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粒子群演算法於離散最佳化問題之研究 
學生：徐誠佑        指導教授： 沙永傑博士 

陳文智博士 
國立交通大學工業工程與管理系 

 

中 文 摘 要 

粒子群演算法(Particle Swarm Optimization, PSO)是一種群體搜尋最佳化演

算法，於 1995 年被提出。原始的 PSO 是應用於求解連續最佳化問題。當 PSO

用來求解離散最佳化問題時，我們必須修改粒子位置、粒子移動以及粒子速度的

表達方式，讓 PSO 更適於求解離散最佳化問題問題。本研究之主要貢獻為提出

數種適合求解離散最佳化問題之 PSO 設計。這些新的設計和原始的設計不同且

更適合求解離散最佳化問題。 

在本篇論文中，我們將分別提出適合求解零壹多限制式背包問題

(Multidimensional 0-1 Knapsack Problem, MKP)、零工式排程問題 (Job Shop 

Scheduling Problem JSSP)以及開放式排程問題(Open Shop Scheduling Problem, 

OSSP)的 PSO。在求解MKP的 PSO中，我們以零壹變數表達粒子位置，以區塊

建立(building blocks)的概念表達粒子移動方式。在求解 JSSP的 PSO中，我們以

偏好列表(preference-list)表達粒子位置，以交換運算子(swap operator)表達粒子移

動方式。在求解 OSSP的 PSO中，我們以優先權重(priority)表達粒子位置，以插

入運算子(insert operator)表達粒子移動方式。除此之外，我們在求解MKP的 PSO

中加入區域搜尋法(local search)，在求解 JSSP的 PSO與塔布搜尋(tabu search)混

合，以及將求解 OSSP的 PSO與集束搜尋法(beam search)混合。計算結果顯示，

我們的 PSO比其它傳統的啟發式解法要來的好。 

關鍵字：粒子群演算法、零壹多限制式背包問題、零工式排程問題、開放式排程

問題、啟發式解法 
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A Study on Particle Swarm Optimization for Discrete 
Optimization Problems 

Student：Cheng-Yu Hsu     Advisor： Dr. David Yung-Jye Sha  
Dr. Wen-Chih Chen 

Department of Industrial Engineering and Management 
National Chiao Tung University 

ABSTRACT 

Particle Swarm Optimization (PSO) is a population-based optimization algorithm, 

which was developed in 1995. The original PSO is used to solve continuous 

optimization problems. Due to solution spaces of discrete optimization problems are 

discrete, we have to modify the particle position representation, particle movement, 

and particle velocity to better suit PSO for discrete optimization problems. The 

contribution of this research is that we proposed several PSO designs for discrete 

optimization problems. The new PSO designs are better suit for discrete optimization 

problems, and differ from the original PSO. 

In this thesis, we propose three PSOs for three discrete optimization problems 

respectively: the multidimensional 0-1 knapsack problem (MKP), the job shop 

scheduling problem (JSSP) and the open shop scheduling problem (OSSP). In the 

PSO for MKP, the particle position is represented by binary variables, and the particle 

movement are based on the concept of building blocks. In the PSO for JSSP, we 

modified the particle position representation using preference-lists and the particle 

movement using a swap operator. In the PSO for OSSP, we modified the particle 

position representation using priorities and the particle movement using an insert 

operator. Furthermore, we hybridized the PSO for MKP with a local search procedure, 

the PSO for JSSP with tabu search (TS), and the PSO for OSSP with beam search 

(BS). The computational results show that our PSOs are better than other traditional 

metaheuristics. 
 

Keywords: Particle swarm optimization, Multidimensional 0-1 Knapsack Problem, 

Job shop scheduling problem, Open shop scheduling problem, Metaheuristic 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Motivations 

In an optimization problem, limited resources need to be allocated for maximum 

profit. When an optimization problem has discrete solution space, solving such a 

problem amounts to making discrete choice such that an optimal solution is found 

among a finite or a countable infinite number of alternatives. Such problems are 

called discrete optimization problems. Typically, the task is complex, limiting the 

practical utility of combinatorial, mathematical programming and other analytical 

methods in solving discrete optimization problems effectively.  

To find exact solutions of discrete optimization problems a branch-and-bound or 

dynamic programming algorithm is often used. However, many discrete optimization 

problems are NP-hard, which means that the problem cannot be exactly solved in a 

reasonable computation time. Using problem-specific information sometimes reduces 

search space, even though the problem is still difficult to solve exactly. Therefore, 

heuristic algorithms are developed to obtain the approximate optimal solution. 

Metaheuristic is one of the most popular and the most efficient method to obtain the 

approximate optimal solution. Among the meta-heuristics, particle swarm 

optimization (PSO) is new and extensively implemented in recent years. However, the 

original intent of PSO is to solve continuous optimization problems, and PSO 

methods that work well for discrete optimization problems are still scarce.  

1.2 Research Objectives 

The objective of this work is to development PSOs for three discrete 
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optimization problems: the multidimensional 0-1 knapsack problem (MKP), the job 

shop scheduling problem (JSSP) and the open shop scheduling problem (OSSP). 

Since the original intent of PSO is to solve continuous optimization problems, 

we have to modify the original PSO when we implement PSO to a discrete 

optimization problem. PSO can be separated several parts to discuss: position 

representation, particle velocity, and particle movement. We will develop various PSO 

designs in this work. On the other hand, the PSO developed in this work can be an 

example of PSO design for other discrete optimization problems. 

1.3 Organization 

The organization of the remaining chapters for this research is as follows. 

Chapter 2 reviews the literatures of the background of the multidimensional 0-1 

knapsack problem, shop scheduling problems and PSO. Chapter 3 infers the possibly 

success factors of PSO design. Chapter 4 shows a PSO for MKP, chapter 5 shows a 

PSO for JSSP, and chapter 6 shows a PSO for OSSP. In chapter 7 we draw our 

conclusion and indicate the direction for further research. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Particle Swarm Optimization 

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart 

(1995). The original intention was to simulate the movement of organisms in a bird 

flock or fish school, and it has since been introduced as an optimization technique. 

PSO is a population-based optimization algorithm. Each particle is an individual, and 

the swarm is composed of particles. The relationship between swarm and particles in 

PSO is similar to the relationship between population and chromosomes in genetic 

algorithm (GA). 

In PSO, the problem solution space is formulated as a search space. Each 

position in the search space is a correlated solution of the problem. For example, 

when PSO is applied to a continuous optimization problem with d variables, the 

solution space can be formulated as a d dimensional search space, and the value of jth 

variable is formulated as the position on jth dimension. Particles cooperate to find the 

best position (best solution) in the search space (solution space). The particle 

movement is mainly affected by three factors: inertia, particle best position (pbest), 

and global best position (gbest). The inertia is the velocity of the particle in the latest 

iteration, and it can be controlled by inertia weight. The intention of the inertia is to 

prevent particles from moving back to their current positions. The pbest position is the 

best solution found by each particle itself so far, and each particle has its own pbest 

position. The gbest position is the best solution found by the whole swarm so far.  

Each particle moves according to its velocity. The velocity is randomly generated 

toward pbest and gbest positions. For each particle k and dimension j, the velocity and 
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position of particles can be updated by the following equations: 

)()( 2211 kjjkjkjkjkj xgbestrandcxpbestrandcvwv −××+−××+×←  (2.1) 

kjkjkj vxx +←              (2.2) 

In equation (2.1) and equation (2.2), kjv  is the velocity of particle k on 

dimension j, which value is limited to the parameter maxV , that is, maxVvkj ≤ . The 

kjx  is the position of particle k on dimension j, which value is limited to the 

parameter maxX , that is, maxXxkj ≤ . The kjpbest  is the pbest position of particle k 

on dimension j, and jgbest  is the gbest position of the swarm on dimension j. The 

inertia weight w  was first proposed by Shi and Eberhart (1998a, 1998b), and it is 

used to control exploration and exploitation. The particles maintain high velocities 

with a larger w , and low velocities with a smaller w . A larger w  can prevent 

particles from becoming trapped in local optima, and a smaller w  encourages 

particles exploiting the same search space area. The constants 1c  and 2c  are used to 

decide whether particles prefer moving toward a pbest position or gbest position. The 

1rand  and 2rand  are random variables between 0 and 1. The process of PSO is 

shown as Figure 2.1. 
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Initialize a population of particles with random positions and velocities on 
d dimensions in the search space. 

repeat 

for each particle k do 

Update the velocity of particle k, according to equation (1). 

Update the position of particle k, according to equation (2). 

Map the position of particle k in the solution space and evaluate 
its fitness value according to the desired optimization fitness 
function. 

Update pbest and gbest position if necessary. 

end for 

until a criterion is not met, usually a sufficient good fitness or a maximum 
number of iterations.  

Figure 2.1 The process of particle swarm optimization. 

The original PSO is suited to a continuous solution space. Therefore, the 

applications of PSO for discrete optimization problems are still scarce. Table 2.1 

shows the references of PSO for discrete optimization problems. 
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Table 2.1 References of PSO for discrete optimization problems 

Problem References 
  
Binary Unconstrained Optimization Kennedy & Eberhart (1997) 

A first discrete version of PSO for 
binary variables. 

Rastegar et al. (2004) 
Based on Kennedy & Eberhart 
(1997), hybridized with learning 
automata. 

  
Constrained layout optimization Li (2004) 

Represent a layout problem by 
continuous variables. 

  
Multi-objective task allocation Yin et al. (2007a) 

Particle represented by integer 
variables, which indicates the index 
of the allocated processor for each 
module. 

  
Task assignment problem Salman et al. (2002) 

The positions of tasks are 
represented by continuous
variables. 

Yin et al. (2007b) 
Hybridized with a parameter-wise 
hill-climbing heuristic. 

  
Traveling salesman problem Wang et al. (2003) 

Applied sequential ordering 
representation and swap operator. 

Pang et al. (2004) 
Represent the particle position by a 
fuzzy matrix. 

Zhi et al. (2004) 
The particles movement is based on 
a one-point crossover. 

  
Vehicle routing problem Wu et al. (2004) 

Applied swap operator and 2-opt 
local search. 
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Table 2.1 (cont.) 

Problem References 
  

Scheduling Problems:  
– Assembly scheduling Allahverdi & Al-Anzi (2006) 

Hybridized with tabu search. 
  
– Flow shop scheduling Lian et al. (2006) 

Proposed three crossover operators.
Tasgetiren et al. (2007) 

Real number representation and 
local search. 

Liao et al. (2007) 
Represent the operation sequence 
by 0-1 variables. 

  
– Job shop scheduling Lian et al. (2006) 

Proposed four crossover operators.
  
– Multi-objective flexible job-shop 

scheduling 
Xia & Wu (2005) 

Hybridized with simulated 
annealing. 

  
– Resource constraint project 

scheduling 
Zhang & Li (2006) 
Zhang & Li (2007) 

Compared priority based 
representation and sequential 
ordering representation. 
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2.2 Multidimensional 0-1 Knapsack Problem 

The multidimensional 0-1 knapsack problem (MKP) is a well-known NP-hard 

problem. The problem can be formulated as: 

maximize  ∑
=

n

j
jj xp

1

, 

subject to  ∑
=

≤
n

j
ijij bxr

1

,    for mi ,,1K= , 

}1,0{∈jx ,    for nj ,,1K= , 

with   0>jp ,      for all j, 

iij br ≤≤0 ,     for all i, j, 

∑
=

<
n

j
iji rb

1

,     for all i. 

Where m is the number of knapsack constraints and n is the number of items. 

Each item j requires ijr  units of resource consumption in the ith knapsack and yields 

jp  units of profit upon inclusion. The goal is to find a subset of items that yields 

maximum profit without exceeding resource capacities. The MKP can be seen as a 

general model for any kind of binary problems with positive coefficients, and it can be 

applied to many problems such as cargo loading, capital budgeting, project selection, 

etc. The most recent surveys on MKP can be found in (Fréville, 2004) and (Fréville 

and Hanafi, 2005). 

The MKP is an NP-hard problem, so it cannot be exactly solved in a reasonable 

computation time for large instances. However, metaheuristics can obtain approximate 

optimal solutions in a reasonable computation time. For that reason, metaheuristics for 

MKP such as simulated annealing (SA) (Drexl, 1988), tabu search (TS) (Glover and 

Kochenberger, 1996; Hanafi and Fréville; 1998; Vasquez and Hao, 2001; Vasquez and 

Vimont, 2005), and genetic algorithm (GA) (Chu and Beasley, 1998) have arisen 
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during the last decade. 

2.3 Job Shop Scheduling Problem 

The job shop scheduling problem (JSSP) is one of the most difficult 

combinatorial optimization problems. The JSSP can be briefly stated as follows 

(French, 1982; Gen & Cheng, 1997). There are n jobs to be processed through m 

machines. We shall suppose that each job must pass through each machine once and 

once only. Each job should be processed through the machines in a particular order, 

and there are no precedence constraints among different job operations. Each machine 

can process only one job at a time, and it cannot be interrupted. Furthermore, the 

processing time is fixed and known. In this work, the problem is to find a schedule to 

minimize the makespan ( maxC ), that is, the time required to complete all jobs. The 

constraints in the classical JSSP is listed as follows (Bagchi, 1999): 

• No two operations of one job occur simultaneously. 

• No pre-emption (i.e. process interruption) of an operation is allowed. 

• No job is processed twice on the same machine. 

• Each job is processed to its completion, though there may be waits and 

delays between the operations performed. 

• Jobs may be started at any time; hence no release time exists. 

• Jobs must wait for the next machine to be available. 

• No machine may perform more than one operation at a time. 

• Set-up times for the operations are sequence-independent and included 

in processing times. 

• There is only one of each type of machine. 

• Machines may be idle within the schedulable period. 

• Machines are available at any time. 
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• The technological (usually related to processing) constraints are known 

in advance and are immutable. 

Solution Space 

Semi-active 

Active 

Non-delay 

 

Figure 2.2 The relationship of semi-active, active, and nondelay schedules. 

In JSSP, there are three distinct schedules can be identified as follows: 

• Semi-active schedule: in an active schedule, the processing sequence is 

such that no operation can be started any earlier without changing the 

operation sequence on a machine. 

• Active schedule: in an active schedule, the processing sequence is such 

that no operation can be started any earlier without delaying some 

other operation. 

• Nondelay schedule: in a nondelay schedule, no machine is kept idle at 

a time when it could begin processing other operations. 

Figure 2.2 shows the relationship of semi-active, active, and nondelay schedules. The 

optimal JSSP solution should be an active schedule. To reduce the search solution 

space, the tabu search proposed by Sun et al. (1995) searches solutions within the set 

of active schedules. Gonçalves and Beirão (1999) proposed the concept of 
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parameterized active schedules. The main purpose of parameterized active schedules 

is to reduce the search area but not to exclude the optimal solution. The basic idea of 

parameterized active schedules is to control the search area by controlling the delay 

times that each operation is allowed. If all of the delay times are equal to zero, the set 

of parameterized active schedules is equivalent to non-delay schedules. On the 

contrary, if all of the delay times are equal to infinity, the set of parameterized active 

schedules is equivalent to the active schedules. 

Garey et al. (1976) demonstrated that JSSP is NP-hard, so it cannot be exactly 

solved in a reasonable computation time. Many meta-heuristics have been developed 

in the last decade to solve JSSP, such as simulated annealing (SA) (Lourenço, 1995), 

tabu search (TS) (Sun et al., 1995; Nowicki & Smutnicki, 1996; Pezzella & Merelli, 

2000), and genetic algorithm (GA) (Bean, 1994; Kobayashi et al., 1995; Wang & 

Zheng, 2001; Gonçalves et al., 2005). 

2.4 Open Shop Scheduling Problem 

The open shop scheduling problem (OSSP) can be stated as follows (Gonzalez & 

Sahni, 1976): there is a set of n jobs that have to be processed on a set of m machines. 

Every job consists of m operations, each of which must be processed on a different 

machine for a given process time. The operations of each job can be processed in any 

order. At any time, at most one operation can be processed on each machine, and at 

most one operation of each job can be processed. In this research, the problem is to 

find a non pre-emptive schedule to minimize the makespan ( maxC ), that is, the time 

required to complete all jobs. 

The constraints in the classical OSSP are similar to the classical JSSP but there 

are no precedence constraints among the same job operations. The OSSP is NP-hard 
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for 3≥m  (Gonzalez & Sahni, 1976), so it cannot be exactly solved in a reasonable 

computation time. Guéret and Prins (1998) proposed two fast heuristics, the results of 

which are better than other classical heuristics. Domdorf et al. (2001) proposed a 

branch-and-bound method, which is the current best method to solve OSSP exactly. 

Many metaheuristic algorithms have been developed in the last decade to solve OSSP, 

such as simulated annealing (SA) (Liaw, 1999), tabu search (TS) (Alcaide & Sicilia, 

1997; Liaw, 1999), genetic algorithm (GA) (Liaw, 2000; Prins, 2000), ant colony 

optimization (ACO) (Blum, 2005), and neural network (NN) (Colak & Agarwal, 

2005). 
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CHAPTER 3  

DEVELOPING A PARTICLE SWARM OPTIMIZATION 

FOR A DISCRETE OPTIMIZATION PROBLEM 

The original PSO is suited to a continuous solution space. We have to modify the 

original PSO in order to better suit it to discrete optimization problems. In this chapter, 

we will discuss the probably success factors to develop a PSO design for a discrete 

optimization problem. We separated a PSO design into several parts to discuss: 

particle position representation, particle velocity, particle movement, decoding 

operator, and other search strategies.  

3.1 Particle Position Representation 

PSO represents the solutions by particle positions. There are various particle 

position representations for a discrete optimization problem. How to represent 

solutions by particle positions is a research topic when we develop a PSO design.  

Generally, the Lamarckian property is used to discriminate between good and 

bad representations. The Lamarckian property is that the offspring can inherit 

goodness from its parents. For example, if there are six operations to be sorted on a 

machine, and we implement the random key representation (Bean, 1994) to represent 

a sequence, there are two positions of two particle positions as follows:  

position 1:  [0.25, 0.27, 0.21, 0.24, 0.26, 0.23] 

position 2:  [0.22, 0.25, 0.23, 0.26, 0.24, 0.21] 

Then the operation sequence can be generated by sort the operations according to the 

increasing order of their position values as follows: 
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permutation 1:  [ 251463 ] 

permutation 2:  [ 425316 ] 

We can find that these two permutations are quite different even though their positions 

are very close to each other. This is because the location in the permutation of one 

operation depends on the position values of other operations. Hence, the random key 

representation has no Lamarckian.  

If we directly implement the original PSO design (i.e. the particles search 

solutions in a continuous solution space) to a scheduling problem, we can implement 

the random key representation to represent a sequence of operations on a machine. 

However, the PSO will be more efficient if the particle position representation is with 

higher Lamarckian.  

3.2 Particle Velocity and Particle Movement 

The particle velocity and particle movement are designed for the specific particle 

position representation. In each iteration, a particle moves toward pbest and gbest 

positions, that is, the next particle position is determined by current position, pbest 

position, and gbest position. Furthermore, particle moves according to its velocity and 

movement mechanisms. Each particle moves from current position (solution) to one 

of the neighborhood positions (solutions). Therefore, the particle movement 

mechanism should be designed according the neighborhood structure. The advantage 

of neighborhood designs can be estimated by following properties (Mattfeld, 1996): 

• Correlation: the solution resulting from a move should not differ much 

from the starting one. 

• Feasibility: the feasibility of a solution should be preserved by all 

moves. 
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• Improvement: all moves in the neighborhood should have a good 

chance to improve the objective of a solution. 

• Size: the number of moves in the neighborhood should be reasonably 

small to avoid excessive computational cost of their evaluation. 

• Connectivity: it should be possible to reach the optimal solution from 

any starting one by performing a finite number of neighborhood 

moves. 

We believe that the PSO will be more efficient if we design the particle velocity 

and the particle movement mechanisms according to these properties. 

3.3 Decoding Operator 

Decoding operator is used to decode a particle position into a solution. The 

decoding operator is designed according the specific particle position representation 

and the characteristics of the problem. A superior decoding operator can map the 

positions to the solution space in a smaller region but not excluding the optimal 

solution. In chapter 6, we designed four decoding operators for OSSP. The results 

show that the decoding operator design extremely influences the solution quality. 

3.4 Other Search Strategies 

．Diversification Strategy 

We can also consider implementing other search strategies. The purpose of most 

search strategies is to control the intensification and the diversification. One of the 

search strategies is the structure of gbest and pbest solutions. In the original PSO 

design, each particle has its own pbest solution and the swam has only one gbest 

solution. Eberhart and Shi (2001) show a “local” version of the particle swarm. In this 

version, particles have information only of their own and their neighbors’ bests, rather 
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that that of the entire group. Instead of moving toward a kind of stochastic average of 

pbest and gbest (the best location of the entire group), particles move toward points 

defined by pbest and “lbest,” which is the index of the particle with the best 

evaluation in the particle’s neighborhood. 

In this research, we proposed a diversification strategy. In this strategy, the pbest 

solution of each particle is not the best solution found by the particle itself, but one of 

the best N solutions found by the swarm so far where N is the size of the swarm. 

．Selection Strategy 

Angeline (1998) proposed a selection strategy, which is performed as follows. 

After all the particles move to new positions, select the s best particles. The better 

particle set ),,,{ 21 skkkS K=  replaces the positions and velocities of the other 

particles. The addition of this selection strategy should provide the swarm with a more 

exploitative search mechanism that should find better optima more consistently.  

In chapter 4, we modified the method proposed by Angeline (1998) based on the 

concept of building blocks where a block is part of a solution, and a good solution 

should include some superior blocks. The concept of building blocks is that if we can 

precisely find out the superior blocks and accumulate the superior blocks in the 

population, the genetic algorithm will perform better (Goldberg, 2002). 

3.5 The Process to Develop a New Particle Swarm Optimization 

As mentioned above, we separated PSO into several parts. The particle position 

representation determines the program data structure and other parts are designed for 

the specific particle position representation. Therefore, the first step of developing a 

new PSO is to determine the particle position representation. Then design particle 

velocity, particle movement and decoding operator for the specific particle position 
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representation. Finally implement some search strategies for further improving 

solution quality. Figure 3.1 shows the process to develop a new particle swarm 

optimization. All the PSOs in this research are developed by the process described as 

Figure 3.1. 

Figure 3.1 The process to develop a new particle swarm optimization 

Design particle position representation 

Design particle velocity and 
particle movement for the 
specific particle position 
representation 

Design decoding operator for the 
specific particle position 
representation 

Implement other search 
strategies 
(#optional)  
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CHAPTER 4  

A DISCRETE BINARY PARTICLE SWARM 

OPTIMIZATION FOR THE MULTIDIMENSIONAL 0-1 

KNAPSACK PROBLEM 

Kennedy and Eberhart (1997) proposed a discrete binary particle swarm 

optimization (DPSO), which was designed for discrete binary solution space. Rastegar 

et al. (2004) proposed another DPSO based on learning automata. In both of the 

DPSOs, when particle k moves, its position on the jth variable kjx  equals 0 or 1 at 

random. The probability that kjx  equals 1 is obtained by applying a sigmoid 

transformation to the velocity kjv  ))exp(1/1( kjv−+ . In the above two DPSOs, the 

positions and velocities of particles can be updated by the following equations: 

)()( 2211 kjjkjkjkjkj xgbestrandcxpbestrandcvv −××+−××+←   (4.1) 

01))exp(1/1(( ←←−+< kjkjkj xelsexthenvrandif     (4.2) 

where rand, 1rand , and 2rand  are random numbers between 0 and 1. The 

value of kjv  is limited by a value maxV , a parameter of the algorithm, that is, 

max|| Vvkj ≤ . For instance, if maxV = 6, the probability that kjx  equals 1 will be limited 

between 0.9975 and 0.0025. 

The DPSOs proposed by Kennedy and Eberhart (1997) and Rastegar et al. (2004) 

are designed for discrete binary optimization problems with no constraint. However, 

there are resource constraints in MKP. If we want to solve MKP by DPSO, we have to 

modify DPSO to fit the MKP characteristics.  

There are two main differences between the DPSO in this chapter and the DPSOs 
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in previous research: (i) particle velocity and (ii) particle movement. The particle 

velocity is modified based on the tabu list and the concept of building blocks, and 

then the particle movement is modified based on the crossover and mutation of the 

genetic algorithm (GA). Besides, we applied the repair operator to repair solution 

infeasibility, the diversification strategy to prevent particles becoming trapped in local 

optima, the selection strategy to exchange good blocks between particles, and the 

local search to further improve solution quality. The computational results show that 

our DPSO effectively solves MKP and better than other traditional algorithms. 

4.1 Particle Position Representation 

In out DPSO, the particle position is represented by binary variables. For a MKP 

with n items, we represent the particle k position by n binary variables, i.e. 

],,,[ 21 knkkk xxxx K=  

Where kjx { }1,0∈  denotes the value of jth variable of particle k’s solution. Each time 

we start a run, DPSO initializes a population of particles with random positions, and 

initializes the gbest solution by a surrogate duality approach (Pirkul, 1987). We 

determine the pseudo-utility ratio ∑ =
=

m

i ijijj rypu
1

/  for each variable, where iy  is 

the shadow price of the ith constraint in the LP relaxation of the MKP. To initialize the 

gbest solution, we set 0←jgbest  for all variable j and then add variables 

( 1←jgbest ) into the gbest solution by descending order of ju  as much as possible 

without violating any constraint. 

Initializing the gbest solution has two purposes. The first is to improve the 

consistency of run results. Because the solutions of DPSO are generated randomly, the 

computational results will be different in each run. If we give DPSO the same initial 

point of gbest solution in each run, it may improve result consistency. The second 
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purpose is to improve result quality. Similar to other local search approaches, a good 

initial solution can accelerate solution convergence with better results. 

4.2 Particle Velocity 

When PSO is applied to solve problems in a continuous solution space, due to 

inertia, the velocity calculated by equation (4.1) not only moves the particle to a better 

position, but also prevents the particle from moving back to the previous position. The 

larger the inertia weight, the harder the particle backs to the current position. The 

DPSO velocities proposed by Kennedy and Eberhart (1997) and Rastegar et al. (2004) 

move particles toward the better position, but cannot prevent the particles from being 

trapped in local optima. 

We modified the particle velocity based on the tabu list, which is applied to 

prevent the solution from being trapped in local optima. In our DPSO, each particle 

has its own tabu list, the velocity. There are two velocity values, kjv  and kjv′ , for 

each variable kjx . If kjx  changes when particle k moves, we set kjv ←1 and kjv′ ←

kjx . When kjv  equals 1, it means that kjx  has changed, variable j was added into the 

tabu list of particle k, and we should not change the value of kjx  in the next few 

iterations. Therefore, the velocity can prevent particles from moving back to the last 

position in the next few iterations. The value of kjv′  is used to record the value of kjx  

after the value of kjx  has been changed. The set of variable kjv′  is a “block” which 

is a part of a solution that particle k obtained from the pbest solution and gbest 

solution. It is applied to the selection strategy with the concept of building blocks that 

we will describe in section 4.6. 

In our DPSO, we also implement inertia weight w  to control particle velocities 

where w  is between 0 and 1. We randomly update velocities at the beginning of each 
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iteration. For each particle k and jth variable, if kjv  equals 1, kjv  will be set to 0 with 

probability (1- w ). This means that if variable kjx  is in the tabu list of particle k, 

variable kjx  will be dropped from the tabu list with probability (1- w ). Moreover, the 

exploration and exploitation can be controlled by w . The variable kjx  will be held 

in the tabu list for more iterations with a larger w  and vice versa. The pseudo code 

of updating velocities is given in Figure 4.1. 

for each particle k and variable j do 
rand ~ U(0,1) 
if )()1( wrandandvkj ≥=  then 

0←kjv  
end if 

end for  

Figure 4.1 Pseudo code of updating velocities. 

4.3 Particle Movement 

In the DPSO we proposed, particle movement is similar to the crossover and 

mutation of GA. When particle k moves, if kjx  is not in the tabu list of particle k (i.e. 

kjv =0), the value of kjx  will be set to kjpbest  with probability 1c  (if 

kjx ≠ kjpbest ), set to jgbest  with probability 2c  (if kjx ≠ jgbest ), set to (1- kjx ) 

with probability 3c , or not changed with probability (1- 1c - 2c - 3c ). Where 1c , 2c , 

and 3c  are parameters of the algorithm with 1321 ≤++ ccc  and 0≥ic , i=1, 2, 3.  

Since the value of kjx  may be changed by repair operator or local search 

procedure (we will describe them in section 4.4 and in section 4.7 respectively), if kjx  

is in the tabu list of particle k (i.e. kjv = 1), the value of kjx  will be set to the value of 

kjv′  which is the latest value that kjx  obtained from the pbest solution or gbest 

solution. At the same time, if the value of kjx  changes, we update kjv  and kjv′  as 

we mentioned in section 4.2. The pseudo code of particle movement is given in Figure 
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4.2. 

for j←1 to n do 
rand ~ U(0,1) 

thenif )0( =kjv  
thenandif )()( 1 kjkj pbestxcrand ≠≤  

kjkjkjkjkj xvvpbestx ←′←← ;1;  
thenandif )()( 211 jkj gbestxccrandc ≠+≤<  

kjkjkjjkj xvvgbestx ←′←← ;1;  
thenif )( 32121 cccrandcc ++≤<+  

kjkjkjkjkj xvvxx ←′←−← ;1);1(  
else 

kjkj vx ′←  
end if 

end for  

Figure 4.2 Pseudo code of particle movement. 

4.4 Repair Operator 

After a particle generates a new solution, we apply the repair operator to repair 

solution infeasibility and to improve it. There are two phases to the repair operator. 

The first is the drop phase. If the particle generates an infeasible solution, we need to 

drop ( 0←kjx , if 1=kjx ) some variables to make it feasible. The second phase is the 

add phase. If the particle finds a feasible solution, we add ( 1←kjx , if 0=kjx ) more 

variables to improve it. Each phase is performed twice: the first time we consider the 

particle velocities, and the second time we do not consider the particle velocities. 

Similar to initializing the gbest solution described in section 4.1, we applied the 

Pirkul (1987) surrogate duality approach to determine the variable priority for adding 

or dropping. First, we determine the pseudo-utility ratio ∑ =
= m

i ijijj rypu
1

/  for each 

variable, where iy  is the shadow price of the ith constraint in the LP relaxation of the 

MKP. We drop variables by ascending order of ju  until the solution is feasible, and 

then we add variables by descending order of ju  as much as possible without 
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violating any constraint. The pseudo code of repair operator is given in Figure 4.3. 

Ri = the accumulated resources of constraint i 
U← permutation of (1,2,…,n) with ]1[][ +≥ jUjU uu  (j = 1,…, n-1) 

∑ =
∀← n

j kjiji ixrR
1

, ; 

beginphaseDrop//  
dotofor 1nj ←  

thenandandif )0(),()1( ][][ =>= jkUiijkU vianyforbRx  
;0][ ←jkUx  

;),( ][ irRR jiUii ∀−←  
ifend  

forend  
dotofor 1nj ←  

thenandandif )1(),()1( ][][ =>= jkUiijkU vianyforbRx  
;0][ ←jkUx  

;),( ][ irRR jiUii ∀−←  
ifend  

forend  
endphaseDrop//  

beginphaseAdd//  
dotofor nj 1←  

thenandandif )0(),()0( ][][][ =∀≤+= jkUijiUijkU vibrRx  
1][ ←jkUx ; 

irRR jiUii ∀+← ),( ][ ; 
ifend  

forend  
dotofor nj 1←  

thenandandif )1(),()0( ][][][ =∀≤+= jkUijiUijkU vibrRx  
1][ ←jkUx ; 

irRR jiUii ∀+← ),( ][ ; 
ifend  

forend  
endphaseAdd//   

Figure 4.3 Pseudo code of repair operator 
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4.5 The Diversification Strategy 

If the pbest solutions are all the same, the particles will be trapped in local 

optima. To prevent such a situation, we propose a diversification strategy to keep the 

pbest solutions different. In the diversification strategy, the pbest solution of each 

particle is not the best solution found by the particle itself, but one of the best N 

solutions found by the swarm so far where N is the size of the swarm. 

The diversification strategy is performed according to the following process. 

After all of the particles generate new solutions, for each particle, compare the 

particle’s fitness value with pbest solutions. If the particle’s fitness value is better than 

the worst pbest solution and the particle’s solution is not equal to any of the pbest 

solutions, replace the worst pbest solution with the solution of the particle. At the 

same time, if the particle’s fitness value is better than the fitness value of the gbest 

solution, replace the gbest solution with the solution of the particle. The pseudo code 

of updating pbest solutions is given in Figure 4.4. 

*k  is the index of the worst pbest solution 
for k  ← 1 to N do 

{ })(minarg*
k

k
pbestfk ′

′∀
= ; 

thenif ))()(( *kk pbestfxf >  
thenif ),( ' kpbestx kk ′∀≠  

kk xpbest ←* ; 
end if 

thenif ))()(( gbestfxf k >  

kxgbest ← ; 
end if 

end if 
end for  

Figure 4.4 Psudo code of updating pbest solutions. 
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4.6 The Selection Strategy 

Angeline (1998) proposed a selection strategy, which is performed as follows. 

After all the particles move to new positions, select the s best particles. The better 

particle set ),,,{ 21 skkkS K=  replaces the positions and velocities of the other 

particles. The addition of this selection strategy should provide the swarm with a more 

exploitative search mechanism that should find better optima more consistently.  

We modified the method proposed by Angeline (1998) based on the concept of 

building blocks where a block is part of a solution, and a good solution should include 

some superior blocks. The concept of building blocks is that if we can precisely find 

out the superior blocks and accumulate the superior blocks in the population, the 

genetic algorithm will perform better (Goldberg, 2002).  

Find out the s best particles ),,,{ 21 skkkS K=  
1←l ; 

dotofor Nk 1←  
thenif )( Sk ∉  

lkk vv ← ; 

lkk vv ′←′ ; 
thenif )( sl >  
1←l ; 

else 
1+← ll ; 

end if 
end if 

end for  

Figure 4.5 Pseudo code of selection strategy. 

In our DPSO, the velocities },,,{ 21 knkkk vvvv ′′′=′ K  is a block that particle k 

obtained from pbest solution and gbest solution in each iteration. The kv′  may be a 

superior block if the solution of particle k is better then others. Therefore, in our 

modified selection strategy, the better particle set S  only replaces the velocities (i.e. 
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kv  and kv′ ) of the other particles. The pseudo code of selection strategy is given in 

Figure 4.5. 

4.7 Local Search 

We implement a local search procedure after a particle generates a new solution 

for further improved solution quality. The classical add/drop neighborhood is that we 

remove a variable from the current solution and add another variable to it without 

violating any constraint at the same time. We modified the neighborhood with the 

concept of building blocks to reduce the neighborhood size. We focus on the block 

when we implement a local search. The variables are classified to 4 sets: 

}0|{0 == kjxjJ , }1|{1 == kjxjJ , }10|{0 =∧==′ kjkj vxjJ , and 1|{1 ==′ kjxjJ  

}1=∧ kjv . The modified neighborhood is defined as follows: add (or drop) one 

variable from 0J ′  (or 1J ′ ) and drop (or add) one variable from 1J  (or 0J ) without 

violating any constraint at the same time. In our experiment, the size of the modified 

neighborhood is about twenty times smaller then the classical one. Besides, we add 

variables by descending order of jp  as much as possible without violating any 

constraint after the add/drop process.  
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Ri = the accumulated resources of constraint i 
P← permutation of (1,2,…,n) with ]1[][ +≥ jPjP pp  (j = 1,…, n-1) 

∑ =
∀← n

j kjiji ixrR
1

,  

dotofor 41←times  
// Add/drop local search begin 

0*
0 ←j ; 0*

1 ←j ; )(*
kxff ← ; 

dotofor nj 1←′  
thenif )( 1Jj ′∈′  

},|{maxarg 00 ibrrRandJjpj iijjiij
j

∀≤+−∈= ′
∀

 

thenif ))(( *
0

fppxf jjk >+− ′  
jj ′←*

0 ; 0
*
1 jj ← ; ))((

0
*

jjk ppxff +−← ′ ; 
ifend  

ifend  
thenif )( 0Jj ′∈′  

},|{minarg 11 ibrrRandJjpj iijjiij
j

∀≤−+∈= ′
∀

 

thenif ))(( *
1

fppxf jjk >−+ ′  

1
*
0 jj ← ; jj ′←*

1 ; ))((
1

*
jjk ppxff −+← ′ ; 

ifend  
ifend  

forend  

;0*
0

←jkx  ;1*
1

←jkx  ;),( *
0

*
1

irrRR jijiii ∀−+←  

// Add/drop local search end 
// Add more variables begin 

dotofor nj 1←  
thenandif ),()0( ][][ ibrRx ijiPijkP ∀≤+=  

1][ ←jkPx ; irRR jiPii ∀+← ),( ][ ; 
ifend  

forend  
// Add more variables end 
forend   

Figure 4.6 Pseudo code of local search procedure. 
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We do not repeat the local search until the solution reaches the local optima. The 

local search procedure is performed four times at most for reducing the computation 

time and preventing being trapped in local optima. The pseudo code of local search is 

given in Figure 4.6. 

4.8 Computational Results 

Our DPSO was tested on the problems proposed by Chu and Beasley (1998). 

These problems are available on the OR-Library web site (Beasley, 1990) (URL: 

http:// people.brunel.ac.uk/~mastjjb/jeb/info.html). The number of constraints m was 

set to 5, 10, and 30, and the number of variables n was set to 100, 250, and 500. For 

each m-n combination, thirty problems are generated, and the tightness ratio α  

( ∑ =
= n

j iji rb
1

/α ) was set to 0.25 for the first ten problems, to 0.5 for the next ten 

problems, and to 0.75 for the remaining problems. Therefore, there are 27 problem 

sets for different n-m-α  combinations, ten problems for each problem set, and 270 

problems in total. 

The program was coded in Visual C++, optimized by speed, and run on an AMD 

Athlon 1800+ PC. The numeric parameters are set to 7.01 =c , 1.02 =c , nc /13 = , 

N = 100, and s = 20. The inertia weight w  is decreased linearly from 0.7 to 0.5 

during a run. All of the numeric parameters are determined empirically. There are two 

versions of our DPSO. The first version, DPSO, does not implement the local search 

procedure, and the second, DPSO+LS, implements the local search procedure. Each 

run will be terminated after 10,000 iterations on DPSO and 15,000 iterations on 

DPSO+LS, respectively.  

The program performs 10 runs for each of the 270 problems. The term ‘Best’ is 

applied to the best solution obtained in 10 runs of each problem and averaged 
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according to the 10 problems of the problem set. The term ‘Average’ is applied to the 

average solution of 10 runs of each problem and averaged according to the 10 

problems of the problem set. 

t* is the average time in seconds that the DPSO or DPSO+LS takes to first reach 

the final best solution in a run, and T is the total time in seconds that the DPSO or 

DPSO+LS takes before termination in a run. The surrogate duality was pre-calculated 

by MATLAB, so the computation times in Table 4.1 do not include the computation 

time of calculating surrogate duality. The average computation time for solving LP 

relaxation problems was less then 1 CPU second, so the surrogate duality calculation 

is not important to computation time.  

The computational results are shown in Table 4.1. The algorithms have different 

computation times, so we compared DPSO with GA (Chu and Beasley, 1998) since 

their computation times are similar. The computational results show that DPSO 

performed better than GA (Chu and Beasley, 1998) in 20 of 27 problem sets.  

We compared DPSO+LS with Fix+Cuts (Osorio et al., 2002) and LP+TS 

(Vasquez and Hao, 2001). The Fix+Cuts (Osorio et al., 2002) takes 3 hours on a 

Pentium III 450 MHz PC for each run, and LP+TS (Vasquez and Hao, 2001) takes 

about 20-40 minutes on a Pentium III 500 MHz PC for each run. Our DPSO+LS takes 

less than 8 minutes on the largest problems and our machine is about four times faster 

than Fix+Cuts (Osorio et al., 2002) and LP+TS (Vasquez and Hao, 2001), so the 

computation time that DPSO+LS takes is similar to LP+TS (Vasquez and Hao, 2001) 

and much less than Fix+Cuts (Osorio et al., 2002). The computational results show 

that DPSO+LS performed better than Fix+Cuts (Osorio et al., 2002) in 15 of 27 

problem sets, and better than LP+TS (Vasquez and Hao, 2001) in all of the 9 largest 

problem sets. 
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Table 4.1 Computational results 
Problem  DPSO DPSO+LS 

n m α

GA 
(Chu and 
Beasley, 

1998) 
 

Fix+Cuts
(Osorio et 
al., 2002)

LP+TS
(Vasque

z and 
Hao, 
2001)

Fix+LP+TS
(Vasquez and 
Vimont, 2005) Best Average t* T Best Average t* T 

100 5 0.25 24197  24197 24197 24197.2 0.5 10.2 24197 24197.2 0.3 68.8 
100 5 0.5 43253  43253 43253 43252.9 0.5 10.1 43253 43252.9 0.2 67.7 
100 5 0.75 60471  60471 60471 60471.0 0.3 9.8 60471 60471.0 0.2 61.6 
100 10 0.25 22602  22602 22602 22595.8 1.7 11.1 22602 22601.9 1.7 77.5 
100 10 0.5 42659  42661 42661 42658.2 1.4 11.2 42661 42660.6 2.6 77.0 
100 10 0.75 59556  59556 59556 59554.2 0.3 11.2 59556 59555.6 0.3 68.9 
100 30 0.25 21654  21656 21654 21651.0 2.4 13.0 21660 21658.2 4.1 86.1 
100 30 0.5 41431  41437 41435 41430.7 2.4 13.7 41440 41439.9 7.2 85.1 
100 30 0.75 59199  59202 59199 59196.5 1.8 14.1 59202 59201.0 3.2 78.7 
250 5 0.25 60410  60413 60414 60407.1 8.0 26.4 60414 60412.3 34.5 199.0 
250 5 0.5 109285  109293 109293 109287.2 9.9 26.3 109293 109292.8 19.2 198.3 
250 5 0.75 151556  151560 151560 151556.5 6.2 25.6 151560 151560.3 8.5 181.2 
250 10 0.25 58994  59019 59010 58985.8 10.6 28.4 59014 59009.5 60.0 215.2 
250 10 0.5 108706  108607 108724 108705.7 10.1 29.1 108727 108722.4 49.9 204.0 
250 10 0.75 151330  151363 151339 151329.4 8.8 28.9 151342 151339.9 24.3 196.4 
250 30 0.25 56876  56959 56893 56855.7 11.3 32.9 56911 56891.4 55.8 218.1 
250 30 0.5 106674  106686 106682 106654.6 13.0 34.9 106708 106692.4 80.2 217.5 
250 30 0.75 150444  150467 150457 150427.6 13.6 36.4 150471 150461.9 55.9 206.1 
500 5 0.25 120616  120610 120623 120628 120623 120609.8 24.3 54.5 120630 120623.9 174.8 440.3 
500 5 0.5 219503  219504 219507 219512 219507 219502.5 17.0 54.5 219513 219510.7 138.6 422.3 
500 5 0.75 302355  302361 302360 302363 302360 302355.1 18.1 53.4 302362 302360.3 82.9 401.1 
500 10 0.25 118566  118584 118600 118629 118569 118540.8 26.4 58.0 118605 118580.7 242.8 467.5 
500 10 0.5 217275  217297 217298 217326 217295 217260.6 25.6 59.4 217312 217288.6 216.0 459.0 
500 10 0.75 302556  302562 302575 302603 302572 302553.4 22.1 59.5 302591 302577.3 165.8 434.0 
500 30 0.25 115474  115520 115547 115624 115481 115435.6 31.0 69.8 115559 115493.0 208.1 454.6 
500 30 0.5 216157  216180 216211 216275 216188 216138.2 28.8 73.8 216221 216184.8 189.4 452.0 
500 30 0.75 302353  302373 302404 302447 302369 302343.7 26.4 76.7 302405 302382.9 193.2 438.0 

Average 120153.7  120162.7 120161.6 120146.5 11.9 34.5 120173.4 120163.8 74.8 239.9 
t* = average best-solution time (CPU seconds); T = average execution time (CPU seconds). 
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Table 4.2 The percentage gaps between DPSO+LS and Fix+LP+LS (Vasquez and Vimont, 2005) 

Problem DPSO+LS 

n m α Best Average 
500 5 0.25 -0.0019% 0.0034% 
500 5 0.5 -0.0003% 0.0006% 
500 5 0.75 0.0003% 0.0009% 
500 10 0.25 0.0204% 0.0407% 
500 10 0.5 0.0063% 0.0172% 
500 10 0.75 0.0039% 0.0085% 
500 30 0.25 0.0562% 0.1133% 
500 30 0.5 0.0248% 0.0417% 
500 30 0.75 0.0138% 0.0212% 
Average     0.0137% 0.0275% 

We do not compare our algorithms with Fix+LP+TS (Vasquez and Vimont, 2005), 

since Fix+LP+TS (Vasquez and Vimont, 2005) takes 7.6-33 hours on a Pentium4 

2GHz PC to obtain the solution for each problem. In general, a metaheuristic does not 

perform such a long time and the solution quality of Fix+LP+TS (Vasquez and 

Vimont, 2005) could not be reached in a short computation time. However, we show 

the percentage gaps between our DPSO+LS and Fix+LP+TS (Vasquez and Vimont, 

2005) in Table 4.2. The percentage gaps show that the results of our DPSO+LS very 

close to Fix+LP+TS (Vasquez and Vimont, 2005) in a short computation time. 

4.9 Concluding Remarks 

In this chapter we have presented a new discrete binary particle swarm 

optimization (DPSO) for solving multidimensional 0-1 knapsack problems and a local 

search procedure based on the concept of building blocks. The proposed DPSO 

adopted new concepts of particle velocity and particle movement, and obtained good 

solutions in a reasonable CPU time. 

There are two possible extensions to this study for future research. First, the 
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proposed DPSO can be extended for solving similar combinatorial optimization 

problems: for example, multidimensional 0-1 knapsack problems with generalized 

upper bound constraints. Second, the proposed DPSO can be extended for sequencing 

and scheduling problems. Similar to this chapter, we may modify the velocity based 

on the tabu list and the concept of building blocks, and modify particle movement 

based on crossover and mutation of genetic algorithm. Furthermore, we may develop 

the repair operator based on scheduling strategies for scheduling problems. Table 4.3 

shows the summary of the DPSO for MKP. 

Table 4.3 Summary of the DPSO for MKP 

  Components The concept of this components 

1 
Particle Position 
Representation 

Binary variables 

Since the solution of MKP is 0-1 
variables, we represent the particle 
position by binary variables, which have 
the most Lamarckian. 

Particle Velocity Blocks 
2 

Particle Movement Crossover operator

The binary variables is very appropriate to 
build blocks, so we implement the concept 
of building blocks and the relational 
crossover operator. 

3 
Decoding 
Operator 

Repair operator 
based on 
pseudo-utility ratio

Restrict the search area in the feasible 
region. 

4 Other Strategies 
Diversification 
Selection 
Local search 

The diversification strategy can prevent 
particles rapped in local optima. 
The selection strategy can further 
accelerate the speed of building blocks. 
The local search can further improve the 
solution quality, 

 



 33

4.10 Appendix 

A pseudo code of the DPSO for MKP is given below: 

Initialize a population of particles with random positions and velocities. 

Initialize the gbest solution by surrogate duality approach 

repeat 

update velocities according to Figure 4.1. 

for each particle k do 

move particle k according to Figure 4.2. 

repair the solution of particle k according to repair operator (Figure 4.3). 

calculate the fitness value of particle k. 

perform local search on particle k (Figure 4.6). 

end for 

update gbest and pbest solutions according to diversification strategy (Figure 
4.4). 

perform selection according to selection strategy (Figure 4.5). 

until maximum iterations is attained 
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CHAPTER 5  

A PARTICLE SWARM OPTIMIZATION FOR THE JOB 

SHOP SCHEDULING PROBLEM 

The original PSO is used to solve continuous optimization problems. Since the 

solution space of a shop scheduling problem is discrete, we have to modify the 

particle position representation, particle movement, and particle velocity to better suit 

PSO for scheduling problems. In the PSO for JSSP, we modified the particle position 

representation using preference-lists and the particle movement using a swap operator. 

Moreover, we propose a diversification strategy and a local search procedure for 

better performance. 

5.1 Particle Position Representation 

We implement the preference list-based representation (Davis, 1985), which has 

half-Lamarckian (Cheng et al., 1996). In the preference list-based representation, 

there is a preference list for each machine. For an n-job m-machine problem, we can 

represent the particle k position by an m×n matrix, and the ith row is the preference list 

of machine i, i.e. 
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Where k
ijx { }n,,2,1 K∈  denotes the job on location j in the preference list 

of machine i. Similar to GA (Kobayashi et al., 1995) decoding a chromosome 

into a schedule, we also use Giffler & Thompson’s heuristic (Giffler & 
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Thompson, 1960) to decode a particle’s position to an active schedule. The G&T 

algorithm is shown as Figure 5.1. For example, there are 4 jobs and 4 machines 

as shown on 
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Table 5.1, and the position of particle k is 
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Table 5.1 A 4×4 job shop problem example 

jobs machine sequence processing times 
1 1, 2, 4, 3 11p = 5, 21p = 4, 41p = 2, 31p = 2 
2 2, 1, 3, 4 22p = 4, 12p = 3, 32p = 3, 42p = 2 
3 4, 1, 3, 2 43p = 2, 13p = 2, 33p = 3, 23p = 4 
4 3, 1, 4, 2 34p = 3, 14p = 2, 44p = 3, 24p = 4 

We can decode kX  to an active schedule following the G&T algorithm: 

Initialization 

S =φ ; },,,{ 34432211 oooo=Ω . 

Iteration 1 

11s = 0, 22s = 0, 43s =0, 34s =0; 11f = 5, 22f = 4, 43f = 2, 34f = 3; *f = 

min{ 11f , 22f , 43f , 34f } = 2, *m =4. 

Identify the operation set }{ 43oO = ; choose operation 43o , which is ahead 

of others in the preference list of machine 4, and add it into schedule 

S , as illustrated in Figure 5.2(a). 

Update Ω ={ 34132211 ,,, oooo }. 
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Notation: 

ijo : the operation of job j that needs to be processed on machine i. 

S : the partial schedule that contains scheduled operations. 

Ω : the set of schedulable operations. 

ijs : the earliest time at which Ω∈ijo  could be started. 

ijp : the processing time of ijo . 

ijf : the earliest time at which Ω∈ijo  could be finished, ijf = ijs + ijp . 

G&T algorithm: 

Initialize S ← φ ; Ω  is initialized to contain all operations without 

predecessors. 

repeat 

Determine }{min*
ij

o
ff

ij Ω∈
←  and the machine *m  on which *f  

could be realized. 

Identify the operation set Ο ← },,|{ ** miofso ijijij =Ω∈< . 

Choose *
ijo  from the operation set O , where *

ijo  is ahead of 

others in the preference list of machine *m ; add *
ijo  to S , 

and assign ijs  as the starting time of *
ijo . 

Delete *
ijo  from Ω  and include its immediate successor in Ω  

if *
ijo  is not the last operation of job j. 

Until Ω  is empty. 
 

Figure 5.1 The G&T algorithm 
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M1          

M2          

M3          

M4 (4,3)         

time    5  10 15 20  25 

Figure 5.2(a) Partial schedule after the operation 43o  scheduled. 

Iteration 2 

11s = 0, 22s = 0, 13s =2, 34s =0; 11f = 5, 22f = 4, 13f = 4, 34f = 3; *f = 

min{ 11f , 22f , 13f , 34f } = 3, *m =4. 

Identify the operation set }{ 34oO = ; choose operation 34o , which is ahead 

of others in the preference list of machine 3, and add it into schedule 

S , as illustrated in Figure 5.2(b). 

Update Ω ={ 14132211 ,,, oooo }. 

M1          

M2          

M3 (3,4)        

M4 (4,3)         

time    5  10 15 20  25 

Figure 5.2(b) Partial schedule after the operation 34o  scheduled. 

Iteration 3 

11s = 0, 22s = 0, 13s =2, 14s =3; 11f = 5, 22f = 4, 13f = 4, 14f = 5; *f = 

min{ 11f , 22f , 13f , 14f } = 3, *m =1. 

Identify the operation set },{ 1311 ooO = ; choose operation 11o , which is 

ahead of others in the preference list of machine 1, and add it into 

schedule S , as illustrated in Figure 5.2(c). 

Update Ω ={ 14132221 ,,, oooo }. 
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M1 (1,1)      

M2          

M3 (3,4)        

M4 (4,3)         

time    5  10 15 20  25 

Figure 5.2(c) Partial schedule after the operation 11o  scheduled. 

Iteration 4 

21s = 5, 22s = 0, 13s =5, 14s =5; 21f = 9, 22f = 4, 13f = 7, 14f = 7; *f = 

min{ 21f , 22f , 13f , 14f } = 4, *m =2. 

Identify the operation set }{ 22oO = ; choose operation 22o , which is ahead 

of others in the preference list of machine 2, and add it into schedule 

S , as illustrated in Figure 5.2(d). 

Update Ω ={ 14131221 ,,, oooo }. 

M1 (1,1)      

M2 (2,2)       

M3 (3,4)        

M4 (4,3)         

time    5  10 15 20  25 

Figure 5.2(d) Partial schedule after the operation 22o  scheduled. 

Iteration 5 

21s = 5, 12s = 5, 13s =5, 14s =5; 21f = 9, 12f = 7, 13f = 7, 14f = 7; *f = 

min{ 21f , 12f , 13f , 14f } = 7, *m =1. 

Identify the operation set },,{ 141312 oooO = ; choose operation 12o , which is 

ahead of others in the preference list of machine 1, and add it into 

schedule S , as illustrated in Figure 5.2(e). 

Update Ω ={ 14133221 ,,, oooo }. 
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M1 (1,1) (1,2)    

M2 (2,2)       

M3 (3,4)        

M4 (4,3)         

time    5  10 15 20  25 

Figure 5.2(e) Partial schedule after the operation 12o  scheduled. 

Iteration 6 

21s = 5, 32s = 8, 13s =8, 14s =8; 21f = 9, 32f = 11, 13f = 9, 14f = 9; *f = 

min{ 21f , 32f , 13f , 14f } = 9, *m =2. 

Identify the operation set }{ 21oO = ; choose operation 21o , which is ahead 

of others in the preference list of machine 2, and add it into schedule 

S , as illustrated in Figure 5.2(f). 

Update Ω ={ 14133241 ,,, oooo }. 

M1 (1,1) (1,2)    

M2 (2,2)  (2,1)    

M3 (3,4)        

M4 (4,3)         

time    5  10 15 20  25 

Figure 5.2(f) Partial schedule after the operation 21o  scheduled. 

Iteration 7 

41s = 9, 32s = 8, 13s =8, 14s =8; 41f = 11, 32f = 11, 13f = 9, 14f = 9; *f = 

min{ 41f , 32f , 13f , 14f } = 9, *m =1. 

Identify the operation set },{ 1413 ooO = ; choose operation 14o , which is 

ahead of others in the preference list of machine 1, and add it into 

schedule S , as illustrated in Figure 5.2(g). 

Update Ω ={ 44133241 ,,, oooo }. 
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M1 (1,1) (1,2) (1,4)    

M2 (2,2)  (2,1)    

M3 (3,4)        

M4 (4,3)         

time    5  10 15 20  25 

Figure 5.2(g) Partial schedule after the operation 14o  scheduled. 

Iteration 8 

41s = 9, 32s = 8, 13s =10, 44s =10; 41f = 11, 32f = 11, 13f = 12, 44f = 13; 

*f = min{ 41f , 32f , 13f , 44f } = 11, *m =4. 

Identify the operation set },{ 4441 ooO = ; choose operation 44o , which is 

ahead of others in the preference list of machine 4, and add it into 

schedule S , as illustrated in Figure 5.2(h). 

Update Ω ={ 24133241 ,,, oooo }. 

M1 (1,1) (1,2) (1,4)    

M2 (2,2)  (2,1)    

M3 (3,4)        

M4 (4,3)      (4,4)    

time    5  10 15 20  25 

(h) Partial schedule after the operation 44o  scheduled. 

Iteration 9 

41s = 13, 32s = 8, 13s =10, 24s =13; 41f = 15, 32f = 11, 13f = 12, 24f = 17; 

*f = min{ 41f , 32f , 13f , 44f } = 11, *m =3. 

Identify the operation set }{ 32oO = ; choose operation 32o , which is ahead 

of others in the preference list of machine 3, and add it into schedule 

S , as illustrated in Figure 5.2(i). 

Update Ω ={ 24134241 ,,, oooo }. 
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M1 (1,1) (1,2) (1,4)    

M2 (2,2)  (2,1)    

M3 (3,4)     (3,2)    

M4 (4,3)      (4,4)    

time    5  10 15 20  25 

Figure 5.2(i) Partial schedule after the operation 32o  scheduled. 

Iteration 10 

41s = 13, 42s = 11, 13s =10, 24s =13; 41f = 15, 42f = 13, 13f = 12, 24f = 17; 

*f = min{ 41f , 42f , 13f , 24f } = 12, *m =1. 

Identify the operation set }{ 13oO = ; choose operation 13o , which is ahead 

of others in the preference list of machine 1, and add it into schedule 

S , as illustrated in Figure 5.2(j). 

Update Ω ={ 24334241 ,,, oooo }. 

M1 (1,1) (1,2) (1,4) (1,3)    

M2 (2,2)  (2,1)    

M3 (3,4)     (3,2)    

M4 (4,3)      (4,4)    

time    5  10 15 20  25 

Figure 5.2(j) Partial schedule after the operation 13o  scheduled. 

Iteration 11 

41s = 13, 42s = 11, 33s =12, 24s =13; 41f = 15, 42f = 13, 33f = 15, 24f = 17; 

*f = min{ 41f , 42f , 33f , 24f } = 13, *m =4. 

Identify the operation set }{ 42oO = ; choose operation 42o , which is ahead 

of others in the preference list of machine 4, and add it into schedule 

S , as illustrated in Figure 5.2(k). 

Update Ω ={ 243341 ,, ooo }. 
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M1 (1,1) (1,2) (1,4) (1,3)    

M2 (2,2)  (2,1) (4,2)    

M3 (3,4)     (3,2)    

M4 (4,3)      (4,4)    

time    5  10 15 20  25 

Figure 5.2(k) Partial schedule after the operation 42o  scheduled. 

Iteration 12 

41s = 13, 33s =12, 24s =13; 41f = 15, 33f = 15, 24f = 17; *f = min{ 41f , 

33f , 24f } = 15, *m =4. 

Identify the operation set }{ 41oO = ; choose operation 41o , which is ahead 

of others in the preference list of machine 4, and add it into schedule 

S , as illustrated in Figure 5.2(l). 

Update Ω ={ 243331 ,, ooo }. 

M1 (1,1) (1,2) (1,4) (1,3)    

M2 (2,2)  (2,1) (4,2)    

M3 (3,4)     (3,2)    

M4 (4,3)      (4,4) (4,1)    

time    5  10 15 20  25 

Figure 5.2(l) Partial schedule after the operation 41o  scheduled. 

Iteration 13 

31s = 15, 33s =12, 24s =13; 31f = 17, 33f = 15, 24f = 17; *f = min{ 31f , 

33f , 24f } = 15, *m =3. 

Identify the operation set },{ 3331 ooO = ; choose operation 33o , which is 

ahead of others in the preference list of machine 3, and add it into 

schedule S , as illustrated in Figure 5.2(m). 

Update Ω ={ 242331 ,, ooo }. 
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M1 (1,1) (1,2) (1,4) (1,3)    

M2 (2,2)  (2,1) (4,2)    

M3 (3,4)     (3,2) (3,3)    

M4 (4,3)      (4,4) (4,1)    

time    5  10 15 20  25 

Figure 5.2(m) Partial schedule after the operation 33o  scheduled. 

Iteration 14 

31s = 15, 23s =15, 24s =13; 31f = 17, 33f = 19, 24f = 17; *f = min{ 31f , 

23f , 24f } = 17, *m =3. 

Identify the operation set }{ 31oO = ; choose operation 31o , which is ahead 

of others in the preference list of machine 3, and add it into schedule 

S , as illustrated in (n). 

Update Ω ={ 2423 , oo }. 

M1 (1,1) (1,2) (1,4) (1,3)    

M2 (2,2)  (2,1) (4,2)    

M3 (3,4)     (3,2) (3,3) (3,1)    

M4 (4,3)      (4,4) (4,1)    

time    5  10 15 20  25 

Figure 5.2(n) Partial schedule after the operation 31o  scheduled. 

Iteration 15 

23s =15, 24s =13; 33f = 19, 24f = 17; *f = min{ 23f , 24f } = 17, *m =2. 

Identify the operation set },{ 2423 ooO = ; choose operation 23o , which is 

ahead of others in the preference list of machine 2, and add it into 

schedule S , as illustrated in (o). 

Update Ω ={ 24o }. 
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M1 (1,1) (1,2) (1,4) (1,3)    

M2 (2,2)  (2,1) (4,2) (2,3)    

M3 (3,4)     (3,2) (3,3) (3,1)    

M4 (4,3)      (4,4) (4,1)    

time    5  10 15 20  25 

Figure 5.2(o) Partial schedule after the operation 23o  scheduled. 

Iteration 16 

24s =19; 24f = 23; *f = min{ 24f } = 23, *m =2. 

Identify the operation set }{ 24oO = ; choose operation 24o , which is ahead 

of others in the preference list of machine 2, and add it into schedule 

S , as illustrated in Figure 5.2(p). 

Update φ=Ω , and then stops. 

M1 (1,1) (1,2) (1,4) (1,3)    

M2 (2,2)  (2,1) (4,2) (2,3) (2,4)    

M3 (3,4)     (3,2) (3,3) (3,1)    

M4 (4,3)      (4,4) (4,1)    

time    5  10 15 20  25 

Figure 5.2(p) Partial schedule after the operation 24o  scheduled. 
Figure 5.2 An illustration of decoding a particle position into a schedule. 

5.2 Particle Velocity 

When a particle moves in a continuous solution space, due to inertia, the particle 

velocity not only moves the particle to a better position, but also prevents the particle 

from moving back to the current position. The velocity can be controlled by inertia 

weight w in equation (2.1). The larger the inertia weight, the harder the particle backs 

to the current position. 

If we implement preference list-based representation, the velocity of operation 

ijo  of particle k is denoted by k
ijv , }1,0{∈k

ijv , where ijo  is the operation of job j 
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that needs to be processed on machine i. When k
ijv  equals 1, it means that operation 

ijo  in the preference list of particle k (the position matrix, kX ) has just been moved 

to the current location, and we should not move it in this iteration. On the contrary, if 

operation ijo  is moved to a new location in this iteration, we set k
ijv ←1, indicating 

that ijo  has been moved in this iteration and should not been moved in the next few 

iterations. The particle velocity can prevent recently moved operations from moving 

back to the original location in the next iterations. 

Just as the original PSO is applied to a continuous solution space, inertia weight 

w  is used to control particle velocities. We randomly update velocities at the 

beginning of the iteration. For each particle k and operation ijo , if k
ijv  equals 1, k

ijv  

will be set to 0 with probability (1- w ). This means that if operation ijo  is fixed on 

the current location in the preference list of particle k, ijo  is allowed to move in this 

iteration with probability (1- w ). The newly moved operations will then be fixed for 

more iterations with larger inertia weight, and fixed for less iterations with smaller 

inertia weight. The pseudo code for updating velocities is given as Figure 5.3. 

for each particle k and operation ijo  do 
rand ~ U(0,1) 
if )()0( wrandandvk

ij ≥≠  then 
0←k

ijv  
end if 

end for  

Figure 5.3 The pseudo code of updating velocities. 

5.3 Particle Movement 

The particle movement is based on the swap operator. If k
ijv =0, the job j on k

ix  

will be moved to the corresponding location of k
ipbest  with probability 1c , and will 
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be moved to the corresponding location of igbest  with probability 2c . Where k
ix  

is the preference list of machine i of particle k, k
ipbest  is the preference list of 

machine i of kth pbest  solution, igbest  is the preference list of machine i of gbest  

solution, 1c  and 2c  are constant between 0 and 1, and 121 ≤+ cc . The process is 

described as follows: 

Step 1: Randomly choose a location l  in k
ix . 

Step 2: Denote the job on location l  in k
ix  by 1J . 

Step 3: Find out the location of 1J  in k
ipbest  with probability 1c , 

or find out the location of 1J  in igbest  with probability 

2c . Denote the location that has been found in k
ipbest  or 

igbest  by l ′ , and denote the job in location l ′  in k
ix  by 

2J . 

Step 4: If 2J  has been denoted, k
iJv

1
=0, and k

iJv
2
=0, then swap 1J  

and 2J  in k
ix , and set k

iJv
1
←1.  

Step 5: If all the locations in k
ix  have been considered, then stop. 

Otherwise, if nl < , then set 1+← ll , else 1←l , and go 

to Step 2, where n is the number of jobs. 

For example, there is a 5-job problem, and k
ix , k

ipbest , igbest , and k
iv  are 

showed as Figure 5.4(a). We set 1c =0.5 and 2c =0.3 in this instance.  

In Step 1, we randomly choose a location l =3. In Step 2, the job in the 3rd 

location in k
ix  is job 4, i.e. 1J = 4. In Step 3, we generate a random variable rand 

between 0 and 1, and the generated random variable rand is 0.6. Since 

211 ccrandc +≤< , we find out the location of 1J  in igbest . The location l ′=5, and 

the job in the 5th location in k
ix  is job 5, i.e. 2J =5. Step 1 to Step 3 is shown as 
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Figure 5.4(b). In Step 4, since 04 =k
iv  and 05 =k

iv , swap job 4 and job 5 in k
ix  and 

set k
iv 4←1 is shown as Figure 5.4(c). In Step 5, set 4←l , and go to Step 2. Repeat 

the procedure until all the locations in k
ix  have been considered. 

We also adopt a mutation operator in our algorithm. After a particle moves to a 

new position, we randomly choose a machine and two jobs on the machine, and then 

swap these two jobs, disregarding k
ijv . The particle movement pseudo code is given 

as Figure 5.5. 
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}00100{=k
iv  

k
ipbest  4 3 1 5 2 

 
igbest  2 1 5 3 4 

 
k
ix  3 1 4 2 5 

 
 

(a) The k
ix , k

ipbest , igbest , and k
iv . 

}00100{=k
iv  

k
ipbest  4 3 1 5 2 

 
igbest  2 1 5 3 4 

 
k
ix  3 1 4 2 5 

 
 

4,3 1 == Jl 5,5 2 ==′ Jl  
(b) Randomly choose l and denote J1 and J2. 

}01100{=k
iv  

k
ipbest  4 3 1 5 2 

 
igbest  2 1 5 3 4 

 
k
ix  3 1 5 2 4 

  
(c) Swap job4 and job5 in k

ix ; set k
iv 4←1. 

 

Figure 5.4 An instance of particle movement. 
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for i←1 to m do //for machine 1 to machine m 
n1 tobetweennumberrandomintegeranlstart ←  

startll ←  
for j←1 to n do //for all location 

rand ~ U(0,1) 
thenif )( 1crand ≤  

k
ilxJ ←1  

k
ipbestinJoflocationthel 1←′  

k
lixJ ′←2  

thenandandif )()0()0( 2121
JJvv k

iJ
k
iJ ≠==  

2Jxk
il ← ; 1Jxk

li ←′ ; 1
1

←k
iJv  

ifend  
ifend  

thenif )( 211 ccrandc +≤<  
k
ilxJ ←1  

igbestinJoflocationthel 1←′  
k
lixJ ′←2  

thenandandif )()0()0( 2121
JJvv k

iJ
k
iJ ≠==  

2Jxk
il ← ; 1Jxk

li ←′ ; 1
1

←k
iJv  

ifend  
ifend  

jll start +←  
thenif )( nl >  

nll −←  
ifend  

forend  
forend  

//mutation operator 
mtobetweenmachineachooserandomlyM 1←  

n1 tobetweenlocationachooserandomlyl ←  
n1 tobetweenlocationachooserandomlyl ←′  

k
lMxJ ←1 ; k

lMxJ ′←2  

2Jxk
lM ← ; 1Jxk

lM ←′  
1

1
←k

JMv ; 1
2

←k
JMv  

//mutation operator  

Figure 5.5 Pseudo code of particle movement. 
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5.4 The Diversification Strategy 

If all the particles have the same pbest solutions, they will be trapped into local 

optima. To prevent such a situation, we proposed a diversification strategy to keep the 

pbest solutions different (i.e. keeps the makespans of pbest solutions different). In the 

diversification strategy, the pbest solution of each particle is not the best solution 

found by the particle itself, but one of the best N solutions found by the swarm so far 

where N is the size of the swarm. Once any particle generates a new solution, the 

pbest and gbest solutions will be updated in these three situations: 

1. If the particle’s fitness value is better than the fitness value of the gbest 

solution, set the worst pbest solution equal to the current gbest solution, and 

set the gbest solution equal to the particle solution. 

2. If the particle’s fitness value is worse than the gbest solution, but better then 

the worst pbest solution and not equal to any gbest or pbest solution, set the 

worst pbest solution equal to the particle solution. 

3. If the particle’s fitness value is equal to any pbest or gbest solution, replace 

the pbest or gbest solution (whose fitness value is equal to the particle 

fitness value) with the particle solution. 

The pseudo code for updating the pbest solution and gbest solution with 

diversification strategy is given as Figure 5.6. 
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N: the size of the swarm 
kS : the schedule generated by particle k 

worstpbest : the worst solution of pbest solutions 

maxC ( kS ): the makespan of kS  
//↓ situation 1 as described in 3.4 

thenif ))()(( maxmax gbestCSC k <  
gbestpbest worst ← ; kSgbest ←  

//↑ situation 1 as described in 3.4 

thenifelse ))()((C maxmax
worstk pbestCS ≤  

//↓ situation 3 as described in 3.4 
the_same = 0 

thenif ))()(( maxmax gbestCSC k =  
kSgbest ← ; the_same = 1 

else  
dotofor Nk 1←′  

thenif ))()(( maxmax
kk pbestCSC ′=  

kk Spbest ←′ ; the_same = 1 
break 
ifend  

forend  
ifend  

//↑ situation 3 as described in 3.4 
//↓ situation 2 as described in 3.4 

thenif )0_( =samethe  
kworst Spbest ←  

ifend  
//↑ situation 2 as described in 3.4 
ifend   

Figure 5.6 Pseudo code of updating pbest solution and gbest solution with diversification strategy. 

5.5 Local Search 

The tabu search is a metaheuristic approach and a strong local search mechanism. 

In the tabu search, the algorithm starts from an initial solution and improves it 

iteratively to find a near-optimal solution. This method was proposed and formalized 

primarily by Glover (1986, 1989, 1990). We applied the tabu search proposed by 

Nowicki and Smutnicki (1996) but without back jump tracking. We briefly describe 

Nowicki and Smutnicki’s method as follows: 
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．The neighborhood structure 

Nowicki and Smutnicki’s method randomly chooses a critical path in the current 

schedule, and then represents the critical path in terms of blocks. The neighborhood 

exchanges the first two and the last two operations in every block, but excludes the 

first and last operations in the critical path. The research of Jain et al. (2000) shows 

that the strategy used to generate the critical path does not materially affect the final 

solution. Therefore, in this research, we randomly choose one critical path if there is 

more than one critical path. For example, there is a schedule for a 4-job, 3-machine 

problem, as shown in Figure 5.7(a). We can find that there are two critical paths: 

CP1={o31, o11, o13, o33} and CP2={o31, o32, o22, o21, o24, o14}, where ijo  is the 

operation of job j that needs to be processed on machine i. If we randomly choose CP2, 

we can represent CP2 in terms of blocks: {o31, o32}, {o22, o21, o24}, and {o14}. The 

possible moves in this schedule are exchanging {o22, o21} or {o21, o24} (see Figure 

5.7(b)). 

 o11 o13 o12  o14 
 

o23  o22 o21 o24  
 

o31 o32 o34  o33 
 

M1 

M2 

M3 

 

(a) An instance of job shop schedule. 

 o11 o13 o12  o14 
 

o23  o22 o21 o24  
 

o31 o32 o34  o33 
 

M1 

M2 

M3 

 

 (b) Neighborhood defined by Nowicki & Smutnicki (1996). 
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Figure 5.7 An illustration of neighborhoods in tabu search. 

．Tabu list 

The tabu list consists of maxt operation pairs that have been moved in the last 

maxt moves in the tabu search. If a move {
1iJo , 

2iJo } has been performed, this move 

replaces the oldest move in the tabu list, and moving these same two operations is not 

permitted while the move is recorded in the tabu list. 

．Back jump tracking 

When finding a new best solution, store the current state (the new best solution, 

set of moves, and tabu list) in a list L. After the tabu search algorithm performs 

maxiter_tabu iterations, restart the tabu search algorithm from the latest recorded state, 

and repeat it until the list L is empty. We did not implement the back jump tracking in 

our algorithm to reduce computation time. 

We implement a tabu search procedure after a particle generates a new solution 

for further improved solution quality. The tabu search will be stopped after 100 moves 

that do not improve the solution. The research of Jain et al. (2000) shows that the 

solution quality of tabu search (Nowicki & Smutnicki, 1996) is mainly affected by its 

initial solution. Therefore, in the hybrid PSO, the purpose of the PSO process is to 

provide good and diverse initial solutions to the tabu search. 

5.6 Computational Results 

There are three PSOs we tested: (1) priority-based PSO, of which the particle 

position is represented by the priorities of operations, and implements the original 

PSO design; (2) preference list-based PSO, of which the particle position is 

represented by a preference list of machines; (3) hybrid PSO (HPSO), which is the 



 54

preference list-based PSO with a local search mechanism. The PSOs were tested on 

Fisher and Thompson (1963) (FT06, FT10 and FT20), Lawrence (1984) (LA01 to 

LA40) and Taillard (1993) (TA01 to TA80) test problems. These problems are 

available on the OR-Library web site (Beasley, 1990) (URL: http://people.brunel. 

ac.uk/~mastjjb/jeb/info.html) and Taillard’s web site (URL: 

http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonnance

ment.html).  

In the preliminary experiment, four swarm sizes N (10, 20, 30, 50) were tested, 

where N=30 was superior and used for all further studies. The other parameters of the 

priority-based PSO were set to the same common settings as most of the previous 

research: 0.21 =c , 0.22 =c , the inertia weight w  is decreased linearly from 0.9 to 

0.4 during a run, and the maximum value of ijx  and ijv , Xmax and Vmax are equal 

to the number of jobs n and n/5 respectively. 

The parameters of the preference list-based PSO are determined experimentally. 

The parameters 1c  and 2c  were tested between 0.1 and 0.5 in increments of 0.1, 

and the parameter w  was tested between 0 and 0.9 in increments of 0.1. The settings 

5.01 =c , 3.02 =c  and 5.0=w  were superior. The length of the tabu list maxt was 

set to 8 where the value is derived from Nowicki and Smutnicki (1996). The tabu 

search will be stopped after 100 moves that do not improve the solution. The 

priority-based PSO and the preference list-based PSO will be terminated after 105 

iterations, and HPSO will be terminated after 103 iterations. The number of iterations 

is determined by the computation time compared with Pezzella and Merelli (2000) 

and Gonçalves et al. (2005). 

The program was coded in Visual C++, optimized by speed, and run on an AMD 
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Athlon 1700+ PC twenty times for each of the 123 problems. The proposed algorithm 

is compared with Shifting Bottleneck (Adams et al., 1988; Balas & Vazacopoulos, 

1998), Tabu Search (Sun et al., 1995; Nowicki & Smutnicki, 1996; Pezzella & Merelli, 

2000), and Genetic Algorithm (Wang & Zheng, 2001; Gonçalves et al., 2005).  

The computational results of FT and LA test problems are shown as Table 5.2. 

The results show that the preference list-based PSO we proposed is much better than 

the original design, the priority-based PSO. Since the number of instances tested by 

each method is different, we cannot compare the result by average gap directly. 

Nevertheless, the result obtained by HPSO is better then other algorithms that tested 

all of the 43 instances, and the HPSO obtained the best-known solution for 41 of the 

43 instances.  

Table 5.3 shows the average computation time on FT and LA test problems in 

CPU seconds. The ‘best-solution time’ is the average time that the algorithm takes to 

first reach the final best solution, and the ‘total time’ is the average total computation 

time that the algorithm takes during a run. In HPSO, there is about 99% computation 

time spent on local search process. As mentioned in section 5.5, the solution quality of 

tabu search (Nowicki & Smutnicki, 1996) is mainly affected by its initial solution, and 

the main purpose of the PSO process is to provide good and diverse initial solutions to 

tabu search. Therefore, the computational results show that the hybrid method, HPSO, 

performs better than both TSAB and PSO, and its average gap is 0.356% less than 

PSO. 

We further tested HPSO on TA test problems (Taillard, 1993). The computational 

results are shown in Table 5.4, and we particularly compared HPSO with TSSB 

(Pezzella & Merelli, 2000) in Table 5.5. Since the maximum computation time of 

TSSB is about 3×104 seconds and our machine is about ten times faster then TSSB 
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(Pezzella & Merelli, 2000), we limited the maximum computation time of HPSO in 3

×103 seconds. As mentioned above, 99% of the computation time is spent on the local 

search process in HPSO. Therefore, we do not reduce the computation time by 

decreasing the number of iterations, but decreasing the percentage of particles that 

perform a local search procedure. The HPSO will also be terminated after 103 

iterations, but there are only 34.6% of particles randomly chosen to perform the local 

search procedure in each iteration on TA51 to TA60 test problems, 26.6% on TA61 to 

TA70 test problems, and 6.4% on TA71 to TA80 test problems.  

Table 5.5 shows the comparison with TSSB (Pezzella & Merelli, 2000). The 

HPSO performs better than TSSB on 7 of 8 problem sizes, and only worse than TSSB 

on the 100×20 problem size. In the 100×20 problem sizes, the final best solutions are 

obtained after 890 iterations of the average (so the best-solution time is very close to 

the total time). Since the HPSO only performs 103 iterations for each run, it shows 

that the particles of HPSO did not converge in 103 iterations, and can further improve 

the solutions by increasing the maximum iteration. However, since we want to 

compare HPSO with TSSB, we do not consider increasing the maximum iteration 

because it takes too much computation time.  
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Table 5.2 Computational result of FT and LA test problems. 
   Shifting Bottleneck Tabu Search 
   SBI SBII SB-RGLS1 SB-RGLS2  ACM  TSAB  TSSB

Problem Size 
(n×m) 

Best 
Known 
Solution 
(BKS) 

Adams et al. 
(1988) 

Balas 
 &  

Vazacopoulos 
(1998) 

Sun 
et al. 

(1995)
 

Nowicki 
 & 

Smutnicki 
(1996) 

 

Pezzella
 & 

Merelli 
(2000)

FT06 6×6 55 55 55 – –  –  55  55
FT10 10×10 930 1015 930 930 930  930  930  930
FT20 20×5 1165 1290 1178 – –  –  1165  1165
LA01 10×5 666 666 666 – –  –  666  666
LA02 10×5 655 720 669 655 655  –  655  655
LA03 10×5 597 623 605 – –  –  597  597
LA04 10×5 590 597 593 – –  –  590  590
LA05 10×5 593 593 593 – –  –  593  593
LA06 15×5 926 926 926 – –  –  926  926
LA07 15×5 890 890 890 – –  –  890  890
LA08 15×5 863 868 863 – –  –  863  863
LA09 15×5 951 951 951 – –  –  951  951
LA10 15×5 958 959 959 – –  –  958  958
LA11 20×5 1222 1222 1222 – –  –  1222  1222
LA12 20×5 1039 1039 1039 – –  –  1039  1039
LA13 20×5 1150 1150 1150 – –  –  1150  1150
LA14 20×5 1292 1292 1292 – –  –  1292  1292
LA15 20×5 1207 1207 1207 – –  –  1207  1207
LA16 10×10 945 1021 978 – –  975  945  945
LA17 10×10 784 796 787 – –  784  784  784
LA18 10×10 848 891 859 – –  848  848  848
LA19 10×10 842 875 860 842 842  842  842  842
LA20 10×10 902 924 914 – –  902  902  902
LA21 15×10 1046 1172 1084 1048 1046  1074  1047  1046
LA22 15×10 927 1040 944 – –  941  927  927
LA23 15×10 1032 1061 1032 – –  1032  1032  1032
LA24 15×10 935 1000 976 937 935  954  939  938
LA25 15×10 977 1048 1017 977 977  1010  977  979
LA26 20×10 1218 1304 1224 – –  1218  1218  1218
LA27 20×10 1235 1325 1291 1235 1235  1277  1236  1235
LA28 20×10 1216 1256 1250 – –  1245  1216  1216
LA29 20×10 1157 1294 1239 1164 1164  1234  1160  1168
LA30 20×10 1355 1403 1355 – –  1355  1355  1355
LA31 30×10 1784 1784 1784 – –  1784  1784  1784
LA32 30×10 1850 1850 1850 – –  1850  1850  1850
LA33 30×10 1719 1719 1719 – –  1719  1719  1719
LA34 30×10 1721 1721 1721 – –  1721  1721  1721
LA35 30×10 1888 1888 1888 – –  1888  1888  1888
LA36 15×15 1268 1351 1305 1268 1268  1303  1268  1268
LA37 15×15 1397 1485 1423 1397 1397  1422  1407  1411
LA38 15×15 1196 1280 1255 1198 1196  1245  1196  1201
LA39 15×15 1233 1321 1273 1233 1233  1269  1233  1240
LA40 15×15 1222 1326 1269 1226 1224 1255  1229  1233
Average Gap  3.8796% 1.3838% 0.1157% 0.0591%  1.5184%  0.0501%  0.1015%
# of instance  43 43 13 13  26  43  43
# of BKS obtained 16 20 8 11  13  37  36
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Table 5.2 (Continued) 
Genetic Algorithm  Particle Swarm Optimization 

GASA  HGA-Param  PSO-priority based PSO-permutation based HPSO 
Wang 

& 
Zheng 
(2001) 

 
Gonçalves

et al. 
(2005) 

 
Best 

solution Average Best 
solution Average Best 

solution Average

55  55  55 58.9 55 55.0 55 55.0 
930  930  1007 1086.0 937 965.2 930 932.0 

1165  1165  1242 1296.7 1165 1178.8 1165 1165.0 
666  666  681 705.0 666 666.0 666 666.0 

–  655  694 729.7 655 662.1 655 655.0 
–  597  633 657.5 597 602.3 597 597.0 
–  590  611 648.1 590 592.9 590 590.0 
–  593  593 601.1 593 593.0 593 593.0 

926  926  926 940.2 926 926.0 926 926.0 
–  890  890 941.0 890 890.0 890 890.0 
–  863  863 896.6 863 863.0 863 863.0 
–  951  953 991.8 951 951.0 951 951.0 
–  958  958 976.1 958 958.0 958 958.0 

1222  1222  1222 1235.3 1222 1222.0 1222 1222.0 
–  1039  1039 1058.4 1039 1039.0 1039 1039.0 
–  1150  1150 1179.0 1150 1150.0 1150 1150.0 
–  1292  1292 1292.2 1292 1292.0 1292 1292.0 
–  1207  1232 1271.7 1207 1207.0 1207 1207.0 

945  945  1006 1033.5 945 969.8 945 945.2 
–  784  833 883.5 784 787.1 784 784.0 
–  848  901 959.9 848 856.8 848 848.0 
–  842  895 945.8 842 851.5 842 842.0 
–  907  963 1014.0 907 913.3 902 902.3 

1058  1046  1201 1247.5 1055 1085.5 1046 1049.8 
–  935  1046 1142.5 935 950.5 927 927.0 
–  1032  1146 1205.1 1032 1032.0 1032 1032.0 
–  953  1082 1140.9 937 967.8 935 937.9 
–  986  1107 1176.6 983 1005.9 977 978.2 

1218  1218  1409 1468.0 1218 1219.7 1218 1218.0 
–  1256  1437 1495.4 1252 1269.1 1235 1251.4 
–  1232  1434 1487.4 1216 1241.7 1216 1216.0 
–  1196  1359 1429.8 1179 1215.8 1163 1168.8 
–  1355  1517 1557.0 1355 1355.0 1355 1355.0 

1784  1784  1886 1942.5 1784 1784.0 1784 1784.0 
–  1850  2000 2065.6 1850 1850.0 1850 1850.0 
–  1719  1832 1896.8 1719 1719.0 1719 1719.0 
–  1721  1876 1953.5 1721 1721.0 1721 1721.0 
–  1888  2027 2074.5 1888 1888.0 1888 1888.0 

1292  1279  1437 1541.0 1291 1317.5 1268 1271.3 
–  1408  1539 1628.0 1442 1475.1 1397 1401.6 
–  1219  1370 1445.1 1228 1251.1 1196 1200.5 
–  1246  1436 1499.4 1233 1285.6 1233 1233.0 
–  1241   1380 1457.4 1236 1258.0 1224 1226.2 

0.2764%  0.3916%  7.4021% 12.0940% 0.3719% 1.3491% 0.0159% 0.1091%
11  43  43  43  43  
9  31   10   31   41   
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Table 5.3 Computation time of FT and LA test problems (in CPU seconds). 
   Particle Swarm Optimization** 

  

HGA-Param 
Gonçalves et 
al. (2005)*  PSO-priority 

based 
PSO-permutation 

based HPSO 

Problem Size 
(n×m) Total time  

Best 
solution

time 

Total 
time

Best 
solution 

time 

Total 
time

Best 
solution 

time 
 Total 

time 

FT06 6×6 13  0.0 34 0.0 32 0.0 28 
FT10 10×10 292  1.0 112 21.7 91 4.1 157 
FT20 20×5 204  3.0 180 19.2 138 19.8 219 
LA01-05 10×5 40  0.4 60 5.3 50 0.5 38 
LA06-10 15×5 94  1.0 114 0.1 92 0.1 61 
LA11-15 20×5 192  3.5 177 0.5 143 0.1 100 
LA16-20 10×10 227  0.6 109 15.5 90 19.9 139 
LA21-25 15×10 602  4.8 208 37.2 164 59.6 295 
LA26-30 20×10 1303  12.6 325 103.1 259 90.5 579 
LA31-35 30×10 3691  46.9 652 31.4 520 3.0 1462 
LA36-40 15×15 1920  7.4 331 68.4 254 105.2 471 
* Run on an AMD Thunderbird 1.333 GHz PC. 
**Run on an AMD Athlon 1700+ PC. 
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Table 5.4 Computational result of TA test problems. 
   TSAB TSSB HPSO 

Problem Size 
(n×m) 

Optimal 
solution 
(or upper 
bound) 

Nowicki 
 & 

Smutnicki
(1996) 

Pezzella 
 &  

Merelli 
(2000) 

Best 
solution Average 

TA01 15×15 1231 1241 1231 1236 
TA02 15×15 1244 1244 1244 1244 1245 
TA03 15×15 1218 1222 1222 1218 1224 
TA04 15×15 1175 1175 1175 1180 
TA05 15×15 1224 1233 1229 1224 1233 
TA06 15×15 1238 1245 1238 1248 
TA07 15×15 1227 1228 1228 1229 
TA08 15×15 1217 1220 1220 1217 1220 
TA09 15×15 1274 1282 1291 1274 1283 
TA10 15×15 1241 1259 1250 1249 1264 
TA11 20×15 (1359) 1371 1366 1386 
TA12 20×15 (1367) 1377 1379 1370 1380 
TA13 20×15 (1342) 1362 1350 1364 
TA14 20×15 1345 1345 1345 1345 1350 
TA15 20×15 (1339) 1360 1350 1364 
TA16 20×15 (1360) 1370 1368 1377 
TA17 20×15 1462 1481 1473 1480 
TA18 20×15 (1396) 1413 1426 1407 1425 
TA19 20×15 (1335) 1352 1351 1335 1353 
TA20 20×15 (1348) 1362 1366 1358 1373 
TA21 20×20 (1644) 1659 1658 1679 
TA22 20×20 (1600) 1623 1614 1625 
TA23 20×20 (1557) 1573 1559 1578 
TA24 20×20 (1646) 1659 1654 1664 
TA25 20×20 (1595) 1606 1616 1632 
TA26 20×20 (1645) 1657 1666 1662 1679 
TA27 20×20 (1680) 1697 1690 1712 
TA28 20×20 (1603) 1622 1617 1627 
TA29 20×20 (1625) 1629 1635 1634 1645 
TA30 20×20 (1584) 1614 1589 1613 
TA31 30×15 1764 1766 1771 1766 1772 
TA32 30×15 (1795) 1841 1840 1823 1848 
TA33 30×15 (1791) 1832 1833 1818 1834 
TA34 30×15 (1829) 1846 1844 1879 
TA35 30×15 2007 2007 2007 2010 
TA36 30×15 1819 1825 1825 1843 
TA37 30×15 1771 1815 1813 1795 1808 
TA38 30×15 1673 1700 1697 1681 1701 
TA39 30×15 1795 1811 1815 1796 1810 
TA40 30×15 (1674) 1720 1725 1698 1714 
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Table 5.4 (Continued) 
   TSAB TSSB HPSO 

Problem Size 
(n×m) 

Optimal 
solution 
(or upper 
bound) 

Nowicki 
 & 

Smutnicki
(1996) 

Pezzella 
 &  

Merelli 
(2000) 

Best 
solution Average 

TA41 30×20 (2018) 2045 2047 2071 
TA42 30×20 (1949) 1979 1970 1984 
TA43 30×20 (1858) 1898 1899 1928 
TA44 30×20 (1983) 2036 2019 2039 
TA45 30×20 (2000) 2021 2010 2032 
TA46 30×20 (2015) 2047 2041 2070 
TA47 30×20 (1903) 1938 1935 1958 
TA48 30×20 (1949) 2001 1996 1994 2022 
TA49 30×20 (1967) 2013 1992 2015 
TA50 30×20 (1926) 1975 1975 1998 
TA51 50×15 2760 2760 2760 2760 
TA52 50×15 2756 2756 2756 2758 
TA53 50×15 2717 2717 2717 2717 
TA54 50×15 2839 2839 2839 2840 
TA55 50×15 2679 2679 2684 2679 2694 
TA56 50×15 2781 2781 2781 2785 
TA57 50×15 2943 2943 2943 2943 
TA58 50×15 2885 2885 2885 2885 
TA59 50×15 2655 2655 2655 2666 
TA60 50×15 2723 2723 2723 2732 
TA61 50×20 2868 2868 2868 2868 2896 
TA62 50×20 2869 2902 2942 2930 2958 
TA63 50×20 2755 2755 2755 2755 2774 
TA64 50×20 2702 2702 2702 2702 2718 
TA65 50×20 2725 2725 2725 2735 2759 
TA66 50×20 2845 2845 2845 2848 2869 
TA67 50×20 2825 2841 2865 2840 2861 
TA68 50×20 2784 2784 2784 2784 2802 
TA69 50×20 3071 3071 3071 3071 3096 
TA70 50×20 2995 2995 2995 3005 3041 
TA71 100×20 5464 5464 5519 5595 
TA72 100×20 5181 5181 5211 5305 
TA73 100×20 5568 5568 5581 5655 
TA74 100×20 5339 5339 5355 5412 
TA75 100×20 5392 5392 5466 5563 
TA76 100×20 5342 5342 5396 5504 
TA77 100×20 5436 5436 5444 5493 
TA78 100×20 5394 5394 5394 5476 
TA79 100×20 5358 5358 5363 5434 
TA80 100×20 5183 5183 5183 5209 5364 
Average Gap  0.7792% 0.8122% 0.5659% 1.4651% 
# of instance  33 80 80  
# of BKS obtained  12 31 27  
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Table 5.5 Comparison with TSSB (Pezzella & Merelli, 2000) on TA test problems. 
  TSSB* HPSO** 

Problem Size 
(n×m) Average gap Total time Average gap Time to get 

best solution Total time 

TA01-10 15×15 0.4502% 2175 0.0726% 99 514 
TA11-20 20×15 1.1537% 2526 0.5023% 345 855 
TA21-30 20×20 1.0840% 34910 0.7029% 401 1238 
TA31-40 30×15 1.4475% 14133 0.7654% 1185 2026 
TA41-50 30×20 1.9474% 11512 1.6133% 1734 2769 
TA51-60 50×15 0.0187% 421 0.0000% 565 2909*** 

TA61-70 50×20 0.3960% 6342 0.3463% 2322 2862*** 
TA71-80 100×20 0.0000% 231 0.5244% 2797 3137*** 
Total Average Gap 0.8122%   0.5659%     
* Run on a Pentium 133 MHz PC. 
**Run on an AMD Athlon 1700+ PC. 
***Decreasing the percentage to perform local search procedure reduces the computation time. 

5.7 Concluding Remarks 

We have presented a PSO for the job shop scheduling problem. We modified the 

representation of particle position, particle movement, and particle velocity to better 

suit it for JSSP. We also applied Tabu Search to improve solution quality. The 

computational results show that HPSO can obtain better solutions than other methods. 

For further research, if the HPSO we proposed is implemented to other sequential 

ordering problems, there are two aspects for discussion: (1) Modify particle position 

representation for better suitability to the problem. In the original PSO design, the 

particles search solutions in a continuous solution space. Although most sequential 

ordering problems can be represented by the priority-based representation, it may not 

suit the sequential ordering problems. Preference list-based representation or other 

representations will better suit the algorithm for sequential ordering problems. (2) 

Design other particle movement methods and particle velocity for the modified 

particle position representation. In addition, which particle movement method or 

particle velocity is better could be a further research topic. Table 5.6 shows the 

summary of the HPSO for JSSP. 
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Table 5.6 Summary of the HPSO for JSSP 

  Components The concept of this components 

1 
Particle Position 
Representation 

Preference-list 
The preference-list representation has 
more Lamarckian than priority-based 
representation 

Particle Velocity Tabu list 
2 

Particle Movement Swap operator 

The swap operator is appropriate to 
preference-list representation. It also fits 
in with the concept of correlation and 
connectivity. 

3 
Decoding 
Operator 

G&T algorithm 
The G&T algorithm can restrict the search 
area but not exclude the optimal solution.

4 Other Strategies 
Diversification 
Local search 

The diversification strategy can prevent 
particles rapped in local optima. 
The local search can further improve the 
solution quality, 
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5.8 Appendix 

The pseudo code of the PSO for JSSP is given below: 

initialize a population of particles with random positions. 

for each particle k do 

apply G&T algorithm to decode kX  into a schedule kS . 

set the kth pbest solution ( kpbest ) equal to kS , kpbest ← kS . 

end for  

set gbest solution equal to the best kpbest . 

repeat 

update velocities according to Figure 5.3. 

for each particle k do 

move particle k according to Figure 5.5. 

apply G&T algorithm to decode kx  into kS . 

update pbest solutions and gbest solution according to Figure 5.6. 

apply tabu search on 
*kS . 

update pbest solutions and gbest solution according to Figure 5.6. 

end for 

until maximum iterations is attained 
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CHAPTER 6  

A PARTICLE SWARM OPTIMIZATION FOR THE OPEN 

SHOP SCHEDULING PROBLEM 

This chapter presents a new particle swarm optimization (PSO) for the open shop 

scheduling problem (OSSP). Compared with the original PSO, we modified the 

particle position representation using priorities, and the particle movement using an 

insert operator. We also implemented a modified parameterized active schedule 

generation algorithm (mP-ASG) to decode a particle position into a schedule. In 

mP-ASG, we can reduce or increase the search area between non-delay schedules and 

active schedules by controlling the maximum delay time allowed. Furthermore, we 

hybridized our PSO with beam search. The computational results show that our PSO 

found many new best solutions of the unsolved problems. 

6.1 Particle Position Representation 

In the previous researches (Liaw, 2000) and (Prins, 2000), an OSSP solution is 

represented by a permutation list, which is an ordered list of operations. For example, 

the following is a permutation list for a 3-job 2-machine problem: 

][
654321

:
:

121323212211 oooooonpermutatio
index

 

Where ijo  is the operation of job j that needs to be processed on machine i. In the list, 

the prior operation has higher priority to be put into schedule. In our algorithm, we 

represent the particle k position by an m×n priority matrix for an n-job m-machine 

problem, i.e. 
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Where k
ijx  denotes the priority of operation ijo  of particle k . We can transfer the 

permutation list to a priority matrix. We randomly set k
ijx  between )5.0( −p  and 

)5.0( +p , that is, 5.02 −+← randpxk
ij , where p  is the location of ijo  in the 

permutation list, and 2rand  is a random variable between 0 and 1. Therefore, the 

operation with smaller k
ijx  has higher priority to be put into schedule. The 

permutation list mentioned above can be randomly transferred to 

⎥
⎦

⎤
⎢
⎣

⎡
=

9.31.23.3
2.58.56.0kX . 

When we implement insert operator, the advantage of the priority matrix is to 

reduce the computation complexity. For example, in the permutation list mentioned 

above, when we want to insert 12o  into the third location of the permutation list, we 

first need to move 13o  to the sixth location, move 23o  to fifth location, move 21o  

to the fourth location, and than insert 12o  to the third location, i.e. 

][
654321

:
:

132321122211 oooooonpermutatio
index

 

 

On the average, the insert operator costs )2(nO  steps for each insertion.  

However, if we implement insert operator on a priority matrix, we only need to 

set 5.03 2 −+← randxk
ij  when we want to insert 12o  to the third location of the 

permutation list. Therefore, there is only one step needed for each insertion. For 
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example, if the random number 2rand  equals 0.9, the following is the kX  after 

12o  inserted into the third location: 

⎥
⎦

⎤
⎢
⎣

⎡
=

9.31.23.3
2.54.36.0kX . 

In kX , both 12o  and 21o  are on the third location of the permutation list (i.e. 

both kx12  and kx21  are between 2.5 and 3.5), but the values of kx12  and kx21  are 

different due to the random variable 2rand . Consequently, the order of 12o  and 21o  

to be put into the schedule is also randomly determined. This means that, if the 

priority matrix shows that there are more than two operations located on the same 

location of the permutation list, the order of the operations on the same location is 

randomly determined by the random variable 2rand . The detail of the particle 

movement operator is described in section 6.3. 

The PSO we proposed differs from the original PSO design in that the gbest and 

pbest solutions do not record the best positions found so far, but rather the best 

schedules generated by the decoding operator. In our algorithm, the decoding operator 

puts the operations one by one into a schedule. The sequential order of the operations 

that the decoding operator puts them into the schedule can be formulated as an 

operation sequence. Then we can transfer the operation sequence to an m×n matrix 

kS , i.e. 

⎥
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Where k
ijs  denotes the location of operation ijo  in the operation sequence. For 

example, if the operation sequence generated by the decoding operator is as follows: 
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][
654321

:
:

211123122213 oooooosequenceoperation
index

 

we can transfer the operation sequence to the matrix kS : 

⎥
⎦

⎤
⎢
⎣

⎡
=

426
135kS . 

When we update pbest and gbest solutions, we do not record the best positions 

found so far (i.e. kX ), but rather the locations of the operations in the operation 

sequence, which is generated by the decoding operator (i.e. kS ). 

6.2 Particle Velocity 

In the original PSO, the update of the particle velocity depends on the gbest and 

the pbest solutions; and then each particle moves according to its velocity. There are 

two purposes of the particle velocity: (a) moving a particle toward the gbest and the 

pbest solutions; (b) keeping inertia to prevent particles getting trapped in local optima. 

In our PSO, the particle velocity does not move particles toward the pbest and 

the gbest solution, but only prevents particles getting trapped in local optima. If the 

priority value is increased or decreased in this iteration, we keep the priority value 

increasing or decreasing at the beginning of the next iteration with probability w , 

which is the inertia weight in our PSO. The larger the w , the more iterations the 

priority value keeps increasing or decreasing, and it is harder for the particle to return 

to the current position. For an n-job m-machine problem, we represent the velocity of 

particle k by an m×n matrix, i.e. 

⎥
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Where k
ijv  is the velocity of the operation ijo  of particle k , }1,0,1{−∈k

ijv .  

Compared with the original PSO, the velocity in our PSO only considers whether 

the value of k
ijx  is larger or smaller than k

ijpbest  ( ijgbest ), but does not consider the 

distance from k
ijx  to k

ijpbest  ( ijgbest ). In our algorithm, if k
ijx  is reduced in this 

iteration, that is, k
ijpbest  ( ijgbest ) is smaller than k

ijx  and k
ijx  is set toward 

k
ijpbest  ( ijgbest ), we set k

ijv ← –1, indicating that k
ijx  should be kept decreasing 

one (i.e. 1−← k
ij

k
ij xx ) in the next iteration with probability w . On the contrary, if 

k
ijx  is increased in this iteration, that is, k

ijpbest  ( ijgbest ) is larger than k
ijx  and k

ijx  

is set toward k
ijpbest  ( ijgbest ), we set k

ijv ← 1, indicating that k
ijx  should be keep 

increasing one (i.e. 1+← k
ij

k
ij xx ) in the next iteration with probability w . 

The velocity can be controlled by inertia weight w . We randomly update 

velocities at the beginning of the iteration. For each particle k and operation ijo , if 

k
ijv  does not equal 0, k

ijv  will be set to 0 with the probability (1– w ). This means that 

if k
ijx  keeps increasing or decreasing, k

ijx  stops keeping increasing or decreasing in 

this iteration with the probability (1– w ). The pseudo code for updating velocities is 

given in Figure 6.1. The complexity of updating particle velocity for each particle is 

)(mnO , where mn  is the number of operations. 
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for each particle k and operation ijo  do 
rand ~ U(0,1) 
if )()0( wrandandvk

ij ≥≠  then 

0←k
ijv  

end if 
end for  

Figure 6.1 The pseudo code of updating velocities. 

6.3 Particle Movement 

In our PSO, the particle movement is based on the insert operator. As mentioned 

in section 6.1, we set +← pxk
ij 2rand – 0.5 if we want to insert ijo  to the pth 

location in the permutation list. In addition, the location of operation ijo  in the 

operation sequence of kth pbest and gbest solution are k
ijpbest  and ijgbest  

respectively. When particle k  moves, for all ijo , if k
ijv  equals 0, the k

ijx  will be set 

to k
ijpbest + 2rand – 0.5 with probability 1c  and set to ijgbest + 2rand – 0.5 with 

probability 2c , where 2rand  is a random variable between 0 and 1, and 1c  and 2c  

are constants between 0 and 1, and 121 ≤+ cc . For example, assume that kV , kX , 

kpbest , gbest , 1c , and 2c  are as follows: 

⎥
⎦

⎤
⎢
⎣

⎡−
=

00
01kV , ⎥

⎦

⎤
⎢
⎣

⎡
=

2.43.1
3.35.2kX , ⎥

⎦

⎤
⎢
⎣

⎡
=

23
41kpbest , ⎥

⎦

⎤
⎢
⎣

⎡
=

21
43

gbest ,  

7.01 =c , 1.02 =c . 

For 11o : 

Because 011 ≠kv , kkk vxx 111111 +← , that is, 5.111 =kx . 

For 12o : 

Because 012 =kv , randomly generated random variable 1rand  = 0.6. 
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Because 1rand 1c≤ , randomly generated random variable 2rand  = 0.3.  

Because kk xpbest 1212 ≥ , set 112 ←kv , and then kx12
kpbest12← + 2rand - 0.5, 

that is, 8.312 =kx . 

For 21o : 

Because 021 =kv , generate random variable 1rand  = 0.9. 

Because 1rand > 21 cc + , we do not change the value of kx21 . 

For 22o : 

Because 022 =kv , randomly generated random variable 1rand  = 0.75. 

Because 2111 ccrandc +≤< , randomly generated random variable 2rand  = 

0.8. 

Because kxgbest 2222 < , set ←kv22 -1, and then kx22 22gbest← + 2rand - 0.5, that 

is, 3.222 =kx . 

Therefore, the kV  and kX  after particle k  is moved are: 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

10
11

kV  and ⎥
⎦

⎤
⎢
⎣

⎡
=

3.23.1
8.35.1kX . 

Furthermore, we adopt a mutation operator in our algorithm. After a particle 

moves to a new position, we randomly choose an operation and then mutate its 

priority value k
ijx  disregarding k

ijv . If )2/(mnxk
ij ≤ , we randomly set the value of 

k
ijx  between )( nmn −  and mn , and set 1←k

ijv . If )2/(mnxk
ij > , we randomly set 

the value of k
ijx  between 0 and n , and set ←k

ijv –1. The pseudo code of particle 

movement is given in Figure 6.2. The complexity of each particle movement is 

)(mnO . 
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for i←1 to m do        //for all operations 
for j←1 to n do  

thenif )0( =k
ijv  

1rand ~ U(0,1) 
thenif )( 11 crand ≤  

thenif )( k
ij

k
ij xpbest ≥  1=k

ijv  else 1−=k
ijv  

2rand ~ U(0,1) 
5.02 −+← randpbestx k

ij
k
ij  

ifend  
thenif )( 2111 ccrandc +≤<  

thenif )( k
ijij xgbest ≥  1=k

ijv  else 1−=k
ijv  

2rand ~ U(0,1) 
5.02 −+← randgbestx ij

k
ij  

ifend  
ifend  

forend  
forend  

//↓mutation operator 
←),( ji Randomly choose an operation 

1rand ~ U(0,1) 
thenif ))2/(( nmxk

ij ×≤  

1randnnmxk
ij ×−×← ; 1=k

ijv  
else 

1randnxk
ij ×← ; 1−=k

ijv  
ifend  

//↑mutation operator  
Figure 6.2 The pseudo code of particle movement. 

6.4 Decoding Operators 

If we want to decode a particle position matrix into a schedule, we can put the 

operations into a schedule by ascending order of k
ijx . However, if we directly put the 

operations into a schedule by ascending order of k
ijx , it will be a semi-active schedule. 

The set of semi-active schedules is very large and has poor quality in terms of 

makespan. Therefore, we need an efficient decoding operator to decode the particle 
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position into a schedule within a schedule set, which set size is smaller and with better 

solution quality. 

Because there is no precedence relation between the operations of each job in 

OSSP, the solution space of OSSP is much larger than flow shop and job shop 

scheduling problems. Therefore, a decoding operator, which can reduce the search 

area but does not exclude the optimal solution, will improve the efficiency of PSO. 

The optimal OSSP solution should be an active schedule. In an active schedule, 

the processing sequence is such that no operation can be started any earlier without 

delaying another operation (French , 1982). However, the set of active schedules is 

usually very large and with poor quality in terms of makespan. The set of non-delay 

schedules is a subset of active schedules. In a non-delay schedule, no machine is kept 

idle at a time when it could begin processing other operations (French , 1982). The set 

of non-delay schedules is much smaller than the active schedules, and usually with 

better quality in terms of makespan. However, the optimal solution is not a non-delay 

schedule in most of the test problems.  

We will describe four different decoding operators that generate schedules 

between a non-delay set and an active set. All the decoding operators are based on 

Giffler and Thompson’s algorithm (Giffler & Thompson, 1960), which can decode a 

particle position into an active schedule. We briefly describe the G&T algorithm for 

OSSP in Figure 6.3. If we modify the operation set O  in the G&T algorithm as 

follows, this algorithm will decode the particle position into a non-delay schedule: 

Determine }{min*
ijo

ss
ij Ω∈

← . 

Identify the operation set Ο ← },|{ * Ω∈= ijijij osso . 
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Moreover, we can generate schedules between a non-delay set and an active set by 

modifying the operation set O  in the G&T algorithm. 

Notation: 

ijo : the operation of job j that needs to be processed on machine i. 

S : the partial schedule that contains scheduled operations. 

Ω : the set of schedulable operations. 

ijs : the earliest time at which Ω∈ijo  could be started. 

ijp : the processing time of ijo . 

ijf : the earliest time at which Ω∈ijo  could be finished, ijf = ijs + ijp . 

G&T algorithm for OSSP: 

Initialize S ← φ ; Ω  is initialized to contain all operations. 

repeat 

Determine }{min*
ijo

ff
ij Ω∈

← . 

Identify the operation set Ο ← },|{ * Ω∈< ijijij ofso . 

Choose *
ijo  from the operation set O  with the smallest k

ijx , add 

*
ijo  to S , and assign ijs  as the starting time of *

ijo . 

Delete *
ijo  from Ω . 

Until Ω  is empty. 
 

Figure 6.3 The G&T algorithm for OSSP. 
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6.4.1 Decoding Operator 1 (A-ND) 

The first decoding operator randomly identifies the operation set O  in the 

active set or the non-delay set. It was first proposed in (Prins, 2000) and was also 

proposed in (Blum, 2005). It can be reached by modifying the operation set O  in the 

G&T algorithm: 

Determine }{min*
ij

o
ss

ij Ω∈
←  and }{min*

ij
o

ff
ij Ω∈

← . 

Randomly identify the operation set Ο  equal to },|{ * Ω∈< ijijij ofso  

or },|{ * Ω∈= ijijij osso  with probability 0.5 respectively. 

To determine *s  and *f  costs )(mnO  each, and to choose *
ijo  from the 

operation set O  with the smallest k
ijx  also costs )(mnO . There are mn  

operations needing to be schedule, hence the complexity of decoding operator 1 is 

)( 22nmO . 

6.4.2 Decoding Operator 2 (mP-ASG) 

Gonçalves et al. (2005) proposed a parameterized active schedule generation 

algorithm (P-ASG) for the job shop scheduling problem. We (Sha & Hsu, 2006) 

modified the algorithm based on the G&T algorithm for better performance and so it 

is easier to implement. The modified parameterized active schedule generation 

algorithm (mP-ASG) can also be applied to OSSP.  

The basic idea of parameterized active schedules is to control the search area by 

controlling the delay times that each operation is allowed. If all of the delay times are 

equal to zero, the set of parameterized active schedules is equivalent to non-delay 

schedules. On the contrary, if all of the delay times are equal to infinity, the set of 
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parameterized active schedules is equivalent to the active schedules. Therefore, the set 

of parameterized active schedules is between the non-delay schedules and the active 

schedules. Fig. 5 (Gonçalves et al., 2005) shows the relationship between the sets of 

semi-active, active, non-delay, and parameterized active schedules. It also shows that 

the size of the parameterized active schedules depends upon the delay times that each 

operation is allowed. 

 Semi-Active 

Active 

Non-Delay 

Semi-Active 

Active

Non-Delay

Parameterized active 

Delay Time 1 Delay Time 2

Delay Time 1 < Delay Time 2
 

Figure 6.4 Parameterized active schedules. 

In our mP-ASG, we defined the delay time delay ← tdelayweighsf ×− )( ** , so 

that modifying the operation set O  in the G&T algorithm can generate the 

parameterized active schedules: 

Determine }{min*
ijo

ss
ij Ω∈

← , }{min*
ijo

ff
ij Ω∈

← , and delay ← ×− )( ** sf  

tdelayweigh . 

Identify the operation set Ο ← },|{ * Ω∈+≤ ijijij odelaysso . 

The value of tdelayweigh  is between 0 and 1 for controlling the search area. 

When tdelayweigh  equals 0, the operation set Ο  is equal to the non-delay set. On 
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the contrary, when tdelayweigh  equals 1, the operation set Ο  is equal to the active 

set. In our PSO, tdelayweigh  increases linearly from 0 to 1 during a run. This means 

that the PSO searches solutions near to the non-delay set in earlier iterations for better 

initial solutions, and then enlarges the search area to prevent missing the optimal 

solution. As with decoding operator 1, the complexity of decoding operator 2 is 

)( 22nmO . 

6.4.3 Decoding Operator 3 (mP-ASG2) 

We implement fathoming constraints in mP-ASG to further reduce the size of the 

operation set Ο . The fathoming constraints originate from one of the fathoming 

criteria in the branch-and-bound algorithm. One of the fathoming criteria in the 

branch-and-bound algorithm is that, if the lower bound of a partial solution is larger 

than the current upper bound (for a minimization problem), the partial solution is 

fathomed. Hence the partial solution need not be investigated any further because it 

does not yield a better solution than the current upper bound. 

In OSSP, the lower bound of a partial schedule after ijo  is put into it can be 

roughly estimated by },max{ J
jij

M
iij rsrs ++ , where M

ir  ( J
jr ) is the sum of the 

remaining process times on machine i  (job j ). Therefore, we can fathom whether 

the lower bound of a partial schedule after ijo  is put into it is larger than current 

upper bound — the makespan of the gbest solution, )(max gbestC , by whether ijo  fits 

in with the following constraint:  

)(},max{ max gbestCrsrs J
jij

M
iij ≤++        (5.1) 

that is, 
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M
iij rgbestCs −≤ )(max           (5.2) 

and 

J
jij rgbestCs −≤ )(max           (5.3) 

However, we cannot ensure that the lower bounds of all the generated partial 

schedules are less than )(max gbestC . If the lower bound of a partial schedule is larger 

than )(max gbestC , there is no unscheduled operation to fit in with constraints (5.2) 

and (5.3). To avoid such a situation, we modify the constraints by: 

})(,max{ max
M

i
M
iij rgbestCss −≤        (5.4) 

and 

})(,max{ max
J
j

J
jij rgbestCss −≤        (5.5) 

where }|{min Ω∈=
∀

ijij
j

M
i oss  and }|{min Ω∈=

∀
ijij

i

J
j oss . This means that 

when there is no unscheduled operation to fit in with constraints (5.2) and (5.3) on 

some machines or jobs in the partial schedule, we prevent the machines or jobs being 

idle as much as possible. 

We name the constraints (5.4) and (5.5) “fathoming constraints”. The fathoming 

constraints are used to reduce further the size of the operation set Ο . The 

parameterized active schedules with fathoming constraints can be generated by 

modifying the operation set O  in the G&T algorithm: 

Determine }{min*
ij

o
ss

ij Ω∈
← , }{min*

ij
o

ff
ij Ω∈

← , delay ← ×− )( ** sf  

tdelayweigh , and M
is , J

js , M
ir , J

jr  for all i , j . 
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Identify the operation set Ο ← { ,,| * Ω∈+≤ ijijij odelaysso  

})(,max{ max
M

i
M
iij rgbestCss −≤ , }})(,max{ max

J
j

J
jij rgbestCss −≤ . 

To determine *s , *f  costs )(mnO , and to determine all the M
is , J

js , M
ir , J

jr  

also costs )(mnO , so the complexity of decoding operator 3 is )( 22nmO . 

6.4.4 Decoding Operator 4 (mP-ASG2+BS) 

Blum (2005) hybridizes the solution construction mechanism of ant colony 

optimization (ACO) with beam search (BS). He also shows that the ACO hybridized 

with BS performs much better than standard ACO. Since both the solution 

construction mechanism of ACO and our PSO are based on the G&T algorithm, we 

can also hybridize the decoding operators with BS in the same way.  

BS is an adaptation of the branch-and-bound method in which only some nodes 

are evaluated in the search tree. In each step, bwk  partial solutions at most are 

allowed to extend, and the partial solutions can only extend in extk  possible ways at 

most. The extendable partial solution set, B , is called the beam and the largest size of 

the set, bwk , is called the beam width. The partial schedule is evaluated by its lower 

bound, which can be easily computed as follows (Gonzalez & Sahni, 1976): 

{ }YXLB ,max=            (5.6) 

where 

{ }Ω∈∀+= ij
J
j

J
j orsX |max          (5.7) 

{ }Ω∈∀+= ij
M

i
M
i orsY |max         (5.8) 

We chose the decoding operator mP-ASG2 to hybridize with BS, because it 
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outperforms others as we will illustrate in section 6.6.1. We briefly describe the 

procedure of mP-ASG2+BS in Figure 6.5. 

Initialize S ← φ ; choose *
ijo  with the smallest k

ijx ; add *
ijo  to S ; B← }{S .

repeat  

Initialize extB ←φ . 

for each partial schedule S  in B  do 

extO ←Select at most extk  operations from the operation set O  

identified as mP-ASG2 with the smallest k
ijx . 

for each extij Oo ∈  do 

S ′ ← Extend S  by adding ijo , and then add S ′  to extB . 

end for 

end for 

if extext kB ≤||  then 

extBB ← . 

else 

B ← Select extk  best partial schedules in extB  with the 

smallest lower bound. 

end if 

until each S  in B  contains all operations. 

Output the best schedule with the smallest makespan in B  as the 

schedule generated by particle k . 
 

Figure 6.5 The pseudo code of the decoding operator mP-ASG2+BS. 

In decoding operator 4, for each partial schedule S  in B , it costs )(mnO  to 
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select at most extk  operations from the operation set O  identified as mP-ASG2 with 

the smallest k
ijx . There are mn  levels of the search tree and bwk  partial schedules 

in B  at most. Therefore, the complexity of decoding operator 4 is )( 22nmkO ext . 

Blum (2005) sets mnkbw = , so the complexity of Beam-ACO to construct a solution 

is )( 33nmO . It is evident that the computation time of BS massively increases 

following the problem size increasing. We modified the parameter settings in (Blum, 

2005) to prevent such a situation as much as possible. In our algorithm, There is only 

one node in the first level of the search tree, and we set 2=extk , the smallest setting 

value of extk , and nkbw 2= . The parameter bwk  is dependent upon the number of 

jobs ( n ) rather than the number of operations ( mn ), so the computation time of BS is 

more insensitive to the problem size than (Blum, 2005). Consequently, the complexity 

of decoding operator 4 is )( 32nmO . We will test and compare these four decoding 

operators in section 6.6.1. 

6.5 The Diversification Strategy 

We also implement the diversification strategy as described in section 5.4. The 

diversification strategy keeps the pbest solutions different (i.e. it keeps the makespans 

of pbest solutions different). In the diversification strategy, the pbest solution of each 

particle is not the best solution found by the particle itself, but one of the best N 

solutions found by the swarm so far where N is the size of the swarm. The complexity 

of updating the gbest and pbest solutions with diversification strategy for each particle 

is )(NmnO . 

6.6 Computational Results 

We tested our PSO on the benchmark problems proposed by Taillard (1993) 

(tai_*×*_*), Brucker et al. (1997) (j*-per*-*), and Guéret and Prins (1999) (gp*-*). 
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The program was coded in Visual C++ and run 20 times on each problem under 

Windows XP on an AMD Athlon 1800+ PC. In the preliminary experiment, four 

swarm sizes N (10, 30, 60, 100) were tested, where N=60 was superior and used for 

all further studies. The parameters 1c  and 2c  were tested between 0.1 and 0.7 in 

increments of 0.2. The inertia weight w  was decreased linearly from maxw  to minw  

during a run. The parameter maxw  was tested on 0.5, 0.7, and 0.9. Another parameter 

minw  was tested on 0.1, 0.3, and 0.5. The settings 7.01 =c , 1.02 =c , 9.0max =w , 

and 3.0min =w  were superior. As mentioned before, the parameter tdelayweigh  in 

mP-ASG, mP-ASG2, and mP-ASG2+BS increases linearly from 0 to 1 during a run. 

All of the numeric parameters are determined empirically. The program only stops at 

the CPU time limits even if the lower bound reached. We set the CPU time limit of 

each run referring to ACO (Blum, 2005). Because the results of ACO (Blum, 2005) 

were obtained on an 1100 MHz PC, and the machine is slower than ours, we set the 

time limits of each run at only half of ACO (Blum, 2005) to confirm that the spent 

CPU time is not longer than ACO (Blum, 2005). 

6.6.1 Comparison of Decoding Operators 

We tested these four decoding operators on the hardest problem sets: j8-per*-* 

and gp10*-*. We set the time limits of each run on the j8-per*-* and gp10-* to 245 

and 500 CPU seconds respectively. As mentioned above, the time limit of each run is 

half of ACO (Blum, 2005). Each program was run 20 times on each problem. 

Moreover, to show whether the mutation operator can improve the solution quality, 

we also tested our PSO, which does not implement the mutation operator. 

Table 6.1(a) shows the computational results of the four decoding operators, and 

Table 6.1(b) shows the computational results, in which we do not implement the 

mutation operator. In the tables, the terms ‘Best’ and ‘Average’ mean the best and 
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average solution of the 20 runs respectively. The ‘BKS’ is the best-known solution. If 

the BKS is not proved to be optimal, it is bracketed. The BKSs in the tables include 

our method. If the BKS is marked an asterisk, it means that the value is obtained by 

one of our PSOs. If the solution value is indicated in bold, it means that the value is 

equal to the BKS. For each problem, the solution gap is defined by 

BKSBKSC /)( max −  as a percentage, where maxC  is the makespan of the solution. 

Therefore, the average gap is obtained by averaging the solution gaps. 

Compare the results between Table 6.1(a) and Table 6.1(b). All the average gaps 

in Table 6.1(a) are smaller than those in Table 6.1(b). This shows that the mutation 

operator improves the solution quality. In Table 6.1(a) and Table 6.1(b), the results 

show that the average gap of mP-ASG2 is less than A-ND and mP-ASG. It is evident 

that the fathoming constraints in mP-ASG2 can successfully reduce the search area 

without excluding the optimal solution, and thus obtain better results. In Table 6.1(a), 

the mP-ASG2+BS obtains the best result on j8-per*-* test problems, and the 

mP-ASG2 obtains the best result on gp10-* test problems. Therefore, we chose 

mP-ASG2 and mP-ASG2+BS for further tests, and compared the results with other 

metaheuristics. 
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Table 6.1(a) Computational results of four decoding operators with mutation operator 
A-ND mP-ASG mP-ASG2  mP-ASG2+BS Problem BKS 

Best Average Best Average Best Average  Best Average
j8-per0-1 (1039) 1059 1067.50 1039 1050.65 1045 1051.65  1039 1043.25 
j8-per0-2 (1052) 1057 1066.60 1055 1063.45 1052 1058.30  1052 1053.60 
j8-per10-0 (1020) 1029 1034.50 1020 1034.80 1024 1033.05  1020 1026.10 
j8-per10-1 (1002)* 1011 1019.95 1008 1015.35 1008 1018.25  1002 1007.55 
j8-per10-2 (1002)* 1009 1024.05 1002 1014.70 1002 1012.45  1002 1005.95 
j8-per20-0 1000 1003 1006.55 1000 1000.95 1000 1000.90  1000 1000.60 
j8-per20-1 1000 1000 1000.00 1000 1000.00 1000 1000.00  1000 1000.00 
j8-per20-2 1000 1001 1004.70 1000 1004.10 1000 1003.15  1000 1000.00 
Average gap 0.660% 1.334% 0.111% 0.846% 0.196% 0.771%  0.000% 0.271%
gp10-01 (1093)* 1093 1096.00 1093 1096.25 1093 1097.40  1093 1096.75 
gp10-02 (1097)* 1097 1097.15 1097 1097.05 1097 1097.00  1097 1099.05 
gp10-03 (1081) 1087 1094.85 1081 1087.90 1081 1087.10  1084 1090.30 
gp10-04 (1083)* 1089 1091.30 1086 1089.10 1086 1089.10  1083 1092.10 
gp10-05 (1073)* 1084 1091.15 1082 1087.70 1073 1086.50  1082 1092.15 
gp10-06 (1071)* 1071 1092.80 1071 1071.00 1071 1071.00  1071 1074.25 
gp10-07 (1080)* 1081 1081.40 1081 1081.60 1080 1080.95  1081 1081.05 
gp10-08 (1095)* 1095 1096.45 1095 1097.80 1095 1097.25  1097 1097.55 
gp10-09 (1115)* 1116 1122.15 1116 1118.30 1115 1117.80  1123 1127.00 
gp10-10 (1092) 1092 1094.95 1092 1092.05 1092 1092.15  1092 1093.95 
Average gap 0.232% 0.724% 0.130% 0.358% 0.028% 0.335%  0.211% 0.590%

The time limits for each run on problems j8-per*-* and gp10-* are 245 and 500 CPU seconds 
respectively. 
*The BKS is found by one of our PSOs. 

Table 6.1 (b) Computational results of four decoding operators without mutation operator 
A-ND mP-ASG mP-ASG2  mP-ASG2+BS Problem BKS 

Best Average Best Average Best Average  Best Average
j8-per0-1 (1039) 1056 1064.85 1046 1054.95 1047 1054.80  1042 1043.95 
j8-per0-2 (1052) 1057 1068.25 1064 1064.00 1064 1064.00  1053 1058.85 
j8-per10-0 (1020) 1030 1039.65 1022 1035.25 1022 1035.80  1020 1028.30 
j8-per10-1 (1002)* 1016 1023.25 1009 1015.70 1009 1015.65  1002 1008.20 
j8-per10-2 (1002)* 1009 1024.20 1002 1015.50 1002 1014.30  1002 1006.40 
j8-per20-0 1000 1002 1008.30 1000 1000.80 1000 1001.05  1000 1000.45 
j8-per20-1 1000 1000 1000.05 1000 1000.00 1000 1000.00  1000 1000.00 
j8-per20-2 1000 1000 1006.60 1000 1005.10 1000 1005.00  1000 1000.00 
Average gap 0.673% 1.474% 0.339% 0.934% 0.351% 0.926%  0.048% 0.381%
gp10-01 (1093)* 1095 1100.00 1095 1101.05 1095 1099.45  1093 1097.40 
gp10-02 (1097)* 1099 1109.25 1097 1100.55 1097 1100.75  1098 1100.35 
gp10-03 (1081) 1088 1100.90 1088 1096.05 1087 1095.00  1085 1093.00 
gp10-04 (1083)* 1090 1094.50 1090 1090.90 1090 1091.75  1087 1092.70 
gp10-05 (1073)* 1086 1094.90 1084 1092.25 1083 1092.20  1082 1090.10 
gp10-06 (1071)* 1071 1093.00 1071 1078.80 1071 1077.35  1071 1072.05 
gp10-07 (1080)* 1082 1087.60 1081 1081.65 1081 1081.80  1081 1081.15 
gp10-08 (1095)* 1098 1099.80 1097 1100.45 1098 1099.65  1096 1098.60 
gp10-09 (1115)* 1117 1127.40 1116 1131.55 1116 1126.40  1125 1131.35 
gp10-10 (1092) 1092 1097.40 1092 1094.00 1092 1094.55  1092 1093.85 
Average gap 0.393% 1.218% 0.335% 0.870% 0.324% 0.792%  0.332% 0.721%

The time limits for each run on problems j8-per*-* and gp10-* are 245 and 500 CPU seconds 
respectively. 
*The BKS is found by one of our PSOs. 
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6.6.2 Comparison with Other Metaheuristics 

We compared our PSOs with the GA proposed by Liaw (2000) (denoted by 

GA-Liaw), the GA proposed by Prins (2000) (denoted by GA-Prins), and the ACO 

hybridized with beam search proposed by Blum (2005) (denoted by Beam-ACO). Our 

results were obtained by 20 runs on each problem, and the time limit of each run is 

half of Beam-ACO. The program only stops at the CPU time limits even if the lower 

bound reached. It is important to remember that both our PSO and Beam-ACO 

performed 20 runs, but the two GAs, GA-liaw and GA-Prins, performed only one run. 

Moreover, in our PSO and Beam-ACO, the computation time of each run is 

substantially longer than GA-liaw and GA-Prins. Therefore, we will mainly compare 

our computational results with Beam-ACO. 

Table 6.2 shows the results of the test problems proposed by Taillard (1993). The 

term ‘t’ is the average time needed by one run to get its best makespan value. 

Compared with other test problem sets, Taillard test problems are easier to solve. 

Therefore, Beam-ACO and PSO-mP-ASG2+BS obtained all of the optimal solutions, 

but PSO-mP-ASG2+BS is slightly better than Beam-ACO on average gaps. The t of 

PSO-mP-ASG2 and PSO-mP-ASG2+BS are quite similar on the problem set tai_4×

4_*. The reason for this is that the search area of these two PSOs is restricted by the 

parameter tdelayweigh . In the decoding operator, the tdelayweigh  increases 

linearly form 0 to 1 during a run. This means that the search area of PSO is near to the 

non-delay set in earlier iterations, and then enlarges after tdelayweigh  increases. If 

the problem size is quite small but the t is rather large, it means that the optimal 

solution is far from the non-delay set, and the PSO can only obtain the optimal 

solution when tdelayweigh  increases. 

Table 6.3 shows the results of the test problems proposed by Brucker et al. 
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(1997). Although there are two best solutions obtained by PSO-mP-ASG2+BS worse 

than Beam-ACO on test problem j7-per0-0 and j7-per20-1, all the average gaps 

obtained by PSO-mP-ASG2+BS are better than Beam-ACO. Furthermore, 

PSO-mP-ASG2+BS obtained new best-known solutions on test problem j8-per10-1 

and j8-per10-2. 
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Table 6.2 Results of the test problems proposed by Taillard (1993) 
 Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Liaw GA-Prins 

 Best Average Best Average t Best Average t limit(s)
tai_4×4_1 193 193 193  193 193.0 193 193.0 4.7 193 193.0 4.7 8
tai_4×4_2 236 236 239  236 236.0 236 236.0 3.7 236 236.0 3.7 8
tai_4×4_3 271 271 271  271 271.0 271 271.0 4.7 271 271.0 5.0 8
tai_4×4_4 250 250 250  250 250.0 250 250.0 2.3 250 250.0 2.3 8
tai_4×4_5 295 295 295  295 295.0 295 295.0 2.9 295 295.0 2.9 8
tai_4×4_6 189 189 189  189 189.0 189 189.0 2.1 189 189.0 2.1 8
tai_4×4_7 201 201 201  201 201.0 201 201.0 6.5 201 201.0 6.5 8
tai_4×4_8 217 217 217  217 217.0 217 217.0 6.4 217 217.0 7.0 8
tai_4×4_9 261 261 261  261 261.0 261 261.0 1.3 261 261.0 1.3 8
tai_4×4_10 217 217 221  217 217.0 217 217.0 1.7 217 217.0 1.7 8
Average gap  0.000% 0.311%  0.000% 0.000% 0.000% 0.000%  0.000% 0.000%   
tai_5×5_1 300 300 301  300 300.0 300 300.0 1.2 300 300.0 1.1 25
tai_5×5_2 262 262 263  262 262.0 262 262.0 2.1 262 262.0 2.1 25
tai_5×5_3 323 323 335  323 323.0 323 323.0 14.4 323 323.0 14.4 25
tai_5×5_4 310 310 316  310 310.0 310 310.0 10.4 310 310.0 10.1 25
tai_5×5_5 326 326 330  326 326.0 326 326.0 9.9 326 326.0 9.3 25
tai_5×5_6 312 312 312  312 312.0 312 312.0 8.4 312 312.0 7.9 25
tai_5×5_7 303 303 308  303 303.0 303 303.0 7.4 303 303.0 7.3 25
tai_5×5_8 300 300 304  300 300.0 300 300.0 13.5 300 300.0 12.7 25
tai_5×5_9 353 353 358  353 353.0 353 353.0 11.5 353 353.0 7.9 25
tai_5×5_10 326 326 328  326 326.0 326 326.0 5.1 326 326.0 5.1 25
Average gap  0.000% 1.261%  0.000% 0.000% 0.000% 0.000%  0.000% 0.000%   
tai_7×7_1 435 435 436  435 435.0 435 435.0 6.6 435 435.0 2.9 49
tai_7×7_2 443 443 447  443 443.0 443 443.1 16.0 443 443.0 12.2 49
tai_7×7_3 468 468 472  468 468.0 468 468.1 16.8 468 468.0 9.2 49
tai_7×7_4 463 463 463  463 463.0 463 463.0 5.6 463 463.0 3.0 49
tai_7×7_5 416 416 417  416 416.0 416 416.0 2.8 416 416.0 2.9 49
tai_7×7_6 451 451 455  451 451.4 451 451.8 19.6 451 451.0 13.5 49
tai_7×7_7 422 422 426  422 422.2 422 422.5 10.5 422 422.0 13.6 49
tai_7×7_8 424 424 424  424 424.0 424 424.0 1.4 424 424.0 2.3 49
tai_7×7_9 458 458 458  458 458.0 458 458.0 0.6 458 458.0 1.3 49
tai_7×7_10 398 398 398  398 398.0 398 398.0 1.8 398 398.0 2.8 49
Average gap  0.000% 0.406%  0.000% 0.011% 0.000% 0.029%  0.000% 0.000%   
tai_10×10_1 637 637 637  637 637.4 637 639.1 18.2 637 637.0 9.4 50
tai_10×10_2 588 588 588  588 588.0 588 588.1 5.6 588 588.0 3.5 50
tai_10×10_3 598 598 598  598 598.0 598 599.8 22.9 598 598.0 10.1 50
tai_10×10_4 577 577 577  577 577.0 577 577.0 3.2 577 577.0 2.6 50
tai_10×10_5 640 640 640  640 640.0 640 640.9 17.4 640 640.0 4.0 50
tai_10×10_6 538 538 538  538 538.0 538 538.0 0.5 538 538.0 1.1 50
tai_10×10_7 616 616 616  616 616.0 616 616.3 11.4 616 616.0 3.9 50
tai_10×10_8 595 595 595  595 595.0 595 595.6 17.5 595 595.0 7.0 50
tai_10×10_9 595 595 595  595 595.0 595 595.0 11.7 595 595.0 4.1 50
tai_10×10_10 596 596 596  596 596.0 596 596.1 9.8 596 596.0 5.0 50
Average gap  0.000% 0.000%  0.000% 0.005% 0.000% 0.091%  0.000% 0.000%   
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Table 6.2 (continued) 
 Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Liaw GA-Prins 
 Best Average Best Average t Best Average t limit(s)

tai_15×15_1 937 937 937  937 937.0 937 937.0 4.6 937 937.0 4.3 112.5
tai_15×15_2 918 918 918  918 918.0 918 918.9 20.5 918 918.0 9.1 112.5
tai_15×15_3 871 871 871  871 871.0 871 871.0 5.0 871 871.0 4.3 112.5
tai_15×15_4 934 934 934  934 934.0 934 934.0 3.2 934 934.0 3.9 112.5
tai_15×15_5 946 946 946  946 946.0 946 946.4 16.1 946 946.0 5.7 112.5
tai_15×15_6 933 933 933  933 933.0 933 933.0 10.0 933 933.0 4.7 112.5
tai_15×15_7 891 891 891  891 891.0 891 891.6 22.3 891 891.0 10.4 112.5
tai_15×15_8 893 893 893  893 893.0 893 893.0 1.2 893 893.0 17.3 112.5
tai_15×15_9 899 899 899  899 899.7 899 903.3 46.6 899 899.2 26.6 112.5
tai_15×15_10 902 902 902  902 902.0 902 903.0 12.7 902 902.0 6.9 112.5
Average gap  0.000% 0.000%  0.000% 0.007% 0.000% 0.079%  0.000% 0.002%   
tai_20×20_1 1155 1155 1155  1155 1155.0 1155 1155.8 24.9 1155 1155.0 16.6 200
tai_20×20_2 1241 1241 1241  1241 1241.0 1242 1245.2 56.8 1241 1241.0 23.5 200
tai_20×20_3 1257 1257 1257  1257 1257.0 1257 1257.0 5.5 1257 1257.0 19.6 200
tai_20×20_4 1248 1248 1248  1248 1248.0 1248 1248.0 4.0 1248 1248.0 19.6 200
tai_20×20_5 1256 1256 1256  1256 1256.0 1256 1256.0 7.9 1256 1256.0 19.6 200
tai_20×20_6 1204 1204 1204  1204 1204.0 1204 1204.1 12.0 1204 1204.0 19.6 200
tai_20×20_7 1294 1294 1294  1294 1294.0 1294 1296.6 48.5 1294 1294.0 25.4 200
tai_20×20_8 1169 1177 1171  1169 1170.3 1173 1177.6 80.9 1169 1170.0 50.9 200
tai_20×20_9 1289 1289 1289  1289 1289.0 1289 1289.0 2.7 1289 1289.0 78.2 200
tai_20×20_10 1241 1241 1241  1241 1241.0 1241 1241.0 1.2 1241 1241.0 78.2 200
Average gap  0.068% 0.017%  0.000% 0.011% 0.042% 0.134%  0.000% 0.008%   
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Table 6.3 Results of the test problems proposed by Brucker et al. (1997) 
 Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Liaw GA-Prins 
 Best Average Best Average t Best Average t limit(s)

j5-per0-0 1042 1042 1050  1042 1042.0 1042 1042.0 6.4 1042 1042.0 6.3 125
j5-per0-1 1054 1054 1054  1054 1054.0 1054 1054.0 0.0 1054 1054.0 1.3 125
j5-per0-2 1063 1063 1085  1063 1063.0 1063 1063.0 24.6 1063 1063.0 24.6 125
j5-per10-0 1004 1004 1004  1004 1004.0 1004 1004.0 34.9 1004 1004.0 34.8 125
j5-per10-1 1002 1002 1002  1002 1002.0 1002 1002.0 25.3 1002 1002.0 25.2 125
j5-per10-2 1006 1006 1006  1006 1006.0 1006 1006.0 25.2 1006 1006.0 25.1 125
j5-per20-0 1000 1000 1004  1000 1000.0 1000 1000.0 19.1 1000 1000.0 17.6 125
j5-per20-1 1000 1000 1000  1000 1000.0 1000 1000.0 1.0 1000 1000.0 2.7 125
j5-per20-2 1012 1012 1012  1012 1012.0 1012 1012.0 0.0 1012 1012.0 0.0 125
Average gap 0.000% 0.360%  0.000% 0.000% 0.000% 0.000%  0.000% 0.000%   
j6-per0-0 1056 1056 1080  1056 1056.0 1056 1056.0 37.2 1056 1056.0 42.1 180
j6-per0-1 1045 1045 1045  1045 1049.7 1045 1045.0 51.1 1045 1045.0 59.7 180
j6-per0-2 1063 1063 1079  1063 1063.0 1063 1063.0 70.5 1063 1063.0 72.6 180
j6-per10-0 1005 1005 1016  1005 1005.0 1005 1005.0 41.0 1005 1005.0 45.5 180
j6-per10-1 1021 1021 1036  1021 1021.0 1021 1021.0 20.9 1021 1021.0 21.0 180
j6-per10-2 1012 1012 1012  1012 1012.0 1012 1012.0 8.2 1012 1012.0 8.5 180
j6-per20-0 1000 1000 1018  1000 1003.6 1000 1000.6 98.4 1000 1000.0 77.5 180
j6-per20-1 1000 1000 1000  1000 1000.0 1000 1000.0 0.4 1000 1000.0 1.5 180
j6-per20-2 1000 1000 1001  1000 1000.0 1000 1000.0 29.1 1000 1000.0 30.6 180
Average gap 0.000% 0.916%  0.000% 0.090% 0.000% 0.007%  0.000% 0.000%   
j7-per0-0 (1048) 1063 1071  1048 1052.7 1052 1053.8 94.5 1050 1051.2 104.9 245
j7-per 0-1 1055 1058 1076  1057 1057.8 1055 1061.0 126.8 1057 1058.8 155.8 245
j7-per 0-2 1056 1059 1082  1058 1059.0 1056 1059.7 97.1 1056 1057.0 124.5 245
j7-per10-0 1013 1022 1036  1013 1016.7 1016 1018.3 103.3 1013 1016.1 183.8 245
j7-per10-1 1000 1014 1010  1000 1002.5 1000 1000.0 76.6 1000 1000.0 81.9 245
j7-per10-2 1011 1020 1035  1016 1019.4 1013 1019.5 71.4 1013 1014.9 125.6 245
j7-per20-0 1000 1000 1000  1000 1000.0 1000 1000.0 0.3 1000 1000.0 1.9 245
j7-per20-1 1005 1011 1030  1005 1007.6 1007 1008.1 148.7 1007 1008.0 143.2 245
j7-per20-2 1003 1010 1020  1003 1007.3 1003 1004.1 134.1 1003 1004.7 160.9 245
Average gap 0.719% 1.830%  0.097% 0.346% 0.119% 0.360%  0.086% 0.211%   
j8-per0-1 (1039) - 1075  1039 1048.7 1045 1051.7 147.4 1039 1043.3 220.8 320
j8-per 0-2 (1052) - 1073  1052 1057.1 1052 1058.3 244.6 1052 1053.6 271.9 320
j8-per10-0 (1020) - 1053  1020 1026.9 1024 1033.1 181.6 1020 1026.1 205.0 320
j8-per10-1 (1002)* - 1029  1004 1012.4 1008 1018.3 70.7 1002 1007.6 202.2 320
j8-per10-2 (1002)* - 1027  1009 1013.7 1002 1012.5 137.8 1002 1006.0 162.8 320
j8-per20-0 1000 - 1015  1000 1001.0 1000 1000.9 158.9 1000 1000.6 136.9 320
j8-per20-1 1000 - 1000  1000 1000.0 1000 1000.0 1.3 1000 1000.0 4.5 320
j8-per20-2 1000 - 1014  1000 1000.6 1000 1003.2 97.9 1000 1000.0 105.8 320
Average gap  2.098%  0.112% 0.555% 0.196% 0.771%  0.000% 0.271%   

*The BKS is found by one of our PSOs. 
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Table 6.4 shows the results of the test problems proposed by Guéret and Prins 

(1999). In this problem set, PSO-mP-ASG2 performs better than other algorithms and 

obtained 16 new best-known solutions. The PSO hybridized with beam search does 

not perform well, because the instances from (Guéret & Prins, 1999) are designed to 

maximize a new lower bound greater than the traditional one. Therefore, the 

traditional lower bound calculated by equations (5.6), (5.7), and (5.8) is hard to 

discriminate in the good and bad partial solutions in this problem set (Guéret & Prins, 

1999). 

Consequently, better solutions can be obtained when the PSO performs much 

more iterations instead of spending computation time on an inefficient beam search. 

However, it is evident that both the PSOs outperform Beam-ACO in this problem set. 
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Table 6.4 Results of the test problems proposed by Guéret and Prins (1999) 
Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Prins

Best Average Best Average t Best Average t limit(s)
gp03-01 1168 1168 1168 1168.0 1168 1168.0 0.0 1168 1168.0 0.0 45
gp03-02 1170 1170 1170 1170.0 1170 1170.0 0.0 1170 1170.0 0.0 45
gp03-03 1168 1168 1168 1168.0 1168 1168.0 0.0 1168 1168.0 0.0 45
gp03-04 1166 1166 1166 1166.0 1166 1166.0 0.0 1166 1166.0 0.0 45
gp03-05 1170 1170 1170 1170.0 1170 1170.0 0.0 1170 1170.0 0.0 45
gp03-06 1169 1169 1169 1169.0 1169 1169.0 0.0 1169 1169.0 0.0 45
gp03-07 1165 1165 1165 1165.0 1165 1165.0 0.0 1165 1165.0 0.0 45
gp03-08 1167 1167 1167 1167.0 1167 1167.0 0.0 1167 1167.0 0.0 45
gp03-09 1162 1162 1162 1162.0 1162 1162.0 0.0 1162 1162.0 0.0 45
gp03-10 1165 1165 1165 1165.0 1165 1165.0 0.0 1165 1165.0 0.0 45
Average gap 0.000% 0.000% 0.000% 0.000% 0.000%  0.000% 0.000%   
gp04-01 1281 1281 1281 1281.0 1281 1281.0 0.0 1281 1281.0 0.0 80
gp04-02 1270 1270 1270 1270.0 1270 1270.0 0.3 1270 1270.0 0.3 80
gp04-03 1288 1288 1288 1288.0 1288 1288.0 0.3 1288 1288.0 0.3 80
gp04-04 1261 1261 1261 1261.0 1261 1261.0 30.0 1261 1261.0 30.0 80
gp04-05 1289 1289 1289 1289.0 1289 1289.0 30.0 1289 1289.0 30.0 80
gp04-06 1269 1269 1269 1269.0 1269 1269.0 30.0 1269 1269.0 30.0 80
gp04-07 1267 1267 1267 1267.0 1267 1267.0 30.2 1267 1267.0 30.2 80
gp04-08 1259 1259 1259 1259.0 1259 1259.0 22.7 1259 1259.0 30.2 80
gp04-09 1280 1280 1280 1280.0 1280 1280.0 2.9 1280 1280.0 2.9 80
gp04-10 1263 1263 1263 1263.0 1263 1263.0 2.9 1263 1263.0 2.9 80
Average gap 0.000% 0.000% 0.000% 0.000% 0.000%  0.000% 0.000%   
gp05-01 1245 1245 1245 1245.0 1245 1245.0 0.0 1245 1245.0 0.2 125
gp05-02 1247 1247 1247 1247.0 1247 1247.0 0.0 1247 1247.0 0.0 125
gp05-03 1265 1265 1265 1265.0 1265 1265.0 0.0 1265 1265.0 0.1 125
gp05-04 1258 1258 1258 1258.6 1258 1258.0 104.6 1258 1258.0 105.2 125
gp05-05 1280 1280 1280 1280.0 1280 1280.0 10.5 1280 1280.0 31.5 125
gp05-06 1269 1269 1269 1269.1 1269 1269.0 18.0 1269 1269.0 18.0 125
gp05-07 1269 1269 1269 1269.0 1269 1269.0 0.0 1269 1269.0 2.7 125
gp05-08 1287 1287 1287 1287.0 1287 1287.0 0.0 1287 1287.0 0.0 125
gp05-09 1262 1262 1262 1262.0 1262 1262.0 22.0 1262 1262.0 22.0 125
gp05-10 1254 1254 1254 1254.6 1254 1254.0 63.0 1254 1254.0 63.5 125
Average gap 0.000% 0.000% 0.010% 0.000% 0.000%  0.000% 0.000%   
gp06-01 1264 1264 1264 1264.7 1264 1264.0 176.3 1264 1264.0 176.1 180
gp06-02 1285 1285 1285 1285.7 1285 1285.0 140.0 1285 1285.0 147.8 180
gp06-03 (1255) 1255 1255 1255.0 1255 1255.2 166.7 1255 1255.6 133.1 180
gp06-04 1275 1275 1275 1275.0 1275 1275.0 60.1 1275 1275.0 60.8 180
gp06-05 1299 1300 1299 1299.2 1299 1299.0 159.6 1299 1299.0 159.6 180
gp06-06 1284 1284 1284 1284.0 1284 1284.0 96.6 1284 1284.0 109.4 180
gp06-07 (1290) 1290 1290 1290.0 1290 1290.0 0.4 1290 1290.0 1.6 180
gp06-08 1265 1266 1265 1265.2 1265 1265.2 151.9 1265 1265.5 134.3 180
gp06-09 (1243) 1243 1243 1243.0 1243 1243.0 141.6 1243 1243.1 156.5 180
gp06-10 (1254) 1254 1254 1254.0 1254 1254.0 80.5 1254 1254.0 79.8 180
Average gap 0.016% 0.000% 0.013% 0.000% 0.003%  0.000% 0.009%   
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Table 6.4 (continued) 
 Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time Problem BKS GA-Prins 
 Best Average Best Average t Best Average t limit(s)

gp07-01 (1159) 1159  1159 1159.0 1159 1159.0 180.5 1159 1159.3 223.7 245
gp07-02 (1185) 1185  1185 1185.0 1185 1185.0 0.3 1185 1185.0 1.2 245
gp07-03 1237 1237  1237 1237.0 1237 1237.0 3.9 1237 1237.0 9.5 245
gp07-04 (1167) 1167  1167 1167.0 1167 1167.0 188.2 1167 1167.0 160.4 245
gp07-05 1157 1157  1157 1157.0 1157 1157.0 130.3 1157 1157.0 139.1 245
gp07-06 (1193) 1193  1193 1193.9 1193 1193.0 153.1 1193 1193.1 198.6 245
gp07-07 1185 1185  1185 1185.1 1185 1185.0 0.4 1185 1185.0 1.4 245
gp07-08 (1180) 1181  1180 1181.4 1180 1180.0 139.1 1180 1180.0 139.4 245
gp07-09 (1220) 1220  1220 1220.1 1220 1220.0 123.6 1220 1220.0 143.9 245
gp07-10 1270 1270  1270 1270.1 1270 1270.0 0.1 1270 1270.0 0.5 245
Average gap 0.008%  0.000% 0.020% 0.000% 0.000%  0.000% 0.003%   
gp08-01 1130 1160  1130 1132.4 1130 1143.5 204.3 1133 1140.3 277.3 320
gp08-02 (1135) 1136  1135 1136.1 1135 1135.0 192.5 1135 1135.4 258.3 320
gp08-03 1110 1111  1111 1113.7 1110 1110.8 229.0 1110 1114.0 240.3 320
gp08-04 (1153)* 1168  1154 1156.0 1153 1153.0 306.3 1153 1153.2 308.1 320
gp08-05 1218 1218  1219 1219.8 1218 1218.0 297.2 1218 1218.9 56.6 320
gp08-06 (1115)* 1128  1116 1123.2 1115 1117.2 224.7 1115 1126.9 249.6 320
gp08-07 (1126) 1128  1126 1134.6 1126 1127.7 288.6 1126 1129.8 287.3 320
gp08-08 (1148) 1148  1148 1149.0 1148 1148.0 133.1 1148 1148.0 179.3 320
gp08-09 1114 1120  1117 1119.0 1114 1114.0 156.0 1114 1114.3 223.6 320
gp08-10 (1161) 1161  1161 1161.5 1161 1161.1 289.3 1161 1161.4 217.1 320
Average gap 0.602%  0.062% 0.311% 0.000% 0.161%  0.027% 0.284%   
gp09-01 (1129)* 1143  1135 1142.8 1129 1129.4 363.0 1129 1133.2 376.3 405
gp09-02 (1110)* 1114  1112 1113.7 1110 1111.8 284.2 1112 1114.1 335.9 405
gp09-03 (1116)* 1118  1118 1120.4 1116 1117.0 235.2 1117 1117.0 313.4 405
gp09-04 1130 1131  1130 1140.0 1130 1130.7 355.5 1130 1135.8 328.7 405
gp09-05 1180 1180  1180 1180.5 1180 1180.0 6.6 1180 1180.0 22.3 405
gp09-06 (1093) 1117  1093 1195.6 1093 1095.1 319.0 1093 1094.1 277.2 405
gp09-07 (1091)* 1119  1097 1101.4 1094 1096.7 344.1 1091 1096.5 376.4 405
gp09-08 (1106) 1110  1106 1113.7 1108 1108.0 186.8 1108 1108.3 334.6 405
gp09-09 (1123)* 1132  1127 1132.5 1123 1124.6 219.1 1126 1126.5 358.6 405
gp09-10 (1112)* 1130  1120 1126.3 1112 1124.8 214.1 1122 1126.5 297.7 405
Average gap 0.941%  0.252% 1.601% 0.046% 0.252%  0.162% 0.374%   
gp10-01 (1093)* 1113  1099 1109.0 1093 1097.4 396.3 1093 1096.8 455.7 500
gp10-02 (1097)* 1120  1101 1107.4 1097 1097.0 348.7 1097 1099.1 382.7 500
gp10-03 (1081) 1101  1082 1098.0 1081 1087.1 404.6 1084 1090.3 450.8 500
gp10-04 (1083)* 1090  1093 1096.6 1086 1089.1 294.0 1083 1092.1 371.8 500
gp10-05 (1073)* 1094  1083 1092.4 1073 1086.5 288.1 1082 1092.2 314.1 500
gp10-06 (1071)* 1074  1088 1104.6 1071 1071.0 148.5 1071 1074.3 289.7 500
gp10-07 (1080)* 1083  1084 1091.5 1080 1081.0 133.0 1081 1081.1 167.4 500
gp10-08 (1095)* 1098  1099 1104.8 1095 1097.3 358.8 1097 1097.6 324.5 500
gp10-09 (1115)* 1121  1121 1128.7 1115 1117.8 357.5 1123 1127.0 428.2 500
gp10-10 (1092) 1095  1097 1106.7 1092 1092.2 479.3 1092 1094.0 487.9 500
Average gap 1.002%  0.618% 1.470% 0.028% 0.335%  0.211% 0.590%   

*The BKS is found by one of our PSOs. 
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6.7 Concluding Remarks 

We have presented a PSO for open shop scheduling problems in this chapter. We 

modified the representation of particle position, particle movement, and particle 

velocity to better suit it for OSSP. We also proposed a new decoding operator 

(mP-ASG), which decodes particle positions into parameterized active schedules. 

Furthermore, we added fathoming constraints to mP-ASG and then hybridized it with 

beam search. The computational results show that our PSO can obtain many new 

best-known solutions of the test problems. 

For further research, we will try to apply our PSO to other shop scheduling 

problems. In addition, further research topics include how to modify the particle 

position representation, particle movement, and particle velocity to better suit them to 

the problem. Table 6.5 shows the summary of the PSO for OSSP. 
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Table 6.5 Summary of the PSO for OSSP 

  Components The concept of this components 

1 
Particle Position 
Representation 

Priority weights 
We represent the preference-list by 
priorities, which can save computation 
time when we implement insert operator. 

Particle Velocity Inertia 

2 
Particle Movement Insert operator 

Because there is no preference constraint 
between the operations of a job, if we 
swap two operations at the same time, the 
new solution will be much different than 
the original one and lose the correlation 
property. Therefore, we implement the 
insert operator, just move one operation at 
a time, and earn more correlation property.

3 
Decoding 
Operator 

G&T algorithm 
mP-ASG 
Beam search 

The mP-ASG can much restrict the search 
area but not exclude the optimal solution.

4 Other Strategies Diversification 

The diversification strategy can prevent 
particles rapped in local optima. 
We do not implement the local search 
strategy, because the neighborhood size of 
OSSP is huge and the local search strategy 
is in efficient. 
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6.8 Appendix 

A pseudo code of the PSO for OSSP is given below: 

//↓initializing 

Initialize a population of particles with random positions. 

for each particle k do 

Decode kX  (the position of particle k) into a schedule kS . 

Set the kth pbest solution ( kpbest ) equal to kS , kpbest ← kS . 

end for  

Set gbest solution equal to the best kpbest . 

//↑initializing 

repeat 

Update velocities according to Figure 6.1. 

for each particle k do 

Move particle k according to Figure 6.2. 

Decode kX  into kS . 

Update pbest solutions and gbest solution according to Figure 5.6. 

end for 

until maximum CPU time limit is reached. 
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

7.1 Conclusions 

The original PSO is used to solve continuous optimization problems. Due to 

solution spaces of discrete optimization problems are discrete, we have to develop 

new PSO designs to better suit it for discrete optimization problems. The contribution 

of this research is that we proposed several PSO designs for discrete optimization 

problems. The new PSO designs are better suit for discrete optimization problems, 

and differ from the original PSO. In this research, we separated a PSO design into five 

parts: particle position representation, particle velocity, particle movement, decoding 

operator, and other search strategies. We can develop a new PSO design by redesign 

these five parts. 

In chapter 4, we presented a binary PSO for the multidimensional 0-1 knapsack 

problem (MKP). This PSO design focuses on the concept of building blocks, which is 

the basis of another evolution computation algorithm—genetic algorithm. The particle 

velocity is represented by blocks. Particles obtain new blocks from gbest and pbest 

solutions. Moreover, the selection strategy can recognize superior blocks and and 

accumulate the superior blocks in the swarm. The computational results show that the 

concept of building blocks works in PSO design. Therefore, we can design other new 

PSOs based on the concept of building blocks. 

In chapter 5, we presented a PSO for the job shop scheduling problem (JSSP). 

This PSO design focuses on the particle position representation. In this PSO, the 

particle position is represented by preference list-based representation, which has 

more Lamarckian than the original PSO design—priority based representation. We 
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also tested and compared these two particle position representations. The 

computational results show that the preference list-based representation we proposed 

outperforms the priority based representation. It also demonstrated that the particle 

position representation with more Lamarckian performs better. Therefore, we can 

design new particle position representation based on Lamarckian property in further 

researches. 

In chapter 6, we presented a PSO for the open shop scheduling problem (OSSP). 

This PSO design focuses on comparing decoding operators. In this PSO, we 

implemented a modified parameterized active schedule generation algorithm 

(mP-ASG), which decodes particle positions into parameterized active schedules. In 

mP-ASG, we can reduce or increase the search area between non-delay schedules and 

active schedules by controlling the maximum delay time allowed. Furthermore, we 

added fathoming constraints to mP-ASG and then hybridized it with beam search. The 

computational results show that a decoding operator, which can map the positions to 

the solution space in a smaller region but not excluding the optimal solution, is 

performs better.  

7.2 Future Works 

There are two aspects for further research: (1) new PSO designs, and (2) other 

applications. We described some principles for new PSO designs in chapter 3. In the 

further research, we can develop new PSO designs by these principles and find out 

new design principles at the same time. 

On the other hand, we can also implement the new PSO designs to other 

combinatorial optimization problems for example: assignment problems, network 

problems, multiobject combinatorial optimization problems…etc.  
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