A Sudy on Particle Swarm Optimization for

Discrete Optimization Problems

A Sudy on Particle Swarm Optimization for Discrete
Optimization Problems

Student Cheng-Yu Hsu
Advisor Dr. David Yung-Jye Sha

Dr. Wen-Chih Chen

A Dissertation
Submitted to Department of ‘industrial-Engineering and Management
College of Management
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Industrial Engineering and Managemen
May 2007

Hsinchu, Taiwan, Republic of China

(Particle Swarm Optimization, PSO)

1995 PSO PSO
PSO
PSO
(Multidimensional 0-1 Knapsack Problem, MKP) (Job Shop
Scheduling Problem JSSP) (Open Shop Scheduling Problem,
OSSP) PSO MKP PSO
(building blocks) JSSP PSO
(preference-list) (swap operator)
OSSP PSO (priority)
(insert operator) MKP PSO
(local search) JSSP PSO (tabu search)
OSSP PSO (beam search)

PSO

A Study on Particle Swarm Optimization for Discrete

Optimization Problems
Student Cheng-Yu Hsu Advisor Dr. David Yung-Jye Sha

Dr. Wen-Chih Chen

Department of Industrial Engineering and Management
National Chiao Tung University

ABSTRACT

Particle Swarm Optimization (PSO) is a popul ation-based optimization algorithm,
which was developed in 1995. The origina PSO is used to solve continuous
optimization problems. Due to solution spaces of discrete optimization problems are
discrete, we have to modify the particle position representation, particle movement,
and particle velocity to better suit PSO for discrete optimization problems. The
contribution of this research is that we proposed severa PSO designs for discrete
optimization problems. The new PSQ!designs are better suit for discrete optimization
problems, and differ from the original PSO.

In this thesis, we propose:three PSOs for three discrete optimization problems
respectively: the multidimensional ~0-1 ‘knapsack- problem (MKP), the job shop
scheduling problem (JSSP) and the open shop scheduling problem (OSSP). In the
PSO for MKP, the particle position is represented by binary variables, and the particle
movement are based on the concept of building blocks. In the PSO for JSSP, we
modified the particle position representation using preference-lists and the particle
movement using a swap operator. In the PSO for OSSP, we modified the particle
position representation using priorities and the particle movement using an insert
operator. Furthermore, we hybridized the PSO for MKP with alocal search procedure,
the PSO for JSSP with tabu search (TS), and the PSO for OSSP with beam search
(BS). The computational results show that our PSOs are better than other traditional

metaheuristics.

Keywords: Particle swarm optimization, Multidimensional 0-1 Knapsack Problem,

Job shop scheduling problem, Open shop scheduling problem, Metaheuristic

CONTENTS

ABST RA CT e e n e nr e sn e e n e neeneas
CONTENTS ettt r e s e b e e s e e ne e smreeeneesnneeaneesnneens
LIST OF FIGURES.ot
LIST OF TABLES.....cc ettt s
CHAPTER 1 INTRODUCTION ...ttt 1
1.1 Resear Ch M OtIVAtiONSifitrieeeeeereessiniie e sne e 1
1.2 ResearCh ODJECHIVES......... o iiiieciieese s sfhense i i eeseeeee e seeeeesseesteseesseeseesneens 1
1.3 0rganiZation........coceeuereeesaiieeemsin e Tt st ettt sttt sre e e 2
CHAPTER 2LITERATURE REVIEW ... e 3
2.1 Particle Swarm OptimiZationcccoceeierienieniere e s 3
2.2 Multidimensional 0-1 Knapsack Problem ..., 3
2.3 .Job Shop Scheduling Problem ... 9
2.4 Open Shop Scheduling Problem ... 11

CHAPTER 3 DEVELOPING A PARTICLE SWARM OPTIMIZATION FOR A

DISCRETE OPTIMIZATION PROBLEMcccociviieecieeciee 13
3.1 Particle POSition REPreSeNtationccooeeieriereerieeiee e 13
3.2 Particle Velocity and Particle Movement..........ccooeevienenre e 14
CRCHDI= oo lo [1alo M@ o< o=\ (o] USRS 15

3.4 0ther SEarCh SIralEQIES......cocuereeerieeie ettt e e sre e e 15

3.5TheProcessto Develop a New Particle Swarm Optimizationccceeenue. 16

CHAPTER 4 A DISCRETE BINARY PARTICLE SWARM OPTIMIZATION
FOR THE MULTIDIMENSIONAL 0-1 KNAPSACK PROBLEM

.. 18
4.1 Particle POSItion REPreSeNtationccoveeieriieneerieeiee e 19
4.2 PArticle VEIOCITYeeeieeeieeie ettt st st ne e 20
4.3 PartiCcle MOVEMENT ...ttt 21
A A REPAIN OPENALONeeueiieeieeiesiee e rte e steete e seeeste s e saeeseesseesbeesesseesbeesesneesseensens 22
4.5 The DIver Sification SIrategy.......ccoceeeererrieieereeie e 24
4.6 The SElECLION SIFALEY ...veeovereeerieesrsrmnans e seesieesseseesseeseesseessessseseessessesseessesnsens 25
4.7 L0Cal SEAICN ... i i sl S 26
4.8 Computational RESUITS.... o .. i it 28
4.9 Concluding REMAIKS.......... i it ii et 31
V(0N o] 0= o SR PRRPRRTRN 33

CHAPTER 5 A PARTICLE SWARM OPTIMIZATION FOR THE JOB SHOP

SCHEDULING PROBLEMcooiiiieee e 34
5.1 Particle Position RePreSentationccooeeeieenenie e 34
5.2 PartiCcle VEIOCITY......c.coiiii et 44
5.3 Particle MOVEMENT ..o 45
5.4The DiverSIfiCation STtyccceererierreerieriiesee e rie s sree st see e sreesae e 50
5.5 L0CAl SEAICH ...t e 51
5.6 Computational RESUILS........coiiiiiieee et 53
5.7 Concluding REMAIKS.......couiiieiiiieieee et 62

BB APPENAIX 1ttt ettt b e e bt e e e nre e 64

CHAPTER 6 A PARTICLE SWARM OPTIMIZATION FOR THE OPEN SHOP

SCHEDULING PROBLEMcocoiiiiiiriesese e 65

6.1 Particle Position RePreSentationcooeeeieenenie e 65
6.2 PartiCle VEIOCITY.....cc.coiiie et 68
6.3 PartiCle MOVEMENTooieee et 70
6.4 DECOUING OPEI ALOTS.....eiueiiteeriieiesiiesieeiesieestessee st e s e e aesseesbeetesseesseebesneesseensesneens 72
6.4.1 Decoding Operator 1 (A-ND)ccceoieieeiesieie e see e 75
6.4.2 Decoding Operator 2 (MP-ASG)cccecereeiieeeeseesieeeeseeseesee e e essesaesseees 75
6.4.3 Decoding Operator 3 (MP-ASG2)ccceeeeieeieereerieeieeseeseeee e e essesaesseees 77
6.4.4 Decoding Operator 4 (MP-ASG2+BS)ccccoeviiveieceese e 79
6.5 The Diver SIfiCation STtyccceererrirrerrieriesie ettt see e 8l
6.6 Computational RESUILS.......a0 oo smms i s cosisieeeeseeesieeeesseeseesseeseeseesseeseessesseess 8l
6.6.1 Comparison of Decoding OPEralOrS:.. . .. vt eeereereeeeeeeesreeseeseeseesseeaesseenees 82
6.6.2 Comparison with Other:M etah UIIStICSccoecveeveeeieceece e 85
6.7 Concluding REMArKS.......... it ettt si et 93
B.8 APPENAIX 1ttt ettt b e e b et neenre et 95
CHAPTER 7 CONCLUSION AND FUTURE WORKccccviirieeeeeee e 96
7.1 CONCIUSIONS ...ttt et e e e e e e e e e e e e e e e ens 96
T2 FULUI @ WOKS .o e e e e e e e e e e e e e 97
R O BNCES ... 98

VI

LIST OF FIGURES

Figure 2.1 Therelationship of semi-active, active, and nondelay schedules......... 10
Figure 2.2 The process of particle swarm optimization.ccccocevveeiesienennenens 5
Figure 3.1 The processto develop a new particle swarm optimization 17
Figure 4.1 Pseudo code of updating VEIOCITIES.cccoeeeieiieninieeeee e 21
Figure 4.2 Pseudo code of particle movement. ... 22
Figure 4.3 Pseudo code Of repair OPEr atorccccoveeeereerienieeseesie e 23
Figure 4.4 Psudo code of updating pbest solutions.ccccecineiiincnnenneseeneee, 24
Figure 4.5 Pseudo code oOf SEleCtion Strategy........ccovvrrereerenieneeniesee e 25
Figure 4.6 Pseudo code of local searchiprocedure.coeveveieeieeieencncneneens 27
Figure5.1TheG& T algorithmi.... s i i st 36
Figure 5.2 An illustration of decoding aparticle pesition into a schedule............ 37
Figure 5.3 The pseudo code of updating VEIOGILIES............ccccvverieieeiieieriiesecenne 45
Figure5.4 An instance of particle movement. ... 48
Figure 5.5 Pseudo code of particle movement. ... 49

Figure 5.6 Pseudo code of updating pbest solution and gbest solution with

diversification Strat@gy.ccceveeeereeriee e 51
Figure 5.7 An illustration of neighborhoodsin tabu search..........cccoceiiiiiiiennens 53
Figure 6.1 The pseudo code of updating VEIOCITIES..........cceveriineinieniieneeseeee e 70
Figure 6.2 The pseudo code of particle movement..........ccocvveveiiinienenneneeneenn, 72
Figure6.3The G& T algorithm for OSSP. ... 74
Figure 6.4 Parameterized active SChedUIES.ccovviiiienienieneee e 76
Figure 6.5 The pseudo code of the decoding operator mP-ASG2+BS................... 80

VI

LIST OF TABLES

Table 2.1 References of PSO for discrete optimization problems...........cccoceveneee. 6
Table 4.1 Computational FeSUITS.........cooeeiiri e 30

Table 4.2 The per centage gaps between DPSO+L S and Fix+LP+L S (Vasquez and

VIMONT, 2005) ...veoieiiisiiesie et sb et neesre e 31
Table 4.3 Summary of the DPSO for MKP ..o 32
Table 5.1 A 4x4 job shop problem example.........cccoooveieiiicce e 35
Table 5.2 Computational result of FT and LA test problems..........cccoeeiviienenne 57
Table 5.3 Computation time of FT and LA test problems (in CPU seconds). 59
Table 5.4 Computational result of TA test problems. ..o e 60

Table 5.5 Comparison with TSSB (Pezzella & Merelli, 2000) on TA test problems.

Table 5.6 Summary of the HPSO fOr-dSSP....o.....iciiiieee e 63

Table 6.1(a) Computational results of four decoding operators with mutation

(0] 01C = o SRR P TP 84
Table 6.2 Results of the test problems proposed by Taillard (1993)..........cccceeeee 87
Table 6.3 Results of the test problems proposed by Brucker et al. (1997)............. 89
Table 6.4 Results of the test problems proposed by Guéret and Prins (1999)......91
Table 6.5 Summary of the PSO for OSSP........cooiiiieiee s 9

VIII

CHAPTER 1

INTRODUCTION

1.1 Research Motivations

In an optimization problem, limited resources need to be allocated for maximum
profit. When an optimization problem has discrete solution space, solving such a
problem amounts to making discrete choice such that an optimal solution is found
among a finite or a countable infinite number of alternatives. Such problems are
called discrete optimization problems. Typicaly, the task is complex, limiting the
practical utility of combinatorial, mathematical programming and other analytical

methods in solving discrete optimization problems effectively.

To find exact solutions of discrete optimization:problems a branch-and-bound or
dynamic programming algorithm is often used. However, many discrete optimization
problems are NP-hard, which méans that the problem cannot be exactly solved in a
reasonable computation time. Using problem-specific information sometimes reduces
search space, even though the problem is still difficult to solve exactly. Therefore,
heuristic algorithms are developed to obtain the approximate optimal solution.
Metaheuristic is one of the most popular and the most efficient method to obtain the
approximate optimal solution. Among the meta-heuristics, particle swarm
optimization (PSO) is new and extensively implemented in recent years. However, the
original intent of PSO is to solve continuous optimization problems, and PSO

methods that work well for discrete optimization problems are still scarce.

1.2 Research Objectives

The objective of this work is to development PSOs for three discrete

optimization problems. the multidimensional 0-1 knapsack problem (MKP), the job

shop scheduling problem (JSSP) and the open shop scheduling problem (OSSP).

Since the original intent of PSO is to solve continuous optimization problems,
we have to modify the original PSO when we implement PSO to a discrete
optimization problem. PSO can be separated several parts to discuss. position
representation, particle velocity, and particle movement. We will develop various PSO
designs in this work. On the other hand, the PSO developed in this work can be an

example of PSO design for other discrete optimization problems.

1.3 Organization

The organization of the remaining chapters for this research is as follows.
Chapter 2 reviews the literatures of the background of the multidimensional 0-1
knapsack problem, shop scheduling. problems-and. PSO. Chapter 3 infers the possibly
success factors of PSO design. -Chapter-4-shows a PSO for MKP, chapter 5 shows a
PSO for JSSP, and chapter 6 shows-a.PSO for OSSP. In chapter 7 we draw our

conclusion and indicate the direction for further research.

CHAPTER 2

LITERATURE REVIEW

2.1 Particle Swarm Optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart
(1995). The origina intention was to simulate the movement of organisms in a bird
flock or fish school, and it has since been introduced as an optimization technique.
PSO is a population-based optimization agorithm. Each particle is an individual, and
the swarm is composed of particles. The relationship between swarm and particlesin
PSO is similar to the relationship between population and chromosomes in genetic

algorithm (GA).

In PSO, the problem solution space:is formulated as a search space. Each
position in the search space is a correlated solution of the problem. For example,
when PSO is applied to a continuous optimization problem with 4 variables, the
solution space can be formulated as a d dimensional search space, and the value of ;™
variable is formulated as the position on /" dimension. Particles cooperate to find the
best position (best solution) in the search space (solution space). The particle
movement is mainly affected by three factors: inertia, particle best position (pbest),
and global best position (gbest). The inertia is the velocity of the particle in the latest
iteration, and it can be controlled by inertia weight. The intention of the inertiais to
prevent particles from moving back to their current positions. The pbest position isthe
best solution found by each particle itself so far, and each particle has its own pbest

position. The ghest position is the best solution found by the whole swarm so far.

Each particle moves according to its velocity. The velocity is randomly generated

toward pbest and gbest positions. For each particle £ and dimension j, the velocity and

3

position of particles can be updated by the following equations:
vy € WXV, +c; Xrand, X (pbest,; — x,;) + ¢, Xrand, X (gbest , — x;;) (2.1)

Xig € Xy TV (2.2)

In equation (2.1) and equation (2.2), v, is the velocity of particle £ on

The

max *

dimension j, which value is limited to the parameter V,,, , that is, [v,| <7,

x,; 1S the position of particle £ on dimension j, which vaue is limited to the

parameter X

max» that is, ‘x,g,‘ < X - Thepbest,; is the pbest position of particle k
on dimension j, and gbest; is the gbest position of the swarm on dimension ;. The
inertia weight w was first proposed by. Shi_and Eberhart (1998a, 1998b), and it is
used to control exploration and.exploitation: The particles maintain high velocities
with a larger w, and low velocities with'a smaller w. A larger w can prevent
particles from becoming trapped. in local-optima, and a smaler w encourages
particles exploiting the same search space area. The constants ¢; and ¢, areusedto
decide whether particles prefer moving toward a pbest position or gbest position. The

rand, and rand, are random variables between 0 and 1. The process of PSO is

shown as Figure 2.1.

Initialize a population of particles with random positions and velocities on
d dimensions in the search space.

repeat
for each particle k£ do
Update the velocity of particle &, according to equation (1).
Update the position of particle &, according to equation (2).

Map the position of particle k£ in the solution space and evaluate
its fitness value according to the desired optimization fitness
function.

Update pbest and gbest position if necessary.
end for

until acriterion is not met, usually a sufficient good fitness or a maximum
number of iterations.

Figure 2.1 The process of particle swarm optimization.

The origina PSO is suited to a continuous solution space. Therefore, the
applications of PSO for discrete optimization problems are still scarce. Table 2.1

shows the references of PSO for discrete optimization problems.

Table 2.1 References of PSO for discrete optimization problems

Problem

References

Binary Unconstrained Optimization

Constrained layout optimization

Multi-objective task allocation

Task assignment problem

Traveling salesman problem

Vehicle routing problem

Kennedy & Eberhart (1997)
A first discrete version of PSO for
binary variables.

Rastegar et al. (2004)
Based on Kennedy & Eberhart
(1997), hybridized with learning
automata.

Li (2004)
Represent alayout problem by
continuous variables.

Yin et a. (2007a)
Particle represented by integer
variables, which indicates the index
of the alocated processor for each
module.

Salman et al. (2002)
The positions of tasks are
represented by continuous
variables.

Yin et-al. (2007b)
Hybridized with a parameter-wise
hill-climbing heuristic.

Wang et al. (2003)
Applied sequential ordering
representation and swap operator.
Pang et al. (2004)
Represent the particle position by a
fuzzy matrix.
Zhi et al. (2004)
The particles movement is based on
aone-point Crossove.

Wu et al. (2004)
Applied swap operator and 2-opt
local search.

Table 2.1 (cont.)

Problem

References

Scheduling Problems:

Assembly scheduling

Flow shop scheduling

Job shop scheduling

Multi-objective flexible job-shop
scheduling

Resource constraint project
scheduling

Allahverdi & Al-Anzi (2006)
Hybridized with tabu search.

Lian et a. (2006)
Proposed three crossover operators.
Tasgetiren et a. (2007)
Real number representation and
local search.
Liao et al. (2007)
Represent the operation sequence
by 0-1 variables.

Lian et a. (2006)
Proposed four crossover operators.

Xia & Wu (2005)
Hybridized with simulated
annealing.

Zhang-& Li (2006)

Zhang:& Li (2007)
Compared priority based
representation and sequentia
ordering representation.

2.2 Multidimensional 0-1 Knapsack Problem

The multidimensional 0-1 knapsack problem (MKP) is a well-known NP-hard

problem. The problem can be formulated as:

maximize Zn:pjx,-,
=)
subject to Zn:r,-jxj <b, for i=1...,m,
=)
x;€{0,%}, for j=1...,n,
with p; >0, forallj,
0<r; <b, foralli, j,
b; <in~,, foralli.

J=

Where m is the number of knapsack constraints and » is the number of items.
Each item j requires r; units of resource/consumption in the i™ knapsack and yields
p; units of profit upon inclusion. The goal is to find a subset of items that yields
maximum profit without exceeding resource capacities. The MKP can be seen as a
general model for any kind of binary problems with positive coefficients, and it can be
applied to many problems such as cargo loading, capital budgeting, project selection,
etc. The most recent surveys on MKP can be found in (Fréville, 2004) and (Fréville

and Hanafi, 2005).

The MKP is an NP-hard problem, so it cannot be exactly solved in a reasonable
computation time for large instances. However, metaheuristics can obtain approximate
optimal solutions in a reasonable computation time. For that reason, metaheuristics for
MKP such as simulated annealing (SA) (Drexl, 1988), tabu search (TS) (Glover and
Kochenberger, 1996; Hanafi and Fréville; 1998; Vasquez and Hao, 2001; Vasquez and

Vimont, 2005), and genetic algorithm (GA) (Chu and Beasley, 1998) have arisen

during the last decade.

2.3 Job Shop Scheduling Problem

The job shop scheduling problem (JSSP) is one of the most difficult

combinatorial optimization problems. The JSSP can be briefly stated as follows

(French, 1982; Gen & Cheng, 1997). There are n jobs to be processed through m

machines. We shall suppose that each job must pass through each machine once and

once only. Each job should be processed through the machines in a particular order,

and there are no precedence constraints among different job operations. Each machine

can process only one job a a time, and it cannot be interrupted. Furthermore, the

processing time is fixed and known. In this work, the problem is to find a schedule to

minimize the makespan (C,,), that.is, the time required to complete al jobs. The

constraints in the classical JSSP.islisted as follows (Bagchi, 1999):

No two operations of onejob occur simultaneously.

No pre-emption (i.e. process interruption) of an operation is alowed.
No job is processed twice on the same machine.

Each job is processed to its completion, though there may be waits and
delays between the operations performed.

Jobs may be started at any time; hence no release time exists.

Jobs must wait for the next machine to be available.

No machine may perform more than one operation at atime.

Set-up times for the operations are sequence-independent and included
in processing times.

Thereisonly one of each type of machine.

Machines may be idle within the schedul able period.

Machines are available at any time.

* Thetechnological (usually related to processing) constraints are known

in advance and are immutable.

Solution Space

Semi-active

Active

Non-delay

Figure 2.2 The relationship.of semi-active, active, and nondelay schedules.

In JSSP, there are three distinct schedules can be-identified as follows:

* Semi-active schedul e:inan active schedule, the processing sequenceis
such that no operation ‘can be started any earlier without changing the
operation sequence on a machine.

» Active schedule: in an active schedule, the processing sequence is such
that no operation can be started any earlier without delaying some
other operation.

* Nondelay schedule: in a nondelay schedule, no machine is kept idle at

atime when it could begin processing other operations.

Figure 2.2 shows the relationship of semi-active, active, and nondelay schedules. The
optimal JSSP solution should be an active schedule. To reduce the search solution
space, the tabu search proposed by Sun et al. (1995) searches solutions within the set

of active schedules. Gongalves and Beirdo (1999) proposed the concept of

10

parameterized active schedules. The main purpose of parameterized active schedules
is to reduce the search area but not to exclude the optimal solution. The basic idea of
parameterized active schedules is to control the search area by controlling the delay
times that each operation is allowed. If all of the delay times are equal to zero, the set
of parameterized active schedules is equivalent to non-delay schedules. On the
contrary, if al of the delay times are equal to infinity, the set of parameterized active

schedules is equivalent to the active schedules.

Garey et a. (1976) demonstrated that JSSP is NP-hard, so it cannot be exactly
solved in a reasonable computation time. Many meta-heuristics have been developed
in the last decade to solve JSSP, such as simulated annealing (SA) (Lourenco, 1995),
tabu search (TS) (Sun et a., 1995; Nowicki, & Smutnicki, 1996; Pezzella & Merdlli,
2000), and genetic algorithm (GA), (Bean, 1994, Kobayashi et al., 1995; Wang &

Zheng, 2001; Goncalves et al., 2005).

2.4 Open Shop Scheduling Problem

The open shop scheduling problem (OSSP) can be stated as follows (Gonzalez &
Sahni, 1976): there is a set of n jobs that have to be processed on a set of m machines.
Every job consists of m operations, each of which must be processed on a different
machine for a given process time. The operations of each job can be processed in any
order. At any time, at most one operation can be processed on each machine, and at
most one operation of each job can be processed. In this research, the problem is to
find a non pre-emptive schedule to minimize the makespan (C,.), that is, the time

required to complete all jobs.

The constraints in the classical OSSP are similar to the classical JSSP but there

are no precedence constraints among the same job operations. The OSSP is NP-hard

11

for m>3 (Gonzaez & Sahni, 1976), so it cannot be exactly solved in a reasonable
computation time. Guéret and Prins (1998) proposed two fast heuristics, the results of
which are better than other classical heuristics. Domdorf et al. (2001) proposed a
branch-and-bound method, which is the current best method to solve OSSP exactly.
Many metaheuristic algorithms have been developed in the last decade to solve OSSP,
such as simulated annealing (SA) (Liaw, 1999), tabu search (TS) (Alcaide & Sicilia,
1997; Liaw, 1999), genetic algorithm (GA) (Liaw, 2000; Prins, 2000), ant colony
optimization (ACO) (Blum, 2005), and neural network (NN) (Colak & Agarwal,

2005).

12

CHAPTER 3

DEVELOPING A PARTICLE SWARM OPTIMIZATION

FOR A DISCRETE OPTIMIZATION PROBLEM

The original PSO is suited to a continuous solution space. We have to modify the
original PSO in order to better suit it to discrete optimization problems. In this chapter,
we will discuss the probably success factors to develop a PSO design for a discrete
optimization problem. We separated a PSO design into several parts to discuss:
particle position representation, particle velocity, particle movement, decoding

operator, and other search strategies.

3.1 Particle Position Representation

PSO represents the solutions by particle positions. There are various particle
position representations for a“-discrete ‘optimization problem. How to represent

solutions by particle positions is a research topic when we develop a PSO design.

Generally, the Lamarckian property is used to discriminate between good and
bad representations. The Lamarckian property is that the offspring can inherit
goodness from its parents. For example, if there are six operations to be sorted on a
machine, and we implement the random key representation (Bean, 1994) to represent

a seguence, there are two positions of two particle positions as follows:

position 1: [0.25, 0.27, 0.21, 0.24, 0.26, 0.23]

position 2: [0.22,0.25, 0.23, 0.26, 0.24, 0.21]

Then the operation sequence can be generated by sort the operations according to the

increasing order of their position values as follows:

13

permutation 1: [3 6 415 2]

permutation 2: [6 1 3 5 2 4]

We can find that these two permutations are quite different even though their positions
are very close to each other. This is because the location in the permutation of one
operation depends on the position values of other operations. Hence, the random key

representation has no Lamarckian.

If we directly implement the original PSO design (i.e. the particles search
solutions in a continuous solution space) to a scheduling problem, we can implement
the random key representation to represent a sequence of operations on a machine.
However, the PSO will be more efficient if the particle position representation is with

higher Lamarckian.
3.2 Particle Velocity and Particle Movement

The particle velocity and particle movement are designed for the specific particle
position representation. In each iteration, a particle moves toward pbest and gbest
positions, that is, the next particle position is determined by current position, pbest
position, and gbest position. Furthermore, particle moves according to its velocity and
movement mechanisms. Each particle moves from current position (solution) to one
of the neighborhood positions (solutions). Therefore, the particle movement
mechanism should be designed according the neighborhood structure. The advantage
of neighborhood designs can be estimated by following properties (Mattfeld, 1996):

* Correlation: the solution resulting from a move should not differ much
from the starting one.
* Feadhility: the feasibility of a solution should be preserved by al

moves.

14

* Improvement: al moves in the neighborhood should have a good
chance to improve the objective of a solution.

* Size: the number of moves in the neighborhood should be reasonably
small to avoid excessive computational cost of their evaluation.

* Connectivity: it should be possible to reach the optimal solution from
any starting one by performing a finite number of neighborhood

moves.

We believe that the PSO will be more efficient if we design the particle velocity

and the particle movement mechanisms according to these properties.

3.3 Decoding Operator

Decoding operator is used to decode a particle position into a solution. The
decoding operator is designed according the.specific particle position representation
and the characteristics of the problem.-A-superior-decoding operator can map the
positions to the solution space in+“a smaller-region but not excluding the optimal
solution. In chapter 6, we designed four decoding operators for OSSP. The results

show that the decoding operator design extremely influences the solution quality.

3.4 Other Search Strategies

Diversification Strategy

We can also consider implementing other search strategies. The purpose of most
search strategies is to control the intensification and the diversification. One of the
search strategies is the structure of gbest and pbest solutions. In the original PSO
design, each particle has its own pbest solution and the swam has only one gbest
solution. Eberhart and Shi (2001) show a“local” version of the particle swarm. In this

version, particles have information only of their own and their neighbors’ bests, rather

15

that that of the entire group. Instead of moving toward a kind of stochastic average of
pbest and gbest (the best location of the entire group), particles move toward points
defined by pbest and “lbest,” which is the index of the particle with the best

evaluation in the particle's neighborhood.

In this research, we proposed a diversification strategy. In this strategy, the pbest
solution of each particle is not the best solution found by the particle itself, but one of

the best N solutions found by the swarm so far where N is the size of the swarm.

Selection Strategy

Angeline (1998) proposed a selection strategy, which is performed as follows.
After al the particles move to new positions, select the s best particles. The better
particle set S ={k,,k,,...,k,) replaces the positions and velocities of the other
particles. The addition of this selection strategy should provide the swarm with amore

exploitative search mechanism that should-find-better optima more consistently.

In chapter 4, we modified the method proposed by Angeline (1998) based on the
concept of building blocks where a block is part of a solution, and a good solution
should include some superior blocks. The concept of building blocks is that if we can
precisely find out the superior blocks and accumulate the superior blocks in the

population, the genetic algorithm will perform better (Goldberg, 2002).

3.5 The Processto Develop a New Particle Swarm Optimization

As mentioned above, we separated PSO into several parts. The particle position
representation determines the program data structure and other parts are designed for
the specific particle position representation. Therefore, the first step of developing a
new PSO is to determine the particle position representation. Then design particle

velocity, particle movement and decoding operator for the specific particle position

16

representation. Finally implement some search strategies for further improving
solution quality. Figure 3.1 shows the process to develop a new particle swarm

optimization. All the PSOs in this research are developed by the process described as

Figure 3.1.
Design particle position representation
Design particle velocity and Design decoding operator for the
particle movement for the specific particle position
specific particle position representation
representation

l

Implement other search
strategies
(#optional)

Figure 3.1 The process to develop a new particle swarm optimization

17

CHAPTER 4
A DISCRETE BINARY PARTICLE SWARM
OPTIMIZATION FOR THE MULTIDIMENSIONAL 0-1

KNAPSACK PROBLEM

Kennedy and Eberhart (1997) proposed a discrete binary particle swarm
optimization (DPSO), which was designed for discrete binary solution space. Rastegar
et a. (2004) proposed another DPSO based on learning automata. In both of the

DPSOs, when particle £ moves, its position on the /" variable x; equalsOor 1 at
random. The probability that x, equals 1 is obtained by applying a sigmoid

transformation to the velocity v, (l/d+exp(-y,)). In the above two DPSOs, the

positions and velocities of particles can be updated by the following equations:
Vy € Vi +c Xrand, X (pbest =Xy)+ Co X rand , X (gbest ; — x;;) (4.2
if (rand < (1/1+exp(—v,;)) then'xy¢=1""else x,; <0 (4.2

where rand, rand,, and rand, are random numbers between 0 and 1. The
value of v, is limited by a value ¥V, , a parameter of the algorithm, that is,
| vy € Vinax - FOr instance, if 7, = 6, the probability that x,, equals 1 will be limited

between 0.9975 and 0.0025.

The DPSOs proposed by Kennedy and Eberhart (1997) and Rastegar et a. (2004)
are designed for discrete binary optimization problems with no constraint. However,
there are resource constraints in MKP. If we want to solve MKP by DPSO, we have to

modify DPSO to fit the MKP characteristics.

There are two main differences between the DPSO in this chapter and the DPSOs

18

in previous research: (i) particle velocity and (ii) particle movement. The particle
velocity is modified based on the tabu list and the concept of building blocks, and
then the particle movement is modified based on the crossover and mutation of the
genetic algorithm (GA). Besides, we applied the repair operator to repair solution
infeasibility, the diversification strategy to prevent particles becoming trapped in local
optima, the selection strategy to exchange good blocks between particles, and the
local search to further improve solution quality. The computational results show that

our DPSO effectively solves MKP and better than other traditional algorithms.

4.1 Particle Position Representation

In out DPSO, the particle position is represented by binary variables. For a MKP

with n items, we represent the particlek position by » binary variables, i.e.

Xp = [X41, X200 X4

Where x,, € {0,1} denotes the value of j""variahle of particle #'s solution. Each time

we start a run, DPSO initializes a population ‘of particles with random positions, and

initializes the ghest solution by a surrogate duality approach (Pirkul, 1987). We
determine the pseudo-utility ratio u, =p,/» " y;; for each variable, where y; is

the shadow price of the i constraint in the LP relaxation of the MKP. To initialize the

gbest solution, we set gbest; <0 for al variable j and then add variables
(gbest; «1) into the gbest solution by descending order of » ; as much as possible

without violating any constraint.

Initializing the gbest solution has two purposes. The first is to improve the
consistency of run results. Because the solutions of DPSO are generated randomly, the
computational results will be different in each run. If we give DPSO the same initial

point of gbest solution in each run, it may improve result consistency. The second

19

purpose is to improve result quality. Similar to other local search approaches, a good

initial solution can accelerate solution convergence with better results.

4.2 Particle Velocity

When PSO is applied to solve problems in a continuous solution space, due to
inertia, the velocity calculated by equation (4.1) not only moves the particle to a better
position, but also prevents the particle from moving back to the previous position. The
larger the inertia weight, the harder the particle backs to the current position. The
DPSO velocities proposed by Kennedy and Eberhart (1997) and Rastegar et al. (2004)
move particles toward the better position, but cannot prevent the particles from being

trapped in local optima.

We modified the particle veloeity based on.the tabu list, which is applied to
prevent the solution from being trapped in focal optima. In our DPSO, each particle
has its own tabu list, the velocity. There are two velocity values, v,; and vy, for
each variable x,;. If x,, changes'when particle k moves, we set v,; —1and vy,
x,; - When v, equalsl, it meansthat x, haschanged, variable; was added into the
tabu list of particle k, and we should not change the value of x, in the next few
iterations. Therefore, the velocity can prevent particles from moving back to the last
position in the next few iterations. The value of v;; isused to record the value of x,;
after the value of x,; has been changed. The set of variable v;; isa“block” which
is a part of a solution that particle £ obtained from the pbest solution and gbest
solution. It is applied to the selection strategy with the concept of building blocks that

we will describein section 4.6.

In our DPSO, we also implement inertiaweight w to control particle velocities

where w isbetween 0 and 1. We randomly update velocities at the beginning of each

20

iteration. For each particle k and /" variable, if v, equals1, v, will besettoOwith
probability (1-w). This means that if variable x,; isin the tabu list of particle %,
variable x;; will be dropped from the tabu list with probability (1-w). Moreover, the
exploration and exploitation can be controlled by w. The variable x,, will be held
in the tabu list for more iterations with alarger w and vice versa. The pseudo code

of updating velocitiesis given in Figure 4.1.

for each particle k and variable j do
rand ~ U(0,1)
if (v; =1 and (rand =z w) then
v, <0
end if
end for

Figure 4.1 Pseudo code of updating velocities.

4.3 Particle Movement

In the DPSO we proposed,. particle"movement is similar to the crossover and
mutation of GA. When particle £ moves, if x,isnot inthetabu list of particle k (i.e.
vy =0), the vaue of x; will be set to pbest,, with probability ¢, (if
x,; # pbest,;), set to gbest, with probability c, (if x, # gbest;), set to (1-x;)
with probability c;, or not changed with probability (1-¢,-¢,-c;). Where ¢, c¢,,

and ¢, areparametersof the algorithmwith ¢; +¢, +¢3 <1 and ¢; 20,i=1, 2, 3.

Since the value of x,; may be changed by repair operator or local search
procedure (we will describe them in section 4.4 and in section 4.7 respectively), if x;;
isinthetabu list of particle & (i.e. v,;=1), thevalueof x,; will be set to the value of

’
Vij

which is the latest vaue that x,, obtained from the pbest solution or gbest
solution. At the same time, if the value of x,; changes, we update v,; and v;, as

we mentioned in section 4.2. The pseudo code of particle movement is given in Figure

21

4.2.

forj—1tondo
rand ~ U(0,1)
if (v, =0) then
if (rand < c;) and (x;; # pbest,;) then
X « pbesty;; vy 1L v < x;
if (¢, <rand <c, +c,) and (x,, # gbest;) then
Xy < gbest ;v <L v « x;
if (¢, +c, <rand <c;+c,+c;) then
Xy = (L=x4); vy <1 v,'{j — Xy
else
Xy < Vy
end if
end for

Figure 4.2 Pseudo code of particle movement.

4.4 Repair Operator

After a particle generates a new solution, we apply the repair operator to repair
solution infeasibility and to improve it. There are two phases to the repair operator.
The first is the drop phase. If the particle generates an infeasible solution, we need to
drop (x; <0, if" x,, =1) some variables to make it feasible. The second phase is the
add phase. If the particle finds a feasible solution, we add (x,; <1, if" x,, =0) more
variables to improve it. Each phase is performed twice: the first time we consider the

particle velocities, and the second time we do not consider the particle velocities.

Similar to initializing the gbest solution described in section 4.1, we applied the
Pirkul (1987) surrogate duality approach to determine the variable priority for adding
or dropping. First, we determine the pseudo-utility ratio u; = p; /Zil y,r; for each

variable, where y, isthe shadow price of the i constraint in the LP relaxation of the
MKP. We drop variables by ascending order of «, until the solution is feasible, and

then we add variables by descending order of u, as much as possible without

22

violating any constraint. The pseudo code of repair operator is given in Figure 4.3.

R; = the accumulated resources of constraint i
U« permutation of (1,2,...,0) with uy;) Zuy; .y (G=1,...,n-1)

n ..
R, « zj:lrijxkj, Vi,

Il Drop phase begin
for j < ntoldo
if (xy0; =2 and (R, > b,, for any i) and (v,y; = 0) then
Xaip < 0
R, < (R =iy), Vi,
end if
end for
for j < ntoldo
if (xy0; =2 and (R, > b,, for any i) and (v;y; =1) then

end for
Il Drop phase end
Il Add phase begin
for j«1ltondo
if (x; =0)and (R, + 7, £b;, Vi) and (v, = 0) then
X <1
R, (R, +1y;7), Vi,
end if
end for
for j«1ltondo
if (x =0)and (R, +7y;,; <b;, Vi) and (v, =1 then
X <L
R, < (R, +1y;7), Vi,
end if
end for
Il Add phase end

Figure 4.3 Pseudo code of repair operator

23

4.5 The Diversification Strategy

If the pbest solutions are all the same, the particles will be trapped in local
optima. To prevent such a situation, we propose a diversification strategy to keep the
pbest solutions different. In the diversification strategy, the pbest solution of each
particle is not the best solution found by the particle itself, but one of the best N

solutions found by the swarm so far where N is the size of the swarm.

The diversification strategy is performed according to the following process.
After al of the particles generate new solutions, for each particle, compare the
particle’s fitness value with pbest solutions. If the particle’s fithess value is better than
the worst pbest solution and the particle’s solution is not equal to any of the pbest
solutions, replace the worst pbest selution with the solution of the particle. At the
same time, if the particle’s fitness value:is:better than the fitness value of the gbest
solution, replace the ghest solution with.the solution.of the particle. The pseudo code

of updating pbest solutionsis givenin Figure 4.4.

k* is the index of the worst pbest solution
for k « 1toNdo

k* = argmin{f (pbest,.)};
Yk’

if (f(x)> f(pbest.)) then
if (x, # pbest,.,Vk') then
pbest,. «— x;
endif
if (f(x,)> f(gbest))then
gbest « x;;
endif
endif
end for

Figure 4.4 Psudo code of updating pbest solutions.

24

4.6 The Selection Strategy

Angeline (1998) proposed a selection strategy, which is performed as follows.
After al the particles move to new positions, select the s best particles. The better
particle set S ={k,k,,...,k,) replaces the positions and velocities of the other
particles. The addition of this selection strategy should provide the swarm with amore

exploitative search mechanism that should find better optima more consistently.

We modified the method proposed by Angeline (1998) based on the concept of
building blocks where ablock is part of a solution, and a good solution should include
some superior blocks. The concept of building blocks is that if we can precisely find
out the superior blocks and accumulate the superior blocks in the population, the

genetic algorithm will perform better«(Goldberg; 2002).

Find out thes best particles S={k,.k,,...,k,)
[« 1;
for k < 1toN do
if (ke S)then
Vi &Vk/;
Vi Vi
if (I>s)then
[<1,
else
[« 1+1;
end if
end if
end for

Figure 4.5 Pseudo code of selection strategy.
In our DPSO, the velocities v, ={v};,Vi,,...,V;,} 1S @ block that particle &
obtained from pbest solution and gbest solution in each iteration. The v, may be a

superior block if the solution of particle & is better then others. Therefore, in our

modified selection strategy, the better particle set S only replaces the velocities (i.e.

25

v, and v;) of the other particles. The pseudo code of selection strategy is given in

Figure 4.5.

4.7 L ocal Search

We implement a local search procedure after a particle generates a new solution
for further improved solution quality. The classical add/drop neighborhood is that we
remove a variable from the current solution and add another variable to it without
violating any constraint at the same time. We modified the neighborhood with the
concept of building blocks to reduce the neighborhood size. We focus on the block
when we implement a local search. The variables are classified to 4 sets:
Jo={jlxy =0, Ji={jlxy =8, Jo={jlxy=0Av,; =8, and J{={j]|x,; =1
~vy =1 . The modified neighborhood is defined as follows: add (or drop) one
variable from J; (or J;) and drop (or add) one variable from J, (or J,) without
violating any constraint at the same time: In our experiment, the size of the modified
neighborhood is about twenty times smaller then the classical one. Besides, we add

variables by descending order of p, as much as possible without violating any

constraint after the add/drop process.

26

R; = the accumulated resources of constraint i
P — permutation of (1,2,...,n) with pp ;1 2 ppr;y (G=1,...,n-1)

n .
R; ijlrijxl‘j , Vi

for times < 1to 4 do
// Add/drop local search begin
Jo 05 ji <05 fr e f(x);
for j/«<1tondo
if (j'e J{)then

Jo=agmax{p,|je J, and R, —r; +1; <b;,Vi}
Vi

if (f(xe)-py+p;,>f")then
JoeJ i Jos S e(f(xk)_pj’+pjo);
end if
end if
if (j e Jg)then

Js=agmin{p, | je Jyand R +r; —r; <b,Vi}
Vg

i (/C) 4= py > thien
Jok— julgtegl ff —(f(x)+pr—py);
end if
end if

end for

xka eoa xk_/'{ %:L Ri — (Rz +ri_/{ _rijs)’Vi;

Ji

// Add/drop local search end
// Add more variables begin
for j «1tondo
if (xip;) =0) and (R, +rp,; < b, Vi) then
Yo <=1 R (R, +7p19), Vi
end if
end for

// Add more variables end
end for

Figure 4.6 Pseudo code of local search procedure.

27

We do not repeat the local search until the solution reaches the local optima. The
local search procedure is performed four times at most for reducing the computation
time and preventing being trapped in local optima. The pseudo code of local searchis

givenin Figure 4.6.

4.8 Computational Results

Our DPSO was tested on the problems proposed by Chu and Beasley (1998).
These problems are available on the OR-Library web site (Beasley, 1990) (URL.:
http:// people.brunel.ac.uk/~mastjjb/jeb/info.html). The number of constraints m was
set to 5, 10, and 30, and the number of variables » was set to 100, 250, and 500. For

each m-n combination, thirty problems are generated, and the tightness ratio «

(a=b,13 ;) was set to 0.25for the first ten, problems, to 0.5 for the next ten

problems, and to 0.75 for the remaining problems. Therefore, there are 27 problem
sets for different n-m-« combinations, ten-problems for each problem set, and 270

problemsin total.

The program was coded in Visua C™, optimized by speed, and run on an AMD
Athlon 1800+ PC. The numeric parameters are set to ¢, =0.7, ¢, =0.1, ¢;=1/n,
N =100, and s = 20. The inertia weight w is decreased linearly from 0.7 to 0.5
during arun. All of the numeric parameters are determined empirically. There are two
versions of our DPSO. The first version, DPSO, does not implement the local search
procedure, and the second, DPSO+LS, implements the local search procedure. Each
run will be terminated after 10,000 iterations on DPSO and 15,000 iterations on

DPSO+LS, respectively.

The program performs 10 runs for each of the 270 problems. The term ‘Best’ is

applied to the best solution obtained in 10 runs of each problem and averaged

28

according to the 10 problems of the problem set. The term ‘ Average’ is applied to the
average solution of 10 runs of each problem and averaged according to the 10

problems of the problem set.

¢ isthe average time in seconds that the DPSO or DPSO+L S takes to first reach
the final best solution in arun, and 7 is the total time in seconds that the DPSO or
DPSO+L S takes before termination in arun. The surrogate duality was pre-calculated
by MATLAB, so the computation times in Table 4.1 do not include the computation
time of calculating surrogate duality. The average computation time for solving LP
relaxation problems was less then 1 CPU second, so the surrogate duality calculation

IS not important to computation time.

The computational results are shownin Table 4.1. The agorithms have different
computation times, so we compared DPSO with GA (Chu and Beasley, 1998) since
their computation times are smilar. The computational results show that DPSO

performed better than GA (Chu and Beasley, 1998)+in 20 of 27 problem sets.

We compared DPSO+LS with Fix+Cuts (Osorio et al., 2002) and LP+TS
(Vasguez and Hao, 2001). The Fix+Cuts (Osorio et al., 2002) takes 3 hours on a
Pentium 111 450 MHz PC for each run, and LP+TS (Vasquez and Hao, 2001) takes
about 20-40 minutes on a Pentium 111 500 MHz PC for each run. Our DPSO+LS takes
less than 8 minutes on the largest problems and our machine is about four times faster
than Fix+Cuts (Osorio et a., 2002) and LP+TS (Vasquez and Hao, 2001), so the
computation time that DPSO+L S takes is similar to LP+TS (Vasquez and Hao, 2001)
and much less than Fix+Cuts (Osorio et a., 2002). The computational results show
that DPSO+LS performed better than Fix+Cuts (Osorio et al., 2002) in 15 of 27
problem sets, and better than LP+TS (Vasquez and Hao, 2001) in al of the 9 largest

problem sets.

29

Table 4.1 Computational results

Problem GA LP+TS DPSO DPSO+LS
Fix+Cuts (Vasque Fix+LP+TS
(Chu and (Osorio et zand (Vasguez and « .
n m A Bfasley, al., 2002) Heo, Vimont, 2005) Best Average t T Best Average t T
998)
2001)

100 5 0.25 24197 24197 24197 24197.2 05 102 24197 24197.2 0.3 68.8
100 5 05 43253 43253 43253 43252.9 05 101 43253 43252.9 0.2 67.7
100 5 0.75 60471 60471 60471 60471.0 0.3 9.8 60471 60471.0 0.2 61.6
100 10 0.25 22602 22602 22602 22595.8 17 111 22602 22601.9 17 775
100 10 05 42659 42661 42661 42658.2 14 112 42661 42660.6 2.6 77.0
100 10 0.75 59556 59556 59556 59554.2 03 1.2 59556 59555.6 0.3 68.9
100 30 0.25 21654 21656 21654 21651.0 24 130 21660 21658.2 4.1 86.1
100 30 05 41431 41437 41435 41430.7 24 137 41440 41439.9 7.2 85.1
100 30 0.75 59199 59202 59199 59196.5 18 141 59202 59201.0 3.2 78.7
250 5 0.25 60410 60413 60414 60407.1 80 264 60414 60412.3 345 1990
250 5 05 109285 109293 109293 ' 109287.2 99 263 109293 109292.8 19.2 1983
250 5 0.75 151556 151560 151560 151556.5 6.2 256 151560 151560.3 85 1812
250 10 0.25 58994 59019 59010 58985.8 106 284 59014 59009.5 60.0 2152
250 10 05 108706 108607 108724 108705.7 101 29.1 108727 108722.4 499 204.0
250 10 0.75 151330 151363 151339> 151329.4 88 289 151342 151339.9 243 1964
250 30 0.25 56876 56959 56893 56855.7 113 329 56911 56891.4 558 2181
250 30 0.5 106674 106686 106682 1066546 13.0 349 106708 106692.4 80.2 2175
250 30 0.75 150444 150467 150457 1504276 136 364 150471 150461.9 559 206.1
500 5 025 120616 120610 120623 120628 120623 120609.8 243 545 120630 120623.9 1748 440.3
50 5 05 219503 219504 219507 219512 219507 2195025 170 545 219513 219510.7 138.6 4223
500 5 0.75 302355 302361 302360 302363 302360 302355.1 181 534 302362 302360.3 829 401.1
500 10 0.25 118566 118584 118600 118629 118569 118540.8 264 58.0 118605 118580.7 2428 467.5
500 10 0.5 217275 217297 217298 217326 217295 2172606 256 594 217312 2172886 216.0 459.0
500 10 0.75 302556 302562 302575 302603 302572 3025534 221 595 302591 302577.3 165.8 434.0
500 30 0.25 115474 115520 115547 115624 115481 1154356 310 69.8 115559 115493.0 208.1 454.6
500 30 0.5 216157 216180 216211 216275 216188 2161382 288 738 216221 216184.8 1894 452.0
500 30 0.75 302353 302373 302404 302447 302369 302343.7 264 76.7 302405 302382.9 193.2 438.0

Average 120153.7 120162.7 120161.6 1201465 119 345 120173.4 120163.8 74.8 239.9

{ = average best-solution time (CPU seconds); 7' = average execution time (CPU seconds).

30

Table 4.2 The percentage gaps between DPSO+L S and Fix+LP+L S (Vasquez and Vimont, 2005)

Problem DPSO+LS

n m Best Average
500 5 025 -0.0019% 0.0034%
500 5 05 -0.0003% 0.0006%
500 5 0.75 0.0003% 0.0009%
500 10 0.25 0.0204% 0.0407%
500 10 05 0.0063% 0.0172%
500 10 0.75 0.0039% 0.0085%
500 30 0.25 0.0562% 0.1133%
500 30 05 0.0248% 0.0417%
500 30 0.75 0.0138% 0.0212%
Average 0.0137% 0.0275%

We do not compare our algorithms with Fix+LP+TS (Vasguez and Vimont, 2005),
since Fix+LP+TS (Vasguez and Vimont, 2005). takes 7.6-33 hours on a Pentium4
2GHz PC to obtain the solution for each problem. In:general, a metaheuristic does not
perform such a long time and the solution quality of Fix+LP+TS (Vasquez and
Vimont, 2005) could not be reached.in a short computation time. However, we show
the percentage gaps between our DPSO+LS and Fix+LP+TS (Vasguez and Vimont,
2005) in Table 4.2. The percentage gaps show that the results of our DPSO+LS very

closeto Fix+LP+TS (Vasquez and Vimont, 2005) in a short computation time.
4.9 Concluding Remarks

In this chapter we have presented a new discrete binary particle swarm
optimization (DPSO) for solving multidimensional 0-1 knapsack problems and a local
search procedure based on the concept of building blocks. The proposed DPSO
adopted new concepts of particle velocity and particle movement, and obtained good

solutions in areasonable CPU time.

There are two possible extensions to this study for future research. First, the

31

proposed DPSO can be extended for solving similar combinatorial optimization

problems: for example, multidimensional 0-1 knapsack problems with generalized

upper bound constraints. Second, the proposed DPSO can be extended for sequencing

and scheduling problems. Similar to this chapter, we may modify the velocity based

on the tabu list and the concept of building blocks, and modify particle movement

based on crossover and mutation of genetic algorithm. Furthermore, we may develop

the repair operator based on scheduling strategies for scheduling problems. Table 4.3

shows the summary of the DPSO for MKP.

Table 4.3 Summary of the DPSO for MKP

Components

The concept of this components

Particle Position

Since the solution of MKP is 0-1
variables, we represent the particle

1 Binary variables
Representation y position by binary variables, which have
the most L amarckian.
The binary: variablesis ver ropriate to
Particle Velocity Blocks il > 1S VETY 2pProp
5 build blocks, so we implement the concept
: of “building blocks and the relational
Particle Movement Crossover operator
€rossover operator.
: Repair operator ~ Restrict the search area in the feasible
Decoding _
3 based on region.
Operator

pseudo-utility ratio

4 |Other Strategies

Diversification
Selection
Local search

The diversification strategy can prevent
particles rapped in local optima.

The selection strategy can further
accelerate the speed of building blocks.
The local search can further improve the
solution quality,

32

4.10 Appendix

A pseudo code of the DPSO for MKPis given below:

Initialize a population of particles with random positions and vel ocities.
Initialize the gbest solution by surrogate duality approach
repeat
update velocities according to Figure 4.1.
for each particle k do
move particle k£ according to Figure 4.2.
repair the solution of particle k£ according to repair operator (Figure 4.3).
calculate the fitness value of particle k.
perform local search on particle k.(Figure 4.6).

end for

update gbest and pbest solutions according’ to-diversification strategy (Figure
4.4).

perform selection according to selection strategy (Figure 4.5).

until maximum iterationsis attained

33

CHAPTERS
A PARTICLE SWARM OPTIMIZATION FOR THE JOB

SHOP SCHEDULING PROBLEM

The original PSO is used to solve continuous optimization problems. Since the
solution space of a shop scheduling problem is discrete, we have to modify the
particle position representation, particle movement, and particle velocity to better suit
PSO for scheduling problems. In the PSO for JSSP, we modified the particle position
representation using preference-lists and the particle movement using a swap operator.
Moreover, we propose a diversification strategy and a local search procedure for

better performance.

5.1 Particle Position Representation

We implement the preference list-based-representation (Davis, 1985), which has
half-Lamarckian (Cheng et al., 1996)..1n the preference list-based representation,
there is a preference list for each machine. For an n-job m-machine problem, we can
represent the particle k position by an mxn matrix, and the i*" row is the preference list

of machinei, i.e.

X1 Xp X1,
k k k

Xt = Xop X 22 X2,
k k k

xml me xmn

Where x! e {l,2,...,n} denotes the job on location j in the preference list

of machine i. Similar to GA (Kobayashi et a., 1995) decoding a chromosome

into a schedule, we aso use Giffler & Thompson's heuristic (Giffler &

Thompson, 1960) to decode a particle’s position to an active schedule. The G& T

algorithm is shown as Figure 5.1. For example, there are 4 jobs and 4 machines
1 2 4 3

3
asshownon X* =
2 3 4

3 4 1

N B

Table 5.1, and the position of particlek is

12 4 3
i |2 134
2341
3412

Table 5.1 A 4x4 job shop problem example

jobs machine sequence processing times
1 1,2,4,3 Pu=9 Pa=4 pu=2, pu=2
2 2,1,3,4 P2=4 Pp=3 pu=3, pp=2
3 4,1,3,2 Pw=2, p=2, pu=3, px=4
4 3,1,4°2 DPu=3, pu=2, pu=3, pn=4

We can decode X* to an active schedule following the G& T algorithm:
Initialization
S=¢; Q={011,05,043,03}.
Iteration 1
51.= 0, 5,= 0, 55=0, 53,=0; f,= 5, f=4 fu=2 fu=3 f=
mir{ fi1, foo, faz, fau} =2, m* =4
Identify the operation set O ={o0,,} ; choose operation o,;, which is ahead

of others in the preference list of machine 4, and add it into schedule

S, asillustrated in Figure 5.2(a).

Update Q={0y1,04,0:3,05}.

35

Notation:

o, - the operation of job j that needs to be processed on machine i.
S : the partial schedule that contains scheduled operations.

Q : the set of schedul able operations.

s, theearliest time at which o, € Q could be started.
p; - theprocessing time of o, .
f; - theearliest time at which o, € Q could befinished, f;=s,+p,.

G&T algorithm:

Initidlize S « ¢; Q is initialized to contain all operations without
predecessors.
repeat

Determine [~ « migr;{f[j} and the machine m* on which f~

could be realized.

|dentify the operation set O < {0, |s, < f ,0,€Q,i=m’} .

Choose o; from the operation set O, where o, is ahead of
others in the preference list of machine m"; add o; to S,
and assign s; asthestartingtimeof o;.

Delete o; from Q and include its immediate successor in Q

if o, isnot thelast operation of job;.

Until Q isempty.

Figure 5.1 The G& T algorithm

36

Mg [(43)
time 5 10 15 20 25
Figure 5.2(a) Partial schedule after the operation 0,3 scheduled.

[teration 2

.= 0, 5,= 0, 5372, 5,=0; f,= 5, =4, fis= 4, fu=3; f'=
min{ fi1, f2, fis» fau} =3, m" =4
|dentify the operation set O ={0,,}; choose operation og,, which is ahead

of others in the preference list of machine 3, and add it into schedule

S, asillustrated in Figure 5.2(b).

Update Q={ 0, 05,043,014}

M1

Mo

M3z | (34

Mg [(43)

time 5 10 15 20 25

Figure 5.2(b) Partial schedule after the operation 05, scheduled.

Iteration 3
5= 0, 5,= 0, 51372, 5,=3; fu=5, fo=4 fu=4 fu=05 f'=
mir{ fi1, fa, fiz» fia} =3, m* =L
Identify the operation set O ={o0,,,0,5}; choose operation o,,, which is
ahead of others in the preference list of machine 1, and add it into
schedule S, asillustrated in Figure 5.2(c).

Update Q={0,, 05,013,014}

37

. [

Mo

Ms | B4

My |43

time 5 10 15 20 25

Figure 5.2(c) Partial schedule after the operation 0,; scheduled.

Iteration 4
$71=5, 5,= 0, 51375, 54,=5, fm=9, fo=4 fuu=T1, fu=7, f=
M fo1, for fizr S} =4, m=2.
|dentify the operation set O ={o0,,} ; choose operation o,,, which is ahead
of others in the preference list of machine 2, and add it into schedule
S, asillustrated in Figure 5.2(d).

Update Q={ 0,1, 01,013,014}

M1

\%P)

M3z | (34

Mg |(43)

time 5 10 15 20 25

Figure 5.2(d) Partial schedule after the operation 0,, scheduled.

Iteration 5
$1= 5, 5= 5, 5375, 5,55, f;= 9, f=T7, fe=T1, fu=17, f*=
min{ fo1, fio. fizy Sfuu} =7, m =1L
|dentify the operation set O ={o0,,,0.3,0.,} ; ChOOSe Operation o,,, which is
ahead of others in the preference list of machine 1, and add it into
schedule S, asillustrated in Figure 5.2(e).

Update Q={ 0, 03,013,014}

38

M1

Mo

M3

My |43

time 5 10 15 20 25
Figure 5.2(¢e) Partia schedule after the operation 0,, scheduled.

Iteration 6
Sn= 5, 5= 8, 5578, 5,78, [= 9, fp= 11, fi5= 9, fu=9 [f'=
min{ fo1, fa, fizr fuu} =9, m*=2.
Identify the operation set O ={0,,} ; choose operation o,,, which is ahead
of others in the preference list of machine 2, and add it into schedule
S, asillustrated in ,Fijgulr.érS.zzf).:”

Update Q={ 04, 05 013,014}: =+

time 5 10 15 20 25
Figure 5.2(f) Partial schedule after the operation 0,; scheduled.

Iteration 7
Su=9, 55= 8, 5378, 5,78, fu=11, fo,= 11, fi5= 9, fu=9; [f'=
min{ fn, feo, fiz» fuu} =9, m =1
Identify the operation set O ={o0,3,0,,}; choose operation o,,, which is
ahead of others in the preference list of machine 1, and add it into
schedule S, asillustrated in Figure 5.2(g).

Update Q={ 04, 03,013,044}

39

M1

Mo

M3

My |43

time 5 10 15 20 25
Figure 5.2(g) Partial schedule after the operation 0,, scheduled.

Iteration 8
=0, 55,= 8, 5510, 54,=10; fy,= 11, fp,= 11, fia= 12, f,,= 13
fr=minf fu, fo., fiz, fau} =11, m*=4.
Identify the operation set O ={o04,04}; choose operation o, , which is
ahead of others in the preference list of machine 4, and add it into
schedule S, asnlustratedm Flgure52(h)

Update Q={o,, 032’013’024} I_ .I:I. A

20 25

(h) Partial schedule after the operation 0,, Scheduled.

Iteration 9
=13, 5= 8, 55710, 5,,=13; fi,= 15, foo= 11, fis= 12, fo= 17;
fr=min{ fu, fo. fiz» faa} =11, m*=3.
Identify the operation set O ={o0g,} ; choose operation o5, , which is ahead
of others in the preference list of machine 3, and add it into schedule

S, asillustrated in Figure 5.2(i).

Update Q={ 041, 04,013,024}

40

M1

Mo

M3

My |43

time 5 10 15 20 25
Figure 5.2(i) Partial schedule after the operation 05, scheduled.

Iteration 10
su=13, sp=11, $,=10, $,,=13; [, =15, f,=13, fiz=12, fo=1T;
fr=min{ fu, fro, fiz» fau} =12, m*=1.
Identify the operation set O ={o0,3} ; choose operation o,5, which is ahead
of others in the preference list of machine 1, and add it into schedule
S, asillustrated ilj,EiﬁU'r‘ér’E;.'.nz.(.j");’ e,

Update Q={ 04,04 ,033, 024}! ‘. ' \,

time 5 10 15 20 25
Figure 5.2(j) Partial schedule after the operation 0,5 scheduled.

Iteration 11
su=13, 5u=11, 553712, 5,,=13; f,=15, f,=13, fiu=15, fo=17;
fr=mir{ fu, fu» faz, Sfou} =13, m =4
Identify the operation set O ={o0,,} ; choose operation o,,, which is ahead

of others in the preference list of machine 4, and add it into schedule

S, asillustrated in Figure 5.2(k).

Update Q={ 041,033,054}

41

M1
Mo
M3
My
time 5 10 15 20 25
Figure 5.2(k) Partial schedule after the operation 0,, scheduled.

Iteration 12
Sp= 13, 55712, 5,,=13; fu= 15, f33= 15, f5,= 17; f*= min{ f,,
fs3, Sfau} =15, m*=4.
Identify the operation set O ={o0,,} ; choose operation o,,, which is ahead
of others in the preference list of machine 4, and add it into schedule
S, asillustrated |nFlgure52(I) -

TR e
= 0o B W Y
ElS k%

Update € ={ 031’033’.‘?’.?:4.1-,}'. 8: .,;-:-5-::‘ = -

M1 (13 3

M, " |

M3

Mg

time 5 10 15 20 25

Figure 5.2(I) Partial schedule after the operation 0,4, scheduled.

Iteration 13
su= 15, 553512, 5,,=13; fu= 17, fyu= 15, fou= 17, f*= min{ fy,
Sfasr foa} =15, m*=3.
Identify the operation set O ={o04,04}; choose operation o, which is
ahead of others in the preference list of machine 3, and add it into

schedule S, asillustrated in Figure 5.2(m).

Update Q={ 03,023,044} .

42

M1
Mo
M3
My
time 5 10 15 20 25
Figure 5.2(m) Partial schedule after the operation 033 scheduled.

Iteration 14
5u= 15, 5,,=15, 5,,=13; fu= 17, fiu= 19, fou= 17; f*= min{ fy,
fozr Jfau} =17, m*=3.
Identify the operation set O ={o0,,}; choose operation o, which is ahead

of others in the preference list of machine 3, and add it into schedule

S, esillustrated in ()t
Update Q={0,3,0,, } - -:-!}i .
M1
M2
M3
M4
time 5 10 15 ” -

Figure 5.2(n) Partial schedule after the operation 04, scheduled.

Iteration 15
55715, $24=13; f33=19, fu=17; fr=mir{ fy, fu} =17, m*=2.
Identify the operation set O ={o0,3,0,} ; choose operation o, , which is

ahead of others in the preference list of machine 2, and add it into

schedule S, asillustrated in (0).

Update Q={0,}.

43

time 5 10 15 20 25

Figure 5.2(0) Partial schedule after the operation 0,3 scheduled.

Iteration 16
54=19; £,,=23; fr=min{ fo,} =23, m*=2.
Identify the operation set O ={0,,}; choose operation o,,, which is ahead
of others in the preference list of machine 2, and add it into schedule
S, asillustrated in Figure 5.2(p).

Update Q=¢, and then--éféps._ '

time 25

Figure 5.2(p) Partial schedule after the operation 0,, scheduled.
Figure 5.2 An illustration of decoding a particle position into a schedule.

5.2 Particle Velocity

When a particle moves in a continuous solution space, due to inertia, the particle
velocity not only moves the particle to a better position, but also prevents the particle
from moving back to the current position. The velocity can be controlled by inertia
weight w in equation (2.1). The larger the inertia weight, the harder the particle backs

to the current position.

If we implement preference list-based representation, the velocity of operation

o; of particle k is denoted by v, vie{0,3, where o, is the operation of job ;

g

44

that needs to be processed on machine i. When v} equals 1, it means that operation

o; inthe preference list of particle & (the position matrix, X) has just been moved

to the current location, and we should not move it in this iteration. On the contrary, if
operation o, is moved to a new location in this iteration, we set v;; — 1, indicating

that o, has been moved in this iteration and should not been moved in the next few
iterations. The particle velocity can prevent recently moved operations from moving

back to the original location in the next iterations.

Just as the original PSO is applied to a continuous solution space, inertia weight

w is used to control particle velocities. We randomly update velocities at the

beginning of the iteration. For each particle and operation o, if v} equasl, v;

i i

will be set to O with probability-(1- w). Fhis'means that if operation o, is fixed on
the current location in the preference list of particle k, o, isalowed to movein this
iteration with probability (1-w).“The hewly moved operations will then be fixed for
more iterations with larger inertia weight, and fixed for less iterations with smaller

inertiaweight. The pseudo code for updating velocities is given as Figure 5.3.

for each particle k£ and operation o, do
rand ~ U(0,1)
if (vi #0)and (rand 2 w) then
vi «0
end if
end for

Figure 5.3 The pseudo code of updating velocities.

5.3 Particle M ovement

The particle movement is based on the swap operator. If v =0, the job; on x/

will be moved to the corresponding location of pbest; with probability c,, and will

45

be moved to the corresponding location of gbest, with probability c,. Where x!

is the preference list of machine i of particle k, pbest! is the preference list of
machinei of A" pbest solution, gbest, isthe preference list of machinei of gbest
solution, ¢; and ¢, are constant between O and 1, and ¢, + ¢, <1. The process is

described as follows:

Step 1: Randomly choose alocation / in xF.

Step 2: Denotethejob onlocation / in x* by J;.

Step 3: Find out the location of J, in pbestf with probability ¢,
or find out the location of J, in gbest; with probability
¢, . Denote the location that has been found in pbestf or
gbest; by [’, and.dénotethe job in location /" in x! by

J,.

Step4:If J, has been denoted, vj;.=0, and v} =0, then swap J,

and J, in x},andset- w1

Step 5: If al the locations in x* have been considered, then stop.
Otherwise, if /<n,thenset [« [+1, else [<1, and go

to Step 2, where n is the number of jobs.

For example, there is a 5-job problem, and x}, pbestt, gbest,, and v} are

showed as Figure 5.4(a). We set ¢, =0.5and c¢,=0.3in thisinstance.

In Step 1, we randomly choose a location /=3. In Step 2, the job in the 3"
location in x! isjob 4, i.e. J,= 4. In Step 3, we generate a random variable rand
between 0 and 1, and the generated random variable rand is 0.6. Since
¢, <rand < c, +c,, wefind out the location of J, in gbest,. Thelocation /’=5, and
the job in the 5™ location in x* isjob 5, i.e. J,=5. Step 1 to Step 3 is shown as

46

Figure 5.4(b). In Step 4, since v, =0 and v5 =0, swapjob4andjob5in x' and
set v —1isshown as Figure 5.4(c). In Step 5, set [/ « 4, and go to Step 2. Repeat

the procedure until all the locationsin x/ have been considered.

We also adopt a mutation operator in our algorithm. After a particle moves to a

new position, we randomly choose a machine and two jobs on the machine, and then

swap these two jobs, disregarding v} . The particle movement pseudo code is given

as Figure 5.5.

47

vE={0 01 0 O

pbest!

gbest,

k
X.

1

v¥={0 01 0 O

pbest!

gbest,

k
X.

1

pbest!

gbest,

x*

1

4 3 1 5 2
2 1 5 3 4
3 1 4 2 5
(@ The x\, pbest!, gbest, ,and v} .
4 3 1 5 2
2 1 5 3 4
3 1 4 2 5
=3 J;=4 [I'=5J,=5

(b) Randomly choose /-and denote.J/; and J>.

vi={0 0 1(1)0}

4) 3 1 5 | 2
2 1 "5 | 3 | 4
a =

3 1 | 5. | 2 | 4
=~

(c) Swap job4 and job5 in xl.k;set vik4 <1

Figure 5.4 An instance of particle movement.

48

for i — 1 to m do //for machine 1 to machine m
l,,. < aninteger random number between lton
[1

start
for j—1tondo//for al location
rand ~ U(0,1)
if (rand <¢;) then
J, & xl.lj
I’ < the location of J, in pbest!
J, xb
if (vj, =0)and (v, =0)and (J, #J,) then
Xy Jy; xyp e Jp v 1
end if
end if
if (¢, <rand <c, +c,) then
J, xh
I’ « the location of J, in gbest,
J, ¢ xlo
if (vf, =0)and (v, =0)and (J, #.J,) then
et R W V) 1
end if
end if
L1, +7]
if (/>n)then
l«<Il-n
end if
end for
end for

/Imutation operator
M <« randomly choose a machine between 1to m

| < randomly choose a location between 1to n
" < randomly choose a location between 1to n
Ji elet;l ; Jo xflfxll'

xilf/[l —Jy; lefxu' —J;

v;‘“l «1: vfuz <1

//mutation operator

Figure 5.5 Pseudo code of particle movement.

49

5.4 The Diversification Strategy

If al the particles have the same pbest solutions, they will be trapped into local
optima. To prevent such a situation, we proposed a diversification strategy to keep the
pbest solutions different (i.e. keeps the makespans of pbest solutions different). In the
diversification strategy, the pbest solution of each particle is not the best solution
found by the particle itself, but one of the best N solutions found by the swarm so far
where N is the size of the swarm. Once any particle generates a new solution, the

pbest and gbest solutions will be updated in these three situations:

1. If the particle’s fitness value is better than the fitness value of the gbest
solution, set the worst pbest solution equal to the current gbest solution, and

set the gbest solution equal to the particle solution.

2. If the particle's fitness value is worse than the ghest solution, but better then
the worst pbest solution and not-equal to'any gbest or pbest solution, set the

worst pbest solution equal to'the particle solution.

3. If the particle’s fitness value is equal to any pbest or gbest solution, replace
the pbest or gbest solution (whose fitness value is equal to the particle

fitness value) with the particle solution.

The pseudo code for updating the pbest solution and gbest solution with

diversification strategy is given as Figure 5.6.

50

N: the size of the swarm

S*: the schedule generated by particle &
pbest™™" . the worst solution of pbest solutions
C,o (S*): the makespan of S*

/1 situation 1 asdescribed in 3.4

if (C...(SY)<C,. (gbest)) then

worst

pbest « gbest; gbest «— S*

/T situation 1 asdescribed in 3.4

eseif (C, . (S%) < C,.ox (pbest™™)) then
/[L situation 3 as described in 3.4
the_same =0
if (C...(S*)=C,, (gbest))then

gbest < S ke the_same =1

else

for k' < 1to N do
if (C, (S*) = C o (pbest"’)) then
pbestk' «— Sk the _same =1
break
end.if
end for
end if
/[T _situation'3 as described in 3.4
/[1 situation 2 asdescribed'in 3.4

if (the same=0)then
pbestworst (—Sk

end if
/I T_situation 2 as described in 3.4
end if

Figure 5.6 Pseudo code of updating pbest solution and gbest solution with diversification strategy.

5.5 Local Search

The tabu search is a metaheuristic approach and a strong local search mechanism.
In the tabu search, the algorithm starts from an initial solution and improves it
iteratively to find a near-optimal solution. This method was proposed and formalized
primarily by Glover (1986, 1989, 1990). We applied the tabu search proposed by
Nowicki and Smutnicki (1996) but without back jump tracking. We briefly describe

Nowicki and Smutnicki’s method as follows:

51

The neighborhood structure

Nowicki and Smutnicki’s method randomly chooses a critical path in the current
schedule, and then represents the critical path in terms of blocks. The neighborhood
exchanges the first two and the last two operations in every block, but excludes the
first and last operations in the critical path. The research of Jain et al. (2000) shows
that the strategy used to generate the critical path does not materially affect the final
solution. Therefore, in this research, we randomly choose one critical path if there is
more than one critical path. For example, there is a schedule for a 4-job, 3-machine

problem, as shown in Figure 5.7(a). We can find that there are two critical paths:
CP1={031, 011, 013, o33} and CP;={031, 032, 022, 021, 024, 014}, Where o, is the
operation of job j that needs to be pracessed on machine i. If we randomly choose CP,,

we can represent CP, in terms;of blocks: {0s1,:030}, {022, 021, 024}, and {o014}. The

possible moves in this schedule are exchanging {023, 021} or {021, 024} (See Figure

5.7(b)).
M1 o1 013 012 014
M2 023 022 021 024
Mz |ogy 032 034 033
(a) Aninstance of job shop schedule.
M1 on 013 012 014
M; 023 022 <).,J:> 021 &> 024
Mz |og 032 034 033

(b) Neighborhood defined by Nowicki & Smutnicki (1996).

52

Figure 5.7 An illustration of neighborhoods in tabu search.

Tabu list

The tabu list consists of maxt operation pairs that have been moved in the last

maxt moves in the tabu search. If amove{ o, , o, } hasbeen performed, this move

replaces the oldest move in the tabu list, and moving these same two operations is not

permitted while the move is recorded in the tabu list.

Back jump tracking

When finding a new best solution, store the current state (the new best solution,
set of moves, and tabu list) in a list L. After the tabu search algorithm performs
maxiter_tabu iterations, restart the tabu, search algorithm from the latest recorded state,
and repeat it until the list L is empty, Werdid not implement the back jump tracking in

our algorithm to reduce computation time.

We implement a tabu search-procedure after a particle generates a new solution
for further improved solution quality. The tabu search will be stopped after 100 moves
that do not improve the solution. The research of Jain et al. (2000) shows that the
solution quality of tabu search (Nowicki & Smutnicki, 1996) is mainly affected by its
initial solution. Therefore, in the hybrid PSO, the purpose of the PSO process is to

provide good and diverse initial solutions to the tabu search.

5.6 Computational Results

There are three PSOs we tested: (1) priority-based PSO, of which the particle
position is represented by the priorities of operations, and implements the origina
PSO design; (2) preference list-based PSO, of which the particle position is

represented by a preference list of machines; (3) hybrid PSO (HPSO), which is the

53

preference list-based PSO with a local search mechanism. The PSOs were tested on
Fisher and Thompson (1963) (FT06, FT10 and FT20), Lawrence (1984) (LAO1 to
LA40) and Taillard (1993) (TAO1 to TAB80) test problems. These problems are
available on the OR-Library web site (Beasley, 1990) (URL: http://people.brunel.
ac.uk/~mastjjb/jeb/info.html) and Taillard’'s web site (URL:
http://ina2.eivd.ch/Collaborateurs/etd/probl emes.dir/ordonnancement.dir/ordonnance

ment.htmt).

In the preliminary experiment, four swarm sizes N (10, 20, 30, 50) were tested,
where N=30 was superior and used for al further studies. The other parameters of the
priority-based PSO were set to the same common settings as most of the previous

research: ¢; =2.0, ¢, =20, theinertiaweight w is decreased linearly from 0.9 to

0.4 during arun, and the maximum valug f [y and |v,|, Xmax and Vimax are equal

to the number of jobs » and n/5respectively.

The parameters of the preference list-based PSO are determined experimentally.
The parameters ¢; and ¢, were tested between 0.1 and 0.5 in increments of 0.1,
and the parameter w was tested between 0 and 0.9 in increments of 0.1. The settings
¢, =05, ¢,=03 and w=0.5 were superior. The length of the tabu list maxt was
set to 8 where the value is derived from Nowicki and Smutnicki (1996). The tabu
search will be stopped after 100 moves that do not improve the solution. The
priority-based PSO and the preference list-based PSO will be terminated after 10°
iterations, and HPSO will be terminated after 10° iterations. The number of iterations
is determined by the computation time compared with Pezzella and Merelli (2000)

and Goncalves et a. (2005).

The program was coded in Visual C++, optimized by speed, and run on an AMD

Athlon 1700+ PC twenty times for each of the 123 problems. The proposed algorithm
is compared with Shifting Bottleneck (Adams et a., 1988; Balas & Vazacopoulos,
1998), Tabu Search (Sun et a., 1995; Nowicki & Smutnicki, 1996; Pezzella & Merelli,

2000), and Genetic Algorithm (Wang & Zheng, 2001; Goncalves et al., 2005).

The computational results of FT and LA test problems are shown as Table 5.2.
The results show that the preference list-based PSO we proposed is much better than
the original design, the priority-based PSO. Since the number of instances tested by
each method is different, we cannot compare the result by average gap directly.
Nevertheless, the result obtained by HPSO is better then other algorithms that tested
al of the 43 instances, and the HPSO obtained the best-known solution for 41 of the

43 instances.

Table 5.3 shows the average computation time.on FT and LA test problems in
CPU seconds. The *best-solution time' isthe average time that the algorithm takes to
first reach the final best solution,”and the ‘total time' is the average total computation
time that the algorithm takes during a run. In HPSO, there is about 99% computation
time spent on local search process. As mentioned in section 5.5, the solution quality of
tabu search (Nowicki & Smutnicki, 1996) is mainly affected by itsinitial solution, and
the main purpose of the PSO process is to provide good and diverse initial solutionsto
tabu search. Therefore, the computational results show that the hybrid method, HPSO,
performs better than both TSAB and PSO, and its average gap is 0.356% less than

PSO.

We further tested HPSO on TA test problems (Taillard, 1993). The computational
results are shown in Table 5.4, and we particularly compared HPSO with TSSB
(Pezzella & Merelli, 2000) in Table 5.5. Since the maximum computation time of
TSSB is about 3x10* seconds and our machine is about ten times faster then TSSB

55

(Pezzella & Merdlli, 2000), we limited the maximum computation time of HPSO in 3
x10° seconds. As mentioned above, 99% of the computation time is spent on the local
search process in HPSO. Therefore, we do not reduce the computation time by
decreasing the number of iterations, but decreasing the percentage of particles that
perform a local search procedure. The HPSO will also be terminated after 10°
iterations, but there are only 34.6% of particles randomly chosen to perform the local
search procedure in each iteration on TA51 to TA60 test problems, 26.6% on TA61 to

TA70 test problems, and 6.4% on TA71 to TA80 test problems.

Table 5.5 shows the comparison with TSSB (Pezzella & Merelli, 2000). The
HPSO performs better than TSSB on 7 of 8 problem sizes, and only worse than TSSB
on the 100x20 problem size. In the 100%x20. problem sizes, the final best solutions are
obtained after 890 iterations of the average (so.the'best-solution time is very close to
the total time). Since the HPSO only performs 10° iterations for each run, it shows
that the particles of HPSO did not.converge in-10% iterations, and can further improve
the solutions by increasing the maximum: iteration. However, since we want to
compare HPSO with TSSB, we do not consider increasing the maximum iteration

because it takes too much computation time.

56

Table 5.2 Computational result of FT and LA test problems.

Shifting Bottleneck Tabu Search

SBI SBIl SB-RGLS1SB-RGLS2 ACM TSAB TSSB
Best Balas sun Nowicki Pezzella

Problem Size Knoyvn Adamset a. & atal &_ _ & .

(nxm) Solution (1988) Vazacopoulos (1995) Smutnicki Merelli

(BKS) (1998) (1996) (2000)
FT06 6%6 55 55 55 - - - 55 55
FT10 10x10 930 1015 930 930 930 930 930 930
FT20 20x5 1165 1290 1178 - - - 1165 1165
LAOL 10x5 666 666 666 - - - 666 666
LAO2 10x5 655 720 669 655 655 - 655 655
LAO3 10x5 597 623 605 - - - 597 597
LAO4 10x5 590 597 593 - - - 590 590
LAO5 10x5 593 593 593 - - - 593 593
LAO6 15x5 926 926 926 - - - 926 926
LAQ7 15x5 890 890 890 - - - 890 890
LAO8 15x5 863 868 863 - - - 863 863
LAO9 15x5 951 951 951 - - - 951 951
LA10 15x5 958 959 959 - - - 958 958
LALl 205 1222 1222 1222 - - - 1222 1222
LA12 20x5 1039 1039 1039 - - - 1039 1039
LA13 20x5 1150 1150 1150 - - - 1150 1150
LA14 20x5 1292 1292 1292 — - - 1292 1292
LA15 20x5 1207 1207 1207 = - - 1207 1207
LA16 10x10 945 1021 978 — - 975 945 945
LA17 10x10 784 796 787 - - 784 784 784
LA18 10x10 848 891 859 - - 848 848 848
LA19 10x10 842 875 860 842 842 842 842 842
LA20 10x10 902 924 914 - - 902 902 902
LA21 15x10 1046 1172 “1084 1048 1046 1074 1047 1046
LA22 15x10 927 1040 944 - - 941 927 927
LA23 15x10 1032 1061 1032 - - 1032 1032 1032
LA24 15x10 935 1000 976 937 935 954 939 938
LA25 15x10 977 1048 1017 977 977 1010 977 979
LA26 20x10 1218 1304 1224 - - 1218 1218 1218
LA27 20x10 1235 1325 1291 1235 1235 1277 1236 1235
LA28 20x10 1216 1256 1250 - - 1245 1216 1216
LA29 20x10 1157 1294 1239 1164 1164 1234 1160 1168
LA30 20x10 1355 1403 1355 - - 1355 1355 1355
LA31 30x10 1784 1784 1784 - - 1784 1784 1784
LA32 30x10 1850 1850 1850 - - 1850 1850 1850
LA33 30x10 1719 1719 1719 - - 1719 1719 1719
LA34 30x10 1721 1721 1721 - - 1721 1721 1721
LA35 30x10 1888 1888 1888 - — 1888 1888 1888
LA36 15x15 1268 1351 1305 1268 1268 1303 1268 1268
LA37 15x15 1397 1485 1423 1397 1397 1422 1407 1411
LA38 15x15 1196 1280 1255 1198 1196 1245 1196 1201
LA39 15x15 1233 1321 1273 1233 1233 1269 1233 1240
LA40 15x15 1222 1326 1269 1226 1224 1255 1229 1233
Average Gap 3.8796%1.3838% 0.1157% 0.0591% 1.5184% 0.0501% 0.1015%
of instance 43 43 13 13 26 43 43
of BKS obtained 16 20 8 11 13 37 36

57

Table 5.2 (Continued)

Genetic Algorithm Particle Swarm Optimization
GASA HGA-Param PSO-priority based PSO-permutation based HPSO
Wang Gongalves
& Best Best Best
etal. ; Average ; Average . Average
Zheng (2005) solution solution solution
(2001)
55 55 55 58.9 55 55.0 55 55.0
930 930 1007 1086.0 937 965.2 930 932.0
1165 1165 1242 1296.7 1165 1178.8 1165 1165.0
666 666 681 705.0 666 666.0 666 666.0
- 655 694 729.7 655 662.1 655 655.0
- 597 633 657.5 597 602.3 597 597.0
- 590 611 648.1 590 592.9 590 590.0
- 593 593 601.1 593 593.0 593 593.0
926 926 926 940.2 926 926.0 926 926.0
- 890 890 941.0 890 890.0 890 890.0
- 863 863 896.6 863 863.0 863 863.0
- 951 953 991.8 951 951.0 951 951.0
- 958 958 976.1 958 958.0 958 958.0
1222 1222 1222 1235.3 1222 1222.0 1222 1222.0
- 1039 1039 1058.4 1039 1039.0 1039 1039.0
- 1150 1150 1179.0 1150 1150.0 1150 1150.0
- 1292 1292 1292.2 1292 1292.0 1292 1292.0
- 1207 1232 1271.7 1207 1207.0 1207 1207.0
945 945 1006 1033.5 945 969.8 945 945.2
- 784 833 883.5 784 787.1 784 784.0
- 848 901 959.9 848 856.8 848 848.0
- 842 895 9458 842 851.5 842 842.0
- 907 963 1014.0 907 913.3 902 902.3
1058 1046 1201 12475 1055 1085.5 1046 1049.8
- 935 1046 11425 935 950.5 927 927.0
- 1032 1146 1205.1 1032 1032.0 1032 1032.0
- 953 1082 11409 937 967.8 935 937.9
- 986 1107 1176.6 983 1005.9 977 978.2
1218 1218 1409 1468.0 1218 1219.7 1218 1218.0
- 1256 1437 14954 1252 1269.1 1235 12514
- 1232 1434 1487.4 1216 1241.7 1216 1216.0
- 1196 1359 1429.8 1179 1215.8 1163 1168.8
- 1355 1517 1557.0 1355 1355.0 1355 1355.0
1784 1784 1886 1942.5 1784 1784.0 1784 1784.0
- 1850 2000 2065.6 1850 1850.0 1850 1850.0
- 1719 1832 1896.8 1719 1719.0 1719 1719.0
- 1721 1876 1953.5 1721 1721.0 1721 1721.0
- 1888 2027 2074.5 1888 1888.0 1888 1888.0
1292 1279 1437 1541.0 1291 13175 1268 1271.3
- 1408 1539 1628.0 1442 1475.1 1397 1401.6
- 1219 1370 1445.1 1228 1251.1 1196 1200.5
- 1246 1436 1499.4 1233 1285.6 1233 1233.0
- 1241 1380 1457.4 1236 1258.0 1224 1226.2
0.2764% 0.3916% 7.4021% 12.0940% 0.3719% 1.3491% 0.0159% 0.1091%
1 43 43 43 43
9 31 10 31 41

58

Table 5.3 Computation time of FT and LA test problems (in CPU seconds).

HGA-Param Particle Swarm Optimization™
Gongcalves et PSO-priority ~ PSO-permutation HPSO
al. (2005) based based
: Best Best Best
Problem Size Total time solution T_otal solution T_otal solution Total
(nxm) . time . time : time
time time time
FT06 6%6 13 0.0 34 0.0 32 0.0 28
FT10 10x10 292 1.0 112 21.7 91 4.1 157
FT20 20x5 204 3.0 180 19.2 138 19.8 219
LA01-05 10x5 40 0.4 60 5.3 50 0.5 38
LAO6-10 15x5 94 1.0 114 0.1 92 0.1 61
LA11-15 20x5 192 35 177 0.5 143 0.1 100
LA16-20 10x10 227 0.6 109 155 90 19.9 139
LA21-25 15x10 602 4.8 208 37.2 164 59.6 295
LA26-30 20x10 1303 12.6 325 103.1 259 90.5 579
LA31-35 30x10 3691 46.9 652 31.4 520 3.0 1462
LA36-40 15x15 1920 7.4 331 68.4 254 105.2 471

* Run on an AMD Thunderbird 1.333 GHz PC.
**Run on an AMD Athlon 1700+ PC.

59

Table 5.4 Computational result of TA test problems.

TSAB TSSB HPSO
Optimal Nowicki Pezzella
Problem Size solution &. . & . Begt Average
(nxm) (or upper Smutnicki Merelli solution
bound) (1996) (2000)
TAO1 15x15 1231 1241 1231 1236
TAO02 15x15 1244 1244 1244 1244 1245
TAO03 15x15 1218 1222 1222 1218 1224
TAO04 15x15 1175 1175 1175 1180
TAO05 15x15 1224 1233 1229 1224 1233
TA06 15x15 1238 1245 1238 1248
TAO7 15x15 1227 1228 1228 1229
TA08 15x15 1217 1220 1220 1217 1220
TA09 15x15 1274 1282 1291 1274 1283
TA10 15x15 1241 1259 1250 1249 1264
TA1l 20x15 (1359) 1371 1366 1386
TA12 20x15 (1367) 1377 1379 1370 1380
TA13 20x15 (1342) 1362 1350 1364
TAl4 20x15 1345 1345 1345 1345 1350
TA15 20x15 (1339) 1360 1350 1364
TA16 20x15 (1360) 1370 1368 1377
TA17 20x15 1462 1481 1473 1480
TA18 20x15 (1396) 1413 1426 1407 1425
TA19 20x15 (1335) 1352 1351 1335 1353
TA20 20x15 (1348) 1362 1366 1358 1373
TA21 20%20 (1644) 1659 1658 1679
TA22 20x20 (1600) 1623 1614 1625
TA23 20x20 (1557) 1573 1559 1578
TA24 20x20 (1646) 1659 1654 1664
TA25 20x20 (1595) 1606 1616 1632
TA26 20x20 (1645) 1657 1666 1662 1679
TA27 20x20 (1680) 1697 1690 1712
TA28 20x20 (1603) 1622 1617 1627
TA29 20x20 (1625) 1629 1635 1634 1645
TA30 20x20 (1584) 1614 1589 1613
TA31 30x15 1764 1766 1771 1766 1772
TA32 30x15 (1795) 1841 1840 1823 1848
TA33 30x15 (1791) 1832 1833 1818 1834
TA34 30x15 (1829) 1846 1844 1879
TA35 30x15 2007 2007 2007 2010
TA36 30x15 1819 1825 1825 1843
TA37 30x15 1771 1815 1813 1795 1808
TA38 30x15 1673 1700 1697 1681 1701
TA39 30x15 1795 1811 1815 1796 1810
TA40 30x15 (1674) 1720 1725 1698 1714

60

Table 5.4 (Continued)

TSAB TSSB HPSO
Optimal Nowicki Pezzella
Problem Size solution &_ . & _ Be§t Average
(nxm) (or upper Smutnicki Merelli solution
bound) (1996) (2000)

TA41 30%x20 (2018) 2045 2047 2071
TA42 30x20 (1949) 1979 1970 1984
TA43 30x20 (1858) 1898 1899 1928
TA44 30x20 (1983) 2036 2019 2039
TA45 30x20 (2000) 2021 2010 2032
TA46 30x20 (2015) 2047 2041 2070
TAA47 30x20 (1903) 1938 1935 1958
TA48 30%20 (1949) 2001 1996 1994 2022
TA49 30%20 (1967) 2013 1992 2015
TAS0 30x20 (1926) 1975 1975 1998
TA51 50x15 2760 2760 2760 2760
TAL2 50x15 2756 2756 2756 2758
TA53 50x15 2717 2717 2717 2717
TAS4 50x15 2839 2839 2839 2840
TA55 50x15 2679 2679 2684 2679 2694
TA56 50x15 2781 2781 2781 2785
TA57 50x15 2943 2943 2943 2943
TAS8 50x15 2885 2885 2885 2885
TAS9 50x15 2655 2655 2655 2666
TAGB0 50x15 2723 2723 2723 2732
TA61 50%20 2868 2868 2868 2868 2896
TA62 50%20 2869 2902 2942 2930 2958
TA63 50%20 2755 2755 2755 2755 2774
TA64 50%20 2702 2702 2702 2702 2718
TA65 50%20 2725 2725 2725 2735 2759
TA66 50%20 2845 2845 2845 2848 2869
TA67 50%20 2825 2841 2865 2840 2861
TAGBS 50x20 2784 2784 2784 2784 2802
TAB9 50x20 3071 3071 3071 3071 3096
TA70 50x20 2995 2995 2995 3005 3041
TA71 100%20 5464 5464 5519 5595
TAT72 100%20 5181 5181 5211 5305
TA73 100%20 5568 5568 5581 5655
TA74 100%20 5339 5339 5355 5412
TA75 100%20 5392 5392 5466 5563
TA76 100%20 5342 5342 5396 5504
TAT77 100%20 5436 5436 5444 5493
TA78 100%20 5394 5394 5394 5476
TAT9 100%20 5358 5358 5363 5434
TA80 100%20 5183 5183 5183 5209 5364
Average Gap 0.7792% 0.8122% 0.5659% 1.4651%
of instance 33 80 80

of BKS obtained 12 31 27

61

Table 5.5 Comparison with TSSB (Pezzella & Merelli, 2000) on TA test problems.

TSSB” HPSO™

Problem (r?xzrﬁ) Averagegap Tota time Average gap Jénglitgilgtn Total time
TA01-10 15x15 0.4502% 2175 0.0726% 99 514
TA11-20 20x15 1.1537% 2526 0.5023% 345 855
TA21-30 20x20 1.0840% 34910 0.7029% 401 1238
TA31-40 30x15 1.4475% 14133 0.7654% 1185 2026
TA41-50 30x20 1.9474% 11512 1.6133% 1734 2769
TA51-60 50x15 0.0187% 421 0.0000% 565 2909
TA61-70 50%x20 0.3960% 6342 0.3463% 2322 2862
TA71-80 100%20 0.0000% 231 0.5244% 2797 3137
Total Average Gap 0.8122% 0.5659%

* Run on a Pentium 133 MHz PC.
**Run on an AMD Athlon 1700+ PC.
***Decreasing the percentage to perform local search procedure reduces the computation time.

5.7 Concluding Remarks

We have presented a PSO for the job shop scheduling problem. We modified the
representation of particle position, particle movement, and particle velocity to better
suit it for JSSP. We aso applied Tabu, Search:to improve solution quality. The

computational results show that"-HPSO can abtain better solutions than other methods.

For further research, if the HPSO we proposed i's implemented to other sequential
ordering problems, there are two aspects for discussion: (1) Modify particle position
representation for better suitability to the problem. In the original PSO design, the
particles search solutions in a continuous solution space. Although most sequential
ordering problems can be represented by the priority-based representation, it may not
suit the sequential ordering problems. Preference list-based representation or other
representations will better suit the algorithm for sequential ordering problems. (2)
Design other particle movement methods and particle velocity for the modified
particle position representation. In addition, which particle movement method or
particle velocity is better could be a further research topic. Table 5.6 shows the

summary of the HPSO for JSSP.

62

Table 5.6 Summary of the HPSO for JSSP

Components The concept of thiscomponents
: . The preference-list representation has
Particle Position _ . .
1 Preference-list more Lamarckian than priority-based

Representation

representation

Particle Velocity Tabu list

The swap operator is appropriate to
preference-list representation. It also fits

Particle Movement Swap operator

in with the concept of correlation and
connectivity.

Decoding)
3 G&T agorithm
Operator

The G&T algorithm can restrict the search
area but not exclude the optimal solution.

4 |Other Srateies Diversification
& Local search

The diversification strategy can prevent
particles rapped in local optima.

The local search can further improve the
solution quality,

63

5.8 Appendix

The pseudo code of the PSO for JSSPis given below:

initialize a population of particles with random positions.
for each particle £ do

apply G& T algorithm to decode X* into aschedule S*.

set the k™ pbest solution (pbest*) equal to S*, pbest* — S*.

end for

set ghest solution equal to the best pbest* .

repeat
update velocities according to Figure 5.3.
for each particle £ do
move particle k£ according.to Figure 5.5.
apply G& T algorithm to decode—x"—into S* .
update pbest solutions and ghesz solution according to Figure 5.6.
apply tabu searchon S* .
update pbest solutions and ghest solution according to Figure 5.6.
end for

until maximum iterationsis attained

CHAPTER 6
A PARTICLE SWARM OPTIMIZATION FOR THE OPEN

SHOP SCHEDULING PROBLEM

This chapter presents a new particle swarm optimization (PSO) for the open shop
scheduling problem (OSSP). Compared with the original PSO, we modified the
particle position representation using priorities, and the particle movement using an
insert operator. We aso implemented a modified parameterized active schedule
generation algorithm (mP-ASG) to decode a particle position into a schedule. In
mP-ASG, we can reduce or increase the search area between non-delay schedules and
active schedules by controlling the maximum delay time allowed. Furthermore, we
hybridized our PSO with beam search. The computational results show that our PSO

found many new best solutionsof the unsolved problems.

6.1 Particle Position Representation

In the previous researches (Liaw, 2000) and (Prins, 2000), an OSSP solution is
represented by a permutation list, which is an ordered list of operations. For example,

the following is a permutation list for a 3-job 2-machine problem:

index : 1 2 3 4 5 6

permutation: [0, 0, 0, 0, 055 0]
Where o, isthe operation of job j that needs to be processed on machinei. In the list,

the prior operation has higher priority to be put into schedule. In our algorithm, we
represent the particle £ position by an mxn priority matrix for an n-job m-machine

problem, i.e.

65

k k
Xppo X ot Xy,

k k k
Xt = X1 x?z o Xy,
k k k

xml me xmn

Where xf denotes the priority of operation o, of particle k. We can transfer the
permutation list to a priority matrix. We randomly set x]; between (p—0.5) and

(p+0.5), that is, x < p+rand,-05, where p is the location of o, in the
permutation list, and rand, is a random variable between O and 1. Therefore, the
operation with smaller x’j‘ has higher priority to be put into schedule. The

permutation list mentioned above can be randomly transferred to

. [06 58 52
33 21 39;

When we implement insert operator,-the-advantage of the priority matrix is to
reduce the computation complexity. Fer.example, in the permutation list mentioned
above, when we want to insert o,, into the third location of the permutation list, we
first need to move o, to the sixth location, move o,, to fifth location, move o,,

to the fourth location, and than insert o,, tothethird location, i.e.

permutation: [0, 0, 0, 0y, 0, 04l

D

On the average, the insert operator costs O(n/2) stepsfor each insertion.

However, if we implement insert operator on a priority matrix, we only need to

set x; « 3+rand,—-05 when we want to insert o,, to the third location of the

permutation list. Therefore, there is only one step needed for each insertion. For

66

example, if the random number rand, equals 0.9, the following is the X* after

0., inserted into the third location:

A {0.6 3.4 5.2}
33 21 39|

In X*, both o, and o, are on the third location of the permutation list (i.e.
both x}, and xi are between 2.5 and 3.5), but the values of x;, and x} are
different due to the random variable rand,. Consequently, the order of o, and o,
to be put into the schedule is also randomly determined. This means that, if the
priority matrix shows that there are more than two operations located on the same
location of the permutation list, the order of the operations on the same location is
randomly determined by the random variable rand,. The detail of the particle

movement operator is described in:section 6.3.

The PSO we proposed differsfrom the original PSO design in that the gbest and
pbest solutions do not record the best pesitions found so far, but rather the best
schedules generated by the decoding operator.‘In our algorithm, the decoding operator
puts the operations one by one into a schedule. The sequential order of the operations
that the decoding operator puts them into the schedule can be formulated as an

operation sequence. Then we can transfer the operation sequence to an mxn matrix

k .

S*,l.e
k k k
S S Sy,
k k k

gk = 82 S.zz Sy, .

k k k
Sml SmZ e Smn

k
Where s; denotes the location of operation o, in the operation sequence. For
example, if the operation sequence generated by the decoding operator is as follows:

67

index : 1 2 3 4 5 6

operation sequence:. [0;;3 0, 05, 0y, 05 0]
we can transfer the operation sequence to the matrix S*:
gk _ 5 31
|6 2 4]
When we update pbest and gbest solutions, we do not record the best positions

found so far (i.e. X"), but rather the locations of the operations in the operation

sequence, which is generated by the decoding operator (i.e. S*).
6.2 Particle Velocity

In the original PSO, the update of the particle velocity depends on the gbest and
the pbest solutions; and then each particle moves according to its velocity. There are
two purposes of the particle velocity: (a)-moving a particle toward the gbest and the

pbest solutions; (b) keeping inertia to prevent particles getting trapped in local optima.

In our PSO, the particle velocity-does.not. move particles toward the pbest and
the gbest solution, but only prevents particles getting trapped in local optima. If the
priority value is increased or decreased in this iteration, we keep the priority vaue
increasing or decreasing at the beginning of the next iteration with probability w,
which is the inertia weight in our PSO. The larger the w, the more iterations the
priority value keeps increasing or decreasing, and it is harder for the particle to return
to the current position. For an n-job m-machine problem, we represent the velocity of

particle k by an mxn matrix, i.e.

k k k
Viiu, Voo Vg,
k k k
yk = Vo V.zz Tt Vo,
k k k
le vm2 e vmn

68

Where v; isthevelocity of the operation o, of particle &, v; e{-10,1}.

Compared with the original PSO, the velocity in our PSO only considers whether

thevalueof xj islarger or smaller than pbest; (gbest;), but does not consider the
. k k - - k - - -
distance from x; to pbest; (gbest;). In our agorithm, if x; is reduced in this
iteration, that is, pbestt (gbest;) is smaller than x; and x; is set toward
pbest; (gbest;), we set v, — -1, indicating that x; should be kept decreasing

one (i.e. x; < x; —1) in the next iteration with probability w. On the contrary, if

k
Xij

isincreased in this iteration, that is, pbest;; (gbest,)islarger than x; and xj
- - - - k
is set toward pbest); (gbest;), we'set v; — 1 indicating that x; should be keep

increasing one (i.e. x} « xj +1) inthe nextiteration with probability w.

The velocity can be contralled by inertia weight w. We randomly update

velocities at the beginning of the iteration. For each particle k and operation o, if

v; doesnot equal 0, v will be set to O with the probability (1-w). This means that

ij
if x; keepsincreasing or decreasing, x/ stops keeping increasing or decreasing in
this iteration with the probability (1-w). The pseudo code for updating velocities is

given in Figure 6.1. The complexity of updating particle velocity for each particle is

O(mn) , where mn isthe number of operations.

69

for each particle k and operation o, do
rand ~ U(0,1)
if (vl]]‘ # 0) and (rand > w) then
vl.];. <0
end if
end for

Figure 6.1 The pseudo code of updating velocities.

6.3 Particle M ovement

In our PSO, the particle movement is based on the insert operator. As mentioned

in section 6.1, we set x! « p+ rand,— 0.5 if we want to insert o, to the p"

location in the permutation list. In addition, the location of operation o, in the
operation sequence of k" pbest and ghest solution are pbest; and gbest,
i

respectively. When particle & moves, for @l o, if- v; equalsO, the x; will be set

to pbest}; +rand,— 0.5 with probability-¢;—and set to gbest; +rand,— 0.5 with

probability c,, where rand, isarandomvariable betweenOand 1, and ¢, and ¢,
are constants between 0 and 1, and ¢, +¢, <1. For example, assume that V%, X*,

pbest”, gbest, c,,and c, areasfollows:
. |-1 0 ., |25 33 . |1 4 3 4
k= , X = , pbest* = , gbest = :
0O O 13 42 3 2 1 2
¢, =07, ¢, =0.1.
For o,;:
Because vj; #0, xf « xj, +vi, thatis, xj; =1.5.
For o,,:
Because v, =0, randomly generated random variable rand, = 0.6.

70

Because rand, < c,, randomly generated random variable rand, = 0.3.
Because pbest;, > x,,, set v}, <1, and then x;, < pbest), + rand,- 0.5,
thatis, x}, =3.8.
For o,:
Because vi, =0, generate random variable rand, =0.9.
Because rand,>c, +c,, we do not change the value of x}, .
For o,,:
Because v}, =0, randomly generated random variable rand, = 0.75.

Because ¢, <rand, <c, +c,, randomly generated random variable rand, =

0.8.

Because ghest,, < xs,, Set v,, <=1, and then =x, < ghest,, + rand,- 0.5, that

is, x5, =2.3.

Therefore, the V¥ and X* after particle & ismoved are:

-1 1 ., [15 38
Vi = and X" = :
0 -1 13 23

Furthermore, we adopt a mutation operator in our algorithm. After a particle

moves to a new position, we randomly choose an operation and then mutate its

priority value x/ disregarding vj. If x} <(mn/2), we randomly set the value of

xi between (mn—n) and mn,and set vi < 1. If x} > (mn/2), we randomly set

the value of x; between 0 and n, and set v} «<——1. The pseudo code of particle

movement is given in Figure 6.2. The complexity of each particle movement is
O(mn) .

71

fori—1tomdo /ffor al operations
for j—1ton do
if (v;‘ =0) then
rand,~ U(0,1)
if (rand, <c,) then
if (pbest;; lef,) then vf; =1 ese vf; =-1
rand,~ U(0,1)
k k
x; < pbest; +rand, - 0.5
end if
if (¢, <rand, <c, +c,)then
if (gbest, lef,) then V:; =1 else V:; =-1
rand,~ U(0,1)
k
x; < gbest, +rand,—0.5
end if
end if
end for

end for
// L mutation operator
(i, j) «Randomly choose an gperation
rand,;~ U(0,1)
H k
if (x; <(mxnl2))then

xl’/‘ — mXn—nXrand;; v,.'j‘. =4
ese

k . k _

X, nxrand,; vy =-1
end if
/l T mutation oper ator

Figure 6.2 The pseudo code of particle movement.

6.4 Decoding Operators

If we want to decode a particle position matrix into a schedule, we can put the

operations into a schedule by ascending order of x/ . However, if we directly put the

operations into a schedule by ascending order of x*, it will be a semi-active schedule.

i
The set of semi-active schedules is very large and has poor quality in terms of

makespan. Therefore, we need an efficient decoding operator to decode the particle

72

position into a schedule within a schedule set, which set size is smaller and with better

solution quality.

Because there is no precedence relation between the operations of each job in
OSSP, the solution space of OSSP is much larger than flow shop and job shop
scheduling problems. Therefore, a decoding operator, which can reduce the search

area but does not exclude the optimal solution, will improve the efficiency of PSO.

The optimal OSSP solution should be an active schedule. In an active schedule,
the processing sequence is such that no operation can be started any earlier without
delaying another operation (French , 1982). However, the set of active schedules is
usually very large and with poor quality in terms of makespan. The set of non-delay
schedules is a subset of active schedules: In‘anen-delay schedule, no machine is kept
idle at atime when it could begin processing other operations (French , 1982). The set
of non-delay schedules is much smaller-than the active schedules, and usually with
better quality in terms of makespan.. However, the optimal solution is not a non-delay

schedule in most of the test problems.

We will describe four different decoding operators that generate schedules
between a non-delay set and an active set. All the decoding operators are based on
Giffler and Thompson's algorithm (Giffler & Thompson, 1960), which can decode a
particle position into an active schedule. We briefly describe the G&T agorithm for
OSSP in Figure 6.3. If we modify the operation set O in the G&T agorithm as

follows, this algorithm will decode the particle position into a non-delay schedule:

Determine s eg/}eig{sy.}.
|dentify the operation set O < {o; |s; =s",0, € Q}.

73

Moreover, we can generate schedules between a non-delay set and an active set by

modifying the operation set O inthe G&T algorithm.

Notation:

o, : the operation of job j that needs to be processed on machine i.

S : the partial schedule that contains scheduled operations.

Q : the set of schedul able operations.

s, theearliest time at which o, € Q could be started.

p; - theprocessing time of o, .

f; - theearliest time at which o, € Q could befinished, f,=s,+p,.

G& T algorithm for OSSP:

Initialize S « ¢; Q isinitialized to-contain-all operations.
repeat
Determine [~ « min{ £}
|dentify the operation set O «{o, |, < /" ,0, € Q}.
Choose o, from the operation set O with the smallest x, add

0, to §,andassign s, asthestartingtimeof o, .

Delete 0; from Q.

Until Q isempty.

Figure 6.3 The G&T agorithm for OSSP,

74

6.4.1 Decoding Operator 1 (A-ND)

The first decoding operator randomly identifies the operation set O in the
active set or the non-delay set. It was first proposed in (Prins, 2000) and was also
proposed in (Blum, 2005). It can be reached by modifying the operation set O in the

G&T agorithm:

Determine s* < min{s;} and f* < min{f,}.
0,;€Q 0;;€Q

Randomly identify the operation set O equal to {o; |s; < " ,0, € Q}

or {o;|s; =s",0, € Q} with probability 0.5 respectively.

To determine s* and f~ costs Q(mn), each, and to choose o; from the

operation set O with the smallest 7 ialso. costs O(mn) . There are mn

operations needing to be schedule, hence the.complexity of decoding operator 1 is

O(m?*n?).
6.4.2 Decoding Operator 2 (mP-ASG)

Goncalves et al. (2005) proposed a parameterized active schedule generation
algorithm (P-ASG) for the job shop scheduling problem. We (Sha & Hsu, 2006)
modified the algorithm based on the G& T algorithm for better performance and so it
is easier to implement. The modified parameterized active schedule generation

algorithm (mP-ASG) can also be applied to OSSP,

The basic idea of parameterized active schedules is to control the search area by
controlling the delay times that each operation is allowed. If al of the delay times are
equal to zero, the set of parameterized active schedules is equivalent to non-delay

schedules. On the contrary, if al of the delay times are equal to infinity, the set of

75

parameterized active schedules is equivalent to the active schedules. Therefore, the set
of parameterized active schedules is between the non-delay schedules and the active
schedules. Fig. 5 (Gongalves et al., 2005) shows the relationship between the sets of
semi-active, active, non-delay, and parameterized active schedules. It also shows that
the size of the parameterized active schedules depends upon the delay times that each

operation is allowed.

Par ameterized active

Delay Time 1 Delay Time 2
Delay Time 1 < Delay Time 2

Figure 6.4 Parameterized active schedules.

In our mP-ASG, we defined the delay time delay < (f* — s) x delayweight , SO
that modifying the operation set O in the G&T algorithm can generate the

parameterized active schedules:
Determine s « melg{sj} .« melg{fj} , and delay « (f —s)x

delayweight .
Identify the operation set O «{o; |s, <s* +delay,0; € Q}.

The value of delayweight is between 0 and 1 for controlling the search area.

When delayweight equals O, the operation set O is equal to the non-delay set. On

76

the contrary, when delayweight equals 1, the operation set O isequal to the active
set. Inour PSO, delayweight increases linearly from O to 1 during arun. This means
that the PSO searches solutions near to the non-delay set in earlier iterations for better
initial solutions, and then enlarges the search area to prevent missing the optimal
solution. As with decoding operator 1, the complexity of decoding operator 2 is

Oo(m®n®).
6.4.3 Decoding Operator 3 (mP-ASG2)

We implement fathoming constraints in mP-ASG to further reduce the size of the
operation set O. The fathoming constraints originate from one of the fathoming
criteria in the branch-and-bound algorithm. One of the fathoming criteria in the
branch-and-bound algorithm is that, if the lower, bound of a partial solution is larger
than the current upper bound (for a minimization problem), the partial solution is
fathomed. Hence the partial solution need not be investigated any further because it

does not yield a better solution than the current upper bound.

In OSSP, the lower bound of a partia schedule after o, is put into it can be

roughly estimated by max{s, +»",s; +r/}, where " (r/) is the sum of the
remaining process times on machine i (job ;). Therefore, we can fathom whether

the lower bound of a partial schedule after o, is put into it is larger than current
upper bound — the makespan of the gbest solution, C., (gbest) , by whether o, fits

in with the following constraint:

max{s; + 7", s; +r/} < Cru(gbest) (5.2)

that is,

77

Sy < Cra (gbest) — 1 (5.2
and
Sy < Crax (gbest) =17 (5.3)

However, we cannot ensure that the lower bounds of al the generated partia
schedules are lessthan C,.,, (gbest) . If the lower bound of a partial schedule is larger
than C,.(gbest), there is no unscheduled operation to fit in with constraints (5.2)

and (5.3). To avoid such a situation, we modify the constraints by:
sy Smax{s!, C . (gbest) —r"} (5.4)
and
sy Smax{s/, C . (gbest)—r;} (5.5)

where sM = rgljn{sj lo, € Qpand 57 = n\liin{sij lo; € Q} . This means that

when there is no unscheduled operation to fit in with constraints (5.2) and (5.3) on
some machines or jobs in the partial schedule, we prevent the machines or jobs being

idle as much as possible.

We name the constraints (5.4) and (5.5) “fathoming constraints”. The fathoming
constraints are used to reduce further the size of the operation set O. The
parameterized active schedules with fathoming constraints can be generated by
modifying the operation set O inthe G&T agorithm:

Determine s*emig{sﬁ} : f*<—mi2{fl.j} , delay « (f —s)x
delayweight ,and s, s

J M J . .
o, v foral i, .

78

Identify the operation st O « {o,|s, <s" +delay,0, € Q,
s; Smax{s}, Cou (gbest) —rM} s, Smax{s’, C (gbest) —r]i]}}.

J M J
i i T

To determine s*, f~ costs O(mn), and to determine all the s, s

also costs O(mn) , so the complexity of decoding operator 3 is O(m®n?).
6.4.4 Decoding Operator 4 (mP-ASG2+BS)

Blum (2005) hybridizes the solution construction mechanism of ant colony
optimization (ACO) with beam search (BS). He also shows that the ACO hybridized
with BS performs much better than standard ACO. Since both the solution
construction mechanism of ACO and our PSO are based on the G&T algorithm, we

can aso hybridize the decoding operators with BS.in the same way.

BS is an adaptation of the-branch-and-bound method in which only some nodes
are evaluated in the search tree. In each step, k,, partia solutions at most are
allowed to extend, and the partial solutions can only extend in k,, possible ways at

most. The extendable partial solution set, B, is called the beam and the largest size of

the set, £, , iscalled the beam width. The partia schedule is evaluated by its lower

bw?

bound, which can be easily computed as follows (Gonzalez & Sahni, 1976):

LB =max{X, Y} (5.6)
where

X = max{s)! +r/ |Vo, € Q} (5.7)

Y= max{slM +rM Vo, e Q} (5.8)

We chose the decoding operator mP-ASG2 to hybridize with BS, because it

79

outperforms others as we will illustrate in section 6.6.1. We briefly describe the

procedure of MP-ASG2+BS in Figure 6.5.

Initialize S < ¢; choose o, withthesmallest x;;add o, to §; B —{S}.

repeat
Initialize B,, — ¢.
for each partial schedule S in B do

0, — Select at most k,, operations from the operation set O

ext

identified as mP-ASG2 with the smallest x; .
for each o, € O,, do

S’ «Extend S'by adding o;,andthenadd S’ to B,,.

i]‘ 1

end for

end for

if |B,, |<k,, then
B« B,,.

else
B <« Select k,, best partial schedules in B,, with the
smallest lower bound.
end if
until each § in B contains all operations.
Output the best schedule with the smallest makespan in B as the

schedule generated by particle % .

Figure 6.5 The pseudo code of the decoding operator mP-ASG2+BS.

In decoding operator 4, for each partial schedule S in B, it costs O(mn) to

80

select at most k,, operations from the operationset O identified as mP-ASG2 with

the smallest x;. There are mn levels of the search tree and k,, partial schedules

in B at most. Therefore, the complexity of decoding operator 4 is O(k,,m’n?) .

Blum (2005) sets k,, = mn, so the complexity of Beam-ACO to construct a solution
is O(m®n®). It is evident that the computation time of BS massively increases
following the problem size increasing. We modified the parameter settings in (Blum,
2005) to prevent such a situation as much as possible. In our algorithm, There is only
one node in the first level of the search tree, and we set k,, = 2, the smallest setting
and k

value of & =2n. The parameter k,, is dependent upon the number of

ext bw

jobs (n) rather than the number of operations (mn), so the computation time of BSis
more insensitive to the problem size than (Blum;,2005). Consequently, the complexity
of decoding operator 4 is O(m?n®) . We will test and compare these four decoding

operators in section 6.6.1.

6.5 The Diversification Strategy

We also implement the diversification strategy as described in section 5.4. The
diversification strategy keeps the pbest solutions different (i.e. it keeps the makespans
of pbest solutions different). In the diversification strategy, the pbest solution of each
particle is not the best solution found by the particle itself, but one of the best N
solutions found by the swarm so far where N is the size of the swarm. The complexity
of updating the gbest and pbest solutions with diversification strategy for each particle

is O(Nmn).
6.6 Computational Results

We tested our PSO on the benchmark problems proposed by Taillard (1993)
(tai_*x* _*), Brucker et al. (1997) (j*-per*-*), and Guéret and Prins (1999) (gp*-*).

81

The program was coded in Visual C++ and run 20 times on each problem under
Windows XP on an AMD Athlon 1800+ PC. In the preliminary experiment, four
swarm sizes N (10, 30, 60, 100) were tested, where N=60 was superior and used for
al further studies. The parameters ¢; and ¢, were tested between 0.1 and 0.7 in
increments of 0.2. The inertiaweight w was decreased linearly from w,, to w,,
during arun. The parameter w,,, wastested on 0.5, 0.7, and 0.9. Another parameter

w

was tested on 0.1, 0.3, and 0.5. The settings ¢, =0.7, ¢, =0.1, w_, =0.9,

min max
and w,;, =0.3 were superior. As mentioned before, the parameter delayweight in
mP-ASG, mP-ASG2, and mP-ASG2+BS increases linearly from 0 to 1 during a run.
All of the numeric parameters are determined empirically. The program only stops at
the CPU time limits even if the lower bound reached. We set the CPU time limit of
each run referring to ACO (Blum, 2005). Because the results of ACO (Blum, 2005)
were obtained on an 1100 MHz PC, and the machine is slower than ours, we set the

time limits of each run at only-half iof ACO-(Blum; 2005) to confirm that the spent

CPU timeis not longer than ACO (Blum, 2005).
6.6.1 Comparison of Decoding Operators

We tested these four decoding operators on the hardest problem sets. j8-per*-*
and gpl10*-*. We set the time limits of each run on the j8-per*-* and gpl0-* to 245
and 500 CPU seconds respectively. As mentioned above, the time limit of each runis
half of ACO (Blum, 2005). Each program was run 20 times on each problem.
Moreover, to show whether the mutation operator can improve the solution quality,

we also tested our PSO, which does not implement the mutation operator.

Table 6.1(a) shows the computational results of the four decoding operators, and
Table 6.1(b) shows the computational results, in which we do not implement the

mutation operator. In the tables, the terms ‘Best’ and ‘Average’ mean the best and

82

average solution of the 20 runs respectively. The ‘BKS' is the best-known solution. If
the BKS is not proved to be optimal, it is bracketed. The BKSs in the tables include
our method. If the BKS is marked an asterisk, it means that the value is obtained by
one of our PSOs. If the solution value is indicated in bold, it means that the value is

equal to the BKS. For each problem, the solution gap is defined by
(C.x —BKS)I BKS as a percentage, where C,, is the makespan of the solution.

Therefore, the average gap is obtained by averaging the solution gaps.

Compare the results between Table 6.1(a) and Table 6.1(b). All the average gaps
in Table 6.1(a) are smaller than those in Table 6.1(b). This shows that the mutation
operator improves the solution quality. In Table 6.1(a) and Table 6.1(b), the results
show that the average gap of mP-ASG2 islessthan A-ND and mP-ASG It is evident
that the fathoming constraints in mP-ASG2. can, successfully reduce the search area
without excluding the optimal solution, and thus obtain better results. In Table 6.1(a),
the mP-ASG2+BS obtains the “best result on j8-per*-* test problems, and the
mP-ASG2 obtains the best result on gplO-* test problems. Therefore, we chose
mP-ASG2 and mP-ASG2+BS for further tests, and compared the results with other

metaheuristics.

83

Table 6.1(a) Computational results of four decoding operators with mutation operator

A-ND mP-ASG mP-ASG2 mP-ASG2+BS
Problem — BKS Best Average Best Average Best Average Best Average
j8-per0-1 (1039) 1059 1067.50 1039 1050.65 1045 1051.65 1039 1043.25
j8-per0-2 (1052) 1057 1066.60 1055 1063.45 1052 1058.30 1052 1053.60
j8-perl0-0 (1020) 1029 1034.50 1020 1034.80 1024 1033.05 1020 1026.10
j8-per10-1 (1002)° 1011 1019.95 1008 1015.35 1008 1018.25 1002 1007.55
j8-per10-2 (1002)° 1009 1024.05 1002 1014.70 1002 1012.45 1002 1005.95
j8-per20-0 1000 1003 1006.55 1000 1000.95 1000 1000.90 1000 1000.60
j8-per20-1 1000 1000 1000.00 1000 1000.00 1000 1000.00 1000 1000.00
j8-per20-2 1000 1001 1004.70 1000 1004.10 1000 1003.15 1000 1000.00
Average gap 0.660% 1.334% 0.111% 0.846% 0.196% 0.771% 0.000% 0.271%
gp10-01 (1093)" 1093 1096.00 1093 1096.25 1093 1097.40 1093 1096.75
gp10-02 (1097) 1097 1097.15 1097 1097.05 1097 1097.00 1097 1099.05
gpl10-03 (1081) 1087 1094.85 1081 1087.90 1081 1087.10 1084 1090.30
gp10-04 (1083)° 1089 1091.30 1086 1089.10 1086 1089.10 1083 1092.10
gp10-05 (1073)" 1084 1091.15 1082 1087.70 1073 1086.50 1082 1092.15
gp10-06 (1071) 1071 1092.80 1071 1071.00 1071 1071.00 1071 1074.25
gp10-07 (1080)° 1081 1081.40 1081 1081.60 1080 1080.95 1081 1081.05
gpl0-08 (1095) 1095 1096.45 1095 1097.80 1095 1097.25 1097 1097.55
gpl0-09 (1115) 1116 1122.15 1116 1118.30 1115 1117.80 1123 1127.00
gpl0-10 (1092) 1092 1094.95 1092__ 1092.05 1092 1092.15 1092 1093.95
Average gap 0.232% 0.724% 0430% 0.358% 0.028% 0.335% 0.211% 0.590%
The time limits for each run on problems j8-per*-*+and gpl0-* are 245 and 500 CPU seconds
respectively.

"“The BKSis found by one of our PSOs.

Table 6.1 (b) Computational results of<four decoding operators without mutation operator

A-ND mP-ASG mP-ASG2 mP-ASG2+BS
Problem BKS Best Average Best Average Best Average Best Average
j8-per0-1 (1039) 1056 1064.85 1046: | 11054.95 1047 1054.80 1042 1043.95
j8-per0-2 (1052) 1057 1068.25 1064 1064.00 1064 1064.00 1053 1058.85
j8-perl0-0 (1020) 1030 1039.65 1022 1035.25 1022 1035.80 1020 1028.30
j8-per10-1 (1002)° 1016 1023.25 1009 1015.70 1009 1015.65 1002 1008.20
j8-per10-2 (1002)° 1009 1024.20 1002 1015.50 1002 1014.30 1002 1006.40
j8-per20-0 1000 1002 1008.30 1000 1000.80 1000 1001.05 1000 1000.45
j8-per20-1 1000 1000 1000.05 1000 1000.00 1000 1000.00 1000 1000.00
j8-per20-2 1000 1000 1006.60 1000 1005.10 1000 1005.00 1000 1000.00
Average gap 0673% 1474% 0.339% 0.934% 0.351% 0.926% 0.048% 0.381%
gp10-01 (1093) 1095 1100.00 1095 1101.05 1095 1099.45 1093 1097.40
gp10-02 (1097) 1099 1109.25 1097 1100.55 1097 1100.75 1098 1100.35
gpl0-03 (1081) 1088 1100.90 1088 1096.05 1087 1095.00 1085 1093.00
gpl0-04 (1083) 1090 1094.50 1090 1090.90 1090 1091.75 1087 1092.70
gpl0-05 (1073)° 1086 1094.90 1084 1092.25 1083 1092.20 1082 1090.10
gp10-06 (1071) 1071 1093.00 1071 1078.80 1071 1077.35 1071 1072.05
gp10-07 (1080)° 1082 1087.60 1081 1081.65 1081 1081.80 1081 1081.15
gp10-08 (1095)° 1098 1099.80 1097 1100.45 1098 1099.65 1096 1098.60
gp10-09 (1115) 1117 1127.40 1116 113155 1116 1126.40 1125 113135
gpl0-10 (1092 1092 1097.40 1092 1094.00 1092 1094.55 1092 1093.85
Average gap 0.393% 1.218% 0.335% 0.870% 0.324% 0.792% 0.332% 0.721%
The time limits for each run on problems j8-per*-* and gpl0-* are 245 and 500 CPU seconds
respectively.

*The BKSisfound by one of our PSOs.

6.6.2 Comparison with Other Metaheuristics

We compared our PSOs with the GA proposed by Liaw (2000) (denoted by
GA-Liaw), the GA proposed by Prins (2000) (denoted by GA-Prins), and the ACO
hybridized with beam search proposed by Blum (2005) (denoted by Beam-ACO). Our
results were obtained by 20 runs on each problem, and the time limit of each run is
half of Beam-ACO. The program only stops at the CPU time limits even if the lower
bound reached. It is important to remember that both our PSO and Beam-ACO
performed 20 runs, but the two GAs, GA-liaw and GA-Prins, performed only one run.
Moreover, in our PSO and Beam-ACO, the computation time of each run is
substantially longer than GA-liaw and GA-Prins. Therefore, we will mainly compare

our computational results with Beam-ACO.

Table 6.2 shows the results'of the test problems proposed by Taillard (1993). The
term ‘¢ is the average time needed by one run to get its best makespan value.
Compared with other test problem sets, Taillard ‘test problems are easier to solve.
Therefore, Beam-ACO and PSO-mP-ASG2+BS obtained all of the optimal solutions,
but PSO-mP-ASG2+BS is dightly better than Beam-ACO on average gaps. The ¢ of
PSO-mP-ASG2 and PSO-mP-ASG2+BS are quite similar on the problem set tai_4x
4 *. The reason for this is that the search area of these two PSOs is restricted by the
parameter delayweight . In the decoding operator, the delayweight increases
linearly form O to 1 during a run. This means that the search area of PSO is near to the
non-delay set in earlier iterations, and then enlarges after delayweight increases. If
the problem size is quite small but the ¢ is rather large, it means that the optimal
solution is far from the non-delay set, and the PSO can only obtain the optimal

solution when delayweight increases.

Table 6.3 shows the results of the test problems proposed by Brucker et al.

85

(1997). Although there are two best solutions obtained by PSO-mP-ASG2+BS worse
than Beam-ACO on test problem j7-per0-0 and j7-per20-1, al the average gaps
obtained by PSO-mP-ASG2+BS are better than Beam-ACO. Furthermore,
PSO-mP-ASG2+BS obtained new best-known solutions on test problem j8-perl10-1

and j8-per10-2.

86

Table 6.2 Results of the test problems proposed by Taillard (1993)

. . Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time
Problem BKS GA-Liaw GA-Prins Best Average Best Average ¢ Best Average ¢ limit(s)
tai_4x4 1 193 193 193 193 1930 193 1930 4.7 193 193.0 4.7 8
tai_4x4 2 236 236 239 236 236.0 236 2360 37 236 236.0 3.7 8
tai_4x4 3 271 271 271 271 2710 271 2710 47 271 271.0 5.0 8
tai_4x4 4 250 250 250 250 250.0 250 2500 23 250 2500 2.3 8
tai_4x4 5 295 295 295 295 295.0 295 2950 29 295 295.0 29 8
tal_4x4 6 189 189 189 189 189.0 189 189.0 21 189 189.0 21 8
tai_4x4 7 201 201 201 201 2010 201 2010 65 201 201.0 6.5 8
tai_4x4 8 217 217 217 217 2170 217 2170 64 217 2170 7.0 8
tai_4x4 9 261 261 261 261 261.0 261 261.0 13 261 261.0 1.3 8
tai_4x4 10 217 217 221 217 2170 217 2170 17 217 2170 17 8
Average gap 0.000% 0.311% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
tai_5x5 1 300 300 301 300 300.0 300 3000 12 300 3000 11 25
tai_5x5 2 262 262 263 262 262.0 262 2620 21 262 2620 2.1 25
tai_5x5 3 323 323 335 323 3230 323 3230 144 323 3230144 25
tai_5x5 4 310 310 316 310 3100 310 3100 104 310 3100101 25
tai_5x5 5 326 326 330 326 _+326.0 326 326.0 99 326 326.0 9.3 25
tai_5x5 6 312 312 312 312 3120 312 3120 84 312 3120 7.9 25
tai_5x5 7 303 303 308 3033030 308 3030 74 303 3030 7.3 25
tai_5x5 8 300 300 304 300 300.0 3007 300.0 135 300 300.012.7 25
tai_5x5 9 353 353 358 353 3530 353« 353.0 115 353 3530 7.9 25
tai_5x5 10 326 326 328 326 13260 3260 326.0 5.1 326 326.0 51 25
Average gap 0.000% 1.261% 0.000%..0:000% 0.000% 0.000% 0.000% 0.000%
tai_7x7_1 435 435 436 435 1435.0 435 4350 66 435 4350 29 49
tai_7x7_2 443 443 447 443 4430 443 4431 16.0 443 443.012.2 49
tai_7x7_3 468 468 472 468 468.0 468 468.1 16.8 468 468.0 9.2 49
tal_7x7_4 463 463 463 463 463.0 463 4630 5.6 463 463.0 3.0 49
tai_7x7_5 416 416 417 416 416.0 416 4160 28 416 416.0 29 49
tai_7x7_6 451 451 455 451 4514 451 4518 19.6 451 451.0135 49
tal_7x7_7 422 422 426 422 4222 422 4225 105 422 422.013.6 49
tai_7x7_8 424 424 424 424 4240 424 4240 14 424 4240 2.3 49
tai_7x7_9 458 458 458 458 458.0 458 4580 0.6 458 458.0 1.3 49
tai_7x7_10 398 398 398 398 398.0 398 3980 138 398 398.0 28 49
Average gap 0.000% 0.406% 0.000% 0.011% 0.000% 0.029% 0.000% 0.000%
tai_10x10 1 637 637 637 637 6374 637 639.1 182 637 637.0 94 50
tai_10x10 2 588 588 588 588 588.0 588 588.1 5.6 588 588.0 3.5 50
tai_10x10 3 598 598 598 598 598.0 598 599.8 22.9 598 598.0 10.1 50
tai_10x10 4 577 577 577 577 5770 577 5770 32 577 5770 26 50
tai_10x10 5 640 640 640 640 640.0 640 6409 174 640 640.0 4.0 50
tai_10x10 6 538 538 538 538 538.0 538 538.0 05 538 5380 1.1 50
tai_10x10 7 616 616 616 616 616.0 616 6163 114 616 616.0 3.9 50
tai_10x10 8 595 595 595 595 595.0 595 5956 17.5 595 595.0 7.0 50
tai_10x10 9 595 595 595 595 595.0 595 595.0 11.7 595 595.0 4.1 50
tai_10x10 10 596 596 596 596 596.0 596 596.1 9.8 596 596.0 5.0 50
Average gap 0.000% 0.000% 0.000% 0.005% 0.000% 0.091% 0.000% 0.000%

87

Table 6.2 (continued)

: . Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time
Problem BKS GA-Liav GA-Prins Best Average Best Average ¢ Best Average ¢ limit(9)
tai_15x15 1 937 937 937 937 937.0 937 937.0 46 937 937.0 43 1125
tai_15x15 2 918 918 918 918 918.0 918 9189 205 918 9180 9.1 1125
tai_15x15 3 871 871 871 871 871.0 871 871.0 50 871 871.0 43 1125
tai_15x15 4 934 934 934 934 934.0 934 9340 32 934 9340 39 1125
tai_15x15 5 946 946 946 946 946.0 946 9464 16.1 946 946.0 5.7 1125
tai_15x15 6 933 933 933 933 933.0 933 933.0 100 933 933.0 47 1125
tai_15x15 7 891 891 891 891 891.0 891 8916 223 891 891.0 104 1125
tai_15x15 8 893 893 893 893 893.0 893 8930 12 893 893.0 17.3 1125
tai_15x15 9 899 899 899 899 899.7 899 903.3 46.6 899 899.2 26.6 1125
tai_15x15 10 902 902 902 902 902.0 902 903.0 12.7 902 9020 6.9 1125
Average gap 0.000% 0.000% 0.000% 0.007% 0.000% 0.079% 0.000% 0.002%
tai_20x20 1 1155 1155 1155 1155 1155.0 1155 11558 24.9 1155 1155.0 16.6 200
tai_20x20 2 1241 1241 1241 1241 12410 1242 1245.2 56.8 1241 12410 235 200
tai_20x20 3 1257 1257 1257 1257 12570 1257 12570 55 1257 12570 196 200
tai_20x20 4 1248 1248 1248 1248 12480 1248 12480 4.0 1248 12480 19.6 200
tai_20x20 5 1256 1256 1256 1256 1256.0 1256 12560 7.9 1256 1256.0 19.6 200
tai_20x20 6 1204 1204 1204 1204 1204.0 1204 12041 12.0 1204 1204.0 196 200
tai_20x20 7 1294 1294 1294 1294 1294.0 1294 1296.6 485 1294 12940 254 200
tai_20x20_ 8 1169 1177 171 1169 .+1170.3 1173 1177.6 80.9 1169 1170.0 50.9 200
tai_20x20 9 1289 1289 1289 1289 - 12890 1289 1289.0 2.7 1289 1289.0 782 200
tai_20x20_10 1241 1241 1241 1241 1241.0 1241 12410 1.2 1241 12410 782 200
Average gap 0.068% 0.017% 0.000%._ 0.011% “0:042% 0.134% 0.000% 0.008%

88

Table 6.3 Results of the test problems proposed by Brucker et a. (1997)

. . Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time
Problem BKS GA-Liaw GA-Prins Best Average Best Average t Best Average ¢ limit(s)
j5-per0-0 1042 1042 1050 1042 1042.0 1042 1042.0 6.4 1042 1042.0 6.3 125
j5-per0-1 1054 1054 1054 1054 1054.0 1054 1054.0 0.0 1054 1054.0 13 125
j5-per0-2 1063 1063 1085 1063 1063.0 1063 1063.0 24.6 1063 10630 246 125
j5-per10-0 1004 1004 1004 1004 1004.0 1004 1004.0 349 1004 10040 348 125
j5-per10-1 1002 1002 1002 1002 1002.0 1002 1002.0 253 1002 10020 252 125
j5-per10-2 1006 1006 1006 1006 1006.0 1006 1006.0 25.2 1006 1006.0 251 125
j5-per20-0 1000 1000 1004 1000 1000.0 1000 1000.0 19.1 1000 10000 176 125
j5-per20-1 1000 1000 1000 1000 1000.0 1000 1000.0 1.0 1000 1000.0 27 125
j5-per20-2 1012 1012 1012 1012 1012.0 1012 1012.0 0.0 1012 10120 00 125
Average gap 0.000% 0.360% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
j6-per0-0 1056 1056 1080 1056 1056.0 1056 1056.0 37.2 1056 1056.0 421 180
j6-per0-1 1045 1045 1045 1045 1049.7 1045 10450 511 1045 10450 59.7 180
j6-per0-2 1063 1063 1079 1063 1063.0 1063 1063.0 705 1063 10630 726 180
j6-per10-0 1005 1005 1016 1005 1005.0 1005 10050 410 1005 1005.0 455 180
j6-per10-1 1021 1021 1036 1021 1021.0 1021 1021.0 209 1021 1021.0 210 180
j6-per10-2 1012 1012 1012 1012 10120 1012 1012.0 8.2 1012 10120 85 180
j6-per20-0 1000 1000 1018 1000 1003.6 1000 1000.6 984 1000 10000 775 180
j6-per20-1 1000 1000 1000 1000 1000.0 1000 1000.0 0.4 1000 1000.0 15 180
j6-per20-2 1000 1000 1001 1000 1000.0 1000 10000 291 1000 1000.0 306 180
Average gap 0.000% 0.916% 0.000% 0.090% 0.000% 0.007% 0.000% 0.000%
j7-per0-0 (1048) 1063 1071 1048 1052.7 1052 10538 945 1050 1051.2 1049 245
j7-per 0-1 1055 1058 1076 1057 +1057.8 1055 - 1061.0 126.8 1057 1058.8 155.8 245
j7-per 0-2 1056 1059 1082 1058 105910 1056 © ©1059.7 97.1 1056 1057.0 1245 245
j7-per10-0 1013 1022 1036 1013 ' _1016:7 1016, 1018.3 103.3 1013 1016.1 1838 245
j7-per10-1 1000 1014 1010 1000 “1002.5 10000 1000.0 76.6 1000 10000 819 245
j7-perl0-2 1011 1020 1035 1016« 10194 1013 10195 714 1013 10149 1256 245
j7-per20-0 1000 1000 1000 1000+ --1600.0 1000. / +1000.0 0.3 1000 1000.0 19 245
j7-per20-1 1005 1011 1030 1005 ./1007.6 1007 +* 1008.1 148.7 1007 1008.0 1432 245
j7-per20-2 1003 1010 1020 1003 1007.3 1003 10041 1341 1003 1004.7 1609 245
Average gap 0.719% 1.830% 0.097% 0.346% 0.119% 0.360% 0.086% 0.211%
j8-per0-1 (1039) - 1075 1039 1048.7 1045 1051.7 1474 1039 10433 2208 320
j8-per 0-2 (1052) - 1073 1052 1057.1 1052 1058.3 244.6 1052 10536 2719 320
j8-per10-0 (1020) - 1053 1020 1026.9 1024 10331 1816 1020 1026.1 2050 320
j8-per10-1 (1002)" - 1029 1004 10124 1008 10183 70.7 1002 1007.6 2022 320
j8-per10-2 (1002)" - 1027 1009 1013.7 1002 10125 137.8 1002 1006.0 1628 320
j8-per20-0 1000 - 1015 1000 1001.0 1000 1000.9 158.9 1000 10006 1369 320
j8-per20-1 1000 - 1000 1000 1000.0 1000 1000.0 1.3 1000 10000 45 320
j8-per20-2 1000 - 1014 1000 1000.6 1000 10032 97.9 1000 1000.0 1058 320
Average gap 2.098% 0.112% 0.555% 0.196% 0.771% 0.000% 0.271%

“The BKSisfound by one of our PSOs.

89

Table 6.4 shows the results of the test problems proposed by Guéret and Prins
(1999). In this problem set, PSO-mP-ASG2 performs better than other algorithms and
obtained 16 new best-known solutions. The PSO hybridized with beam search does
not perform well, because the instances from (Guéret & Prins, 1999) are designed to
maximize a new lower bound greater than the traditional one. Therefore, the
traditional lower bound calculated by equations (5.6), (5.7), and (5.8) is hard to
discriminate in the good and bad partial solutions in this problem set (Guéret & Prins,

1999).

Consequently, better solutions can be obtained when the PSO performs much
more iterations instead of spending computation time on an inefficient beam search.

However, it is evident that both the PSOs outperform Beam-ACO in this problem set.

90

Table 6.4 Results of the test problems proposed by Guéret and Prins (1999)

. Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS Time

Problem BKS — GA-Prins Best Average Best Average ¢ Best Average ¢ limit(s)
gp03-01 1168 1168 1168 1168.0 1168 1168.0 0.0 1168 1168.0 0.0 45
gp03-02 1170 1170 1170 11700 1170 1170.0 0.0 1170 1170.0 0.0 45
gp03-03 1168 1168 1168 1168.0 1168 1168.0 0.0 1168 1168.0 0.0 45
gp03-04 1166 1166 1166 1166.0 1166 1166.0 0.0 1166 1166.0 0.0 45
gp03-05 1170 1170 1170 11700 1170 1170.0 0.0 1170 1170.0 0.0 45
gp03-06 1169 1169 1169 1169.0 1169 1169.0 0.0 1169 1169.0 0.0 45
gp03-07 1165 1165 1165 1165.0 1165 1165.0 0.0 1165 1165.0 0.0 45
gp03-08 1167 1167 1167 11670 1167 1167.0 0.0 1167 1167.0 0.0 45
gp03-09 1162 1162 1162 11620 1162 1162.0 0.0 1162 1162.0 0.0 45
gp03-10 1165 1165 1165 1165.0 1165 1165.0 0.0 1165 1165.0 0.0 45
Average gap 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

gp04-01 1281 1281 1281 1281.0 1281 1281.0 0.0 1281 1281.0 0.0 80
gp04-02 1270 1270 1270 1270.0 1270 1270.0 0.3 1270 1270.0 0.3 80
gp04-03 1288 1288 1288 1288.0 1288 1288.0 0.3 1288 1288.0 0.3 80
gp04-04 1261 1261 1261 1261.0 1261 1261.0 30.0 1261 1261.0 30.0 80
gp04-05 1289 1289 1289 1289.0 1289 1289.0 30.0 1289 1289.0 30.0 80
gp04-06 1269 1269 1269 1269.0 1269 1269.0 30.0 1269 1269.0 30.0 80
gp04-07 1267 1267 1267 1267.0 1267 1267.0 30.2 1267 1267.0 30.2 80
gp04-08 1259 1259 1259 1259.0 1259 1259.0 22.7 1259 1259.0 30.2 80
gp04-09 1280 1280 1280 1280.0 1280 1280.0 29 1280 1280.0 29 80
gp04-10 1263 1263 1263 1263.0 1263, 1263.0 29 1263 1263.0 29 80
Average gap 0.000% 0.000% 0.000% 0.000%0.000% 0.000% 0.000%

gp05-01 1245 1245 1245 1245.0 1245 . 1245.0 0.0 1245 1245.0 02 125
gp05-02 1247 1247 1247 12470 1247 1247.0 0.0 1247 1247.0 00 125
gp05-03 1265 1265 1265 +1265.0 1265 1265.0 0.0 1265 1265.0 01 125
gp05-04 1258 1258 1258 1258.6 1258- 12580 104.6 1258 1258.0 1052 125
gp05-05 1280 1280 1280 1280.0 1280 1280.0 105 1280 1280.0 315 125
gp05-06 1269 1269 1269 1269.1 1269.-1269.0 180 1269 1269.0 180 125
gp05-07 1269 1269 1269 1269.0 1269 1269.0 0.0 1269 1269.0 27 125
gp05-08 1287 1287 1287 1287.0 1287 1287.0 0.0 1287 1287.0 00 125
gp05-09 1262 1262 1262 1262.0 1262 1262.0 220 1262 1262.0 220 125
gp05-10 1254 1254 1254 1254.6 1254 1254.0 63.0 1254 12540 635 125
Average gap 0.000% 0.000% 0.010% 0.000% 0.000% 0.000% 0.000%

gp06-01 1264 1264 1264 1264.7 1264 1264.0 176.3 1264 1264.0 176.1 180
gp06-02 1285 1285 1285 1285.7 1285 1285.0 140.0 1285 1285.0 1478 180
gp06-03 (1255) 1255 1255 1255.0 1255 12552 166.7 1255 1255.6 133.1 180
gp06-04 1275 1275 1275 1275.0 1275 12750 60.1 1275 12750 60.8 180
gp06-05 1299 1300 1299 1299.2 1299 1299.0 159.6 1299 1299.0 159.6 180
gp06-06 1284 1284 1284 1284.0 1284 1284.0 96.6 1284 1284.0 1094 180
gp06-07 (1290) 1290 1290 1290.0 1290 1290.0 04 1290 1290.0 16 180
gp06-08 1265 1266 1265 1265.2 1265 1265.2 1519 1265 12655 1343 180

gp06-09 (1243) 1243 1243 1243.0 1243 12430 1416 1243 12431 1565 180
gp06-10 (1254) 1254 1254 1254.0 1254 12540 805 1254 12540 79.8 180

Average gap 0.016% 0.000% 0.013% 0.000% 0.003% 0.000% 0.009%

91

Table 6.4 (continued)

Problem BKS GA-Prins Beam-ACO PSO-mP-ASG2 PSO-mP-ASG2+BS 'I_'irT_]e
Best Average Best Average ¢ Best Average ¢ limit(s)
gp07-01 (1159) 1159 1159 1159.0 1159 1159.0 180.5 1159 1159.3 2237 245
gp07-02 (1185) 1185 1185 1185.0 1185 11850 0.3 1185 11850 12 245
gp07-03 1237 1237 1237 1237.0 1237 12370 3.9 1237 12370 95 245
gp07-04 (1167) 1167 1167 1167.0 1167 1167.0 188.2 1167 1167.0 1604 245
gp07-05 1157 1157 1157 1157.0 1157 1157.0 130.3 1157 1157.0 1391 245
gp07-06 (1193) 1193 1193 1193.9 1193 1193.0 153.1 1193 11931 1986 245
gp07-07 1185 1185 1185 1185.1 1185 11850 04 1185 11850 14 245
gp07-08 (1180) 1181 1180 11814 1180 1180.0 139.1 1180 1180.0 1394 245
gp07-09 (1220) 1220 1220 1220.1 1220 1220.0 123.6 1220 1220.0 1439 245
gp07-10 1270 1270 1270 1270.1 1270 12700 0.1 1270 12700 05 245
Average gap 0.008% 0.000% 0.020% 0.000% 0.000% 0.000% 0.003%
gp08-01 1130 1160 1130 11324 1130 11435 204.3 1133 11403 2773 320
gp08-02 (1135) 1136 1135 1136.1 1135 1135.0 1925 1135 11354 2583 320
gp08-03 1110 1111 1111 11137 1110 1110.8 229.0 1110 11140 2403 320
gp08-04 (1153) 1168 1154 1156.0 1153 1153.0 306.3 1153 11532 308.1 320
gp08-05 1218 1218 1219 1219.8 1218 12180 297.2 1218 12189 56.6 320
gp08-06 (1115)° 1128 1116 1123.2 1115 1117.2 224.7 1115 11269 2496 320
gp08-07 (1126) 1128 1126 1134.6 1126 1127.7 288.6 1126 11298 287.3 320
gp08-08 (1148) 1148 1148 1149.0 1148 1148.0 1331 1148 11480 1793 320
gp08-09 1114 1120 1117 11190 1114 11140 156.0 1114 11143 2236 320
gp08-10 (1161) 1161 1161 11615 1161, 1161.1 289.3 1161 11614 2171 320
Average gap 0.602% 0.062% 0.311% ,0.000% 0:161% 0.027% 0.284%
gp09-01 (1129)° 1143 1135 +1142.8 1129, 1129.4 363.0 1129 11332 376.3 405
gp09-02 (1110)° 1114 1112 =1113.7 1110 1111.8 284.2 1112 11141 3359 405
gp09-03 (1116)° 1118 1118 11204 1116 11170 235.2 1117 11170 3134 405
gp09-04 1130 1131 1130 «1140:0 1130, 1130.7 355.5 1130 1135.8 328.7 405
gp09-05 1180 1180 1180 1180.5 1180 .1180.0 6.6 1180 11800 223 405
gp09-06 (1093) 1117 1093 1195.6 1093 :1095.1 319.0 1093 1094.1 2772 405
gp09-07 (1091)° 1119 1097 11014 1094 1096.7 344.1 1091 1096.5 376.4 405
gp09-08 (1106) 1110 1106 1113.7 1108 1108.0 186.8 1108 1108.3 334.6 405
gp09-09 (1123)° 1132 1127 11325 1123 1124.6 219.1 1126 11265 358.6 405
gp09-10 (1112)° 1130 1120 1126.3 1112 11248 214.1 1122 11265 297.7 405
Average gap 0941% 0.252% 1.601% 0.046% 0.252% 0.162% 0.374%
gp10-01 (1093)° 1113 1099 1109.0 1093 1097.4 396.3 1093 1096.8 455.7 500
gp10-02 (1097)° 1120 1101 11074 1097 1097.0 348.7 1097 1099.1 382.7 500
gp10-03 (1081) 1101 1082 1098.0 1081 1087.1 404.6 1084 1090.3 450.8 500
gp10-04 (1083)° 1090 1093 1096.6 1086 1089.1 294.0 1083 1092.1 371.8 500
gp10-05 (1073)° 1094 1083 1092.4 1073 1086.5 288.1 1082 1092.2 3141 500
gp10-06 (1071)° 1074 1088 1104.6 1071 1071.0 1485 1071 10743 289.7 500
gp10-07 (1080)° 1083 1084 1091.5 1080 1081.0 133.0 1081 10811 1674 500
gp10-08 (1095)° 1098 1099 1104.8 1095 1097.3 358.8 1097 1097.6 3245 500
gp10-09 (1115)° 1121 1121 1128.7 1115 11178 3575 1123 1127.0 4282 500
gp10-10 (1092) 1095 1097 1106.7 1092 1092.2 479.3 1092 1094.0 4879 500
Average gap 1.002% 0.618% 1.470% 0.028% 0.335% 0.211% 0.590%

“The BKSis found by one of our PSOs.

92

6.7 Concluding Remarks

We have presented a PSO for open shop scheduling problems in this chapter. We
modified the representation of particle position, particle movement, and particle
velocity to better suit it for OSSP. We also proposed a new decoding operator
(mP-ASG), which decodes particle positions into parameterized active schedules.
Furthermore, we added fathoming constraints to mP-ASG and then hybridized it with
beam search. The computational results show that our PSO can obtain many new

best-known solutions of the test problems.

For further research, we will try to apply our PSO to other shop scheduling
problems. In addition, further research topics include how to modify the particle
position representation, particle movement, and particle velocity to better suit them to

the problem. Table 6.5 shows the summary of .the PSO© for OSSP

93

Table 6.5 Summary of the PSO for OSSP

Components

The concept of this components

Particle Position . ,
1 : Priority weights
Representation

We represent the preference-list by
priorities, which can save computation
time when we implement insert operator.

Particle Velocity Inertia

Because there is no preference constraint
between the operations of a job, if we

Particle Movement I nsert operator

swap two operations at the same time, the
new solution will be much different than
the original one and lose the correlation
property. Therefore, we implement the
insert operator, just move one operation at
atime, and earn more correlation property.

: G&T agorithm
Decoding
3 mP-ASG
Operator
Beam search

The mP-ASG can much restrict the search
areabut not exclude the optimal solution.

4 |Other Strategies Diversification

The diversification strategy can prevent
particles rapped in local optima.

We do not implement the local search
strategy, because the neighborhood size of
OSSP is huge and the local search strategy
isin efficient.

%4

6.8 Appendix

A pseudo code of the PSO for OSSP is given below:

/I Linitializing
Initialize a popul ation of particles with random positions.
for each particle k do

Decode X* (the position of particle k) into aschedule S*.

Set the k™ pbest solution (pbest*) equal to S*, pbest* — S*.

end for

Set ghest solution equal to the best pbest” .
/I 1 initializing
repeat
Update velocities according to.Figure 6.1:
for each particle k do
Move particle k according to-Figure 6.2:
Decode X* into S*.
Update pbest solutions and gbest solution according to Figure 5.6.
end for

until maximum CPU time limit is reached.

95

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

The original PSO is used to solve continuous optimization problems. Due to
solution spaces of discrete optimization problems are discrete, we have to develop
new PSO designs to better suit it for discrete optimization problems. The contribution
of this research is that we proposed several PSO designs for discrete optimization
problems. The new PSO designs are better suit for discrete optimization problems,
and differ from the original PSO. In this research, we separated a PSO design into five
parts. particle position representation, particle velocity, particle movement, decoding
operator, and other search strategies, We can-develop a new PSO design by redesign

these five parts.

In chapter 4, we presented a'binary PSO for the multidimensional 0-1 knapsack
problem (MKP). This PSO design focuses on the concept of building blocks, which is
the basis of another evolution computation algorithm—genetic algorithm. The particle
velocity is represented by blocks. Particles obtain new blocks from gbest and pbest
solutions. Moreover, the selection strategy can recognize superior blocks and and
accumul ate the superior blocks in the swarm. The computational results show that the
concept of building blocks works in PSO design. Therefore, we can design other new

PSOs based on the concept of building blocks.

In chapter 5, we presented a PSO for the job shop scheduling problem (JSSP).
This PSO design focuses on the particle position representation. In this PSO, the
particle position is represented by preference list-based representation, which has

more Lamarckian than the original PSO design—rpriority based representation. We

96

aso tested and compared these two particle position representations. The
computational results show that the preference list-based representation we proposed
outperforms the priority based representation. It also demonstrated that the particle
position representation with more Lamarckian performs better. Therefore, we can
design new particle position representation based on Lamarckian property in further

researches.

In chapter 6, we presented a PSO for the open shop scheduling problem (OSSP).
This PSO design focuses on comparing decoding operators. In this PSO, we
implemented a modified parameterized active schedule generation algorithm
(mP-ASG), which decodes particle positions into parameterized active schedules. In
mP-ASG, we can reduce or increase the search area between non-delay schedules and
active schedules by controlling the maximum:.delay time allowed. Furthermore, we
added fathoming constraints to mP-ASG and then hybridized it with beam search. The
computational results show that"a decoding operator, which can map the positions to
the solution space in a smaller region but not excluding the optimal solution, is

performs better.

7.2 FutureWorks

There are two aspects for further research: (1) new PSO designs, and (2) other
applications. We described some principles for new PSO designs in chapter 3. In the
further research, we can develop new PSO designs by these principles and find out

new design principles at the same time.

On the other hand, we can also implement the new PSO designs to other
combinatorial optimization problems for example: assignment problems, network

problems, multiobject combinatorial optimization problems...etc.

97

References

Adams, J,, Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job
shop scheduling. Management Science, 34(3), 391-401.

Alcaide, D., Sicilia, J., & Vigo, D. (1997). Heuristic approaches for the minimum
makespan open shop problem. Trabajos de Investigacion Operativa, 5(2),
283-296.

Allahverdi, A, & Al-Anzi, ES. (2006). A PSO and a tabu search heuristics for the
assembly scheduling problem of the two-stage distributed database application.
Computers and Operations Research, 33(4), 1056-1080.

Angeline, PJ. (1998). Using selection to improve particle swarm optimization.
Proceedings of the IEEE International Conference on Evolutionary
Computation, 84—89.

Bagchi, T.P. (1999). Multiobjective scheduling by genetic algorithms. Kluwer
Academic Publishers.

Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for
job shop scheduling. Management Science, 44(2), 262-275.

Bean, J. (1994). Genetic algorithms and random keys for sequencing and optimization.

Operations Research Society of, America (ORSA) Journal on Computing, 6,
154-160.

Beasey JE. (1990). OR-Library: distributing test problems by electronic mail.
Journal of the Operational Research Society, 14, 1069-1072.

Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search:
and application to open shop scheduling. Computers & Operations Research, 32,
1565-1591.

Brucker, P, Hurink, J., Jurisch, B., & Wd&stmann, B. (1997). A branch & bound
algorithm for the open-shop problem. Discrete Applied Mathematics, 76, 43-59.

Chu, PC., & Beadey, JE. (1998). A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristic, 4, 63-86.

Colak, S., & Agawal, A. (2005). Non-greedy heuristics and augmented neural
networks for the open-shop scheduling problem. Naval Research Logistics, 52,
631-644.

98

Davis, L. (1985). Job shop scheduling with genetic algorithm. Proceedings of the first
International Conference on Genetic Algorithms, 163-140.

Dorndorf, U., Pesch, E., & Phan-Huy, T. (2001). Solving the open-shop scheduling
problem. Journal of scheduling, 4(3), 157-174.

Drex|, A. (1988). A simulated annealing approach to the multiconstraint zero-one
knapsack problem. Computing, 40, 1-8.

Eberhart R., & Shi Y. (2001). Particle swarm optimization: developments, applications
and resources. Proceedings of the 2001 IEEE Congress on Evolutionary
Computation, 81-86.

Fisher, H., & Thompson, GL. (1963). Industrial Scheduling. Englewood Cliffs, NJ:
Prentice-Hall.

French, S. (1982). Sequencing and scheduling: an introduction to the mathematics of
the job-shop. UK: Horwood.

Freville, A. (2004). The multidimensional: 0—1 knapsack problem: An overview.
European Journal of Operational Research, 155(1), 1-21.

Fréville, A., & Hanafi, S. (2005); The multidimensional 0-1 knapsack problem —
bounds and computational aspects.” Annals ~of Operations Research, 139,
195-227.

Garey, M.R., Johnson, D.S., & Sethi, R." (1976). The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1, 117-129.

Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. New York:
Wiley.

Giffler, J., & Thompson, GL. (1960). Algorithms for solving production scheduling
problems. Operations Research, 8, 487-503.

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research, 13, 533-549.

Glover, F. (1989). Tabu search: Part I. ORSA Journal on Computing, 1, 190-206.
Glover, F. (1990). Tabu search: Part I1. ORSA Journal on Computing, 2, 4-32.

Glover, F, & Kochenberger GA. (1996). Critical event tabu search for
multidimensional knapsack problems, in I.H. Osman, and J.P. Kelly, (Eds),
Metaheuristics: The Theory and Applications, Kluwer Academic Publishers,

99

Dordrecht, pp.407-427.

Goldberg, D.E. (2002). The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers, Dordrecht.

Goncalves, J.F., & Beirdo, N.C., (1999). Um Algoritmo Genético Baseado em Chaves
Aleatorias para Sequenciamento de Operagdes. Revista Associa¢do Portuguesa
de Desenvolvimento e Investiga¢do Operacional 19, 123-137 (in Portuguese).

Goncalves, JF, Mendes, JJ. M., & Resende, M.GC. (2005). A hybrid genetic
algorithm for the job shop scheduling problem. European Journal of
Operational Research, 167(1), 77-95.

Gonzdez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time.
Journal of the ACM, 23(4), 665-679.

Guéret, C., & Prins, C. (1998). Classical and new heuristics for the open-shop
problem: a computational evaluation, European Journal of Operational
Research, 107(2), 306-314.

Gueéret, C., & Prins, C. (1999). A new lower.bound for the open-shop problem. Annals
of Operations Research, 92, 165-183|

Hanafi, S., & Freéville, A. (1998). An-efficient tabu search approach for the 0-1
multidimensional knapsack problem. European Journal of Operational
Research, 106, 659-675.

Jain, A.S., Rangaswamy, B., & Meeran, S. (2000). New and “stronger” job-shop
neighbourhoods: a focus on the method of Nowicki and Smutnicki (1996).
Journal of Heuristics, 6, 457-480.

Jin, Y.X., Cheng, H.Z., Yan, J.Y., Zhang, L. (2007). New discrete method for particle
swarm optimization and its application in transmission network expansion
planning. Electric Power Systems Research, T1(3-4), 227-233.

Kennedy, J., & Eberhart, R.C. (1995). Particle swarm optimization. Proceedings of
the 1995 IEEE International Conference on Neural Networks, 4, 1942-1948.

Kennedy, J., & Eberhart, R.C. (1997). A discrete binary version of the particle swarm
algorithm. Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, 5, 4104—4108.

Kobayashi, S., Ono, 1., & Yamamura, M. (1995). An efficient genetic algorithm for
job shop scheduling problems. Proceedings of the Sixth International

100

Conference on Genetic Algorithms, 506-511.

Lawrence, S., (1984). Resource constrained project scheduling: An experimental
investigation of heuristic scheduling techniques. Graduate School of Industrial
Administration (GSIA), Carnegie Mellon University, Pittsburgh, PA.

Li, N., Liu, F, Sun, D., & Huang, C. (2004). Particle Swarm Optimization for
Constrained Layout Optimization. Proceedings of Fifth World Congress on
Intelligent Control and Automation (WCICA 2004), 3, 2214-2218.

Lian, Z., Gu, X., & Jiao, B. (2006). A similar particle swarm optimization algorithm
for permutation flowshop scheduling to minimize makespan. Applied
Mathematics and Computation,175(1), 773-785.

Liao, C.J, Tseng, C.T., & Pin, L. (2007). A discrete version of particle swarm
optimization for flowshop scheduling problems. Computers and Operations
Research, 34(10), 3099-3111.

Liaw, C-F. (1999a). Applying simulated annealing to the open shop scheduling
problem. /IE Transactions, 31;457-465.

Liaw, C-F. (1999Db). A tabu search algorithm for. the open shop scheduling problem.
Computers & Operations Research, 26, 109-126.

Liaw, C-F (2000). A hybrid genetic algorithm for the open shop scheduling problem.
European Journal of Operational Research, 124, 28-42.

Lourenco, H.R. (1995). Local optimization and the job-shop scheduling problem.
European Journal of Operational Research, 83, 347-364.

Mattfeld, D.C. (1996). Evolutionary Search and the Job Shop: Investigations on
Genetic Algorithms for Production Scheduling. Physica-Verlag, Heidelberg,
Germany.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop
problem. Management Science, 42(6), 797-813.

Osorio, M.A., Glover, F, & Hammer, P. (2002). Cutting and surrogate constraint
analysis for improved multidimensional knapsack solutions. Annals of
Operations Research, 117, 71-93.

Ow, PS., & Morton, T.E. (1988). Filtered beam search in scheduling. International
Journal of Production Research, 26, 297-307.

Pang, W., Wang, K.P, Zhou, C.G., Dong, L.J.,, Liu, M., Zhang, H.Y., & Wang, J.Y.

101

(2004). Modified particle swarm optimization based on space transformation for
solving traveling saesman problem. Proceedings of 2004 International
Conference on Machine Learning and Cybernetics, 4, 2342-2346.

Pezzella, F., & Merdlli, E. (2000). A tabu search method guided by shifting bottleneck
for the job shop scheduling problem. European Journal of Operational Research,
120(2), 297-310.

Pirkul, H. (1987). A heuristic solution procedure for the multiconstraint zero-one
knapsack problem. Naval Research Logistics, 34, 161-172.

Prins, C. (2000). Competitive genetic algorithms for the open-shop scheduling
problem. Mathematical Methods of Operations Research, 52, 389-411.

Rastegar, R., Meybodi, M.R., & Badie, K. (2004). A new discrete binary particle
swarm optimization based on learning automata. Proceedings of the IEEE
International Conference on Machine Learning and Applications, 456—465.

Salman, A., Ahmad, 1., & Al-Madani, S. (2002). Particle swarm optimization for task
assignment problem. Microprocessors and Microsystems, 26(8), 363-371.

Sha, D.Y., & C.-Y. Hsu. (2006). “A: modified- parameterized active schedule
generation algorithm for the job shop scheduling problem,” Proceedings of the

36th International Conference on Comiputers.and Industrial Engineering (ICCIE
2006), pp. 702-712, Taiwan, ROC.

Shi Y, & Eberhart R.C. (19984). Parameter selection in particle swarm optimization.
Proceedings of the 7th International Conference on Evolutionary Programming,
591-600.

Shi Y, & Eberhart R.C. (1998b). A modified particle swarm optimizer. Proceedings of
the 1998 IEEE International Conference on Evolutionary Computation, 69-73.

Stacey, A., Jancic, M., & Grundy, |. (2003). Particle swarm optimization with
mutation. Proceedings of the 2003 IEEE Congress on Evolutionary Computation,
2, 1425-1430.

Sun, D., Batta, R., & Lin, L. (1995). Effective job shop scheduling through active
chain manipulation. Computers & Operations Research, 22(2), 159-172.

Taillard, E.D. (1993), Benchmarks for basic scheduling problems, European Journal
of Operational Research, 64, 278-285.

Tasgetiren, M.F,, Liang, Y-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm

102

optimization algorithm for makespan and total flowtime minimization in the
permutation flowshop sequencing. European Journal of Operational Research,
177(3), 1930-1947.

Vasguez, M., & Hao, JK. (2001). A hybrid approach for the 0-1 multidimensional
knapsack problem. Proceedings of the 7" International Joint Conference on
Artificial Intelligence, 1, 328-333.

Vasguez, M., & Vimont, Y. (2005). Improved results on the 0-1 multidimensional
knapsack problem. European Journal of Operational Research, 165, 70-81.

Wang, K.P, Huang, L., Zhou, C.G, & Pang, W. (2003). Particle swarm optimization
for traveling salesman problem. Proceedings of International Conference on
Machine Learning and Cybernetics, 3, 1583-1585.

Wang, L., & Zheng, D. (2001). An effective hybrid optimization strategy for job-shop
scheduling problems. Computers & Operations Research, 28, 585-596.

Wu, B., Zhao, Y., MaY., Dong, H., & Wang, W. (2004). Particle Swarm Optimization
method for Vehicle Routing Problem. Proceedings of Fifth World Congress on
Intelligent Control and Automation (WCICA 2004), 3, 2219 — 2221.

Xia, W.,, & Wu, Z. (2005). An" effective hybrid optimization approach for
multi-objective flexible job-shop scheduling problems. Computers & Industrial
Engineering, 48(2), 409-425:

Yin, PY., Yu, S.S.,, Wang, PP, & Wang, Y.T. (2007a). Multi-objective task allocation
in distributed computing systems by hybrid particle swarm optimization.
Applied Mathematics and Computation, 184(2), 407-420.

Yin, PY., Yu, S.S., Wang, PP, & Wang, Y.T. (2007b). Task allocation for maximizing
reliability of adistributed system using hybrid particle swarm optimization. The
Journal of Systems & Software, 80(5), 724-735.

Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based
schemes for resource-constrained project scheduling. Automation in
Construction, 14, 393-404.

Zhang, H., Li, H., & Tam, C.M. (2006). Particle swarm optimization for
resource-constrained project scheduling. International Journal of Project
Management, 24(1), 83-92.

Zhi, X.H., Xing, X.L., Wang, Q.X., Zhang, L.H., Yang, X.W., Zhou, C.G, & Liang,
Y.C. (2004). A discrete PSO method for generalized TSP problem. Proceedings

103

of 2004 International Conference on Machine Learning and Cybernetics, 4,
2378-2383.

104

(Biography)

(Name) (Cheng-Yu Hsu)

(80.9-857)
(88.9-90.7)
(90.9-92.7)
(92.9-96.6)

. D.Y. Sha, C.-Y. Hsu, 2007, “A new particle swarm optimization for the open shop
scheduling problem,” Computers and Operations Research (Accepted) (SCI).

. D.Y. Sha, C.-Y. Hsu, 2006, “Ashybrid particle swarm optimization for job shop
scheduling problem,” Computers & Industrial ‘Engineering, Vol. 51, No. 4, pp.
791-808 (SCI).

. D.Y. Sha, C.-Y. Hsu, “A new discrete-hinary particle swarm optimization for the
multidimensional 0-1 knapsack problem,” (submitted to European Journal of
Operational Research) (SCI).

. D.Y. Sha, C.-Y. Hsu, 2006, “A particle swarm optimization with parameterized
active schedules for the open shop scheduling problem,” Proceedings of the 2006
CIIE Annual Conference.

. D.Y. Sha, C.-Y. Hsu, 2006, “A modified parameterized active schedule generation
algorithm for the job shop scheduling problem,” Proceedings of the 36th
International Conference on Computers and Industrial Engineering (ICCIE 2006),
pp. 702-712, Taiwan, ROC.

105

