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Abstract

This dissertation reports the study on EEG (electroencephalograph) spatiotemporal char-
acteristics under Zen meditation. Univariate and multivariate AR models were applied. Fol-
lowing the background introduction, Chapter 2 presents a computerized scheme Subband-AR
EEG Viewer that provides a comprehensive view of the meditation EEG record. The scheme
was mainly designed to trace the varying spectral characteristics in meditation EEG. To ac-
complish this task, a meditation EEG signal was first decomposed into subband components
by tree-structured filter banks. The second-order autoregressive model was then applied to
each subband component to estimate its root frequency. Based on the estimated root frequen-
cies and sound logic, specific criterion can be deduced for a particular problem-domain ap-
plication. Two algorithms were developed to investigate the visual perception under medita-
tion and to explore the spatiotemporal characteristics of EEG rhythms. These algorithms do
not require exhausting work at determining appropriate parameters in implementation. Further,
due to the second-order autoregressive model adopted, the computation load is greatly re-
duced. This approach is practically favorable to long-term EEG monitoring and real-time
processing.

In the study of evoked response potential during Zen meditation, one issue encountered
was the inaccessibility to the actual meditation level or stage as a reference. By modifying
Subband-AR EEG Viewer, an alternative strategy was proposed for dealing with this problem.
To secure a consistent condition of the brain dynamics when applying stimulation, a scheme
of recording flash visual evoked potentials (F-VEPs) was designed, with main idea of apply-
ing flash stimuli during a constant background EEG (electroencephalograph) - frontal
o-thythm dominating activity. This particular activity was found increasing during Zen medi-
tation. Thus the flash-light stimulus was to be applied upon emergence of the frontal
a-thythm. The alpha-dependent F-VEPs were then employed to inspect the effect of Zen
meditation on brain dynamics. Based on the experimental protocol proposed, considerable

differences between experimental and control groups were obtained. Our results showed that
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amplitudes of P1-N2 and N2-P2 on Cz and Fz increased significantly during meditation, con-
trary to the F-VEPs of control group at rest. We thus suggest that Zen meditation results in
acute response on primary visual cortex and the associated parts.

Another algorithm deduced from Subband-AR EEG Viewer was a unique interpreter that
combined a multi-resolution scheme with autoregressive modeling to identify the EEG pat-
terns including the flat wave (¢), d, 0, x, o, and B activities. In addition, such artifacts as the
baseline drift and EMG (electromyograph) interference were identifiable in the scheme. With
the merits of high computational efficiency and easy hardware realization, the method pro-
posed is feasible for long-term EEG monitoring and online EEG processing. It also allows a
quick overview of an enormous amount of EEG data and the meditation scenario can be illus-
trated by a running gray-scale chart with each gray tone coding a particular EEG rhythmic
pattern. Moreover, results of applying the proposed scheme to an experimental group (Zen
meditation practitioners) and a control group (normal, healthy subjects) revealed significant
distinction in spatiotemporal characteristics of EEG rhythmic patterns, especially the spatial
propagation of the B rhythm during meditation sessions.

Besides univariate AR model, this dissertation finally presented our study on a parameter
called the local spatiotemporal synchronization index (LSTS index), mainly based on residual
covariance matrix of a multivariate autoregressive (mAR) model. Analysis of The LSTS index
measures the degree of synchronization among neighboring channels of a local brain area. By
using the QR factorization, the index can be efficiently calculated. A strategy for determining
the AR model order and the array of neighboring channels was also proposed. According to
preliminary results, a reduction of synchronization (or, significant desynchronization) of
evaluated brain areas was quantified by a relatively high index. An externally-paced fin-
ger-movement experiment was designed to evaluate the proposed method. The LSTS index
estimated successfully reflected the spatiotemporal desynchronization in the primary motor
area. Accordingly, the LSTS measurement could be considered as a potential approach for in-
vestigating the spatiotemporal synchronization of unknown brain dynamics under particular
mental process, such as the Zen meditation. In the preliminary findings, the LSTS index of
meditation EEG revealed an increasing global synchrony for the extremely low power EEG
activities (to be called the ‘flat’ waves), that had been hypothesized as a detached state of

sensory perception during deep meditation.

v



- AHY AL FERAMOAF AL S0 o wF BBk g 4 E
P2 Beni 453 b o ‘}‘;Kég‘}\‘.\_}'\:%] 2 .

FANREHEEFEEMG XS E kKR AL AP B B% B

o bR RAKE LS -
GipSE LR EY  RAE - Beng PR AT REA A TS R
&iﬁﬁﬁpiiéﬂﬁﬂﬂ'tﬁ B B h e R 2R e

ey

-~

=
%

SR AR X ‘{;;\.}f};@ﬂ {?E#}fg’-&j’w oo ¥ ek 4 QEF‘TE?’%
AP B E RIS RS i R R d 3L R e
Bt § 0 A RA BT P Rl

2

EO o R B E P AP e BB AR AR Pk S

3
1"*
ki
I

Pt AEDER - ER KD Jason s K g AJEAEDL C XEFHR T DL
- AT A A E A 2 T AR I AR iR s Rtz B griF S S M

WA FEE PR AR DR AMROEY > APRARL A FT%RT 0 Eire
FRE DR 0 AR AT P AR R AL

Fobo Al n AR FlafF o B EFL G RPET - A o JA
TR - R Rk kg FEBE R A RE TR BRI B S f
PR gk o FRR EFASE A D o

BRERag ABRBA DA UE FA o d N EPnLEF S A 3T R A AP
FooRRGEARA L PR LRERET A L RSRI P e o REHT
kA PR PE DR o i E AR AT ke JHE - T o

Bots > ARBRHA P L AGIERY DT RBHESE Y QBT BB RA

AR e E R e e AR AR R A R BT 5T i -



Contents

2 s i
YN 1] 1 2Tt SO USRS SRPRRO il
B B ettt ettt et ettt e ettt ertent et et et et et e ereereereeneens \%
COMEEIES ...ttt ettt e sttt e sab e e bt e e e bt e e sabteesabbeeeabbeesabteesabeeesabeeenanee vi
LSt OF TADIES ...ttt sttt et sttt et st a e et ae e b e sae e 1X
LSt OF FIGUIES. ...ttt ettt et sttt et e et e s et e e bt e s neeenseesaeeenne X
L. TNEOAUCTION ..ttt ettt ettt e et e sb e sabeesaeeeaeas 1
1.1, BaCK@IOUNd........ooiuiiiiieieee ettt ettt et et 2
1.2. ATMS OF thisS WOTK ..ceeiiiiiiiiiee et 3

1.3. Organization of the diSSErtation..........ciiiiiiiieiiiiieneiereee ettt 6

2. Meditation EEG Overview Based on Subband Features Quantified by AR Model............ 9
2.1. Subband-AR EEG VIEWET ...ccueeiiiiiiiiiiieiiiiet ettt ettt ettt s 9
2.2. Experimental setup and protoCol.......c.ccieiiiiiiiiiieniieciieiieeee e 15
2.3. Slow alpha rhythm detection (SARD) algorithm ..........c.cccceeviiiiininiiniininicicee 16
2.3.1. The @lOTTtRIM ......ccviiiiiiiieiiecie e e e 16

2.3.2. SIMUIATION. ..ttt ettt et e st e beeeateeeaeeenne 17

2.3.3. Identification of slow alpha rhythm..............cccoooiiiiiiiiiiniicee 20

2.4. Long-term meditation EEG interpretation (MEEGI) algorithm..........c..ccocceeeniinen. 21
2.4.1. The al@OTIthim .......cc.eeiiiiiieiiiciecce e 21

2.4.2. SIMUIATION. ...ttt ettt et e et e e e eareesaee e 22

2.4.3. Long-term meditation EEG interpretation............cccceeeveeeiierieesieenieeseeeeeenes 25

2.4.4. On-line implementation of the Subband-AR-EEG Viewer ..........c.ccccceeuenneee 26

3. Investigation of Visual Perception under Zen-Meditation ............cccecveevvvveeecrieencieeenneeens 29

vi



3.1. Why EEG-triggered F-VEP? ...c..cooiiiieeceeeteeee e 29

3.2. Alpha-dependent F-VEP .........cccoioiiiiiiiiieceeeeee et 31
3.2.1. Online oi-rhythm deteCtion ..........cceevieiiiiiiiiiieiierie ettt 31
3.2.2. SIMULALION. ...cutiiiieiiieieeieeee ettt et sttt s 32
3.2.3. Off-line alpha detection .........ccccecueriirieiiiriiiniiicece e 33
324 F-VEP .ottt 34

3.3. Experimental setup and protocol...........ccceeeuieiiiiiiienieeiieie e 35
3.3, SUDJECES. .ottt et e b et aeebeeneas 35
33,2 APPATALUS ...ttt ettt st saeees 35
3.3.3. Experimental paradigms.........c.ceecveerieriienieeiienieeieenee e e e saeenee e 38

3.4. Modulation of F-VEP amplitudes due to Zen-Meditation process...........cccecveerueenneen. 39

. Investigation on Spatiotemporal Characteristics of Zen-Meditation EEG Rhythms ........ 45

4.1. The meditation EEG INTEIPIELEr ......cetirieiiiiniinieiieniinieeieetciecte et 45
4.1.1. The alOTTtRIM .......ccciiiiiie ittt steeeeseeaeeenseenes 46
4.1.2. Baseline drift deteCtion ......cocueeuieriiiiiiiinie e 47
4.1.3. EMG interference deteCtion...........cceeruerieruierienieniieieniiesieeee e 48

4.2. Experimental material...........cooouiiiiiiiiiiiiiiii e 50

4.3, SIMULALION. ...ttt ettt ettt sttt et sa e bt et e eaeense e 51

4.4. Meditation EEG INterpretation .........ooeevueriirienienienieeienieenieetesieesie et 54
4.4.1. Pattern-distribution histogram of Zen-meditation EEG ...............cccccvennnne. 54
4.4.2. Temporal evolution of B brain MapPIngs........cceeeeeeveerieriiienieeieerie e 61

Study on EEG Local Spatiotemporal Synchronization Based on Multivariate AR

IMIOAEL.... ettt et et ettt et sttt et b e e 63
5.1. Local spatiotemporal synchronization index (LSTS).......cccceevveviiiivieniiieiieeieeeeee. 64
5.1.1. Multivariate Autoregressive (mAR) Model...........ccooviiiiiiiiiniiiinieeeee, 64
5.1.2 Array of channel montage.............ccoevviveiieniieiiieiiieieece e 65

vii



5.2. An externally-paced finger-movement eXperiment .............coceeeveerieeriueenieeneeenieennnnn 67

5.2.1. Data COECHION ....eueiiieiiieiieieeie ettt st 67

5.2.2. Determination of model order ...........ccoccoeiiiiiiiiiiiiiee e 68

5.2.3. SIMULALION. ...ttt ettt st a et e 69

5.2.4, RESUILS ..ottt ettt ettt ettt ettt et enes 70

5.3. An application to meditation EEG..........ccccciiiiiiiiiiiiiieiiieceeceeee e 80
5.3.1. Data COIECLION....c.uiiiiieiieiie ettt ettt et 80

5.3. 2. RESUILS ittt sttt s naeen 80

6. Discussion and CONCIUSION ....c.eeviriiriiiiiiiieriieie ettt et s 84
6.1. Meditation EEG overview based on subband features quantified by AR model ....... 84
6.2. Visual perception under Zen-Meditation ...........cccceceriereerieriieneenenieneeeeecseeieeee 86
6.3. Spatiotemporal synchronization during meditation...............cccceeveevreeneeeceenieeneennen. 87
0.4, SUIMMATY .....oiiiiiiiiiiiiieite ettt sttt s st et e e b et e eereenaeeseteesteeeaneesaeesaneesaaeenneenanes 87
6.5. FULUIE WOTK ...eiiiiiiiiiii e e et ettt st 88

L 10) FT0Tea 1) 1| 20O UROUUS PRI 90
Vita and Publication LSt ........coouiiiiiiiiiie et e 97

viii



List of Tables

Table 2-1: Values of autocorrelation function, [0] - %[6], computed for o, 6, a, and 3

TRYERIMS ..ottt ettt et 11
Table 2-2: Locations of poles of the simulated signal...........c.ccccoeviiiiiiiniiiiiiieceece e 24
Table 3-1: Locations of poles of the simulated signal.............ccccoeviiiiiiiiiiiiieee 33
Table 3-2: The changes in the peak amplitudes of specific F-VEP components....................... 42

Table 4-1: Poles (magnitude (normalized) and phase (radian)) designed to simulate the

four well-known EEG rhythms .........cccccoiiiiiiiiiiiiiiiececce e 52
Table 4-2: The percentage of each pattern (control Eroup) ........cccecceevvierieiiiieniienieenieeeeeee 55
Table 4-3: The percentage of each pattern (experimental Sroup)........c.eccveeveerieeecieeneencieennnenns 55

Table 5-1: Relative changes of Scsat second 4 and 6 and their differences in different

INOAE] OTUET .ottt ettt et e e e e e e e e e e e e e ereeeeeeeeeeeeeeerereeeeeeeeeeeeeaeees 75

X



List of Figures

Figure 1-1: Chapter hierarchical StrUCTUTIE..........cccueriiiiiriiriiiecierieeee e 7
Figure 2-1: The structure for the Subband-AR-EEG-VIEWET ...........cccoevieieieieiieeeeeeeeee 12
Figure 2-2: The equivalent six-channel system of the subband filter bank............................... 13
Figure 2-3: The frequency responses of Hi(Z), ..., H5(Z) ooveeiieiiiiieeee 13
Figure 2-4: 8-channel recording MONtage ..........ccceevieriieniiieiiierie ettt 16

Figure 2-5: The Subband-AR-EEG-Viewer modified for slow a-rhythm detection: (a)
structure and (b) al@Orithm ...........coocuieiiiiiiiiiii e 18

Figure 2-6: Capability of noise immunization of slow a-rhythm detector. The black bold

lines mark epochs identified as slow o-rhythm............cocooiniiiniininiinines 19

Figure 2-7: Slow o-rhythm detection from the time-varying rhythmic activities. The sig-
nal in (d) is simulated by adding three short-duration, amplitude-modulated

sinusoids with frequencies (a) 9Hz, (b) 15 Hz, and (¢) SHZ ..c.ooeovveevieiieeiiene. 19

Figure 2-8: Detection of slow a-rhythm in meditation EEG (Channel O1). Bold lines
above the signal indicate the slow a-rhythm detection. (a) A crack in the first
bold line is caused by variation of the o amplitude. (b) A post-processor re-
moves the second lines with duration shorter than 0.3 sec (insignificant activ-

ity) and fuses the crack shorter than 0.3 SEC........cccecveviieiieriieiiecireeeceeee 20
Figure 2-9: The Subband-AR-EEG Viewer modified for meditation EEG interpretation ......... 21
Figure 2-10: Meditation EEG interpretation (MEEGI) algorithm ..........cccccocoeiiniiniiiininnne 23

Figure 2-11: Simulation results (a) 6 activity (b) 0 activity (c) B activity (d) a activity (e)

simulated signal and classification reSults...........ccocveverienieninienieneeiceeeeeene 24
Figure 2-12: Subband-AR-EEG Viewer applied to the EEG signal for feature recognition......25

Figure 2-13: Running gray-scale charts (Channel F3) for two meditators (a) subject
2k1019p, and (b) subject 2k0830a, and (c) one non-meditator (control) subject
2KTO0TP eeeneeeieeeteeeie ettt et et e et e et et e et esse e b e e st e seesaeeseeseenseeseenseenaeeseenseensenseensens 27



Figure 2-14: On-line implementation of the Subband-AR-EEG Viewer. (a) Computer 1
executes the MEEGI algorithm (Fig. 2-10), and Computer 2 displays the clas-
sification results, as illustrated in (b). The height of each bar reflects the power

percentage of the corresponding EEG rhythm within a 2-sec frame.......................

Figure 3-1: Tree structural filter bank for the Subband-AR EEG Classifier. H(z) is de-

signed by least-squares error minimization with cutoff frequency 30Hz................

Figure 3-2: Classification result of the simulated signal. Different grays are used to illus-

trated the ot and NON-OL PALLETNIS ....c..eeveriiiriiiiieiii e
Figure 3-3: Result of a detection for real EEG signal..........cccccoceviiviniiniininicnieiciceeee

Figure 3-4: Profile of F-VEPs on (a) Fz, (b) Cz, and (c) Oz with corresponding peaks la-

Figure 3-5: 32-channel recording montage .............ccceeecvieruiieiierieeiieenie e eieesveereesveeeens
Figure 3-6: Experimental setup for a-dependent F-VEP recording..........ccccceveevievieneeniennenne.
Figure 3-7: Scheduling of the F-VEP recording procedure............ccceeveiiercieencieenie e,

Figure 3-8: Display format of selected channels (Fz, Cz, Pz, and Oz) for a-dependent
F-VEP recording. The vertical bar at the upper left of mark ‘128 indicates the

time of applying flash StmulUS «.......ccccoiiiiiiiiiii

Figure 3-9: The a-dependent F-VEPs of one meditator recorded on (a) Fz, (b) Cz, and (c)

Figure 3-10: Variations of N2-P2 amplitudes at (a) Fz and (b) Cz. Each bar represents the

percentage of F-VEP varying from section I to section II (?xlOO%j for

each individual subject (white: experimental subject, gray: control subject)..........
Figure 4-1: The scheme of the meditation EEG interpreter algorithm...........cccccoceveiiinennne

Figure 4-2: The strategy for multi-channel implementation of the meditation EEG inter-

[0S 1<) USRS RUPUR R

Figure 4-3: 30-channel recording Montage ..........c..cccveeveeriieiiienieeiienie e ereesreereeseveeeeens

Figure 4-4: Simulation results (a) ¢, (b) d, (¢) 9, (d) B, (e) a, and (f) simulated signal and

interpretation results represented by gray-scale bar chart...........cccoccvvveeciieieieenee.

X1



Figure 4-5: Simulation of the baseline drift and EMG-interference artifacts by mixing (a)
B activity (b) low-frequency, large-amplitude sinusoid, and (c¢) high-frequency,

large-amplitude random noise, and (d) the artifacts and interpretation result.........
Figure 4-6: Interpretation results illustrated by gray-scale bar chart..............cocceeieeniniinnens

Figure 4-7: Mean percentage of each pattern: (a) for the experimental (light bars) and
control (dark bars) group (*: P<0.05 and **: P<0.01), (b) for each individual

subject (e1—e8: experimental subjects, c1—c8: control subjects).........ccccveevveeennenn.

Figure 4-8: Interpretation results of (a) subject el, (b) subject €6, and (c) subject c2, with

four selected time ranges framed by SQUArES...........ccceecvieriiiiiieniieiieeiceee e

Figure 4-9: The % mappings of two experimental subjects: el in (a) and e6 in (b), as
well as one control subject c2 in (c). Each mapping displays the spatial distri-
bution of percentages of B activity within a 10-second window beginning at

the designated tIME .........oceieiiieiieeiiee et et et et ens

Figure 5-1: An illustration of array of neighboring channels. The array montage for seed

channel Cz with link distance (a) d=1, (D) 0=2 .........cceeieiieiiieieeeeeeeeeeeee

Figure 5-2: (a) The experimental setup and (b) the scheduling protocol in the exter-

nally-paced finger-movement €Xperiment..............ccceevvereerierienieneniienieneeeeeenees
Figure 5-3: The maximum and minimum of optimal orders of 20 trials (subject s1)...............

Figure 5-4: (a) Pole-zero plot of H»45(z) and Hs(z) for the first 7 seconds. (b) Pole-zero
plot of Hs(z) after the 70 SECON™. e e e

Figure 5-5: Model of the simulated signal for (a) the first 7 seconds, and (b) the last 3

SECOMUAS ...ttt ettt ht e ettt et h e et sht e et enht e e b e naees
Figure 5-6: (a) The simulated signal, and (b) the time-varying LSTS indeX ..........cccceevuveennnee.

Figure 5-7: Illustration of the single-trial and the moving window used in the LSTS

ANALYSIS 1.eeuteeitete ettt ettt ettt bt satenae et

Figure 5-8: The time-varying Scs (subject s1) using model orders 3 (solid), 4 (dotted), and
5 (dash-dot) in the right finger movement Study ............ccceevevievierciienieniieieeeenne,

Figure 5-9: The time-varying Sci (subject s1) using seed channel C3 (solid), C4 (dashed),
P3 (dotted), and F3 (dash-dot) in the right finger movement study ........................

Figure 5-10: The S¢p brain mappings evolving in a 10-second trial interval for subject sl

Xii



using link distance d=1 in the study of (a) left index finger movement, and (b)

right index finger MOVEMENT ........ccueeiiiiiiiiiiieiieee et

Figure 5-11: The S¢n brain mappings evolving in a 10-second trial interval for subject sl
using link distance d=2 in the study of (a) left index finger movement and (b)

right index fiNger MOVEMENT ........c.eeeiiiieiiieeie e

Figure 5-12. The 10-second S¢n brain mappings of (a) subject s2, and (b) subject s3 in the

right index finger movement study (link distance d=1) ..........cccccevverriririrrrrerrenens

Figure 5-13: 10-second EEG signals and the evolving S brain mapping for (a) meditator

el, (b) meditator e2, and (c) non-meditator Cl..........cecvveriiiiiienieeiieieeeeeee e

xiii



Chapter 1—

Introduction

The sages did not treat those who were already ill; they instructed
those who were not yet ill. They did not want to rule those who were
already rebellious; they guided those who were not yet rebellious.

~ (Huang Ti Nei Ching)

rapid increase in the use of CAM (complementary and alternative medicine)

across the Western World has aroused attention of researchers. Zen meditation,

classified as the category of mind-body intervention in CAM [National Center

for Complementary and Alternative Medicine 2002], has been widely practiced on a daily ba-
sis for maintaining good health. However, it still has not yet been completely understood by
people in CAM or in mainstream Western medicine. Our research group has been attending to
how meditation enhanced the mind capacity for maneuvering our bodily functions, emotions
and even mental activities. For investigation into brain dynamics during meditation, we thus
began the researches on Zen meditation, mostly based on Electroencephalograph (EEG), in
1998. EEG was favored due to not only its ability of exploring brain functions via
neuro-electrophysiological basis but its advantage of easily recording implementation and

high temporal resolution.



1.1. Background

Over the past four decades, much research has been devoted to investigating meditation
benefits to humans. To know more about its benefit to our body, a lot of researches have been
devoted to the study of meditation process and phenomena, mostly in the physiological and
psychological aspects. Scientific exploration has corroborated the effectiveness of meditation
practice on the health promotion which includes regulation of the hormone-level and blood
pressure, moderation of stress and anxiety, reduction of chronic pain, etc [Wallace 1970,
Wallace et al. 1971, Woolfolk 1975, Elson et al. 1977, Wallace 1986, Jevning et al. 1992,
Travis 2001]. According to the experienced practitioners, meditation facilitates a greater sense
of calmness, empathy, and compassion. As Western medical practitioners begin to understand
the role of mind in health and disease, there has been more interest in both employing medita-
tion in medicine and exploring brain dynamical phenomena during meditation.

EEG has been of great interest in monitoring brain dynamical phenomena during medita-
tion. Although many research studies have been conducted since the 1960s [Wallace 1970,
Banquet 1973, Woolfolk 1975, Pagano et al. 1976, Elson et al. 1977, Hebert and Lehmann
1977, West 1980, Aftanas and Golocheikine 2001, Zhang et al. 1988, Travis 2001], there are
still a wide spectrum of queries about the brain electrical phenomena (recorded in the form of
EEGs) corresponding to various transcendental-consciousness states. In recent years, we have
been investigating the Zen meditation EEG in multi-faceted aspects. According to our
long-term interactions with the experienced practitioners for several years, the Zen meditation
process involves experience of transcending various physiological, mental, and conscious
states as follows. A meditator would first attenuate their physical and mental sensors via par-
ticular mind-focusing technique, leave off the message transmission from outside world, and
keep subconsciousness tranquil during meditation. Moreover, meditators often experience

unusual perceptions, for example, loss or distortion of space and time perceptions, sensation



of aureola-surroundings, etc. Especially, in the deeper meditation state, many meditators have
experienced the perception of inner light [Lo et al. 2003]. Few experienced practitioners may
attain the spiritual realm (defined by Zen doctrine). Variations in EEG temporal and spatial
activities have been presumed to be associated with the meditation stages, a comprehensive
review was published recently [Cahn B.R., Polich 2006]. A scientific approach to exploring
the brain behavior under such states of consciousness becomes a matter of significance in un-

derstanding the meditation scenario and in advancing neuro-cognitive science.

1.2. Aims of this work

In our meditation studies, each EEG recording has lasted more than 30 minutes for a
complete monitoring of the meditation process, so over the years, we have accumulated an
enormous amount of data. Analysis of such a large amount of raw EEG data becomes a sig-
nificant problem. Thus an EEG interpreter capable of providing a fast overview is of acute
need. For reducing the complexity of analyzing the long-term EEGs, a number of techniques
have been proposed. In general, segmentation methods are used first to break down the EEGs
into stationary segments, and then classification schemes are applied to the segmented epochs.
Segmentation methods applied to the EEG analysis are mostly based on an autocorrelation
function [Michael and Houchin 1979], parametric modeling [Jansen et al. 1981, Amir and
Gath 1989], nonlinear energy operator[Agarwal and Gotman 1999], statistical properties
[Brodsky et al. 1999], AIC (Akaike Information Criterion) [Inouye et al. 1995],
cross-spectrum [Gath and Michaeli 1989], etc. Problems of the methods mentioned above in-
clude: difficulty of determining the appropriate implementing parameters and requirement for
continual update of parameters [Michael and Houchin 1979, Creutzfeld et al. 1985, Amir and
Gath 1989, Inouye et al. 1995, Agarwal et al. 1998, Agarwal and Gotman 1999, Brodsky et al.

1999] which is practically unfeasible for long-term meditation EEG monitoring. Similarly,



most classification schemes, like the artificial neural network approach [Vuckovic et al. 2002],
need a particular learning strategy to adjust classifier parameters. In consideration of
long-term EEG monitoring, this kind of intensive, time-consuming approach is thus impracti-
cal for real-time applications.

The results of previous papers [Banquet 1973, Hebert and Lehmann 1977, West 1980]
allow us to hypothesize that one key feature in meditation EEG is the frequency composition.
The EEG is a low-frequency signal ranging between DC to 30 Hz or higher. It is commonly
classified into delta (0—4Hz), theta (4-8Hz), alpha (8—14Hz), and beta (14—30Hz) rhythms.
Conventional spectral analysis uses Fourier Transform to estimate frequency components.
However, FFT has had limited application to characterizing low-frequency EEGs and requires
numerous data to get acceptable frequency resolution. Moreover, the spectrum estimated this
way is often contaminated by noise and low frequency components, which is an inevitable
and severe problem in EEGs. Accordingly, spectral analysis based on Fourier Transform may
not be feasible for long-term EEG analysis. Another method for examining time-varying fre-
quency activity is the autoregressive (AR) spectral estimation, from which more accurate es-
timate with better resolution is attainable [Hayes 1996, Pardey et al. 1996, Giiler et al. 2001].
Nevertheless, the AR estimates of low frequencies are less reliable than those for high fre-
quencies. However, EEGs are low-frequency signals in the range between DC and 30 Hz (this
number is research-oriented and may be higher). The meditation EEG, in particular, may con-
tain substantial amounts of theta and delta activities for some experimental subjects (medita-
tors). The AR method often fails to provide accurate estimate of low-frequency spectral com-
ponents. To solve this problem, we can use a higher order AR model to estimate the spectrum,
but this is at the cost of a heavy computation load.

To deal with the problems mentioned above, we developed a computerized scheme,
combining a multiresolution concept with the AR spectrum estimation to facilitate long-term
meditation EEG analysis. The main idea of the proposed scheme is to establish an adequate
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criterion for classifying the windowed segment, based on the characteristic frequency ex-
tracted from subband components, and for eventually identifying different EEG rhythms and
then providing an overview of the entire meditation EEG record. The scheme provides more
accurate estimates with better resolution and less computation complexity [Liao and Lo 2006].
Moreover, results of EEG overview provided an efficient way of scrutinizing the spatiotem-
poral characteristics of meditation EEG.

In addition to the EEG rhythmic characteristics, synchronization among different brain
regions also provides an alternative way to inspect brain dynamics. According to the assump-
tion of oscillation model [Klimesch 1996, Pfurtscheller and Lopes da Silva 1999], different
neuronal networks may oscillate with different frequencies during various mental activities.
Various event-related desynchronizations on different brain areas thus provide information for
exploring the behavior of neuronal network under particular mental task.

There have been several studies about event-related desynchronization and synchroniza-
tion (ERD/ERS), in which band power changes were used to evaluate synchrony in specific
frequency bands [Pfurtscheller and Lopes da Silva 1999]. Sensory processing and motor be-
havior might result in focal EEG power suppression in certain rhythms, particularly in the al-
pha band. Based on the ERD/ERS phenomenon, the scheme of brain—computer interface (BCI)
becomes feasible [Wolpaw et al. 2002, Pfurtscheller et al. 2006]. On the other hand, coher-
ence analysis has been employed in quantifying the degree of EEG spatial synchronism for
investigating the Alzheimer disease, memory, anxiety, intelligence, sleep, etc. [Locatelli et al
1998, Weiss and Rappelsberger 2000, Duckrow and Zaveri 2005, Knyazev et al. 2005,
Thatcher et al. 2005].

In addition to the methods described above, Franaszczuk and Bergey proposed a new
measure of synchronization of multichannel ictal and interictal EEG signals based on multi-
variate autoregressive model [Franaszczuk and Bergey 1999]. Multivariate autoregressive
model has been applied to EEG classification [Anderson et al. 1998, Peters et al. 2001, Pei
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and Zheng 2004] and coherence analysis [Ding et al. 2000, Moller et al. 2001, Kus$ et al.
2004]. In Franaszczuk’s work, residual covariance matrix of a multivariate autoregressive
model was used to measure the relative level of synchronization between channels. The
measure could be interpreted in both the stochastic and the deterministic frameworks. They
found, as expected, the increasing synchronization during ictal periods. Moreover, the level of
synchronization remains higher after a seizure for a prolonged period.

We further modified Franaszczuk’s method of synchronization measure to derive the lo-
cal spatiotemporal synchronization (LSTS) index that gives a quantitative description of the
event-related spatiotemporal synchronization of the brain. Based on the quantified residuals of
the multivariate autoregressive model, LSTS index is capable of measuring the degree of
temporal synchronization among neighboring channels in a local brain area. Computation ef-
ficiency of the method is further improved with the QR factorization used in computing the
residual covariance matrix of the multivariate autoregressive model.

The LSTS index was demonstrated to be effective in studying the EEG spatiotemporal
behavior in an externally-paced finger-movement experiment. We then utilized this quantita-
tive approach to explore the meditation EEG. Estimated index provides us new insight into

particular EEG spatiotemporal behavior observed during meditation process.

1.3. Organization of the dissertation

This dissertation consists of six chapters presenting methods for meditation-EEG re-
search based on univariate and multivariate AR models. Figure 1-1 illustrates the hierarchy
associating different chapters.

In the beginning, this chapter makes an introduction to this study and describes the main
aim. Chapter 2 reports a computerized scheme Subband-AR EEG Viewer that provides a

comprehensive view of the meditation EEG record. The scheme is mainly designed to trace



the time-varying spectral characteristics in meditation EEG and could be modified for spe-
cific requirements or applications. Two algorithms are introduced for slow a-rhythm detec-

tion and meditation EEG interpretation.

Chapter 1
Introduction
univariate AR model multivariate AR model
Chapter 2
Subband-AR
EEG Viewer
v v v
Chapter 3 Chapter 4 Chapter 5
Online a-rhythm Meditation EEG Spatiotemporal
detection interpreter synchronization
I I
v
Chapter 6

Discussion and Conclusion

Figure 1-1: Chapter hierarchical structure.

A method for a-rhythm detection was implemented in a real-time manner in Chapter 3.
In addition, an alternative strategy was proposed to investigate the human brain in response to
external flash stimuli during Zen meditation course. The flash-light stimulus was to be applied
upon emergence of the frontal a-rhythm. This study was developed and conducted for further
understanding the effect of Zen meditation on human perception.

Chapter 4 describes a software system “meditation EEG interpreter” based on the second
algorithm presented in Chapter 2. This interpretation system can identify such EEG patterns
like the flat wave (¢), 9, 6, %, a, and B activities. Moreover, it possesses noise screening capa-
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bility, especially for rejecting the artifacts like the baseline drift and EMG (electromyograph)
interference. It also allows a quick overview of an enormous amount of EEG data.

Besides the univariate AR model employed in meditation EEG research, Chapter 5 fo-
cuses on the multivariate autoregressive (mAR) model feasible for quantitative study of spati-
otemporal behavior in multichannel EEG. The spatiotemporal synchronization index based on
residual covariance matrix of mAR model was proposed. The index measures the degree of
synchronization among neighboring channels of a local brain area. A reduction of synchroni-
zation (or, significant desynchronization) in the brain areas results in a relatively high index. It
might provide a quick inspection of spatiotemporal characteristics for various meditation sce-
narios.

Significant differences in EEG rhythmic patterns, meditation scenarios, spatiotemporal
characteristics, and visual evoked potentials have been observed between experimental and
control groups. The last chapter makes a summary of the results obtained from previous chap-

ters.



Chapter 2—

Meditation EEG Overview Based
on Subband Features Quantified by
AR Model

Measurement does not necessarily mean progress. Failing the pos-
sibility of measuring that which you desire, the lust for measurement
may, for example, merely result in your measuring something else -
and perhaps forgetting the difference - or in your ignoring some
things because they cannot be measured.

~ George Udny Yule

his chapter reports a computerized scheme Subband-AR EEG Viewer that pro-
vides a comprehensive view of the meditation EEG record. The scheme was
mainly designed to trace the varying spectral characteristics in meditation EEG.
Following sections illustrate the main ideas and the methods adopted in the scheme. Two al-
gorithms modified from the scheme are introduced for particular applications. An on-line im-

plementation of the Subband-AR-EEG Viewer is also drawn in the end of this chapter.

2.1. Subband-AR-EEG Viewer

The scheme is focused on monitoring the time-varying characteristic frequency in medi-



tation EEG. The AR model is applied to the subband component to quantify the characteristic

frequency. Consider that the EEG signal, X[n], is generated by an autoregressive (AR(p))
process driven by unit-variance white noise [Theodoridis and Koutroumbas 1999]. A pth or-

der all-pole model is formulated by
p
x[n]+ > a [kIX[n—k]=w{n] (2-1)
k=1
where p is the order of the AR model. Based on this model, the spectrum of the EEGs can

be obtained if the coefficients a,[k] are known. Several techniques have been proposed to
estimate parameters a,[k]. We apply the autocorrelation method in which the AR coeffi-

cients a,[k] are determined by solving the autocorrelation normal equations

2N A I
CUNBAUNESE A S eV o)
7Pl 7lp=11 -~ 7000 |3lPl} [0

where ¢ is the modeling error and y,[K] is the estimated autocorrelation function defined

below:
1 N k|-1
yKl=1N nZ:(;x[n]x[n+|k], K| <N-1, (2-3)
0 otherwise,

As addressed previously, a higher model order (for example, p ranges from 6 to 14) is
normally required to better estimate the low-frequency component in EEGs. According to
(2-2), the coefficients of the AR(6) model are determined by { K] | 0<k<6}. As demonstrated
in Table 2-1, the values of the autocorrelation function %[0] - 54[6] for 6 and 6 rhythms are too
close to distinguish between each other, whereas the coefficients for o and B exhibit signifi-

cant deviation.
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Table 2-1: Values of autocorrelation function, %[0] - j4[6], computed for 3, 0, o, and 3

rhythms.
0] Al1] 2] #l3] 4] Kl5] %[6]
8 1.000 0986 0948  0.891  0.822  0.746  0.665
0 1.000 0985 0946 0889  0.823 0752  0.676
a 1.000 0946  0.792  0.562  0.287 —0.0004 —0.271
B 1.000 0872 0553  0.166 —0.155 -0.323 —0.324

In fact, even increasing the model order to p=12 cannot discriminate & rthythm from 0
rhythm. The dominant pole pairs for 6 and 6 modeled by AR(12) are 0.964/+0.131 and
0.9592+0.129, respectively, which results in a close estimate of the spectral frequencies
(symbol ‘2’ denotes the phase in radian). In addition, the computational time required by
AR(12) becomes four-fold compared with that for AR(6).

A downsampling process ensures the AR modeling better characterizes the low fre-
quency activities. This is revealed by the autocorrelation function values %[0] - %[6] esti-
mated for § and 6 rhythms downsampled by 8:

wlKk]s: {1.00, 0.48, -0.18, —0.48, —0.39, —0.03, 0.06}, (2-4a)

#Klo: 11.00, -0.16, 0.26, 0.06, —0.42, 0.02, —0.23}. (2-4b)

Moreover, according to Gabor’s uncertainty principle [Oppenheim et al. 1998], downsampling
operation improves frequency resolution which is desired for narrow-band EEG. We accord-
ingly employed subband-filtering prior to the frequency analysis by AR modeling.

In summary, EEG signals are firstly decomposed into different subband components by
downsampling and filtering. Then the characteristic frequency (root frequency) of each sub-
band component is estimated by the AR(2) model. The entire scheme is called the Sub-

band-AR EEG Viewer and it can be illustrated by the tree-structured filter banks shown in Fig.
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2-1. In the Subband-AR EEG Viewer, a linear-phase lowpass FIR filter H(z) with cutoff fre-
quency 30Hz is used as an anti-aliasing filter before the downsampling operation. Then the
AR(2) model is applied to the decimated signal. The filtering-and-downsampling process is
repeated until the equivalent cutoff frequency equals 1.875Hz.

Differing from the wavelet decomposition, the Subband-AR-EEG-Viewer only employs
the lowpass linear-phase filter. A nonlinear-phase filter which is commonly employed in
wavelet analysis [Vaidyanathan 1993] would distort the temporal information of EEG and
consequently affect the AR model coefficients estimated by the autocorrelation method.

The Subband-AR-EEG-Viewer structure (Fig. 2-1) can be rearranged into a six-channel
filter banks shown in Fig. 2-2 with decimation ratios which are powers of two. Fig. 2-3 shows
the frequency responses of the lowpass filters in the filter banks. The cutoff frequencies of
Hi(2), ..., Hs(2) are, respectively, 30Hz, 15Hz, 7.5Hz, 3.75Hz, and 1.875Hz (sampling rate:

200Hz).

(
L

J o | Arco moss
L

H(z) ‘2 g

Classification algorithm

EEG
Signal

Figure 2-1: The structure for the Subband-AR-EEG-Viewer.

12



o Hs(z) » |32 » AR(2)model | —» Outputs
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Ha(2) 14 AR(2) model | Output;
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J

EEG Signal

AR(2) model | Output

Figure 2-2: The equivalent six-channel system of the subband filter bank.

0 0.1 02 03 04 05 06 07 08 0.9 1

Figure 2-3: The frequency responses of H;(2), ..., Hs(2).

It should be noted that the cutoft frequencies approximate the upper boundaries of the
four well-known EEG rhythms— B (14-30Hz), a (8-13Hz), 6 (4-7Hz), and 6 (below 3Hz).
Therefore, changes of the characteristic frequency in meditation EEG can be traced by quan-

tifying the root frequency (f;) of each subband filtered component. For example, when fis of
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output;, output, and outputs are all within the range 813 Hz, the dominant pattern of this
windowed segment is identified, to a great degree, as the o thythm. When f;s of output; and
output, are greater than 15Hz and f, of outputy is between 4Hz and 7Hz, the particular seg-
ment most likely contains 0 intermixed with § rhythm.

After the subband decomposition, the AR(2) model coefficients are computed. An AR(2)
model can be expressed as

X[n]+a,[1]x[n =11+ a,[2]X[n = 2] = w[n] (2-5)

The model coefficients are directly computed by

a.ll]= _( muH 71l ]{mom 21-7, [J]ZJ 2-6)
7)([0] 7x[0] 7/x[0] _7x[1]

and

700,127, [Zl]zj (2-7)
7x [O] —7x [1]

a, [2]= _(
where y, [K] is the autocorrelation function estimated by (2-3).

The characteristic frequency, also called the root frequency, of output; can be estimated
from the phase of the pole, or the root of the model equation (2-5) expressed in the frequency
domain. After obtaining the model coefficients, the conjugated pole pair is

_a,[1] £ 4a,[2] -a, [1] (2-8)

2 2

Therefore, the root frequency f; can be formulated as

4a,[2]-a;[1]
f I | 4
. =sin
a,[2]
(2-9)
= sin” \/1——6‘22[1]2 Jz \/1——a§[l]
4a,[2] 4a,[2]

Because the root frequency is much smaller than the sampling frequency, the result of
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sin”'X can be approximated by x. For example, the o rhythm having a higher frequency of
13Hz results in a normalized radian frequency of 0.13w (assume fs = 200Hz). The approxima-
tion only causes a 2.8% deviation from the true value. It should be noted that output,-outputs
are the results of downsampling (Fig. 2-2), the root frequency f;jshould be further divided by
2 According to equations (2-6) to (2-9), root frequency of each subband component de-
pends on y [0], y,[1], and p, [2]. Tracking the root frequency of each subband component
provides an efficient way to illustrate the time evolution of the characteristic frequency in

meditation EEG.

2.2. Experimental setup and protocol

The meditation EEG signals were recorded using 8-channel SynAmps amplifiers (manu-
factured by NeuroScan, Inc.) connected to the Pentium MMX-166 (MHz) PC. Due to hard-
ware limitation, we observed EEG characteristics in different regions with the 8-channel,
unipolar recording montage involved the electrode sites at O1, O2, Oz, Cz, Pz, F3, F4 and Fz
(Fig. 2-4). The common reference was the linked M1-M2 (mastoid electrodes). The EEG sig-
nals were pre-filtered by a bandpass filter with passband 0.3—30 Hz, and digitized at 200 Hz
sampling rate. Each recording lasted for 45 minutes, which consisted of the first S-minute
background EEG (the subject sat in a normal relaxed position with eyes closed) and the
40-minute meditation EEG. During the meditation session, the subject sat, with eyes closed, in
the full-lotus or half-lotus position. Each hand formed a special mudra (called the Grand Har-
mony Mudra), laid on the lap of the same side. The subject focused on the Zen Chakra and the
Dharma Eye Chakra (also known as the “Third Eye Chakra”) in the beginning of meditation
till transcending the physical and mental realm. The Zen Chakra is located inside the third

ventricle, while the Dharma Eye Chakra is located at the hypophysis [Lo et al. 2003].
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Figure 2-4: 8-channel recording montage.

2.3. Slow alpha rhythm detection (SARD) algo-

rithm

The slow a-rhythm in meditation EEG was found to be related to the early stage of medi-
tation. The first algorithm was designed particularly to detect the slow o-rhythm in the
long-term meditation EEG record. The ideas and methods proposed can be implemented in

different ways, oriented towards a specific purpose.

2.3.1. The algorithm

Frequency of the a-rhythm ranges from 8Hz to 13Hz. The slow a-rhythm is a particular
pattern, normally below 10Hz, that was observed in some experimental subjects at the
mind-focusing stage of meditation. The Subband-AR-EEG-Viewer can be reduced to the
structure (Fig. 2-5(a)) for tracking the slow a-rhythm and the slow alpha rhythm detection

(SARD) algorithm is illustrated in Fig. 2-5(b). According to analytical reasoning and practical
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experience, output; in combination with outputs; highly enhances the effectiveness of slow
o-rhythm detection. Note that f,; acts as an index to screen out the high-frequency component,
and f; 3 is employed in the classification as a major reference. The SARD algorithm depicts
that the slow a-rhythm pattern is detected when both root frequencies satisfy the following
criteria:

fr.1 <14Hz, and

8Hz < f; 3 <10Hz.

2.3.2. Simulation

While only examining output; (up to 30Hz) with the criterion 8Hz < f;; <10Hz, it often
fails to identify the noise-contaminated slow a-rhythm. Figure 2-6 demonstrates the
noise-immunization capability of our scheme. When a pure 9Hz sinusoid (Fig. 2-6(a)) was
partially contaminated by uniformly distributed random noise (Fig. 2-6(b)), the AR model did
not recognize the noise-contaminated slow o-rhythm segment based on the criterion
8Hz<f; ;<10Hz (Fig. 2-6(c)). The results in Fig. 2-6(d) show that the SARD algorithm suc-
cessfully detected the slow a-rhythm under poor environment (SNR=8dB).

To verify the performance, we first analyzed a simulated signal of 4-sec duration. The
signal shown in Fig. 2-7(d) was generated by connecting three short-duration, ampli-
tude-modulated sinusoids, respectively, with frequencies 9Hz, 15Hz, and 5Hz (Figs.
2-7(a)-(c)). The window length is 0.5 sec (100 samples), moving at a step of 0.25 sec. As

shown in Fig. 2-7(d), the SARD algorithm effectively detected the slow a-rhythm pattern.
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Figure 2-5: The Subband-AR-EEG-Viewer modified for slow a-rhythm detection: (a)

structure and (b) algorithm.
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Figure 2-6: Capability of noise immunization of slow a-rhythm detector. The black

bold lines mark epochs identified as slow o-rhythm.

9 Hz
15 Hz
5Hz
slow ¢
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Figure 2-7: Slow a-rhythm detection from the time-varying rhythmic activities. The
signal in (d) is simulated by adding three short-duration, amplitude-modulated sinu-

soids with frequencies (a) 9Hz, (b) 15 Hz, and (¢) 5 Hz.

19



2.3.3. Identification of slow alpha rhythm

Next, the SARD algorithm was applied to the meditation EEGs (channel O1). A
10-second segment shown in Fig. 2-8 was analyzed with the same implementing parameters
as used in Fig. 2-7. Bold lines above the signal indicate the slow a-rhythm detection. As
shown in Fig. 2-8(a), amplitude variation often affects the recognizability of slow a-rhythm.
It results in a crack in the first bold line. On the other hand, a transient slow a-rhythm may be
of little significance. We thus designed a post-processor to further refine the result. It removed

segments shorter than 0.3 sec and fused cracks shorter than 0.3 sec (Fig. 2-8(b)).

e AT Ot gt @

slow o
D

W\FWMWWNMWWWWVM ®)

1 sec

Figure 2-8: Detection of slow o-rhythm in meditation EEG (Channel O1). Bold lines
above the signal indicate the slow a-rhythm detection. (a) A crack in the first bold line
is caused by variation of the o amplitude. (b) A post-processor removes the second
lines with duration shorter than 0.3 sec (insignificant activity) and fuses the crack

shorter than 0.3 sec.

Detection of specific EEG patterns is important in identifying various meditation states.
In addition, it may serve as a preprocessing stage in such tasks like the EEG segmentation or
interpretation. Based on the Subband-AR-EEG-Viewer, we devised a strategy for meditation

EEG interpretation. Details are illustrated below.
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2.4. Long-term meditation EEG interpretation
(MEEGTI) algorithm

Changes of the characteristic frequency in meditation EEG may be a key feature for un-
derstanding various states of consciousness during meditation. We therefore developed a
logical strategy implemented in the computerized MEEGI algorithm to segment the EEG into
sections with different frequencies. The results, illustrated as a running gray-scale chart,

clearly reveal the evolution of a characteristic frequency during meditation.

2.4.1. The algorithm

In the following, we present interpretation results of the meditation EEG based on five
spectral features frequently observed during meditation: (1) The y features which is a slow
waveform intermixing with high-frequency rhythms, (2) 9, (3) 6, (4) a, and (5) B features.
The y feature mostly appears at the transition from one EEG rhythm to another. To provide a
long-term visual record, the five spectral features are displayed by different gray tones. The
gray tones from the darkest to the lightest indicate, respectively, the ¥, 6, 0, o, and [ features.
In this task, the structure of Subband-AR-EEG Viewer can be reduced to that shown in Fig.

2-9.

» H: (@) > V8 »  AR(2) model L5 Output 4

\ J

( N
> H2(2) SERR > ARQ)model |y Output:

\ J

EEG Signal - N
» AR(2) model |5 Output

- J

Figure 2-9: The Subband-AR-EEG Viewer modified for meditation EEG interpretation.
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The MEEGI algorithm examines each windowed segment to check the following criteria
in order:

Criterion-y: f,5<7Hz<f;, and | P3 |>0.8;

Criterion-6: f;;<7Hz and f, 4<3.5Hz;

Criterion-0: f, ;<7Hz;

Criterion-a.: 7Hz< fr1<14Hz and 7Hz<f, 3.

Criterion-f: 7Hz<f; ;.
where p; is the AR(2) pole of outputs;. The criteria checkup is ordered according to a sound
logic realizing the subband filtering method. The root frequency f; is used to differentiate
between 0-7Hz and 7-30Hz EEG bands, while the f5 , fr4 and | P3 ‘ is employed in the sub-
sequent discrimination process. The length of p; can be considered as an indication of the sig-
nificance of the root frequency. Because the y wave represents an intermixed signal composed
of both low- and high-frequency components, we impose restrictions on the range of | Ps | to
ensure the significance of the low frequency component. The flowchart of the MEEGI algo-

rithm is shown in Fig. 2-10.

2.4.2. Simulation

To verify the effectiveness of feature recognition, the MEEGI algorithm was first applied
to a simulated signal. As displayed in Fig. 2-11(e), the signal was formed by connecting five
segments of 9, 0, ¥, a, and B patterns. We assumed the sampling rate is 200Hz. This signal
can be simulated by the pole placement method, that is, by placing each pole in the corre-
sponding frequency band (Table 2-2) and adding Gaussian noise. The transition from 6 to 3
normally results in a compound pattern like x. The running gray-scale chart (Fig. 2-11(e))

above the simulated sequence successfully signals the temporal patterns.
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Figure 2-10: Meditation EEG interpretation (MEEGI) algorithm.
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simulated signal and classification results.

Table 2-2: Locations of poles of the simulated signal

0 0 o B

Pole

locations 0.98 £0.04 0.98 £0.16 0.98 20.4 0.88 2£0.63

The above simulation demonstrates the feasibility of the scheme and algorithm in Fig.
2-9 and 2-10 for automatically identifying different EEG rhythms and revealing time-varying
schema of the simulation. In empirical data, as more complex rhythmic patterns are involved,
discrepancies between experienced EEG interpreters may occur. Methodology development
thus focused on reliable recognition of some key features in meditation EEG analysis. Figure
2-12 demonstrates the robustness of the Subband-AR-EEG Viewer for identifying even the

little jittering of B rhythms embedded in the high-amplitude slow activity.
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Figure 2-12: Subband-AR-EEG Viewer applied to the EEG signal for feature recogni-

tion.

2.4.3. Long-term meditation EEG interpretation

When applied to the long-term meditation EEG, this algorithm is particularly robust for
automatic interpretation with no need to determine the implementing parameters. Fig. 2-13
displays three running gray-scale charts for two experimental subjects (Fig. 2-13(a) and (b))
and one control subject (Fig. 2-13(c)). Since Watts [Watts 1957] has reported the variation of
alpha amplitude and frequency in the frontocentral region during meditation, we thus selected
channel F3 for further analysis. The error rate was approximately 8.7% in comparison with
the results of naked-eye examination by an experienced EEG interpreter. Both meditators
have been practicing Zen Buddhist meditation for more than eight years. The control subject

sat in a normal, relaxed position with the eyes closed. During the meditation session, the two
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meditators exhibited different meditation scenarios. Meditation EEG of subject 2k1019p was
apparently dominated by B thythm, sometimes transforming into a short-duration o rhythm.
According to the post-experimental interview, the subject did not always stay in the Alaya
consciousness and occasionally went back to normal consciousness.

The chart in Fig. 2-13(a) reveals this scenario for 20-minute. In Fig. 2-13(b), subject
2k0830a exhibited a large portion of y activities. In our meditation EEG experiment, EEG
signals of some meditators indeed were found to be characterized by large-amplitude,
slow-drifting rhythms interwoven with high-frequency tiny jiggles. Meditators with this kind
of EEG characteristic normally have their meditation process wandering among normal con-
sciousness, subconsciousness (subliminal consciousness), and Alaya consciousness [Lo et al.
2003]. Compared with the experimental group, EEGs collected from the control subject are
normally dominated by a rhythm, as illustrated in Fig. 2-13(c). Note that this subject was

drowsy in the experiment, resulting in occurrence of 6 and & rhythms.

2.4.4. On-line implementation of the Subband-AR-EEG Viewer

Due to its simplicity, the algorithms provides a robust tool for on-line processing re-
quired for meditation EEG interpretation as well as the biofeedback scheme in the BCI
(brain-computer interface) research. Currently, we have implemented the MEEGI algorithm
under Simulink (MathWorks, Inc., Natick, MA) with Real-Time Workshop on a Pentium-M
1.4 (GHz) notebook (Fig. 2-14(a)). By generating a real-time code with Real-Time Workshop,
the algorithm can be downloaded to the kernel and run in a real-time manner under Windows
[Guger 2001]. The classification results were displayed on a monitor. As shown in Fig.
2-14(b), the height of each bar reflects the power percentage of the corresponding EEG
rhythm within a 2-sec frame. We can thus monitor the meditator’s state in a real-time manner

that enables the development of a more subtle correlation between the EEG characteristics
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and the meditation scenario.
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Figure 2-13: Running gray-scale charts (Channel F3) for two meditators (a) subject
2k1019p, and (b) subject 2k0830a, and (c) one non-meditator (control) subject
2k1007p.
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Figure 2-14: On-line implementation of the Subband-AR-EEG Viewer. (a) Computer 1
executes the MEEGI algorithm (Fig. 2-10), and Computer 2 displays the classification
results, as illustrated in (b). The height of each bar reflects the power percentage of the

corresponding EEG rhythm within a 2-sec frame.

28



Chapter 3—

Investigation of Visual Perception
under Zen-Meditation

If the brain were so simple we could understand it, we would be so
simple we couldn't.

~Lyall Watson

ne topic of interest in the meditation study is the evoked potentials (EP) (or
event-related potentials, ERP) of a practitioner under meditation, which includes
auditory evoked potential (AEP), somatosensory evoked potential (SEP), visual
evoked potential (VEP), and so on. Each parameter is meaningful to the respective perception
function. Due to unusual perceptions often experienced during meditation, human brain in
response to external flash stimuli during Zen meditation drew our attention. Recording of
VEPs provides a means of characterizing the visual pathway and visual function. VEPs can be
recorded by applying either patterned or non-patterned stimulus that results in various VEP
waveforms [Odom et al. 2004]. Since practitioners must close their eyes during meditation,

we employed non-patterned flashes in the VEP recording.

3.1. Why EEG-triggered F-VEP?

In Zen-meditation EEG study, increased alpha activity over the frontal regions of the
brain has been observed during meditation [Kasamatsu and Hirai 1966, Takahashi et al. 2005]
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and so has the increased frontal alpha coherence [Murata 2004]. Kasamatsu and Hirai found
an increase in alpha amplitude at the beginning of meditation, which then spread frontally
[Kasamatsu and Hirai 1966]. Furthermore, Takahashi et al. observed that the increased frontal
alpha power correlated with the enhancing internalized attention [Takahashi et al. 2005]. Thus
increased frontal alpha activity was hypothesized as a result of Zen-meditation process. All
the observations have led into further understanding of the function-correlated, spatial char-
acteristics of the brain affected by meditation.

In another aspect, Zhang et al. [Zhang et al. 1993] claimed that the amplitudes of F-VEPs
(VEPs under flash stimuli) of Qigong meditators increased under meditation. In Xu et al.’s
research [Xu et al. 1998], the amplitude of F-VEP increased while the latency decreased. They
suggested that concentration and attention may be the reason of altering the evoked potentials.
One problem encountered in the F-VEP study is to determine the appropriate timing for ap-
plying the flash-light stimulus. To our knowledge it has not been reported in regard to this is-
sue. In our previous study, stimulus was applied at the mid-section of meditation at which
subjects might undergo various physiological and mental states. In that case, F-VEPs were not
able to reveal different experimental courses such as the section before, during, and after
meditation [Liu and Lo 2005]. To assure that all F-VEPs are acquired under a consistent con-
dition, a rational experimental setup is to apply the stimulus based on a controllable factor. To
gain access to particular brain states, one approach is to ask the subject to signal the attain-
ment of the meditation state by finger movement [Newberg et al. 2001, Lo et al. 2003, Taka-
hashi et al.2005]. However, it often causes meditators to break off from the meditation state.

To investigate the ERP activities in a given brain state defined by EEG, we thus conceive
the idea of EEG-triggered F-VEP scheme, that is, the flash-light stimulus is applied under
specific oscillatory features of the EEG. In this preliminary study, we intuitively selected the
frontal a-rhythm as the F-VEP triggered signal based on the results reviewed previously and
our empirical observations these years. The following section illustrates the methods for de-

30



tecting the frontal a-rhythm and the experimental setup. Significant results obtained are pre-

sented at the end of this chapter.

3.2. Alpha-dependent F-VEP

According to the description in 3.1, the flash-light stimulus is to be applied upon emer-
gence of the frontal a-rhythm. The scheme, Subband-AR EEG Viewer, proposed in Chapter 2
[Liao and Lo 2006] provides more accurate estimate with better resolution [Hayes 1996,
Giiler et al. 2001] and, in particular, allows on-line a-rhythm detection within a very small

time frame. Modification of the scheme for on-line a.-rhythm detection is described below.

3.2.1. Online a-rhythm detection

For online a-rhythm detection, the SARD algorithm described in Chapter 2 was slightly
modified. Because cutoff frequency of the bandpass filter is different (to be explained in next
section) for VEP recording, the tree structural filter bank in Fig. 2-5 was adjusted as shown in
Fig. 3-1. As presented in Chapter 2, an AR(2) model can be expressed as

X[n]+a,[1]x[n—1]+a,[2]x[n - 2] =w[n]. (3-1)
The model coefficients a,[k] can be determined by solving the autocorrelation normal
equations [Hayes 1996]. After the model coefficients have been obtained, the conjugated pole

pair is determined as,

a,[1] ‘] 4a,[2]-a, (1] (3-2)

2 2

Thus the root frequency of the signal can be obtained from Eq. (3-2)

Y U O RN

3-3
: 5 (3-3)

where i denotes the i decomposition level. The filtering-and-downsampling process is reit-
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erated to attain good accuracy in discriminating between a and 6/0 rhythms. The equivalent
cutoff frequency is 15Hz. We designed a criterion based on the root frequency to detect the
o-rhythm. The algorithm examines each windowed segment to check whether it meets the
following criterion.

Criterion-a.: fr1<14Hz and 7Hz<f; ,.

The root frequency fr; is used to differentiate EEG rhythms in 0—14Hz from those in 14-30Hz.

Next, root frequency f;, is examined to screen out 6/0 rhythms.
Note that output; and output, are the results of downsampling (Fig. 3-1), the root fre-
quency frishould be further divided by 2'. This experiment employed a window length of 1

second, with a moving step of 0.5 second.

4 h )
LPF AR(2) | Output, Compute fs
- e K .| Troot fre- .
"l H(z) "1 V2 "| model | quency f,, g g
= g
\. J § =
EEG 28
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H(z) 12 model frequency
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Figure 3-1: Tree structural filter bank for the Subband-AR EEG Classifier. H(z) is de-

signed by least-squares error minimization with cutoff frequency 30Hz.

3.2.2. Simulation

To verify the effectiveness of the a-rhythm detection algorithm, the algorithm was firstly
applied to a simulated signal. We assumed a sampling rate of 128Hz. The signal can be simu-
lated by the pole placement method, that is, by placing each pole in the corresponding fre-
quency band (Table 3-1) and adding Gaussian noise. As displayed in Fig. 3-2(e), the simu-

lated 10-second signal was formed by connecting four segments of 9, 0, a, and B-rhythm pat-
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terns. Detection result in Fig. 3-2(e) is illustrated by two gray scales, with dark (light) gray
indicating the o (non-a) pattern. The result clearly justified the effectiveness of the algorithm

in o detection.

Table 3-1: Locations of poles of the simulated signal

) 0 o B
Poles’ location 0.98 ~£0.04 0.98 ~£0.16 0.98 204 0.88 2£0.63
)
@)
0
~AVAAAAANA (b)
p
AN AN A A RIS pe A (C)
o
AAAMWPA i ()

non o

g

Figure 3-2: Classification result of the simulated signal. Different grays are used to il-

lustrated the o and non-a patterns.

3.2.3. Oft-line alpha detection

Empirical EEGs often exhibit highly complex, irregular rhythmic patterns that make the

recognition of specific EEG pattern more difficult. Our algorithm is robust in dealing with this

33



kind of complication. Figure 3-3 displays the result of o detection. The error rate, estimated
from the results of identifying 780 alpha candidates, was approximately 7.2% (4.6% false
negative and 2.6% false positive rate) in comparison with the results of naked-eye examina-

tion by an experienced EEG interpreter.

-200
200

-200

-200

-200

non o 1 sec
] o ‘

Figure 3-3: Result of a detection for real EEG signal.

3.2.4. F-VEP

The F-VEP consists of a series of negative and positive peaks, denoted respectively by N
and P followed by a number. The number is referred to as the order (or time) of occurrence of
that particular peak from the stimulus. The F-VEP source is located in the occipital lobe.
Normally, the event-related brain potentials propagate via neural network toward the nearby

regions. The phase differences among different channels are caused by the time delays of
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brain-wave propagation [Hughes et al. 1992]. Figure 3-4 shows typical F-VEPs recorded on
Fz, Cz, and Oz with corresponding peak labels. In this study, peaks of significance including
N2, P2, N3, and P3 are to be analyzed. Note that F-VEPs of different channels have phase de-
viation.

Researchers inferred that the noticeable negative peak N2 of Oz was generated in lamina
IV cb [Kraut 1985, Ducati 1988], then the following positive peak P2 might reflect the inhibi-
tion activity within lamina. This study is mainly based on the hypothesis that Zen meditation

affects visual neural pathway that can be revealed on the F-VEPs.

3.3. Experimental setup and protocol

3.3.1. Subjects

This study involved 11 meditators and 11 control subjects. In the experimental group, 4
females and 7 males at the mean age of 27.5+ 3.2 years participated. Their experiences in
Zen-Buddhist practice span 5.5+4.3 years. The control group included 3 female and 8 male

students with an average age of 23.6 + 3.3 years.

3.3.2. Apparatus

The EEG signals and F-VEPs were recorded at standard 10/20 positions (Fig. 3-5) with
32-channel SynAmps amplifiers (manufactured by NeuroScan, Inc.) connected to a Pentium-4
(1.5 GHz) PC. Common reference of linked M1-M2 (mastoid electrodes) was used. EEG sig-
nals, after amplification, were pre-filtered by a bandpass filter with passband 0.3—50 Hz, and
digitized at 1000 Hz sampling rate. A 60-Hz digital notch filter was applied to the data to re-

move artifacts from power line or the surroundings.
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Figure 3-4: Profile of F-VEPs on (a) Fz, (b) Cz, and (c¢) Oz with corresponding peaks

labeled.
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Figure 3-5: 32-channel recording montage.

We developed an online a-detection algorithm that was implemented by using g.BSamp
with g.RTsys (manufactured by Guger Technologies, Inc.) connected to a Pentium-M (1.4
GHz) notebook. g.BSamp is a stand-alone biosignal amplifier and g.RTsys is a biosignal ac-
quisition and real-time analysis system for notebook implementation. To facilitate the
real-time o detection, channel-Fz EEG was pre-filtered by a bandpass filter with passband
0.5-30 Hz, and digitized at a lower rate of 128 Hz. The a-detection algorithm was imple-
mented on Simulink (MathWorks, Inc., Natick, MA) with Real-Time Workshop. By generat-
ing real-time code with Real-Time Workshop, the algorithm can be downloaded to the kernel
and run in a real-time manner under Windows [Guger et al. 2001]. The experimental setup is
shown in Fig. 3-6. The subject stayed in an isolated space. A CCD camera positioned in front
of the subject was used to monitor the entire procedure. The 32-channel EEG signals were
recorded by an EEG recording system. Another computer read channel Fz simultaneously to

identify the occurrence of frontal-o rhythm. Once the frontal-o. was ascertained, the computer
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triggered the flash light controller to generate flash stimuli.

EEG

Flash light

trigger ﬁ
=

1L
ad

= -
CCDcamera =—— —— Flash light con-  a-rhythm de- G recording
troller tection system

Figure 3-6: Experimental setup for a-dependent F-VEP recording.

3.3.3. Experimental paradigms

During the experiment, subjects sat in a separated space in the laboratory. Each recording
lasted for about 60 minutes, including three sections: two 10-minute background EEG re-
cordings (section I and III) before and after a 40-minute recording (section II, the “main sec-
tion”) of EEG under meditation (experimental subject) or rest (control subject). The control
subject sat in a normal, relaxed position with eyes closed, while the meditators practiced
Zen-Buddhist meditation during the 40-minute main section. In Zen meditation, the subject
sat, with eyes closed, in the full-lotus or half-lotus position. Each hand formed a special
mudra (called the Grand Harmony Mudra), laid on the lap of the same side. The subject fo-
cused on the Zen Chakra and the Dharma Eye Chakra (also known as the “Third Eye Chakra™)
in the beginning of meditation till transcending the physical and mental realm. The Zen
Chakra locates inside the third ventricle, while the Dharma Eye Chakra locates at the hy-
pophysis [Lo et al. 2003].

The term “alpha-dependent F-VEPs” was used because we recorded F-VEPs upon the
detection of frontal a rhythms. One run of alpha-dependent F-VEPs were recorded in each of

the three sections (Fig. 3-7). Each run consisted of 50 alpha-dependent flash stimuli. The in-
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terval between two consecutive stimuli was longer than 1 sec. The flash light, with a 10us du-
ration, was produced by a xenon lamp that was placed 60 cm in front of the subjects’ eyes.
Alpha-dependent F-VEPs were acquired from midline channels Oz, Cz and Fz, with the
linked-mastoid electrode as the reference. Since we employed the mastoid-referenced unipolar
montage, alpha activities could be found in the frontal channels of all subjects [Niedermeyer
and Lopes da Silva 2004]. However, more frontal alpha activities were detected during medi-

tation, that reduced the time required for collecting 50 alpha-dependent F-VEPs.

50 alpha-dependent stimuli

T
CWl Wl !

|
10

Section I Section II (main section) Section 111

O

Figure 3-7: Scheduling of the F-VEP recording procedure.

3.4. Modulation of F-VEP amplitudes due to

Zen-Meditation process

As shown in Fig. 3-8, different codes were used to indicate the stimuli presented in dif-
ferent sections. The stimuli in section I, II, and III are marked by code 128, 64, and 32, re-
spectively. And the marker at the upper left of each code indicates the time of flash stimula-
tion. A concluding F-VEP of each section was derived by averaging 50 raw tracings in one

run.
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Figure 3-8: Display format of selected channels (Fz, Cz, Pz, and Oz) for a-dependent
F-VEP recording. The vertical bar at the upper left of mark ‘128 indicates the time of

applying flash stimulus.

Inter-subject variations of human VEP under the open experimental environment are
complicated. We thus investigated the intra-subject differences among various sections con-
ducted in one experiment. We measured the amplitude and latency of the average F-VEP, and
quantified the difference between various sections. Our results presented quite different trends
between two groups. Figure 3-9 plots an example of the F-VEPs at Fz, Cz and Oz (from the
top) for one subject. The solid lines represent the F-VEPs in the section I, and the dash and

dot ones stand for those in the section II and III.
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Figure 3-9: The a-dependent F-VEPs of one meditator recorded on (a) Fz, (b) Cz, and

(c) Oz.
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Table 3-2: The changes in the peak amplitudes of specific F-VEP components.

Exp group Ctrl group t-test

Item II/1 /1T P Vélue II/1 /11 P Vélue
%) %) (paired %) %) (paired /1 /11

t-test) t-test)
P1-N2 95.09 114.40 NS 141.63 114.31 NS 0.013* NS
N2-P2 10141 101.44 NS 121.07 103.60 NS 0.010* NS
Oz P2-N3 107.10 102.77 NS 112.20 122.49 NS NS NS
N3-P3 117.33 106.86 NS 90.59 114.25 NS NS NS
P3-N4 121.35 104.18 NS 112.71 81.89 NS NS 0.035*
PI-N2 106.25 76.33 0.057 81.20 87.08 NS 0.043* NS
Cz N2-P2 120.10 89.18 0.00037* 93.64 102.01 NS 4.78E-05* NS
P2-N3 134.73 103.43 NS 124.25 135.75 NS NS NS
NI-P1 126.68 97.03 NS 104.30 125.79 NS NS NS
Ey P1-N2 119.20 86.72 0.056 87.02  95.01 NS 0.043* NS
N2-P2 115.70 92.76 0.040%* 88.77 110.03 0.052 0.0025*  0.045%*
P2-N3 143.35 128.01 NS 99.77 119.34 NS NS NS

I: section I, II: section II (main section), III: section III,

*: P<0.05,

NS: Not Significant

From our results we found that latencies of all components exhibit no significant differ-

ence among all sections in both groups. However, the variations of amplitudes show differ-

ences in some components between two groups. Table 3-2 presents, for each F-VEP compo-

nent, ratios of the group average amplitudes of different sections. The p value is calculated by

paired t-test (compared with selves in different phases) and t-test (compared to the other

group in the same phase). Amplitudes of P1-N2 and N2-P2 on Cz and Fz increased signifi-

cantly during meditation, yet, decreased during relaxation in the control group. On the other

hand, N2-P2 amplitude on Fz decreased after meditation (experimental group) but increased

after rest (control group). Apparently, the transit from one to another section caused F-VEP
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amplitudes on Cz and Fz to vary in opposite directions for both groups. We also observed sig-
nificant differences between two groups in P1-N2 and N2-P2 amplitudes (Oz). P1-N2 ampli-
tude (Oz) decreased during meditation but increased during rest. N2-P2 amplitude increased
in the control group, but had little change in the experimental group. Contrary to the earlier
peaks PI-N2 and N2-P2, N3-P3 amplitude (Oz) in the control group slightly decreased,
whereas this peak amplitude increased in the experimental group.

Among all the F-VEP components, the most noticeable difference between two groups
was the N2-P2 of Cz and Fz. Figure 3-10 plots the variations of N2-P2 amplitudes at Cz and

Fz. Each bar represents the percentage of F-VEP varying from section I to section II

(HI_I X 100%] for one subject (white: experimental subject, gray: control subject). Signifi-

cant distinction is observed between two groups. Most meditation practitioners had their
N2-P2 amplitudes increasing by an average rate of 20.1% (standard deviation among 11 sub-
jects was 15.12%). Control subjects, on the contrary, exhibited a decreasing trend (average

rate: —6.36%, standard deviation: 7.78%).
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Chapter 4 —

Investigation on Spatiotemporal
Characteristics of Zen-Meditation
EEG Rhythms

Mathematics compares the most diverse phenomena and discovers
the secret analogies that unite them.

~ Joseph Fourier

he work presented in this chapter goes further with a focus on the multi-channel
meditation EEG analysis to explore the spatial-spectral behavior of Zen medita-
tion EEG. We will report the findings of the spatiotemporal behaviors of medita-
tion-EEG spectra based on the analyzed results of 30-channel EEGs. To deal with such an
enormous amount of EEG data, we developed a novel system, meditation EEG interpreter,
that was modified from the MEEGI algorithm described in Chapter 2. This interpreter is ca-

pable of identifying various EEG activities and detecting the artifacts.

4.1. The meditation EEG interpreter

Artefacts occur every now and then during EEG recording. To identify artifact-interfered
EEG, the MEEGI algorithm was further enhanced to facilitate the long-term meditation EEG

analysis and to eventually provide an overview of the entire meditation EEG record.
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4.1.1. The algorithm

The meditation EEG interpreter is able to identify six wave patterns and two artifacts of-
ten appearing in meditation EEG. The six wave patterns include: (1) low-power, almost flat
wave (denoted by ‘¢’), (2) multi-frequency activities with approximate power (denoted by
‘x’), and (3) 3, (4) 0, (5) a, and (6) B activities. Wave pattern ¢ refers to the EEG activity with
amplitude no larger than 20.V. Wave pattern y mostly appears at the transition from one EEG
rhythm to another, accordingly, no dominant rhythmic pattern can be justified for the segment.
In addition to the six patterns above, the interpreter can detect two artifacts: baseline-drift
(denoted by ‘B’) and EMG (electromyograph) interference (denoted by ‘7).

Each windowed segment of the EEG is examined by the following criteria in order (Fig.
4-1):

Criterion-¢. Amplitude<20uV,

Criterion-y: f,,3<THz<f,; and | 3 | >0.8,

Criterion-9: f,.1<7Hz and f, 4<3.5Hz,

Criterion-9: f, 1<THz,

Criterion-o.: THz<f.1<14Hz and 7Hz<f, 3,

Criterion-B: f,.,>7Hz,

where p; is the AR(2) pole of output;. The length of p; is closely related to the amplitude
and reflects the significance of the root frequency f, 3. In the criterion, the major root fre-
quency of each segment (f,;) is used to differentiate between 0-7Hz and 7-30Hz EEG
rhythms. A segment is identified as the y activity if its f,; is higher than 7 Hz and its f, 5 is
lower than 7Hz with | 3 | larger than a given threshold. Then the f,41s used to discriminate &
activity from 0 activity. The pattern excluded by the a-criterion, yet, with f, ; higher than 7Hz
is classified as B activity. EEG segments with the above characteristics exhibit no particularly

dominant EEG rhythm. According to the oscillations assumption for the brain dynamics, dif-
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ferent neuronal networks may start to oscillate with different frequencies during mental activ-
ity [Klimesch 1996, Pfurtscheller and Lopes da Silva 1999]. It is thus reasonable to recognize
this as the P activity.

After identifying the six patterns from the meditation EEG record, the algorithm further
scrutinizes the interpretation to detect the segments of baseline drift and EMG interference

possibly leaked to the categories of normal EEG patterns.

4.1.2. Baseline drift detection

EEG signals very often are affected by baseline drift caused by eye movement, breathing,
etc. Some methods have been proposed to remove this baseline drift [Philips 1996, Lo and
Leu 2001]. In this proposed algorithm, the baseline drift component is detected and marked
without being removed from the record. Due to the low-frequency characteristic of baseline
drift, the criterion for detecting baseline drift is focused on the delta band (1-3Hz) as de-
scribed below.

(1) A segment of EEG which has been classified as d and is longer than 1.25 s.
(2) Amplitude of the signal exceeding 80V .
(3) Number of zero-crossing events of the segment is less than 3 within 1 s.

The baseline drift is symbolized by ‘B’. Generally speaking, a lower (higher) threshold
results in more false-positive (false-negative) B segments. Threshold selection needs to be

done experimentally to achieve better performance.
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Figure 4-1: The scheme of the meditation EEG interpreter algorithm.

4.1.3. EMG interference detection

EMG interference often caused by muscle contraction is characterized by high frequency
and large amplitude. Based on the six patterns first identified by the algorithm, B- and
y-patterns are firm candidates in consideration of frequency. These two patterns are further
screened by the criterion of an amplitude larger than 100x) to determine the EMG interfer-
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ence (denoted by ‘I).
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Figure 4-2: The strategy for multi-channel implementation of the meditation EEG in-

terpreter.

In sum, EEG signals are first decomposed into different subband components by succes-
sive downsampling and filtering. Root frequency of each subband component is then esti-
mated by the AR(2) model. Based on a set of logical criteria, the algorithm is capable of iden-
tifying six distinct EEG patterns and two artifacts. Figure 4-1 illustrates the complete scheme
of the proposed algorithm. Figure 4-2 displays the strategy for multi-channel implementation.
All the 30-channel windowed epochs are fed into the meditation EEG interpreter (Fig. 4-2(a)).
The running window moves at a step size of 0.25 s. The interpretation results are illustrated
by a two-dimensional gray-scale image with the vertical and horizontal axes representing the

spatial (channel) and temporal factor, respectively. Various gray scales are used to denote the
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six patterns and two artifacts (cf. figures in chapter 2). Fig. 4-2(b) shows the scheduling proc-
ess of the sequential queue implemented in the meditation EEG interpreter. With appropriate
design of the buffer and latch, the architecture in Fig. 4-2(b) can process multi-channel EEGs

in a real-time manner.

4.2. Experimental material

The meditation EEG signals were recorded using 30-channel SynAmps amplifiers
(manufactured by NeuroScan, Inc.) connected to a Pentium4 1.5 (GHz) PC. A 30-channel re-
cording montage was used, with the linked M1-M2 (mastoid electrodes) as the common ref-
erence (Fig. 4-3). The analog EEGs were pre-filtered by a band-pass filter with passband
0.3-30 Hz, and digitized at 200 Hz sampling rate. Each recording lasted for 40 minutes, in-
cluding the first 10-minute background EEG (the subject sat in a normal, relaxed position

with eyes closed) and the rest 30-minute meditation EEG.
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Figure 4-3: 30-channel recording montage.

During the meditation session, the experimental subject sat, with eyes closed, in the
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full-lotus or half-lotus position. Each hand formed a special mudra (called the Grand Har-
mony Mudra) and was laid on the lap on the same side. The subject focused on the Zen
Chakra (third ventricle) and the Dharma Eye Chakra (hypophysis) [Lo et al. 2003] at the be-
ginning of meditation until the physical and mental consciousness was transcended. The con-
trol subject, on the other hand, sat in a normal, relaxed position with eyes closed [Liao and Lo
2003].

This study involved 8 meditators and 8 control subjects. The experimental group had 1
female and 7 males (mean age: 34.7+7.5 years). Their experiences in Zen Buddhist practice

spanned 11.1£1.8 years. The control group included 8 males (mean age: 27.3+1.3 years).

4.3. Simulation

To verify the performance of the algorithm, we first generated a simulated signal by con-
necting five patterns (¢, 9, 0, a, and B in Fig. 4-4(a)—(e)) in series as shown in Fig. 4-4. We
note that pattern y emerges when 0 and 3 overlap each other so that a transition is identified
as %. Assuming a sampling rate of 200Hz, each pattern can be simulated by simply placing the
pole in the appropriate frequency band (Table 4-1) and adding Gaussian noise. Fig. 4-4(f) dis-
plays the interpretation result that uses different gray scales to represent different patterns.
The gray-scale bar chart correlates well with the EEG pattern evolution. It thus confirms the
feasibility of the meditation EEG interpreter algorithm.

To demonstrate the efficacy in artifact detection, the baseline drift and EMG-interference
artifacts were simulated by mixing a [ pattern (Fig. 4-5(a)) with two components, a
low-frequency, large-amplitude sinusoid component (Fig. 4-5(b)) and a high-frequency,
large-amplitude random noise component (Fig. 4-5(c)). The interpretation result is shown in
Fig. 4-5(d). The first artifact with low frequency and large amplitude is recognized as the

baseline drift; while the lagging one with high-frequency randomness is classified as the
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EMG interference. These two artifacts often contaminate the EEG.

(a)

(b)

WW (C)

L A L e (d)

Aoy <

o 3 0 X B o

1 sec

Figure 4-4: Simulation results (a) ¢, (b) 8, (c) 0, (d) B, (e) a, and (f) simulated signal

and interpretation results represented by gray-scale bar chart.

Table 4-1: Poles (magnitude (normalized) and phase (radian)) designed to simulate the

four well-known EEG rhythms.

Pole
0.98 2£0.04 098 20.16 098204 0.88.20.63
locations

Finally, interpretation accuracy was evaluated by comparison with the result of a na-
ked-eye examination by an experienced EEG interpreter. The error rate is approximately

10.7%. Figure 4-6 displays a partial segment of interpretation results.
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Figure 4-5: Simulation of the baseline drift and EMG-interference artifacts by mixing
(a) B activity (b) low-frequency, large-amplitude sinusoid, and (c) high-frequency,

large-amplitude random noise, and (d) the artifacts and interpretation result.

| B S 0 o B x
| | D

Figure 4-6: Interpretation results illustrated by gray-scale bar chart.
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4.4. Meditation EEG interpretation

4.4.1. Pattern-distribution histogram of Zen-meditation EEG

The 20-minute meditation/relaxation EEG in the mid-recording session was examined by
the meditation EEG interpreter using a 0.5-sec window length with a moving step of 0.25-sec.
Percentages of six patterns and two artifacts of eight control and eight experimental subjects
are listed in Tables 4-2 and 4-3, respectively. To compare the global trend of a pat-
tern-distribution histogram between two groups for the whole view, the percentage of each
pattern was derived by (1) averaging the percentages of all 30 channels (removing the spatial
factor), and (2) averaging the percentages of all the subjects within the same group (removing
the inter-subject factor). Figure 4-7(a) displays the final pattern-distribution histograms of
both groups. Based on the comparison of EEG pattern percentages between the two groups,
the P value was calculated by the #-test for each pattern. We notice significant distinction be-
tween the two groups in four patterns, y (P<0.05), 6 (P<0.01), 6 (P<0.01) and B (P<0.01).
The large percentage of i in the experimental group may be due to frequent transitions, during
Zen meditation, between different consciousness states resulting in different brain dynamics.
Higher 6 and 0 contents in the control group apparently correspond to the habitual drowsiness
induced during the relaxation session. In regard to the B phenomenon, our previous study has
shown significantly higher 3 activities for the meditation EEG. The above observation can be
further verified by Fig. 4-7(b) that plots the pattern histograms for all sixteen subjects listed in

Tables 4-2 and 4-3.
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Table 4-2: The percentage of each pattern (control group).

Subject ¢ X ) 0 o} B B 1
cl 6.27 4.41 43.33 2.35 0.36 22.50 20.72 0.07
c2 2.62 13.01 59.64 3.74 0.16 15.94 4.57 0.32
c3 2.63 4.53 20.45 32.88 25.36 11.52 2.57 0.05
c4 10.56 7.00 30.54 18.90 13.61 16.33 2.42 0.61
c5 2.88 3.92 32.74 24.55 27.69 6.45 1.67 0.10
c6 6.24 1.11 49.40 25.23 10.91 1.43 5.66 0.03
c7 13.38 1.08 32.01 20.64 25.89 4.86 2.01 0.12
c8 2.97 10.81 57.85 2.81 1.92 20.66 2.94 0.04

¢ : flat wave B: Baseline-drift I: EMG interference
Table 4-3: The percentage of each pattern (experimental group).

subject ¢ x S 0 o B B I
el 2.39 13.32 12.21 0.45 9.54 59.32 2.68 0.08
e2 20.92 23.10 9.56 0.60 5.56 39.45 0.79 0.01
e3 243 19.63 23.56 1.25 1.03 39.86 10.80 1.43
ed 5.20 57.28 3.71 1.12 1.46 31.06 0.06 0.11
e5 35.01 2.03 21.81 0.90 0.19 33.73 6.18 0.15
eb 1.78 64.02 3.64 0.46 3.50 26.14 0.16 0.29
e7 0.13 39.00 8.83 0.93 8.57 34.57 0.80 7.17
e8 2.21 2.20 7.47 7.08 59.14 20.66 0.99 0.25

¢ : flat wave

B: Baseline-drift

I: EMG interference
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Figure 4-7: Mean percentage of each pattern: (a) for the experimental (light bars) and

control (dark bars) group (*: P<0.05 and **: P<0.01), (b) for each individual subject

(el—e8: experimental subjects, c1—c8: control subjects).
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When inspecting the individual variation in the experimental group, the flat wave is re-
markable in subjects e2 and e5 (Table 4-3). According to our previous studies [Lo et al. 2003],
the flat wave ¢ often emerges during deep meditation for some Zen meditators. Subjects ¢4
and e6 have prominent y activities, indicating possibly the situation that their meditation sce-
narios involved a number of transitions from one consciousness state to another. Subject e8’s
EEG showing a lot of a activity is quite different from the others. According to her narration,
she was in a very relaxed state and felt energy (Qi) flowing through her back during the
meditation. We note that the artifacts identified are mostly the baseline drift for both groups.

We then investigated the time evolution of spatial characteristics of EEG rhythms. Figure
4-8 displays the interpretation results for two experimental subjects (el and e6) and one con-
trol subject (c2). They reveal three typical histograms of EEG spatiotemporal characteristics
often observed in both groups: 1) PB-dominant globally, 2) y-dominant locally, and 3)
d-dominant all over the scalp.

The horizontal axis of gray-scale bar charts in Fig. 4-8 represents the time, while the ver-
tical direction corresponds to the recording channels, from the top downwards, FP;, F7, FP»,
F3, FCs, FT4, Ty, Fs, F4, Fz, FCz, C5, TP, FTs, FC4, Cz, CPz, CP3, P3, P7, Ts, TPs, Ca, Pg, CPy,
P4, Pz, Oz, Oy, and O,. Gray-scale mapping as illustrated in Figs. 4-4—4-6 is applied. The in-
terpretation result of control subject c¢2 (Fig. 4-8(c)) reveals a large proportion of 6, 6 and a
activities in comparison with the result of experimental subjects el (Fig. 4-8(a)) and e6 (Fig.
4-8(b)). Results of control subject c2 reveal decreasing B and y activities and increasing o
rhythm during the entire process. On the contrary, the & rhythm is insignificant in both ex-

perimental subjects.
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4.4.2. Temporal evolution of § brain mappings

As illustrated in Fig. 4-7, the B pattern plays a key role in discriminating EEG character-
istics between the two groups. This part of the study was thus designed to explore the tempo-
ral evolution of B spatial distribution. The “B% mapping” in Fig. 4-9 was constructed from the
percentages of B activity of all 30 channels, based on a window size of 10 s. The time marked
beneath each scalp plot is the beginning of each window under analysis. The % mapping for
subject el (Fig. 4-9(a)) demonstrates one typical case in the experimental group that their oc-
cipital B activity spreads quickly towards the central and frontal regions and becomes a dif-
fuse low-power, fast activity. Subject e6 has more focal, occipital  activity occurring inter-
mittently (Fig. 4-9(b)). On the other hand, we can hardly identify any B activity from the 3%

mapping of control subject ¢2 (Fig. 4-9(c)).
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(a)

Figure 4-9: The p% mappings of two experimental subjects: el in (a) and €6 in (b), as
well as one control subject c2 in (c). Each mapping displays the spatial distribution of
percentages of B activity within a 10-second window beginning at the designated time.
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Chapter 5—

Study on EEG Local
Spatiotemporal Synchronization
Based on Multivariate AR Model

Instead of postulating that the brain constructs information from the
input of a sensory nerve, we can suppose that the centers of the
nervous system, including the brain, resonate to information.

~ James Jerome Gibson

N addition to the EEG rhythmic characteristics, synchronization among different brain
areas has been another important issue of meditation-EEG study. This chapter presents
an approach for synchronization measurement, Local spatiotemporal synchronization
index (LSTS index). With an efficient algorithm, the LSTS measurement could be considered
as a potential approach for investigating the spatiotemporal synchronization under particular
mental states, such as the Zen meditation. The following section illustrates the method for
computing LSTS index. And then performance of the method was evaluated by a
finger-movement experiment. Finally, the index was applied to the meditation EEG, providing

us with another view of brain dynamics under meditation.
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5.1. Local spatiotemporal synchronization index
(LSTS)

5.1.1. Multivariate Autoregressive (mAR) Model

In terms of an mAR model, multichannel EEGs X at time n can be modeled as the

weighted summation of its p’s previous observations plus a residual noise €, we obtain
Xy =AX +AX ,+HA X e, (5-1)

The column vector X, is composed of m-channel EEG samples at time n with their mean
removed, and A, isan mxm coefficient matrix.

In the mAR model, noise covariance matrix V, of a noise vector €, can be regarded
as the goodness of fitting a linear model to a set of data. Based on a specified dimension mp,
we can achieve a good fitting for a system with better synchronization among state variables
(channels), that results smaller fitting residuals. On the contrary, spatial desynchronization
causes an increase in residuals. Thus, the LSTS index defined as

Sy = loglo[det(Ve )] (5-2)
can reasonably represent the goodness of fitting neighboring EEGs to channel ch. With the
same model order p, a large S represents weak spatiotemporal synchronization, that is, EEG
activities at different channels behave dissimilarly in rhythmic aspects.

According to the algorithm Arfit [Schneider and Neumaier 2000, Neumaier and
Schneider 2001], the noise covariance matrix V, can be efficiently estimated. A pth order
mAR model can be solved by formulating a linear regression model of which the parameters

can be estimated by an ordinary least squares (OLS) method. Evaluation of N state vectors

X, ++Xy requires p’s initial vectors X, ,,---X,. Thus equation (5-1) can be reformulated as
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oxJ=[aa, ] E o E e, 5-3)
b a Xl

that leads to the OLS solution of a as

a=bX"(XX")" (5-4)
The least squares estimates can be computed from a QR factorization of the compound matrix
K =[X"b"], that is

K=QR (5-5)

where Q is an orthogonal matrix and R is an upper triangular matrix

R R
R=| 1 12 (5-6)
0 R,

Thus, the LSTS index Scn is estimated by the noise covariance matrix V, that can be

efficiently derived without computing the coefficient matrices A, ---A, as shown below

1

V,=—
N —mp

e

RLR,,. (5-7)

More details can be referred to [Neumaier and Schneider 2001].

5.1.2 Array of channel montage

To construct the multichannel autoregressive model, we need to determine the array of
neighboring channels (number and montage). This study employed the standard 10/20,
30-channel recording montage. As illustrated in Fig. 5-1(a), the neighboring channels of Cz
(called the “seed channel”), assuming a link distance d=1, are FCz, C3, C4, and CPz, denoted
by Nc.(1) = {Cz, FCz, C3, C4, CPz}. Note that the link distance d=1 indicates those channels,
in all directions, right adjacent to the seed channel considered (Cz). To derive the channel
array obtain N¢,(2) for d=2, the five channels in N¢,(1) are used as seed channels to find their

adjacent channels, as shown in Fig. 5-1(b).
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Figure 5-1: An illustration of array of neighboring channels. The array montage for

seed channel Cz with link distance (a) d=1, (b) d=2.
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5.2. An externally-paced finger-movement

experiment

5.2.1. Data collection

Three right-handed, male subjects (sl, s2 and s3) at the mean age of 30+l years
participated in this experiment. EEG signals were recorded from standard 10/20, 30 electrode
sites, that are fed into a 30-channel amplifiers (SynAmps, manufactured by NeuroScan, Inc.)
connected to a Pentium4 1.5 (GHz) PC. Common reference of linked M1-M2 (mastoid
electrodes) was used (Fig. 4-3). The analog EEGs were filtered by a bandpass filter with
passband 0.3-30 Hz, and digitized at 200 Hz sampling rate.

In the finger-movement experiment, each subject was requested to perform two
experimental runs, each with 20 trials (10 left-finger and 10 right-finger trials). The subject
pressed a button using his right (left) index finger on the right-finger (left-finger) trials. A
stimulation unit, g.STIMunit (manufactured by Guger Technologies OEG), was used to
control the experimental procedure. The subject sat in a comfortable chair in front of the
stimulation unit (Fig. 5-2(a)). Figure 5-2(b) illustrates the entire experimental protocol.
Initially, a cross (+) was displayed in the screen center. At the 8" second, the cross vanished.
At the 9™ second, an arrow pointing to the right (or left) appeared for 5 seconds to instruct the
subject to press the rightmost (leftmost) button on the keypad (Fig. 5-2(b)) using his right (or
left) index finger. Each trial lasted 14 seconds and the span between two trials varied in the

range of 4-4.5 seconds to avoid adaptation.
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Figure 5-2: (a) The experimental setup and (b) the scheduling protocol in the

externally-paced finger-movement experiment.

5.2.2. Determination of model order

To determine an appropriate order of the mAR model, Schwarz’s [Schwarz 1978§]
Bayesian Criterion (SBC) was adopted in this study for its superior consistency [Liitkepohl
1993]. Order p of the mAR model needs to be optimally determined to encompass possible
EEG activities. In the finger-movement experiment, 10-second EEGs were extracted from
each trial for further analysis (will be illustrated in the following section). The mAR model
was implemented on a 2-second epoch. Based on our analysis, the resulting model order drifts
within a small range of 2. Figure 5-3 presents the maximum and minimum orders of 20 trials

of subject sl. Accordingly, for each subject a constant model order was chosen as the
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computed maximum value plus one in order to cover the possible model dynamics embedded.

6 T T T T

O minimum optimal order

+ maximum optimal order
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|
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single trials

Figure 5-3: The maximum and minimum of optimal orders of 20 trials (subject s1).

5.2.3. Simulation

We firstly analyzed the LSTS index of a simulated 5-channel, 10-second EEG signal.
Assuming a sampling rate of 200Hz, the “local synchronization” phenomenon can be
simulated by simply placing the model pole at the same location (0.98 ©+0.4 as shown in Fig.
5-4(a)) for all five channels. Further, Gaussian noise n with little disturbance n;_s (Fig. 5-5(a))
is injected into each channel. To mimic the time-varying behavior, the pole of Hs(z) is shifted
into beta band (0.9 ~+0.63 as shown in Fig. 5-4(b)) at the 7™ second, with another
uncorrelated Gaussian noise N, added (Fig. 5-5(b)). The simulated signals are shown in Fig.

5-6(a). In the LSTS analysis, we implemented a 2-second running window with a moving step
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of 1 second. Order of the mAR model is 3, which is the SBC optimal model order plus one.
The LSTS index shown in Fig. 5-6(b) exhibits a burst value of S at the 7™ second that

corresponds to the pre-designed variation in channel 3.

5.2.4. Results

Each single-trial 10-second EEG was composed of one 7-second epoch before pressing
the button and another 3-second epoch afterward (Fig. 5-7). Totally 40 trials were collected
over two runs (20 “left-finger” and 20 “right-finger” trials). All trials were visually inspected
to exclude epochs with artifacts. The model order p=5 for all subjects was determined by the
strategy described in Section 5.2.3. As illustrated in Fig. 5-7, the running LSTS curve was
derived using a moving window with length of 2 seconds and step size of 1 second. Each seed
channel with its neighboring channels can form 9 S values for each single trial. The S
sequences derived under the same task (right-finger or left-finger movement) were averaged
by each channel. We took an average of the first 3 values as the baseline and calculated the

relative changes in the following data analysis.
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Figure 5-4: (a) Pole-zero plot of Hj,45(z) and Hi(z) for the

Pole-zero plot of Hy(z) after the 7™ second.
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Figure 5-5: Model of the simulated signal for (a) the first 7 seconds, and (b) the last 3

seconds.
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Figure 5-6: (a) The simulated signal, and (b) the time-varying LSTS index.
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Figure 5-7: Illustration of the single-trial and the moving window used in the LSTS

analysis.

Figure 5-8 presents an example of right-finger movement experiment conducted by
subject sl. The figure plots Scz (seed channel: C3) curves for orders p=3—5. Note that the
actual time of starting to move the finger is earlier than that of pressing the button. Since
primary motor area becomes desynchronous at movement, a significant increase (Table 5-1) at
the 6™ second (due to the 2-second window size) occurs. The results also demonstrate that
order p=3 is insufficient for modeling the overall system complexity characterized by the
selected five channels.

Despite the model order, the neighboring channels are another concern of computing
LSTS index. Based on the same data set, Fig. 5-9 demonstrates the effect of various channel
combinations (order p=5). The figure reveals that Scs is much smaller than Scs. To investigate
spatiotemporal (de)synchronization, we constructed the brain mapping of S using different
colors to encode the levels of S¢n. Based on d=1 and d=2, Fig. 5-10 and 5-11 respectively plot
the Sgy brain mappings evolving in a 10-second trial interval for subject s1. Warm hues
indicate spatiotemporal desynchronization. Groups (a) and (b) in both figures refer to Sc, brain
mappings for left-finger and right-finger tests, respectively. Using an array of channels at a
smaller area (d=1), Fig. 5-10 reveals more localized spatiotemporal desynchronization than

Fig. 5-11.
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Figure 5-8: The time-varying Scs (subject s1) using model orders 3 (solid), 4 (dotted),

and 5 (dash-dot) in the right finger movement study.

Table 5-1: Relative changes of Sczat second 4 and 6 and their differences in different

model order.

at second 4 at second 6 difference
Order 3 -0.026 0.041 0.067
Order 4 -0.017 0.062 0.079
Order 5 -0.013 0.062 0.075
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Figure 5-10: The S¢ brain mappings evolving in a 10-second trial interval for subject
sl using link distance d=1 in the study of (a) left index finger movement, and (b) right

index finger movement.
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Figure 5-11: The S¢h brain mappings evolving in a 10-second trial interval for subject sl
using link distance d=2 in the study of (a) left index finger movement and (b) right

index finger movement.
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Figure 5-12. The 10-second S¢ brain mappings of (a) subject s2, and (b) subject s3 in

the right index finger movement study (link distance d=1).
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Figure 5-12 displays the Scp brain mappings (d=1) in the 10-second trial interval for (a)
subject s2 and (b) subject s3 at the right-finger movement tests. Both subjects exhibit
spatiotemporal desynchronization near the corresponding primary motor area (C3). Another
noticeable result was the spatial desynchronization emerging at the primary motor area before
actually making a movement in Fig. 5-10(b). This phenomenon depicts the observation of

advance desynchronization induced by mentally intended movement [Pfurtscheller 2001].

5.3. An application to meditation EEG

5.3.1. Data collection

The EEG recording setup was the same as the externally-paced finger-movement
experiment. Two meditators and one control subject participated in the experiment. Both
meditators have been practicing Zen-Buddhist meditation for more than eight years. Each
meditation EEG recording lasted 30 minutes, including the first 10-minute background EEG
(the subject sat in a normal relaxed position with eyes closed) and the rest 20-minute
meditation EEG [Lo et al. 2003]. The second-phase recording for control subject collected the

awake, resting EEG with eyes closed.

5.3.2. Results

Unlike the previous experiment, the EEGs collected in this study cannot be correlated
with any a priori event or reference. In meditation EEG analysis, we focused on the variation
of LSTS index relative to some specific EEG patterns. Base on the same signal processing
scheme, a baseline was first derived as the average of the first 3 LSTS indexes obtained by
applying a 2-second running window moving at a 1-second step. Order of the mAR model
was determined by the SBC optimal model order plus one. Figure 5-13 (a) displays a typical

80



flat wave usually observed in meditation EEG, with the 10-second S, brain mappings (p=6)
beneath. According to our previous study [Lo et al. 2003, Chang and Lo 2005, Liao and Lo
2006], flat wave often emerges during deep meditation for some Zen meditators. Apparently,
synchronization increased upon the occurrence of flat-wave activities. Results of meditator e2
reveals similar, yet weaker, synchronization behavior (Fig. 5-13(b), p=9). According to the
post-experimental interview, meditation practitioners often enter into a more detached state of
consciousness or sensory perception in deep meditation, that is, they are more detached in
sensory-organ stimuli. Our preliminary results of LSTS analysis might provide an evidence
for the deep meditation state accompanying the global spatiotemporal synchronization of
brain electrical activities. Conversely, control subject ¢l had a rhythm dominant EEG during
the entire recording. Upon the o bursting (suppressing), an increasing (decreasing)
synchronization was observed in the frontal region (Fig. 5-13(c), p=11), which was
contemplated as the situation that the subject was performing some high level cognitive

Processcs.
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Figure 5-13: 10-second EEG signals and the evolving S brain mapping for (a) meditator

el, (b) meditator €2, and (c) non-meditator c1.
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Chapter 6 —

Discussion and Conclusion

The real end of science is the honor of the human mind.

~ Carl Jacobi

o explore and quantify the brain characteristics under Zen meditation, this disser-
tation presents methods and algorithms that were developed mainly on the basis
of AR modeling, including both univariate and multivariate models. The proposed
Subband-AR-EEG Viewer and LSTS index provide the quantitative characterization for the
Zen-meditation brain in different aspects. The following content sums up results of this study

and organizes into three key subjects.

6.1. Meditation EEG overview based on subband
features quantified by AR model

In order to explore the meditation scenario, contents of the long-term EEG recorded dur-
ing meditation need to be analytically quantified. Chapter 2 presented a systematic strategy
for developing algorithms for automatic EEG interpretation. Based on the concepts of sub-
band filtering and parametric modeling, a generalized computation scheme, called Sub-
band-AR-EEG Viewer, was modified and adapted for different application purposes. With ap-
propriate logic for examining the characteristic frequency, the Subband-AR-EEG Viewer could
be further reduced to improve computational efficiency without affecting the performance. In
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addition, the proposed scheme requires no implementing parameter. Another noticeable ad-
vantage is its feasibility for real-time, hardware realization and implementation. Since an or-
der-2 AR model is employed, computational load is very light. For the example of slow
a-rhythm detection in Section 2.3, the algorithm involved approximately 3.75N real multipli-
cations (N: number of samples), which was a significant reduction in arithmetic operations
compared with the fast Fourier transform (FFT) algorithm for rhythmic analysis. A spot
evaluation of execution time required to determine f.; - f; 4 (based on one-channel, 0.5-sec
EEG segment) is 0.008 sec on a Pentium4 1.8G, Windows-based computer. As a consequence,
the algorithm proposed in this paper can process almost 60-channel EEG data in real time
(0.5/0.008 = 62).

With the modification of Subband-AR-EEG Viewer, meditation EEG interpreter was
presented in Chapter 4 and was applied to the exploration of spatiotemporal behavior of medi-
tation EEG. The interpreter provides a systematic strategy for automatic EEG interpretation.
By integrating the subband architecture with the AR model, various EEG rhythms can be ef-
fectively extracted. With empirically designed criteria implementing sound logic, the medita-
tion EEG interpreter is able to identify even the low-power 8 pattern which is often cloaked in
large-amplitude activities. In addition, those low-frequency rhythms with irregular waveform
shape can be estimated more efficiently. Another noticeable advantage is its feasibility for
hardware realization and real-time implementation with just a few implemention parameters.

Zen meditation EEG differs significantly from the normal relaxation EEG, with eyes
closed, in the spatiotemporal characteristics of EEG spectra. According to the pattern histo-
grams, we have noticed a significant distinction between two groups in four patterns, y, 8, 0,
and . Meditation EEG exhibited relatively larger percentages of both y and 3 activities that
have been found to correlate highly with different consciousness states during Zen meditation
[Lo et al. 2003]. The B% mapping demonstrated substantial occipital-f phenomena for the
experimental subjects.
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6.2. Visual perception under Zen-Meditation

In Chapter 3, we have reported an alternative strategy to investigate the effects of
Zen-meditation on human brain. Alpha-dependent F-VEP analysis was suggested as a stan-
dardized and consistent scheme for investigating the event-related response dependency on
oscillatory features of the meditation EEG. Without any access into the real system dynamics
of the brain, scientific study requires manipulating the experiment under pre-specified condi-
tions. Accordingly, alpha-dependent F-VEPs were collected under the consistent al-
pha-dominating background EEG that increased significantly during Zen meditation process.
Based on the same scheme, the online a-detection algorithm could be modified for investi-
gating the brain evoked response under given background EEG activity associated with other
brain states, for example, theta- or beta-dominating background rhythms.

Our study has shown a great difference in the amplitudes of F-VEPs between the ex-
perimental and control group. Apparently, the meditation process modulates the amplitudes of
F-VEPs under frontal a-rhythm emergence, especially components P1-N2 and N2-P2. These
three peaks P1, N2 and P2, emerge respectively at about 80, 120 and 190 ms after photic
stimulation. Moreover, such F-VEP amplitude variations for Zen-meditation practitioners
were more consistent at the electrode locus Cz than at Fz. Since subjects mostly focused on
the Zen Chakra (the third ventricle) during Zen meditation, we thus infer that meditation fo-
cusing changes the brain dynamics and the sensory responses to the external stimulus.

According to the literatures of visual function research, P1 component is generated from
the major striate area, and N2 and P2 are generated from V4 which might be related to selec-
tive attention [Ducati et al. 1988, Tsutsui 1987, Skrandies 1995]. The increase of F-VEP am-
plitude indicates that Zen meditation, differing from normal relaxation, may cause some ef-
fects on primary visual cortex, central cortex, and frontal cortex. The study may assist in fur-

ther understanding the intrinsic mechanism of such evidence as improving efficiency of the
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concept learning and integrating the brain function via Zen-meditation that has been reported.

6.3. Spatiotemporal synchronization during medi-
tation

To quantify the spatiotemporal synchronization subtly embedded in multi-channel EEG
signals, a novel approach based on the evaluation of LSTS index was proposed and reported
in Chapter 5. Note that high correlation among neighboring channels increases model pre-
dictability. Therefore the fitness of an mAR model for a set of multi-channel EEGs reflects the
probability of predicting a channel from others. A small value of S (LSTS index) indicates a
better fitness of the model for the empirical data.

To verify the feasibility of proposed approach for EEG spatiotemporal study, we con-
ducted the externally-paced finger-movement experiments and reported the increasing S of the
corresponding primary motor area while desynchronization took over. Development of this
approach particularly was to disclose the unknown brain dynamics under Zen meditation. In
our preliminary findings, flat-wave activities emerging during deep meditation exhibited
globally spatiotemporal synchronization.

Unlike coherence or other event-related (de)synchronization analysis, the LSTS index
evaluation does not require the pre-defined frequency ranges. Accordingly, the LSTS index
might provide a quick inspection of EEG spatiotemporal characteristics and thus augment the

understanding of brain dynamics under Zen meditation.

6.4. Summary

In this dissertation, both univariate and multivariate AR models are applied on the medi-
tation EEG research. The scheme Subband-AR-EEG Viewer mainly based on univariate AR
modeling and subband filtering was presented. Two applications, online a-detection and the
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meditation EEG interpreter, were inferred from the scheme. The online a-detection algorithm
assisted in the Alpha-dependent F-VEP collection. In comparison of F-VEP amplitudes be-
tween experimental and control groups, we hypothesized, according to the significant ampli-
tude difference, that meditation process modulated the amplitudes of F-VEPs upon emergence
of the frontal a.-rhythm.

According to the results of the meditation EEG interpreter, significant larger percentages
of both y and B activities are identified in Zen-meditation scenario, especially in the occipital
region. This phenomenon was considered to be highly correlated with specific consciousness
states induced by Zen meditation. In addition to univariate AR model, the LSTS index based
on multivariate AR model was proposed to investigate the spatiotemporal synchronization
embedded in multi-channel meditation EEG. A globally spatiotemporal synchronization was
discovered for the flat-wave activities, which might provide scientific evidence for the de-

tached state of consciousness or sensory perception in deep meditation.

6.5. Future work

By using Subband-AR-EEG Viewer, we could derive algorithms to assist meditation EEG
analysis. But due to inter-subject variations of physiological conditions are always compli-
cated, the procedure and setup of experiments should be further readjusted or redesigned. In
order to investigate into brain dynamics under specific meditation states, subjects should be
limited to perform a specific meditation task during EEG recording, ex: focusing on Zen
Chakra or counting breaths. Therefore, a strong correlation between meditation states and
EEG characteristics might be revealed.

Beside experimental setup, an improved meditation EEG interpreter with high accuracy
should be further derived. With this improved interpreter, we might be able to identify more

meditation EEG patterns and different meditation scenarios. We could use LSTS index to ob-
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serve synchronization phenomena of other meditation EEG patterns. Moreover, the catego-
rized scenarios could be used as a criterion to give stimuli while subjects are practicing medi-
tation. Thus we could inspect event-related potentials under specific meditation scenarios.
Then we might have a more comprehensive understanding of brain dynamics during medita-

tion.
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