eberhart R.C. (1998b). A modified particle swarm optimizer. Proceedings of
the 1998 IEEE International Conference on Evolutionary Computation, 69-73.

Stacey, A., Jancic, M., & Grundy, I. (2003). Particle swarm optimization with
mutation. Proceedings of the 2003 IEEE Congress on Evolutionary Computation,
2, 1425-1430.

Sun, D., Batta, R., & Lin, L. (1995). Effective job shop scheduling through active
chain manipulation. Computers & Operations Research, 22(2), 159-172.

Taillard, E.D. (1993), Benchmarks for basic scheduling problems, European Journal
of Operational Research, 64, 278-285.

Tasgetiren, M.F., Liang, Y-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm

 103

optimization algorithm for makespan and total flowtime minimization in the
permutation flowshop sequencing. European Journal of Operational Research,
177(3), 1930-1947.

Vasquez, M., & Hao, J.K. (2001). A hybrid approach for the 0-1 multidimensional
knapsack problem. Proceedings of the 7th International Joint Conference on
Artificial Intelligence, 1, 328–333.

Vasquez, M., & Vimont, Y. (2005). Improved results on the 0-1 multidimensional
knapsack problem. European Journal of Operational Research, 165, 70–81.

Wang, K.P., Huang, L., Zhou, C.G., & Pang, W. (2003). Particle swarm optimization
for traveling salesman problem. Proceedings of International Conference on
Machine Learning and Cybernetics, 3, 1583-1585.

Wang, L., & Zheng, D. (2001). An effective hybrid optimization strategy for job-shop
scheduling problems. Computers & Operations Research, 28, 585-596.

Wu, B., Zhao, Y., Ma Y., Dong, H., & Wang, W. (2004). Particle Swarm Optimization
method for Vehicle Routing Problem. Proceedings of Fifth World Congress on
Intelligent Control and Automation (WCICA 2004), 3, 2219 – 2221.

Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for
multi-objective flexible job-shop scheduling problems. Computers & Industrial
Engineering, 48(2), 409-425.

Yin, P.Y., Yu, S.S., Wang, P.P., & Wang, Y.T. (2007a). Multi-objective task allocation
in distributed computing systems by hybrid particle swarm optimization.
Applied Mathematics and Computation, 184(2), 407-420.

Yin, P.Y., Yu, S.S., Wang, P.P, & Wang, Y.T. (2007b). Task allocation for maximizing
reliability of a distributed system using hybrid particle swarm optimization. The
Journal of Systems & Software, 80(5), 724-735.

Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based
schemes for resource-constrained project scheduling. Automation in
Construction, 14, 393-404.

Zhang, H., Li, H., & Tam, C.M. (2006). Particle swarm optimization for
resource-constrained project scheduling. International Journal of Project
Management, 24(1), 83-92.

Zhi, X.H., Xing, X.L., Wang, Q.X., Zhang, L.H., Yang, X.W., Zhou, C.G., & Liang,
Y.C. (2004). A discrete PSO method for generalized TSP problem. Proceedings

 104

of 2004 International Conference on Machine Learning and Cybernetics, 4,
2378-2383.

 105

作者簡介 (Biography)

姓名(Name)：徐誠佑 (Cheng-Yu Hsu)

學歷：

專士 明志工專 工業工程與管理科 (80.9~85.7)
學士 台灣科技大學 工業管理系 (88.9~90.7)
碩士 清華大學 工業工程與工程管理學系 (90.9~92.7)
博士 交通大學 工業工程與管理學系 (92.9~96.6)

著作：

一、 已接受之期刊論文

1. D.Y. Sha, C.-Y. Hsu, 2007, “A new particle swarm optimization for the open shop
scheduling problem,” Computers and Operations Research (Accepted) (SCI).

2. D.Y. Sha, C.-Y. Hsu, 2006, “A hybrid particle swarm optimization for job shop
scheduling problem,” Computers & Industrial Engineering, Vol. 51, No. 4, pp.
791-808 (SCI).

二、 審查中期刊論文

1. D.Y. Sha, C.-Y. Hsu, “A new discrete binary particle swarm optimization for the
multidimensional 0-1 knapsack problem,” (submitted to European Journal of
Operational Research) (SCI).

三、 研討會論文

1. D.Y. Sha, C.-Y. Hsu, 2006, “A particle swarm optimization with parameterized
active schedules for the open shop scheduling problem,” Proceedings of the 2006
CIIE Annual Conference.

2. D.Y. Sha, C.-Y. Hsu, 2006, “A modified parameterized active schedule generation
algorithm for the job shop scheduling problem,” Proceedings of the 36th
International Conference on Computers and Industrial Engineering (ICCIE 2006),
pp. 702-712, Taiwan, ROC.

