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Sampling Properties of the Yield Index Sy With
Estimation Accuracy and Sample Size Information

Student : Ya-Ching Cheng Advisor : Dr. W. L. Pearn

Department of Industrial Engineering and Management
National Chiao Tung University

Abstract

The yield index S,; proposed by Boyles (1994) provides an exact measure on the production
yield of normal processes. Lee et al. (2002) considered a normal approximation for estimating S,.
In the thesis, we extend the results and consider . the sampling distribution of the yield index in
three conditions (i) for multiple samples, (i1) in the eonvolution method, and (iii) for acceptance
sampling. Under multiple samples;-we derive the sampling distribution for the estimator §;, of
Sy, and observe that for the same S, the variance of. S’, would be largest when the process
mean is on the center of specification limits. Lower bounds of S, are tabulated for some
commonly used capability requirements.-Fo assess the normally approximated distribution of
S, we also check out the actual type I error-and compare with the preset significant level. We
also compute the sample sizes requived:for the nermal approximation to converge to the actual
S,» within a designated accuracy. Then; a real-world application of the one-cell rechargeable
Li-ion battery packs is presented to illustrate how practitioners can apply the lower bounds to
actual data collected in multiple samples.

Next, we consider a convolution approximation for estimating S,;,, and compare with the
normal approximation. The comparison results show that the convolution method does provide a
more accurate estimation to S, as well as the production yield than the normal approximation.
An efficient step-by-step procedure based on the convolution method is developed to illustrate
how to estimate the production yield. Also investigated is the accuracy of the convolution
method which provides useful information about sample size required for designated power levels,
and for convergence. Finally, we consider the acceptance determination based on the S, index.
Acceptance sampling plans provide the vendor and the buyer decision rules for lot sentencing to
meet their product quality needs. A variables sampling plan based on the index S, is proposed to
handle processes requiring very low PPM fraction of defectives. We develop an effective method
for obtaining the required sample sizes # and the critical acceptance value ¢, by solving
simultaneously two nonlinear equations. Based on the designed sampling plan, the practitioners
can determine the number of production items to be sampled for inspection and the
corresponding critical acceptance value for lot sentencing.

Keywords: Process capability, production yield, multiple samples, lower confidence bound,
critical value, power of test, acceptance sampling plan, lot sentencing, fraction of defectives
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Chapter 1

Introduction

1.1. Process Capability Indices

Production yield, for a long time, has been a standard criterion used in the manufacturing
industry as a common measure on process performance, and defined as the percentage of
processed product unit that falls within the manufacturing specification limits. For product units
falling out of the manufacturing tolerance, additional cost would be incurred to the factory for
scrapping or repairing the product. All passed product units, which incur no additional cost to the
factory, are equally accepted by the producer. Numerous process capability indices (PCI) have
been proposed to the manufacturing industry, to provide numerical measures on the production
yield as well as process performance. .Fhose indices, such as C,, Cy, Cpn, Co, and Sy, establish
the relationship between the actual process performance and the manufacturing specifications,
which have been the focus of thé recent research in statistical and quality assurance literatures.

The explicit forms of the indices are defined asfollows:

| —m)| USL — LSL . (USL-pu u—-LSL
CaZI—T, CPZT, Cpk :mm{ 30_ , 30_ }Z Can,
c, - USL - LSL . Cpp = min USL - u , 1—LSL and

6302 + (1 —T)> 3o +(u-T) 3o +(u-T)

Sk:lq),l l(D(USL—y}qu)(,u—LSLJ ’
7”3 2 o 2 o

where USL and LSL are the upper and lower specification limits, respectively, u is the process
mean, o is the process standard deviation, m = (USL + LSL)/2 is the center of the specification
limits, d = (USL — LSL)/2 is the half length of the specification limits, T is the target value, ®(-)
is the cumulatively distribution function (CDF) of the standard normal variable, and ®'(-) is

the inverse function of ®(-).



1.2. Literatures Review

The index C, measures the overall process variation relative to the specification tolerance,
therefore only reflects the process precision (the product consistency) (see Juran [20]; Kane [21]).
Owing to the simplicity of the design, C, can not reflect the tendency of process centering. In
order to reflect the deviations of process mean from the target value, several indices similar in
nature to C,, such as Cu, C,, C,u have been proposed. Those indices attempt to take into
consideration the magnitude of process variance as well as process location. The C, index was
developed because the C, index can not adequately deal with cases that process mean is not
centered. However, a large value of C, does not really say anything about the location of the
mean in the tolerance interval. The C, index has been regarded as a yield-based index since it
provides bounds on production yield for a normally distributed process. The C, and C,, indices
are appropriate measures of progress for quality improvement paradigms in which reduction of

variability is the guiding principle and production yield is the primary measure of success.

Taguchi, on the other hand; emphasizes.the loss in a product’s worth, rather than the
production yield, when one of its characteristics departs from the target value. Hsiang and
Taguchi [16] introduced the index C,,,, which was.also proposed independently by Chan et al. [4].
The C,, index is related to the idea of squared error loss, loss(X)=(X —T), and has been called
the Taguchi index. The C,, index incorporates the process variation with respect to the target
value with the manufacturing specifications preset in the factory, which reflects the degree of
process targeting. Chan ez al. [4] also discussed the sampling properties of the natural estimator of
C,». Boyles [2] provided a definitive analysis of C,, and its usefulness in measuring process
targeting. Pearn and Shu [38] provided explicit formulas with efficient algorithms to obtain the
lower confidence bound of C,, using the maximum likelihood estimator (MLE) of C,,,. Pearn et al.
[39] developed a two-phase supplier selection procedure based on the C,, index providing useful

information about sample size required for a designated selection power.

Pearn et al. [35] proposed a third-generation capability index called C,,, which is constructed
by combining the merits of the three indices C,, Cy, and C,,. The index C,,, alters the user either

the process variance increases or the process mean deviates from its target value. The C,,,index



responds to the departure of the process mean from the target value T faster than the other three
indices C,, Cy, and C,,, while it remains sensitive to the changes of process variation. Vinnman
and Kotz [49] obtained the distribution of the estimated C,(u, v) for cases with on-center target.
By taking # = 1 and v = 1, the distribution of C/(1, 1) = C,, is obtained. Chen and Hsu [7]
proposed the asymptotic sampling distribution of C,., and showed that the estimated C,., is
consistent, asymptotically unbiased estimator of C,, and is asymptotically normal while the
fourth moment of the characteristic X is finite. Wright [51] derived an explicit but rather
complicated expression of the probability density function (PDF) of the estimated C,,,. Pearn and
Lin [37] alternatively expressed the CDF and PDF of the estimated C,,, in terms of a mixture of
the chi-square distribution and normal distribution. The CDF form of the estimated C,,, obtained
by Pearn and Lin [37] considerably simplify the complexity for analyzing the statistical properties

of the estimated C,.

1.3. Motivation of Research

Process yield is the most common and standard criteria used in the manufacturing industry
for measuring process performance. The indicesC,,, and C,,. are designed to emphasize the loss
in a product’s worth when one of its characteristics departs from the target value 7. The index C,

can provide yield estimation only for on-center processes, which can be expressed as:
Yield =20(C,) -1,

and for processes with departure mean, the process yield would be less than 2®(C,)-1. The

index C,, can provide interval estimation on the process yield (Boyles [2]), that is
2D (3C,) — 1< Yield< @ (3C,).
Only the yield index S,, provides an exact measure on the production yield.

The organization of this dissertation is as follows. In chapter 2, we consider to estimate the
process yield based on the S, index for multiple samples. In chapeter3, we propose the
convolution method for estimating the process yield. In chapter 4, product acceptance
determination based on the S, index is developed. In the final chapter, we make some

conclusions for evaluating process performance based on the S, index.



Chapter 2
Estimating Process Yield Based on S, for Multiple Samples

2.1. Introduction

Production yield is defined as the percentage of processed product units passing the
inspection. That is, the product characteristic must fall within the manufacturing tolerance. For
processes with two-sided manufacturing specifications, the process yield can be calculated as
Yield = F(USL)—F(LSL), where F(:) is the cumulative distribution function of the process
characteristic. If the process characteristic follows the normal distribution, then the process yield
can be alternatively expressed as Yield = ®[(USL-p)/ c]-®[(LSL-p)/ c]. Take C,. for example, if Cy
= ¢, then the process yield would be in the range of 2®(3c) — 1 and ®(3c), 1.e. 2D (3C,) —
1< Yield< ® (3C,) (Boyles [2]). To .overcome this shortcoming, Boyles [3] proposed the yield
index called S,. There is a one-to-one relationship between S,, and the process yield, Yield =

20(3S,) - 1.

Most of the results obtained regarding the statistical properties of estimated capability indices
are based on one single sample. However, a common practice in process control is to estimate the
process capability indices by using past “in-control data” from multiple samples, particularly,
when a daily-based or weekly-based production control plan is implemented for monitoring
process stability. To use estimators based on several small multiple samples and interpret the
results as if they were based on a single sample may result in incorrect conclusions. In order to
use past in-control data from multiple samples to make decisions regarding process capability, the
distribution of the estimated capability index based on multiple samples should be taken into
account. When using multiple samples, Kirmani et a/. [22] have investigated the distribution of
estimators of based on the sample standard deviations of the multiple samples. Li et al. [27] have
investigated the distribution of estimators of C, and C, based on the ranges of the multiple
samples. Vannman and Hubele [48] considered the indices in the class defined by C,(»,v) and

derived the distribution of the estimators of C,(u,v), when the estimators of the process



parameters 4 and o are based on multiple samples.

In Chapter 2, we investigate the behavior of an estimator of S, for multiple samples. In the
second section (section 2.2.), we compare the yield index S, with the most commonly used index
Cyx, and review some results of S, under single sample. In the third section (section 2.3.), we
derive the sampling distribution for the estimator of §,, under multiple samples and result in a
normal approximation distribution. In the fourth section (section 2.4.), we find that the spread of
S’;k would be largest when the process mean is on the center of specification limits for the same
S, so we calculate the lower bounds of S, from our deriving distribution of S’;k based on the
situation with the largest variance for conservative. In the fifth section (section 2.5.), we show the
accuracy of our normal-approximated distribution of S';k by displaying the histograms of lower
bounds and the actual type I errors. Finally (in section 2.6.), we give an application example to

describe how to use the lower bounds as listed in our tables.

2.2. The Yield Index S,

We consider a group of fiveprocesses as printed in Figure 2-1. For these processes, USL =
36.0, LSL = 24.0, and mean u ="30.0/~30.5,"31.0, 31.5, 32.0, standard deviation ¢ =2.0,11/6,
5/3, 1.5, 4/3, respectively (from process A to E). The C,, value and calculated yield of theses five
processes are all the same as in Table 2-1(a), and the S,, value and its calculated yield in Table
2-1(b). The ‘Actual Yield’ in Table 2-1(a) and 2-1(b) is defined by ® (USL— u)/ o )— ® ((LSL
— u)/ o). We can see that for these five processes the calculated yield of C,, can only guarantee
the lower bound yield, however the calculated yield of S,, value can truly reveal the actual yield

of each process.

For single sample, Lee et al. [26] have derived the distribution of an estimator of S,. The

estimator is defined as

. W 1
§ . =S, +————+0,| ~
T auat

where W is normally distributed with a mean of zero and a variance of a® +5°,

a:% I—Cd,¢{1—Cd,J+l+Cd,¢[l+Cd,j | b:¢[1_%}¢(1+%}’
2 Cdp Cdp Cdp Cdp Cdp Cdp
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Figure 2-1. Distribution of five processes with USL = 36.0, LSL = 24.0.

Table 2-1(a). The C,. valuecalculated yield, and actual yield

of five different processes in Figure 2-1.

Process| u { o | €, {Calculated Yield|Actual Yield
A (30.042.00] 1.0 0.9973 0.9973
B |30.5]1.83}. 1.0 0.9973 0.9985
C |31.0{1.67['1:0 0.9973 0.9986
D |31.5/1.50} 1.0 0.9973 0.9986
E |32.0{1.33| 1.0 0.9973 0.9987

Table 2-1(b). The S, value , calculated yield, and actual yield of

five different processes in Figure 2-1.

Process| u | o Soe Calculated Yield | Actual Yield
A {30.0/2.00]| 1.000000 0.9973 0.9973
B [30.5/1.83|1.055311 0.9985 0.9985
C |31.0/1.67|1.067441 0.9986 0.9986
D |[31.5/1.50| 1.068365 0.9986 0.9986
E |32.0{1.33|1.068385 0.9987 0.9987

#(-) 1is the probability density function (PDF) of the standard normal variable, C, =(x-m)/d,
and C, =o/d. Therefore, S . 1s asymptotically normal-distributed with mean S, and variance
(a*> +b%)/36n4*(3S ) - Furthermore, Pearn and Chuang [34] investigated the accuracy of the

natural estimator of S,, using a simulation technique to find the relative bias and the relative



mean square error for some commonly used quality requirement.

Most of the results obtained regarding the statistical properties of estimated capability
indices are based on one single sample. However, to use estimators based on several small
multiple samples and interpret the results as if they were based on a single sample may result in
incorrect conclusions. In order to use past in-control data from multiple samples to make
decisions regarding process capability, the distribution of the estimated capability index based on
multiple samples should be taken into account. So, following we will investigate the sampling

distribution of §,, on multiple samples.

2.3. Estimating S, Under Multiple Samples

For the case when the studied characteristic of the process is normally distributed and we
have m multiple samples where the sample size of the i/th sample is n. Let x,, i=1,...,m; j=
1,..., n, be the characteristic value of the'mxn samples with mean x and variance o’. Assume
that the process is in statistical control during the time period that the multiple samples are taken.
Consider the process is monitored using a X -chart together with a S-chart. Then, for each
multiple sample, let ¥, and s’ denote the-sample mean and sample variance, respectively, of

the 7/th sample and let N denote the total number of observations, i.e

1 n 1 n m
J?iz—inj, sfz—Z(xij—J?i)z and N=Zn=mn.
ﬂj:1 n-— j=1

i=1

As an estimator of u, we use the overall sample mean, i.e.

SE=— 33,

We consider two ways to compute the variance estimator in estimating S, (Hubele and Vanman

[18]). One estimator of & is the pooled variance estimator defined as

- :—Z(n 1)s2 =—ZZ(xy )

11]1

The other is an un-pooled variance estimator defined as

R DAL



The natural estimator of S, is

§ —toi|loUSLoi) Lol AzLSL)[
”o3 2 o 2 o

A

It is obviously that the sampling distribution of §,, is a very complex function of 4 and & .
However, a useful approximation could be obtained by the following expansion of S,. For

deriving convenience, we use the notations in Lee’s paper:

and then the estimator of S,; can be rewritten as
§,= Lot Lo G| Lol 1tC L
3 2 C, 2 C,

Z:M(,&—,u) and Y:M(&z—az).

>

Let

We note that £ is a complete sufficient statistic and- 6° (for either sf? ors’) is an ancillary
statistic, so by Basu’s theorem Z and Y are independent. Since the first two moments of 4z and
6° exist, by the Central Limit Theorem Y converges to N(0,2c*) under both estimators, sf?
and s?, and Z converges to N(0,0”) as mn 'goes to infinity. Consequently, by the Taylor’s

A

expansion S, canbe expressed as

5 w 1
S,=8, +————+0 ,
Pk Pk 6 /_mn¢(3Spk) p(ﬂ’lﬂ)

where

WLy 1—Cd,¢[1—cd,}1+cd,¢(1+cd,} 1, ¢[1—cd,J_¢[1+cd,J
2| ¢, 'l ¢, ) ¢ 'Lc, )| o C, C,

which is normally distributed with mean zero and variance a° + 5%,

L 1—cd,¢[1—cd,]+1+cd,¢£1+cd,J | b:¢[1—cd,J_¢(1+cd,j
\/5 Cdp Cdp Cdp Cdp Cdp Cdp

and ¢ isthe pdf of the standard normal distribution (See Appendix I for explicit derivation). We

let



A A 1
§,=8,-0, (Ej

Thus, our S’;k is normally distributed, i.e.

& a’ +b
Sp~N|Sy —.——<|
36mng* (35,,)

For testing process performance, we consider the following null and alternative hypotheses:

H,:S,<c, c isaspecified value. (Process is incapable)

H,:S§, >c. (Process is capable)

The testing statistic is

A

where a and b are estimates of a and b, with C, and C, replaced by é‘d, and é’dp

respectively. The null hypothesis Hy'is rejected at-o level if 7>z, , where z, is the upper
100a% point of the standard normal distribution: An approximate 1-—«a confidence interval

for S, is

" 6mnp(38,)° 5 6\mng(38,,) |

Table 2-2. Some different processes and corresponding mn Var(ﬁl’,k) with §,, = 1.0.

7]

o

Cdr

C

dp

a

b

mn Var(.g’;k)

8.0000
8.0452
8.0908
8.1371
8.1846
8.2339
8.2857
8.3407
8.4004
8.4668
8.5431
8.6361

2.0000
1.9995
1.9979
1.9953
1.9915
1.9865
1.9799
1.9716
1.9611
1.9478
1.9303
1.9065

0.0000000
0.0075315
0.0151253
0.0228474
0.0307724
0.0389895
0.0476115
0.0567897
0.0667404
0.0777965
0.0905222
0.1060173

0.3333333
0.3332483
0.3329907
0.3325531
0.3319220
0.3310765
0.3299852
0.3286013
0.3268532
0.3246260
0.3217203
0.3177420

0.0188027
0.0187932
0.0187643
0.0187158
0.0186472
0.0185575
0.0184455
0.0183095
0.0181470
0.0179547
0.0177273
0.0174563

0.0000000
0.0006001
0.0012004
0.0018014
0.0024033
0.0030066
0.0036117
0.0042190
0.0048292
0.0054431
0.0060618
0.0066871

0.499999935
0.499999793
0.499995833
0.499978579
0.499930778
0.499826688
0.499628976
0.499284463
0.498717347
0.497816042
0.496407586
0.494199792




2.4. Lower Confidence Bound of S,

We note that, for the same S, the variance of §), increases as the process mean closes to

the center of the specification limits, and would be largest when the process mean is at the center
of the specification limits. For two processes with the same S,, 1.e. the same process yield, one
with process mean away from the center of the specification limits must have smaller variance in

order to have process yield equal to the other. Also, the process with smaller variance would have

smaller variance of §, .

Table 2-2 shows some different processes and corresponding

mnVar(S!,) with LSL = 2.0, USL = 14.0, and S, =1.0.

Table 2-3. Approximated LB for various m, S'pk ,n=>5(5)50,and « =0.05, 0.025, 0.01.

Svk

1.0

1.33

1.5

1.67

2.0

m | n

0.05 0.025 0.01

0.05 0.025 0.01

0.05 0.025 0.01

0.05 0.025 0.01

0.05 0.025

0.01

5
10
15
20
25
30
35
40
45
50

0.7690 0.7364 0.7018
0.8248 0.7980 0.7690
0.8522 0.8287 0.8030
0.8694 0.8482 0.8248
0.8815 0.8620 0.8403
0.8907 0.8725 0.8522
0.8980 0.8808 0.8616
0.9040 0.8876 0.8694
0.9090 0.8934 0.8759
0.9132 0.8983 0.8815

1.0253 0.9819 0.9358

1.0997 1.0640 1.0253

1.1362 1.1050:1.0707

1.1592 1:1309[1.0997.

1.1754.1.1493 1.1204

1.1876 1.1633 1[1362

1.1973 141744 "1'1488

1.2053 1.1835,1.1592

1.2119 1.1912 1.1679

1.2176 1.1977 1.1754

1.1535 1.1046 1.0528

1.2372 1.1970 1.1535

1.2783°1.2431 1.2046

1.3041'1.2723.1.2372

1.3223 1.2930 1.2605

1.3361.1.3088 1.2783

1:3470°1.3212' 1.2925

1.3560 1.3315 1.3041

1.3635 1.3401 1.3139

1.3699 1.3475 1.3223

1.2817 1.2274 1.1698

1.3747 1.3301 1.2817

1.4204 1.3813 1.3384

1.4491 1.4137 1.3747

1.4693 1.4367 1.4006

1.4846 1.4542 1.4204

1.4968 1.4681 1.4361

1.5067 1.4795 1.4491

1.5150 1.4890 1.4600

1.5221 1.4972 1.4693

1.5380 1.4729
1.6496 1.5961
1.7044 1.6575
1.7388 1.6964
1.7631 1.7240
1.7815 1.7450
1.7961 1.7617
1.8080 1.7753
1.8180 1.7868

1.8265 1.7966

1.4037
1.5380
1.6061
1.6496
1.6807
1.7044
1.7233
1.7388
1.7519
1.7631

5
10
15
20
25
30
35
40
45
50

0.8248 0.7980 0.7690
0.8694 0.8482 0.8248
0.8907 0.8725 0.8522
0.9040 0.8876 0.8694
0.9132 0.8983 0.8815
0.9202 0.9063 0.8907
0.9257 0.9127 0.8980
0.9301 0.9178 0.9040
0.9338 0.9222 0.9089
0.9370 0.9259 0.9132

1.0997 1.0640 1.0253

1.1592 1.1309 1.0997

1.1876 1.1633 1.1362

1.2053 1.1835 1.1592

1.2176 1.1977 1.1754

1.2269 1.2084 1.1876

1.2342 1.2169 1.1973

1.2401 1.2238 1.2053

1.2451 1.2295 1.2119

1.2493 1.2345 1.2176

1.2372 1.1970 1.1535

1.3041 1.2723 1.2372

1.3361 1.3088 1.2783

1.3560 1.3315 1.3041

1.3699 1.3475 1.3223

1.3803 1.3595 1.3361

1.3885 1.3690 1.3470

1.3952 1.3768 1.3560

1.4008 1.3833 1.3634

1.4056 1.3888 1.3698

1.3747 1.3301 1.2817

1.4491 1.4137 1.3747

1.4846 1.4542 1.4204

1.5067 1.4795 1.4491

1.5221 1.4972 1.4693

1.5337 1.5106 1.4846

1.5428 1.5212 1.4967

1.5503 1.5298 1.5067

1.5565 1.5370 1.5150

1.5618 1.5432 1.5221

1.6496 1.5961

1.7388 1.6964
1.7815 1.7450
1.8080 1.7753
1.8265 1.7966
1.8404 1.8127
1.8514 1.8254
1.8603 1.8357
1.8677 1.8444

1.8741 1.8518

1.5380
1.6496
1.7044
1.7388
1.7631
1.7815
1.7961
1.8080
1.8179
1.8265

The lower bounds displayed in Table 2-3 are calculated under the condition that process
mean is on the center of specification limits for assurance purpose. This approach ensures that

the conclusions made based on the lower bounds have the smallest type I error «, the risk of
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wrongly concluding an incapable process as capable. When the practitioner wants to know what
the least process yield (or say S,) is, necessary samples could be taken from the “stable” process
to calculate the S - and check the lower bound. The lower bound represents the minimal S, of

the process with 1—«a confidence level.

For the convenience of practitioners, we also develop a Matlab program to calculate the
lower bounds (see Appendix II). Table 2-3 shows the lower bounds LB computed from the
normal approximation for Spk = 1.0, 1.33, 1.5, 1.67, 2.0, n = 5(5)50, m = 3, 6, and «a = 0.05,
0.025, 0.01. For example, sampling with number of multiple samples 7 = 3 and each of sample
size n = 50, resulting in sampling estimate §pk = 1.67, we then conclude that the process has at

least S,, = 1.5221 with 95% confidence level.

1500 T T T T T T 1500

1000 B 1000+

Frequencies
Frequencies

5001 A 500+

L 1 1 L
0.8 1 1.2 14 i} 18 2 0.8 1 12 13314

Walues of Lower Bounds Values of Lower Bounds
Figure 2-2(a). Histogram of 10000 lower Figure 2-2(b). Histogram of 10000 lower
bounds with S, = 1.00. bounds with §,, = 1.33.

1500 1500

1000 1000 -

Frequencies
Frequencies

soof sonf-

L6167 1.8 2

. . .
08 1 1.2 14 15 16 18 2 0.3 1 12 14
Values of Lower Bounds Values of Lower Bounds

Figure 2-2(c). Histogram of 10000 lower Figure 2-2(d). Histogram of 10000 lower
bounds with S, = 1.50. bounds with S, = 1.67.

2.5. Accuracy of the Normal Approximation
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In order to assess the normally approximated distribution of ﬁ}’,k , we simulate with 10,000
replications to generate 10,000 estimates of S . » calculate their lower bounds, and compare with
the real (preset) S, for various commonly used quality requirement. Figures 2-2(a) to 2-2(d) show
histograms of lower bounds each of 10,000 replications with ¢ = 0.05, m = 3, n =50, S, = 1.00,
1.33, 1.50, and 1.67, respectively. Table 2-4 displays the actual type I errors for various m, n, Sy,

and each with 10,000 simulated lower bounds.

Table 2-4. Simulated type I errors « for various m, n, and S,, with 10,000 lower bounds.

m Sy n=10 | n=20 | n=30 | »=50 | n=100 | n=150 | n=200
1.00 0.1520 | 0.1156 | 0.1015 | 0.0812 | 0.0788 | 0.0680 | 0.0695
1.33 0.1593 | 0.1147 | 0.0987 | 0.0839 | 0.0750 | 0.0680 | 0.0694
1 1.50 0.1634 | 0.1161 | 0.1015 | 0.0869 | 0.0707 | 0.0677 | 0.0656
1.67 0.1629 | 0.1132 | 0.1053 | 0.0842 | 0.0764 | 0.0673 | 0.0663
2.00 0.1691 | 0.1188 | 0.1012 | 0.0845 | 0.0737 | 0.0701 | 0.0684
1.00 0.1126 | 0.0897 | 0.0817 | 0.0748 | 0.0655 | 0.0628 | 0.0602
1.33 0.1124 | 0.0901 '0.0823 | 0.0715 | 0.0677 | 0.0632 | 0.0614
2 1.50 0.1148410.0940.(.0.08427} 0.0706 | 0.0684 | 0.0692 | 0.0663
1.67 0.1158 | 0.0939-/°0.0823 | 0.0754 | 0.0702 | 0.0588 | 0.0584
2.00 0.1223 |0.0904 | 0.0844 | 0.0715 | 0.0639 | 0.0613 | 0.0641
1.00 0.1017 | 0.0838.1{0.0742 1 0.0692 | 0.0629 | 0.0579 | 0.0563
1.33 0.1011+.0.0825 | 0.0726 | 0.0651 | 0.0671 | 0.0560 | 0.0556
3 1.50 0.1016 | 0:0791-0:0784 | 0.0638 | 0.0632 | 0.0600 | 0.0567
1.67 0.1048 | 0.0854 | 0.0681 | 0.0681 | 0.0624 | 0.0586 | 0.0556
2.00 0.1063 | 0.0805 | 0.0772 | 0.0693 | 0.0664 | 0.0644 | 0.0576
1.00 0.0816 | 0.0693 | 0.0705 | 0.0634 | 0.0619 | 0.0573 | 0.0555
1.33 0.0831 | 0.0750 | 0.0669 | 0.0576 | 0.0624 | 0.0545 | 0.0578
6 1.50 0.0832 | 0.0727 | 0.0677 | 0.0634 | 0.0599 | 0.0611 | 0.0555
1.67 0.0861 | 0.0744 | 0.0673 | 0.0576 | 0.0609 | 0.0603 | 0.0575
2.00 0.0763 | 0.0741 | 0.0699 | 0.0681 | 0.0626 | 0.0568 | 0.0558
1.00 0.0739 | 0.0675 | 0.0687 | 0.0573 | 0.0583 | 0.0561 | 0.0553
1.33 0.0752 | 0.0655 | 0.0652 | 0.0546 | 0.0590 | 0.0546 | 0.0550
9 1.50 0.0762 | 0.0671 | 0.0610 | 0.0628 | 0.0528 | 0.0561 | 0.0535
1.67 0.0804 | 0.0688 | 0.0616 | 0.0623 | 0.0597 | 0.0577 | 0.0554
2.00 0.0748 | 0.0713 | 0.0641 | 0.0636 | 0.0609 | 0.0533 | 0.0498
1.00 0.0707 | 0.0643 | 0.0593 | 0.0569 | 0.0553 | 0.0534 | 0.0557
1.33 0.0751 | 0.0657 | 0.0559 | 0.0570 | 0.0625 | 0.0568 | 0.0521
12 1.50 0.0671 | 0.0652 | 0.0641 | 0.0590 | 0.0559 | 0.0559 | 0.0545
1.67 0.0728 | 0.0682 | 0.0625 | 0.0597 | 0.0587 | 0.0577 | 0.0554
2.00 0.0705 | 0.0599 | 0.0645 | 0.0575 | 0.0542 | 0.0538 | 0.0520

12



Table 2-5. Ratios of the average of 10,000 lower bounds and the real S, i.e. LB/ S
m| S, | n=10 | n=20 | n=30 | #»=50 | n=100 | n=150 | n=200
1.00 | 0.8056 | 0.8286 | 0.8483 | 0.8726 | 0.9030 | 0.9178 | 0.9275
1.33 | 0.8122 | 0.8287 | 0.8487 | 0.8729 | 0.9032 | 0.9179 | 0.9273
1 | 1.50 | 0.8156 | 0.8302 | 0.8505 | 0.8730 | 0.9029 | 0.9178 | 0.9271
1.67 | 0.8171 | 0.8312 | 0.8511 | 0.8732 | 0.9032 | 0.9186 | 0.9274
2.00 | 0.8239 | 0.8341 | 0.8510 | 0.8739 | 0.9038 | 0.9177 | 0.9278
1.00 | 0.8283 | 0.8611 | 0.8810 | 0.9030 | 0.9274 | 0.9388 | 0.9460
1.33 | 0.8314 | 0.8636 | 0.8802 | 0.9025 | 0.9276 | 0.9396 | 0.9472
2 | 1.50 | 0.8319 | 0.8627 | 0.8817 | 0.9021 | 0.9285 | 0.9400 | 0.9469
1.67 | 0.8304 | 0.8628 | 0.8815 | 0.9037 | 0.9277 | 0.9391 | 0.9466
2.00 | 0.8358 | 0.8629 | 0.8816 | 0.9020 | 0.9277 | 0.9394 | 0.9471
1.00 | 0.8496 | 0.8820 | 0.8982 | 0.9179 | 0.9390 | 0.9493 | 0.9552
1.33 | 0.8493 | 0.8806 | 0.8979 | 0.9170 | 0.9402 | 0.9497 | 0.9555
3 |1 1.50|0.8484 | 0.8810 | 0.8983 | 0.9179 | 0.9390 | 0.9494 | 0.9555
1.67 | 0.8506 | 0.8815 | 0.8976 | 0.9176 | 0.9393 | 0.9493 | 0.9558
2.00 | 0.8516 | 0.8812 | 0.8987 | 0.9185 | 0.9401 | 0.9498 | 0.9556
1.00 | 0.8807 | 0.9095 }0.9241-} 0.9394 | 0.9563 | 0.9632 | 0.9682
1.33 | 0.8803 | 0.9100 | 0.9239 | 0.9388 | 0.9559 | 0.9634 | 0.9684
6 | 1.50 | 0.8810 | 0:9106--0.9241"{.0.9394 | 0.9561 | 0.9636 | 0.9683
1.67 | 0.8825 | 0.9096 | 0.9241 | 0.9387 | 0.9556 | 0.9635 | 0.9685
2.00 | 0.8819 | 0:9102:{0.9240-{-0.9400 | 0.9563 | 0.9635 | 0.9679
1.00 | 0.8988 | 0.9245 |'0.9369 | 0:9499 | 0.9630 | 0.9697 | 0.9734
1.33 | 0.8994 | 0.9236 1:0.9357-1"0.9495 | 0.9637 | 0.9700 | 0.9735
9 | 1.50 | 0.8988 | 0.9248 | 0.9361 | 0.9499 | 0.9634 | 0.9699 | 0.9736
1.67 | 0.8995 | 0.9244 | 0.9363 | 0.9500 | 0.9638 | 0.9702 | 0.9737
2.00 | 0.8996 | 0.9247 | 0.9369 | 0.9499 | 0.9635 | 0.9697 | 0.9735
1.00 | 0.9104 | 0.9329 | 0.9442 | 0.9561 | 0.9681 | 0.9736 | 0.9770
1.33 1 0.9100 | 0.9330 | 0.9434 | 0.9558 | 0.9683 | 0.9736 | 0.9769
121 1.50 | 0.9093 | 0.9333 | 0.9441 | 0.9557 | 0.9682 | 0.9738 | 0.9771
1.67 | 0.9095 | 0.9337 | 0.9441 | 0.9560 | 0.9682 | 0.9736 | 0.9773
2.00 | 0.9106 | 0.9323 | 0.9446 | 0.9556 | 0.9677 | 0.9735 | 0.9772

The results in Table 2-4 show that when m = 12, n = 50, the confidence level of the normal
approximation is almost equal to the preset 1-a (the confidence levels are all greater than 94%).
As we know, the simulation results are in large variation, and by Central Limit Theorem the
average is in small variation, so we calculate the average of the lower bounds and compare to the

real S,;. Table 2-5 shows the ratios of the average lower bounds relative to the real S,. It is noted
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that no matter what the real S, is, the ratios of LB/S L are almost equal with the same m and n.
Thus, it is reasonable to estimate the true S, from the ratios. For example, when m = 3 and n =
200, practitioners can repeat the sampling procedure, obtain the average lower bound, and

estimate the real S, by LB /0.9558.

Table 2-6. Sample sizes required for the normal approximation to converge with « = 0.05.

Designated Accuracy, &
0.10 | 0.09 | 0.08 | 0.07 | 0.06 | 0.05 | 0.04 | 0.03 | 0.02 | 0.01

1.00 193| 238] 301| 392| 534 769| 1201| 2135| 4802|19208
1.33 342| 422| 534| 697 949| 1366| 2135| 3795| 8537|34147
1 | 1.50 433| 534| 676 882 1201| 1729| 2702| 4802|10805{43217
1.67 534| 659| 834| 1089 1483| 2135| 3335| 5929|13339|53354
2.00 769| 949 1201 1568 2135| 3074| 4802 8537(19208| 76830
1.00 97 119| 151| 196, 267 385 601 1068| 2401 9604
1.33 171 211 267 349| 475/ 683| 1068| 1898 426917074
2 | 150 217| 267 338|_ _441] 601| 865 1351| 2401| 5403|21609
1.67 267| 330| +417| 545/ .742| 1068| 1668| 2965| 667026677
2.00 385| 475 601} -784| 1068} 1537 2401| 4269 9604|38415
1.00 65| 80| 1101 131} 178|- 257| 401| 712| 1601| 6403
1.33 114| 141 178233} 317« 456| 712| 1265| 2846|11383
3 | 1.50 145 178f. 226 294/ 401} 577 901| 1601| 3602|14406
1.67 178| 220{ 278|363 495 712| 1112| 1977 444717785
2.00 257| 317| 401 523] 712] 1025| 1601| 2846| 6403|25610
1.00 33] 40] 51 66| 89| 129 201| 356| 801 3202
1.33 571 71 89| 117| 159 228| 356 633| 1423| 5692
6 | 1.50 73| 89| 113| 147 201| 289, 451| 801| 1801| 7203
1.67 89| 110] 139 182| 248| 356, 556| 989| 2224| 8893
2.00 129] 159] 201] 262| 356] 513| 801] 1423| 3202|12805
1.00 22| 27) 34| 44| 60| 86| 134| 238 534| 2135
1.33 38| 47 60 78| 106| 152| 238| 422| 949| 3795
9 | 1.50 49| 60| 76| 98| 134| 193] 301| 534 1201 4802
1.67 60 74| 93| 121} 165| 238 371 659 1483| 5929
2.00 86| 106| 134| 175] 238| 342 534| 949| 2135| 8537
1.00 170 20, 26 33| 45| 65| 101 178 401| 1601
1.33 29| 36| 45 59| 80| 114 178 317| 712| 2846
12 | 1.50 37| 45| 57 74| 101| 145| 226| 401| 901} 3602
1.67 45| 55| 70| 91| 124 178 278| 495| 1112| 4447
2.00 65| 80| 101] 131} 178 257 401] 712] 1601] 6403

m Spk
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We further consider how many sample size n should be taken to ensure that the sampling
estimator is closed enough to the real S,, within a designated accuracy ¢ (Pearn er al. [36]).
Table 2-6 displays the sample sizes required for the normal approximation to converge to the real
S,» within a designated accuracy ¢ less than 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02,

0.01, respectively, and the derivation is briefly done as follows:

8-S

Prils' -5 |<els1-a =P oo ¢ >1-% 5 2 _>o'(1-a/2
r{ Pk | S € } o T \/Var (S‘;k) \/Val’( 5’;,16) 2 Var( ‘S:[,’k) ( (04 )
_ 2+ B 3 & s (az +b2)[®_1 (1—61/2)}2
36mng’(3S,,) [qyx (I-a /2)]2 - 364°(3S,,)e’

For example, for m =9, S,, = 1.33 with risk « = 0.05, a sample size of n > 3795 ensures that
the difference between the sampling S . and the real S, is smaller than 0.01. Thus, if the
sampling S L = 1.33, then we can conclude, that the actual performance S, > 1.32 with 95%
confidence level. This convergence;investigated is not for practical purpose, but to illustrate the

behavior and the rate of convergence for the normal approximation.

2.6. An Application Example

The integrated circuits (IC) industry has been the most popular industry for previous years.
Products of integrated circuits are various types such as office automation equipment (copiers,
facsimile machines, printers, etc.), vending machines, banking terminals, CD or DVD players,
battery chargers, etc. We investigated a company in Taiwan manufacturing one-cell rechargeable
Li-ion battery packs which have advantages of low current consumption, high withstand voltage,
high accuracy voltage detection, over current and short circuit protection, and wide operating
temperature range. Among the advanced features, the most important one is the high accuracy
voltage detection. Once the voltage detector falls down, the lifetime or reliability of the Li-ion
battery pack will be discounted. The preset upper and lower specification limits of the over charge

detector are USL = 4.40 V, LSL = 4.30 V, and target value is set to T=4.35 V.
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Figure 2-3. The X —S charts based on the collected 12 samples each of size 50.

Table 2-7. The collected electrical characteristic data of 12 samples each of size 50.

subsample| 1 2 3 4 5 6 7 8 9

10

11 12

1

X, 4.3526|4.3483|4.3544|4:3490(4.356314:3542(4.3482|4.3537|4.3535|4.3505

4.3476|4.3502

1

S; 0.0133(0.0120|0.0124]0.0093|0.0104|0.0114|0:0119|0.0174|0.0126|0.0112

0.0104(0.0102

Suppose the minimal precision requirement for this process is set to S,. = 1.0. We calculate

the overall sample mean X, = 4.35154, the pooled sample standard deviation s, = \/g =0.01192,

the un-pooled sample standard deviation s,= \/g =0.01225, and

lq{USLA—,uj +lq)(,u—ALSLj
2 o 2 o

o lq) 4.40-4.35154 +lq) 4.35154-4.30
2 0.01192 2 0.01192

A

-1
Pk @
_ 1

1
3
1
3

or lqyl lq) 4.40-4.35154 +lq) 4.35154—4.30}
3 2 0.01225 2 0.01225

= 1.3871 or 1.3503.

We run the program in Appendix II to find the lower bound as 1.3242 (or 1.2890). Thus, we

conclude that the true value of the process capability S, would be no less than 1.3242 (or 1.2890)

with 95% confidence level.
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To estimate the real S, the factory manager could implement a weekly based control system
by repeating the sampling procedure for consecutive, say 10 weeks, then calculate the average
lower bounds. For example, the ten weeks lower bounds result LB = 1.4527. Refer to Table 2-5,
the biggest ratio of LB/S . form =12 and n = 50 is 0.9561, then he can estimate the real S, =
1.4527/0.9561 = 1.52. The corresponding process yield then could be estimated as 0.999994885,

or equally, fraction of defectives is 5.115 ppm.
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Chapter 3

Procedure of the Convolution Method for Estimating

Production Yield With Sample Size Information

3.1. Introduction

As mentioned in chapter 1, numerous process capability indices (PCI) have been proposed to
provide numerical measures on the production yield as well as process performance. Those
indices, such as C,, C,, Cy, C,,,, and C,., are defined to emphasize the process centering, process
precision or process loss, and only the index S,, provides an exact measure on the production
yield. Note that the capability indices are designed to monitor the performance for stable normal
or near-normal processes with symmétric tolerancés. In practice, the process mean x and the
process variance o’ are unknown. To calculate the index value, sample data must be collected,
and a great degree of uncertainty. may be_introduced ifito the assessments due to the sampling
errors. As the use of the capability indices grows more widespread, users are becoming educated
and sensitive to the impact of the estimators”and their distributions, learning that capability
measures must be reported in confidence intervals or via capability testing. Statistical properties
of the estimators of those indices under various process conditions have been investigated
extensively, including Chan et al. [4], Pearn et al. [35], Kotz and Johnson [23], Vinnman and
Kotz [49], Vannman [47], Kotz and Lovelace [25], Chen [5], Zhang [54], Kotz and Johnson [24],
Lee et al. [26], Xie et al. [53], Spiring et al. [42], Pearn et al. [38], Pearn et al. [36],Pearn et al. [39],
Montgomery [31], Wu [52]. In this chapter, we propose the convolution method based on the S,

index for estimating the production yield for single sample.

3.2. The Yield Index S,

Boyles [3] proposed a yield measurement index, referred to as S, based on the production
yield of normal processes. The yield index S,, as defined previously, also can be alternatively

expressed as
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where C, =(u-m)/d, C,=0/d, m = (USL + LSL)/2 is the midpoint of the specification

limits, and d = (USL — LSL)/2 is the half length of the specification interval.

As mentioned previously, the index C, can only provide interval estimation on the
production yield. The indices C,, and C,, are defined by being related to the customer’s loss.
Only the yield index S, can provide a one-to-one correspondence to the production yield, which

can be expressed as

Yield = 20(35,,) - 1.

Table 3-1 summarizes the corresponding production yields as well as non-conformities in parts
per million (PPM) for S, = 1.0(0.1)2.0, including the most commonly used performance
requirements: 1.00, 1.33, 1.50, 1.67, and 2.00. For example, if a process has capability index
value S, = 1.50, then the yield: of the process is 0.999993205 and the corresponding

non-conformities is roughly 7 parts per million.

Table 3-1. Various S, .values and the corresponding

production yields:as-well as non-conformities in PPM.

Sy Yield PPM
1.00  0.997300204 2699.796
1.10  0.999033152 966.848
120 0.999681783 318.217
130 0.999903807 96.193
133 0.999933927 66.073
140  0.999973309 26.691
150 0.999993205 6.795
1.60  0.999998413 1.587
1.67  0.999999456 0.544
1.70  0.999999660 0.340
1.80  0.999999933 0.067
1.90  0.999999988 0.012
200  0.999999998 0.002

Assume that Xj,...,X, be a random sample of the characteristic from a normal process. The

natural estimator of S, is defined as
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ﬁpk:lcb‘l lo| S | Lo 126 |
3 121¢, ) 21\¢,

where é‘d, =(X-m)/d and édp =S§/d are natural estimators of C, and C,, respectively,

X=1%" X, is the sample mean, and S’ =-1%"" (X,-X)* is the sample variance. The
distribution of the natural estimator of S,, is mathematically intractable as it is a complex function
of the statistics X and S° (or é’d, and édp ). However, we can profile the sampling
distribution of S, by using a simulation technique. Figure 3-1 shows the histograms of S o With
simulation parameters S, = 1.0, £ = (#—m)/o = 0, and sample size n = 20, 30, 50, 80 each
with 10,000 simulated S . - The histograms reveal that the probability density function (PDF) of
S . 1s nearly bell-shaped, symmetric to.the real S, for large sample sizes, and slightly skewed to

p

the right for small sample sizes.

1200} 1 1200}
1000} 1 1000}
. 800} 1 . sl
.5 E
g g
2 600 2 600f
g g
H o
400} 1 amf
200} 1 00}
0 9
05 1 13 1 i 1 15 1
A S
n=20 n=30
1200} 1 1200} L
1000} - 1 1000}
. 800} I 1 . B0}
.§ §
2 o0l 2 so0f
g g
H o
400} 1 amf
200} 1 00}
0 s 9
05 1 15 1 i 1 13 1
A S
n=>50 n=280

Figure 3-1. Histograms of S . With simulation parameters S, = 1.0 and & =0.
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Many researchers have focused on the sampling distribution of S,.. Lee et al. [26] derived a
normal approximated distribution of the estimated S,.. Pearn et al. [34] investigated the accuracy
of the normal approximation computationally, and suggested that a sample size greater than 150
is required for the normal approximation sufficiently accurate. Pearn and Cheng [33] further
derived a normal approximated distribution of the estimated S, under multiple samples, and
investigated the sample sizes required to converge to S, within a designated accuracy. Chen [6]
considered that the formula of the normal approximation is messy and cumbersome to deal with.
Chen [6] applied four bootstrap methods to find the lower confidence bounds on §,;, and showed
that the standard bootstrap (SB) method significantly outperforms the other three bootstrap
methods in coverage fraction. We note, however, the bootstrap re-sampling method results in
different solutions each time, while the theoretical sampling distribution approach provides a

unique lower bound for the same sample estimates.

The distribution of § . 1s analytically intractable, but approximate distributions of S e can
be obtained. In the following sections, two approximate distributions are considered and
compared to the distribution of the estimated §,; obtained via simulations.

3.3. Normal Approximation of S el SA';k

Lee et al. [26] considered a normal approximation of S L » which is denoted S';k in this
paper. The normal distribution of S';k i1s distributed with a mean S, and a variance

(@® +6%)/[36n47(35,,)], i.e.

2 2
S;;k ~N Spk’ ‘ZZ;IQ
36n4°(3S,,) )’

L l—Cd,¢[1—Cd,J+l+Cdr¢(l+Cd,j and b:¢{1—%}¢(1+%}
\/E Cdp Cdp Cdp Cdp Cdp Cdp

The normal approximation is useful in statistical inferences for S,.. Consider the following

where

null versus alternative hypotheses:
H,: S,.<C, a specified value;

H1 . Spk> C.
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The decision rule with 1—a confidence level should be that to reject the null hypothesis Hy if
the sample statistic S . 1s equal to or larger than the critical value ¢, where ¢ satisfies the
following equation

Pr{S’;chOIHO:SkaC}Sa.

Lee et al. [26] suggested performing the hypothesis testing with the test statistic

6/ng(3S )
Va2 +b? ,

where & and b are the natural estimators of @ and b, with C;, and C,, replaced by é'd, and édp ,

T=(3,-C)

respectively. Then, the decision rule becomes that the null hypothesis Hy would be rejected if

T >z,,where z, isthe upper 100a% point of the standard normal distribution.

This approach is intuitive and reasonable, but introduces additional sampling errors from
estimating a and b (or C, and C,) with,1d ' and b (or éd, and édp ). Thus, it would certainly
become less reliable. For example,-in Table 3-2 the sample estimate of S,, in Process B is larger
than the one in Process A, but contradictorily it turns out a smaller test statistic 7 in Process B.
Table 3-2 shows a couple of examples for testing Hy: §,.< 1.0 versus H;: S,, > 1.0 in which the
sample estimate of S, is larger (e.g./Processes B, D, F, and H), but on the contrary, the

corresponding test statistic 7 is smaller.

Table 3-2. Contradiction between S . and test statistic 7'in Lee’s method.

Process X N C, C, S . T

A 7.695115 1.365970 0.139023 0.273194 1.114490 0.807547
B 7.674245 1.372115 0.1348349  0.274423 1.114555 0.807412

C 7.707630 1.335160 0.141526 0.267032 1.134942 1.207505
D 7.681125 1.342895 0.136225 0.268579 1.135032 1.207252

E  7.683340 1314965 0.136668 0.262993 1.156439 1.063747
~F 7650165 1.324405 0.130033 0.264881 1.156573 1.063459

G 7.700125 1.219685 0.140025 0.243937 1.234395 1.929673
H 7.680760 1.224995 0.136152 0.244999 1.234452 1.929267

Pearn et al. [36] showed that for a specific S, (e.g. S, = C), the variance of .SA';k would be

the largest with on-center processes, i.e. with & =(u—m)/o = 0. Consequently, the critical value
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of testing Hy: S,.< C versus H;: S,, > C would be the largest, and the test statistic 7 would be the
smallest with & = 0. Hence, for practical purpose we would obtain the test statistic (or critical
value) with & = 0 without having to further estimate the parameter & (or parameters g and b).
The test statistic 7 obtained in this way is increasing in S L« » and there would be no contradiction.
Pearn et al. [36] listed in the Table III of the published paper the critical values ¢, of the S';k

approach which were obtained by the following probability

Pr{$),>¢,|S, <Cand ¢ =0}<a.

Lee et al. [26] showed that the normal distribution of 3‘;k can produce an adequate
approximation to the actual distribution of S . for a large enough sample size. However, Pearn
et al. [36] noted that the normal approximation would significantly under-calculate the critical
values for small sample sizes, and suggested that a sample of size greater than 150 is
recommended in real applications, for which the magnitude of under-calculation would be as
large as 0.02 at most. Since the critical value, of the SA’I’% approach is significantly

under-calculated for small sample:sizes, it is necessary to:do some improvement.

3.4. Convolution Approximation of.S o S’Zk

The critical value obtained from the 'normal approximation is significantly under-calculated
for small sample sizes. Thus, we go further to do some improvement by considering a
convolution approximation of the estimated S,. First, we define the two random variables
Z=Jn(X-u)/c and Y =+n(S*-0%)/20> . The two random variables Z and Y are
independent since X and S® are independent variables. It is well-known that the variable Z
follows the standard normal distribution N(0, 1) according to the famous Central Limit Theory,
and Y can be expressed as a function of a chi-square random variable with n—1 degrees of

freedom, i.e.

Z~N(01), ¥ ~%(&5-1).

Then, we can rewrite the form of § . as the following analytical expansion:

S,=S,+DZ+DY+D,Z’ +D,ZY + D,Y" +op(n1n),
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where

_ 1[4 _ [ _1 Sk 2
Di=—| — 2 || Dy=—e| — | Dy== - ,
Jn (6¢<3Spk>J Jn (6¢<3Spk>J n 8[43s,0]  120035,)

L Suth A | 1 Seh | 34 |
n\4[4(3s,)] ©64(3S,) n| 8[p3S,) | 124(35,)

k k
/116: I_Cdr p 1_Cdr +(—1)k+1>< 1+Cdr p 1+Cdr  k=0,1,2,3.
C c, C C

dp dp dp

Let

S=S,+DZ+D)Y+D,Z*+D,ZY + D,Y*.

The cumulative distribution function (CDF) of LSA’]’,’k,

Fs”k (x), then can be derived by the

probability
F. (x)= Pr{S;’k Ly < 0}
e 2
—prD, Z+D1 +DY ¥ E (Y +£,) N A (x) <ol
2D, 4D, 4D,E,
where

E =D} -4D,D,, E,=DD,-2D,D,, E,=2, E, = 4D;S,, - D?, and

_E_]’

A(x)= Ez2 —E(4D;x - E,).

The explicit form of the CDF of §;k is presented in the Appendix. The CDF of 3;; consists of

eight parts according to the signs of D;, E; and yy+Ej;, where y, = —@ is the minimal value of the

variable Y. Applying the Leibniz’s rule for derivatives, we can also obtain the probability density

function (PDF) of 3;,6 .
Again, we consider the following hypothesis testing

H,: §,.<C, a specified value;

H1 . Spk> C.

It is inevitable to face the same problem or contradiction as in the normal approximation. Thus,
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we examine the behavior of the critical values ¢, against the parameter & before we do the

hypothesis testing for S,.. We perform extensive calculations to obtain the critical values ¢, for

&= 0(0.05)3.0, » = 20(10)200, S,,= 1.0(0.1)2.0, 1.33, 1.67, and confidence level 1-a = 0.95.

Figure 3-2 shows parts of the results for & versus the critical values. The parameter values we

investigated, & = 0(0.05)3.0, cover a wide range of applications with process capability S,.> 1.0.

Note that for an on-center process the yield index S, < 1.0 indicates that six-sigma of the process

is larger than the manufacturing specification tolerance, i.e. 6o >USL — LSL , and such a process

is said to be inadequate. The results of our extensive calculations show the following features of

the critical values obtained from the convolution approximation.

(M)

(ii)

(iii)

(iv)

)

(vi)

(vii)

(viii)

The critical value obtains its maximum with £ around 0.5, minimum with &= 0, and

stays at the same value for £>1.0 in all cases.

The critical value reaches its maximum with & slightly larger than 0.5 for n <50, and

with & slightly smaller than:0.5 for.z > 50.

The larger the sample size'n, the smaller the diffetence between the maximal and minimal

critical values.

The larger the sample size #, the Jarger the difference between the maximal critical value

(with & around 0.5) and the converged critical value (with £>1.0).

The larger the value of S, the larger the difference between the maximal and minimal

critical values.

The larger the value of S, the smaller the difference between the maximal critical value

(with & around 0.5) and the converged one (with £>1.0).

The difference between the maximal critical value (with & around 0.5) and the

converged critical value (with £2>1.0) is always less than 0.0006.

The critical value is increasing in S, (the testing parameter), and decreasing in sample

size n, which is definite in the statistical inference.

25



T
11861 R
- 11265 F - B
I 4 ‘\
1184} i ] RN
I i AN
l'[ l. \‘-.
/ [RE -~ B
o
ERICI - 5 |
= i > i
= i o 1
e i R g
5 11@t .'J i 5 ;.
} H
{ ]
{ !
el ] Rk ¥ B
! !
/
1481 q 11245+ g
. . . . . . . . .
0 0.6 1 1.6 2 2.5 3 0 05 1 15 2 25 3
4 g
n=>50, S,,=1.00 n =100, S, = 1.00
1.579 : T T 16F T =
1.678 1 1.4005 4
. po—
1877 1 -~ 4 1.499 P i
, /
4 ]
{ s
1.6761 i B 1.4885 H B
i ¢
[} i
8 1s5F ! g L 14omp |
= ! o {
o teal f ] ;14975* !
Bl 1 B 1
= H = Il
51873 | | o4l g
8] :. 8] r,-
16721 ) 1 1,485 7
] ]
T J
rert |} i 1A9ef 1
/ 1.4955 | 1
157F B
1495 -
1.669 . . . . . . . . L
a 0.s 1 1.5 2 25 3 o 0.s 1 15 2 2.5 3
4 ¢
n=>50,S,,=1.33 n =100, S,,=1.33
1782 T T T
1692 F
1.78 -
=
/ 1691 b s
17eb B 7
/ H
u ! =1
S7rab i = i
= H = !
ks ! 3 {
3 H .2 16|
EATTaL 1 Bl B H
4] ! < ]
i {
177211 E 1688 |
! /
K
1.77 g 1687 L
1768 . . , , , , , . . .
a 0.s 1 1.5 2 2.5 3 o 05 1 1.5 2 258
4 4
n=100, S, = 1.50

n=50,S,=1.50

Figure 3-2. & versus critical values for various # and S,.

For assurance purpose, we calculate the critical value based on the convolution
approximation with £=0.5 to obtain the maximal critical value ¢, for testing the hypotheses Hy:

S,.< C versus H;: S, > C, since the critical value ¢, reaches its maximum with ¢ around 0.5 in

all cases.
Pr{87,>¢,|S, <Cand ¢ =0.5}<a.
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Thus, the level of confidence can be ensured, and the decisions made based on such an approach

are indeed more reliable. We note that the above result is impossible to prove mathematically.

3.5. Comparisons of Both Approximations
3.5.1. Comparison of probability curves

We perform extensive calculations to draw the PDFs and CDFs of § o, and S . as well as
the density and distribution curves of the estimated S, via simulation for process parameters & =
0(0.25)1.0, S, = 1.0(0.25)2.0, and sample size n = 30, 50, 80, 100. Each of the density and

distribution curves is obtained by 1,000,000 simulated S . - Parts of the calculation results are

presented in Figure 3-3. The calculation results also reveal the following general features.

(i) The density curve of S . 1s nearly bell-shaped, symmetric to the real S,, and so are the

PDFs of S’I',k and S’;’k.

(i) The tail probability of S 7. 1s closer to the one of the simulated S . than that of S’I',k .

(iii) The CDFs of SA’}Qk and §;k are closer to- the distribution curves of §pk with a large ¢&

than those with a small &.

and S’

iv) The larger the sample sizes #, the:smaller the variance of S , S’ , which is
g p Pk Pk

Pk

definite for all sample estimators.

The calculation results show that the cumulative distribution functions of S’I','k are closer to
the distribution curves of the simulated S . than CDFs of S '« - Though the distribution function
of § 7 (the convolution method) is more complicated than that of SA’;k (the normal
approximation), it does produce a more accurate approximation to the sampling distribution of
S,. than the normal approximation. Besides, by the high development of computer technology,
complex functions are no longer a problem for calculation. Making a decision accurately is

relatively more important than easy calculation.

27



: T y T T T . . 1F T T
e PDF(.S:,‘) | okl CDF(S:k)
_____ PDF( S simulation parameters: ----- CDF( &)
* 8. =15, £=00, n=80 o.el ok
3r| ——pPDF(S) * ] ——CDF(&,)
ok ke
0Tt q
251
051 q
= If e 4
£ Zos
L5p 041 b
1F 03¢ simulation parameters: |
0.2k § =10,£=00,1=350 |
0.5 -
0.1 q
P — ‘ ‘ ‘ ] 0 ‘ : ‘ ‘ . ]
0.8 1 1.2 1.4 Lé 1.8 2 2.2 0.4 0.6 0.8 1 1.2 14 Lé
X X
3= . . . . . . ‘ ‘ — . —
""""" PDF(S:k) simulation parameters: ook CDF(S:k)
el FDE(S.) S0 =20, £=00, x=80 | A CDF(S,)
——FDE(S,) ——CDF(SL)
b LA
0.8
) =
£ Zos
1l 0.4
0.3 simulation parameters:
05k 0.2 Sﬂ=1.5,¢=0.0,n=50
0.1
1) S —— —
. . . . . . . . . ) T T . . . . .
1.2 14 1.6 1.8 2 2.2 24 1.6 1.8 0.8 1 1.2 14 1.6 1.8 2 2.2
x x
33— T T T T T T T T 1E— T
.......... PDF(S;k) simulation parameters: 0.9k CDF(S:!':)
el FDE(S) 5,=20, £=05, 2 =80 | o CDF(S,)
——FDE(S,) ——CDF(SL)
b LA
0.6
151 ™
w o
& g 02
n 04
0.3 simulation parameters:
05k 0.2 Sﬂ=1.5,¢=0.5,n=50
0.1
[ P ———
. . . . . . . . . 0 n n i . . . . .
.2 14 18 18 2 22 24 1§ 18 0.8 1 1.2 14 1.6 1.8 2 2
x x

Figure 3-3. The PDF (Lh.s.) and CDF (r.hs.) of 8!, and S/, as

A

well as the density and distribution curves of §,, via simulation.

3.5.2. Comparison of critical values

Decision rule for testing hypotheses Hy: S,.< C versus H;: S,. > C based on the normal and
convolution approximations are conducted, respectively. The critical value which is closer to the
critical value of the simulated S . 1s regarded as the more accurate and reliable one. We know
that for the same S, the maximal variance of .SA’;,Q occurs at £ = 0, i.e. process mean is on the
center of the specification limits (Pearn et al. [36]). Thus, when testing the hypotheses based on

the distribution of §;k , we would set &= 0 to obtain the maximal critical value of the normal
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approximation. On the other hand, we would set &£ = 0.5 while testing the hypotheses based on

the convolution method for the same reason.

To compute the critical value of the convolution method, we develop a Matlab program
(available on request). The program reads the minimal capability requirement C, the significant
level «, and the sample size n, and outputs with the critical value. Table 3-3 shows the critical
values for the normal and convolution approximations as well as the one of S . Via simulation,
for testing hypotheses Hy: S,.< C versus H;: S, > C with significant level o = 0.05. The critical
values of § . (via simulation) and S ' (the normal approximation) are extracts from those
presented in the paper of Pearn et al. [36]. We note that the critical values of the convolution
approximation are always larger than those of the normal approximation, and are closer to the
critical values of the simulated S ., the 100(1-«) percentile point of S . under Ho. That is
the accuracy of the convolution method is greater than the normal approximation.

Note that the normal approximation_significantly under-calculates the critical values for
small sample sizes, particularly for #<40, as thesmagnitude of the under-calculation exceeds 0.1.
The large magnitude of under-cdlculation -results in hiige probability of wrongly rejecting Hy:
S,x<C while actually the yield indéx §,. is smallet than or equal to a specific value C, which
incurring the risk of the customers by accepting products with less quality assurance. Therefore,
for short run applications, one should avoid using the normal approximation. It is also noted that
the magnitude of under-calculation of the normal approximation can be as large as 0.03 for n =
110, and 0.02 for » = 150. Thus, in real applications a sample of size greater than 150 is

recommended for using the normal approximation (Pearn ez al. [36]).

The convolution method also under-calculates the critical values, but it always provides a
closer estimate to the critical value of S . than the normal approximation. The magnitude of the
under-calculation of the convolution approximation is as large as 0.03 for » = 60, 0.02 for » = 70,
and 0.01 for n = 90. As we know previously, the magnitude of under-calculation of the normal
approximation is as large as 0.03 for » = 110, and 0.02 for » = 150. That is, if the allowable
magnitude of under-calculation is 0.02, a sample size of 70 is enough for using the convolution

method, while a sample size of 150 is enough for the normal approximation, which is more than
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twice sample sizes of the convolution method. Thus, the proposed convolution method does

provide a better reliability assurance than the existing normal approximation.

Table 3-3. Critical values of the two approximations versus the simulated ones.

Sy 1.00 1.33 1.50 1.67 2.00
n S, S8 S, S, 8 S, S $§. S8, S, 8 S, 8 S S,
20 126 1.31 137 1.68 1.74 1.82 1.89 197 205 211 2.19 2.30 2.52 263 2.74
25 1.23 1.27 1.31 1.64 1.69 1.75 1.85 191 198 2.06 2.13 2.20 247 256 2.63
30 121 1.25 1.28 1.61 1.66 1.70 1.82 1.87 193 2.03 2.09 2.14 243 2.50 2.57
35 1.20 1.23 1.25 1.59 1.63 1.67 1.80 1.84 1.89 2.00 2.05 2.10 2.39 246 2.51
40 1.18 1.21 1.23 158 1.61 1.64 1.78 1.82 1.85 198 2.02 2.06 237 242 247
45 1.17 120 1.22 1.56 1.59 1.61 1.76 1.80 1.82 1.96 2.00 2.02 235 240 243
50 1.16 1.18 1.20 1.55 1.58 1.60 1.75 1.78 180 195 198 2.01 2.33 2.38 240
55 1.16 1.18 1.19 1.54 1.56 1.58 1.74 1.77 1.79 193 197 199 2.31 236 2.38
60 1.15 1.17 1.18 1.53 1.55 1.57 1.73 1.75 1.77 192 195 198 2.30 2.34 2.36
65 1.14 1.16 1.17 1.52 1.54 1.56 1.72 1.74 1.76 191 194 1.96 229 232 234
70 1.14 1.15 1.16 1.52 1.54 1.55 1.71 1.73 1.77 190 193 1.95 228 231 233
75 1.13 1.15 1.15 1.51 1.53 1.54 1.70 1.72 1.74 1.89 192 194 227 230 231
80 1.13 1.14 1.15 1.50 1.52 41.53 1.701.72  1.73 1.89 191 193 226 229 231
85 1.13 1.14 1.14 150 1.51 1:53 1.69 1.71 #1.72 1.88 1.90 1.92 2.25 228 230
90 1.12 1.13 1.14 149 1s51.1.52 1.68+1.70 ' 1171 1.88 1.90 1.91 225 227 228
95 1.12 1.13 1.14 149 150 1.51 1:68 1.70 171 1.87 1.89 1.90 2.24 226 227
100 1.12 1.13 1.13 149 150.1.50 16777169, 1.70 186 1.88 1.89 223 226 227
105 1.11 1.12 1.13 1.48 1.494 1.50 1.67 169+ 1.70 1.86 1.88 1.89 223 225 226
110 1.11 1.12 1.13 148 149 1.50 1'67.1.68 169 186 1.87 1.89 222 224 225
115 1.11 1.12 1.12 147 149 1.49 166 1.68 1.69 1.85 1.87 1.88 222 224 225
120 1.11 111 1.12 147 148 149 166 1.67 168 185 1.86 1.87 221 223 224
125 1.10 1.11 1.12 1.47 1.48 149 1.66 1.67 1.68 1.84 1.86 1.86 221 223 224
130 1.10 1.I11 1.12 147 148 148 165 1.67 168 184 1.86 1.86 220 222 223
135 1.10 1.11 1.11 146 147 1.48 1.65 1.66 1.67 1.84 1.85 1.86 220 222 223
140 1.10 1.I11 1.11 146 147 148 165 166 167 183 1.85 1.86 220 221 222
145 1.10 1.10 1.11 146 147 1.48 1.65 1.67 1.66 1.83 1.84 1.85 2.19 221 222
150 1.10 1.10 1.11 146 147 147 164 165 166 183 184 1.85 2.19 221 221
155 1.09 1.10 1.10 145 1.46 147 1.64 1.65 1.66 1.83 1.84 1.84 2.19 220 221
160 1.09 1.10 1.10 145 146 147 164 1.65 1.65 1.82 1.84 1.84 2.19 220 2.21
165 1.09 1.10 1.10 145 1.46 1.46 1.64 1.65 1.65 1.82 1.83 1.84 2.18 220 2.20
170 1.09 1.10 1.10 145 146 146 1.63 1.64 1.65 1.82 1.83 1.84 2.18 2.19 220
175 1.09 1.09 1.10 145 1.46 1.46 1.63 1.64 1.65 1.82 1.83 1.83 2.18 2.19 220
180 1.09 1.09 1.10 145 145 146 1.63 1.64 1.65 1.82 1.83 1.83 2.17 2.19 2.19
185 1.09 1.09 1.09 144 145 1.46 163 1.64 1.64 1.81 1.82 1.83 2.17 2.18 2.19
190 1.08 1.09 1.09 144 145 145 163 164 164 181 182 1.83 2.17 2.18 2.19
195 1.08 1.09 1.09 144 145 145 163 1.63 1.64 1.81 1.82 1.82 2.17 2.18 2.18
200 1.08 1.09 1.09 144 145 145 162 163 164 181 1.82 1.82 2.16 2.18 2.18
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3.5.3. Comparison of powers

The power of test calculates the probability of correctly rejecting the null hypothesis Hy:
S,:< C while actually S, > C. It is well known that the power of test is the larger the better. As we
know previously, the critical value of the normal approximation is highly under-calculated for
small sample sizes. Consequently, the power (probability of rejecting Hy,) would be highly
over-calculated if the under-calculated critical value is used as the testing rule. To compare both
approximations on the same basis, we define and calculate the power of both approximations as
the probability that the sample estimator is larger than the critical value ¢, of simulated S e as
follows:

power(S’;k) = Pr(S'I',k >¢c, 1S, under H,, £=0),

power(.ﬁ';k) = Pr(.ﬁ';k >¢, 1S, under H;, £=0.5).

Power
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Figure 3-4. Power curves for testing (a) Hy: S,< 1.0 vs Hy: S, > 1.0,
n = 30; (b) Ho: S,p<1.0 vs Hy: Sy > 1.0, n = 50; (c) Ho: Spe< 1.5 vs
H: S>> 1.5,n=30;(d) Hy: Se<1.5vs Hy: S > 1.5, n = 50.
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Figure 3-4 shows the powers of the normal and convolution approximations for testing (a)
Hy: S, < 1.0 versus H;: S, > 1.0 with sample size n = 30, (b) Ho: S,x< 1.0 versus H;: S, > 1.0 with
sample size n = 50, (c) Hy: S,e< 1.5 versus Hy: S, > 1.5 with sample size n = 30, and (d) H:
Se< 1.5 versus Hy: S, > 1.5 with sample size n = 50 and « = 0.05. Obviously, the power of the
convolution method is always greater than the normal approximation, which means the
capability of correctly rejecting the bad product lots of the convolution method is stronger than

that of the normal approximation.

So far we know that the tail probability and critical value of the convolution method are
closer to those of the simulated S . than those of the normal approximation, and the power of
the convolution method is always greater than that of the normal approximation. All of above
indicate that the convolution method does make a more accurate and reliable approximation to

the sampling behavior of S, than the normal approximation.

Following, we develop an efficient step-by-step procedure based on the convolution method
for testing hypotheses Hy: S, <*C wversus Hi.#S, > C, where C is the minimal capability
requirement defined by the customer or product designer. Engineers or practitioners can easily

apply the procedure to their in-plant ‘applications to obtain reliable decisions.
Procedure for using the convolution method

Step 1. Decide the minimal capability requirement C of S, (normally set to 1.00, 1.33, 1.50,

1.67 or 2.0), and the significant level « (normally set to 0.10, 0.05, or 0.025).
Step 2. Randomly sample # samples from the products.
Step 3. Calculate the sample estimate of S o -

Step 4. Check out Table 3-3 or run the Matlab program (available on request) for the critical
value based on the corresponding capability requirement of S, significant level and

sample size 7.

Step 5. Conclude that the product capability S, is larger than the minimal capability
requirement C, and production yield is larger than 2®(3xminimal requirement)—1

with 100(1-a)% confidence level, if the sample estimate S . 18 larger than or equal
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to the critical value ¢, of the convolution method. Otherwise, we do not have sufficient

information to make such a conclusion.

3.6. Accuracy Analysis

The information of required sample size is important for in-plant applications, as it directly
relates to the cost of the data collection plan. Following, we investigate the accuracy of the
convolution method which provides useful information about the sample size required for

designated power levels and for convergence.
3.6.1. Sample size required for designated power

The decision rule of hypothesis testing depends solely on the significant level «, the
maximal probability of Type I error, and ignores the probability of Type II error £ . Once the
sample size n and «a risk are chosen for testing a hypothesis, the power of test 1- £, the
probability of correctly rejecting H, while H, is true, will be fixed. To decrease the /£ risk and at

the meantime maintain the « risk in a-small level, the sample size should be increased.

The required sample size of the cenvolution-method can be obtained by a recursive search
with the following two constraints:

Pr{87,>¢c,|S, <Cand ¢ =0.5}<a,and

Pr{87,2¢,1S,> Cand £ =05 >1- 4,

where ¢, is the critical value of the convolution method. Table 3-4 shows the minimal sample size
required for testing Hy: S,<C, C = 1.0, 1.33, 1.50, 1.67, while actually S,, = C + h, h =
0.15(0.05)0.35, with designated « levels = 0.1, 0.05, 0.025, and power levels = 0.7, 0.8, 0.9,

0.95.

Note that the sample size required is a function of the « and power levels, the minimal
capability requirement C of S,, and the difference between the actual value of S, and the
minimal requirement C. Table 3-4 shows that the larger the difference, the smaller the sample
size required for fixed o and power levels. For fixed o, minimal requirement C, and actual

value of S, the sample size increases as the designated power level increases. This phenomenon
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can be explained easily, since the smaller the difference and the greater the desired power level,

the more sample size should be collected to account for the smaller uncertainty in the estimation.

Table 3-4. Sample size required for designated power levels of the convolution method.
(@ Hp: Sp<1.0vsHy: S, > 1.0 (b) Hp: S,x<1.33vs H;: S, > 1.33

power power
Spe 0.7 08 09 0095 a Spe 07 08 09 095

0.1 1.15 83 113 161 207 0.1 1.48 142 194 278 360

(2

1.20 49 66 212 265 1.53 83 113 161 207
1.25 33 44 62 78 1.58 55 75 106 135
1.30 24 32 44 55 1.63 40 53 75 95
1.35 18 24 33 40 1.68 30 40 56 71

0.05 1.15 120 156 212 265 0.05 148 205 267 366 458
1.20 71 91 124 154 1.53 120 156 212 264
1.25 47 61 82 101 1.58 79 103 140 173
1.30 34 44 59 72 1.63 57 74 99 123
1.35 26 33 44 53 1.68 43 56 75 92

0.025 1.15 158 199 262 321 0.025 148 270 340 451 554
1.20 93 116 153 187 1.53 157 198 262 321
1.25 62 77 101 125 1.58 104 131 172 210
1.30 44 56 73 88 1.63 74 94 123 149
1.35 33 42 55 66 1.68 56 71 93 112

(c)Hp: Se<1.5vsHi: S > 1.5 (d) Hp: Sp<1.67vs Hy: S, > 1.67

o Sy power o Sy power

0.7 08 09 095 0.7 08 09 09
0.1 1.65 179 244 352 454 0.1 1.82 220 301 433 560

1.70 104 142 203 261 1.87 128 174 250 321
1.75 69 94 133 170 1.92 84 113 163 210
1.80 49 67 94 120 197 60 82 116 148
1.85 37 50 71 90 202 46 62 87 110
0.05 1.65 259 337 462 579 0.05 1.82 318 415 569 712
1.70 150 195 267 333 1.87 185 240 328 407
1.75 99 129 175 218 1.92 122 158 215 268
1.80 71 92 125 155 1.97 87 113 153 190
1.85 54 69 94 116 202 65 8 115 142
0.025 1.65 340 429 569 700 0.025 1.82 418 528 700 860
1.70 197 249 329 403 1.87 242 305 404 497
1.75 130 164 216 264 1.92 159 201 265 325
1.80 93 117 154 187 1.97 114 143 189 230
1.85 70 88 116 141 2.02 8 108 142 172
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3.6.2. Sample size required for convergence

Table 3-5 displays the sample sizes required for the convolution approximation to converge

to S,, within a designated accuracy &= 0.12(0.01)0.03.

For example, for S,, = 1.33 with risk o= 0.025, a sample size of n > 3831 ensures that the
difference between sample estimate and actual parameter would be no greater than 0.03 with
97.5% confidence. Thus, if S = 1.33, then we may conclude that the actual S, is greater than
1.3, actually in the interval of (1.30, 1.36), with 97.5% confidence. Note that the investigation is

not for practical purpose. But, the computations illustrate the rate of convergence for the

r

convolution approximation to converge to actual S.

3;,6 —Spk‘ﬁg}zl—a

Table 3-5. Sample size required for the convolution approximation to converge.

Designated Accuracy, ¢

S @ 0.12 0.11 .0.10 0.09 .0.08 0.07 0.06 0.05 0.04 0.03
1.00 0.1 88 106 = 129 - 159 . 203" 266 363 523 819 1459
0.05 127 151= '184 228 289 - 378 518 744 1164 2072

0.025 167 200+ 242 .-.299 380~ 496 676 975 1524 2288

1.33 0.1 159 189 230" 284 361" 472 644 929 1210 1789
0.05 226 270 3270 405, .-513 672 875 1319 1543 2706

0.025 298 355 430 531 673 8380 1199 1727 2183 3831

1.50 0.1 203 242 294 364 461 603 822 1184 1852 3296
0.05 289 345 418 517 655 840 1168 1683 2631 4680

0.025 380 453 549 678 859 1122 1529 2203 3443 5225

1.67 0.1 253 302 366 453 574 750 1022 1473 2303 4097
0.05 361 430 521 644 811 1066 1452 2092 3271 5818

0.025 473 564 683 767 1068 1396 1901 2738 4280 7455

2.00 0.1 366 437 529 654 828 1082 1474 2124 3321 5444
0.05 521 621 752 929 1177 1538 2094 3017 4716 8387
0.025 683 731 985 1217 1540 2013 2741 3946 6170 10970
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Chapter 4

Product Acceptance Determination Based on the S, Index

4.1. Introduction

Acceptance sampling plans are practical tools for quality assurance applications, which
provide the supplier and the customer a general decision rule for lot sentencing that meets both of
their requirements for product quality. Acceptance sampling plans, however, cannot avoid the
risk of accepting undesired poor product lots, nor can it avoid the risk of rejecting good product
lots unless 100% inspection is implemented. A well-designed sampling plan can effectively reduce
the difference between the required and the actual supplied product quantity. An acceptance
sampling plan is a statement regarding theirequired sample size for product inspection and the
associated acceptance criteria for sentencing/each individual product lot. The criteria used for
measuring the performance of an-acceptance sampling plan is based the operating characteristic
(OC) curve which quantifies the risks for' vendors-and buyers. The OC curve plots the probability
of accepting an individual lot versus the actual product fraction of defectives, which displays the

discriminatory power of the sampling plan.

For product quality protection and company’s profit, both the vendor and the buyer would
focus on certain points on the OC curve to reflect their benchmark risk. The vendor (supplier)
would usually focus on a specific product quality level, called acceptable quality level (AQL), which
would yield a high probability, 1—«, of accepting a lot. On the other hand, the buyer (consumer)
would focus on a point at the other end of the OC curve, called lot tolerance percent defective (LTPD),
which would result in a low probability, [, of accepting a lot. The LTPD is a quality level
specified by the consumer, setting a specified low probability of accepting a lot for product with
defective level as high as LTPD, and is the poorest quality level that the consumer is willing to
accept. The a probability, also called the producer’s risk, occurs when an acceptable product lot
is rejected. The [ probability, also called the consumer’s risk, occurs when the product with

unacceptable quality is accepted. Thus, a well-designed sampling plan must provide a probability
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of atleast 1—a of accepting a lot if the product quality level is at the contracted AQL level and a
probability of no more than £ if the level of the product quality is at the LTPD level, the
designated undesired quality level preset by the customer. That is, the OC curve of the acceptance

sampling plan must pass through the two designated points (AQL, 1—«a) and (LTPD, f).

There are a number of different ways of classifying the acceptance sampling plans. One
major classification is by attributes and variables. The primary advantage of variables sampling
plans is that the same operating characteristic curve can be obtained with a smaller sample size
than that required by an attributes sampling plan. The precise measurements required by a
variables plan would probably cost more than the simple classification of items required by an
attributes plan, but the reduction in sample size may more than offset this exact expense. Such
saving may be especially marked if inspection is destructive and the item is expensive (see
Schilling [41], Duncan [9] and Montgomery [31]). The basic concepts and models of statistically
based on variables sampling plans were introduced:by Jennett and Welch [19]. Lieberman and
Resnikoff [28] developed extensive tables and OC.curves for various AQLs for MIL-STD-414
sampling plan. Owen [32] considered variables sampling plans based on the normal distribution,
and developed sampling plans for various levels of probabilities of Type I error when the standard
deviation is unknown. Das and Mitra [8] have investigated the effect of non-normality on the
performance of the sampling plans. Guenther [11] developed a systematic search procedure,
which can be used with published tables of binomial, hyper-geometric, and Poisson distributions
to obtain the desired acceptance sampling plans. Stephens [43] provided a closed form solution
for single sample acceptance sampling plans using a normal approximation to the binomial
distribution. Hailey [12] presented a computer program to obtain single sampling plans with
minimum sample size based on either the Poisson or binomial distribution. Hald [13] gave a
systematic exposition of the existing statistical theory of lot-by-lot sampling inspection by
attributes and provided some tables for the sampling plans. Comparisons between variables
sampling plans and attributes sampling plans were investigated by Hamaker [14], who concluded
that the expected sample size required by variable sampling is smaller than those for comparable

attributes sampling plans. Govindaraju and Soundararajan [10] developed variables sampling
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plans that match the OC curves of MIL-STD-105D. Suresh and Ramanathan [46] developed a

sampling plan based on a more general symmetric family of distributions.

Due to the sampling cannot guarantee that every defective item in a lot will be inspected, the
sampling plan involves risks of not adequately reflecting the quality conditions of the lot. Such
risk is even more significant as the rapid advancement of the manufacturing technology and
stringent customers demand is enforced. Particularly, when the required product fraction of
defectives is very low, often measured in parts per million (PPM). The required number of
inspection items must be enormously large in order to adequately reflecting the actual product
fraction of defectives or process yield. The yield index S, establishes the relationship between the
manufacturing specifications and the actual process performance, and provides an exact yield
measure on the normal processes. In this paper, we consider a variables sampling plan based on
the S, index as a quality benchmark to deal with lot sentencing problem for processes with very

low fraction of defectives.

4.2. Process Capability Indices
4.2.1. Process capability indices C,, C,, Cy, €y Ciie

Process capability indices have been proposed to the manufacturing industry, to provide
numerical measures on process performance. Those indices establish the relationship between the
actual process performance and the manufacturing specifications, which have been the focus of
the recent research in statistical and quality assurance literatures. The explicit forms of the indices

are defined as follows:

Ca:1_|/1—m|’ c ZUSL—LSL’ Ck:min{USL—y,,u—LSL}’
d ? 60 7 3o 30
USL - LSL . USL - u u—LSL
Com = 2 > and C,, =min 2 272 [ 2 2|’
60> +(u-T) 3o +(u-T) 3Jo? +(u-T)

where USL and LSL are the upper and lower specification limits, respectively, m = (USL +
LSL)/2 is the midpoint of the specification limits, d = (USL — LSL)/2 is the half length of the

specification interval, 7 is the target value, u is the process mean, and o is the process
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standard deviation.

The index C, measures only the process centering (process accuracy), and ignores the process
variation (process precision). The index C, measures the overall process variation relative to the
specification tolerance, therefore can not reflect the tendency of process centering (see Juran [20],
Sullivan [44], [45] and Kane [21]). In order to reflect the deviations of process mean from the
target value, several indices similar in nature to C,, such as Cu, C,»., C,u, have been proposed.
Those indices take into consideration the magnitude of process variance as well as process
location (see Hsiang and Taguchi [16], Chan et a/ [4], Boyles [2], Ruczinski [40] and Pearn et a/

[35]). The index C,, have a relationship to the actual process yield, which can be expressed as

20(3C,,) 1< Yield <D(3C,,) ,

(Boyles [2]). To emphasize the loss in a product’s worth when one of its characteristics departs
from the target value 7, the two indices C,, and C,, are defined by being related to the idea of

squared error loss loss(X) = (X —T).
4.2.2. The yield index S,

For a long time, process yield has:been~a-standard criterion used in the manufacturing
industry as a common measure on process, performance, and defined as the percentage of
processed product unit that falls within the manufacturing specification limits. For product units
falling out of the manufacturing tolerance, additional cost would be incurred to the factory for
scrapping or repairing the product. All passed product units, which incur no additional cost to the
factory, are equally accepted by the producer. The above indices C,, C,», C,me can provide only a
lower bound estimation on the process yield Yield > 2®(3 x index value)—1. Note that the highest
value that a process yield might be would not be concerned. For example, if the index value is C,

then the yield of the process would be equal to or greater than 2®(3C)-1.

On the other hand, the yield index S, proposed by Boyles [3], can provide an exact measure

on the process yield, which can be expressed as

Yield = 20(35,,) - 1.

The S,. index is defined as
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§y =< {lqn(—USL_“j%cb(—” _LSLJ}.

"3 2 o o

The S,, index outperforms other indices in providing a one-to one relationship to the process

yield.

We remark that the indices presented above are designed to monitor the performance for
stable normal or near-normal processes with symmetric tolerances. In practice, the process mean
4 and the process variance o’ are unknown. To calculate the index value, sample data must
be collected, and a great degree of uncertainty may be introduced into the assessments due to
sampling errors. As the use of the capability indices grows more widespread, users are becoming
educated and sensitive to the impact of the estimators and their distributions, learning that
capability measures must be reported in confidence intervals or via capability testing. Statistical
properties of the estimators of those indices under various process conditions have been
investigated extensively, including Chan et al. [4], Pearn et al. [35], Kotz and Johnson [23],
Vannman and Kotz [49], Ruczinski [40], Vannman [47], Kotz and Lovelace [25], Borges and Ho
[1], Hoffman [15], Zimmer et al. {55], Kotz and Johnson [24], Lee et al. [26], Spiring et al. [42],
Pearn et al. [36], Montgomery [31], Hubele ez al.-[17], Lin and Sheen [29], Wang [50], Wu [52],

Mathew et al. [30].
4.2.3. Sampling distribution of the estimated S,

To estimate the yield measurement index S,, we consider the following natural estimator
S,k =lq)-1 lq) USL-X +lq) X—-LSL
” o3 2 S 2 S

A DIEN [l B P ,
37 ]2 ¢, 2| ¢,

where X =1%"" X, is the sample mean, S’=-;5>" (X,-X)’ is the sample variance,

1

A

S

L » €xpressed as

C,=(X-m)/d,and C,=5/d.

The exact distribution of S . 1s analytically intractable. However, a useful approximate
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distribution of S’pk can be furnished by considering an expansion of S’pk. Lee et al [26]
considered a normal approximation to the distribution of S L, DYy using an expansion technique.
The expansion of S . » which is denoted S ' in this paper, is normally distributed, and can be

expressed as follows

2 2
S ~N Spk,"Z;b ,
3614 (35,,)

where

o o o

_ 1 {USL /1 USL—/JJ+/J—LSL¢(/J—LSL)}

-

o o o
USL - ,u] ¢(,u—LSL):¢(d—(y—m)j_¢(d+(,u—m)
o o a o

Thus, the approximate probability density | function of the approximate distribution can be

{d (1 m) d—(u—m)j+d+(ﬂ—m)¢(d+(u—m)j} ond

@‘
‘%~
TN

expressed as:

Fo= 1814 (3S,.) N l:_18n¢ (38,

n(a® +b*) P (x—Spk)z}, —00 < x <00,

4.3. Designing S,. Variables Sampling Plan

Consider a variables sampling plan for controlling the lot fraction of defectives
(nonconformities). Since the quality characteristic is a variables, there will exist either a USL or
an LSL, or both, that defined the acceptable values of this parameter. A well-designed sampling
plan must provide a probability of at least 1—«a of accepting a lot if the lot fraction of defectives
is at the contracted AQL. The sampling plan must also provide a probability of acceptance no
more than £ if the lot fraction of defectives is at the LTPD level, the designated undesired level
preset by the buyer. Thus, the acceptance sampling plan must have its OC curve passing through
those two designated points (AQL, 1-a) and (LTPD, f). To determine whether a given

process is capable, we can first consider the following testing hypothesis:
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Hy: p=AQL (process is capable),

H:p=LTPD (process is incapable).

For normally distributed processes with single characteristic, the index S, is used to establish
the relationship between the manufacturing specification and the actual process performance,
which provides an exact measure on the process yield. That is, the null hypothesis with
proportion defective, Hy: p = AQL is equivalent to test process capability index with Hy: S, =
Saoz, Where S,qr 1s the level of acceptable quality for S, index. For instance, if the fraction of
defectives p = AQL of vendor’s product is about 66 PPM, then the probability of consumer accept
the lots will larger than 100(1 — )% . On the other hand, if the fraction of defectives of vendor’s
product, p = LTPD, is about 2700 PPM, then the probability of consumer would accept no more
than 100£% . Then, from the relationship between the index value and fraction of defectives, we

could obtain the equivalent S,o;, = 1.33 and S.7pp = 1.00 based on the process index S,;.

Therefore, the required inspection sample size*sn and critical acceptance value ¢, for the

sampling plans are the solution to*the following two nonlinear simultaneous equations.
Pr{Atceptingthedotip = AQL} >1-«,
Pr{Accepting thelot| p = LTPD}< 3.

As described earlier, the asymptotic sampling distribution of S L 1s normally distributed with a
mean S, and a variance (@’ +5%)/36n¢>(3S ) - The probability of accepting the lot then can be
expressed as:

7, (S,)= Pr(Spk ¢y |S, =¢)

_= [18n ¢(3c) 18n(¢(3c)) -
[ W{ - “)}

Therefore, the required inspection sample size # and critical acceptance value ¢, of S . for the

sampling plans can be obtained by solving the following two nonlinear simultaneous equations.

<J‘ 1811 ¢(3SAQL) exp _18n(¢(3SAQL))2

-5 )
v b dep )
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18_1’1 ¢(3SLTPD) exp _18’1(¢(3S’LTPD))2

S N e &b

(x _SLTPD)2 dx ,

where S0 > Sirep. We note that the required sample size #n is the smallest possible value of #
satisfying the above two equations, and determining the [#] as sample size, where [#] means the
least integer greater than or equal to #. Since the calculation of critical values involve two
parameters a and b, functions of the two indices C, and C,, we have to consider the effect of a’+5

from various (C,, C,) for given a fixed performance requirement S,;.
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Figure 4-2. Surface plot of §; and S,.

Pearn et al [36] discussed that for given a fixed performance requirement S, the differences
among those calculated critical values corresponding to various values of C, and C,, are

sufficiently small and can be neglected. Also, they showed that the factor (a”+5%)/36¢*(3S,,)
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is insensitive to the value changes of C, and C, in all cases, except for C, = 1. Consequently, the
critical values ¢, may be considered as a constant, which is independent of the process

characteristics C, and C, for a fixed performance requirement S,.. n

In order to illustrate how we solve the above two nonlinear simultaneous equations, we let

18n $GSa) - 18n(¢(38,401)

2
T Ja* + b a* +b° ) (¥ =S,0)" |dx-(1-a),

S (n,¢cy) = J:

180 ¢3S, 1) exp _18”(¢(3SLTPD)

T g+ b a+b

S,(n,c)= ) (x=8,.,,) |dx— .
J.[

Figure 4-3(a). The required sample size n as Figure 4-3(b). The critical acceptance value ¢, as
surface plot with « = 0.01 (0.01) 0.10 and g = surface plot with « = 0.01 (0.01) 0.10 and S =
0.01(0.01)0.10 under (S4qr, Srrep) = (1.33, 1.00).  0.01(0.01)0.10 under (S4qr, Srrep) = (1.33, 1.00).

Figure 4-3(c). The required sample size n as Figure 4-3(d). The critical acceptance value ¢, as
surface plot with « = 0.01 (0.01) 0.10 and g = surface plot with « = 0.01 (0.01) 0.10 and £ =
0.01(0.01)0.10 under (S4qr, Srrep) = (1.50, 1.33).  0.01(0.01)0.10 under (S4qr, Srrep) = (1.50, 1.33).
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For Syor = 1.33 and S;7»p = 1.00, Figures 4-1(a) and 4-1(b) display the surface plots of
equations S,(n, cy) and SiAn, c¢)) with a-risk= 0.05 and p-risk = 0.05, respectively. Figure 4-2
displays the surface plots of equations S,(#, ¢;) and Si(n, ¢y) simultaneously with «a-7isk = 0.05 and
P-risk = 0.05 under S,o, = 1.33 and S;7pp = 1.00, respectively. In Figure 4-2, interaction of Si(#, ¢)
and S,(n, ) is (n, o) = (66, 1.1412), which is the solution to the two nonlinear simultaneous
equations. That is, in this case, the minimum required sample size # = 66 and critical acceptance

value ¢, = 1.1412 of the sampling plan based on the capability index S,.

To investigate the behavior of the critical acceptance values and required sample sizes, we
perform extensive calculations to obtain the solution of the two nonlinear equations with various
parameters. Figure 4-3(a) displays the required sample size # as surface plot with the probabilities
a = 0.01(0.01)0.10 and g = 0.01(0.01)0.10 under (Sior, Srrep) = (1.33, 1.00). Figure 4-3(b)
displays the critical acceptance value ¢, as surface plot with the probabilities « = 0.01(0.01)0.10
and £ = 0.01(0.01)0.10 under (S4op Srrep) = (12335 1.00). Figures 4-3(c) and 4-3(d) show the
required sample size 7 and the critical acceptance value ¢, as surface plot with « = 0.01(0.01)0.10

and £ =0.01(0.01)0.10 under (Sjoz, Srrap)-= (1.50, 1.33), respectively.

From Figures 4-3(a) and 4-3(d), we observe that the larger of the risk (¢ or £) which
producer or customer could suffer, the smaller is the required sample size #. This phenomenon
can be explained intuitively, as if we hope that the chance of wrongly concluding a bad process as
good or good lots as bad ones is small, then more sample information is needed to judge the lot
quality. Further, for fixed Sy, Sirep and a-risk, the corresponding critical acceptance values
become smaller when the f-risk becomes larger. On the other hand, for fixed S,or, Sirep, and
p-risk , the corresponding critical acceptance values become larger when the «a-7isk becomes
larger. This can also be explained by the same reasoning as above. Consequently, the required
sample size is smaller when the difference between S, and S;7pp is significant since the judgment

will then be relatively easier to reach correct decision.

For practical applications purpose, we calculate and tabulate the critical acceptance values
and required sample sizes for the sampling plans, with commonly used «-risk, p-risk, Syor and

S:rep. Table 4-1 display (n, ¢) values for a-risk= 0.01, 0.025(0.025)0.10 and p-risk= 0.01,
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0.025(0.025)0.10, with various benchmarking quality levels, (S, Srrep) = (1.33, 1.00), (1.50,
1.33), (1.67, 1.50), (2.00, 1.67). Based on the designed sampling plan, the practitioners can
determine the number of production items to be sampled for inspection and the corresponding
critical acceptance value. For example, if the benchmarking quality level (S, Srrep) 1S set to
(1.33, 1.00) with producer’s «a-risk = 0.01 and customer’s [-risk = 0.05, then the corresponding
sample size and critical acceptance value can be obtained as (7, ¢;) = (101, 1.1142). The lot will be

accepted if the 101 inspected production items yield measurements with S e = 1.1142.

Table 4-1. (n, ¢;) values for a-risk= 0.01, 0.025(0.025)0.10,
P-risk = 0.01,0.025(0.025)0.10 with various (Sor, Si7rp).

(Z-i’Z'Sk ﬂ-l’iSk SAQL =1.33 SAQL =1.50 SAQL =1.67 SAQL =2.00
SLTPD =1.00 SLTPD =1.33 SLTPD =1.50 SLTPD =1.67
n Co n Co n Co n Co

0.010 0.010 132 1.1412 735 1.4100 929 1.5801 331 1.8206
0.025 115 1.1276 630.,,.1.4028 796  1.5729 286  1.8067
0.050 101 1.1142 546 1.3956 690 1.5657 249  1.7929
0.075 93  1.1044 495 - "1.3903 625 1.5604 226 1.7828
0.100 87  1.0963 457.°-1.3859 577  1.5560 210 1.7744

0.025 0.010 110 1.1552 618 1.4173 780 1.5874 277  1.8347
0.025 94 1.1412 522 1.4100 659 1.5801 235 1.8206
0.050 82 1.1273 446 1.4026 563 1.5727 202 1.8064
0.075 74 1.1170 400 1.3971 505 1.5672 182 1.7959
0.100 68  1.1084 366 1.3925 462  1.5626 167 1.7870

0.050 0.010 92  1.1696 525 1.4247 663 1.5948 234 1.8491
0.025 78  1.1555 437 14174 552 1.5875 196 1.8350
0.050 66 1.1412 368 1.4100 464 1.5801 166 1.8206
0.075 60 1.1306 326 1.4044 411  1.5745 148  1.8098
0.100 55  1.1215 295  1.3996 373  1.5696 134 1.8005

0.075 0.010 81 1.1806 468 1.4302 592 1.6003 208 1.8600
0.025 68  1.1665 386 1.4231 487 1.5932 172 1.8460
0.050 57  1.1521 321 14157 405 1.5857 144 1.8316
0.075 51 1.1412 282 1.4100 356  1.5801 127  1.8206
0.100 46  1.1319 253 1.4051 320 1.5752 115 1.8112

0.100 0.010 73 1.1900 427 1.4350 540 1.6050 190 1.8693
0.025 61 1.1761 348 14279 440  1.5980 155 1.8555
0.050 51 1.1616 287 1.4206 362 1.5907 129 1.8412
0.075 45  1.1507 250 1.4149 316 1.5850 113 1.8302
0.100 41 1.1412 223 1.4100 282 1.5801 101  1.8206
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For the proposed sampling plan to be practical and convenience to use, a step-by-step

procedure is provided below.

Step 1: Decide the process capability requirements (i.e. set the values of S,o; and Sizep), set the
a-risk , the chance of wrongly concluding a capable process as incapable, and the f-risk,

the chance of wrongly concluding a bad lot as good one.

Step 2: Check the Table 4-1 to find the critical value ¢, and the required sample size n for

inspection based on given values of a-risk, f-risk, Sior and Sizep.
Step 3: Calculate the value of S . from these n inspected samples.

Step 4: Make decisions that accept the entire lot if the estimated §pk value is greater than the

critical value ¢). Otherwise, we reject the entire lot.

4.4. Accuracy of S,. Variables Sampling Plans

To assess the accuracy of the S, sampling plan, we simulate N = 10000 lots in each
combination shown in Table 4-1 .to;calculate the probability of accepting lots to compared with
the probability of accepting the lot from’ the-eorresponding («, ) and (Sior, Srrep). Table 4-2

displays the probability of accepting the lot from simulation according to the rule in Table 4-1.

For the case of (Sioz, Srrep) = (1.33, 1.00) , the simulation results indicate for each
combination of a-risk (the producer’s risk) = 0.01, 0.025(0.025)0.10 and p-risk (the
customer’s risk) = 0.01, 0.025(0.025)0.10, the probabilities of accepting the lots are all greater
than the corresponding 1-« under S, = 1.33, and the probabilities of accepting the lots are all
slightly greater than the corresponding £ under S;7»p = 1.00, but the magnitude of LP - are

no greater than 0.0205.

For the case of (Sioz, Srrep) = (1.50, 1.33) , the simulation results indicate for each
combination of «-risk = 0.01, 0.025(0.025)0.10 and p-risk = 0.01, 0.025(0.025)0.10, the
probabilities of accepting the lots are almost greater than the corresponding 1-« under S,o; =
1.50 (except for a = 0.025 and S = 0.01, the probability of accepting the lot is 0.9749), and the
probabilities of accepting the lots are all slightly greater than the corresponding £ under Sy 7pp =

1.33, but with LP — f no greater than 0.0206.
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Table 4-2. Probabilities of accepting the lot for «-risk = 0.01, 0.025(0.025)0.10,
P-risk = 0.01,0.025(0.025)0.10 with various (S,oz, Sr7ep) by simulation with N=10000.

(Z-i’Z'Sk ﬂ-l’iSk SAOL =1.33 SAOL =1.50 SAOL =1.67 SAOL =2.00
SLTPD =1.00 SLTPD =1.33 SLTPD =1.50 SLTPD =1.67
AP LP AP LP AP LP AP LP

0.010 0.010 0.9937 0.0164 0.9906 0.0169 0.9874 0.0148  0.9922 0.0116
0.025 0.9947 0.0338 0.9910 0.0370 0.9886 0.0278  0.9924 0.0293
0.050 0.9943 0.0613 0.9919 0.0660 0.9902 0.0572  0.9931 0.0550
0.075  0.9953 0.0872 0.9914 0.0943 0.9910 0.0818 0.9922 0.0775
0.100 0.9948 0.1100 0.9911 0.1181 0.9899 0.1090 0.9926 0.1001
0.025 0.010 0.9821 0.0153 0.9749 0.0161 0.9733 0.0147 0.9808 0.0132
0.025 0.9843 0.0353 0.9755 0.0337 0.9729 0.0327 0.9802 0.0283
0.050 0.9868 0.0631 0.9753 0.0631 0.9729 0.0586  0.9802 0.0539
0.075 0.9863 0.0881 0.9765 0.0910 0.9743 0.0820  0.9804 0.0799
0.100  0.9870 0.1135 0.9757 0.1203  0.9743 0.1051  0.9816 0.1042
0.050 0.010 09661 0.0176  0.9524 0.0140 0.9439 0.0141 0.9564 0.0109
0.025 0.9663 0.0393 0.9543 0.0331 0.9454 0.0308 0.9563 0.0287
0.050 0.9643 0.0611 0.9532 0.0657 0.9478 0.0578  0.9584 0.0495
0.075  0.9682 0.08944% 0.9544 0.0905 0.9478 0.0787 0.9585 0.0774
0.100  0.9665 0.1156 [ 09531 0.1130. 0.9519 0.1055  0.9599 0.0977
0.075 0.010 0.9397 0.0172; 0.9308-°0.0144- 0.9199 0.0128 0.9286 0.0149
0.025 0.9410 0.0363 . 0.9284 0.0375- 0.9184 0.0288  0.9328 0.0304
0.050  0.9450 0.0656: ~0:9259-0.0646 0.9236 0.0543  0.9330 0.0536
0.075  0.9437 0.0878 < 0:9256..0.0893  0.9253 0.0804 0.9351 0.0771
0.100  0.9455 0.1161 0.9287 0.1185 0.9252 0.1089 0.9352 0.1015
0.100 0.010 0.9144 0.0195 09030 0.0154 0.8906 0.0111  0.9053 0.0125
0.025 0.9145 0.0347 09015 0.0367 0.8931 0.0291  0.9060 0.0301
0.050 0.9174 0.0638 0.9073 0.0623 0.8944 0.0574  0.9070 0.0530

0.075  0.9202 0.0956 0.9036 0.0906 0.8945 0.0783  0.9108 0.0778
0.100 0.9236 0.1205 0.9015 0.1206  0.8947 0.1053  0.9084 0.1023

AP: the probability of accepting the lot under S o,

LP: the probability of accepting the lot under S; rp

For the case of (Ssor, Sirep) = (1.67, 1.50) , the simulation results indicate for each
combination of «a-risk and pS-risk = 0.01, 0.025(0.025)0.10, the probabilities of accepting the
lots are all close to the corresponding 1-«a under S,o, = 1.67 with |AP—(1—a)| no greater
than 0.0094, and the probabilities of accepting the lots are all slightly greater than the

corresponding [S-risk under S;pp = 1.50, but with LP — 8 no greater than 0.0089.

For the case of (Ssor, Sirep) = (2.00, 1.67) , the simulation results indicate for each
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combination of («, )= 0.01, 0.025(0.025)0.10, the probabilities of accepting the lots are all
greater than the corresponding 1-« under S,o, = 2.00, and the probabilities of accepting the
lots are mostly greater than the corresponding f-risk under S;r»p = 1.67 (except for («, f)=
(0.05, 0.05) and (0.05, 0.1), the probability of accepting the lot is 0.0495 and 0.0977, respectively),
but with LP-/f no greater than 0.0054. The simulation results clearly indicate that the
probabilities of accepting lots are all very close to the preset value of 1-a or [ in all the cases
we investigated. Thus, the sampling plan based on the normal approximation to the distribution

of the estimated S, is adequately reliable to the engineers for their in-plant applications.

4.5. An Application Example

To illustrate how the sampling plan can be established and applied to the actual data
collected from the factories, we present a case study on an electronic component manufacturer,
which developing ceramic multilayer capacitors;for the consumer electronics, automotive parts,
telecommunications, data processing. The. capacitor consists of a rectangular block of ceramic in
which a number of interleaved ‘electrodes are contaimed. A cross section of the structure is
shown in Figure 4-4. For a particular model of the ceramic multilayer capacitor investigated, the

electrical characteristics are shown in Table 4-3.

terminations
e - /_r"ﬁ“
slecirodes 4=

ceramic matsral

Figure 4-4. Construction of multi-layer ceramic capacitor.

The lower and upper specification limit for thickness of layer are set to, LSL = 1.45 mm,
USL = 1.75 mm, respectively. If the data characteristic does not fall within the tolerance (LSL,

USL), the lifetime or reliability of the capacitors will be discounted. In the contract, the values of
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Syor and Syrpp are set to 1.33 and 1.00 with the «a-risk= 0.05 and p-risk = 0.10, respectively.

That is, the sampling plans must provide a probability of at least 0.95 of accepting the lot if the lot

proportion defective is at the S,o; = 1.33 (which is equivalent to about 6.80 PPM fraction of

defectives), and also provide a probability of no more than 0.10 of accepting the lot if the lot

proportion defective is at the S;7»p = 1.00 (which is equivalent to 2700 PPM fraction of

defectives).

Table 4-3. Specification of Y5V/BME/1206/22uF/6.3V.

Capacitance range

Tolerance on capacitance after 1000 hours
Rated voltage Uy (DC)
Test voltage (DC) for 1 minute
Tan D

Insulation resistance after 1 minute at Uy
(DC)

Maximum capacitance changeas a
function of temperature

Aging

Terminations

Resistance to soldering heat

22uF (Size 1206)
-20% to +80%
6.3V

2.5 X Uy
<=12.50 %

Rins xC>=500s

+30% to -80%
Typically, 12.5% per time decade

NiSn plated
260° C, 10 sec

Table 4-4. The sample data with 55 observations (unit: mm).

1.554
1.632
1.375
1.500
1.619

1.571
1.679
1.630
1.690
1.560

1.531
1.627
1.506
1.562
1.496

1.644
1.546
1.724
1.612
1.652

1.610
1.543
1.591
1.524
1.623

1.747
1.633
1.540
1.693
1.468

1.655 1.621 1.687 1.463 1.592
1.520 1.725 1.507 1.619 1.690
1.667 1.642 1.607 1.576 1.449
1.618 1.638 1.545 1.501 1.625
1.623 1.572 1.576 1.653 1.642

Based on the above specified values in the contract, we could find the critical acceptance

value and inspected sample size of the sampling plan (, ¢;) = (55, 1.1215) from the Table 4-1.

Hence, the inspected samples are taken from the lot randomly and the observed measurements

are displayed in Table 4-4. Based on these inspections, we obtain that

X =1.594, §=0.076,and S, :écpl {—q{

1
2
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USL-X j +1®[—X _SLSL j} =0.6559.



Therefore, in this case, the lot will be rejected by the consumer, since the sample estimator
from the inspections, 0.6559, is smaller than the critical acceptance value 1.1215 of the sampling
plan significantly. We note that if existing sampling plans are applied here, it is almost certain
that any sample of 55 capacitors taken from the process will contain zero defective items. All the

products therefore will be accepted, which obviously provides no protection to the buyer at all.
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Chapter 5

Conclusions and Future Works

How to measure process performance in the manufacturing industries is a major concern for
the factory managers, and process yield is the most common and standard criteria. The capability
index S,, provides an exact yield measure (rather than yield range) for normal processes. Many
researches supporting the use of capability indices have focused on process with single large
representative sample. However, in practice the process performance is monitored by collecting
multiple samples periodically. This dissertation considered this type of realistic data structure and

investigated the sampling distribution of S, based on multiple samples.

We note that for processes with the same specification limits and process yield, the variance
of §pk would be largest while process mean.is.on the center of the specification limits, so we
compute the lower bounds of S,, under such condition for assurance purpose. It is noted that the
lower bounds calculated by normal approximation distribution have larger risk of « especially
for smaller total sample size mx n. As mentioned previously, sampling with number of multiple
samples m = 12, and number of sample size # = 50 is suggested to use the lower bounds from
normal approximation to have the almost 1-« confidence level. Furthermore, if the sampling
replications are allowed, practitioners can even estimate the real process capability from the

average of lower bounds dividing by the ratio (i.e. S,r = LB/ ratio).

Production yield is the most common and standard criteria used in the manufacturing
industry for measuring process performance. The yield index S,. provides a one-to-one measure
on the yield of normal processes, while no other indices can. The statistical properties of the
natural estimator of S, are mathematically intractable, and the existing approach (the normal
approximation) does not provide adequate accuracy, particularly, for small sample sizes. In this
dissertation, we considered the convolution approximation. The proposed approach, indeed,
outperforms the existing method in providing more accurate and reliable estimation for S, as

well as production yield. An efficient step-by-step procedure is developed for using the
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convolution method to estimate the production yield. The accuracy of the convolution method is
also investigated, which provides useful information about the sample size required for
designated power levels, and for convergence. The sample size information and the efficient
step-by-step procedure are useful to the practitioners for making reliable decisions regarding

process performance based on production yield.

Process capability indices have been widely used in the manufacturing industry to determine
whether a process is capable of reproducing items within a specified tolerance, which provides
common quantitative measures on production quality. The index S, is used to establish the
relationship between the manufacturing specification and the actual process performance, which
provides an exact measure on the process yield. In this paper, we developed a variables sampling
plan based on process yield index S, to deal with lot sentencing problem for situations with very
low fraction of defectives. The proposed sampling plan provides a feasible inspection policy,
which can be applied to products requiring low fraction of defectives where classical sampling
plans cannot be applied. We developed an-analytical method to obtain the critical acceptance
values and the corresponding sample size required for ifispection, providing the desired levels of
protection to both producers and consumers. We also tabulated the required sample size # and
the critical acceptance value ¢, for various "a-risks , [-risks, and the fraction of defectives of
process that correspond to acceptable quality levels. The results of a simulation in Table 4-2 is
used to ascertain the accuracy of the sampling plan based on the normal approximation to the
distribution of the estimated S,. Practitioners can determine the number of required inspection
units and the critical acceptance value, and make reliable decisions. For illustrative purpose, we
demonstrated the use of the derived results by presenting a case study on capacitors

manufacturing process.

In this dissertation, we investigated the sampling distribution of S, under multiple samples.
In the future, one may propose the distribution for processes with multiple characteristics. In
addition, since the convolution method is more accurate than the normal approximation, we may

design the S, variables sampling plan based on the convolution approach.
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Appendix

Appendix I: Taylor expansion of S . Jor multiple samples

Before our derivation, we need to define some notations:

c,=+——, Cdng, C, = C, =

Z =~mn (i~ p)and Y:W(&Z—o-z)

By the Central Limit Theorem, ¥ converges to N(0,20*) under both estimators, s, and s, and
Z converges to N(0,0°) as mn goes to infinity.

: _Z

Z
c,= C,+ =
d dr o /mn

oNmn

A Z
C,), 1+C, :(1+Cd,)+O_—(Cdp),

mn

«,), 1-C,=(1-C,) -

r

Y, 1

T o i N PR SRR |
o’Nmn  C, C, 207 \mn mn

1-¢, 1-c, 1 |-z (1267 1
S = + . A0 | —H,
C, C, \mn | o C, 2o mn

1 -y |(1-¢,), (1-¢,) (1+c, ), (1+C, 1
Jmn 207 H C, J¢( C, }{ C, ]¢[ Cy j]+0p(mnj

The estimator of S, can be rewritten as
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S’pﬁld)‘l Lol 12C | Lo G |1
3 2| ¢, 2 | ¢,
y

Applying the Taylor’s expansion ®'(x+y)=®"'(x) + —————
#(@7' (x))

+0, (»*), we can obtain

A w 1
3§ , =35  +—+0 | — |,
T Jmng(3S ) [ mn)

where =L 1—Cd,¢{1—Cd,J+1+cd,¢(1+cd,J z ¢(1—cd,J_¢{1+cd,] |
20’ ¢, '\ ¢, ) ¢, '\c J| o'l c, C,

Thus

A w 1
S, =S, +———+0 .
e 6Nmngp(3S,,) ’ [ mnj

Appendix II: Calculation of lower bounds for multiple samples

alpha=0.05;

m=12; % number of sub-samples
n=50; % number of sample size
S=1.0; % value of §,

Sp=S;

for i=1:1:100000

S,»=5,+0.0001;

Cyp=1/(3*S,0);

a=sqrt(2)*3*S,*normpdf(3*S,);
p=normcdf((S-S,,)/sqrt(a*a/(36*m*n*normpdf(3*S,,)*normpdf(3*S,.))));
if p>(1.-alpha) break;

end; end

fprintf('The true value of the process capability S, is no less than %g',S,:)
Appendix III: CDF and PDF of S,

A. Notations
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To simplify the derivation, we define the following notations. Let
Z=In(X-u)/c,and Y =~/n(S*-c?)/25>.

Consider the following analytical expansion of S "

§pk:Spk+DIZ+D2Y+D3ZZ+D4ZY+D5Y2+Op[n1nJ,
where
1 -4 1 A 1 SuA A
DI__—7D2__—7D3__ 2_ b
Jn| 64(3S,,) Jn| 64(3S,,) n 8[¢(3Spk)] 12¢4(3S )
D4:l Suth + e _1 Sl + 3~ 4 and
2 ) 2 ]
n\ 4[4(3S,)] 64(35,) | 8[¢(3S,)| 120(3S.)
1-¢,\ (1-c 1+c,) (1+C
e 120 o120 012
C, C, C, C,
Let

Sh.=S e+ DZ+ DY +D, 7" +D,ZY + D,Y* .
The CDF of 5;/@ then can be derived by-the probability

F,, (x)=Pr{8}, - x<0|

2 2
= pr{D, Z+D1+D4Y _E (I +E;) N A (x) <ol
2D, 4D, 4D.E,

where

E,=D!-4D,D,,E,=D,D,~2D,D,, E,=%, E,=4D,S,, - D},

_E_17

A(x)=E! -E,(4D,x—E,),and A,(Y;x)=E, (Y +E,)* -2

E,

Moreover, we define the following notations through the derivation:

u(x) =—E, — {AlEFZx) , i(x) =—E, +,f%’
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wy; x) =— D +D,y\ Az(y;zx) oy %) = — D +D,y i Az(y;zx) ,
2D, 4D; 2D, 4D;

Yo = —% is the minimum value of the random variable Y, and () is the PDF of the random
variable Y.

B. CDF and PDF of §!,
Case 1: For D; <0, E; <0, yo > —E;.

Bt BE E(y+E)
4D, 4D, '’

0 n(x)

Fay = [ ydy+ [ {0, (3;)]+ @[, (3 0)]w (n)dy ;

v (x) Yo

> E, +E,E; _ E (¥, +E3)2
4D, 4D,

Flx)=1.

Using the Leibniz’s rule for derivatives, we get-the PDF-as follows:

< EiHEE E(y,+E)

4D, 4D,
_ 2DyIn @), " gl 0l s 0lv D),
M==ne V8050 ¢
(2D,){ DL, (1 (x); 1)1+ B[, (n, (x); Dy m ()]
\ A (%)
E,+E,E, E/(y,+E,)
x> — ,
4D, 4D,
fx) = 0;

Case 2: For D; <0, E; <0, yy < —E;.

< EHEE E (), +E,)
4D, 4D, '’

0 v (x)

Fw) = [ yOdy+ [ {®[u, (3;2)]+ @[, (1) () dy ;

v (x) Yo
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E,+E,E, E(y,+E) £x<E4 +E,E,

4D, 4D, 4D;
u (x) © v (x)
Fo) = [ ydy+ [ ydy+ [ 10w, (7;0)]+ 0-v, (01w (»)dy ;
Yo v (x) uy (x)

> Bt B
4D,

Flx)=1.
Using the Leibniz’s rule for derivatives, we get the PDF as follows:

x< E, +E,E, _ E (¥, "'Es)2
4D, 4D,

__@Dyylv@) f Wl 0+ gl 5 I )

) =
* JAG) 5050

2Dy){ D[u, (v, (x); )]+ P[—v, (v, (x); D)y [v, ()]

VA &)

E,+EE, E(y,+E) < < Bt EE,
4D, 4D, = 4D;

’

’

D)@+ yn @l ]> Pl g iy D) 4 |

) =
S \]Al(x) (%) \/Az(y; x)

2 D) {P[u, (v, (x); 2)]+ P, (v, (0); Iy v ()]
A (x)

(2D;){ Plus, (1, (x); )]+ P, (1, (x); X) ]}y Lo (x)]
A (x) ’

o B+ EE,
4D,

)

flx) =0.
Case 3: For D; <0, E; > 0, y, > —E;.

Bt BE E()+E)
4D, 4D,

’

Flx) = [{®[u, (3;)]+ D[, (3; )] 1y (»)dy

Yo
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> E,+E,E, E(y,+E)
4D, 4D,

’

v (x)

F)= [ w)dy+ [ {0, (y;0]+ OL-v, (0w (n)dy .
Yo i (x)

Using the Leibniz’s rule for derivatives, we get the PDF as follows:

x< E, +E,E, _ E (¥, "'Es)2
4D, 4D,

_ 1 181, (7,014 8w, (v, 3w ()
=] 805 b

o Bt BB B3+ E)
4D, 4D,

’

dy +

ﬂx):_(2D3)l//[V1(x)]+ T {Plu, ;)] + ¢[v, (v; )y (»)
\/Al(x) v (x) \/Az(y;x)

(2D){ D[u, (v, (x); )]+ B[=v, (v (x); ) }pdy, (x)]
\/Al (x)

Case4: For D; <0, E; > 0, y, < —E3.
y< E,+E,E,
4D,

Fx) = [ @[, (3;20)]+ D[, (3 )]} (»)dy

Yo

E,+BE _ _E+EE, E () +E,)
4D, 4D, 4D,

’

v (x) w(x)

Foy = [ ydy+ [ 10w, (7;)]+ [, (y; 0)] 1y (y)dy +

uy (x) Yo
[ @, (5001 + OL=v, (3 )y (»)dy ;
v (%)

> E,+E,E, E(y,+E)
4D, 4D,

’

v (x)

Fo) = [ ydy+ [ {0, (3;)]+ @[, (3 0)]y (r)dy .

Yo i (x)
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Using the Leibniz’s rule for derivatives, we get the PDF as follows:

< EtEE,
4D,

’

fo=| (o[, (n; )]+ v, (v; DY () dy:

\/Az(y§ x)

E,+EE, _ _E,+EE, E(3+E)
4D, 4D, 4D,

’

I =”1j’”{¢[u2<y;x>1+¢[v2 s D)
% VA (75 %)

2 D) { Plu, (s, (x); 2)] + PL—v, (1 (x); )3yl (6)]
A (x)

dy +

T Pl 52+ P MY ) ) @D+l Ol
o JA, (75 %) JA, (x)

(2D){ D[u, (v, (x); x)] + Bl=v, (v (x); )} [y (x)]
\/Al(x)

)

v B BEy B (3 +E)
4D, 4D,

)

_@D)ylv ()] | T {#lu, ;)] + 2, (v; VW (y) dy+

) =
S \jAl(x) 7 (%) \/AZ(y;x)

2Dy){ P[u, (v, (x); x)] + P[=v, (v, (x); D)}y [v, ()]

\ A (x) .

Case 5: For D; >0, E; > 0, y, > —E;.

Bt BE E()+E)
4D, 4D,

’

F) = [ @, (3;2)] - @, ()] (y)dy ;

v (x)

> E, +E,E; _ E\(y, +E3)2
4D, 4D,

Fx) = [{®[7, (3;)] - @[, ()] by (9)dy

Yo
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Using the Leibniz’s rule for derivatives, we get the PDF as follows:

Bt BE E()+E)
4D, 4D,

’

¢ {Blu, (7;0)]+ 8 [v, (v; O} (»)
= d +
/9 (I> A G50 g

2D,){®P[v, (v, (x); ¥)] = Plu, (v, (x); )]}y (%)]

\ A (x) !

> E, + E,E; _ E\(y, +E3)2
4D, 4D,

)

_ 1 181, (5,014 ¢y, (v; D} (»)
A v

Case 6: For D; >0, E; > 0, yy < —E;.

< EHEE E (), +E,)
4D, 4D,

’

Fw) = [ {®[r, (y;2)] - Ol (5w (s

v (x)

E,+E,E, E(y,+E) < 2B+ EE,
4D, 4D, - 4D,

bl

u (x)

Fw) = [ {®, (7;0] - Olu, (y; )y (n)dy + [ D[y, (50— [, (300w (1)dy ;

v (x)

x> Bt Byl
4D,

)

Fa) = [{®[r, (3;2)] - @[, ()] by (9)dy

Yo
Using the Leibniz’s rule for derivatives, we get the PDF as follows:

x< E, +E,E, _ E (¥, "'Es)2
4D, 4D,

)

) = T 1P, (v; 0]+ dlv, (; )}y (»)
0 (x) VA, (y; x)

dy +
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(2D){®[v, (v, (x); x)] — Plu, (v, (x); )]}y [v, (x)] .

VA (%)
E,+E,E, E(y,+E) <y < Eit BEy
4D, 4D, N 4D, '

uy (x)

© Bl Gil+ Hr 0l () Bl 301+ 9, Ol ()
= dy + dy +
/9 (I> 2,05 %) i’ I ) g

(2 Dy){®Lv, (v, (x); %)] - Plas, (v, (x); ¥) 3y [ ()]

’\/Al(x)
(2D ){P@[v, (o, (x);%)] — P, (o4, (x); %) [, (%)]
\ A (x) ’
E,+E,E,
x> ————,
4D,

_ T {8l (r; 0)]+ B, (7, )3 ()
=] J5Gin) 222

Case 7: For D3 > 0, E1 < O, Yo > —E3.

< Bt BBy E(y,+E)
4D, 4D,

Hx) = 0;

o B BE B0 +E)
4D, 4D,

)

vy (x)
F) = [ {0y, (7;0)] - @, (7501w (0)dy

Using the Leibniz’s rule for derivatives, we get the PDF as follows:

< Bt BE E(3+E)

4D, 4D, '’
fx) =0
o B BE B0 +E)
4D, 4D, '’

v (x) . .
) = j {Plu, (v, 01+ ¢y, (v, )1y () dy+

VA (75 %)
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(2D){®[v, (v, (x); x)] — P[u, (v, (x); )]}y [v, (x)] ‘

VA (%)

Case 8: For D; >0, E; <0, yy < —E;.

< EtEE,
4D,

’

Fx)=0;

E,+EE, _ _E,+EE, E()+E)
4D, 4D, 4D;

’

v (x)

Fa) = [ @[y, (3] - Olu, (i )by (»)dy ;

up (x)

> E, +E,E; _ E\(y, +E3)2
4D, 4D,

v (x)

Fa) = [ {®[r, (y;2)] - @[, (v; )Ly )dy

Yo

Using the Leibniz’s rule for derivatives, we get the PDF as follows:

x<@+ga,
4D,
fx) = 0;
E{h@E3<x<E;+EJ%_EKyO+EQZ
4D, 4D, 4D, '’

f9= j’” (B, (5 0]+ gL, 05 )y ()
1 (x) \/Az(y§x)

(2D){®[v, (v, (x); x)] — P[u, (v, (x); )]}y [v, (x)] +

dy +

VA (%)
(2 D3) (L, (1 (x);20)] = Pat, (o, () )3 Lo, (3)]
VA ’
xZ.E4+£QE3_li(yO+£gY,
4D, 4D,

= (f" Wl (5] + 4, OO G) 4

VA (75 %)
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