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摘 要 

Boyles 在 1994 年提出一個良率指標取名為 Spk。該指標為常態製程提供一個精準正
確的良率衡量。Lee et al.在 2002 年提出一個常態近似的方法來估計製程的 Spk值。在本
論文，我們延伸擴展前人的成就，在三種不同的情況下考量運用良率指標的抽樣分配：
(i)多重抽樣樣本下(ii)摺合逼近法的抽樣分配(iii)允收抽樣情況。我們在多重抽樣樣本下
推導出良率指標的抽樣分配，並且發現針對相同的 Spk 值，製程平均值落在規格上下限
中心時良率指標估計量的變異程度最大。針對一些常用的指標需求，Spk 的信賴下限已
列成表。為了讓使用者更易於接受推導出來的常態逼近分配，我們檢查了真實的型 I 誤
差並與一開始就設定好的顯著水準比較。我們計算了該常態逼近會收斂到與真值只有特
定差異的需求樣本數。最後，一個可再充電鋰電池製程實例被呈現並說明從業者如何應
用 Spk的信賴下限到多重抽樣的樣本。 

接著，我們使用摺合逼近法來估計製程的 Spk 值，並與常態逼近法做比較。比較的
結果顯示摺合的方法的確比常態逼近法在估計製程良率及 Spk 值上更為準確。根據摺合
的方法，我們建構一個逐步且有效率的步驟來說明如何估計製程良率。我們亦研究了摺
合方法的準確性，提供在特定檢定力需求下，以及在特定收斂需求下所需要的採集的樣
本個數。本論文最後一個部份，我們考慮根據 Spk 值來做允收與否的決策。允收抽樣計
畫是一個提供買賣雙方對於檢驗貨品是否符合產品品質需求的決策法則。我們提出一個
以 Spk為依據的計數值抽樣計畫來處理不良率為極小 PPM 的製程。我們根據同時解一對
非線性的方程式，建立一個有效率的方法來決定所需抽樣的個數以及接受貨品與否的臨
界值。根據我們設計出來的抽樣計畫，從業者可以決定檢驗貨批所需的數量和相對應的
允收決策值。 

 

關鍵字：製程能力，產品良率，多重抽樣，信賴下限，臨界值，檢定力，允收抽樣計畫，
貨批檢驗，不良率 
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Abstract 
The yield index Spk proposed by Boyles (1994) provides an exact measure on the production 

yield of normal processes. Lee et al. (2002) considered a normal approximation for estimating Spk. 
In the thesis, we extend the results and consider the sampling distribution of the yield index in 
three conditions (i) for multiple samples, (ii) in the convolution method, and (iii) for acceptance 
sampling. Under multiple samples, we derive the sampling distribution for the estimator ′ˆ

pkS  of 
Spk, and observe that for the same Spk, the variance of ′ˆ

pkS  would be largest when the process 
mean is on the center of specification limits. Lower bounds of Spk are tabulated for some 
commonly used capability requirements. To assess the normally approximated distribution of 

′ˆ
pkS , we also check out the actual type I error and compare with the preset significant level. We 

also compute the sample sizes required for the normal approximation to converge to the actual 
Spk within a designated accuracy. Then, a real-world application of the one-cell rechargeable 
Li-ion battery packs is presented to illustrate how practitioners can apply the lower bounds to 
actual data collected in multiple samples.  

Next, we consider a convolution approximation for estimating Spk, and compare with the 
normal approximation. The comparison results show that the convolution method does provide a 
more accurate estimation to Spk as well as the production yield than the normal approximation. 
An efficient step-by-step procedure based on the convolution method is developed to illustrate 
how to estimate the production yield. Also investigated is the accuracy of the convolution 
method which provides useful information about sample size required for designated power levels, 
and for convergence. Finally, we consider the acceptance determination based on the Spk index. 
Acceptance sampling plans provide the vendor and the buyer decision rules for lot sentencing to 
meet their product quality needs. A variables sampling plan based on the index Spk is proposed to 
handle processes requiring very low PPM fraction of defectives. We develop an effective method 
for obtaining the required sample sizes n and the critical acceptance value c0 by solving 
simultaneously two nonlinear equations. Based on the designed sampling plan, the practitioners 
can determine the number of production items to be sampled for inspection and the 
corresponding critical acceptance value for lot sentencing. 

Keywords: Process capability, production yield, multiple samples, lower confidence bound, 
critical value, power of test, acceptance sampling plan, lot sentencing, fraction of defectives 
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Chapter 1 

Introduction 

 

1.1. Process Capability Indices 

Production yield, for a long time, has been a standard criterion used in the manufacturing 

industry as a common measure on process performance, and defined as the percentage of 

processed product unit that falls within the manufacturing specification limits. For product units 

falling out of the manufacturing tolerance, additional cost would be incurred to the factory for 

scrapping or repairing the product. All passed product units, which incur no additional cost to the 

factory, are equally accepted by the producer. Numerous process capability indices (PCI) have 

been proposed to the manufacturing industry, to provide numerical measures on the production 

yield as well as process performance. Those indices, such as Cp, Cpk, Cpm, Cpmk, and Spk, establish 

the relationship between the actual process performance and the manufacturing specifications, 

which have been the focus of the recent research in statistical and quality assurance literatures. 

The explicit forms of the indices are defined as follows: 

aC
m

1
d

μ −
= − , 

6p
USL LSL

C
σ
−

= , min ,
3 3pk

USL LSL
C

μ μ
σ σ
− −⎧ ⎫= ⎨ ⎬

⎩ ⎭
=  a pC C ,  

2 26 ( )
pm

USL LSL
C

Tσ μ

−
=

+ −
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2 2 2 2
min ,

3 ( ) 3 ( )
pmk

USL LSL
C

T T

μ μ

σ μ σ μ

⎧ ⎫− −⎪ ⎪= ⎨ ⎬
+ − + −⎪ ⎪⎩ ⎭

, and  

-11 1 1
3 2 2pk

USL LSL
S

μ μ
σ σ

⎧ ⎫− −⎛ ⎞ ⎛ ⎞= Φ Φ + Φ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

, 

where USL and LSL are the upper and lower specification limits, respectively, μ  is the process 

mean, σ  is the process standard deviation, m = (USL + LSL)/2 is the center of the specification 

limits, d = (USL − LSL)/2 is the half length of the specification limits, T is the target value, ( )Φ ⋅  

is the cumulatively distribution function (CDF) of the standard normal variable, and 1( )−Φ ⋅  is 

the inverse function of ( )Φ ⋅ .  
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1.2. Literatures Review 

The index Cp measures the overall process variation relative to the specification tolerance, 

therefore only reflects the process precision (the product consistency) (see Juran [20]; Kane [21]). 

Owing to the simplicity of the design, Cp can not reflect the tendency of process centering. In 

order to reflect the deviations of process mean from the target value, several indices similar in 

nature to Cp, such as Cpk, Cpm, Cpmk, have been proposed. Those indices attempt to take into 

consideration the magnitude of process variance as well as process location. The Cpk index was 

developed because the Cp index can not adequately deal with cases that process mean is not 

centered. However, a large value of Cpk does not really say anything about the location of the 

mean in the tolerance interval. The Cpk index has been regarded as a yield-based index since it 

provides bounds on production yield for a normally distributed process. The Cp and Cpk indices 

are appropriate measures of progress for quality improvement paradigms in which reduction of 

variability is the guiding principle and production yield is the primary measure of success.  

Taguchi, on the other hand, emphasizes the loss in a product’s worth, rather than the 

production yield, when one of its characteristics departs from the target value. Hsiang and 

Taguchi [16] introduced the index Cpm, which was also proposed independently by Chan et al. [4]. 

The Cpm index is related to the idea of squared error loss, 2( ) ( )loss X X T= − , and has been called 

the Taguchi index. The Cpm index incorporates the process variation with respect to the target 

value with the manufacturing specifications preset in the factory, which reflects the degree of 

process targeting. Chan et al. [4] also discussed the sampling properties of the natural estimator of 

Cpm. Boyles [2] provided a definitive analysis of Cpm and its usefulness in measuring process 

targeting. Pearn and Shu [38] provided explicit formulas with efficient algorithms to obtain the 

lower confidence bound of Cpm using the maximum likelihood estimator (MLE) of Cpm. Pearn et al. 

[39] developed a two-phase supplier selection procedure based on the Cpm index providing useful 

information about sample size required for a designated selection power.   

Pearn et al. [35] proposed a third-generation capability index called Cpmk, which is constructed 

by combining the merits of the three indices Cp, Cpk, and Cpm. The index Cpmk alters the user either 

the process variance increases or the process mean deviates from its target value. The Cpmk index 
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responds to the departure of the process mean from the target value T faster than the other three 

indices Cp, Cpk, and Cpm, while it remains sensitive to the changes of process variation. Vännman 

and Kotz [49] obtained the distribution of the estimated Cp(u, v) for cases with on-center target. 

By taking u = 1 and v = 1, the distribution of Cp(1, 1) = Cpmk is obtained. Chen and Hsu [7] 

proposed the asymptotic sampling distribution of Cpmk, and showed that the estimated Cpmk is 

consistent, asymptotically unbiased estimator of Cpmk and is asymptotically normal while the 

fourth moment of the characteristic X is finite. Wright [51] derived an explicit but rather 

complicated expression of the probability density function (PDF) of the estimated Cpmk. Pearn and 

Lin [37] alternatively expressed the CDF and PDF of the estimated Cpmk in terms of a mixture of 

the chi-square distribution and normal distribution. The CDF form of the estimated Cpmk obtained 

by Pearn and Lin [37] considerably simplify the complexity for analyzing the statistical properties 

of the estimated Cpmk.  

1.3. Motivation of Research 

Process yield is the most common and standard criteria used in the manufacturing industry 

for measuring process performance. The indices Cpm and Cpmk are designed to emphasize the loss 

in a product’s worth when one of its characteristics departs from the target value T. The index Cp 

can provide yield estimation only for on-center processes, which can be expressed as:  

Yield = Φ −2 ( ) 1pC , 

and for processes with departure mean, the process yield would be less than Φ −2 ( ) 1pC . The 

index Cpk can provide interval estimation on the process yield (Boyles [2]), that is  

2 Φ (3Cpk) – 1 ≤ Yield ≤ Φ (3Cpk).  

Only the yield index Spk provides an exact measure on the production yield.  

The organization of this dissertation is as follows. In chapter 2, we consider to estimate the 

process yield based on the Spk index for multiple samples. In chapeter3, we propose the 

convolution method for estimating the process yield. In chapter 4, product acceptance 

determination based on the Spk index is developed. In the final chapter, we make some 

conclusions for evaluating process performance based on the Spk index. 
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Chapter 2 

Estimating Process Yield Based on Spk for Multiple Samples 

 

2.1. Introduction 

Production yield is defined as the percentage of processed product units passing the 

inspection. That is, the product characteristic must fall within the manufacturing tolerance. For 

processes with two-sided manufacturing specifications, the process yield can be calculated as 

Yield = F(USL)－F(LSL), where F(·) is the cumulative distribution function of the process 

characteristic. If the process characteristic follows the normal distribution, then the process yield 

can be alternatively expressed as Yield =Φ μ Φ μUSL- - LSL-[( )/ ] [( )/ ]σ σ . Take Cpk for example, if Cpk 

= c, then the process yield would be in the range of 2 Φ (3c) – 1 and Φ (3c), i.e. 2 Φ (3Cpk) – 

1 ≤ Yield ≤ Φ (3Cpk) (Boyles [2]). To overcome this shortcoming, Boyles [3] proposed the yield 

index called Spk. There is a one-to-one relationship between Spk and the process yield, Yield = 

2 Φ (3Spk) – 1.  

Most of the results obtained regarding the statistical properties of estimated capability indices 

are based on one single sample. However, a common practice in process control is to estimate the 

process capability indices by using past “in-control data” from multiple samples, particularly, 

when a daily-based or weekly-based production control plan is implemented for monitoring 

process stability. To use estimators based on several small multiple samples and interpret the 

results as if they were based on a single sample may result in incorrect conclusions. In order to 

use past in-control data from multiple samples to make decisions regarding process capability, the 

distribution of the estimated capability index based on multiple samples should be taken into 

account. When using multiple samples, Kirmani et al. [22] have investigated the distribution of 

estimators of based on the sample standard deviations of the multiple samples. Li et al. [27] have 

investigated the distribution of estimators of Cp and Cpk based on the ranges of the multiple 

samples. Vännman and Hubele [48] considered the indices in the class defined by ( , )pC u v  and 

derived the distribution of the estimators of ( , )pC u v , when the estimators of the process 
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parameters μ  and σ  are based on multiple samples.  

In Chapter 2, we investigate the behavior of  an estimator of  Spk for multiple samples. In the 

second section (section 2.2.), we compare the yield index Spk with the most commonly used index 

Cpk, and review some results of  Spk under single sample. In the third section (section 2.3.), we 

derive the sampling distribution for the estimator of  Spk under multiple samples and result in a 

normal approximation distribution. In the fourth section (section 2.4.), we find that the spread of  

′ˆ
pkS  would be largest when the process mean is on the center of  specification limits for the same 

Spk, so we calculate the lower bounds of  Spk from our deriving distribution of  ′ˆ
pkS  based on the 

situation with the largest variance for conservative. In the fifth section (section 2.5.), we show the 

accuracy of  our normal-approximated distribution of  ′ˆ
pkS  by displaying the histograms of  lower 

bounds and the actual type I errors. Finally (in section 2.6.), we give an application example to 

describe how to use the lower bounds as listed in our tables. 

2.2. The Yield Index Spk 

We consider a group of five processes as printed in Figure 2-1. For these processes, USL = 

36.0, LSL = 24.0, and mean μ  = 30.0, 30.5, 31.0, 31.5, 32.0, standard deviation σ  = 2.0, 11/6, 

5/3, 1.5, 4/3, respectively (from process A to E). The Cpk value and calculated yield of theses five 

processes are all the same as in Table 2-1(a), and the Spk value and its calculated yield in Table 

2-1(b). The ‘Actual Yield’ in Table 2-1(a) and 2-1(b) is defined by Φ ((USL－ μ )/σ )－ Φ ((LSL

－ μ )/σ ). We can see that for these five processes the calculated yield of Cpk can only guarantee 

the lower bound yield, however the calculated yield of Spk value can truly reveal the actual yield 

of each process.  

For single sample, Lee et al. [26] have derived the distribution of  an estimator of  Spk. The 

estimator is defined as 

φ
⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

1ˆ
6 (3 )

pk pk p

pk

W
S S O

nn S
 

where W  is normally distributed with a mean of  zero and a variance of  +2 2a b ,  

φ φ
⎧ ⎫⎛ ⎞ ⎛ ⎞− − + +⎪ ⎪= +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

1 1 1 11

2
dr dr dr dr

dp dp dp dp

C C C C
a

C C C C
, φ φ

⎛ ⎞ ⎛ ⎞− +
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

1 1dr dr

dp dp

C C
b

C C
,  
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Figure 2-1. Distribution of five processes with USL = 36.0, LSL = 24.0. 
 

Table 2-1(a). The Cpk value, calculated yield, and actual yield 

of five different processes in Figure 2-1. 

Process μ  σ  Cpk Calculated Yield Actual Yield 
A 30.0 2.00 1.0 0.9973 0.9973 
B 30.5 1.83 1.0 0.9973 0.9985 
C 31.0 1.67 1.0 0.9973 0.9986 
D 31.5 1.50 1.0 0.9973 0.9986 
E 32.0 1.33 1.0 0.9973 0.9987 

 

Table 2-1(b). The Spk value , calculated yield, and actual yield of 

five different processes in Figure 2-1. 

Process μ  σ  Spk Calculated Yield Actual Yield 
A 30.0 2.00 1.000000 0.9973 0.9973 
B 30.5 1.83 1.055311 0.9985 0.9985 
C 31.0 1.67 1.067441 0.9986 0.9986 
D 31.5 1.50 1.068365 0.9986 0.9986 
E 32.0 1.33 1.068385 0.9987 0.9987 

 

φ ⋅( )  is the probability density function (PDF) of  the standard normal variable, ( m)/ddrC μ= − , 

and /ddpC σ= . Therefore, ˆ
pkS  is asymptotically normal-distributed with mean Spk and variance 

φ+2 2 2( )/36 (3 )pka b n S . Furthermore, Pearn and Chuang [34] investigated the accuracy of  the 

natural estimator of  Spk, using a simulation technique to find the relative bias and the relative 
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mean square error for some commonly used quality requirement.  

Most of  the results obtained regarding the statistical properties of  estimated capability 

indices are based on one single sample. However, to use estimators based on several small 

multiple samples and interpret the results as if  they were based on a single sample may result in 

incorrect conclusions. In order to use past in-control data from multiple samples to make 

decisions regarding process capability, the distribution of  the estimated capability index based on 

multiple samples should be taken into account. So, following we will investigate the sampling 

distribution of  Spk on multiple samples. 

2.3. Estimating Spk Under Multiple Samples  

For the case when the studied characteristic of the process is normally distributed and we 

have m multiple samples where the sample size of the ith sample is n. Let ijx , i = 1,…, m; j = 

1,…, n, be the characteristic value of the m× n samples with mean μ  and variance σ 2 . Assume 

that the process is in statistical control during the time period that the multiple samples are taken. 

Consider the process is monitored using a X -chart together with a S -chart. Then, for each 

multiple sample, let ix  and 2
is  denote the sample mean and sample variance, respectively, of 

the ith sample and let N  denote the total number of observations, i.e  

=

= ∑
1

1 n

i ij
j

x x
n

, 
=

= −
− ∑2 2

1

1
( )

1

n

i ij i
j

s x x
n

 and 
=

= =∑
1

m

i

N n mn .  

As an estimator of μ , we use the overall sample mean, i.e. 

μ
= = =

= = =∑ ∑∑
1 1 1

1 1
ˆ

m m n

i ij
i i j

x x x
m mn

. 

We consider two ways to compute the variance estimator in estimating Spk (Hubele and Vänman 

[18]). One estimator of σ 2  is the pooled variance estimator defined as 

σ
=

= = −∑2 2 2

1

1
ˆ ( 1)

m

p i
i

s n s
mn = =

= −∑∑ 2

1 1

1
( )

m n

ij i
i j

x x
mn

. 

The other is an un-pooled variance estimator defined as 

σ
= =

= = −∑∑2 2 2

1 1

1
ˆ ( )

m n

u ij
i j

s x x
mn

. 
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The natural estimator of Spk is  

=ˆ
pkS

μ
σ

− ⎧ −⎛ ⎞Φ Φ⎨ ⎜ ⎟
⎝ ⎠⎩

1 ˆ1 1
ˆ3 2

USL μ
σ

⎫−⎛ ⎞+ Φ ⎬⎜ ⎟
⎝ ⎠⎭

ˆ1
ˆ2
LSL

. 

It is obviously that the sampling distribution of ˆ
pkS  is a very complex function of μ̂  and σ̂ . 

However, a useful approximation could be obtained by the following expansion of Spk. For 

deriving convenience, we use the notations in Lee’s paper:  

m

ddrC
μ −

= , 
ddpC
σ

= , 
ˆ mˆ

ddrC
μ −

= , 
ˆˆ
ddpC
σ

= ,  

and then the estimator of Spk can be rewritten as  

=ˆ
pkS −

⎧ ⎛ ⎞−⎪ ⎜ ⎟Φ Φ⎨ ⎜ ⎟⎪ ⎝ ⎠⎩

1
ˆ11 1

ˆ3 2
dr

dp

C

C

⎫⎛ ⎞+ ⎪⎜ ⎟+ Φ ⎬⎜ ⎟⎪⎝ ⎠⎭

ˆ11
ˆ2

dr

dp

C

C
.  

Let 

( )μ μ= −ˆZ mn  and ( )σ σ= −2 2ˆY mn .  

We note that μ̂  is a complete sufficient statistic and σ 2ˆ  (for either 2
ps  or 2

us ) is an ancillary 

statistic, so by Basu’s theorem Z and Y are independent. Since the first two moments of μ̂  and 

σ 2ˆ  exist, by the Central Limit Theorem Y converges to N(0, σ 42 ) under both estimators, 2
ps  

and 2
us , and Z converges to N(0,σ 2 ) as mn goes to infinity. Consequently, by the Taylor’s 

expansion ˆ
pkS  can be expressed as  

φ
⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

1ˆ
6 (3 )

pk pk p

pk

W
S S O

mnmn S
, 

where 

φ φ φ φ
σ σ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − + + − +
= − + − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

2

1 1 1 1 1 11 1
2

dr dr dr dr dr dr

dp dp dp dp dp dp

C C C C C C
W Y Z

C C C C C C
 

which is normally distributed with mean zero and variance +2 2a b , 

φ φ
⎧ ⎫⎛ ⎞ ⎛ ⎞− − + +⎪ ⎪= +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

1 1 1 11

2
dr dr dr dr

dp dp dp dp

C C C C
a

C C C C
, φ φ

⎛ ⎞ ⎛ ⎞− +
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

1 1dr dr

dp dp

C C
b

C C
 

and φ  is the pdf of the standard normal distribution (See Appendix I for explicit derivation). We 

let  
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′ˆ
pkS = ⎛ ⎞− ⎜ ⎟

⎝ ⎠

1ˆ
pk pS O

mn
 

Thus, our ′ˆ
pkS  is normally distributed, i.e. 

′ˆ
pkS ~

φ
⎛ ⎞+
⎜ ⎟⎜ ⎟
⎝ ⎠

2 2

2
,  

36 (3 )pk
pk

a b
N S

mn S
. 

For testing process performance, we consider the following null and alternative hypotheses: 

≤0 : pkH S c , c  is a specified value. (Process is incapable) 

>1 : pkH S c . (Process is capable) 

The testing statistic is 

( ) φ
= −

+2 2

ˆ6 (3 )ˆ
ˆˆ

pk
pk

mn S
T S c

a b
 

where â  and b̂  are estimates of a and b, with Cdr and Cdp replaced by ˆ
drC  and ˆ

dpC  

respectively. The null hypothesis H0 is rejected at α  level if α>T z , where αz  is the upper 

α100 %  point of the standard normal distribution. An approximate α−1  confidence interval 

for Spk is  

α φ

⎛ +⎜ −
⎜
⎝

2 2

2

ˆˆˆ
ˆ6 (3 )

pk

pk

a b
S z

mn S
, α φ

⎞+ ⎟+
⎟
⎠

2 2

2

ˆˆˆ
ˆ6 (3 )

pk

pk

a b
S z

mn S
. 

 

Table 2-2. Some different processes and corresponding pkmnVar Ŝ( )′  with Spk = 1.0. 

μ  σ  drC  dpC  a b pkmnVar Ŝ( )′  

8.0000 2.0000 0.0000000 0.3333333 0.0188027 0.0000000 0.499999935 

8.0452 1.9995 0.0075315 0.3332483 0.0187932 0.0006001 0.499999793 

8.0908 1.9979 0.0151253 0.3329907 0.0187643 0.0012004 0.499995833 

8.1371 1.9953 0.0228474 0.3325531 0.0187158 0.0018014 0.499978579 

8.1846 1.9915 0.0307724 0.3319220 0.0186472 0.0024033 0.499930778 

8.2339 1.9865 0.0389895 0.3310765 0.0185575 0.0030066 0.499826688 

8.2857 1.9799 0.0476115 0.3299852 0.0184455 0.0036117 0.499628976 

8.3407 1.9716 0.0567897 0.3286013 0.0183095 0.0042190 0.499284463 

8.4004 1.9611 0.0667404 0.3268532 0.0181470 0.0048292 0.498717347 

8.4668 1.9478 0.0777965 0.3246260 0.0179547 0.0054431 0.497816042 

8.5431 1.9303 0.0905222 0.3217203 0.0177273 0.0060618 0.496407586 

8.6361 1.9065 0.1060173 0.3177420 0.0174563 0.0066871 0.494199792 
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2.4. Lower Confidence Bound of Spk 

We note that, for the same Spk, the variance of ′ˆ
pkS  increases as the process mean closes to 

the center of the specification limits, and would be largest when the process mean is at the center 

of the specification limits. For two processes with the same Spk, i.e. the same process yield, one 

with process mean away from the center of the specification limits must have smaller variance in 

order to have process yield equal to the other. Also, the process with smaller variance would have 

smaller variance of ′ˆ
pkS . Table 2-2 shows some different processes and corresponding 

pkmnVar Ŝ( )′  with LSL = 2.0, USL = 14.0, and Spk =1.0.  
 

Table 2-3. Approximated LB for various m, ˆ
pkS , n = 5(5)50, and α = 0.05, 0.025, 0.01. 

ˆ
pkS  1.0 1.33 1.5 1.67 2.0 

m n 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.01 

5 0.7690 0.7364 0.7018 1.0253 0.9819 0.9358 1.1535 1.1046 1.0528 1.2817 1.2274 1.1698 1.5380 1.4729 1.4037 

10 0.8248 0.7980 0.7690 1.0997 1.0640 1.0253 1.2372 1.1970 1.1535 1.3747 1.3301 1.2817 1.6496 1.5961 1.5380 

15 0.8522 0.8287 0.8030 1.1362 1.1050 1.0707 1.2783 1.2431 1.2046 1.4204 1.3813 1.3384 1.7044 1.6575 1.6061 

20 0.8694 0.8482 0.8248 1.1592 1.1309 1.0997 1.3041 1.2723 1.2372 1.4491 1.4137 1.3747 1.7388 1.6964 1.6496 

25 0.8815 0.8620 0.8403 1.1754 1.1493 1.1204 1.3223 1.2930 1.2605 1.4693 1.4367 1.4006 1.7631 1.7240 1.6807 

30 0.8907 0.8725 0.8522 1.1876 1.1633 1.1362 1.3361 1.3088 1.2783 1.4846 1.4542 1.4204 1.7815 1.7450 1.7044 

35 0.8980 0.8808 0.8616 1.1973 1.1744 1.1488 1.3470 1.3212 1.2925 1.4968 1.4681 1.4361 1.7961 1.7617 1.7233 

40 0.9040 0.8876 0.8694 1.2053 1.1835 1.1592 1.3560 1.3315 1.3041 1.5067 1.4795 1.4491 1.8080 1.7753 1.7388 

45 0.9090 0.8934 0.8759 1.2119 1.1912 1.1679 1.3635 1.3401 1.3139 1.5150 1.4890 1.4600 1.8180 1.7868 1.7519 

3 

50 0.9132 0.8983 0.8815 1.2176 1.1977 1.1754 1.3699 1.3475 1.3223 1.5221 1.4972 1.4693 1.8265 1.7966 1.7631 

5 0.8248 0.7980 0.7690 1.0997 1.0640 1.0253 1.2372 1.1970 1.1535 1.3747 1.3301 1.2817 1.6496 1.5961 1.5380 

10 0.8694 0.8482 0.8248 1.1592 1.1309 1.0997 1.3041 1.2723 1.2372 1.4491 1.4137 1.3747 1.7388 1.6964 1.6496 

15 0.8907 0.8725 0.8522 1.1876 1.1633 1.1362 1.3361 1.3088 1.2783 1.4846 1.4542 1.4204 1.7815 1.7450 1.7044 

20 0.9040 0.8876 0.8694 1.2053 1.1835 1.1592 1.3560 1.3315 1.3041 1.5067 1.4795 1.4491 1.8080 1.7753 1.7388 

25 0.9132 0.8983 0.8815 1.2176 1.1977 1.1754 1.3699 1.3475 1.3223 1.5221 1.4972 1.4693 1.8265 1.7966 1.7631 

30 0.9202 0.9063 0.8907 1.2269 1.2084 1.1876 1.3803 1.3595 1.3361 1.5337 1.5106 1.4846 1.8404 1.8127 1.7815 

35 0.9257 0.9127 0.8980 1.2342 1.2169 1.1973 1.3885 1.3690 1.3470 1.5428 1.5212 1.4967 1.8514 1.8254 1.7961 

40 0.9301 0.9178 0.9040 1.2401 1.2238 1.2053 1.3952 1.3768 1.3560 1.5503 1.5298 1.5067 1.8603 1.8357 1.8080 

45 0.9338 0.9222 0.9089 1.2451 1.2295 1.2119 1.4008 1.3833 1.3634 1.5565 1.5370 1.5150 1.8677 1.8444 1.8179 

6 

50 0.9370 0.9259 0.9132 1.2493 1.2345 1.2176 1.4056 1.3888 1.3698 1.5618 1.5432 1.5221 1.8741 1.8518 1.8265 

 

The lower bounds displayed in Table 2-3 are calculated under the condition that process 

mean is on the center of  specification limits for assurance purpose. This approach ensures that 

the conclusions made based on the lower bounds have the smallest type I error α , the risk of  
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wrongly concluding an incapable process as capable. When the practitioner wants to know what 

the least process yield (or say Spk) is, necessary samples could be taken from the “stable” process 

to calculate the ˆ
pkS  and check the lower bound. The lower bound represents the minimal Spk of  

the process with α−1  confidence level.  

For the convenience of  practitioners, we also develop a Matlab program to calculate the 

lower bounds (see Appendix II). Table 2-3 shows the lower bounds LB computed from the 

normal approximation for ˆ
pkS = 1.0, 1.33, 1.5, 1.67, 2.0, n = 5(5)50, m = 3, 6, and α = 0.05, 

0.025, 0.01. For example, sampling with number of  multiple samples m = 3 and each of  sample 

size n = 50, resulting in sampling estimate ˆ
pkS  = 1.67, we then conclude that the process has at 

least Spk = 1.5221 with 95% confidence level. 
 

  

Figure 2-2(a). Histogram of 10000 lower 

bounds with Spk = 1.00. 

Figure 2-2(b). Histogram of 10000 lower 

bounds with Spk = 1.33. 

  

Figure 2-2(c). Histogram of 10000 lower 

bounds with Spk = 1.50. 

Figure 2-2(d). Histogram of 10000 lower 

bounds with Spk = 1.67. 
 

2.5. Accuracy of the Normal Approximation 
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In order to assess the normally approximated distribution of ′ˆ
pkS , we simulate with 10,000 

replications to generate 10,000 estimates of ˆ
pkS , calculate their lower bounds, and compare with 

the real (preset) Spk for various commonly used quality requirement. Figures 2-2(a) to 2-2(d) show 

histograms of lower bounds each of 10,000 replications with α  = 0.05, m = 3, n = 50, Spk = 1.00, 

1.33, 1.50, and 1.67, respectively. Table 2-4 displays the actual type I errors for various m, n, Spk, 

and each with 10,000 simulated lower bounds.  
 

Table 2-4. Simulated type I errors α  for various m, n, and Spk with 10,000 lower bounds. 

m Spk n=10 n=20 n=30 n=50 n=100 n=150 n=200 
1.00 0.1520 0.1156 0.1015 0.0812 0.0788 0.0680 0.0695 

1.33 0.1593 0.1147 0.0987 0.0839 0.0750 0.0680 0.0694 

1.50 0.1634 0.1161 0.1015 0.0869 0.0707 0.0677 0.0656 

1.67 0.1629 0.1132 0.1053 0.0842 0.0764 0.0673 0.0663 

1 

2.00 0.1691 0.1188 0.1012 0.0845 0.0737 0.0701 0.0684 

1.00 0.1126 0.0897 0.0817 0.0748 0.0655 0.0628 0.0602 

1.33 0.1124 0.0901 0.0823 0.0715 0.0677 0.0632 0.0614 

1.50 0.1148 0.0940 0.0842 0.0706 0.0684 0.0692 0.0663 

1.67 0.1158 0.0939 0.0823 0.0754 0.0702 0.0588 0.0584 

2 

2.00 0.1223 0.0904 0.0844 0.0715 0.0639 0.0613 0.0641 

1.00 0.1017 0.0838 0.0742 0.0692 0.0629 0.0579 0.0563 

1.33 0.1011 0.0825 0.0726 0.0651 0.0671 0.0560 0.0556 

1.50 0.1016 0.0791 0.0784 0.0638 0.0632 0.0600 0.0567 

1.67 0.1048 0.0854 0.0681 0.0681 0.0624 0.0586 0.0556 

3 

2.00 0.1063 0.0805 0.0772 0.0693 0.0664 0.0644 0.0576 

1.00 0.0816 0.0693 0.0705 0.0634 0.0619 0.0573 0.0555 

1.33 0.0831 0.0750 0.0669 0.0576 0.0624 0.0545 0.0578 

1.50 0.0832 0.0727 0.0677 0.0634 0.0599 0.0611 0.0555 

1.67 0.0861 0.0744 0.0673 0.0576 0.0609 0.0603 0.0575 

6 

2.00 0.0763 0.0741 0.0699 0.0681 0.0626 0.0568 0.0558 

1.00 0.0739 0.0675 0.0687 0.0573 0.0583 0.0561 0.0553 

1.33 0.0752 0.0655 0.0652 0.0546 0.0590 0.0546 0.0550 

1.50 0.0762 0.0671 0.0610 0.0628 0.0528 0.0561 0.0535 

1.67 0.0804 0.0688 0.0616 0.0623 0.0597 0.0577 0.0554 

9 

2.00 0.0748 0.0713 0.0641 0.0636 0.0609 0.0533 0.0498 

1.00 0.0707 0.0643 0.0593 0.0569 0.0553 0.0534 0.0557 

1.33 0.0751 0.0657 0.0559 0.0570 0.0625 0.0568 0.0521 

1.50 0.0671 0.0652 0.0641 0.0590 0.0559 0.0559 0.0545 

1.67 0.0728 0.0682 0.0625 0.0597 0.0587 0.0577 0.0554 

12 

2.00 0.0705 0.0599 0.0645 0.0575 0.0542 0.0538 0.0520 
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Table 2-5. Ratios of the average of 10,000 lower bounds and the real Spk, i.e. / pkLB S .  

m pkS  n=10 n=20 n=30 n=50 n=100 n=150 n=200 
1.00 0.8056 0.8286 0.8483 0.8726 0.9030 0.9178 0.9275 

1.33 0.8122 0.8287 0.8487 0.8729 0.9032 0.9179 0.9273 

1.50 0.8156 0.8302 0.8505 0.8730 0.9029 0.9178 0.9271 

1.67 0.8171 0.8312 0.8511 0.8732 0.9032 0.9186 0.9274 

1 

2.00 0.8239 0.8341 0.8510 0.8739 0.9038 0.9177 0.9278 

1.00 0.8283 0.8611 0.8810 0.9030 0.9274 0.9388 0.9460 

1.33 0.8314 0.8636 0.8802 0.9025 0.9276 0.9396 0.9472 

1.50 0.8319 0.8627 0.8817 0.9021 0.9285 0.9400 0.9469 

1.67 0.8304 0.8628 0.8815 0.9037 0.9277 0.9391 0.9466 

2 

2.00 0.8358 0.8629 0.8816 0.9020 0.9277 0.9394 0.9471 

1.00 0.8496 0.8820 0.8982 0.9179 0.9390 0.9493 0.9552 

1.33 0.8493 0.8806 0.8979 0.9170 0.9402 0.9497 0.9555 

1.50 0.8484 0.8810 0.8983 0.9179 0.9390 0.9494 0.9555 

1.67 0.8506 0.8815 0.8976 0.9176 0.9393 0.9493 0.9558 

3 

2.00 0.8516 0.8812 0.8987 0.9185 0.9401 0.9498 0.9556 

1.00 0.8807 0.9095 0.9241 0.9394 0.9563 0.9632 0.9682 

1.33 0.8803 0.9100 0.9239 0.9388 0.9559 0.9634 0.9684 

1.50 0.8810 0.9106 0.9241 0.9394 0.9561 0.9636 0.9683 

1.67 0.8825 0.9096 0.9241 0.9387 0.9556 0.9635 0.9685 

6 

2.00 0.8819 0.9102 0.9240 0.9400 0.9563 0.9635 0.9679 

1.00 0.8988 0.9245 0.9369 0.9499 0.9630 0.9697 0.9734 

1.33 0.8994 0.9236 0.9357 0.9495 0.9637 0.9700 0.9735 

1.50 0.8988 0.9248 0.9361 0.9499 0.9634 0.9699 0.9736 

1.67 0.8995 0.9244 0.9363 0.9500 0.9638 0.9702 0.9737 

9 

2.00 0.8996 0.9247 0.9369 0.9499 0.9635 0.9697 0.9735 

1.00 0.9104 0.9329 0.9442 0.9561 0.9681 0.9736 0.9770 

1.33 0.9100 0.9330 0.9434 0.9558 0.9683 0.9736 0.9769 

1.50 0.9093 0.9333 0.9441 0.9557 0.9682 0.9738 0.9771 

1.67 0.9095 0.9337 0.9441 0.9560 0.9682 0.9736 0.9773 

12 

2.00 0.9106 0.9323 0.9446 0.9556 0.9677 0.9735 0.9772 
 

The results in Table 2-4 show that when m = 12, n = 50, the confidence level of the normal 

approximation is almost equal to the preset 1-α  (the confidence levels are all greater than 94%). 

As we know, the simulation results are in large variation, and by Central Limit Theorem the 

average is in small variation, so we calculate the average of the lower bounds and compare to the 

real Spk. Table 2-5 shows the ratios of the average lower bounds relative to the real Spk. It is noted 
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that no matter what the real Spk is, the ratios of / pkLB S  are almost equal with the same m and n. 

Thus, it is reasonable to estimate the true Spk from the ratios. For example, when m = 3 and n = 

200, practitioners can repeat the sampling procedure, obtain the average lower bound, and 

estimate the real Spk by LB /0.9558.  
 

Table 2-6. Sample sizes required for the normal approximation to converge with α  = 0.05.  

Designated Accuracy, ε  
m Spk 

0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 

1.00 193 238 301 392 534 769 1201 2135 4802 19208 

1.33 342 422 534 697 949 1366 2135 3795 8537 34147 

1.50 433 534 676 882 1201 1729 2702 4802 10805 43217 

1.67 534 659 834 1089 1483 2135 3335 5929 13339 53354 

1 

2.00 769 949 1201 1568 2135 3074 4802 8537 19208 76830 

1.00 97 119 151 196 267 385 601 1068 2401 9604 

1.33 171 211 267 349 475 683 1068 1898 4269 17074 

1.50 217 267 338 441 601 865 1351 2401 5403 21609 

1.67 267 330 417 545 742 1068 1668 2965 6670 26677 

2 

2.00 385 475 601 784 1068 1537 2401 4269 9604 38415 

1.00 65 80 101 131 178 257 401 712 1601 6403 

1.33 114 141 178 233 317 456 712 1265 2846 11383 

1.50 145 178 226 294 401 577 901 1601 3602 14406 

1.67 178 220 278 363 495 712 1112 1977 4447 17785 

3 

2.00 257 317 401 523 712 1025 1601 2846 6403 25610 

1.00 33 40 51 66 89 129 201 356 801 3202 

1.33 57 71 89 117 159 228 356 633 1423 5692 

1.50 73 89 113 147 201 289 451 801 1801 7203 

1.67 89 110 139 182 248 356 556 989 2224 8893 

6 

2.00 129 159 201 262 356 513 801 1423 3202 12805 

1.00 22 27 34 44 60 86 134 238 534 2135 

1.33 38 47 60 78 106 152 238 422 949 3795 

1.50 49 60 76 98 134 193 301 534 1201 4802 

1.67 60 74 93 121 165 238 371 659 1483 5929 

9 

2.00 86 106 134 175 238 342 534 949 2135 8537 

1.00 17 20 26 33 45 65 101 178 401 1601 

1.33 29 36 45 59 80 114 178 317 712 2846 

1.50 37 45 57 74 101 145 226 401 901 3602 

1.67 45 55 70 91 124 178 278 495 1112 4447 

12 

2.00 65 80 101 131 178 257 401 712 1601 6403 
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We further consider how many sample size n should be taken to ensure that the sampling 

estimator is closed enough to the real Spk within a designated accuracy ε  (Pearn et al. [36]). 

Table 2-6 displays the sample sizes required for the normal approximation to converge to the real 

Spk within a designated accuracy ε  less than 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 

0.01, respectively, and the derivation is briefly done as follows:  

{ }ε α′ − ≤ ≥ −ˆPr 1pk pkS S ⇒
( )

⎧
′ −⎪

⎨
′⎪

⎩

ˆ
Pr

ˆ
pk pk

pk

S S

Var S ( )
ε α

⎫
⎪≤ ≥ −⎬

′ ⎪
⎭

1
2ˆ

pkVar S
⇒

( )
( )ε α−≥ Φ −

′

1 1 /2
ˆ

pkVar S

⇒
φ
+2 2

236 (3 )pk

a b
mn S

ε

α−
≤

⎡ ⎤Φ −⎣ ⎦

2

21(1 /2)
⇒

( ) ( )α

φ ε

−⎡ ⎤+ Φ −⎣ ⎦≥

22 2 1

2 2

1 /2

36 (3 )pk

a b
mn

S
. 

For example, for m = 9, Spk = 1.33 with risk α = 0.05, a sample size of n ≥ 3795 ensures that 

the difference between the sampling ˆ
pkS  and the real Spk is smaller than 0.01. Thus, if the 

sampling ˆ
pkS  = 1.33, then we can conclude that the actual performance Spk > 1.32 with 95% 

confidence level. This convergence investigated is not for practical purpose, but to illustrate the 

behavior and the rate of convergence for the normal approximation.  

2.6. An Application Example  

 The integrated circuits (IC) industry has been the most popular industry for previous years. 

Products of  integrated circuits are various types such as office automation equipment (copiers, 

facsimile machines, printers, etc.), vending machines, banking terminals, CD or DVD players, 

battery chargers, etc. We investigated a company in Taiwan manufacturing one-cell rechargeable 

Li-ion battery packs which have advantages of  low current consumption, high withstand voltage, 

high accuracy voltage detection, over current and short circuit protection, and wide operating 

temperature range. Among the advanced features, the most important one is the high accuracy 

voltage detection. Once the voltage detector falls down, the lifetime or reliability of  the Li-ion 

battery pack will be discounted. The preset upper and lower specification limits of  the over charge 

detector are USL = 4.40 V, LSL = 4.30 V, and target value is set to T= 4.35 V.  
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Figure 2-3. The −X S  charts based on the collected 12 samples each of size 50. 
 

Table 2-7. The collected electrical characteristic data of 12 samples each of size 50.  

subsample 1 2 3 4 5 6 7 8 9 10 11 12 

ix  4.3526 4.3483 4.3544 4.3490 4.3563 4.3542 4.3482 4.3537 4.3535 4.3505 4.3476 4.3502 

is  0.0133 0.0120 0.0124 0.0093 0.0104 0.0114 0.0119 0.0174 0.0126 0.0112 0.0104 0.0102 

 

Suppose the minimal precision requirement for this process is set to Spk = 1.0. We calculate 

the overall sample mean ix = 4.35154, the pooled sample standard deviation ps = 2
ps = 0.01192, 

the un-pooled sample standard deviation us = 2
us = 0.01225, and 

ˆ
pkS =

μ
σ

− ⎧ −⎛ ⎞Φ Φ⎨ ⎜ ⎟
⎝ ⎠⎩

1 ˆ1 1
ˆ3 2

USL μ
σ

⎫−⎛ ⎞+ Φ ⎬⎜ ⎟
⎝ ⎠⎭

ˆ1
ˆ2
LSL

  

= − ⎧ −⎛ ⎞Φ Φ⎨ ⎜ ⎟
⎝ ⎠⎩

11 1 4.40 4.35154
3 2 0.01192

⎫−⎛ ⎞+ Φ ⎬⎜ ⎟
⎝ ⎠⎭

1 4.35154 4.30
2 0.01192

  

or − ⎧ −⎛ ⎞Φ Φ⎨ ⎜ ⎟
⎝ ⎠⎩

11 1 4.40 4.35154
3 2 0.01225

⎫−⎛ ⎞+ Φ ⎬⎜ ⎟
⎝ ⎠⎭

1 4.35154 4.30
2 0.01225

 

= 1.3871 or 1.3503.  

We run the program in Appendix II to find the lower bound as 1.3242 (or 1.2890). Thus, we 

conclude that the true value of  the process capability Spk would be no less than 1.3242 (or 1.2890) 

with 95% confidence level.  
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To estimate the real Spk, the factory manager could implement a weekly based control system 

by repeating the sampling procedure for consecutive, say 10 weeks, then calculate the average 

lower bounds. For example, the ten weeks lower bounds result LB = 1.4527. Refer to Table 2-5, 

the biggest ratio of  / pkLB S  for m = 12 and n = 50 is 0.9561, then he can estimate the real Spk = 

1.4527/0.9561  1.52. The corresponding process yield then could be estimated as 0.999994885, 

or equally, fraction of  defectives is 5.115 ppm.  
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Chapter 3 

Procedure of the Convolution Method for Estimating 

Production Yield With Sample Size Information 

 

3.1. Introduction 

As mentioned in chapter 1, numerous process capability indices (PCI) have been proposed to 

provide numerical measures on the production yield as well as process performance. Those 

indices, such as Ca, Cp, Cpk, Cpm, and Cpmk, are defined to emphasize the process centering, process 

precision or process loss, and only the index Spk, provides an exact measure on the production 

yield. Note that the capability indices are designed to monitor the performance for stable normal 

or near-normal processes with symmetric tolerances. In practice, the process mean μ  and the 

process variance 2σ  are unknown. To calculate the index value, sample data must be collected, 

and a great degree of uncertainty may be introduced into the assessments due to the sampling 

errors. As the use of the capability indices grows more widespread, users are becoming educated 

and sensitive to the impact of the estimators and their distributions, learning that capability 

measures must be reported in confidence intervals or via capability testing. Statistical properties 

of the estimators of those indices under various process conditions have been investigated 

extensively, including Chan et al. [4], Pearn et al. [35], Kotz and Johnson [23], Vännman and 

Kotz [49], Vännman [47], Kotz and Lovelace [25], Chen [5], Zhang [54], Kotz and Johnson [24], 

Lee et al. [26], Xie et al. [53], Spiring et al. [42], Pearn et al. [38], Pearn et al. [36],Pearn et al. [39], 

Montgomery [31], Wu [52]. In this chapter, we propose the convolution method based on the Spk 

index for estimating the production yield for single sample. 

3.2. The Yield Index Spk 

Boyles [3] proposed a yield measurement index, referred to as Spk, based on the production 

yield of normal processes. The yield index Spk, as defined previously, also can be alternatively 

expressed as 
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-1 1 11 1 1
3 2 2

dr dr
pk

dp dp

C C
S

C C

⎧ ⎫⎛ ⎞ ⎛ ⎞− +⎪ ⎪= Φ Φ + Φ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
,  

where ( m)/ddrC μ= − , /ddpC σ= , m = (USL + LSL)/2 is the midpoint of the specification 

limits, and d = (USL − LSL)/2 is the half length of the specification interval. 

As mentioned previously, the index Cpk can only provide interval estimation on the 

production yield. The indices Cpm and Cpmk are defined by being related to the customer’s loss. 

Only the yield index Spk can provide a one-to-one correspondence to the production yield, which 

can be expressed as  

 = 2 (3 ) 1pkYield SΦ − .  

Table 3-1 summarizes the corresponding production yields as well as non-conformities in parts 

per million (PPM) for Spk = 1.0(0.1)2.0, including the most commonly used performance 

requirements: 1.00, 1.33, 1.50, 1.67, and 2.00. For example, if a process has capability index 

value Spk = 1.50, then the yield of the process is 0.999993205 and the corresponding 

non-conformities is roughly 7 parts per million. 
 

Table 3-1. Various Spk values and the corresponding 

production yields as well as non-conformities in PPM. 

Spk Yield PPM 
1.00 0.997300204 2699.796 

1.10 0.999033152 966.848 

1.20 0.999681783 318.217 

1.30 0.999903807 96.193 

1.33 0.999933927 66.073 

1.40 0.999973309 26.691 

1.50 0.999993205 6.795 

1.60 0.999998413 1.587 

1.67 0.999999456 0.544 

1.70 0.999999660 0.340 

1.80 0.999999933 0.067 

1.90 0.999999988 0.012 

2.00 0.999999998 0.002 
 

Assume that X1,…,Xn be a random sample of the characteristic from a normal process. The 

natural estimator of Spk is defined as 
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-11 1 1ˆ
3 2 2pk

USL X X LSL
S

S S

⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= Φ Φ + Φ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

,  

and can also be expressed as 

ˆ
pkS = 1

ˆ11 1
ˆ3 2

−
⎧ ⎛ ⎞−⎪Φ Φ⎜ ⎟⎨ ⎜ ⎟⎪ ⎝ ⎠⎩

dr

dp

C

C

ˆ11
ˆ2

dr

dp

C

C

⎫⎛ ⎞+ ⎪+ Φ⎜ ⎟⎬⎜ ⎟⎪⎝ ⎠⎭
,  

where ˆ ( m)/ddrC X= −  and ˆ /ddpC S=  are natural estimators of Cdr and Cdp, respectively, 

1
1

n

in i
X X

=
= ∑  is the sample mean, and − =

= −∑2 21
1 1

( )
n

in i
S X X  is the sample variance. The 

distribution of the natural estimator of Spk is mathematically intractable as it is a complex function 

of the statistics X  and 2S  (or ˆ
drC  and ˆ

dpC ). However, we can profile the sampling 

distribution of Spk by using a simulation technique. Figure 3-1 shows the histograms of ˆ
pkS  with 

simulation parameters Spk = 1.0, ξ = ( m)/μ σ− = 0, and sample size n = 20, 30, 50, 80 each 

with 10,000 simulated ˆ
pkS . The histograms reveal that the probability density function (PDF) of 

ˆ
pkS  is nearly bell-shaped, symmetric to the real Spk for large sample sizes, and slightly skewed to 

the right for small sample sizes.  
 

  
n = 20 n = 30 

  
n = 50 n = 80 

Figure 3-1. Histograms of ˆ
pkS  with simulation parameters Spk = 1.0 and ξ = 0.  
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Many researchers have focused on the sampling distribution of Spk. Lee et al. [26] derived a 

normal approximated distribution of the estimated Spk. Pearn et al. [34] investigated the accuracy 

of the normal approximation computationally, and suggested that a sample size greater than 150 

is required for the normal approximation sufficiently accurate. Pearn and Cheng [33] further 

derived a normal approximated distribution of the estimated Spk under multiple samples, and 

investigated the sample sizes required to converge to Spk within a designated accuracy. Chen [6] 

considered that the formula of the normal approximation is messy and cumbersome to deal with. 

Chen [6] applied four bootstrap methods to find the lower confidence bounds on Spk, and showed 

that the standard bootstrap (SB) method significantly outperforms the other three bootstrap 

methods in coverage fraction. We note, however, the bootstrap re-sampling method results in 

different solutions each time, while the theoretical sampling distribution approach provides a 

unique lower bound for the same sample estimates. 

The distribution of ˆ
pkS  is analytically intractable, but approximate distributions of ˆ

pkS  can 

be obtained. In the following sections, two approximate distributions are considered and 

compared to the distribution of the estimated Spk obtained via simulations. 

3.3. Normal Approximation of ˆ
pkS : ˆ

pkS ′  

Lee et al. [26] considered a normal approximation of ˆ
pkS , which is denoted ˆ′pkS  in this 

paper. The normal distribution of ˆ′pkS  is distributed with a mean Spk and a variance 

2 2 2( )/[36 (3 )]φ+ pka b n S , i.e. 
2 2

2
ˆ ~ ,  

36 (3 )φ
⎛ ⎞+′ ⎜ ⎟⎜ ⎟
⎝ ⎠

pk pk
pk

a b
S N S

n S , 

where  

1 1 1 11

2
dr dr dr dr

dp dp dp dp

C C C C
a

C C C C
φ φ

⎧ ⎫⎛ ⎞ ⎛ ⎞− − + +⎪ ⎪= +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
, and 

1 1dr dr

dp dp

C C
b

C C
φ φ

⎛ ⎞ ⎛ ⎞− +
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

The normal approximation is useful in statistical inferences for Spk. Consider the following 

null versus alternative hypotheses: 

H0 : Spk ≤ C, a specified value;  

H1 : Spk > C.  
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The decision rule with α−1  confidence level should be that to reject the null hypothesis H0 if 

the sample statistic ˆ
pkS  is equal to or larger than the critical value c0, where c0 satisfies the 

following equation  

{ }0 0
ˆPr |H : Cpk pkS c S α′ ≥ ≤ ≤ . 

Lee et al. [26] suggested performing the hypothesis testing with the test statistic  

( ) φ
= −

+2 2

ˆ6 (3 )ˆ C
ˆˆ

pk
pk

n S
T S

a b
,  

where â  and b̂  are the natural estimators of a and b, with Cdr and Cdp replaced by ˆ
drC  and ˆ

dpC , 

respectively. Then, the decision rule becomes that the null hypothesis H0 would be rejected if 

α≥T z , where αz  is the upper α100 %  point of the standard normal distribution.  

This approach is intuitive and reasonable, but introduces additional sampling errors from 

estimating a and b (or Cdr and Cdp) with â  and b̂  (or ˆ
drC  and ˆ

dpC ). Thus, it would certainly 

become less reliable. For example, in Table 3-2 the sample estimate of Spk in Process B is larger 

than the one in Process A, but contradictorily it turns out a smaller test statistic T in Process B. 

Table 3-2 shows a couple of examples for testing H0: Spk ≤ 1.0 versus H1: Spk > 1.0 in which the 

sample estimate of Spk is larger (e.g. Processes B, D, F, and H), but on the contrary, the 

corresponding test statistic T is smaller.  
 

Table 3-2. Contradiction between ˆ
pkS  and test statistic T in Lee’s method. 

Process X  S ˆ
drC  ˆ

dpC  ˆ
pkS  T 

A 7.695115 1.365970 0.139023 0.273194 1.114490 0.807547 

B 7.674245 1.372115 0.134849 0.274423 1.114555 0.807412 

C 7.707630 1.335160 0.141526 0.267032 1.134942 1.207505 

D 7.681125 1.342895 0.136225 0.268579 1.135032 1.207252 

E 7.683340 1.314965 0.136668 0.262993 1.156439 1.063747 

F 7.650165 1.324405 0.130033 0.264881 1.156573 1.063459 

G 7.700125 1.219685 0.140025 0.243937 1.234395 1.929673 

H 7.680760 1.224995 0.136152 0.244999 1.234452 1.929267 
 

Pearn et al. [36] showed that for a specific Spk (e.g. Spk = C), the variance of ˆ′pkS  would be 

the largest with on-center processes, i.e. with ( m)/ξ μ σ= − = 0. Consequently, the critical value 
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of testing H0: Spk ≤ C versus H1: Spk > C would be the largest, and the test statistic T would be the 

smallest with ξ = 0. Hence, for practical purpose we would obtain the test statistic (or critical 

value) with ξ = 0 without having to further estimate the parameter ξ  (or parameters a and b). 

The test statistic T obtained in this way is increasing in ˆ
pkS , and there would be no contradiction. 

Pearn et al. [36] listed in the Table III of the published paper the critical values c0 of the ˆ′pkS  

approach which were obtained by the following probability  

{ }0
ˆPr | C and  = 0ξ α′ ≥ ≤ ≤pk pkS c S . 

Lee et al. [26] showed that the normal distribution of ˆ′pkS  can produce an adequate 

approximation to the actual distribution of ˆ
pkS  for a large enough sample size. However, Pearn 

et al. [36] noted that the normal approximation would significantly under-calculate the critical 

values for small sample sizes, and suggested that a sample of size greater than 150 is 

recommended in real applications, for which the magnitude of under-calculation would be as 

large as 0.02 at most. Since the critical value of the ˆ′pkS  approach is significantly 

under-calculated for small sample sizes, it is necessary to do some improvement.  

3.4. Convolution Approximation of ˆ
pkS : ˆ′′pkS  

The critical value obtained from the normal approximation is significantly under-calculated 

for small sample sizes. Thus, we go further to do some improvement by considering a 

convolution approximation of the estimated Spk. First, we define the two random variables 

( )/μ σ= −Z n X  and σ σ= −2 2 2( )/2Y n S . The two random variables Z and Y are 

independent since X  and 2S  are independent variables. It is well-known that the variable Z 

follows the standard normal distribution N(0, 1) according to the famous Central Limit Theory, 

and Y can be expressed as a function of a chi-square random variable with −1n  degrees of 

freedom, i.e.  

( )~ 0,1Z N , ( )χ −

− −
2

1

2 ( 1)~ 1nn
nY .  

Then, we can rewrite the form of ˆ
pkS  as the following analytical expansion:  

ˆ
pkS = 2 2

1 2 3 4 5

1
pk pS D Z D Y D Z D ZY D Y O

n n

⎛ ⎞
+ + + + + + ⎜ ⎟

⎝ ⎠
, 
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where  
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k
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C C C C

, k = 0, 1, 2, 3. 

Let  

ˆ′′pkS = 2 2
1 2 3 4 5pkS D Z D Y D Z D ZY D Y+ + + + + .  

The cumulative distribution function (CDF) of ˆ′′pkS , ˆ ( )′′pkS
F x , then can be derived by the 

probability  

ˆ ( )′′pkS
F x = { }ˆPr 0′′ − ≤pkS x  

=
2 2

1 31 4 1
3

3 3 3 1

( ) ( )
Pr 0

2 4 4

E Y ED D Y x
D Z

D D D E

⎫⎧ ⎛ ⎞ ++ Δ⎪ ⎪+ − + ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

where  

= −2
1 4 3 54E D D D , = −2 1 4 2 32E D D D D , = 2

1

E
3 EE , = − 2

4 3 14 pkE D S D , and 

2
1 2 1 3 4( ) (4 )Δ = − −x E E D x E . 

The explicit form of the CDF of ˆ′′pkS  is presented in the Appendix. The CDF of ˆ′′pkS  consists of 

eight parts according to the signs of D3, E1 and y0+E3, where y0 = 2
n−  is the minimal value of the 

variable Y. Applying the Leibniz’s rule for derivatives, we can also obtain the probability density 

function (PDF) of ˆ′′pkS .  

Again, we consider the following hypothesis testing  

H0 : Spk ≤ C, a specified value;  

H1 : Spk > C.  

It is inevitable to face the same problem or contradiction as in the normal approximation. Thus, 



 25

we examine the behavior of the critical values c0 against the parameter ξ  before we do the 

hypothesis testing for Spk. We perform extensive calculations to obtain the critical values c0 for 

ξ = 0(0.05)3.0, n = 20(10)200, Spk= 1.0(0.1)2.0, 1.33, 1.67, and confidence level α−1 = 0.95. 

Figure 3-2 shows parts of the results for ξ  versus the critical values. The parameter values we 

investigated, ξ = 0(0.05)3.0, cover a wide range of applications with process capability Spk ≥ 1.0. 

Note that for an on-center process the yield index Spk < 1.0 indicates that six-sigma of the process 

is larger than the manufacturing specification tolerance, i.e. 6 USL LSLσ > − , and such a process 

is said to be inadequate. The results of our extensive calculations show the following features of 

the critical values obtained from the convolution approximation.  

(i) The critical value obtains its maximum with ξ  around 0.5, minimum with ξ = 0, and 

stays at the same value for ξ ≥ 1.0  in all cases.  

(ii) The critical value reaches its maximum with ξ  slightly larger than 0.5 for ≤ 50n , and 

with ξ  slightly smaller than 0.5 for n > 50.  

(iii) The larger the sample size n, the smaller the difference between the maximal and minimal 

critical values.  

(iv) The larger the sample size n, the larger the difference between the maximal critical value 

(with ξ  around 0.5) and the converged critical value (with ξ ≥ 1.0 ).  

(v) The larger the value of Spk, the larger the difference between the maximal and minimal 

critical values.  

(vi) The larger the value of Spk, the smaller the difference between the maximal critical value 

(with ξ  around 0.5) and the converged one (with ξ ≥ 1.0 ). 

(vii) The difference between the maximal critical value (with ξ  around 0.5) and the 

converged critical value (with ξ ≥ 1.0 ) is always less than 0.0006. 

(viii) The critical value is increasing in Spk (the testing parameter), and decreasing in sample 

size n, which is definite in the statistical inference.  
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n = 50, Spk = 1.00 n = 100, Spk = 1.00 

n = 50, Spk = 1.33 n = 100, Spk = 1.33 

n = 50, Spk = 1.50 n = 100, Spk = 1.50 

Figure 3-2. ξ  versus critical values for various n and Spk.  
 

For assurance purpose, we calculate the critical value based on the convolution 

approximation with ξ = 0.5  to obtain the maximal critical value c0 for testing the hypotheses H0: 

Spk ≤ C versus H1: Spk > C, since the critical value c0 reaches its maximum with ξ  around 0.5 in 

all cases.  

{ }0
ˆPr | C and  = 0.5pk pkS c S ξ α′′ ≥ ≤ ≤ . 
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Thus, the level of confidence can be ensured, and the decisions made based on such an approach 

are indeed more reliable. We note that the above result is impossible to prove mathematically. 

3.5. Comparisons of Both Approximations 

3.5.1. Comparison of probability curves 

We perform extensive calculations to draw the PDFs and CDFs of ˆ′pkS  and ˆ′′pkS  as well as 

the density and distribution curves of the estimated Spk via simulation for process parameters ξ = 

0(0.25)1.0, Spk = 1.0(0.25)2.0, and sample size n = 30, 50, 80, 100. Each of the density and 

distribution curves is obtained by 1,000,000 simulated ˆ
pkS . Parts of the calculation results are 

presented in Figure 3-3. The calculation results also reveal the following general features.  

(i) The density curve of ˆ
pkS  is nearly bell-shaped, symmetric to the real Spk, and so are the 

PDFs of ˆ′pkS  and ˆ′′pkS .  

(ii) The tail probability of ˆ′′pkS  is closer to the one of the simulated ˆ
pkS  than that of ˆ′pkS .  

(iii) The CDFs of ˆ′pkS  and ˆ′′pkS  are closer to the distribution curves of ˆ
pkS  with a large ξ  

than those with a small ξ .  

(iv) The larger the sample sizes n, the smaller the variance of ˆ
pkS , ˆ′pkS , and ˆ′′pkS , which is 

definite for all sample estimators. 

The calculation results show that the cumulative distribution functions of ˆ′′pkS  are closer to 

the distribution curves of the simulated ˆ
pkS  than CDFs of ˆ′pkS . Though the distribution function 

of ˆ′′pkS  (the convolution method) is more complicated than that of ˆ′pkS  (the normal 

approximation), it does produce a more accurate approximation to the sampling distribution of 

Spk than the normal approximation. Besides, by the high development of computer technology, 

complex functions are no longer a problem for calculation. Making a decision accurately is 

relatively more important than easy calculation.  
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Figure 3-3. The PDF (l.h.s.) and CDF (r.h.s.) of ˆ′pkS  and ˆ′′pkS  as 

well as the density and distribution curves of ˆ
pkS  via simulation. 

 

3.5.2. Comparison of critical values 

Decision rule for testing hypotheses H0: Spk ≤ C versus H1: Spk > C based on the normal and 

convolution approximations are conducted, respectively. The critical value which is closer to the 

critical value of the simulated ˆ
pkS  is regarded as the more accurate and reliable one. We know 

that for the same Spk, the maximal variance of ˆ′pkS  occurs at ξ = 0, i.e. process mean is on the 

center of the specification limits (Pearn et al. [36]). Thus, when testing the hypotheses based on 

the distribution of ˆ′pkS , we would set ξ = 0 to obtain the maximal critical value of the normal 
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approximation. On the other hand, we would set ξ = 0.5 while testing the hypotheses based on 

the convolution method for the same reason.  

To compute the critical value of the convolution method, we develop a Matlab program 

(available on request). The program reads the minimal capability requirement C, the significant 

level α , and the sample size n, and outputs with the critical value. Table 3-3 shows the critical 

values for the normal and convolution approximations as well as the one of ˆ
pkS  via simulation, 

for testing hypotheses H0: Spk ≤ C versus H1: Spk > C with significant level α = 0.05. The critical 

values of ˆ
pkS  (via simulation) and ˆ

pkS ′  (the normal approximation) are extracts from those 

presented in the paper of Pearn et al. [36]. We note that the critical values of the convolution 

approximation are always larger than those of the normal approximation, and are closer to the 

critical values of the simulated ˆ
pkS , the α−100(1 )  percentile point of ˆ

pkS  under H0. That is 

the accuracy of the convolution method is greater than the normal approximation. 

Note that the normal approximation significantly under-calculates the critical values for 

small sample sizes, particularly for n ≤ 40, as the magnitude of the under-calculation exceeds 0.1. 

The large magnitude of under-calculation results in huge probability of wrongly rejecting H0: 

Spk ≤ C while actually the yield index Spk is smaller than or equal to a specific value C, which 

incurring the risk of the customers by accepting products with less quality assurance. Therefore, 

for short run applications, one should avoid using the normal approximation. It is also noted that 

the magnitude of under-calculation of the normal approximation can be as large as 0.03 for n = 

110, and 0.02 for n = 150. Thus, in real applications a sample of size greater than 150 is 

recommended for using the normal approximation (Pearn et al. [36]).  

The convolution method also under-calculates the critical values, but it always provides a 

closer estimate to the critical value of ˆ
pkS  than the normal approximation. The magnitude of the 

under-calculation of the convolution approximation is as large as 0.03 for n = 60, 0.02 for n = 70, 

and 0.01 for n = 90. As we know previously, the magnitude of under-calculation of the normal 

approximation is as large as 0.03 for n = 110, and 0.02 for n = 150. That is, if the allowable 

magnitude of under-calculation is 0.02, a sample size of 70 is enough for using the convolution 

method, while a sample size of 150 is enough for the normal approximation, which is more than 
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twice sample sizes of the convolution method. Thus, the proposed convolution method does 

provide a better reliability assurance than the existing normal approximation. 
 

Table 3-3. Critical values of the two approximations versus the simulated ones. 

Spk  1.00  1.33  1.50  1.67  2.00 

n  ˆ′pkS  ˆ′′pkS  ˆ
pkS   ˆ′pkS  ˆ′′pkS  ˆ

pkS   ˆ′pkS  ˆ′′pkS  ˆ
pkS   ˆ′pkS  ˆ′′pkS  ˆ

pkS   ˆ′pkS  ˆ′′pkS  ˆ
pkS  

20  1.26 1.31 1.37  1.68 1.74 1.82  1.89 1.97 2.05  2.11 2.19 2.30  2.52 2.63 2.74 

25  1.23 1.27 1.31  1.64 1.69 1.75  1.85 1.91 1.98  2.06 2.13 2.20  2.47 2.56 2.63 

30  1.21 1.25 1.28  1.61 1.66 1.70  1.82 1.87 1.93  2.03 2.09 2.14  2.43 2.50 2.57 

35  1.20 1.23 1.25  1.59 1.63 1.67  1.80 1.84 1.89  2.00 2.05 2.10  2.39 2.46 2.51 

40  1.18 1.21 1.23  1.58 1.61 1.64  1.78 1.82 1.85  1.98 2.02 2.06  2.37 2.42 2.47 

45  1.17 1.20 1.22  1.56 1.59 1.61  1.76 1.80 1.82  1.96 2.00 2.02  2.35 2.40 2.43 

50  1.16 1.18 1.20  1.55 1.58 1.60  1.75 1.78 1.80  1.95 1.98 2.01  2.33 2.38 2.40 

55  1.16 1.18 1.19  1.54 1.56 1.58  1.74 1.77 1.79  1.93 1.97 1.99  2.31 2.36 2.38 

60  1.15 1.17 1.18  1.53 1.55 1.57  1.73 1.75 1.77  1.92 1.95 1.98  2.30 2.34 2.36 

65  1.14 1.16 1.17  1.52 1.54 1.56  1.72 1.74 1.76  1.91 1.94 1.96  2.29 2.32 2.34 

70  1.14 1.15 1.16  1.52 1.54 1.55  1.71 1.73 1.77  1.90 1.93 1.95  2.28 2.31 2.33 

75  1.13 1.15 1.15  1.51 1.53 1.54  1.70 1.72 1.74  1.89 1.92 1.94  2.27 2.30 2.31 

80  1.13 1.14 1.15  1.50 1.52 1.53  1.70 1.72 1.73  1.89 1.91 1.93  2.26 2.29 2.31 

85  1.13 1.14 1.14  1.50 1.51 1.53  1.69 1.71 1.72  1.88 1.90 1.92  2.25 2.28 2.30 

90  1.12 1.13 1.14  1.49 1.51 1.52  1.68 1.70 1.71  1.88 1.90 1.91  2.25 2.27 2.28 

95  1.12 1.13 1.14  1.49 1.50 1.51  1.68 1.70 1.71  1.87 1.89 1.90  2.24 2.26 2.27 

100  1.12 1.13 1.13  1.49 1.50 1.50  1.67 1.69 1.70  1.86 1.88 1.89  2.23 2.26 2.27 

105  1.11 1.12 1.13  1.48 1.49 1.50  1.67 1.69 1.70  1.86 1.88 1.89  2.23 2.25 2.26 

110  1.11 1.12 1.13  1.48 1.49 1.50  1.67 1.68 1.69  1.86 1.87 1.89  2.22 2.24 2.25 

115  1.11 1.12 1.12  1.47 1.49 1.49  1.66 1.68 1.69  1.85 1.87 1.88  2.22 2.24 2.25 

120  1.11 1.11 1.12  1.47 1.48 1.49  1.66 1.67 1.68  1.85 1.86 1.87  2.21 2.23 2.24 

125  1.10 1.11 1.12  1.47 1.48 1.49  1.66 1.67 1.68  1.84 1.86 1.86  2.21 2.23 2.24 

130  1.10 1.11 1.12  1.47 1.48 1.48  1.65 1.67 1.68  1.84 1.86 1.86  2.20 2.22 2.23 

135  1.10 1.11 1.11  1.46 1.47 1.48  1.65 1.66 1.67  1.84 1.85 1.86  2.20 2.22 2.23 

140  1.10 1.11 1.11  1.46 1.47 1.48  1.65 1.66 1.67  1.83 1.85 1.86  2.20 2.21 2.22 

145  1.10 1.10 1.11  1.46 1.47 1.48  1.65 1.67 1.66  1.83 1.84 1.85  2.19 2.21 2.22 

150  1.10 1.10 1.11  1.46 1.47 1.47  1.64 1.65 1.66  1.83 1.84 1.85  2.19 2.21 2.21 

155  1.09 1.10 1.10  1.45 1.46 1.47  1.64 1.65 1.66  1.83 1.84 1.84  2.19 2.20 2.21 

160  1.09 1.10 1.10  1.45 1.46 1.47  1.64 1.65 1.65  1.82 1.84 1.84  2.19 2.20 2.21 

165  1.09 1.10 1.10  1.45 1.46 1.46  1.64 1.65 1.65  1.82 1.83 1.84  2.18 2.20 2.20 

170  1.09 1.10 1.10  1.45 1.46 1.46  1.63 1.64 1.65  1.82 1.83 1.84  2.18 2.19 2.20 

175  1.09 1.09 1.10  1.45 1.46 1.46  1.63 1.64 1.65  1.82 1.83 1.83  2.18 2.19 2.20 

180  1.09 1.09 1.10  1.45 1.45 1.46  1.63 1.64 1.65  1.82 1.83 1.83  2.17 2.19 2.19 

185  1.09 1.09 1.09  1.44 1.45 1.46  1.63 1.64 1.64  1.81 1.82 1.83  2.17 2.18 2.19 

190  1.08 1.09 1.09  1.44 1.45 1.45  1.63 1.64 1.64  1.81 1.82 1.83  2.17 2.18 2.19 

195  1.08 1.09 1.09  1.44 1.45 1.45  1.63 1.63 1.64  1.81 1.82 1.82  2.17 2.18 2.18 

200  1.08 1.09 1.09  1.44 1.45 1.45  1.62 1.63 1.64  1.81 1.82 1.82  2.16 2.18 2.18 

 



 31

3.5.3. Comparison of powers 

The power of test calculates the probability of correctly rejecting the null hypothesis H0: 

Spk ≤ C while actually Spk > C. It is well known that the power of test is the larger the better. As we 

know previously, the critical value of the normal approximation is highly under-calculated for 

small sample sizes. Consequently, the power (probability of rejecting H0) would be highly 

over-calculated if the under-calculated critical value is used as the testing rule. To compare both 

approximations on the same basis, we define and calculate the power of both approximations as 

the probability that the sample estimator is larger than the critical value c0 of simulated ˆ
pkS  as 

follows: 

ˆpower( )pkS ′ = 0 1
ˆPr( |  under H ,  0)pk pkS c S ξ′ > = , 

ˆpower( )pkS ′′ = 0 1
ˆPr( |  under H ,  0.5)pk pkS c S ξ′′ > = . 

 

  
(a) (c) 

  
(b) (d) 

Figure 3-4. Power curves for testing (a) H0: Spk ≤ 1.0 vs H1: Spk > 1.0, 

n = 30; (b) H0: Spk ≤ 1.0 vs H1: Spk > 1.0, n = 50; (c) H0: Spk ≤ 1.5 vs 

H1: Spk > 1.5, n = 30; (d) H0: Spk ≤ 1.5 vs H1: Spk > 1.5, n = 50. 
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Figure 3-4 shows the powers of the normal and convolution approximations for testing (a) 

H0: Spk ≤ 1.0 versus H1: Spk > 1.0 with sample size n = 30, (b) H0: Spk ≤ 1.0 versus H1: Spk > 1.0 with 

sample size n = 50, (c) H0: Spk ≤ 1.5 versus H1: Spk > 1.5 with sample size n = 30, and (d) H0: 

Spk ≤ 1.5 versus H1: Spk > 1.5 with sample size n = 50 and α = 0.05. Obviously, the power of the 

convolution method is always greater than the normal approximation, which means the 

capability of correctly rejecting the bad product lots of the convolution method is stronger than 

that of the normal approximation. 

So far we know that the tail probability and critical value of the convolution method are 

closer to those of the simulated ˆ
pkS  than those of the normal approximation, and the power of 

the convolution method is always greater than that of the normal approximation. All of above 

indicate that the convolution method does make a more accurate and reliable approximation to 

the sampling behavior of Spk than the normal approximation.  

Following, we develop an efficient step-by-step procedure based on the convolution method 

for testing hypotheses H0: Spk ≤ C versus H1: Spk > C, where C is the minimal capability 

requirement defined by the customer or product designer. Engineers or practitioners can easily 

apply the procedure to their in-plant applications to obtain reliable decisions. 

Procedure for using the convolution method 

Step 1. Decide the minimal capability requirement C of Spk (normally set to 1.00, 1.33, 1.50, 

1.67 or 2.0), and the significant level α  (normally set to 0.10, 0.05, or 0.025). 

Step 2. Randomly sample n samples from the products.  

Step 3. Calculate the sample estimate of ˆ
pkS .  

Step 4. Check out Table 3-3 or run the Matlab program (available on request) for the critical 

value based on the corresponding capability requirement of Spk, significant level and 

sample size n.  

Step 5. Conclude that the product capability Spk is larger than the minimal capability 

requirement C, and production yield is larger than 2 (3 minimalΦ ×  requirement) 1−  

with 100(1 )%α−  confidence level, if the sample estimate ˆ
pkS  is larger than or equal 
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to the critical value c0 of the convolution method. Otherwise, we do not have sufficient 

information to make such a conclusion. 

3.6. Accuracy Analysis 

The information of required sample size is important for in-plant applications, as it directly 

relates to the cost of the data collection plan. Following, we investigate the accuracy of the 

convolution method which provides useful information about the sample size required for 

designated power levels and for convergence.  

3.6.1. Sample size required for designated power 

The decision rule of hypothesis testing depends solely on the significant level α , the 

maximal probability of Type I error, and ignores the probability of Type II error β . Once the 

sample size n and α  risk are chosen for testing a hypothesis, the power of test 1 β− , the 

probability of correctly rejecting H0 while H1 is true, will be fixed. To decrease the β  risk and at 

the meantime maintain the α  risk in a small level, the sample size should be increased.  

The required sample size of the convolution method can be obtained by a recursive search 

with the following two constraints:  

{ }0
ˆPr | C and  = 0.5pk pkS c S ξ α′′ ≥ ≤ ≤ , and 

{ }0
ˆPr | > C and  = 0.5 1pk pkS c S ξ β′′ ≥ ≥ − , 

where c0 is the critical value of the convolution method. Table 3-4 shows the minimal sample size 

required for testing H0: Spk ≤ C, C = 1.0, 1.33, 1.50, 1.67, while actually Spk = C + h, h = 

0.15(0.05)0.35, with designated α  levels = 0.1, 0.05, 0.025, and power levels = 0.7, 0.8, 0.9, 

0.95.  

Note that the sample size required is a function of the α  and power levels, the minimal 

capability requirement C of Spk, and the difference between the actual value of Spk and the 

minimal requirement C. Table 3-4 shows that the larger the difference, the smaller the sample 

size required for fixed α  and power levels. For fixed α , minimal requirement C, and actual 

value of Spk, the sample size increases as the designated power level increases. This phenomenon 
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can be explained easily, since the smaller the difference and the greater the desired power level, 

the more sample size should be collected to account for the smaller uncertainty in the estimation.  
 

Table 3-4. Sample size required for designated power levels of the convolution method. 

(a) H0: Spk ≤ 1.0 vs H1: Spk > 1.0  (b) H0: Spk ≤ 1.33 vs H1: Spk > 1.33 
power  power α  Spk 0.7 0.8 0.9 0.95  

α  Spk 0.7 0.8 0.9 0.95 
0.1 1.15 83 113 161 207  0.1 1.48 142 194 278 360 

 1.20 49 66 212 265   1.53 83 113 161 207 

 1.25 33 44 62 78   1.58 55 75 106 135 

 1.30 24 32 44 55   1.63 40 53 75 95 

 1.35 18 24 33 40   1.68 30 40 56 71 

0.05 1.15 120 156 212 265  0.05 1.48 205 267 366 458 

 1.20 71 91 124 154   1.53 120 156 212 264 

 1.25 47 61 82 101   1.58 79 103 140 173 

 1.30 34 44 59 72   1.63 57 74 99 123 

 1.35 26 33 44 53   1.68 43 56 75 92 

0.025 1.15 158 199 262 321  0.025 1.48 270 340 451 554 

 1.20 93 116 153 187   1.53 157 198 262 321 

 1.25 62 77 101 125   1.58 104 131 172 210 

 1.30 44 56 73 88   1.63 74 94 123 149 

 1.35 33 42 55 66   1.68 56 71 93 112 
   
(c) H0: Spk ≤ 1.5 vs H1: Spk > 1.5  (d) H0: Spk ≤ 1.67 vs H1: Spk > 1.67 

power  power α  Spk 0.7 0.8 0.9 0.95  
α  Spk 0.7 0.8 0.9 0.95 

0.1 1.65 179 244 352 454  0.1 1.82 220 301 433 560 

 1.70 104 142 203 261   1.87 128 174 250 321 

 1.75 69 94 133 170   1.92 84 113 163 210 

 1.80 49 67 94 120   1.97 60 82 116 148 

 1.85 37 50 71 90   2.02 46 62 87 110 

0.05 1.65 259 337 462 579  0.05 1.82 318 415 569 712 

 1.70 150 195 267 333   1.87 185 240 328 407 

 1.75 99 129 175 218   1.92 122 158 215 268 

 1.80 71 92 125 155   1.97 87 113 153 190 

 1.85 54 69 94 116   2.02 65 85 115 142 

0.025 1.65 340 429 569 700  0.025 1.82 418 528 700 860 

 1.70 197 249 329 403   1.87 242 305 404 497 

 1.75 130 164 216 264   1.92 159 201 265 325 

 1.80 93 117 154 187   1.97 114 143 189 230 

 1.85 70 88 116 141   2.02 85 108 142 172 
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3.6.2. Sample size required for convergence 

Table 3-5 displays the sample sizes required for the convolution approximation to converge 

to Spk within a designated accuracy ε = 0.12(0.01)0.03.  

{ }ˆPr 1pk pkS S ε α′′ − ≤ ≥ −  

For example, for Spk = 1.33 with risk α = 0.025, a sample size of n ≥ 3831 ensures that the 

difference between sample estimate and actual parameter would be no greater than 0.03 with 

97.5% confidence. Thus, if ˆ
pkS = 1.33, then we may conclude that the actual Spk is greater than 

1.3, actually in the interval of (1.30, 1.36), with 97.5% confidence. Note that the investigation is 

not for practical purpose. But, the computations illustrate the rate of convergence for the 

convolution approximation to converge to actual Spk. 
 

Table 3-5. Sample size required for the convolution approximation to converge. 

Designated Accuracy, ε  Spk α  
0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 

1.00  0.1 88 106 129 159 203 266 363 523 819 1459 

 0.05 127 151 184 228 289 378 518 744 1164 2072 

 0.025 167 200 242 299 380 496 676 975 1524 2288 

1.33  0.1 159 189 230 284 361 472 644 929 1210 1789 

 0.05 226 270 327 405 513 672 875 1319 1543 2706 

 0.025 298 355 430 531 673 880 1199 1727 2183 3831 

1.50  0.1 203 242 294 364 461 603 822 1184 1852 3296 

 0.05 289 345 418 517 655 840 1168 1683 2631 4680 

 0.025 380 453 549 678 859 1122 1529 2203 3443 5225 

1.67  0.1 253 302 366 453 574 750 1022 1473 2303 4097 

 0.05 361 430 521 644 811 1066 1452 2092 3271 5818 

 0.025 473 564 683 767 1068 1396 1901 2738 4280 7455 

2.00  0.1 366 437 529 654 828 1082 1474 2124 3321 5444 

 0.05 521 621 752 929 1177 1538 2094 3017 4716 8387 

 0.025 683 731 985 1217 1540 2013 2741 3946 6170 10970 
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Chapter 4 

Product Acceptance Determination Based on the Spk Index  

 

4.1. Introduction 

Acceptance sampling plans are practical tools for quality assurance applications, which 

provide the supplier and the customer a general decision rule for lot sentencing that meets both of 

their requirements for product quality. Acceptance sampling plans, however, cannot avoid the 

risk of accepting undesired poor product lots, nor can it avoid the risk of rejecting good product 

lots unless 100% inspection is implemented. A well-designed sampling plan can effectively reduce 

the difference between the required and the actual supplied product quantity. An acceptance 

sampling plan is a statement regarding the required sample size for product inspection and the 

associated acceptance criteria for sentencing each individual product lot. The criteria used for 

measuring the performance of an acceptance sampling plan is based the operating characteristic 

(OC) curve which quantifies the risks for vendors and buyers. The OC curve plots the probability 

of accepting an individual lot versus the actual product fraction of defectives, which displays the 

discriminatory power of the sampling plan.  

For product quality protection and company’s profit, both the vendor and the buyer would 

focus on certain points on the OC curve to reflect their benchmark risk. The vendor (supplier) 

would usually focus on a specific product quality level, called acceptable quality level (AQL), which 

would yield a high probability, 1 α− , of accepting a lot. On the other hand, the buyer (consumer) 

would focus on a point at the other end of the OC curve, called lot tolerance percent defective (LTPD), 

which would result in a low probability, β , of accepting a lot. The LTPD is a quality level 

specified by the consumer, setting a specified low probability of accepting a lot for product with 

defective level as high as LTPD, and is the poorest quality level that the consumer is willing to 

accept. The α  probability, also called the producer’s risk, occurs when an acceptable product lot 

is rejected. The β  probability, also called the consumer’s risk, occurs when the product with 

unacceptable quality is accepted. Thus, a well-designed sampling plan must provide a probability 
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of at least 1 α−  of accepting a lot if the product quality level is at the contracted AQL level and a 

probability of no more than β  if the level of the product quality is at the LTPD level, the 

designated undesired quality level preset by the customer. That is, the OC curve of the acceptance 

sampling plan must pass through the two designated points (AQL, 1 α− ) and (LTPD, β ). 

There are a number of different ways of classifying the acceptance sampling plans. One 

major classification is by attributes and variables. The primary advantage of variables sampling 

plans is that the same operating characteristic curve can be obtained with a smaller sample size 

than that required by an attributes sampling plan. The precise measurements required by a 

variables plan would probably cost more than the simple classification of items required by an 

attributes plan, but the reduction in sample size may more than offset this exact expense. Such 

saving may be especially marked if inspection is destructive and the item is expensive (see 

Schilling [41], Duncan [9] and Montgomery [31]). The basic concepts and models of statistically 

based on variables sampling plans were introduced by Jennett and Welch [19]. Lieberman and 

Resnikoff [28] developed extensive tables and OC curves for various AQLs for MIL-STD-414 

sampling plan. Owen [32] considered variables sampling plans based on the normal distribution, 

and developed sampling plans for various levels of probabilities of Type I error when the standard 

deviation is unknown. Das and Mitra [8] have investigated the effect of non-normality on the 

performance of the sampling plans. Guenther [11] developed a systematic search procedure, 

which can be used with published tables of binomial, hyper-geometric, and Poisson distributions 

to obtain the desired acceptance sampling plans. Stephens [43] provided a closed form solution 

for single sample acceptance sampling plans using a normal approximation to the binomial 

distribution. Hailey [12] presented a computer program to obtain single sampling plans with 

minimum sample size based on either the Poisson or binomial distribution. Hald [13] gave a 

systematic exposition of the existing statistical theory of lot-by-lot sampling inspection by 

attributes and provided some tables for the sampling plans. Comparisons between variables 

sampling plans and attributes sampling plans were investigated by Hamaker [14], who concluded 

that the expected sample size required by variable sampling is smaller than those for comparable 

attributes sampling plans. Govindaraju and Soundararajan [10] developed variables sampling 
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plans that match the OC curves of MIL-STD-105D. Suresh and Ramanathan [46] developed a 

sampling plan based on a more general symmetric family of distributions. 

Due to the sampling cannot guarantee that every defective item in a lot will be inspected, the 

sampling plan involves risks of not adequately reflecting the quality conditions of the lot. Such 

risk is even more significant as the rapid advancement of the manufacturing technology and 

stringent customers demand is enforced. Particularly, when the required product fraction of 

defectives is very low, often measured in parts per million (PPM). The required number of 

inspection items must be enormously large in order to adequately reflecting the actual product 

fraction of defectives or process yield. The yield index Spk establishes the relationship between the 

manufacturing specifications and the actual process performance, and provides an exact yield 

measure on the normal processes. In this paper, we consider a variables sampling plan based on 

the Spk index as a quality benchmark to deal with lot sentencing problem for processes with very 

low fraction of defectives.  

4.2. Process Capability Indices 

4.2.1. Process capability indices Ca, Cp, Cpk, Cpm, Cpmk 

Process capability indices have been proposed to the manufacturing industry, to provide 

numerical measures on process performance. Those indices establish the relationship between the 

actual process performance and the manufacturing specifications, which have been the focus of 

the recent research in statistical and quality assurance literatures. The explicit forms of the indices 

are defined as follows: 
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where USL and LSL are the upper and lower specification limits, respectively, m = (USL + 

LSL)/2 is the midpoint of the specification limits, d = (USL − LSL)/2 is the half length of the 

specification interval, T is the target value, μ  is the process mean, and σ  is the process 
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standard deviation.  

The index Ca measures only the process centering (process accuracy), and ignores the process 

variation (process precision). The index Cp measures the overall process variation relative to the 

specification tolerance, therefore can not reflect the tendency of process centering (see Juran [20], 

Sullivan [44], [45] and Kane [21]). In order to reflect the deviations of process mean from the 

target value, several indices similar in nature to Cp, such as Cpk, Cpm, Cpmk, have been proposed. 

Those indices take into consideration the magnitude of process variance as well as process 

location (see Hsiang and Taguchi [16], Chan et al [4], Boyles [2], Ruczinski [40] and Pearn et al 

[35]). The index Cpk have a relationship to the actual process yield, which can be expressed as 

2 (3 ) 1 (3 )pk pkC Yield CΦ − ≤ ≤ Φ , 

(Boyles [2]). To emphasize the loss in a product’s worth when one of its characteristics departs 

from the target value T, the two indices Cpm and Cpmk are defined by being related to the idea of 

squared error loss 2( ) ( )loss X X T= − . 

4.2.2. The yield index Spk 

For a long time, process yield has been a standard criterion used in the manufacturing 

industry as a common measure on process performance, and defined as the percentage of 

processed product unit that falls within the manufacturing specification limits. For product units 

falling out of the manufacturing tolerance, additional cost would be incurred to the factory for 

scrapping or repairing the product. All passed product units, which incur no additional cost to the 

factory, are equally accepted by the producer. The above indices Cpk, Cpm, Cpmk can provide only a 

lower bound estimation on the process yield 2 (3  ) 1Yield index value≥ Φ × − . Note that the highest 

value that a process yield might be would not be concerned. For example, if the index value is C, 

then the yield of the process would be equal to or greater than 2 (3 ) 1CΦ − .  

On the other hand, the yield index Spk, proposed by Boyles [3], can provide an exact measure 

on the process yield, which can be expressed as  

 = 2 (3 ) 1pkYield SΦ − . 

The Spk index is defined as  
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. 

The Spk index outperforms other indices in providing a one-to one relationship to the process 

yield.  

We remark that the indices presented above are designed to monitor the performance for 

stable normal or near-normal processes with symmetric tolerances. In practice, the process mean 

μ  and the process variance 2σ  are unknown. To calculate the index value, sample data must 

be collected, and a great degree of uncertainty may be introduced into the assessments due to 

sampling errors. As the use of the capability indices grows more widespread, users are becoming 

educated and sensitive to the impact of the estimators and their distributions, learning that 

capability measures must be reported in confidence intervals or via capability testing. Statistical 

properties of the estimators of those indices under various process conditions have been 

investigated extensively, including Chan et al. [4], Pearn et al. [35], Kotz and Johnson [23], 

Vännman and Kotz [49], Ruczinski [40], Vännman [47], Kotz and Lovelace [25], Borges and Ho 

[1], Hoffman [15], Zimmer et al. [55], Kotz and Johnson [24], Lee et al. [26], Spiring et al. [42], 

Pearn et al. [36], Montgomery [31], Hubele et al. [17], Lin and Sheen [29], Wang [50], Wu [52], 

Mathew et al. [30].  

4.2.3. Sampling distribution of the estimated Spk 

To estimate the yield measurement index Spk, we consider the following natural estimator 

ˆ
pkS , expressed as  

11 1 1ˆ
3 2 2pk
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where 1
1

n

in i
X X

=
= ∑  is the sample mean, 2 21

1 1
( )

n

in i
S X X− =

= −∑  is the sample variance, 

= −ˆ ( m)/ddrC X , and =ˆ /ddpC S .  

The exact distribution of ˆ
pkS  is analytically intractable. However, a useful approximate 
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distribution of ˆ
pkS  can be furnished by considering an expansion of ˆ

pkS . Lee et al [26] 

considered a normal approximation to the distribution of ˆ
pkS  by using an expansion technique. 

The expansion of ˆ
pkS , which is denoted ˆ

pkS ′  in this paper, is normally distributed, and can be 

expressed as follows  

2 2

2
ˆ ~ ,
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Thus, the approximate probability density function of the approximate distribution can be 

expressed as: 

2 2
2

2 2 2 2

18 (3 ) 18 (3 )
( ) exp ( )
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pk pk
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f x x S

a b a b

φ φ
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= − −⎢ ⎥
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, x−∞ < < ∞ . 

4.3. Designing Spk Variables Sampling Plan 

Consider a variables sampling plan for controlling the lot fraction of defectives 

(nonconformities). Since the quality characteristic is a variables, there will exist either a USL or 

an LSL, or both, that defined the acceptable values of this parameter. A well-designed sampling 

plan must provide a probability of at least 1 α−  of accepting a lot if the lot fraction of defectives 

is at the contracted AQL. The sampling plan must also provide a probability of acceptance no 

more than β  if the lot fraction of defectives is at the LTPD level, the designated undesired level 

preset by the buyer. Thus, the acceptance sampling plan must have its OC curve passing through 

those two designated points (AQL, 1 α− ) and (LTPD, β ). To determine whether a given 

process is capable, we can first consider the following testing hypothesis: 
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H0: p = AQL    (process is capable), 

H1: p = LTPD   (process is incapable). 

For normally distributed processes with single characteristic, the index Spk is used to establish 

the relationship between the manufacturing specification and the actual process performance, 

which provides an exact measure on the process yield. That is, the null hypothesis with 

proportion defective, H0: p = AQL is equivalent to test process capability index with H0: Spk ≥  

SAQL, where SAQL is the level of acceptable quality for Spk index. For instance, if the fraction of 

defectives p = AQL of vendor’s product is about 66 PPM, then the probability of consumer accept 

the lots will larger than α−100(1 )% . On the other hand, if the fraction of defectives of vendor’s 

product, p = LTPD, is about 2700 PPM, then the probability of consumer would accept no more 

than β100 % . Then, from the relationship between the index value and fraction of defectives, we 

could obtain the equivalent SAQL = 1.33 and SLTPD = 1.00 based on the process index Spk. 

Therefore, the required inspection sample size n and critical acceptance value c0 for the 

sampling plans are the solution to the following two nonlinear simultaneous equations. 

Pr{Accepting the lot| p = AQL} α≥ −1 , 

Pr{Accepting the lot| p = LTPD} β≤ . 

As described earlier, the asymptotic sampling distribution of ˆ
pkS  is normally distributed with a 

mean Spk and a variance 2 2 2( )/36 (3 )pka b n Sφ+ . The probability of accepting the lot then can be 

expressed as: 

0
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Therefore, the required inspection sample size n and critical acceptance value c0 of ˆ
pkS  for the 

sampling plans can be obtained by solving the following two nonlinear simultaneous equations. 
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where SAQL > SLTPD. We note that the required sample size n is the smallest possible value of n 

satisfying the above two equations, and determining the [n] as sample size, where [n] means the 

least integer greater than or equal to n. Since the calculation of critical values involve two 

parameters a and b, functions of the two indices Cp and Ca, we have to consider the effect of a2+b2 

from various (Cp, Ca) for given a fixed performance requirement Spk.  
 

  

Figure 4-1(a). Surface plot of S1. Figure 4-1(b). Surface plot of S2. 
 

 

Figure 4-2. Surface plot of S1 and S2. 
 

Pearn et al [36] discussed that for given a fixed performance requirement Spk, the differences 

among those calculated critical values corresponding to various values of Cp and Ca, are 

sufficiently small and can be neglected. Also, they showed that the factor 2 2 2( )/36 (3 )pka b Sφ+  
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is insensitive to the value changes of Cp and Ca in all cases, except for Ca = 1. Consequently, the 

critical values c0 may be considered as a constant, which is independent of the process 

characteristics Cp and Ca for a fixed performance requirement Spk. n 

In order to illustrate how we solve the above two nonlinear simultaneous equations, we let 
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Figure 4-3(a). The required sample size n as 
surface plot with α = 0.01 (0.01) 0.10 and β = 
0.01(0.01)0.10 under (SAQL, SLTPD) = (1.33, 1.00). 

Figure 4-3(b). The critical acceptance value c0 as 
surface plot with α = 0.01 (0.01) 0.10 and β = 
0.01(0.01)0.10 under (SAQL, SLTPD) = (1.33, 1.00). 

  

Figure 4-3(c). The required sample size n as 
surface plot with α = 0.01 (0.01) 0.10 and β = 
0.01(0.01)0.10 under (SAQL, SLTPD) = (1.50, 1.33). 

Figure 4-3(d). The critical acceptance value c0 as 
surface plot with α = 0.01 (0.01) 0.10 and β = 
0.01(0.01)0.10 under (SAQL, SLTPD) = (1.50, 1.33). 
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For SAQL = 1.33 and SLTPD = 1.00, Figures 4-1(a) and 4-1(b) display the surface plots of 

equations S1(n, c0) and S2(n, c0) with -riskα = 0.05 and -riskβ = 0.05, respectively. Figure 4-2 

displays the surface plots of equations S1(n, c0) and S2(n, c0) simultaneously with -riskα = 0.05 and 

-riskβ = 0.05 under SAQL = 1.33 and SLTPD = 1.00, respectively. In Figure 4-2, interaction of S1(n, c0) 

and S2(n, c0) is (n, c0) = (66, 1.1412), which is the solution to the two nonlinear simultaneous 

equations. That is, in this case, the minimum required sample size n = 66 and critical acceptance 

value c0 = 1.1412 of the sampling plan based on the capability index Spk. 

To investigate the behavior of the critical acceptance values and required sample sizes, we 

perform extensive calculations to obtain the solution of the two nonlinear equations with various 

parameters. Figure 4-3(a) displays the required sample size n as surface plot with the probabilities 

α = 0.01(0.01)0.10 and β = 0.01(0.01)0.10 under (SAQL, SLTPD) = (1.33, 1.00). Figure 4-3(b) 

displays the critical acceptance value c0 as surface plot with the probabilities α = 0.01(0.01)0.10 

and β = 0.01(0.01)0.10 under (SAQL, SLTPD) = (1.33, 1.00). Figures 4-3(c) and 4-3(d) show the 

required sample size n and the critical acceptance value c0 as surface plot with α = 0.01(0.01)0.10 

and β = 0.01(0.01)0.10 under (SAQL, SLTPD) = (1.50, 1.33), respectively.  

From Figures 4-3(a) and 4-3(d), we observe that the larger of the risk (α  or β ) which 

producer or customer could suffer, the smaller is the required sample size n. This phenomenon 

can be explained intuitively, as if we hope that the chance of wrongly concluding a bad process as 

good or good lots as bad ones is small, then more sample information is needed to judge the lot 

quality. Further, for fixed SAQL, SLTPD and -riskα , the corresponding critical acceptance values 

become smaller when the -riskβ  becomes larger. On the other hand, for fixed SAQL, SLTPD, and 

-riskβ , the corresponding critical acceptance values become larger when the -riskα  becomes 

larger. This can also be explained by the same reasoning as above. Consequently, the required 

sample size is smaller when the difference between SAQL and SLTPD is significant since the judgment 

will then be relatively easier to reach correct decision. 

For practical applications purpose, we calculate and tabulate the critical acceptance values 

and required sample sizes for the sampling plans, with commonly used -riskα , -riskβ , SAQL and 

SLTPD. Table 4-1 display (n, c0) values for -riskα = 0.01, 0.025(0.025)0.10 and -riskβ = 0.01, 
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0.025(0.025)0.10, with various benchmarking quality levels, (SAQL, SLTPD) = (1.33, 1.00), (1.50, 

1.33), (1.67, 1.50), (2.00, 1.67). Based on the designed sampling plan, the practitioners can 

determine the number of production items to be sampled for inspection and the corresponding 

critical acceptance value. For example, if the benchmarking quality level (SAQL, SLTPD) is set to 

(1.33, 1.00) with producer’s -riskα = 0.01 and customer’s -riskβ = 0.05, then the corresponding 

sample size and critical acceptance value can be obtained as (n, c0) = (101, 1.1142). The lot will be 

accepted if the 101 inspected production items yield measurements with ˆ
pkS  ≥ 1.1142.  

 

Table 4-1. (n, c0) values for -riskα = 0.01, 0.025(0.025)0.10, 

-riskβ = 0.01,0.025(0.025)0.10 with various (SAQL, SLTPD).  

SAQL = 1.33  SAQL = 1.50  SAQL = 1.67  SAQL = 2.00 
SLTPD = 1.00  SLTPD = 1.33  SLTPD =1.50  SLTPD = 1.67 

-riskα  -riskβ  

n c0  n c0  n c0  n c0 

0.010 0.010 132 1.1412  735 1.4100  929 1.5801  331 1.8206 

 0.025 115 1.1276  630 1.4028  796 1.5729  286 1.8067 

 0.050 101 1.1142  546 1.3956  690 1.5657  249 1.7929 

 0.075 93 1.1044  495 1.3903  625 1.5604  226 1.7828 

 0.100 87 1.0963  457 1.3859  577 1.5560  210 1.7744 

0.025 0.010 110 1.1552  618 1.4173  780 1.5874  277 1.8347 

 0.025 94 1.1412  522 1.4100  659 1.5801  235 1.8206 

 0.050 82 1.1273  446 1.4026  563 1.5727  202 1.8064 

 0.075 74 1.1170  400 1.3971  505 1.5672  182 1.7959 

 0.100 68 1.1084  366 1.3925  462 1.5626  167 1.7870 

0.050 0.010 92 1.1696  525 1.4247  663 1.5948  234 1.8491 

 0.025 78 1.1555  437 1.4174  552 1.5875  196 1.8350 

 0.050 66 1.1412  368 1.4100  464 1.5801  166 1.8206 

 0.075 60 1.1306  326 1.4044  411 1.5745  148 1.8098 

 0.100 55 1.1215  295 1.3996  373 1.5696  134 1.8005 

0.075 0.010 81 1.1806  468 1.4302  592 1.6003  208 1.8600 

 0.025 68 1.1665  386 1.4231  487 1.5932  172 1.8460 

 0.050 57 1.1521  321 1.4157  405 1.5857  144 1.8316 

 0.075 51 1.1412  282 1.4100  356 1.5801  127 1.8206 

 0.100 46 1.1319  253 1.4051  320 1.5752  115 1.8112 

0.100 0.010 73 1.1900  427 1.4350  540 1.6050  190 1.8693 

 0.025 61 1.1761  348 1.4279  440 1.5980  155 1.8555 

 0.050 51 1.1616  287 1.4206  362 1.5907  129 1.8412 

 0.075 45 1.1507  250 1.4149  316 1.5850  113 1.8302 

 0.100 41 1.1412  223 1.4100  282 1.5801  101 1.8206 
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For the proposed sampling plan to be practical and convenience to use, a step-by-step 

procedure is provided below. 

Step 1: Decide the process capability requirements (i.e. set the values of SAQL and SLTPD), set the 

-riskα , the chance of wrongly concluding a capable process as incapable, and the -riskβ , 

the chance of wrongly concluding a bad lot as good one. 

Step 2: Check the Table 4-1 to find the critical value c0 and the required sample size n for 

inspection based on given values of -riskα , -riskβ , SAQL and SLTPD. 

Step 3: Calculate the value of ˆ
pkS  from these n inspected samples. 

Step 4: Make decisions that accept the entire lot if the estimated ˆ
pkS  value is greater than the 

critical value c0. Otherwise, we reject the entire lot. 

4.4. Accuracy of Spk Variables Sampling Plans 

To assess the accuracy of the Spk sampling plan, we simulate N = 10000 lots in each 

combination shown in Table 4-1 to calculate the probability of accepting lots to compared with 

the probability of accepting the lot from the corresponding (α β, ) and (SAQL, SLTPD). Table 4-2 

displays the probability of accepting the lot from simulation according to the rule in Table 4-1.  

For the case of (SAQL, SLTPD) = (1.33, 1.00) , the simulation results indicate for each 

combination of -riskα  (the producer’s risk) = 0.01, 0.025(0.025)0.10 and -riskβ  (the 

customer’s risk) = 0.01, 0.025(0.025)0.10, the probabilities of accepting the lots are all greater 

than the corresponding 1 α−  under SAQL = 1.33, and the probabilities of accepting the lots are all 

slightly greater than the corresponding β  under SLTPD = 1.00, but the magnitude of LP β−  are 

no greater than 0.0205. 

For the case of (SAQL, SLTPD) = (1.50, 1.33) , the simulation results indicate for each 

combination of - riskα = 0.01, 0.025(0.025)0.10 and -riskβ = 0.01, 0.025(0.025)0.10, the 

probabilities of accepting the lots are almost greater than the corresponding 1 α−  under SAQL = 

1.50 (except for α = 0.025 and β = 0.01, the probability of accepting the lot is 0.9749), and the 

probabilities of accepting the lots are all slightly greater than the corresponding β  under SLTPD = 

1.33, but with LP β−  no greater than 0.0206. 
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Table 4-2. Probabilities of accepting the lot for -riskα = 0.01, 0.025(0.025)0.10, 

-riskβ = 0.01,0.025(0.025)0.10 with various (SAQL, SLTPD) by simulation with N=10000. 

SAQL = 1.33  SAQL = 1.50  SAQL = 1.67  SAQL = 2.00 
SLTPD = 1.00  SLTPD = 1.33  SLTPD =1.50  SLTPD = 1.67 

-riskα  -riskβ  

AP LP  AP LP  AP LP  AP LP 
0.010 0.010  0.9937 0.0164  0.9906 0.0169  0.9874 0.0148  0.9922 0.0116 

 0.025  0.9947 0.0338  0.9910 0.0370  0.9886 0.0278  0.9924 0.0293 

 0.050  0.9943 0.0613  0.9919 0.0660  0.9902 0.0572  0.9931 0.0550 

 0.075  0.9953 0.0872  0.9914 0.0943  0.9910 0.0818  0.9922 0.0775 

 0.100  0.9948 0.1100  0.9911 0.1181  0.9899 0.1090  0.9926 0.1001 

0.025 0.010  0.9821 0.0153  0.9749 0.0161  0.9733 0.0147  0.9808 0.0132 

 0.025  0.9843 0.0353  0.9755 0.0337  0.9729 0.0327  0.9802 0.0283 

 0.050  0.9868 0.0631  0.9753 0.0631  0.9729 0.0586  0.9802 0.0539 

 0.075  0.9863 0.0881  0.9765 0.0910  0.9743 0.0820  0.9804 0.0799 

 0.100  0.9870 0.1135  0.9757 0.1203  0.9743 0.1051  0.9816 0.1042 

0.050 0.010  0.9661 0.0176  0.9524 0.0140  0.9439 0.0141  0.9564 0.0109 

 0.025  0.9663 0.0393  0.9543 0.0331  0.9454 0.0308  0.9563 0.0287 

 0.050  0.9643 0.0611  0.9532 0.0657  0.9478 0.0578  0.9584 0.0495 

 0.075  0.9682 0.0894  0.9544 0.0905  0.9478 0.0787  0.9585 0.0774 

 0.100  0.9665 0.1156  0.9531 0.1130  0.9519 0.1055  0.9599 0.0977 

0.075 0.010  0.9397 0.0172  0.9308 0.0144  0.9199 0.0128  0.9286 0.0149 

 0.025  0.9410 0.0363  0.9284 0.0375  0.9184 0.0288  0.9328 0.0304 

 0.050  0.9450 0.0656  0.9259 0.0646  0.9236 0.0543  0.9330 0.0536 

 0.075  0.9437 0.0878  0.9256 0.0893  0.9253 0.0804  0.9351 0.0771 

 0.100  0.9455 0.1161  0.9287 0.1185  0.9252 0.1089  0.9352 0.1015 

0.100 0.010  0.9144 0.0195  0.9030 0.0154  0.8906 0.0111  0.9053 0.0125 

 0.025  0.9145 0.0347  0.9015 0.0367  0.8931 0.0291  0.9060 0.0301 

 0.050  0.9174 0.0638  0.9073 0.0623  0.8944 0.0574  0.9070 0.0530 

 0.075  0.9202 0.0956  0.9036 0.0906  0.8945 0.0783  0.9108 0.0778 
 0.100 0.9236 0.1205  0.9015 0.1206  0.8947 0.1053  0.9084 0.1023 

AP: the probability of accepting the lot under SAQL 

LP: the probability of accepting the lot under SLTPD 
 

For the case of (SAQL, SLTPD) = (1.67, 1.50) , the simulation results indicate for each 

combination of -riskα  and -riskβ  = 0.01, 0.025(0.025)0.10, the probabilities of accepting the 

lots are all close to the corresponding 1 α−  under SAQL = 1.67 with (1 )AP α− −  no greater 

than 0.0094, and the probabilities of accepting the lots are all slightly greater than the 

corresponding -riskβ  under SLTPD = 1.50, but with LP β−  no greater than 0.0089. 

For the case of (SAQL, SLTPD) = (2.00, 1.67) , the simulation results indicate for each 
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combination of ( ,  )α β = 0.01, 0.025(0.025)0.10, the probabilities of accepting the lots are all 

greater than the corresponding 1 α−  under SAQL = 2.00, and the probabilities of accepting the 

lots are mostly greater than the corresponding -riskβ  under SLTPD = 1.67 (except for ( ,  )α β = 

(0.05, 0.05) and (0.05, 0.1), the probability of accepting the lot is 0.0495 and 0.0977, respectively), 

but with LP β−  no greater than 0.0054. The simulation results clearly indicate that the 

probabilities of accepting lots are all very close to the preset value of 1 α−  or β  in all the cases 

we investigated. Thus, the sampling plan based on the normal approximation to the distribution 

of the estimated Spk is adequately reliable to the engineers for their in-plant applications.  

4.5. An Application Example  

To illustrate how the sampling plan can be established and applied to the actual data 

collected from the factories, we present a case study on an electronic component manufacturer, 

which developing ceramic multilayer capacitors for the consumer electronics, automotive parts, 

telecommunications, data processing. The capacitor consists of a rectangular block of ceramic in 

which a number of interleaved electrodes are contained.  A cross section of the structure is 

shown in Figure 4-4. For a particular model of the ceramic multilayer capacitor investigated, the 

electrical characteristics are shown in Table 4-3. 
 

 

Figure 4-4. Construction of multi-layer ceramic capacitor. 
 

The lower and upper specification limit for thickness of layer are set to, LSL = 1.45 mm, 

USL = 1.75 mm, respectively. If the data characteristic does not fall within the tolerance (LSL, 

USL), the lifetime or reliability of the capacitors will be discounted. In the contract, the values of 
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SAQL and SLTPD are set to 1.33 and 1.00 with the -riskα = 0.05 and -riskβ = 0.10, respectively. 

That is, the sampling plans must provide a probability of at least 0.95 of accepting the lot if the lot 

proportion defective is at the SAQL = 1.33 (which is equivalent to about 6.80 PPM fraction of 

defectives), and also provide a probability of no more than 0.10 of accepting the lot if the lot 

proportion defective is at the SLTPD = 1.00 (which is equivalent to 2700 PPM fraction of 

defectives).  
 

Table 4-3. Specification of Y5V/BME/1206/22uF/6.3V. 

Capacitance range 22uF (Size 1206) 

Tolerance on capacitance after 1000 hours -20% to +80% 

Rated voltage UR (DC) 6.3V 

Test voltage (DC) for 1 minute 2.5 X UR 

Tan D <=12.50 % 

Insulation resistance after 1 minute at UR 
(DC) 

Rins. x C > = 500 s 

Maximum capacitance change as a 
function of temperature 

+30% to -80% 

Aging Typically, 12.5% per time decade 

Terminations NiSn  plated 

Resistance to soldering heat 260° C, 10 sec 

 

Table 4-4. The sample data with 55 observations (unit: mm). 

1.554 1.571 1.531 1.644 1.610 1.747 1.655 1.621 1.687 1.463 1.592 

1.632 1.679 1.627 1.546 1.543 1.633 1.520 1.725 1.507 1.619 1.690 

1.375 1.630 1.506 1.724 1.591 1.540 1.667 1.642 1.607 1.576 1.449 

1.500 1.690 1.562 1.612 1.524 1.693 1.618 1.638 1.545 1.501 1.625 

1.619 1.560 1.496 1.652 1.623 1.468 1.623 1.572 1.576 1.653 1.642 
 

Based on the above specified values in the contract, we could find the critical acceptance 

value and inspected sample size of the sampling plan (n, c0) = (55, 1.1215) from the Table 4-1. 

Hence, the inspected samples are taken from the lot randomly and the observed measurements 

are displayed in Table 4-4. Based on these inspections, we obtain that  

X = 1.594, S = 0.076, and ˆ
pkS = 11 1 1

3 2 2
USL X X LSL

S S
− ⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪Φ Φ + Φ⎨ ⎬⎜ ⎟ ⎜ ⎟

⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
= 0.6559. 
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Therefore, in this case, the lot will be rejected by the consumer, since the sample estimator 

from the inspections, 0.6559, is smaller than the critical acceptance value 1.1215 of the sampling 

plan significantly. We note that if existing sampling plans are applied here, it is almost certain 

that any sample of 55 capacitors taken from the process will contain zero defective items. All the 

products therefore will be accepted, which obviously provides no protection to the buyer at all. 
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Chapter 5 

Conclusions and Future Works 

 

How to measure process performance in the manufacturing industries is a major concern for 

the factory managers, and process yield is the most common and standard criteria. The capability 

index Spk provides an exact yield measure (rather than yield range) for normal processes. Many 

researches supporting the use of capability indices have focused on process with single large 

representative sample. However, in practice the process performance is monitored by collecting 

multiple samples periodically. This dissertation considered this type of realistic data structure and 

investigated the sampling distribution of Spk based on multiple samples.  

We note that for processes with the same specification limits and process yield, the variance 

of ˆ
pkS  would be largest while process mean is on the center of the specification limits, so we 

compute the lower bounds of Spk under such condition for assurance purpose. It is noted that the 

lower bounds calculated by normal approximation distribution have larger risk of α  especially 

for smaller total sample size m× n. As mentioned previously, sampling with number of multiple 

samples m = 12, and number of sample size n = 50 is suggested to use the lower bounds from 

normal approximation to have the almost 1-α  confidence level. Furthermore, if the sampling 

replications are allowed, practitioners can even estimate the real process capability from the 

average of lower bounds dividing by the ratio (i.e. Spk LB /ratio).  

Production yield is the most common and standard criteria used in the manufacturing 

industry for measuring process performance. The yield index Spk provides a one-to-one measure 

on the yield of normal processes, while no other indices can. The statistical properties of the 

natural estimator of Spk are mathematically intractable, and the existing approach (the normal 

approximation) does not provide adequate accuracy, particularly, for small sample sizes. In this 

dissertation, we considered the convolution approximation. The proposed approach, indeed, 

outperforms the existing method in providing more accurate and reliable estimation for Spk as 

well as production yield. An efficient step-by-step procedure is developed for using the 
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convolution method to estimate the production yield. The accuracy of the convolution method is 

also investigated, which provides useful information about the sample size required for 

designated power levels, and for convergence. The sample size information and the efficient 

step-by-step procedure are useful to the practitioners for making reliable decisions regarding 

process performance based on production yield.  

Process capability indices have been widely used in the manufacturing industry to determine 

whether a process is capable of reproducing items within a specified tolerance, which provides 

common quantitative measures on production quality. The index Spk is used to establish the 

relationship between the manufacturing specification and the actual process performance, which 

provides an exact measure on the process yield. In this paper, we developed a variables sampling 

plan based on process yield index Spk, to deal with lot sentencing problem for situations with very 

low fraction of defectives. The proposed sampling plan provides a feasible inspection policy, 

which can be applied to products requiring low fraction of defectives where classical sampling 

plans cannot be applied. We developed an analytical method to obtain the critical acceptance 

values and the corresponding sample size required for inspection, providing the desired levels of 

protection to both producers and consumers. We also tabulated the required sample size n and 

the critical acceptance value c0 for various -risksα , -risksβ , and the fraction of defectives of 

process that correspond to acceptable quality levels. The results of a simulation in Table 4-2 is 

used to ascertain the accuracy of the sampling plan based on the normal approximation to the 

distribution of the estimated Spk. Practitioners can determine the number of required inspection 

units and the critical acceptance value, and make reliable decisions. For illustrative purpose, we 

demonstrated the use of the derived results by presenting a case study on capacitors 

manufacturing process. 

In this dissertation, we investigated the sampling distribution of Spk under multiple samples. 

In the future, one may propose the distribution for processes with multiple characteristics. In 

addition, since the convolution method is more accurate than the normal approximation, we may 

design the Spk variables sampling plan based on the convolution approach. 
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Appendix 
 

Appendix I: Taylor expansion of ˆ
pkS  for multiple samples 

Before our derivation, we need to define some notations: 
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The estimator of Spk can be rewritten as  
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Appendix II: Calculation of  lower bounds for multiple samples 

alpha=0.05; 

m=12;     % number of  sub-samples 

n=50;       % number of  sample size 

S=1.0;      % value of  ˆ
pkS  

Spk=S; 

for i=1:1:100000 

Spk=Spk-0.0001; 

Cdp=1/(3*Spk); 

a=sqrt(2)*3*Spk*normpdf(3*Spk); 

p=normcdf((S-Spk)/sqrt(a*a/(36*m*n*normpdf(3*Spk)*normpdf(3*Spk)))); 

if  p>(1.-alpha) break; 

end; end 

fprintf('The true value of  the process capability Spk is no less than %g',Spk) 

Appendix III: CDF and PDF of ˆ
pkS ′′  

A. Notations 
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To simplify the derivation, we define the following notations. Let 

 μ σ= −( )/Z n X , and σ σ= −2 2 2( )/2Y n S .  

Consider the following analytical expansion of ˆ
pkS   
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Using the Leibniz’s rule for derivatives, we get the PDF as follows: 
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Case 5: For D3 > 0, E1 > 0, y0 > –E3. 
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Using the Leibniz’s rule for derivatives, we get the PDF as follows: 
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