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摘要 

本論文主要利用單變數（univariate）與多變數（multivariate）之自迴歸模型

（autoregressive model）來分析探討禪坐腦電波時間與空間之特性。在第一章的背景簡

介之後，第二章提出了一個可程式化的方法 Subband-AR EEG Viewer 來進行腦電波的分

析，該方法主要是追蹤禪坐中腦電波隨時間變化的頻譜特性，繼而可以提供禪坐腦電波

的總覽。為了達到這樣的目的，禪坐腦電波首先會經由樹狀的濾波器組（filter banks）
分解成子頻帶成份（subband components）。然後每個子頻帶成份再利用二階的自迴歸模

型求出其主要頻率，利用求出來的主要頻率可以針對所欲解決的問題來設計演算法。根

據 Subband-AR EEG Viewer，我們發展了兩個特別用來研究禪坐中的視覺感知能力與禪

坐腦電波時空特性的演算法。這些演算法在實際應用上不需要繁複決定參數的程序，並

且因為採用了二階自迴歸模型而大大的降低了運算量。因此這個方法非常適合用來進行

長時間的腦電波分析與即時處理。 
在禪坐的視覺誘發電位（visual evoked potentials）研究中常會遇到一個問題就是無

法得知可以作為參考的實際禪坐狀態來給予刺激，為了讓每一個視覺誘發電位取得時的

大腦狀態盡量維持一致，我們選擇在前額α波出現時給予閃光刺激，這是因為前額α波被

發現在禪坐的過程中會有顯著的增加，因此，我們根據第二章所述的 Subband-AR EEG 
Viewer 設計出一個即時的α波偵測器，如此一來，每一個視覺誘發電位便會是在類似的

背景腦電波下所取得。然後我們再利用α波下之視覺誘發電位（alpha-dependent F-VEPs）
來研究禪坐中大腦對於刺激的動態變化。根據實驗設計所得出的結果顯示出禪坐組與控

制組有顯著的差異，與控制組在休息狀態下的比較下，禪坐組在禪坐中，特別是在 Cz
和 Fz 的視覺誘發電位 P1-N2 和 N2-P2 的振幅上有明顯的增加。因此，我們推測禪坐會

導致主要視覺皮質層以及其相關區域對於閃光刺激產生較大振幅的反應。 
另一個由 Subband-AR EEG Viewer 演繹過來的演算法為一個結合多重解析度

（multi-resolution）技術與自迴歸模型的腦電波解讀器，它可以辨別出腦電波的低振幅

波(φ), δ, θ, χ, α, 和 β 波，另外，對於常見的雜訊如基準線飄移（baseline drift）和肌電

圖干擾（electromyograph interference）也可以被這個解讀器所偵測出來。這個解讀器擁

有高效率的計算能力以及容易以硬體實現的特性，因此非常適合用來作為長時間的腦電

波解讀以及即時的腦電波處理，它也可以對於大量的腦電波記錄提供一個快速的總覽。
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因此，禪坐腦電波階段性的變化就可經由不同灰階值表示不同的腦電波特徵所構成的圖

表顯示出來。實驗結果顯示了禪坐組與控制組在時間與空間的腦電波節律特徵上有很大

的不同，特別是禪坐中 β 節律在大腦上的傳遞現象。  
除了單變數的自迴歸模型外，在這論文的最後，我們也提出了殘餘共變異矩陣

（residual covariance matrix），係根據多變數的自迴歸模型所發展出來的一個評估腦電波

時空一致性的指標：LSTS（local spatiotemporal synchronization）指標。LSTS 指標針對

大腦局部區域上相鄰腦電波頻道間一致性的程度進行估測。利用 QR 分解，LSTS 指標

可以有效率的被計算出來。另外，我們也提供了自迴歸模型階數與相鄰頻道形態選擇的

策略。根據初期的結果顯示腦電波頻道間一致性的降低（去一致性）會使得 LSTS 指標

的數值增加。為了評估這個指標的有效性，我們設計了一個由外部指示（externally-paced）
的手指運動實驗，結果顯示在主要運動區所產生的去一致性成功的反應出較高數值的

LSTS 指標。 因此，LSTS 指標或許可被用來研究如禪坐等尚未被完全了解的心智活動

下大腦的動態變化。在我們的初步結果中，當禪坐中的低振幅波出現時，LSTS 指標顯

示了整體腦電波一致性的增加，而這個現象被推測為與在深層禪坐中較不被環境刺激所

影響的狀態有關。 
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Abstract 
This dissertation reports the study on EEG (electroencephalograph) spatiotemporal char-

acteristics under Zen meditation. Univariate and multivariate AR models were applied. Fol-
lowing the background introduction, Chapter 2 presents a computerized scheme Subband-AR 
EEG Viewer that provides a comprehensive view of the meditation EEG record. The scheme 
was mainly designed to trace the varying spectral characteristics in meditation EEG. To ac-
complish this task, a meditation EEG signal was first decomposed into subband components 
by tree-structured filter banks. The second-order autoregressive model was then applied to 
each subband component to estimate its root frequency. Based on the estimated root frequen-
cies and sound logic, specific criterion can be deduced for a particular problem-domain ap-
plication. Two algorithms were developed to investigate the visual perception under medita-
tion and to explore the spatiotemporal characteristics of EEG rhythms. These algorithms do 
not require exhausting work at determining appropriate parameters in implementation. Further, 
due to the second-order autoregressive model adopted, the computation load is greatly re-
duced. This approach is practically favorable to long-term EEG monitoring and real-time 
processing. 

In the study of evoked response potential during Zen meditation, one issue encountered 
was the inaccessibility to the actual meditation level or stage as a reference. By modifying 
Subband-AR EEG Viewer, an alternative strategy was proposed for dealing with this problem. 
To secure a consistent condition of the brain dynamics when applying stimulation, a scheme 
of recording flash visual evoked potentials (F-VEPs) was designed, with main idea of apply-
ing flash stimuli during a constant background EEG (electroencephalograph)– frontal 
α-rhythm dominating activity. This particular activity was found increasing during Zen medi-
tation. Thus the flash-light stimulus was to be applied upon emergence of the frontal 
α-rhythm. The alpha-dependent F-VEPs were then employed to inspect the effect of Zen 
meditation on brain dynamics. Based on the experimental protocol proposed, considerable 
differences between experimental and control groups were obtained. Our results showed that 
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amplitudes of P1-N2 and N2-P2 on Cz and Fz increased significantly during meditation, con-
trary to the F-VEPs of control group at rest. We thus suggest that Zen meditation results in 
acute response on primary visual cortex and the associated parts. 

Another algorithm deduced from Subband-AR EEG Viewer was a unique interpreter that 
combined a multi-resolution scheme with autoregressive modeling to identify the EEG pat-
terns including the flat wave (φ), δ, θ, χ, α, and β activities. In addition, such artifacts as the 
baseline drift and EMG (electromyograph) interference were identifiable in the scheme. With 
the merits of high computational efficiency and easy hardware realization, the method pro-
posed is feasible for long-term EEG monitoring and online EEG processing. It also allows a 
quick overview of an enormous amount of EEG data and the meditation scenario can be illus-
trated by a running gray-scale chart with each gray tone coding a particular EEG rhythmic 
pattern. Moreover, results of applying the proposed scheme to an experimental group (Zen 
meditation practitioners) and a control group (normal, healthy subjects) revealed significant 
distinction in spatiotemporal characteristics of EEG rhythmic patterns, especially the spatial 
propagation of the β rhythm during meditation sessions.  

Besides univariate AR model, this dissertation finally presented our study on a parameter 
called the local spatiotemporal synchronization index (LSTS index), mainly based on residual 
covariance matrix of a multivariate autoregressive (mAR) model. Analysis of The LSTS index 
measures the degree of synchronization among neighboring channels of a local brain area. By 
using the QR factorization, the index can be efficiently calculated. A strategy for determining 
the AR model order and the array of neighboring channels was also proposed. According to 
preliminary results, a reduction of synchronization (or, significant desynchronization) of 
evaluated brain areas was quantified by a relatively high index. An externally-paced fin-
ger-movement experiment was designed to evaluate the proposed method. The LSTS index 
estimated successfully reflected the spatiotemporal desynchronization in the primary motor 
area. Accordingly, the LSTS measurement could be considered as a potential approach for in-
vestigating the spatiotemporal synchronization of unknown brain dynamics under particular 
mental process, such as the Zen meditation. In the preliminary findings, the LSTS index of 
meditation EEG revealed an increasing global synchrony for the extremely low power EEG 
activities (to be called the ‘flat’ waves), that had been hypothesized as a detached state of 
sensory perception during deep meditation. 
 

 iv



誌      謝 

 

這一本論文的產生需要感謝的人實在太多了，回首過往的這些時光，所有人、事、

物之間的交錯互動，都讓我回味不已。 

首先我要感謝指導教授羅佩禎老師這幾年來的教導，尤其在研究方法與論文寫作

上，我要向她學習的還很多。也謝謝口試委員楊谷洋、張翔、謝仁俊、林進燈老師在論

文上的指導與建議，讓我獲益良多。 

在這幾年的博士班生涯中，感謝每一屆的學弟妹總是為實驗室注入了許多活力，讓

原本枯燥的研究生活增添了不少趣味，特別是仁隆、岳昌、維廷、哲賢、宏彥、偉凱、

進忠在畢業之後都仍然繼續地給我鼓勵，實在是非常感謝他們。另外，也要感謝在實驗

室一起奮鬥的政勳學長、剛鳴學長、瑄詠學姊、適達、權毅、致豪，由於大家互相的砥

礪打氣，才能夠讓我繼續的往目標邁進。 

 而在這些年中，也感謝一些好朋友們的加油鼓勵：在德國互相扶持的三明治同學

們、大陸北京大學的喜晨、韓國來的 Jason、教會我攝影的慧佳、老張實驗室的晏銘、

一起研究腦波控制機器人的立偉、在網路上互相打氣的佩玥、其敏以及其他許許多多關

心我的親戚、朋友們；尤其是身處在鄰校的靜宜，我們雖然身處不同實驗室，但卻面對

著類似的處境，祝福她近期內能夠突破重圍，完成學業。 

 另外，在法鼓山竹科禪修園的師兄姐們，感恩因為有你們可以一起精進佛法，讓我

可以用一種全然不同的眼光來看待這個世界；而淑真師姐所賦予的磨練以及富彥、為霖

師兄精進用功的榜樣，都使得我成長不少。 

 最重要的，我要感謝我的父母以及家人，由於你們的支持，我才有可能完成我的學

業，雖然這過程久了些，不過倒也是抵達終點了，希望能夠讓你們放心。也要感謝可愛

的女友盈君這幾年的陪伴，妳的鼓勵總能讓我提起心力來面對每一次的挫折。 

最後，我要謝謝我自己在這條路上的堅持。感謝這幾年中遭遇到的所有逆境，讓我

能夠快速的成長並讓自己的心越來越清楚，對我來說，這是更為珍貴的禮物。 

 

 v



Contents 
 

中文摘要 ....................................................................................................................................i 

Abstract.....................................................................................................................................iii 

誌謝 ...........................................................................................................................................v 

Contents ....................................................................................................................................vi 

List of Tables ............................................................................................................................ix 

List of Figures............................................................................................................................x 

1. Introduction .........................................................................................................................1 

1.1. Background...................................................................................................................2 

1.2. Aims of this work .........................................................................................................3 

1.3. Organization of the dissertation....................................................................................6 

2. Meditation EEG Overview Based on Subband Features Quantified by AR Model............9 

2.1. Subband-AR EEG Viewer ............................................................................................9 

2.2. Experimental setup and protocol ................................................................................15 

2.3. Slow alpha rhythm detection (SARD) algorithm .......................................................16 

2.3.1. The algorithm .................................................................................................16 

2.3.2. Simulation.......................................................................................................17 

2.3.3. Identification of slow alpha rhythm................................................................20 

2.4. Long-term meditation EEG interpretation (MEEGI) algorithm.................................21 

2.4.1. The algorithm .................................................................................................21 

2.4.2. Simulation.......................................................................................................22 

2.4.3. Long-term meditation EEG interpretation......................................................25 

2.4.4. On-line implementation of the Subband-AR-EEG Viewer ............................26 

3. Investigation of Visual Perception under Zen-Meditation ................................................29 

 vi



3.1. Why EEG-triggered F-VEP?......................................................................................29 

3.2. Alpha-dependent F-VEP.............................................................................................31 

3.2.1. Online α-rhythm detection .............................................................................31 

3.2.2. Simulation.......................................................................................................32 

3.2.3. Off-line alpha detection ..................................................................................33 

3.2.4. F-VEP .............................................................................................................34 

3.3. Experimental setup and protocol ................................................................................35 

3.3.1. Subjects...........................................................................................................35 

3.3.2. Apparatus ........................................................................................................35 

3.3.3. Experimental paradigms.................................................................................38 

3.4. Modulation of F-VEP amplitudes due to Zen-Meditation process.............................39 

4. Investigation on Spatiotemporal Characteristics of Zen-Meditation EEG Rhythms ........45 

4.1. The meditation EEG interpreter .................................................................................45 

4.1.1. The algorithm .................................................................................................46 

4.1.2. Baseline drift detection...................................................................................47 

4.1.3. EMG interference detection............................................................................48 

4.2. Experimental material.................................................................................................50 

4.3. Simulation...................................................................................................................51 

4.4. Meditation EEG interpretation ...................................................................................54 

4.4.1. Pattern-distribution histogram of Zen-meditation EEG .................................54 

4.4.2. Temporal evolution of β brain mappings........................................................61 

5. Study on EEG Local Spatiotemporal Synchronization Based on Multivariate AR 

Model.................................................................................................................................63 

5.1. Local spatiotemporal synchronization index (LSTS).................................................64 

5.1.1. Multivariate Autoregressive (mAR) Model....................................................64 

5.1.2 Array of channel montage................................................................................65 

 vii



5.2. An externally-paced finger-movement experiment ....................................................67 

5.2.1. Data collection................................................................................................67 

5.2.2. Determination of model order ........................................................................68 

5.2.3. Simulation.......................................................................................................69 

5.2.4. Results ............................................................................................................70 

5.3. An application to meditation EEG..............................................................................80 

5.3.1. Data collection................................................................................................80 

5.3.2. Results ............................................................................................................80 

6. Discussion and conclusion ................................................................................................84 

6.1. Meditation EEG overview based on subband features quantified by AR model .......84 

6.2. Visual perception under Zen-Meditation....................................................................86 

6.3. Spatiotemporal synchronization during meditation....................................................87 

6.4. Summary.....................................................................................................................87 

6.5. Future work ................................................................................................................88 

Bibliography ............................................................................................................................90 

Vita and Publication List .........................................................................................................97 

 viii



List of Tables 
 

Table 2-1: Values of autocorrelation function, γx[0] - γx[6], computed for δ, θ, α, and β 

rhythms ....................................................................................................................11 

Table 2-2: Locations of poles of the simulated signal ...............................................................24 

Table 3-1: Locations of poles of the simulated signal ...............................................................33 

Table 3-2: The changes in the peak amplitudes of specific F-VEP components.......................42 

Table 4-1: Poles (magnitude (normalized) and phase (radian)) designed to simulate the 

four well-known EEG rhythms ...............................................................................52 

Table 4-2: The percentage of each pattern (control group) .......................................................55 

Table 4-3: The percentage of each pattern (experimental group)..............................................55 

Table 5-1: Relative changes of SC3 at second 4 and 6 and their differences in different 

model order..............................................................................................................75 

 

 ix



List of Figures 
 

Figure 1-1: Chapter hierarchical structure..................................................................................7 

Figure 2-1: The structure for the Subband-AR-EEG-Viewer .....................................................12 

Figure 2-2: The equivalent six-channel system of the subband filter bank...............................13 

Figure 2-3: The frequency responses of H1(z), …, H5(z) ..........................................................13 

Figure 2-4: 8-channel recording montage .................................................................................16 

Figure 2-5: The Subband-AR-EEG-Viewer modified for slow α-rhythm detection: (a) 

structure and (b) algorithm ......................................................................................18 

Figure 2-6: Capability of noise immunization of slow α-rhythm detector. The black bold 

lines mark epochs identified as slow α-rhythm.......................................................19 

Figure 2-7: Slow α-rhythm detection from the time-varying rhythmic activities. The sig-

nal in (d) is simulated by adding three short-duration, amplitude-modulated 

sinusoids with frequencies (a) 9Hz, (b) 15 Hz, and (c) 5 Hz ..................................19 

Figure 2-8: Detection of slow α-rhythm in meditation EEG (Channel O1). Bold lines 

above the signal indicate the slow α-rhythm detection. (a) A crack in the first 

bold line is caused by variation of the α amplitude. (b) A post-processor re-

moves the second lines with duration shorter than 0.3 sec (insignificant activ-

ity) and fuses the crack shorter than 0.3 sec ............................................................20 

Figure 2-9: The Subband-AR-EEG Viewer modified for meditation EEG interpretation .........21 

Figure 2-10: Meditation EEG interpretation (MEEGI) algorithm ............................................23 

Figure 2-11: Simulation results (a) δ activity (b) θ activity (c) β activity (d) α activity (e) 

simulated signal and classification results...............................................................24 

Figure 2-12: Subband-AR-EEG Viewer applied to the EEG signal for feature recognition......25 

Figure 2-13: Running gray-scale charts (Channel F3) for two meditators (a) subject 

2k1019p, and (b) subject 2k0830a, and (c) one non-meditator (control) subject 

2k1007p ...................................................................................................................27 

 x



Figure 2-14: On-line implementation of the Subband-AR-EEG Viewer. (a) Computer 1 

executes the MEEGI algorithm (Fig. 2-10), and Computer 2 displays the clas-

sification results, as illustrated in (b). The height of each bar reflects the power 

percentage of the corresponding EEG rhythm within a 2-sec frame.......................28 

Figure 3-1: Tree structural filter bank for the Subband-AR EEG Classifier. H(z) is de-

signed by least-squares error minimization with cutoff frequency 30Hz................32 

Figure 3-2: Classification result of the simulated signal. Different grays are used to illus-

trated the α and non-α patterns ...............................................................................33 

Figure 3-3: Result of α detection for real EEG signal...............................................................34 

Figure 3-4: Profile of F-VEPs on (a) Fz, (b) Cz, and (c) Oz with corresponding peaks la-

beled ........................................................................................................................36 

Figure 3-5: 32-channel recording montage ...............................................................................37 

Figure 3-6: Experimental setup for α-dependent F-VEP recording ..........................................38 

Figure 3-7: Scheduling of the F-VEP recording procedure.......................................................39 

Figure 3-8: Display format of selected channels (Fz, Cz, Pz, and Oz) for α-dependent 

F-VEP recording. The vertical bar at the upper left of mark ‘128’ indicates the 

time of applying flash stimulus ...............................................................................40 

Figure 3-9: The α-dependent F-VEPs of one meditator recorded on (a) Fz, (b) Cz, and (c) 

Oz ............................................................................................................................41 

Figure 3-10: Variations of N2-P2 amplitudes at (a) Fz and (b) Cz. Each bar represents the 

percentage of F-VEP varying from section I to section II ⎟
⎠
⎞

⎜
⎝
⎛ ×

− %100
I

III  for 

each individual subject (white: experimental subject, gray: control subject)..........44 

Figure 4-1: The scheme of the meditation EEG interpreter algorithm......................................48 

Figure 4-2: The strategy for multi-channel implementation of the meditation EEG inter-

preter........................................................................................................................49 

Figure 4-3: 30-channel recording montage ...............................................................................50 

Figure 4-4: Simulation results (a) φ, (b) δ, (c) θ, (d) β, (e) α, and (f) simulated signal and 

interpretation results represented by gray-scale bar chart .......................................52 

 xi



Figure 4-5: Simulation of the baseline drift and EMG-interference artifacts by mixing (a) 

β activity (b) low-frequency, large-amplitude sinusoid, and (c) high-frequency, 

large-amplitude random noise, and (d) the artifacts and interpretation result.........53 

Figure 4-6: Interpretation results illustrated by gray-scale bar chart.........................................53 

Figure 4-7: Mean percentage of each pattern: (a) for the experimental (light bars) and 

control (dark bars) group (*: P<0.05 and **: P<0.01), (b) for each individual 

subject (e1–e8: experimental subjects, c1–c8: control subjects).............................56 

Figure 4-8: Interpretation results of (a) subject e1, (b) subject e6, and (c) subject c2, with 

four selected time ranges framed by squares...........................................................58 

Figure 4-9: The β% mappings of two experimental subjects: e1 in (a) and e6 in (b), as 

well as one control subject c2 in (c). Each mapping displays the spatial distri-

bution of percentages of β activity within a 10-second window beginning at 

the designated time ..................................................................................................61 

Figure 5-1: An illustration of array of neighboring channels. The array montage for seed 

channel Cz with link distance (a) d=1, (b) d=2 .......................................................66 

Figure 5-2: (a) The experimental setup and (b) the scheduling protocol in the exter-

nally-paced finger-movement experiment...............................................................68 

Figure 5-3: The maximum and minimum of optimal orders of 20 trials (subject s1) ...............69 

Figure 5-4: (a) Pole-zero plot of H1,2,4,5(z) and H3(z) for the first 7 seconds. (b) Pole-zero 

plot of H3(z) after the 7th second..............................................................................71 

Figure 5-5: Model of the simulated signal for (a) the first 7 seconds, and (b) the last 3 

seconds ....................................................................................................................72 

Figure 5-6: (a) The simulated signal, and (b) the time-varying LSTS index ............................73 

Figure 5-7: Illustration of the single-trial and the moving window used in the LSTS 

analysis ....................................................................................................................74 

Figure 5-8: The time-varying SC3 (subject s1) using model orders 3 (solid), 4 (dotted), and 

5 (dash-dot) in the right finger movement study .....................................................75 

Figure 5-9: The time-varying Sch (subject s1) using seed channel C3 (solid), C4 (dashed), 

P3 (dotted), and F3 (dash-dot) in the right finger movement study ........................76 

Figure 5-10: The Sch brain mappings evolving in a 10-second trial interval for subject s1 

 xii



using link distance d=1 in the study of (a) left index finger movement, and (b) 

right index finger movement ...................................................................................77 

Figure 5-11: The Sch brain mappings evolving in a 10-second trial interval for subject s1 

using link distance d=2 in the study of (a) left index finger movement and (b) 

right index finger movement ...................................................................................78 

Figure 5-12. The 10-second Sch brain mappings of (a) subject s2, and (b) subject s3 in the 

right index finger movement study (link distance d=1) ..........................................79 

Figure 5-13: 10-second EEG signals and the evolving S brain mapping for (a) meditator 

e1, (b) meditator e2, and (c) non-meditator c1 ........................................................82 

 

 xiii



 

Chapter 1－ 

Introduction 
 

 

The sages did not treat those who were already ill; they instructed 

those who were not yet ill. They did not want to rule those who were 

already rebellious; they guided those who were not yet rebellious. 

~《 Huang Ti Nei Ching》 

 

 

 rapid increase in the use of CAM (complementary and alternative medicine) 

across the Western World has aroused attention of researchers. Zen meditation, 

classified as the category of mind-body intervention in CAM [National Center 

for Complementary and Alternative Medicine 2002], has been widely practiced on a daily ba-

sis for maintaining good health. However, it still has not yet been completely understood by 

people in CAM or in mainstream Western medicine. Our research group has been attending to 

how meditation enhanced the mind capacity for maneuvering our bodily functions, emotions 

and even mental activities. For investigation into brain dynamics during meditation, we thus 

began the researches on Zen meditation, mostly based on Electroencephalograph (EEG), in 

1998. EEG was favored due to not only its ability of exploring brain functions via 

neuro-electrophysiological basis but its advantage of easily recording implementation and 

high temporal resolution. 

A 
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1.1. Background 
Over the past four decades, much research has been devoted to investigating meditation 

benefits to humans. To know more about its benefit to our body, a lot of researches have been 

devoted to the study of meditation process and phenomena, mostly in the physiological and 

psychological aspects. Scientific exploration has corroborated the effectiveness of meditation 

practice on the health promotion which includes regulation of the hormone-level and blood 

pressure, moderation of stress and anxiety, reduction of chronic pain, etc [Wallace 1970, 

Wallace et al. 1971, Woolfolk 1975, Elson et al. 1977, Wallace 1986, Jevning et al. 1992, 

Travis 2001]. According to the experienced practitioners, meditation facilitates a greater sense 

of calmness, empathy, and compassion. As Western medical practitioners begin to understand 

the role of mind in health and disease, there has been more interest in both employing medita-

tion in medicine and exploring brain dynamical phenomena during meditation. 

EEG has been of great interest in monitoring brain dynamical phenomena during medita-

tion. Although many research studies have been conducted since the 1960s [Wallace 1970, 

Banquet 1973, Woolfolk 1975, Pagano et al. 1976, Elson et al. 1977, Hebert and Lehmann 

1977, West 1980, Aftanas and Golocheikine 2001, Zhang et al. 1988, Travis 2001], there are 

still a wide spectrum of queries about the brain electrical phenomena (recorded in the form of 

EEGs) corresponding to various transcendental-consciousness states. In recent years, we have 

been investigating the Zen meditation EEG in multi-faceted aspects. According to our 

long-term interactions with the experienced practitioners for several years, the Zen meditation 

process involves experience of transcending various physiological, mental, and conscious 

states as follows. A meditator would first attenuate their physical and mental sensors via par-

ticular mind-focusing technique, leave off the message transmission from outside world, and 

keep subconsciousness tranquil during meditation. Moreover, meditators often experience 

unusual perceptions, for example, loss or distortion of space and time perceptions, sensation 
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of aureola-surroundings, etc. Especially, in the deeper meditation state, many meditators have 

experienced the perception of inner light [Lo et al. 2003]. Few experienced practitioners may 

attain the spiritual realm (defined by Zen doctrine). Variations in EEG temporal and spatial 

activities have been presumed to be associated with the meditation stages, a comprehensive 

review was published recently [Cahn B.R., Polich 2006]. A scientific approach to exploring 

the brain behavior under such states of consciousness becomes a matter of significance in un-

derstanding the meditation scenario and in advancing neuro-cognitive science. 

 

1.2. Aims of this work 
In our meditation studies, each EEG recording has lasted more than 30 minutes for a 

complete monitoring of the meditation process, so over the years, we have accumulated an 

enormous amount of data. Analysis of such a large amount of raw EEG data becomes a sig-

nificant problem. Thus an EEG interpreter capable of providing a fast overview is of acute 

need. For reducing the complexity of analyzing the long-term EEGs, a number of techniques 

have been proposed. In general, segmentation methods are used first to break down the EEGs 

into stationary segments, and then classification schemes are applied to the segmented epochs. 

Segmentation methods applied to the EEG analysis are mostly based on an autocorrelation 

function [Michael and Houchin 1979], parametric modeling [Jansen et al. 1981, Amir and 

Gath 1989], nonlinear energy operator[Agarwal and Gotman 1999], statistical properties 

[Brodsky et al. 1999], AIC (Akaike Information Criterion) [Inouye et al. 1995], 

cross-spectrum [Gath and Michaeli 1989], etc. Problems of the methods mentioned above in-

clude: difficulty of determining the appropriate implementing parameters and requirement for 

continual update of parameters [Michael and Houchin 1979, Creutzfeld et al. 1985, Amir and 

Gath 1989, Inouye et al. 1995, Agarwal et al. 1998, Agarwal and Gotman 1999, Brodsky et al. 

1999] which is practically unfeasible for long-term meditation EEG monitoring. Similarly, 
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most classification schemes, like the artificial neural network approach [Vuckovic et al. 2002], 

need a particular learning strategy to adjust classifier parameters. In consideration of 

long-term EEG monitoring, this kind of intensive, time-consuming approach is thus impracti-

cal for real-time applications. 

The results of previous papers [Banquet 1973, Hebert and Lehmann 1977, West 1980] 

allow us to hypothesize that one key feature in meditation EEG is the frequency composition. 

The EEG is a low-frequency signal ranging between DC to 30 Hz or higher. It is commonly 

classified into delta (0–4Hz), theta (4–8Hz), alpha (8–14Hz), and beta (14–30Hz) rhythms. 

Conventional spectral analysis uses Fourier Transform to estimate frequency components. 

However, FFT has had limited application to characterizing low-frequency EEGs and requires 

numerous data to get acceptable frequency resolution. Moreover, the spectrum estimated this 

way is often contaminated by noise and low frequency components, which is an inevitable 

and severe problem in EEGs. Accordingly, spectral analysis based on Fourier Transform may 

not be feasible for long-term EEG analysis. Another method for examining time-varying fre-

quency activity is the autoregressive (AR) spectral estimation, from which more accurate es-

timate with better resolution is attainable [Hayes 1996, Pardey et al. 1996, Güler et al. 2001]. 

Nevertheless, the AR estimates of low frequencies are less reliable than those for high fre-

quencies. However, EEGs are low-frequency signals in the range between DC and 30 Hz (this 

number is research-oriented and may be higher). The meditation EEG, in particular, may con-

tain substantial amounts of theta and delta activities for some experimental subjects (medita-

tors). The AR method often fails to provide accurate estimate of low-frequency spectral com-

ponents. To solve this problem, we can use a higher order AR model to estimate the spectrum, 

but this is at the cost of a heavy computation load.  

To deal with the problems mentioned above, we developed a computerized scheme, 

combining a multiresolution concept with the AR spectrum estimation to facilitate long-term 

meditation EEG analysis. The main idea of the proposed scheme is to establish an adequate 
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criterion for classifying the windowed segment, based on the characteristic frequency ex-

tracted from subband components, and for eventually identifying different EEG rhythms and 

then providing an overview of the entire meditation EEG record. The scheme provides more 

accurate estimates with better resolution and less computation complexity [Liao and Lo 2006]. 

Moreover, results of EEG overview provided an efficient way of scrutinizing the spatiotem-

poral characteristics of meditation EEG.  

In addition to the EEG rhythmic characteristics, synchronization among different brain 

regions also provides an alternative way to inspect brain dynamics. According to the assump-

tion of oscillation model [Klimesch 1996, Pfurtscheller and Lopes da Silva 1999], different 

neuronal networks may oscillate with different frequencies during various mental activities. 

Various event-related desynchronizations on different brain areas thus provide information for 

exploring the behavior of neuronal network under particular mental task. 

There have been several studies about event-related desynchronization and synchroniza-

tion (ERD/ERS), in which band power changes were used to evaluate synchrony in specific 

frequency bands [Pfurtscheller and Lopes da Silva 1999]. Sensory processing and motor be-

havior might result in focal EEG power suppression in certain rhythms, particularly in the al-

pha band. Based on the ERD/ERS phenomenon, the scheme of brain–computer interface (BCI) 

becomes feasible [Wolpaw et al. 2002, Pfurtscheller et al. 2006]. On the other hand, coher-

ence analysis has been employed in quantifying the degree of EEG spatial synchronism for 

investigating the Alzheimer disease, memory, anxiety, intelligence, sleep, etc. [Locatelli et al 

1998, Weiss and Rappelsberger 2000, Duckrow and Zaveri 2005, Knyazev et al. 2005, 

Thatcher et al. 2005]. 

In addition to the methods described above, Franaszczuk and Bergey proposed a new 

measure of synchronization of multichannel ictal and interictal EEG signals based on multi-

variate autoregressive model [Franaszczuk and Bergey 1999]. Multivariate autoregressive 

model has been applied to EEG classification [Anderson et al. 1998, Peters et al. 2001, Pei 
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and Zheng 2004] and coherence analysis [Ding et al. 2000, Möller et al. 2001, Kuś et al. 

2004]. In Franaszczuk’s work, residual covariance matrix of a multivariate autoregressive 

model was used to measure the relative level of synchronization between channels. The 

measure could be interpreted in both the stochastic and the deterministic frameworks. They 

found, as expected, the increasing synchronization during ictal periods. Moreover, the level of 

synchronization remains higher after a seizure for a prolonged period. 

We further modified Franaszczuk’s method of synchronization measure to derive the lo-

cal spatiotemporal synchronization (LSTS) index that gives a quantitative description of the 

event-related spatiotemporal synchronization of the brain. Based on the quantified residuals of 

the multivariate autoregressive model, LSTS index is capable of measuring the degree of 

temporal synchronization among neighboring channels in a local brain area. Computation ef-

ficiency of the method is further improved with the QR factorization used in computing the 

residual covariance matrix of the multivariate autoregressive model.  

The LSTS index was demonstrated to be effective in studying the EEG spatiotemporal 

behavior in an externally-paced finger-movement experiment. We then utilized this quantita-

tive approach to explore the meditation EEG. Estimated index provides us new insight into 

particular EEG spatiotemporal behavior observed during meditation process. 

 

1.3. Organization of the dissertation 
This dissertation consists of six chapters presenting methods for meditation-EEG re-

search based on univariate and multivariate AR models. Figure 1-1 illustrates the hierarchy 

associating different chapters. 

In the beginning, this chapter makes an introduction to this study and describes the main 

aim. Chapter 2 reports a computerized scheme Subband-AR EEG Viewer that provides a 

comprehensive view of the meditation EEG record. The scheme is mainly designed to trace 
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the time-varying spectral characteristics in meditation EEG and could be modified for spe-

cific requirements or applications. Two algorithms are introduced for slow α-rhythm detec-

tion and meditation EEG interpretation. 

 

Chapter 1 
Introduction 

Chapter 2 
Subband-AR 
EEG Viewer 

Chapter 5 
Spatiotemporal 
synchronization 

Chapter 3 
Online α-rhythm 

detection 

Chapter 4 
Meditation EEG 

interpreter 

Chapter 6 
Discussion and Conclusion 

univariate AR model multivariate AR model 

 

Figure 1-1: Chapter hierarchical structure. 

 

A method for α-rhythm detection was implemented in a real-time manner in Chapter 3. 

In addition, an alternative strategy was proposed to investigate the human brain in response to 

external flash stimuli during Zen meditation course. The flash-light stimulus was to be applied 

upon emergence of the frontal α-rhythm. This study was developed and conducted for further 

understanding the effect of Zen meditation on human perception. 

Chapter 4 describes a software system “meditation EEG interpreter” based on the second 

algorithm presented in Chapter 2. This interpretation system can identify such EEG patterns 

like the flat wave (φ), δ, θ, χ, α, and β activities. Moreover, it possesses noise screening capa-
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bility, especially for rejecting the artifacts like the baseline drift and EMG (electromyograph) 

interference. It also allows a quick overview of an enormous amount of EEG data. 

Besides the univariate AR model employed in meditation EEG research, Chapter 5 fo-

cuses on the multivariate autoregressive (mAR) model feasible for quantitative study of spati-

otemporal behavior in multichannel EEG. The spatiotemporal synchronization index based on 

residual covariance matrix of mAR model was proposed. The index measures the degree of 

synchronization among neighboring channels of a local brain area. A reduction of synchroni-

zation (or, significant desynchronization) in the brain areas results in a relatively high index. It 

might provide a quick inspection of spatiotemporal characteristics for various meditation sce-

narios. 

Significant differences in EEG rhythmic patterns, meditation scenarios, spatiotemporal 

characteristics, and visual evoked potentials have been observed between experimental and 

control groups. The last chapter makes a summary of the results obtained from previous chap-

ters. 
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Chapter 2－ 

Meditation EEG Overview Based 
on Subband Features Quantified by 
AR Model 

 

 

Measurement does not necessarily mean progress. Failing the pos-

sibility of measuring that which you desire, the lust for measurement 

may, for example, merely result in your measuring something else - 

and perhaps forgetting the difference - or in your ignoring some 

things because they cannot be measured. 

~ George Udny Yule 

 

 

his chapter reports a computerized scheme Subband-AR EEG Viewer that pro-

vides a comprehensive view of the meditation EEG record. The scheme was 

mainly designed to trace the varying spectral characteristics in meditation EEG. 

Following sections illustrate the main ideas and the methods adopted in the scheme. Two al-

gorithms modified from the scheme are introduced for particular applications. An on-line im-

plementation of the Subband-AR-EEG Viewer is also drawn in the end of this chapter. 

T 
 
2.1. Subband-AR-EEG Viewer 

The scheme is focused on monitoring the time-varying characteristic frequency in medi-
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tation EEG. The AR model is applied to the subband component to quantify the characteristic 

frequency. Consider that the EEG signal, , is generated by an autoregressive (AR(p)) 

process driven by unit-variance white noise [Theodoridis and Koutroumbas 1999]. A pth or-

der all-pole model is formulated by 
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where ε is the modeling error and ][kxγ  is the estimated autocorrelation function defined 

below: 
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As addressed previously, a higher model order (for example, p ranges from 6 to 14) is 

normally required to better estimate the low-frequency component in EEGs. According to 

(2-2), the coefficients of the AR(6) model are determined by {γx[k]⏐0≤k≤6}. As demonstrated 

in Table 2-1, the values of the autocorrelation function γx[0] - γx[6] for θ and δ rhythms are too 

close to distinguish between each other, whereas the coefficients for α and β exhibit signifi-

cant deviation. 
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Table 2-1: Values of autocorrelation function, γx[0] - γx[6], computed for δ, θ, α, and β 

rhythms. 

 γx[0] γx[1] γx[2] γx[3] γx[4] γx[5] γx[6] 

δ 1.000 0.986 0.948 0.891 0.822 0.746 0.665 

θ 1.000 0.985 0.946 0.889 0.823 0.752 0.676 

α 1.000 0.946 0.792 0.562 0.287 −0.0004 −0.271 

β 1.000 0.872 0.553 0.166 −0.155 −0.323 −0.324 

 

In fact, even increasing the model order to p=12 cannot discriminate δ rhythm from θ 

rhythm. The dominant pole pairs for δ and θ modeled by AR(12) are 0.964∠±0.131 and 

0.959∠±0.129, respectively, which results in a close estimate of the spectral frequencies 

(symbol ‘∠’ denotes the phase in radian). In addition, the computational time required by 

AR(12) becomes four-fold compared with that for AR(6).  

A downsampling process ensures the AR modeling better characterizes the low fre-

quency activities. This is revealed by the autocorrelation function values γx[0] - γx[6] esti-

mated for δ and θ rhythms downsampled by 8: 

γx[k]δ: {1.00, 0.48, −0.18, −0.48, −0.39, −0.03, 0.06}, (2-4a) 

γx[k]θ: {1.00, −0.16, 0.26, 0.06, −0.42, 0.02, −0.23}. (2-4b) 

Moreover, according to Gabor’s uncertainty principle [Oppenheim et al. 1998], downsampling 

operation improves frequency resolution which is desired for narrow-band EEG. We accord-

ingly employed subband-filtering prior to the frequency analysis by AR modeling. 

In summary, EEG signals are firstly decomposed into different subband components by 

downsampling and filtering. Then the characteristic frequency (root frequency) of each sub-

band component is estimated by the AR(2) model. The entire scheme is called the Sub-

band-AR EEG Viewer and it can be illustrated by the tree-structured filter banks shown in Fig. 
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2-1. In the Subband-AR EEG Viewer, a linear-phase lowpass FIR filter H(z) with cutoff fre-

quency 30Hz is used as an anti-aliasing filter before the downsampling operation. Then the 

AR(2) model is applied to the decimated signal. The filtering-and-downsampling process is 

repeated until the equivalent cutoff frequency equals 1.875Hz. 

Differing from the wavelet decomposition, the Subband-AR-EEG-Viewer only employs 

the lowpass linear-phase filter. A nonlinear-phase filter which is commonly employed in 

wavelet analysis [Vaidyanathan 1993] would distort the temporal information of EEG and 

consequently affect the AR model coefficients estimated by the autocorrelation method. 

The Subband-AR-EEG-Viewer structure (Fig. 2-1) can be rearranged into a six-channel 

filter banks shown in Fig. 2-2 with decimation ratios which are powers of two. Fig. 2-3 shows 

the frequency responses of the lowpass filters in the filter banks. The cutoff frequencies of 

H1(z), …, H5(z) are, respectively, 30Hz, 15Hz, 7.5Hz, 3.75Hz, and 1.875Hz (sampling rate: 

200Hz). 
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Figure 2-1: The structure for the Subband-AR-EEG-Viewer. 
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Figure 2-2: The equivalent six-channel system of the subband filter bank. 
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Figure 2-3: The frequency responses of H1(z), …, H5(z). 

 

It should be noted that the cutoff frequencies approximate the upper boundaries of the 

four well-known EEG rhythms⎯ β (14–30Hz), α (8–13Hz), θ (4–7Hz), and δ (below 3Hz). 

Therefore, changes of the characteristic frequency in meditation EEG can be traced by quan-

tifying the root frequency (fr) of each subband filtered component. For example, when frs of 
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output1, output2 and output3 are all within the range 8–13 Hz, the dominant pattern of this 

windowed segment is identified, to a great degree, as the α rhythm. When frs of output1 and 

output2 are greater than 15Hz and fr of output4 is between 4Hz and 7Hz, the particular seg-

ment most likely contains θ intermixed with β rhythm. 

After the subband decomposition, the AR(2) model coefficients are computed. An AR(2) 

model can be expressed as 
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where ][kxγ  is the autocorrelation function estimated by (2-3). 

The characteristic frequency, also called the root frequency, of outputi can be estimated 

from the phase of the pole, or the root of the model equation (2-5) expressed in the frequency 

domain. After obtaining the model coefficients, the conjugated pole pair is 
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Therefore, the root frequency fr can be formulated as 
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Because the root frequency is much smaller than the sampling frequency, the result of 

 14



 

sin−1x can be approximated by x. For example, the α rhythm having a higher frequency of 

13Hz results in a normalized radian frequency of 0.13π (assume fs = 200Hz). The approxima-

tion only causes a 2.8% deviation from the true value. It should be noted that output2-output6 

are the results of downsampling (Fig. 2-2), the root frequency fr,i should be further divided by 

2i-1. According to equations (2-6) to (2-9), root frequency of each subband component de-

pends on ]0[xγ , ]1[xγ , and ]2[xγ . Tracking the root frequency of each subband component 

provides an efficient way to illustrate the time evolution of the characteristic frequency in 

meditation EEG. 

 

2.2. Experimental setup and protocol 
The meditation EEG signals were recorded using 8-channel SynAmps amplifiers (manu-

factured by NeuroScan, Inc.) connected to the Pentium MMX-166 (MHz) PC. Due to hard-

ware limitation, we observed EEG characteristics in different regions with the 8-channel, 

unipolar recording montage involved the electrode sites at O1, O2, Oz, Cz, Pz, F3, F4 and Fz 

(Fig. 2-4). The common reference was the linked M1-M2 (mastoid electrodes). The EEG sig-

nals were pre-filtered by a bandpass filter with passband 0.3–30 Hz, and digitized at 200 Hz 

sampling rate. Each recording lasted for 45 minutes, which consisted of the first 5-minute 

background EEG (the subject sat in a normal relaxed position with eyes closed) and the 

40-minute meditation EEG. During the meditation session, the subject sat, with eyes closed, in 

the full-lotus or half-lotus position. Each hand formed a special mudra (called the Grand Har-

mony Mudra), laid on the lap of the same side. The subject focused on the Zen Chakra and the 

Dharma Eye Chakra (also known as the “Third Eye Chakra”) in the beginning of meditation 

till transcending the physical and mental realm. The Zen Chakra is located inside the third 

ventricle, while the Dharma Eye Chakra is located at the hypophysis [Lo et al. 2003]. 
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Figure 2-4: 8-channel recording montage. 

 

2.3. Slow alpha rhythm detection (SARD) algo-
rithm 

The slow α-rhythm in meditation EEG was found to be related to the early stage of medi-

tation. The first algorithm was designed particularly to detect the slow α-rhythm in the 

long-term meditation EEG record. The ideas and methods proposed can be implemented in 

different ways, oriented towards a specific purpose. 

 

2.3.1. The algorithm 

Frequency of the α-rhythm ranges from 8Hz to 13Hz. The slow α-rhythm is a particular 

pattern, normally below 10Hz, that was observed in some experimental subjects at the 

mind-focusing stage of meditation. The Subband-AR-EEG-Viewer can be reduced to the 

structure (Fig. 2-5(a)) for tracking the slow α-rhythm and the slow alpha rhythm detection 

(SARD) algorithm is illustrated in Fig. 2-5(b). According to analytical reasoning and practical 
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experience, output1 in combination with output3 highly enhances the effectiveness of slow 

α-rhythm detection. Note that fr,1 acts as an index to screen out the high-frequency component, 

and fr,3 is employed in the classification as a major reference. The SARD algorithm depicts 

that the slow α-rhythm pattern is detected when both root frequencies satisfy the following 

criteria: 

fr,1 < 14Hz, and 

8Hz < fr,3 <10Hz. 

 

2.3.2. Simulation 

While only examining output1 (up to 30Hz) with the criterion 8Hz < fr,1 <10Hz, it often 

fails to identify the noise-contaminated slow α-rhythm. Figure 2-6 demonstrates the 

noise-immunization capability of our scheme. When a pure 9Hz sinusoid (Fig. 2-6(a)) was 

partially contaminated by uniformly distributed random noise (Fig. 2-6(b)), the AR model did 

not recognize the noise-contaminated slow α-rhythm segment based on the criterion 

8Hz<fr,1<10Hz (Fig. 2-6(c)). The results in Fig. 2-6(d) show that the SARD algorithm suc-

cessfully detected the slow α-rhythm under poor environment (SNR=8dB). 

To verify the performance, we first analyzed a simulated signal of 4-sec duration. The 

signal shown in Fig. 2-7(d) was generated by connecting three short-duration, ampli-

tude-modulated sinusoids, respectively, with frequencies 9Hz, 15Hz, and 5Hz (Figs. 

2-7(a)-(c)). The window length is 0.5 sec (100 samples), moving at a step of 0.25 sec. As 

shown in Fig. 2-7(d), the SARD algorithm effectively detected the slow α-rhythm pattern. 
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(a) 

 

(b) 

Figure 2-5: The Subband-AR-EEG-Viewer modified for slow α-rhythm detection: (a) 

structure and (b) algorithm. 
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slow α 

slow α slow α 

(a) 

(b) 

(c) 

(d) 

SNR=8dB 

 

 

Figure 2-6: Capability of noise immunization of slow α-rhythm detector. The black 

bold lines mark epochs identified as slow α-rhythm. 

 

slow α  

1 sec 

(a) 

(c) 

(b) 

(d) 

9 Hz 

15 Hz 

5 Hz 

 

Figure 2-7: Slow α-rhythm detection from the time-varying rhythmic activities. The 

signal in (d) is simulated by adding three short-duration, amplitude-modulated sinu-

soids with frequencies (a) 9Hz, (b) 15 Hz, and (c) 5 Hz. 

 19



 

2.3.3. Identification of slow alpha rhythm 

Next, the SARD algorithm was applied to the meditation EEGs (channel O1). A 

10-second segment shown in Fig. 2-8 was analyzed with the same implementing parameters 

as used in Fig. 2-7. Bold lines above the signal indicate the slow α-rhythm detection. As 

shown in Fig. 2-8(a), amplitude variation often affects the recognizability of slow α-rhythm. 

It results in a crack in the first bold line. On the other hand, a transient slow α-rhythm may be 

of little significance. We thus designed a post-processor to further refine the result. It removed 

segments shorter than 0.3 sec and fused cracks shorter than 0.3 sec (Fig. 2-8(b)). 

 

1 sec 

slow α  

(a) 

(b) 

 

Figure 2-8: Detection of slow α-rhythm in meditation EEG (Channel O1). Bold lines 

above the signal indicate the slow α-rhythm detection. (a) A crack in the first bold line 

is caused by variation of the α amplitude. (b) A post-processor removes the second 

lines with duration shorter than 0.3 sec (insignificant activity) and fuses the crack 

shorter than 0.3 sec. 

 

Detection of specific EEG patterns is important in identifying various meditation states. 

In addition, it may serve as a preprocessing stage in such tasks like the EEG segmentation or 

interpretation. Based on the Subband-AR-EEG-Viewer, we devised a strategy for meditation 

EEG interpretation. Details are illustrated below. 
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2.4. Long-term meditation EEG interpretation 
(MEEGI) algorithm 

Changes of the characteristic frequency in meditation EEG may be a key feature for un-

derstanding various states of consciousness during meditation. We therefore developed a 

logical strategy implemented in the computerized MEEGI algorithm to segment the EEG into 

sections with different frequencies. The results, illustrated as a running gray-scale chart, 

clearly reveal the evolution of a characteristic frequency during meditation.  

 

2.4.1. The algorithm 

In the following, we present interpretation results of the meditation EEG based on five 

spectral features frequently observed during meditation: (1) The χ features which is a slow 

waveform intermixing with high-frequency rhythms, (2) δ, (3) θ, (4) α, and (5) β features. 

The χ feature mostly appears at the transition from one EEG rhythm to another. To provide a 

long-term visual record, the five spectral features are displayed by different gray tones. The 

gray tones from the darkest to the lightest indicate, respectively, the χ, δ, θ, α, and β features. 

In this task, the structure of Subband-AR-EEG Viewer can be reduced to that shown in Fig. 

2-9. 

 

 

Figure 2-9: The Subband-AR-EEG Viewer modified for meditation EEG interpretation. 
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The MEEGI algorithm examines each windowed segment to check the following criteria 

in order: 

Criterion-χ: fr,3<7Hz<fr,1 and ⏐p3⏐>0.8; 

Criterion-δ: fr,1<7Hz and fr,4<3.5Hz; 

Criterion-θ: fr,1<7Hz; 

Criterion-α: 7Hz< fr,1<14Hz and 7Hz<fr,3;

Criterion-β: 7Hz<fr,1;

where p3 is the AR(2) pole of output3. The criteria checkup is ordered according to a sound 

logic realizing the subband filtering method. The root frequency fr,1 is used to differentiate 

between 0-7Hz and 7-30Hz EEG bands, while the fr,3 , fr,4 and ⏐p3⏐ is employed in the sub-

sequent discrimination process. The length of p3 can be considered as an indication of the sig-

nificance of the root frequency. Because the χ wave represents an intermixed signal composed 

of both low- and high-frequency components, we impose restrictions on the range of ⏐p3⏐ to 

ensure the significance of the low frequency component. The flowchart of the MEEGI algo-

rithm is shown in Fig. 2-10. 

 

2.4.2. Simulation 

To verify the effectiveness of feature recognition, the MEEGI algorithm was first applied 

to a simulated signal. As displayed in Fig. 2-11(e), the signal was formed by connecting five 

segments of δ, θ, χ, α, and β patterns. We assumed the sampling rate is 200Hz. This signal 

can be simulated by the pole placement method, that is, by placing each pole in the corre-

sponding frequency band (Table 2-2) and adding Gaussian noise. The transition from θ to β 

normally results in a compound pattern like χ. The running gray-scale chart (Fig. 2-11(e)) 

above the simulated sequence successfully signals the temporal patterns. 
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Figure 2-10: Meditation EEG interpretation (MEEGI) algorithm. 
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1 sec 

(a) 

(b) 

(c) 

(d) 

(e) 

(1) (2) (3) (4) (5) 

 
(1) χ, (2) δ, (3) θ, (4) α, and (5) β. 

Figure 2-11: Simulation results (a) δ activity (b) θ activity (c) β activity (d) α activity (e) 

simulated signal and classification results. 

 

Table 2-2: Locations of poles of the simulated signal 

 δ θ α β 
Pole 

locations 0.98∠0.04 0.98∠0.16 0.98∠0.4 0.88∠0.63 

 

The above simulation demonstrates the feasibility of the scheme and algorithm in Fig. 

2-9 and 2-10 for automatically identifying different EEG rhythms and revealing time-varying 

schema of the simulation. In empirical data, as more complex rhythmic patterns are involved, 

discrepancies between experienced EEG interpreters may occur. Methodology development 

thus focused on reliable recognition of some key features in meditation EEG analysis. Figure 

2-12 demonstrates the robustness of the Subband-AR-EEG Viewer for identifying even the 

little jittering of β rhythms embedded in the high-amplitude slow activity. 
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(1) χ, (2) δ, (3) θ, (4) α, and (5) β. 

Figure 2-12: Subband-AR-EEG Viewer applied to the EEG signal for feature recogni-

tion. 

 

2.4.3. Long-term meditation EEG interpretation 

When applied to the long-term meditation EEG, this algorithm is particularly robust for 

automatic interpretation with no need to determine the implementing parameters. Fig. 2-13 

displays three running gray-scale charts for two experimental subjects (Fig. 2-13(a) and (b)) 

and one control subject (Fig. 2-13(c)). Since Watts [Watts 1957] has reported the variation of 

alpha amplitude and frequency in the frontocentral region during meditation, we thus selected 

channel F3 for further analysis. The error rate was approximately 8.7% in comparison with 

the results of naked-eye examination by an experienced EEG interpreter. Both meditators 

have been practicing Zen Buddhist meditation for more than eight years. The control subject 

sat in a normal, relaxed position with the eyes closed. During the meditation session, the two 
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meditators exhibited different meditation scenarios. Meditation EEG of subject 2k1019p was 

apparently dominated by β rhythm, sometimes transforming into a short-duration α rhythm. 

According to the post-experimental interview, the subject did not always stay in the Alaya 

consciousness and occasionally went back to normal consciousness. 

The chart in Fig. 2-13(a) reveals this scenario for 20-minute. In Fig. 2-13(b), subject 

2k0830a exhibited a large portion of χ activities. In our meditation EEG experiment, EEG 

signals of some meditators indeed were found to be characterized by large-amplitude, 

slow-drifting rhythms interwoven with high-frequency tiny jiggles. Meditators with this kind 

of EEG characteristic normally have their meditation process wandering among normal con-

sciousness, subconsciousness (subliminal consciousness), and Alaya consciousness [Lo et al. 

2003]. Compared with the experimental group, EEGs collected from the control subject are 

normally dominated by α rhythm, as illustrated in Fig. 2-13(c). Note that this subject was 

drowsy in the experiment, resulting in occurrence of θ and δ rhythms. 

 

2.4.4. On-line implementation of the Subband-AR-EEG Viewer 

Due to its simplicity, the algorithms provides a robust tool for on-line processing re-

quired for meditation EEG interpretation as well as the biofeedback scheme in the BCI 

(brain-computer interface) research. Currently, we have implemented the MEEGI algorithm 

under Simulink (MathWorks, Inc., Natick, MA) with Real-Time Workshop on a Pentium-M 

1.4 (GHz) notebook (Fig. 2-14(a)). By generating a real-time code with Real-Time Workshop, 

the algorithm can be downloaded to the kernel and run in a real-time manner under Windows 

[Guger 2001]. The classification results were displayed on a monitor. As shown in Fig. 

2-14(b), the height of each bar reflects the power percentage of the corresponding EEG 

rhythm within a 2-sec frame. We can thus monitor the meditator’s state in a real-time manner 

that enables the development of a more subtle correlation between the EEG characteristics 
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and the meditation scenario.  

 

χ δ θ α β

300 sec 

600 sec 

900 sec 

1200 sec 

 
(a) 

χ δ θ α β

300 sec 

600 sec 

900 sec 

1200 sec 

 
(b) 

χ δ θ α β

300 sec 

600 sec 

 
(c) 

Figure 2-13: Running gray-scale charts (Channel F3) for two meditators (a) subject 

2k1019p, and (b) subject 2k0830a, and (c) one non-meditator (control) subject 

2k1007p. 
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  (a) 

 
(b) 

Figure 2-14: On-line implementation of the Subband-AR-EEG Viewer. (a) Computer 1 

executes the MEEGI algorithm (Fig. 2-10), and Computer 2 displays the classification 

results, as illustrated in (b). The height of each bar reflects the power percentage of the 

corresponding EEG rhythm within a 2-sec frame. 
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Chapter 3－ 

Investigation of Visual Perception 
under Zen-Meditation 

 

 

If the brain were so simple we could understand it, we would be so 

simple we couldn't. 

~Lyall Watson 

 

 

ne topic of interest in the meditation study is the evoked potentials (EP) (or 

event-related potentials, ERP) of a practitioner under meditation, which includes 

auditory evoked potential (AEP), somatosensory evoked potential (SEP), visual 

evoked potential (VEP), and so on. Each parameter is meaningful to the respective perception 

function. Due to unusual perceptions often experienced during meditation, human brain in 

response to external flash stimuli during Zen meditation drew our attention. Recording of 

VEPs provides a means of characterizing the visual pathway and visual function. VEPs can be 

recorded by applying either patterned or non-patterned stimulus that results in various VEP 

waveforms [Odom et al. 2004]. Since practitioners must close their eyes during meditation, 

we employed non-patterned flashes in the VEP recording.  

O 

 

3.1. Why EEG-triggered F-VEP? 

In Zen-meditation EEG study, increased alpha activity over the frontal regions of the 

brain has been observed during meditation [Kasamatsu and Hirai 1966, Takahashi et al. 2005] 
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and so has the increased frontal alpha coherence [Murata 2004]. Kasamatsu and Hirai found 

an increase in alpha amplitude at the beginning of meditation, which then spread frontally 

[Kasamatsu and Hirai 1966]. Furthermore, Takahashi et al. observed that the increased frontal 

alpha power correlated with the enhancing internalized attention [Takahashi et al. 2005]. Thus 

increased frontal alpha activity was hypothesized as a result of Zen-meditation process. All 

the observations have led into further understanding of the function-correlated, spatial char-

acteristics of the brain affected by meditation. 

In another aspect, Zhang et al. [Zhang et al. 1993] claimed that the amplitudes of F-VEPs 

(VEPs under flash stimuli) of Qigong meditators increased under meditation. In Xu et al.’s 

research [Xu et al. 1998], the amplitude of F-VEP increased while the latency decreased. They 

suggested that concentration and attention may be the reason of altering the evoked potentials. 

One problem encountered in the F-VEP study is to determine the appropriate timing for ap-

plying the flash-light stimulus. To our knowledge it has not been reported in regard to this is-

sue. In our previous study, stimulus was applied at the mid-section of meditation at which 

subjects might undergo various physiological and mental states. In that case, F-VEPs were not 

able to reveal different experimental courses such as the section before, during, and after 

meditation [Liu and Lo 2005]. To assure that all F-VEPs are acquired under a consistent con-

dition, a rational experimental setup is to apply the stimulus based on a controllable factor. To 

gain access to particular brain states, one approach is to ask the subject to signal the attain-

ment of the meditation state by finger movement [Newberg et al. 2001, Lo et al. 2003, Taka-

hashi et al.2005]. However, it often causes meditators to break off from the meditation state. 

 To investigate the ERP activities in a given brain state defined by EEG, we thus conceive 

the idea of EEG-triggered F-VEP scheme, that is, the flash-light stimulus is applied under 

specific oscillatory features of the EEG. In this preliminary study, we intuitively selected the 

frontal α-rhythm as the F-VEP triggered signal based on the results reviewed previously and 

our empirical observations these years. The following section illustrates the methods for de-
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tecting the frontal α-rhythm and the experimental setup. Significant results obtained are pre-

sented at the end of this chapter. 

 

3.2. Alpha-dependent F-VEP 
According to the description in 3.1, the flash-light stimulus is to be applied upon emer-

gence of the frontal α-rhythm. The scheme, Subband-AR EEG Viewer, proposed in Chapter 2 

[Liao and Lo 2006] provides more accurate estimate with better resolution [Hayes 1996, 

Güler et al. 2001] and, in particular, allows on-line α-rhythm detection within a very small 

time frame. Modification of the scheme for on-line α-rhythm detection is described below. 

 

3.2.1. Online α-rhythm detection 

For online α-rhythm detection, the SARD algorithm described in Chapter 2 was slightly 

modified. Because cutoff frequency of the bandpass filter is different (to be explained in next 

section) for VEP recording, the tree structural filter bank in Fig. 2-5 was adjusted as shown in 

Fig. 3-1. As presented in Chapter 2, an AR(2) model can be expressed as 

][]2[]2[]1[]1[][ 22 nwnxanxanx =−+−+ . (3-1) 

The model coefficients  can be determined by solving the autocorrelation normal 

equations [Hayes 1996]. After the model coefficients have been obtained, the conjugated pole 

pair is determined as, 
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Thus the root frequency of the signal can be obtained from Eq. (3-2) 
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where  denotes the ii th decomposition level. The filtering-and-downsampling process is reit-
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erated to attain good accuracy in discriminating between α and δ/θ rhythms. The equivalent 

cutoff frequency is 15Hz. We designed a criterion based on the root frequency to detect the 

α-rhythm. The algorithm examines each windowed segment to check whether it meets the 

following criterion. 

Criterion-α: fr,1<14Hz and 7Hz<fr,2. 

The root frequency fr,1 is used to differentiate EEG rhythms in 0–14Hz from those in 14–30Hz. 

Next, root frequency fr,2 is examined to screen out δ/θ rhythms. 

Note that output1 and output2 are the results of downsampling (Fig. 3-1), the root fre-

quency fr,i should be further divided by 2i. This experiment employed a window length of 1 

second, with a moving step of 0.5 second. 

 

 

Figure 3-1: Tree structural filter bank for the Subband-AR EEG Classifier. H(z) is de-

signed by least-squares error minimization with cutoff frequency 30Hz. 

 

3.2.2. Simulation 

To verify the effectiveness of the α-rhythm detection algorithm, the algorithm was firstly 

applied to a simulated signal. We assumed a sampling rate of 128Hz. The signal can be simu-

lated by the pole placement method, that is, by placing each pole in the corresponding fre-

quency band (Table 3-1) and adding Gaussian noise. As displayed in Fig. 3-2(e), the simu-

lated 10-second signal was formed by connecting four segments of δ, θ, α, and β-rhythm pat-
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terns. Detection result in Fig. 3-2(e) is illustrated by two gray scales, with dark (light) gray 

indicating the α (non-α) pattern. The result clearly justified the effectiveness of the algorithm 

in α detection. 

 

Table 3-1: Locations of poles of the simulated signal 

 δ θ α β 

Poles’ location 0.98∠0.04 0.98∠0.16 0.98∠0.4 0.88∠0.63 

 

δ
(a)

θ
(b)

β
(c)

α
(d)

(e)

non α
α

1 sec 

 

Figure 3-2: Classification result of the simulated signal. Different grays are used to il-

lustrated the α and non-α patterns. 

 

3.2.3. Off-line alpha detection 

 Empirical EEGs often exhibit highly complex, irregular rhythmic patterns that make the 

recognition of specific EEG pattern more difficult. Our algorithm is robust in dealing with this 
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kind of complication. Figure 3-3 displays the result of α detection. The error rate, estimated 

from the results of identifying 780 alpha candidates, was approximately 7.2% (4.6% false 

negative and 2.6% false positive rate) in comparison with the results of naked-eye examina-

tion by an experienced EEG interpreter.  
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Figure 3-3: Result of α detection for real EEG signal. 

 

3.2.4. F-VEP 

The F-VEP consists of a series of negative and positive peaks, denoted respectively by N 

and P followed by a number. The number is referred to as the order (or time) of occurrence of 

that particular peak from the stimulus. The F-VEP source is located in the occipital lobe. 

Normally, the event-related brain potentials propagate via neural network toward the nearby 

regions. The phase differences among different channels are caused by the time delays of 
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brain-wave propagation [Hughes et al. 1992]. Figure 3-4 shows typical F-VEPs recorded on 

Fz, Cz, and Oz with corresponding peak labels. In this study, peaks of significance including 

N2, P2, N3, and P3 are to be analyzed. Note that F-VEPs of different channels have phase de-

viation.  

Researchers inferred that the noticeable negative peak N2 of Oz was generated in lamina 

IV cb [Kraut 1985, Ducati 1988], then the following positive peak P2 might reflect the inhibi-

tion activity within lamina. This study is mainly based on the hypothesis that Zen meditation 

affects visual neural pathway that can be revealed on the F-VEPs. 

 

3.3. Experimental setup and protocol 
 

3.3.1. Subjects  

This study involved 11 meditators and 11 control subjects. In the experimental group, 4 

females and 7 males at the mean age of 27.5± 3.2 years participated. Their experiences in 

Zen-Buddhist practice span 5.5 4.3 years. The control group included 3 female and 8 male 

students with an average age of 23.6

±

± 3.3 years. 

 

3.3.2. Apparatus 

The EEG signals and F-VEPs were recorded at standard 10/20 positions (Fig. 3-5) with 

32-channel SynAmps amplifiers (manufactured by NeuroScan, Inc.) connected to a Pentium-4 

(1.5 GHz) PC. Common reference of linked M1-M2 (mastoid electrodes) was used. EEG sig-

nals, after amplification, were pre-filtered by a bandpass filter with passband 0.3–50 Hz, and 

digitized at 1000 Hz sampling rate. A 60-Hz digital notch filter was applied to the data to re-

move artifacts from power line or the surroundings. 
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Figure 3-4: Profile of F-VEPs on (a) Fz, (b) Cz, and (c) Oz with corresponding peaks 

labeled. 
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Figure 3-5: 32-channel recording montage. 

 

We developed an online α-detection algorithm that was implemented by using g.BSamp 

with g.RTsys (manufactured by Guger Technologies, Inc.) connected to a Pentium-M (1.4 

GHz) notebook. g.BSamp is a stand-alone biosignal amplifier and g.RTsys is a biosignal ac-

quisition and real-time analysis system for notebook implementation. To facilitate the 

real-time α detection, channel-Fz EEG was pre-filtered by a bandpass filter with passband 

0.5–30 Hz, and digitized at a lower rate of 128 Hz. The α-detection algorithm was imple-

mented on Simulink (MathWorks, Inc., Natick, MA) with Real-Time Workshop. By generat-

ing real-time code with Real-Time Workshop, the algorithm can be downloaded to the kernel 

and run in a real-time manner under Windows [Guger et al. 2001]. The experimental setup is 

shown in Fig. 3-6. The subject stayed in an isolated space. A CCD camera positioned in front 

of the subject was used to monitor the entire procedure. The 32-channel EEG signals were 

recorded by an EEG recording system. Another computer read channel Fz simultaneously to 

identify the occurrence of frontal-α rhythm. Once the frontal-α was ascertained, the computer 
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triggered the flash light controller to generate flash stimuli. 

 

CCD camera α-rhythm de-

tection 

EEG recording 

system 

trigger Flash light 

Flash light con-

troller 

EEG 

 

Figure 3-6: Experimental setup for α-dependent F-VEP recording. 

 

3.3.3. Experimental paradigms 

During the experiment, subjects sat in a separated space in the laboratory. Each recording 

lasted for about 60 minutes, including three sections: two 10-minute background EEG re-

cordings (section I and III) before and after a 40-minute recording (section II, the “main sec-

tion”) of EEG under meditation (experimental subject) or rest (control subject). The control 

subject sat in a normal, relaxed position with eyes closed, while the meditators practiced 

Zen-Buddhist meditation during the 40-minute main section. In Zen meditation, the subject 

sat, with eyes closed, in the full-lotus or half-lotus position. Each hand formed a special 

mudra (called the Grand Harmony Mudra), laid on the lap of the same side. The subject fo-

cused on the Zen Chakra and the Dharma Eye Chakra (also known as the “Third Eye Chakra”) 

in the beginning of meditation till transcending the physical and mental realm. The Zen 

Chakra locates inside the third ventricle, while the Dharma Eye Chakra locates at the hy-

pophysis [Lo et al. 2003]. 

The term “alpha-dependent F-VEPs” was used because we recorded F-VEPs upon the 

detection of frontal α rhythms. One run of alpha-dependent F-VEPs were recorded in each of 

the three sections (Fig. 3-7). Each run consisted of 50 alpha-dependent flash stimuli. The in-
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terval between two consecutive stimuli was longer than 1 sec. The flash light, with a 10μs du-

ration, was produced by a xenon lamp that was placed 60 cm in front of the subjects’ eyes. 

Alpha-dependent F-VEPs were acquired from midline channels Oz, Cz and Fz, with the 

linked-mastoid electrode as the reference. Since we employed the mastoid-referenced unipolar 

montage, alpha activities could be found in the frontal channels of all subjects [Niedermeyer 

and Lopes da Silva 2004]. However, more frontal alpha activities were detected during medi-

tation, that reduced the time required for collecting 50 alpha-dependent F-VEPs.  

 

Section I Section III Section II (main section)

50 alpha-dependent stimuli 

25   30 10     50 min 0    60 

 

Figure 3-7: Scheduling of the F-VEP recording procedure. 

 

3.4. Modulation of F-VEP amplitudes due to 
Zen-Meditation process 

 As shown in Fig. 3-8, different codes were used to indicate the stimuli presented in dif-

ferent sections. The stimuli in section I, II, and III are marked by code 128, 64, and 32, re-

spectively. And the marker at the upper left of each code indicates the time of flash stimula-

tion. A concluding F-VEP of each section was derived by averaging 50 raw tracings in one 

run. 
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Figure 3-8: Display format of selected channels (Fz, Cz, Pz, and Oz) for α-dependent 

F-VEP recording. The vertical bar at the upper left of mark ‘128’ indicates the time of 

applying flash stimulus. 

 

Inter-subject variations of human VEP under the open experimental environment are 

complicated. We thus investigated the intra-subject differences among various sections con-

ducted in one experiment. We measured the amplitude and latency of the average F-VEP, and 

quantified the difference between various sections. Our results presented quite different trends 

between two groups. Figure 3-9 plots an example of the F-VEPs at Fz, Cz and Oz (from the 

top) for one subject. The solid lines represent the F-VEPs in the section I, and the dash and 

dot ones stand for those in the section II and III. 
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Figure 3-9: The α-dependent F-VEPs of one meditator recorded on (a) Fz, (b) Cz, and 

(c) Oz. 
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Table 3-2: The changes in the peak amplitudes of specific F-VEP components. 

Exp group Ctrl group t-test 

Item II/I 
(%) 

III/II 
(%) 

P value 
(paired 
t-test) 

II/I 
(%) 

III/II 
(%) 

P value 
(paired 
t-test) 

II/I III/II 

P1-N2 95.09 114.40 NS 141.63 114.31 NS 0.013* NS 
N2-P2 101.41 101.44 NS 121.07 103.60 NS 0.010* NS 
P2-N3 107.10 102.77 NS 112.20 122.49 NS NS NS 
N3-P3 117.33 106.86 NS 90.59 114.25 NS NS NS 

Oz 

P3-N4 121.35 104.18 NS 112.71 81.89 NS NS 0.035*
P1-N2 106.25 76.33 0.057 81.20 87.08 NS 0.043* NS 
N2-P2 120.10 89.18 0.00037* 93.64 102.01 NS 4.78E-05* NS Cz 

P2-N3 134.73 103.43 NS 124.25 135.75 NS NS NS 
N1-P1 126.68 97.03 NS 104.30 125.79 NS NS NS 
P1-N2 119.20 86.72 0.056 87.02 95.01 NS 0.043* NS 
N2-P2 115.70 92.76 0.040* 88.77 110.03 0.052 0.0025* 0.045*

Fz 

P2-N3 143.35 128.01 NS 99.77 119.34 NS NS NS 

I: section I, II: section II (main section), III: section III,  

*: P<0.05, 

NS: Not Significant 

 

From our results we found that latencies of all components exhibit no significant differ-

ence among all sections in both groups. However, the variations of amplitudes show differ-

ences in some components between two groups. Table 3-2 presents, for each F-VEP compo-

nent, ratios of the group average amplitudes of different sections. The p value is calculated by 

paired t-test (compared with selves in different phases) and t-test (compared to the other 

group in the same phase). Amplitudes of P1-N2 and N2-P2 on Cz and Fz increased signifi-

cantly during meditation, yet, decreased during relaxation in the control group. On the other 

hand, N2-P2 amplitude on Fz decreased after meditation (experimental group) but increased 

after rest (control group). Apparently, the transit from one to another section caused F-VEP 
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amplitudes on Cz and Fz to vary in opposite directions for both groups. We also observed sig-

nificant differences between two groups in P1-N2 and N2-P2 amplitudes (Oz). P1-N2 ampli-

tude (Oz) decreased during meditation but increased during rest. N2-P2 amplitude increased 

in the control group, but had little change in the experimental group. Contrary to the earlier 

peaks P1-N2 and N2-P2, N3-P3 amplitude (Oz) in the control group slightly decreased, 

whereas this peak amplitude increased in the experimental group. 

Among all the F-VEP components, the most noticeable difference between two groups 

was the N2-P2 of Cz and Fz. Figure 3-10 plots the variations of N2-P2 amplitudes at Cz and 

Fz. Each bar represents the percentage of F-VEP varying from section I to section II 

⎟
⎠
⎞

⎜
⎝
⎛ ×

− %100
I

III  for one subject (white: experimental subject, gray: control subject). Signifi-

cant distinction is observed between two groups. Most meditation practitioners had their 

N2-P2 amplitudes increasing by an average rate of 20.1% (standard deviation among 11 sub-

jects was 15.12%). Control subjects, on the contrary, exhibited a decreasing trend (average 

rate: −6.36%, standard deviation: 7.78%). 
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(b): Cz 

Figure 3-10: Variations of N2-P2 amplitudes at (a) Fz and (b) Cz. Each bar represents 

the percentage of F-VEP varying from section I to section II ⎟
⎠
⎞

⎜
⎝
⎛ ×

− %100
I

III  for each 

individual subject (white: experimental subject, gray: control subject). 
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Chapter 4－ 

Investigation on Spatiotemporal 
Characteristics of Zen-Meditation 
EEG Rhythms 

 

 

Mathematics compares the most diverse phenomena and discovers 

the secret analogies that unite them. 

~ Joseph Fourier 

 

 

he work presented in this chapter goes further with a focus on the multi-channel 

meditation EEG analysis to explore the spatial-spectral behavior of Zen medita-

tion EEG. We will report the findings of the spatiotemporal behaviors of medita-

tion-EEG spectra based on the analyzed results of 30-channel EEGs. To deal with such an 

enormous amount of EEG data, we developed a novel system, meditation EEG interpreter, 

that was modified from the MEEGI algorithm described in Chapter 2. This interpreter is ca-

pable of identifying various EEG activities and detecting the artifacts. 

T 
 

4.1. The meditation EEG interpreter 
 Artefacts occur every now and then during EEG recording. To identify artifact-interfered 

EEG, the MEEGI algorithm was further enhanced to facilitate the long-term meditation EEG 

analysis and to eventually provide an overview of the entire meditation EEG record. 
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4.1.1. The algorithm 

The meditation EEG interpreter is able to identify six wave patterns and two artifacts of-

ten appearing in meditation EEG. The six wave patterns include: (1) low-power, almost flat 

wave (denoted by ‘φ’), (2) multi-frequency activities with approximate power (denoted by 

‘χ’), and (3) δ, (4) θ, (5) α, and (6) β activities. Wave pattern φ refers to the EEG activity with 

amplitude no larger than 20μV. Wave pattern χ mostly appears at the transition from one EEG 

rhythm to another, accordingly, no dominant rhythmic pattern can be justified for the segment. 

In addition to the six patterns above, the interpreter can detect two artifacts: baseline-drift 

(denoted by ‘B’) and EMG (electromyograph) interference (denoted by ‘I’). 

Each windowed segment of the EEG is examined by the following criteria in order (Fig. 

4-1): 

Criterion-φ: Amplitude<20μV, 

Criterion-χ: fr,3<7Hz<fr,1 and ⏐p3⏐>0.8, 

Criterion-δ: fr,1<7Hz and fr,4<3.5Hz, 

Criterion-θ: fr,1<7Hz, 

Criterion-α: 7Hz<fr,1<14Hz and 7Hz<fr,3, 

Criterion-β: fr,1>7Hz, 

where p3 is the AR(2) pole of output3. The length of p3 is closely related to the amplitude 

and reflects the significance of the root frequency fr,3. In the criterion, the major root fre-

quency of each segment (fr,1) is used to differentiate between 0–7Hz and 7–30Hz EEG 

rhythms. A segment is identified as the χ activity if its fr,1 is higher than 7 Hz and its fr,3 is 

lower than 7Hz with ⏐p3⏐ larger than a given threshold. Then the fr,4 is used to discriminate δ 

activity from θ activity. The pattern excluded by the α-criterion, yet, with fr,1 higher than 7Hz 

is classified as β activity. EEG segments with the above characteristics exhibit no particularly 

dominant EEG rhythm. According to the oscillations assumption for the brain dynamics, dif-
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ferent neuronal networks may start to oscillate with different frequencies during mental activ-

ity [Klimesch 1996, Pfurtscheller and Lopes da Silva 1999]. It is thus reasonable to recognize 

this as the β activity. 

After identifying the six patterns from the meditation EEG record, the algorithm further 

scrutinizes the interpretation to detect the segments of baseline drift and EMG interference 

possibly leaked to the categories of normal EEG patterns. 

 

4.1.2. Baseline drift detection 

EEG signals very often are affected by baseline drift caused by eye movement, breathing, 

etc. Some methods have been proposed to remove this baseline drift [Philips 1996, Lo and 

Leu 2001]. In this proposed algorithm, the baseline drift component is detected and marked 

without being removed from the record. Due to the low-frequency characteristic of baseline 

drift, the criterion for detecting baseline drift is focused on the delta band (1–3Hz) as de-

scribed below. 

(1) A segment of EEG which has been classified as δ and is longer than 1.25 s. 

(2) Amplitude of the signal exceeding 80μV. 

(3) Number of zero-crossing events of the segment is less than 3 within 1 s. 

The baseline drift is symbolized by ‘B’. Generally speaking, a lower (higher) threshold 

results in more false-positive (false-negative) B segments. Threshold selection needs to be 

done experimentally to achieve better performance. 
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Figure 4-1: The scheme of the meditation EEG interpreter algorithm. 

 

4.1.3. EMG interference detection 

EMG interference often caused by muscle contraction is characterized by high frequency 

and large amplitude. Based on the six patterns first identified by the algorithm, β- and 

χ-patterns are firm candidates in consideration of frequency. These two patterns are further 

screened by the criterion of an amplitude larger than 100μV to determine the EMG interfer-
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ence (denoted by ‘I’). 

 

 

(a) 

 
(b) 

Figure 4-2: The strategy for multi-channel lementation of the meditation EEG in-

 

In sum, EEG signals are first decomposed into different subband components by succes-

sive downsampling and filtering. Root freque

 

 imp

terpreter. 

ncy of each subband component is then esti-

mated by the AR(2) model. Based on a set of logical criteria, the algorithm is capable of iden-

tifying six distinct EEG patterns and two artifacts. Figure 4-1 illustrates the complete scheme

of the proposed algorithm. Figure 4-2 displays the strategy for multi-channel implementation. 

All the 30-channel windowed epochs are fed into the meditation EEG interpreter (Fig. 4-2(a)). 

The running window moves at a step size of 0.25 s. The interpretation results are illustrated 

by a two-dimensional gray-scale image with the vertical and horizontal axes representing the 

spatial (channel) and temporal factor, respectively. Various gray scales are used to denote the 
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six patterns and two artifacts (cf. figures in chapter 2). Fig. 4-2(b) shows the scheduling proc-

ess of the sequential queue implemented in the meditation EEG interpreter. With appropriate 

design of the buffer and latch, the architecture in Fig. 4-2(b) can process multi-channel EEGs 

in a real-time manner. 

 

4.2. Experimental material 
The meditation EEG signals were recorded using 30-channel SynAmps amplifiers 

(manufactured by NeuroScan, Inc.) connected to a Pentium4 1.5 (GHz) PC. A 30-channel re-

cording montage was used, with the linked M1-M2 (mastoid electrodes) as the common ref-

erence (Fig. 4-3). The analog EEGs were pre-filtered by a band-pass filter with passband 

0.3–30 Hz, and digitized at 200 Hz sampling rate. Each recording lasted for 40 minutes, in-

cluding the first 10-minute background EEG (the subject sat in a normal, relaxed position 

with eyes closed) and the rest 30-minute meditation EEG. 

 

 

Figure 4-3: 30-channel recording montage. 

 

During the meditation session, the experimental subject sat, with eyes closed, in the 
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full-lotus or half-lotus position. Each hand formed a special mudra (called the Grand Har-

mony Mudra) and was laid on the lap on the same side. The subject focused on the Zen 

Chakra (third ventricle) and the Dharma Eye Chakra (hypophysis) [Lo et al. 2003] at the be-

ginning of meditation until the physical and mental consciousness was transcended. The con-

trol subject, on the other hand, sat in a normal, relaxed position with eyes closed [Liao and Lo 

2003]. 

This study involved 8 meditators and 8 control subjects. The experimental group had 1 

female and 7 males (mean age: 34.7±7.5 years). Their experiences in Zen Buddhist practice 

spanned 11.1±1.8 years. The control group included 8 males (mean age: 27.3±1.3 years). 

 

4.3. Simulation 
To verify the performance of the algorithm, we first generated a simulated signal by con-

necting five patterns (φ, δ, θ, α, and β in Fig. 4-4(a)–(e)) in series as shown in Fig. 4-4. We 

note that pattern χ emerges when θ and β overlap each other so that a transition is identified 

as χ. Assuming a sampling rate of 200Hz, each pattern can be simulated by simply placing the 

pole in the appropriate frequency band (Table 4-1) and adding Gaussian noise. Fig. 4-4(f) dis-

plays the interpretation result that uses different gray scales to represent different patterns. 

The gray-scale bar chart correlates well with the EEG pattern evolution. It thus confirms the 

feasibility of the meditation EEG interpreter algorithm. 

To demonstrate the efficacy in artifact detection, the baseline drift and EMG-interference 

artifacts were simulated by mixing a β pattern (Fig. 4-5(a)) with two components, a 

low-frequency, large-amplitude sinusoid component (Fig. 4-5(b)) and a high-frequency, 

large-amplitude random noise component (Fig. 4-5(c)). The interpretation result is shown in 

Fig. 4-5(d). The first artifact with low frequency and large amplitude is recognized as the 

baseline drift; while the lagging one with high-frequency randomness is classified as the 
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EMG interference. These two artifacts often contaminate the EEG. 

 

δ θ χ β α  

1 sec 

φ 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 4-4: Simulation results (a) φ, (b) δ, (c) θ, (d) β, (e) α, and (f) simulated signal 

and interpretation results represented by gray-scale bar chart. 

 

Table 4-1: Poles (magnitude (normalized) and phase (radian)) designed to simulate the 

four well-known EEG rhythms.  

 δ θ α β 

Pole 

locations 
0.98∠0.04 0.98∠0.16 0.98∠0.4 0.88∠0.63 

 

Finally, interpretation accuracy was evaluated by comparison with the result of a na-

ked-eye examination by an experienced EEG interpreter. The error rate is approximately 

10.7%. Figure 4-6 displays a partial segment of interpretation results. 
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Baseline drift EMG interference 
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(a) 

(b) 

(c) 

(d) 

Figure 4-5: Simulation of the baseline drift and EMG-interference artifacts by mixing 

(a) β activity (b) low-frequency, large-amplitude sinusoid, and (c) high-frequency, 

large-amplitude random noise, and (d) the artifacts and interpretation result. 
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Figure 4-6: Interpretation results illustrated by gray-scale bar chart. 
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4.4. Meditation EEG interpretation 
 

4.4.1. Pattern-distribution histogram of Zen-meditation EEG 

The 20-minute meditation/relaxation EEG in the mid-recording session was examined by 

the meditation EEG interpreter using a 0.5-sec window length with a moving step of 0.25-sec. 

Percentages of six patterns and two artifacts of eight control and eight experimental subjects 

are listed in Tables 4-2 and 4-3, respectively. To compare the global trend of a pat-

tern-distribution histogram between two groups for the whole view, the percentage of each 

pattern was derived by (1) averaging the percentages of all 30 channels (removing the spatial 

factor), and (2) averaging the percentages of all the subjects within the same group (removing 

the inter-subject factor). Figure 4-7(a) displays the final pattern-distribution histograms of 

both groups. Based on the comparison of EEG pattern percentages between the two groups, 

the P value was calculated by the t-test for each pattern. We notice significant distinction be-

tween the two groups in four patterns, χ (P<0.05), δ (P<0.01), θ (P<0.01) and β (P<0.01). 

The large percentage of χ in the experimental group may be due to frequent transitions, during 

Zen meditation, between different consciousness states resulting in different brain dynamics. 

Higher δ and θ contents in the control group apparently correspond to the habitual drowsiness 

induced during the relaxation session. In regard to the β phenomenon, our previous study has 

shown significantly higher β activities for the meditation EEG. The above observation can be 

further verified by Fig. 4-7(b) that plots the pattern histograms for all sixteen subjects listed in 

Tables 4-2 and 4-3. 
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Table 4-2: The percentage of each pattern (control group). 

Subject φ χ δ θ α β B I 

c1 6.27 4.41 43.33 2.35 0.36 22.50 20.72 0.07 

c2 2.62 13.01 59.64 3.74 0.16 15.94 4.57 0.32 

c3 2.63 4.53 20.45 32.88 25.36 11.52 2.57 0.05 

c4 10.56 7.00 30.54 18.90 13.61 16.33 2.42 0.61 

c5 2.88 3.92 32.74 24.55 27.69 6.45 1.67 0.10 

c6 6.24 1.11 49.40 25.23 10.91 1.43 5.66 0.03 

c7 13.38 1.08 32.01 20.64 25.89 4.86 2.01 0.12 

c8 2.97 10.81 57.85 2.81 1.92 20.66 2.94 0.04 

φ : flat wave    B: Baseline-drift    I: EMG interference 

 

Table 4-3: The percentage of each pattern (experimental group). 

subject φ χ δ θ α β B I 

e1 2.39 13.32 12.21 0.45 9.54 59.32 2.68 0.08 

e2 20.92 23.10 9.56 0.60 5.56 39.45 0.79 0.01 

e3 2.43 19.63 23.56 1.25 1.03 39.86 10.80 1.43 

e4 5.20 57.28 3.71 1.12 1.46 31.06 0.06 0.11 

e5 35.01 2.03 21.81 0.90 0.19 33.73 6.18 0.15 

e6 1.78 64.02 3.64 0.46 3.50 26.14 0.16 0.29 

e7 0.13 39.00 8.83 0.93 8.57 34.57 0.80 7.17 

e8 2.21 2.20 7.47 7.08 59.14 20.66 0.99 0.25 

φ : flat wave    B: Baseline-drift    I: EMG interference 
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(b) 

Figure 4-7: Mean percentage of each pattern: (a) for the experimental (light bars) and 

control (dark bars) group (*: P<0.05 and **: P<0.01), (b) for each individual subject 

(e1–e8: experimental subjects, c1–c8: control subjects). 
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When inspecting the individual variation in the experimental group, the flat wave is re-

markable in subjects e2 and e5 (Table 4-3). According to our previous studies [Lo et al. 2003], 

the flat wave φ often emerges during deep meditation for some Zen meditators. Subjects e4 

and e6 have prominent χ activities, indicating possibly the situation that their meditation sce-

narios involved a number of transitions from one consciousness state to another. Subject e8’s 

EEG showing a lot of α activity is quite different from the others. According to her narration, 

she was in a very relaxed state and felt energy (Qi) flowing through her back during the 

meditation. We note that the artifacts identified are mostly the baseline drift for both groups. 

We then investigated the time evolution of spatial characteristics of EEG rhythms. Figure 

4-8 displays the interpretation results for two experimental subjects (e1 and e6) and one con-

trol subject (c2). They reveal three typical histograms of EEG spatiotemporal characteristics 

often observed in both groups: 1) β-dominant globally, 2) χ-dominant locally, and 3) 

δ-dominant all over the scalp. 

The horizontal axis of gray-scale bar charts in Fig. 4-8 represents the time, while the ver-

tical direction corresponds to the recording channels, from the top downwards, FP1, F7, FP2, 

F3, FC3, FT7, T7, F8, F4, Fz, FCz, C3, TP7, FT8, FC4, Cz, CPz, CP3, P3, P7, T8, TP8, C4, P8, CP4, 

P4, Pz, Oz, O1, and O2. Gray-scale mapping as illustrated in Figs. 4-4–4-6 is applied. The in-

terpretation result of control subject c2 (Fig. 4-8(c)) reveals a large proportion of δ, θ and α 

activities in comparison with the result of experimental subjects e1 (Fig. 4-8(a)) and e6 (Fig. 

4-8(b)). Results of control subject c2 reveal decreasing β and χ activities and increasing δ 

rhythm during the entire process. On the contrary, the δ rhythm is insignificant in both ex-

perimental subjects. 
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Figure 4-8: Interpretation results of (a) subject e1, (b) subject e6, and (c) subject c2, 

with four selected time ranges framed by squares. 
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Figure 4-8 (Continued) 
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Figure 4-8 (Continued) 
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4.4.2. Temporal evolution of β brain mappings 

As illustrated in Fig. 4-7, the β pattern plays a key role in discriminating EEG character-

istics between the two groups. This part of the study was thus designed to explore the tempo-

ral evolution of β spatial distribution. The “β% mapping” in Fig. 4-9 was constructed from the 

percentages of β activity of all 30 channels, based on a window size of 10 s. The time marked 

beneath each scalp plot is the beginning of each window under analysis. The β% mapping for 

subject e1 (Fig. 4-9(a)) demonstrates one typical case in the experimental group that their oc-

cipital β activity spreads quickly towards the central and frontal regions and becomes a dif-

fuse low-power, fast activity. Subject e6 has more focal, occipital β activity occurring inter-

mittently (Fig. 4-9(b)). On the other hand, we can hardly identify any β activity from the β% 

mapping of control subject c2 (Fig. 4-9(c)). 

 

 
(a) 

Figure 4-9: The β% mappings of two experimental subjects: e1 in (a) and e6 in (b), as 

well as one control subject c2 in (c). Each mapping displays the spatial distribution of 

percentages of β activity within a 10-second window beginning at the designated time. 
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(c) 

Figure 4-9 (Continued) 
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Chapter 5－ 

Study on EEG Local 
Spatiotemporal Synchronization 
Based on Multivariate AR Model 

 

 

Instead of postulating that the brain constructs information from the 

input of a sensory nerve, we can suppose that the centers of the 

nervous system, including the brain, resonate to information. 

~ James Jerome Gibson 

 

 

N addition to the EEG rhythmic characteristics, synchronization among different brain 

areas has been another important issue of meditation-EEG study. This chapter presents 

an approach for synchronization measurement, Local spatiotemporal synchronization 

index (LSTS index). With an efficient algorithm, the LSTS measurement could be considered 

as a potential approach for investigating the spatiotemporal synchronization under particular 

mental states, such as the Zen meditation. The following section illustrates the method for 

computing LSTS index. And then performance of the method was evaluated by a 

finger-movement experiment. Finally, the index was applied to the meditation EEG, providing 

us with another view of brain dynamics under meditation. 

I 
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5.1. Local spatiotemporal synchronization index 
(LSTS) 

 

5.1.1. Multivariate Autoregressive (mAR) Model 

 In terms of an mAR model, multichannel EEGs x at time n can be modeled as the 

weighted summation of its p’s previous observations plus a residual noise e, we obtain 

npnpnnn exAxAxAx ++++= −−− L2211 . (5-1) 

The column vector  is composed of m-channel EEG samples at time n with their mean 

removed, and  is an  coefficient matrix.  

nx

iA mm×

In the mAR model, noise covariance matrix  of a noise vector  can be regarded 

as the goodness of fitting a linear model to a set of data. Based on a specified dimension mp, 

we can achieve a good fitting for a system with better synchronization among state variables 

(channels), that results smaller fitting residuals. On the contrary, spatial desynchronization 

causes an increase in residuals. Thus, the LSTS index defined as 

eV ne

( )[ echS Vdetlog10= ] (5-2) 

can reasonably represent the goodness of fitting neighboring EEGs to channel ch. With the 

same model order p, a large S represents weak spatiotemporal synchronization, that is, EEG 

activities at different channels behave dissimilarly in rhythmic aspects. 

According to the algorithm Arfit [Schneider and Neumaier 2000, Neumaier and 

Schneider 2001], the noise covariance matrix  can be efficiently estimated. A pth order 

mAR model can be solved by formulating a linear regression model of which the parameters 

can be estimated by an ordinary least squares (OLS) method. Evaluation of N state vectors 

 requires p’s initial vectors . Thus equation (5-1) can be reformulated as 
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Nxx L,1 01 , xx Lp−

 64



[ ] [ ] [ N

pNp

N

pN ee
xx

xx
AAxx

X

ab

L

444 3444 21
L

MLM

L

43421
L

43421
L 1

1

10

11 +
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

−−

−

]  (5-3) 

that leads to the OLS solution of  as a

1TT )( −= XXbXa  (5-4) 

The least squares estimates can be computed from a QR factorization of the compound matrix 

, that is ][ TTbXK =

QRK =  (5-5) 

where Q is an orthogonal matrix and R is an upper triangular matrix 
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Thus, the LSTS index Sch is estimated by the noise covariance matrix  that can be 

efficiently derived without computing the coefficient matrices  as shown below 

eV

pAA L1

2222
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More details can be referred to [Neumaier and Schneider 2001].  

 

5.1.2 Array of channel montage 

To construct the multichannel autoregressive model, we need to determine the array of 

neighboring channels (number and montage). This study employed the standard 10/20, 

30-channel recording montage. As illustrated in Fig. 5-1(a), the neighboring channels of Cz 

(called the “seed channel”), assuming a link distance d=1, are FCz, C3, C4, and CPz, denoted 

by NCz(1) = {Cz, FCz, C3, C4, CPz}. Note that the link distance d=1 indicates those channels, 

in all directions, right adjacent to the seed channel considered (Cz). To derive the channel 

array obtain NCz(2) for d=2, the five channels in NCz(1) are used as seed channels to find their 

adjacent channels, as shown in Fig. 5-1(b).  
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(a) 

 
(b) 

Figure 5-1: An illustration of array of neighboring channels. The array montage for 

seed channel Cz with link distance (a) d=1, (b) d=2. 
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5.2. An externally-paced finger-movement 
experiment 

 

5.2.1. Data collection 

Three right-handed, male subjects (s1, s2 and s3) at the mean age of 30±1 years 

participated in this experiment. EEG signals were recorded from standard 10/20, 30 electrode 

sites, that are fed into a 30-channel amplifiers (SynAmps, manufactured by NeuroScan, Inc.) 

connected to a Pentium4 1.5 (GHz) PC. Common reference of linked M1-M2 (mastoid 

electrodes) was used (Fig. 4-3). The analog EEGs were filtered by a bandpass filter with 

passband 0.3–30 Hz, and digitized at 200 Hz sampling rate.  

In the finger-movement experiment, each subject was requested to perform two 

experimental runs, each with 20 trials (10 left-finger and 10 right-finger trials). The subject 

pressed a button using his right (left) index finger on the right-finger (left-finger) trials. A 

stimulation unit, g.STIMunit (manufactured by Guger Technologies OEG), was used to 

control the experimental procedure. The subject sat in a comfortable chair in front of the 

stimulation unit (Fig. 5-2(a)). Figure 5-2(b) illustrates the entire experimental protocol. 

Initially, a cross (+) was displayed in the screen center. At the 8th second, the cross vanished. 

At the 9th second, an arrow pointing to the right (or left) appeared for 5 seconds to instruct the 

subject to press the rightmost (leftmost) button on the keypad (Fig. 5-2(b)) using his right (or 

left) index finger. Each trial lasted 14 seconds and the span between two trials varied in the 

range of 4–4.5 seconds to avoid adaptation. 
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(a) 

 

(b) 

Figure 5-2: (a) The experimental setup and (b) the scheduling protocol in the 

externally-paced finger-movement experiment. 

 

5.2.2. Determination of model order 

To determine an appropriate order of the mAR model, Schwarz’s [Schwarz 1978] 

Bayesian Criterion (SBC) was adopted in this study for its superior consistency [Lütkepohl 

1993]. Order p of the mAR model needs to be optimally determined to encompass possible 

EEG activities. In the finger-movement experiment, 10-second EEGs were extracted from 

each trial for further analysis (will be illustrated in the following section). The mAR model 

was implemented on a 2-second epoch. Based on our analysis, the resulting model order drifts 

within a small range of 2. Figure 5-3 presents the maximum and minimum orders of 20 trials 

of subject s1. Accordingly, for each subject a constant model order was chosen as the 
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computed maximum value plus one in order to cover the possible model dynamics embedded.  
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Figure 5-3: The maximum and minimum of optimal orders of 20 trials (subject s1). 

 

5.2.3. Simulation 

 We firstly analyzed the LSTS index of a simulated 5-channel, 10-second EEG signal. 

Assuming a sampling rate of 200Hz, the “local synchronization” phenomenon can be 

simulated by simply placing the model pole at the same location (0.98∠±0.4 as shown in Fig. 

5-4(a)) for all five channels. Further, Gaussian noise n with little disturbance n1–5 (Fig. 5-5(a)) 

is injected into each channel. To mimic the time-varying behavior, the pole of H3(z) is shifted 

into beta band (0.9∠±0.63 as shown in Fig. 5-4(b)) at the 7th second, with another 

uncorrelated Gaussian noise nb added (Fig. 5-5(b)). The simulated signals are shown in Fig. 

5-6(a). In the LSTS analysis, we implemented a 2-second running window with a moving step 
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of 1 second. Order of the mAR model is 3, which is the SBC optimal model order plus one. 

The LSTS index shown in Fig. 5-6(b) exhibits a burst value of S at the 7th second that 

corresponds to the pre-designed variation in channel 3. 

 

5.2.4. Results 

 Each single-trial 10-second EEG was composed of one 7-second epoch before pressing 

the button and another 3-second epoch afterward (Fig. 5-7). Totally 40 trials were collected 

over two runs (20 “left-finger” and 20 “right-finger” trials). All trials were visually inspected 

to exclude epochs with artifacts. The model order p=5 for all subjects was determined by the 

strategy described in Section 5.2.3. As illustrated in Fig. 5-7, the running LSTS curve was 

derived using a moving window with length of 2 seconds and step size of 1 second. Each seed 

channel with its neighboring channels can form 9 S values for each single trial. The S 

sequences derived under the same task (right-finger or left-finger movement) were averaged 

by each channel. We took an average of the first 3 values as the baseline and calculated the 

relative changes in the following data analysis. 
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Figure 5-4: (a) Pole-zero plot of H1,2,4,5(z) and H3(z) for the first 7 seconds. (b) 

Pole-zero plot of H3(z) after the 7th second. 
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(a) 

 
(b) 

Figure 5-5: Model of the simulated signal for (a) the first 7 seconds, and (b) the last 3 

seconds. 
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Figure 5-6: (a) The simulated signal, and (b) the time-varying LSTS index. 
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Figure 5-7: Illustration of the single-trial and the moving window used in the LSTS 

analysis. 

 

 Figure 5-8 presents an example of right-finger movement experiment conducted by 

subject s1. The figure plots SC3 (seed channel: C3) curves for orders p=3–5. Note that the 

actual time of starting to move the finger is earlier than that of pressing the button. Since 

primary motor area becomes desynchronous at movement, a significant increase (Table 5-1) at 

the 6th second (due to the 2-second window size) occurs. The results also demonstrate that 

order p=3 is insufficient for modeling the overall system complexity characterized by the 

selected five channels. 

Despite the model order, the neighboring channels are another concern of computing 

LSTS index. Based on the same data set, Fig. 5-9 demonstrates the effect of various channel 

combinations (order p=5). The figure reveals that SC4 is much smaller than SC3. To investigate 

spatiotemporal (de)synchronization, we constructed the brain mapping of Sch using different 

colors to encode the levels of Sch. Based on d=1 and d=2, Fig. 5-10 and 5-11 respectively plot 

the Sch brain mappings evolving in a 10-second trial interval for subject s1. Warm hues 

indicate spatiotemporal desynchronization. Groups (a) and (b) in both figures refer to Sch brain 

mappings for left-finger and right-finger tests, respectively. Using an array of channels at a 

smaller area (d=1), Fig. 5-10 reveals more localized spatiotemporal desynchronization than 

Fig. 5-11. 
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Figure 5-8: The time-varying SC3 (subject s1) using model orders 3 (solid), 4 (dotted), 

and 5 (dash-dot) in the right finger movement study. 

 

Table 5-1: Relative changes of SC3 at second 4 and 6 and their differences in different 

model order. 

 at second 4 at second 6 difference 

Order 3 -0.026 0.041 0.067 

Order 4 -0.017 0.062 0.079 

Order 5 -0.013 0.062 0.075 
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Figure 5-9: The time-varying Sch (subject s1) using seed channel C3 (solid), C4 

(dashed), P3 (dotted), and F3 (dash-dot) in the right finger movement study. 
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Press the button 

(a) 

 

Press the button 

(b) 

Figure 5-10: The Sch brain mappings evolving in a 10-second trial interval for subject 

s1 using link distance d=1 in the study of (a) left index finger movement, and (b) right 

index finger movement. 
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Press the button 

(a) 

 

Press the button 

(b) 

Figure 5-11: The Sch brain mappings evolving in a 10-second trial interval for subject s1 

using link distance d=2 in the study of (a) left index finger movement and (b) right 

index finger movement. 
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Press the button 

(a) 

 

Press the button 

(b) 

Figure 5-12. The 10-second Sch brain mappings of (a) subject s2, and (b) subject s3 in 

the right index finger movement study (link distance d=1). 
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Figure 5-12 displays the Sch brain mappings (d=1) in the 10-second trial interval for (a) 

subject s2 and (b) subject s3 at the right-finger movement tests. Both subjects exhibit 

spatiotemporal desynchronization near the corresponding primary motor area (C3). Another 

noticeable result was the spatial desynchronization emerging at the primary motor area before 

actually making a movement in Fig. 5-10(b). This phenomenon depicts the observation of 

advance desynchronization induced by mentally intended movement [Pfurtscheller 2001]. 

 

5.3. An application to meditation EEG 
 

5.3.1. Data collection 

The EEG recording setup was the same as the externally-paced finger-movement 

experiment. Two meditators and one control subject participated in the experiment. Both 

meditators have been practicing Zen-Buddhist meditation for more than eight years. Each 

meditation EEG recording lasted 30 minutes, including the first 10-minute background EEG 

(the subject sat in a normal relaxed position with eyes closed) and the rest 20-minute 

meditation EEG [Lo et al. 2003]. The second-phase recording for control subject collected the 

awake, resting EEG with eyes closed. 

 

5.3.2. Results 

Unlike the previous experiment, the EEGs collected in this study cannot be correlated 

with any a priori event or reference. In meditation EEG analysis, we focused on the variation 

of LSTS index relative to some specific EEG patterns. Base on the same signal processing 

scheme, a baseline was first derived as the average of the first 3 LSTS indexes obtained by 

applying a 2-second running window moving at a 1-second step. Order of the mAR model 

was determined by the SBC optimal model order plus one. Figure 5-13 (a) displays a typical 
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flat wave usually observed in meditation EEG, with the 10-second Sch brain mappings (p=6) 

beneath. According to our previous study [Lo et al. 2003, Chang and Lo 2005, Liao and Lo 

2006], flat wave often emerges during deep meditation for some Zen meditators. Apparently, 

synchronization increased upon the occurrence of flat-wave activities. Results of meditator e2 

reveals similar, yet weaker, synchronization behavior (Fig. 5-13(b), p=9). According to the 

post-experimental interview, meditation practitioners often enter into a more detached state of 

consciousness or sensory perception in deep meditation, that is, they are more detached in 

sensory-organ stimuli. Our preliminary results of LSTS analysis might provide an evidence 

for the deep meditation state accompanying the global spatiotemporal synchronization of 

brain electrical activities. Conversely, control subject c1 had α rhythm dominant EEG during 

the entire recording. Upon the α bursting (suppressing), an increasing (decreasing) 

synchronization was observed in the frontal region (Fig. 5-13(c), p=11), which was 

contemplated as the situation that the subject was performing some high level cognitive 

processes. 
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(a) 

 

 
(b) 

Figure 5-13: 10-second EEG signals and the evolving S brain mapping for (a) meditator 

e1, (b) meditator e2, and (c) non-meditator c1. 
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(c) 

Figure 5-13 (Continued) 
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Chapter 6－ 

Discussion and Conclusion 
 

 

The real end of science is the honor of the human mind. 

~ Carl Jacobi 

 

 

o explore and quantify the brain characteristics under Zen meditation, this disser-

tation presents methods and algorithms that were developed mainly on the basis 

of AR modeling, including both univariate and multivariate models. The proposed 

Subband-AR-EEG Viewer and LSTS index provide the quantitative characterization for the 

Zen-meditation brain in different aspects. The following content sums up results of this study 

and organizes into three key subjects. 

T 
 

6.1. Meditation EEG overview based on subband 
features quantified by AR model 

In order to explore the meditation scenario, contents of the long-term EEG recorded dur-

ing meditation need to be analytically quantified. Chapter 2 presented a systematic strategy 

for developing algorithms for automatic EEG interpretation. Based on the concepts of sub-

band filtering and parametric modeling, a generalized computation scheme, called Sub-

band-AR-EEG Viewer, was modified and adapted for different application purposes. With ap-

propriate logic for examining the characteristic frequency, the Subband-AR-EEG Viewer could 

be further reduced to improve computational efficiency without affecting the performance. In 
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addition, the proposed scheme requires no implementing parameter. Another noticeable ad-

vantage is its feasibility for real-time, hardware realization and implementation. Since an or-

der-2 AR model is employed, computational load is very light. For the example of slow 

α-rhythm detection in Section 2.3, the algorithm involved approximately 3.75N real multipli-

cations (N: number of samples), which was a significant reduction in arithmetic operations 

compared with the fast Fourier transform (FFT) algorithm for rhythmic analysis. A spot 

evaluation of execution time required to determine fr,1 - fr,4 (based on one-channel, 0.5-sec 

EEG segment) is 0.008 sec on a Pentium4 1.8G, Windows-based computer. As a consequence, 

the algorithm proposed in this paper can process almost 60-channel EEG data in real time 

( ).  62008.0/5.0 ≅

With the modification of Subband-AR-EEG Viewer, meditation EEG interpreter was 

presented in Chapter 4 and was applied to the exploration of spatiotemporal behavior of medi-

tation EEG. The interpreter provides a systematic strategy for automatic EEG interpretation. 

By integrating the subband architecture with the AR model, various EEG rhythms can be ef-

fectively extracted. With empirically designed criteria implementing sound logic, the medita-

tion EEG interpreter is able to identify even the low-power β pattern which is often cloaked in 

large-amplitude activities. In addition, those low-frequency rhythms with irregular waveform 

shape can be estimated more efficiently. Another noticeable advantage is its feasibility for 

hardware realization and real-time implementation with just a few implemention parameters.  

Zen meditation EEG differs significantly from the normal relaxation EEG, with eyes 

closed, in the spatiotemporal characteristics of EEG spectra. According to the pattern histo-

grams, we have noticed a significant distinction between two groups in four patterns, χ, δ, θ, 

and β. Meditation EEG exhibited relatively larger percentages of both χ and β activities that 

have been found to correlate highly with different consciousness states during Zen meditation 

[Lo et al. 2003]. The β% mapping demonstrated substantial occipital-β phenomena for the 

experimental subjects. 
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6.2. Visual perception under Zen-Meditation 
In Chapter 3, we have reported an alternative strategy to investigate the effects of 

Zen-meditation on human brain. Alpha-dependent F-VEP analysis was suggested as a stan-

dardized and consistent scheme for investigating the event-related response dependency on 

oscillatory features of the meditation EEG. Without any access into the real system dynamics 

of the brain, scientific study requires manipulating the experiment under pre-specified condi-

tions. Accordingly, alpha-dependent F-VEPs were collected under the consistent al-

pha-dominating background EEG that increased significantly during Zen meditation process. 

Based on the same scheme, the online α-detection algorithm could be modified for investi-

gating the brain evoked response under given background EEG activity associated with other 

brain states, for example, theta- or beta-dominating background rhythms. 

Our study has shown a great difference in the amplitudes of F-VEPs between the ex-

perimental and control group. Apparently, the meditation process modulates the amplitudes of 

F-VEPs under frontal α-rhythm emergence, especially components P1-N2 and N2-P2. These 

three peaks P1, N2 and P2, emerge respectively at about 80, 120 and 190 ms after photic 

stimulation. Moreover, such F-VEP amplitude variations for Zen-meditation practitioners 

were more consistent at the electrode locus Cz than at Fz. Since subjects mostly focused on 

the Zen Chakra (the third ventricle) during Zen meditation, we thus infer that meditation fo-

cusing changes the brain dynamics and the sensory responses to the external stimulus. 

According to the literatures of visual function research, P1 component is generated from 

the major striate area, and N2 and P2 are generated from V4 which might be related to selec-

tive attention [Ducati et al. 1988, Tsutsui 1987, Skrandies 1995]. The increase of F-VEP am-

plitude indicates that Zen meditation, differing from normal relaxation, may cause some ef-

fects on primary visual cortex, central cortex, and frontal cortex. The study may assist in fur-

ther understanding the intrinsic mechanism of such evidence as improving efficiency of the 
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concept learning and integrating the brain function via Zen-meditation that has been reported. 

 

6.3. Spatiotemporal synchronization during medi-
tation 

 To quantify the spatiotemporal synchronization subtly embedded in multi-channel EEG 

signals, a novel approach based on the evaluation of LSTS index was proposed and reported 

in Chapter 5. Note that high correlation among neighboring channels increases model pre-

dictability. Therefore the fitness of an mAR model for a set of multi-channel EEGs reflects the 

probability of predicting a channel from others. A small value of S (LSTS index) indicates a 

better fitness of the model for the empirical data. 

To verify the feasibility of proposed approach for EEG spatiotemporal study, we con-

ducted the externally-paced finger-movement experiments and reported the increasing S of the 

corresponding primary motor area while desynchronization took over. Development of this 

approach particularly was to disclose the unknown brain dynamics under Zen meditation. In 

our preliminary findings, flat-wave activities emerging during deep meditation exhibited 

globally spatiotemporal synchronization. 

 Unlike coherence or other event-related (de)synchronization analysis, the LSTS index 

evaluation does not require the pre-defined frequency ranges. Accordingly, the LSTS index 

might provide a quick inspection of EEG spatiotemporal characteristics and thus augment the 

understanding of brain dynamics under Zen meditation. 

 

6.4. Summary 
 In this dissertation, both univariate and multivariate AR models are applied on the medi-

tation EEG research. The scheme Subband-AR-EEG Viewer mainly based on univariate AR 

modeling and subband filtering was presented. Two applications, online α-detection and the 
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meditation EEG interpreter, were inferred from the scheme. The online α-detection algorithm 

assisted in the Alpha-dependent F-VEP collection. In comparison of F-VEP amplitudes be-

tween experimental and control groups, we hypothesized, according to the significant ampli-

tude difference, that meditation process modulated the amplitudes of F-VEPs upon emergence 

of the frontal α-rhythm. 

According to the results of the meditation EEG interpreter, significant larger percentages 

of both χ and β activities are identified in Zen-meditation scenario, especially in the occipital 

region. This phenomenon was considered to be highly correlated with specific consciousness 

states induced by Zen meditation. In addition to univariate AR model, the LSTS index based 

on multivariate AR model was proposed to investigate the spatiotemporal synchronization 

embedded in multi-channel meditation EEG. A globally spatiotemporal synchronization was 

discovered for the flat-wave activities, which might provide scientific evidence for the de-

tached state of consciousness or sensory perception in deep meditation. 

 

6.5. Future work 
 By using Subband-AR-EEG Viewer, we could derive algorithms to assist meditation EEG 

analysis. But due to inter-subject variations of physiological conditions are always compli-

cated, the procedure and setup of experiments should be further readjusted or redesigned. In 

order to investigate into brain dynamics under specific meditation states, subjects should be 

limited to perform a specific meditation task during EEG recording, ex: focusing on Zen 

Chakra or counting breaths. Therefore, a strong correlation between meditation states and 

EEG characteristics might be revealed. 

 Beside experimental setup, an improved meditation EEG interpreter with high accuracy 

should be further derived. With this improved interpreter, we might be able to identify more 

meditation EEG patterns and different meditation scenarios. We could use LSTS index to ob-
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serve synchronization phenomena of other meditation EEG patterns. Moreover, the catego-

rized scenarios could be used as a criterion to give stimuli while subjects are practicing medi-

tation. Thus we could inspect event-related potentials under specific meditation scenarios. 

Then we might have a more comprehensive understanding of brain dynamics during medita-

tion. 
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