Chapter 1
Introduction

Quality measures can be used to evaluate a process’s performance. In general;
there are several issues to be discussed in assessing product quality. One
important issue of them is the process capability index. Process capability is
defined to be the range over which the measurements of a process vary when the
process variation is due to random causes only. We can realize whether the
product meets its specifications and the process is stable by using the process
capability index. Indubitably, process capability and related analysis have been
studied in recent years. Properties of the univariate processes have been
investigated extensively, but are comparatively neglected for multivariate
processes where multiple dependent characteristics are involved in quality
measurement. Frequently, a manufactured product has multiple quality
characteristics. That is, the process capability analysis involves more than one
engineering specification. For this reason, multivariate methods for assessing
process capability are proposed.

1.1 Motivation

Process capability index‘has been widely useéd to measure the capability of a
process according to its manufacturing specifications in industry. In particular,
customers always ask their suppliefs to-provide the capability indices for the
product characteristics in the supply chain partnership. Also, process capability
indices can be used as the benchmarking for quality improvement activities. The
capability indices, C,, C, and C, , are widely used to evaluate a process
performance based on a single engineering specification. A large number of
papers have dealt with the statistical properties and the estimation of these
univariate indices. Kotz and Lovelace (1998) provided a review of these indices in
their textbook. In addition, Kotz and Johnson (2002) provided a compact survey
and comments on some 170 publications on process capability indices during the
years 1992 to 2000.

Process capability is defined to be the range over which the measurements of
a process vary when the process variation is due to random causes only. Process
capability indices provide an effective measure of process capability. We can
realize whether the product meets its specifications and the process is stable by
using the process capability index. When a process is in a good state of statistical
control, its process capability index will be large. On the contrary, it will be small
when a process is out of control. Frequently, a manufactured product has multiple
quality characteristics. That is, the process capability analysis involves more than
one engineering specification. For this reason, multivariate methods for assessing
process capability are proposed.



1.2 Literature Review

Most researches have been devoted to capability measures with single quality
characteristicc. However, it is quite common that the manufactured product
involves more than one quality characteristic. That is, manufactured items require
values of several different characteristics for adequate description of their quality.
Each of those characteristics must satisfy certain specifications. The assessed
quality of a product depends on the combined effects of those characteristics,
rather than on their individual values. For example, automobile paint needs a
range of light reflective abilities and a range of adhesion abilities. A paint that
satisfies one criterion but not the other is undesirable. Those characteristics are
related through the compositions of the paint. It is therefore natural to consider a
bivariate characterization of this paint.

As for the tolerance region about multiple characteristics, we often take an
ellipsoidal region or a rectangular region. For more complex engineering
specifications, the tolerance region will be very complicated. For instance, a
drawing of a connecting rod in a combustion engine consists of crank-bore inner
diameter, pin-bore inner diameter, rod length, bore true-location and so on. In
multivariate processes, we usuallyjrassumes that the observations X have a
multivariate normal distribution N, (u#,2) ;- where v is the dimension of
variables, u is the mean vector and. ¥ .represents the variance-covariance
matrix of X . Also T is the:target vector,. X -is the sample mean vector and §
is the sample covariance matrix.

Table 1. Development of the multivariate capability index
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Table 1. Development of the multivariate capability index (continued)
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Index Reference
| Wierda, 1993
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r
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1] = 1 if process region within tolerance region
- otherwise
Multivariate Data Using Geometric Distance Wang and Hubele,
Approach 1999
Multivariate Data (Normal and Non-Normal Wang and Du, 2000
Data) Using Principal Component Analysis
Chen et al., 2003

In order to handle the issue for cases with multiple quality characteristics,
multivariate methods for assessing process capability are proposed. The
development of a multivariate capability index is shown in Table 1. According to
the literature review, the multivariate process capability indices can be obtained

from:
(1) the ratio of a tolerance region to a process region




(2) the function of the multivariate probability distribution which is used to
compute the probability of the non-conforming product

(3) approaches that consist of loss functions and vector representation

(4) based on the geometric distance approach and principal component analysis

Here, we may conclude that four constraints exist in the conventional methods.

First, the normality assumption on multivariate data is usually required. Second,

the confidence intervals of the multivariate capability indices are difficult to

derive. Third, the estimated probability of non-conforming for some conventional

methods is not available. Finally, the computation for high dimensions is not

obtainable except by the geometric distance approach and the principal analysis.

1.3 Research Objective

Process capability indices have been widely used in the manufacturing
industry for measuring process reproduction capability according to
manufacturing specifications. Properties of the univariate processes have been
investigated extensively, but are comparatively neglected for multivariate
processes where multiple dependent characteristics are involved in quality
measurement. However, the relevant statistical properties for the multivariate
capability indices are rarely discussed. In érder to calculate the capability index
value, sample data must be collected;zand+a great degree of uncertainty may be
introduced into capability assessments due to sampling errors. The approach by
simply looking at the calculated values of the estitnated index and then making a
conclusion on whether the given process is.capable, is highly unreliable since the
sampling errors have been ignored. In our investigation, we focus on obtaining
the statistical properties for the'multivariate process capability indices. According
to the relevant statistical properties for the multivariate process capability indices,
the lower bounds of the multivariate capability indices can be obtained to judge
whether the processes meet the present capability requirement.

1.4 Organization

The contents of this article divide five chapters. In Chapter 1, we address a
systematic description for process capability indices, inclusive of motivation,
literature review and research objective. In Chapter 2, we proposed the
asymptotic distribution of yield index for processes with multiple independent
characteristics or multiple correlated characteristics. In Chapter 3, we introduced
how to obtain the relevant statistical properties of MC, and MC,,.In Chapter 4,
we considered the supplier selection problem based on manufacturing precision
in which the processes involve multiple quality characteristics. We derived the
distribution of the corresponding test statistic, and provided critical values
required for the comparison purpose. In Chapter 5, we make the conclusion of the
overall contents in this article.



Chapter 2
Process Yield Measure for Processes with Multiple
Quality Characteristics

Process yield has been the most basic and common criterion used in the
manufacturing industry for measuring process performance. It is closely related
to the production cost as well as customers’ satisfaction. Process yield is currently
defined as the percentage of processed product unit passing inspection. That is,
the product characteristic must fall within the manufacturing tolerance. For
product units rejected (non-conformities), additional costs would be incurred to
the factory for scrapping or repairing the product. All passed product units are
equally accepted by the producer, which incurs the factory no additional cost. For
processes with high yield, it produces few percentages of non-conforming
products. That is, most of products produced in this process satisfy the
requirement of specifications. In many cases, a benchmark of minimum 99.73%
for assessing the process is suggested. Enterprises get more profit and cost down
with high process yield, hence companies make their efforts to increase the
process yield. For normally disttibuted processes with a single characteristic, the
index §, (Boyles (1994)) is used|to establish the relationship between the
manufacturing specification and-the actual process performance, which provides
an exact measure on the process yield, defined as

1 [ — LSL
b3 { o) >}
1)
zlcpl{lq)(l_cdr)_l_lq)(l—i—cdr)}
30 12 ¢, c,

where C, =Wu-m)/d, C,=0/d, m=USL+LSL)/2, d=(USL-LSL)/2. It
provides an exact measure of process yield. If S, =c, then the process yield can
be expressed as yield=2 ®(3c) — 1. Obviously, there is a one-to-one correspondence
between S, and the process yield.

The relationships between the process yield and the process capability indices
have been discussed extensively for processes with single characteristics, but
comparatively neglected for processes with multiple characteristics. Considering
a production process in which, possibly dependent, quality characteristics
determine the quality of the product. In other words, the product has multiple
correlated characteristics. We are concerned with the probability of producing a
good product satisfying all its specifications. Assume that the observations X
have a multivariate normal distribution, N, (u,2), where v is the dimension of
variables, 4 is the mean vector and X represents the variance-covariance
matrix of X . The components of the vectors LSL and USL are the v lower



and upper specification limits, respectively. Under the assumptions mentioned,
the probability that a production process produces a good product is

p= N (X1, dX .

[LSL,USL]

It is also called the true process yield.
2.1 Process Yield for Multiple Independent Characteristics

The Yield Index S ;k

Considering processes with multiple characteristics ( assuming characteristics
are mutually independent ), Chen et al. (2003) defined the yield index as

s :;qu{ﬁ(z@@s*w) ~1)+ 1}/2}, 2.2)

Jj=1

where S o denote the S x Vvalue of the jth characteristic for j=1,2,...,v, and
v is the number of characteristics. This index provides an exact measure of the
overall process yield when the characteristics are mutually independent. A one-to
one correspondence relationshipsbetween thie index §;, and the overall process
yield P can be established as

P=[1P= koGS, ) <ll=200s",)-1. (2.3)

Hence, the new index §;, provides amexact measure of the overall process yield.
For example, if S, =1, then the entire process yield would be exactly 99.73%.
Table 2 display various commonlyused capability requirements and the
corresponding overall process yield.

Table 2. Some S, values and the corresponding nonconformities.

ST Yield PPM
100 | 09973002039 | 2699.796
133 | 09999339267 |  66.073

1.50 0.9999932047 6.795
1.67 0.9999994557 0.544
2.00 0.9999999980 0.002

For a process with v characteristics, if the requirement for the overall process

capability is S, 2¢,, a sufficient condition for the requirement to each single

characteristic can be obtained by



5, cp[mw} 24)
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( see Chen et al. (2003) ). For example, if ¢, is set to be 1 with v =5, i.e. the overall
process yield is set to be no less than 0.9973. The overall capability requirement
S’. 21 would be satisfied if each single characteristic yield is no less than
(0.997300204)1/5 =0.99945950, and the capability for all the five characteristics is

2P3)-1+1
A 2;<1>1[(D(2)J:1'153, for j=1,2,..,v.

An Estimator and its Asymptotic Distribution

To estimate the yield measurement index S, we consider the following
natural estimator STk , expressed as

s —Scb'l{ﬁ(zq:(sﬁpkj) —1)+1}/2}, (2.5)

j=

where S~ N(S,.(a +b))/36n($p(38,0)* )% =1, 2.....v. (see Lee et al.(2002)).
Applying the first-order expansion of v-variate Taylor, the natural estimator S,
can be expressed as
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Thus, we can derive
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and Var(S )=
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(See Corollary 1 in Appendix).

In addition, since 7 o 18 linear combination of Spkl,ﬁpkz, and Sp,ﬂ, we
know ST is from normal distribution. So ST has the asymptotic normal
dlstr1but10n with the mean S and variance k(v). That is, the asymptotic
distribution of S7, is
k(v)

" NG 36n($(3S7,))’

). (2.6)



When v =1, the asymptotic distribution of ﬁ;k can be expressed as

1
"736n(9(3S ,))°
which is equivalent to that derived from Lee et al. (QREI, 2002).

S ~N(S

pk

(a*+b%)),

Inference Based on S,

From equation (2.6), it shows that S;k is an asymptotic unbiased estimator
of S,.Also, according the asymptotic distribution of S}, given in equation (2.6),
hypothesis testing and a confidence interval for S, can be constructed. To test
whether a given process is capable, we may consider the following statistical
hypothesis testing:

H,:S, <c, (processisnotcapable )

H,:S, >c, (processiscapable)

where ¢y is the standard minimal criteria for S7,. The test can be executed by
using the testing statistic

T = 6('§;k = CO)\/;¢(3SA§k)
Jk() '

2.7)

The null hypothesis H, is rejected at .@ level if .T >Z,, where Z, is the upper
100 % point of the standard notmal-distribution. An approximate 100(1-« )%
confidence interval for S, canbe expressed as

ar ﬂk(v) oT \/ k(v)
Spk_—’\TZ“/z’ Spk +—AT al2
63np(3S1,) 6Jng(35,,)

Also an approximate 100(1-a )% lower confidence bound for S, can be
expressed as

gk (2.8)

pk_6\/;¢(3s’*;-k) a*

2.2 Principal Component Analysis

PCA is a useful statistical technique that has been widely applied to face
recognition and image compression, which is a common technique for finding
patterns in high dimensional data. It is a way of identifying patterns in data, and
expressing the data in such a way as to highlight their similarities and differences.
In many cases the patterns in data can be difficult to find in high dimensional
applications, particularly when graphical representation is not available, PCA is a



powerful tool in such situations. The other main advantage of PCA is that after
finding patterns in the data, one could compress the data by reducing the number
of dimensions without losing much information. PCA is a multivariate technique
in which a number of related variables are transformed to a set of uncorrelated
linear functions of the original measurements. The first principal component
linearly combines all of the original variables in which the maximum variation
among the objects is displayed. The second, third, and further components are,
similarly, the linear combinations representing the next largest variation,
irrespective of those represented by previous ones. In most practical applications,
analyzing the major components can retain most of the information regarding the
variability of the process. In general, multivariate methods often assume the data
satisfy multivariate normal distribution. But in applying the PCA technique one
does not require such assumption.

Assume that X is a vxn sample data matrix, where v is the number of
product quality characteristic from one part and n is the sample size of part
measured. Also, X is the sample mean vector (vx1) of observations and § is a
vXv symmetric matrix representing the covariance between observations.
Engineering specifications are given for each quality characteristic, where LSL
and USL are their v -vectors .of ‘the lower specification limits and upper
specification limits, respectively: The vector, 7' (v x1) represents the target values
of the v quality characteristics. In addition,, the spectral decomposition can be
used to obtain D=U"SU, where D is a'diagonal matrix. The diagonal elements
of D, A4, 4,.....4, are the eigenvalues-of S. andthe columns of U, uy,u;,....u,
are the eigenvectors of S. Consequently; the /th principal component ( PCi ) is
expressed as

PCi:ul.Tx, Vi=12,...,v, (2.9)

where x is vx1 vectors on the original variables. The engineering specifications
and target values of PC;s are as follows:

LSL,. =u; LSL

USLye, =u; USL, Vi=12,...,v. (2.10)
Tpe, =u; T
Similarly, the relevant sample estimators, S and X of PC,s can defined as
Soe, =4
e, Yis=12, . (2.11)
Xpe =u; X

The ratio of each eigenvalue to the summation of the eigenvalues is the
proportion of variability associated with each principal component variable. That
is,

\4
ﬂ’i / Zﬂq‘, Vi :1, 2,...,V .
However, only a few principal!Tbmponents can explain the most of the total



variability (about 80%~90%). Anderson (1963) proposed a y* test for identifying
the significant components. It is
V 2.4,
2 =-(n-1)> Ina, +(n—l)(v—k)ln’:k;lk, (2.12)
v

j=k+1 -

where > has r=(1/2)(v—k)(v—k+1)—1 degrees of freedom. Jackson (1980) further
applied the test to the hypothesis H(:4;,; =...= A4, against the alternatives with at
least has one different eigenvalue. Referring to this method, we can choose the suitable
number of PC,;s rightly.

2.3 Process Yield for Multiple Correlated Characteristics

Assume that the multivariate processes data are from a multivariate normal
distribution. In this case, the principal components can be applied to the
capability study. Consequently, the new variables (principal components) are
mutually independent and normal distributed (see Theorem 1 in the Appendix).
Applying the equation (2.2), the combined yield index for the multivariate
processes data can be determined by,

128, [k
TS pe = {H(zq>(3spkﬁpc)—1)+1}/2}, (2.13)

j=

where § ;.. represents the univariate measure of process yield index for the ith
principal component. Also the estimatorof 7S, ,. is defined as

A 1 71 v ~
TSrc= @ {H(zmsp,{ﬁpc) —1)+1}/2} (2.14)

Jj=1

Analogy to equation (2.6), we can verify that Ts spc has the asymptotic normal
distribution with the mean 7S ,.,. and variance k(v, PC) / 36n(¢(3TS,,. )
where

v lll(zcl)(:SSpki;PC)_1)2
k(v, PC)=Y"3(a} pe +b7 pe) E
j=1

20(3S )1

That is, the asymptotic distribution of TS ,.pc is
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k(v, PC)
36n(P(3TS ,1.p0))
Thus, an approximate 100(1-a )% lower confidence bound for TS ,.,. can be
obtained, and an approximate 100(1—- )% lower confidence bound for the true

process yield can also be obtained by using the one-to-one correspondence
between TS ... and the process yield (Yield=2®(3TS ,.,.)—1).

TS picrc ~ N(TS . pe ). (2.15)

2.4 An Application Example

The previous study (Wang and Chen, 1998) presented a trivariate quality
control involving the joint control of the depth (D), the length (L) and the width
(W) of a plastic product. Fifty observations are collected from a plastic production
line. The specified limits for D, L, and W are set at [2.1, 2.3], [304.5, 305.1] and
[304.5, 305.1], respectively. The specification of the target value is
T" =[2.2,304.8,304.8]. The p-value for Mardia’s SW statistic is 0.32. Thus, the
assumption of multivariate normality can not be rejected at 95% confidence level.
The sample mean vector and sample covariance matrix were

0.002051 0.000785 0.000656
X" =[2.1616, 304.7182, 304.7678] and..S.=}0.000785 0.001717 0.001204 |.
0.000656 0.001204 0.002034

Figure 1 illustrate the process-points and tolerance region.

By performing the principal ‘components’ analysis, the eigenvectors and
eigenvalues can be obtained. Table 3:shows the loading and eigenvalue of PCs
using the principal component analysis. First, the test of the hypothesis
H,: A =24, =24, produced a value of y. =36.47, which is significant at the 95%
confidence level. That is, the hypothesis is rejected. Then, testing the hypothesis
H,:A, =, produced a value of y; =8.19, which is also significant at the 95%
confidence level. Thus, we used the first two PCs to evaluate the capability at
89.04% total variability. The principal components are USL,. =-368.1421,
LSLpe,  =-368.9698, X pc1 =-368.4682, Tpr =-368.5560, S, =0.0609,
USL,., =216.8123, LSL,., =216.5499, X rc: =216.6794, T,., =216.6811 and
Spe, =0.0382. S i1pc and S i2pc; can be calculated as 1.8262 and 1.1437,
respectively. Applying the equation (2.15), the approximate 95% lower confidence
bound for the combined index, TS wrc + 18 0.9556. Using the one-to-one
correspondence between 7S ,.,. and the process yield (Yield=2®P(37S ,.,.)—1),
the approximate 95% lower confidence bound for the true process yield is
0.995854. Notably, this process does not meet the process yield requirement.
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Figure 1. Process poihts and tolerance region for example

Table 3. The results.of the-first two PCs for example

PC1 PC2
Loading Loading
Variable D -0.522185 -0.838481
L -0.582407 0.217154
W -0.622997 0.499794
Eigenvalue 0.003709 0.001457

% Explained of total variability 63.9253 25.1129
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Chapter 3
Distributional and Inferential Properties of
Multivariate Capability Indices

Process capability indices have been widely used in the manufacturing
industry for measuring process reproduction capability according to
manufacturing specifications. Properties of the univariate processes have been
investigated extensively, but are comparatively neglected for multivariate
processes where multiple dependent characteristics are involved in quality
measurement. Although some multivariate capability indices have been proposed,
no papers discuss the statistical properties of these indices. It is needed to
investigate the statistical properties for the multivariate process capability indices.
In this chapter, the statistical properties for the multivariate process indices
MC,and MC,, are investigated. The estimator of MC, and its properties are
presented in Section 3.1. A confidence interval, lower confidence bound and
hypothesis testing for MC, are presented in Section 3.2. In Section 3.3, an
approximate confidence interval foriMGC,; is derived. A simulation study is
conducted to ascertain the accuracy of the approximation. Finally, an application
example is chosen to illustrate'the/proposed methodology.

3.1 Estimation of MC,

Here, we focus on the multivariate process indices MC, and MC,, (Taam
et al, 1993). The multivariate capability index MC, is defined as
MC, = vol.(modified tolerance region) _ vol.(modified tolerance region) (3.1)

1/2
[

vol.[(X — ) T7NX =) S k(@] (71 000)" 2% [T /2+ D]
where k(g) is the 99.73th percentile of the ;{2 distribution with v degrees of
freedom, Z| is the determinant of ¥, and I'() is the gamma function. An

estimator of MC, can be expressed as
vol.(modified tolerance region)

(7 000) " 2]S| T/ 2+ 1)1

MC, =

(3.2)

where S is the sample variance-covariance matrix and |S| is the determinant of
§ . According to the equation (3.1), MC, can be expressed as MC, x (s] /|Zl|)_l/2 :
Let X =(X;,X,.....X,) represents a n-dimensional vector of measurements from
a multivariate normal distribution with mean vector u = (y, ,uz,...,,uv)', T is the
vector of target values, ¥ is the process variance-covariance matrix. Using the
following theorem, we can derive the distribution of MC,.

Theorem 2: The distribution of the generalized variance || of a sample
X1, X,... X, from N, (1,Y) is the same as the distribution of [£/(n—1)" times
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the product of v independent factors, the distribution of the ith factor being the
x° distribution with n—i degrees of freedom.

Proof: See Anderson (2003) on page 268.
From the above theorem, we can have that |S|/¥| is the distribution of
2 Xy XX 2 in=1)". Let y= 2 xx% ,x--x x>, .Then, we have
Mc, .y
MACi (n=1)"

Using the transformation method, the probability density function of MC,
can be expressed as

2, 1\ 1\ 2
=fy[MCp(Z 1) ]XZ(n 1)3MCp, for 1>0. (3.3)

X X

0= frlg ™ (0lx

d
8 (x)

When there is only single quality characteristic, that is, v=1, the probability
density function of MC, is equivalent to the pdf of C,.So, we have

where y= 2.

From equation (3.3) and the pdf of i is

L (n- 1221 -
(7)(n 1)/2y(n H/2 16 yi2

fY(y)= 2 -1 ’
> o

the pdf of C p 1s given by
_n(n=1)/2 2
(n-1 X(Cp)xe—[(n—l)/Z]X(Cp/x) for x>0. (3.4)

p ( 2 )

When there are two quality characteristics, that is, v=2, we have

2
Mcp~ Y
2

1) where y =,1/,%_1 x,y,%_z.

It can be shown that y2_,x y2 5 ~ (3,-4)/4 (See Corollary 2 in Appendix).
Thus, we have

Mmc, z

N N2
Mc, 4(n-1)

Using the transformation method, the pdf of z is

where z=(x3,_4)%.

(l)(n—l) Zn/z—ze—\/z/z

f(2)= 2 T2 , for z>0.
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Similarly, from equation (3.3) and the pdf of z, the pdf of Mc, is given by

(-2  MC
= X
MC,T(n-2)"" x
When there are three quality characteristics, thatis, v=3, we have
2
MCc, Y

A 2 (n_1)3’

Pyn=ly mmDXME, 10 gor x>0, (3.5)

f(x)

2 2 2
where y =y, X ¥y_0 X Xi_3-

Let zy = 22 x x> 5 ~(¥3,_4)/4 andz, = y2_5. Then, we have

2
Mcp __%i%

A 2 _1 3
MC, (n—=1)

Let u=zxzp and v=z . Using the transformation method, the joint pdf of

uxvy is

| - - - ,
()" DI2 g, 72 g (=912 3, (v+ul2v)

fu,v)= 2 3 , for u,v>0.
Fn— 2T ; )

Then, the pdf of u is given by

(i)(ﬂ*l)/Z X v—1/2 ><u(n—S)/Z Xe’(ﬁ“’nv)
fu =] 2 dv, for u >0.

o ) n=3
E(n—2)I'( 5 )

Similarly, from equation (3.3) and the pdf of u, the pdf of MC » 1s given by

(n-1? ><(1)n/2—3/2
f= 2 X

(o oo -1)° 2
. Pyn2 o T\ 112 IO ME, 102 @) ) (3.6)
MC,Tn-2r(" > ) . 0

Since the hth moment of a z°distribution with v degrees of freedom is
2h I'(v/2+h)/T(v/2)and the moment of a product of independent variables is the
product of the moments of the variables, the hth moment of |S|/|Z| can be
obtained as

2 L (=) +
E(s|zp = —i=L2 . (37)
(1= [T (0 )
i=1 2
Now we can derive the rth moment of MC, according to the equation (3.7)
and MC,=MC,x (s] /\Z\)_m. Thus, we have
r

E(MC )= EMC),x (S|/=)™""?) = MC}, x E(S|/j£) "2 (3.8)
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Now, we can substitute r=1 and & =-1/2 into the equations (3.7) and (3.8),
respectively. Then, we have

2 Yl o1 1 1
2 Hl—[z(n l) ] HE(H—V)—E]

E(MC )= MCyx——17_3 1 =Mcp><(”_1)v’2 . =—XMC,, (3.9)
(=) 2 1L (n—0)] 2 M-(-n B
i=1 2 2
1
IT-(n-1)]
where b, =( 2 )72 2

n—1 1 1
IT 2(71 v) 2] A
is an unbiasing factor, so that b, xMC, is an unbiased estimator of MC,. Again,
we can substitute r=2 and h=-1 into the equations (3.7) and (3.8), respectively.
Then, we have
| :

.2 2 I (n=0) =1]

E(MC,)=MC2 x—i=L 2

. (3.10)
SR | .
(n=1)"" I (n-10)]
i=1 2
From the equations (3.9) and (3.10),:we have the variance of MC p as
) P d ﬁr[; (=i~ 2

Var(MC ) =MC12, X L = — {XMCP} . (3.11)

14

(1 [T (1 - )]
f=t—2

When there is only single‘quality characteristic, that is, v=1, according to the
equations (3.9) and (3.11), we"can._ find_that' the expectation and variance of
MC,are equal to those of C, (See'Kotz and Lovelace, 1998). That is, the
expectation and variance of ¢ , can be obtained as

1
) — -2 W=l
E(Cp)=mc,x "1 -2 ="xc, and Var(Cp)=[n_3—b—2]><Cp2,
1

r%m—m b
1

IMT-(n-D]
where p = | 2 2
n—1 1

F[E(n -2)]

is a correction factor, so that p, xép is an unbiased estimator of C iy When there
are two quality characteristics, that is, v=2, according to the equations (3.9) and
(3.11), the expectation and variance of MC, can be obtained as

E(Mcp)=Mc,,x”_1=ixMcp and
n— 2

12
(n—1) _ 1 xLxMCZ,

. 2
Var(MC ,)=MC3, X =
’ P =32 (m—-4) n-4"p?
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where b, _n-3
n-—1

is a correction factor, so that b, ><MAC,, is an unbiased estimator of Mmc, .When
there are three quality characteristics, that is, v=3, according to the equations (3.9)
and (3.11), the expectation and variance of MC, can be obtained as

1 1
M= (n-3)——
[2(11 3) 2]

1
] =EXMCP and
F[E(n_l)]

E(MAC,,)=MCP><(H;1)3/2><

1

A 3 3 PCn-2)
Var(MC )= MC2 x| —— =D - =D 2|
(n=3)(n-H(n-5) 2mn-3> 21, 3
I''(—n )
20 2

3

e,
(n=3)(n—-4)(n-5 p2

1 3

_ I'(—n——)

where b3:n 3>< 2 X % 2

n—1 n—1 F(En—2)

is a correction factor, so that hixMC, risan'unbiased estimator of MC p-

3.2 Confidence Intervals and Hypothesis Testing for MC,

Since MC, = MC ) x (|S|//=]) ', dike other statistics, is subject to the sampling
variation, it is critical to compute an interval to provide a range which includes
the true mc, with high probability: ‘Based on the definition, a 100(1-«) %
confidence interval for MC,can be established as:

A A

1-a=PlL<MC, < U}=P{LSJ\/}C,,X(S/ZD”ZSU}=IJ{ L _ (|72 < U

MmC, MC,
2 2 2
=P L S \/Z}l—lxzn—Zx ! XZVL—V S U
MC , (n—1) McC ,
_ | *(n-1) U?(n-1)
=P B g e, <SS
MC , MC,
5 5 ) Uz(n—l)"/MACj,
Let y=p7_ 1 X x50 X X x;_,, then we have .[ 2 y(dy =1-«a
L>(n-1)" 1 MC ,

So, we have
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71(0“,/2) — Lz(’/l\i_;)‘ and Fy‘l 1-al2)= M, where Fy(Z) =J'6f(y)dy
MC , MC ,

Thus, a 100(1 -« ) % confidence interval for MC, can be obtained as:

[M ) /F @/2) 42 /F a- 0{/2)} 6.12)
(n=1)" (n=1)"

Furthermore, a 100(1-¢ ) % lower confidence bound for MC, can be obtained as

[MAC,, G } (3.13)
(n=1’

When there is only quality characteristic, that is, v=1, a 100(1-a) %
confidence interval and lower confidence bound for C, are given by

2 2 2

Y & | An-11- A -

P IR TN T3 (U An-la | (3.14)
(n—1) n-1 (n—1)

When there are two c&uahty characteristics, that is, v=2, we can find that the
distribution of ;(n | X Xn—oe is equal to (x5, 5)°/4 . Thus, a 100( 1-a )%
confidence interval and lower confidence bound fer MC, are given by

N 2 2 N 2 2
[MC,, (Ban)” o s }and[ (Lse) } 615
4x(n—1) 4x(n—1) 4x(n—1)2

When there are three quahty characteristics, that is, v =3, we can find that the
distribution of g2 ;X 725X y2_3 canbe expressed as y=[(y>,)*/4]1x x> .

Now, let y, ~(x;, ,)° /4 and y, ~ ;(n_3. So, we have y=yy,. Let w=y,.
Using the transformation method, the probability density function of y is given
by

—y 22

1. = _ _
(E)(n D125 25 =912, 2y,

I'(n—-2)xIT(n—3)/2]

Ty =15 fyy, Oy dy =[5 dyy, 0y <eo.

Thus, a 100(1-«) % confidence interval and lower confidence bound for McC,
are given by

. -1 . e . 1
MC, M,MC,; b d-e/2) and |MC, fy (@ , (3.16)
(n—1)° (n—1)° (n—1)°
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1 ~ ~ ~ _xl/’.’_L
(7)(n l)/2Xx 1/2Xy(n 5)/2><e 2x

where F,(y)= J M2 dxdy . Efficient Mathematica
! 0o [(n—2)xT[(n—3)/2]

programs are developed to obtain the equation (3.16).

In hypothesis testing, we determine whether or not a hypothesized value of a
parameter is true or not, based on the sample taken and the parameter estimate
derived from it. That is, we are trying to find out where the estimated capability is
relative to either true capability, hypothesized capability, or how different the
estimated and true capabilities are. To do this, we estimate an index value,
compare it to a lower bound ¢,, and compute the so-called p-value. The quantity p
refers to the actual risk of incorrectly concluding that the process is capable for a
particular test. In general, we want p-value to be no greater than 0.05. To test
whether a given process is capable, we may consider the following statistical
hypothesis testing:

H,: MC, = c, (process isnotcapable)
H,: MC, >,/ (jprocess is capable )

, where ¢, is the standard mihimal criteria.for MC), . The critical value, ¢, can
be determined as:

A McC
a=P{MC,>cIlMC, =cse=P L >cIMC,=c,;.

2 2 2
\/Zn—l XZn—2 X XZn—v

(n=1)’

Let y= ;(,%_1 X ,(,%_2 XX ,(,%_V , then we have

(n-1)" (n=1)"

(n=1)"¢cg* 1>
L fy (y)dy =a, so we have

(n-1)"co?

02

Fy )=

Thus, the critical value can be expressed as
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c=cy /@ (3.17)
Fy (o)

When there is only single quality characteristic, thatis, v=1,and y= ;(,%_1, the
critical value is equal to

n—1

X;zz—l,oc '

Whenzthere gre two g_ualitzy characteristics, that is, v=2, and

V=Xt X Xn-2 ~ (X3,—4)" 14, the critical value is equal to

. d(n—1)>
‘ (Xin—ét,(x)z .

When there are three quality characteristics, thatis, v=3, and
Y= 2 X xP % ,(5_3 , the critical value is equal to

Co

nl s e
Y 2 X 2 X 2 X 2x
-1y ) X< Xy e

_Fr.2
, Where Fy(y)—L 'fo Fin - DXT(1=3)72) dxdy .

C

Fr'(@)
From the definition of ¢, it'is obvious that the value of MC, must be higher

than the original target value for 'the frue 'MC,. The amount of difference
required depends on the sample size, n.The power of the test, £, is given by

BMC, J= P{Mcp S o MCP}

MC, (n-1"MC;
= Pl-——— —>cIMC,=Ply<——5—FIMC, . (318)
An1XXn—2%" "X Xn—v ¢
(n-1"

where y is the probability density function of 2 ;x 2 ,x--xy2_,. From the
above equation, we can obtain the operating characteristic (OC) curve for MC,,
which plots the true value of 1-wC,)vs. mc, for two situations: (1) n=30,
c¢=1.33; (2) n=70, c¢=1.46. When v=1, 2 and 3, several operating characteristic
(OC) curves for MC, are shown in Figures 2-6. From these operating
characteristic curves, we found that some interesting results are:

(i) From these graphs, it is obvious that when the ¢, is larger, the chance of
incorrectly concluding the process is not capable is smaller.

(ii) When n and c¢ of the two are the same, then their OC curves are similar
regardless of v=1, v=2or v=3.

(iii) When ¢ is smaller, the chance of incorrectly concluding the process is not
capable will be smaller.
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Figure 2. Operating Characteristic Curve for MC, when v=1
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Figure 3. Operating Characteristic
Curve for M C, when v=2

Figure 5. Operating Characteristic
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Figure 4. Operating Characteristic
Curve for M C, when v=3

Figure 6. Operating Characteristic
Curve for MC, when n=70
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3.3 Approximate Confidence Intervals for MC,,

The multivariate capability index MC,, is defined in the following, where
D=[+u-T)= " (u-1)1"2,

MC ,, = D” : (3.19)

Note that, MC,, is less than 1, the process is not close to the specified tolerance
region. On the other hand, MC, is larger than 1 which only indicates that the
process variation is smaller than the specified range of variation.

An estimator of MC,, can be expressed as

n MACP MC, x(S|/[Eh*  Mc, xDx(S|/|)"?
MCpm = — = — = ~ =
D D DxD

mc,, 2 x (S|/Eh™2,
D

n

172
where é:{n( J(Y—T)'S“(Y—T)} .

n—

2 2 2
An-1Xn-2 """ Xn—v
(n-1"

Since MC pn =MCpm><%><(|S|/|Z|)‘”2 and |S|/|Y] ~

we have

(MCpm /MAC,,,,,jxD = Dx(S|//=)"", then

2

. ’ A g 2 2 “ e
(MCP'"/MCP'") XD2 — D2 X(|S|/|E|) — D2 % Zn—l iy Zn—v ,

(n—=1)"

where D? =[1+(u-T)X " (u-T)], D’ :[l+[LIJ(Y—T)'S‘I(Y—T)}
o

Based on the definition, a 100(1-«&) % confidence interval for MC,, is given as
follow:

I-a=PiL<MC,, U}

2 2 2
=P L D* < MGy, D*< v D’
M Cpm M Cpm M Cpm

Zj—l/?fj—z o 'Zjvjs{ u 2D2

2
=p —AL D <D’ x( : ~
MGy (n=1) MGy
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M Cpm M Cpm

2 2
= L 2 v 2 U 2 v
=P —— | D=0 <D’ s Koy S| — D(n-1)"¢.

Let z=D>xy>,7%,... x>, . The above equation can be rewritten as

2

U2(n=1)"D2>/MC pm p .
A 2 = J— a
J.Lz(n—l)"DZ/MC o fz(z)dz
2 1% 2 2 v 2
- L“(n=-1)"D _ -
A A
MC pm MC pm

where Fyz(z)=[§fz(z)dz. Thus, a 100(1-a) % confidence interval and lower
confidence bound for MC,, are given by

MCp |F2 (412 i Er A=@12) og aie,, [ F2 @) (300
(n—1)' D? (11! D2 (n—1)' D?

A

In fact, D and 7’ are unkown values, we can use D and #° to estimate the
valuesof D and 77,

n

A . ' » 1/2 . .
where D:{l+( J(X—T) S_I(X—T)} and 2 =n(X-T)S' (X -T).

n—

Thus, an approximate 100(1-« ) % confidence interval and lower confidence bound
for MC,, are given by

R | R F-loq R P
MC La/?)’ MC L&(A/Z) and MC 7(6{) . (3.21)
(n—1"D? (n—1)"D? (n-1)"D?

From Corollary 3 in the Appendix, the pdf of z can be found. When there are
two quality characteristics, that is, v=2, an approximate 100(1-a) % confidence
interval and lower confidence bound for MC,, are given by

R ;-1 N ol R !
MC pm M’ MC pm LLZA/Z) and | MC . M , (3.22)
(n-1)*D? (n-1>D*? (n-1>D?

where
1.
~ e 167 2 (2712) (x=1)' I'(n/2+1)
F,(z)= II 2 (z/x)("“”’ze‘mz 1 dxdz, for z>0.
0 xI'(n=2)1T(n—-2)/2] i=0 i

ArG+Dx?
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When there are three quality characteristics, that is, v=3, an approximate
100(1-a) % confidence interval and lower confidence bound for MC,, are given

by
i -1 R -l N ~ -1
Fo@l?) e, B2 and | yic,, L@ (3.29)
(n-1°D (n-1°D (n-1’D
where

dxdwdz,

1.,
I3 (Z)—r rr (1/2)(/1—1)/2x—l/Zeﬂ/;fz/wa) e 2 (2/w)"V2 & (32 12) (w=1)"2T(n/ 2+ i)
z odtdo T(n-2)IMT(n-3)/2] wll(n-3)/2] = i!r‘(l'+3/2)wll/2+i

Table 4. Observed Coverage of 95% Confidence Limits

n=25 n =45 n=65
H z MCpm CI LCB CI LCB CI LCB
[13] 5 4
13 | |07 07w | | 075 10968 0959 | 0965 0969 | 0952 0.952
07575 000 0.75%5 0007

[137] 5 4

L13] Havrs Hrgors 1 710968 0959 0.966 0.970 |0.952 0.952
122,0.9973 122,0.9973

137 5 4

13) | |2 1250 ||q 05 410.96800959 | 0.966 0.970 | 0.952 0.952
1 -25}(22,0.9973 1 '25122.0.9973

137 5 4
[13] | |[1PRem 1 %aon 15 0968 0959 |0966 0970 |0.952 0.952

1‘512270.9973 1'5122.0.9973

Note: Cl=confidence interval, LCB=lower confidence bound

In order to ascertain the performance of the confidence interval and the lower
confidence bound in (3.22), a simulation study was conducted. In this study,
random samples of size 25, 45 and 65 were generated from the multivariate normal
distribution with a plethora of combinations of x, ¥ and MC,, . The specification
limits were assumed to be, without loss of generality, LSL;=10, T;=13, USL:=16,
LSL,=12, T>=13, USL>=14. For each combination, 1000 random samples were
generated and, for each of these samples, the corresponding confidence intervals
and lower confidence bound were assessed. The proportion of times that each of
these limits contains the actual value of the index was recorded. The frequency of
coverage for the limit is a binomial random variable with p=0.95 and N=1000. Thus,
a 99%  confidence interval for the coverage  proportion @ is
0.95+2.5764/0.95%0.05/1000 . Hence, the limits from 0.932 to 0.968 are the critical
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values for a statistical test at the 99% confidence level of the hypothesis that the p is
0.95.

The obtained results are summarized in Table 4. More specifically, Table 4
presents that the observed coverage of 95% confidence interval as well as the
observed coverage of the lower confidence bound are within the nominal interval at
99% confidence level. Thus, we can ascertain the performance of the confidence
interval and the lower confidence bound in (3.22).

3.4 An Application Example

Taam et al. (1993) and Karl et al. (1994) discussed a geometric dimensioning and
tolerancing (GD&T) drawing that specifies a target value for pin diameter
corresponding to the midpoint of allowable pin sizes and allowable
perpendicularity of the pin depending on its size. The specifications require a pin
diameter between 9 and 11 tenths of an inch (all units in tenths of an inch) and the
center line of the pin to be within a cylinder of diameter 0.5 at maximum material
condition (MMC, i.e., maximum pin diameter), increasing to a cylinder 2.5 diameter
at least material condition (LMC, ie., minimum pin diameter). Therefore, the
tolerance of perpendicularity depends on the pin diameter: for a pin with a
diameter of 9, the allowable perpendicular tolerance zone is a 2.5 diameter cylinder,
whereas for a pin diameter of 11, theallowable: perpendicular tolerance is a 0.5
diameter cylinder. A pin meeting this specification will fit a gage with an 11.5
diameter hole. These GD&T specifications result in & 3-dimensional tolerance region
in the shape of a frustum, as illustrated-in'Figure 7. The center of the specification is
T" =[0,0,10]. The sample méan vector-and sample covariance matrix for 70
observations were

0.01313 —0.00371  0.00884

X' =[-0.0124, —0.0062, 10.0586] and S =[-0.00371 0.01618 —0.01031].
0.00884 —0.01031 0.06473

f 3

Sime=11
0.5

L Mo dified Tolersrice Eegion
Size=10

Toleramce Fegion

e 2.3
_/_,,L %

W

Figure 7. Tolerance Region and Modified Tolerance Region for Example

From the data, we have 3 g5, =14.1563 and |S|=0.00001092. Then we have
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R i7Z'><[(1l—9)/2]><(2.5/2)><(0.5/2)
Mc,=3 =1.7752.
IS % (2% 23 0.9973)% 202517
A
Now, v=3 and n=70, the expectation and variance of MC ), can be calculated as
1.0570x MC,and 0.025685x MC;,, respectively. According to the equation (3.16), a
95% confidence interval for MC, is calculated as

17752, 104939 1 7755 333052 |1 9579 2 2613].
693 693

Also, a 95% lower confidence bound is

182304

17752, | ——=— =1.3224.
9

To judge whether this process meets the present capability requirement, we
consider a statistical hypothesis testing for MC,: Hp: MC, =1 vs Hi: MC, >1.
According to the equation (3.17), the critical value

<)
c=1IX 09 =1.3423.
182304

Since MAC,, =1.7752>1.3423, we can conclude that the MC , is larger than 1 at 95%
confidence level. It implies that this, process variation is smaller than the specified
range of variation. From the data, “we have D=1.0437 and #2=6.1608. Thus, the
MC ,n be calculated as 1.7752/1.0437=1.7009: According to the equation (3.23), an
approximate 95% confidence interval for '"MC ,, is calculated as

1.7009 ;84666 +1.7009 219698 - |=[1.2219,2.2383].
(69)° x1.0437 (69)3 x1.0437

Also, according to the equation (3.23), an approximate 95% lower confidence bound
for MC,, is

1.7009 ?04521 3 =1.2859.
(69)” x1.0437

Therefore, we can conclude that the MC,, islarger than1 at 95% confidence level.
It implies that this process is close to the specified target.
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Chapter 4
Select Better Suppliers Based on Manufacturing
Precision for Processes with Multivariate Data

In this chapter, we considered the supplier selection problem based on
manufacturing precision in which the processes involve multiple quality
characteristics. The multivariate process index MC, (Taam, et al., 1993) is used to
judge whether the capability of one process is superior to another process. We
derived the distribution of the corresponding test statistic, and provided critical
values required for the comparison purpose. We developed an effective test
procedure for practitioners to make reliable decisions in their in-plant applications
involving supplier selections.

4.1 Comparing Two Manufacturing Precision Using MC,

An estimator of MC, can be expressed as

AL vol.(modified tolerance region) », vol.(modified tolerance region)
s w2+t

" vol.(estimated 99.73% process region) Y 10073) "

where S is the sample variangce-covariancé matrix, and |S | is the determinant of
S . From Equation (3.1), MC, can‘be rewritten as MC,x(S|/|Z)""* . Let
X =(Xy.X35,...X,,) be an n-dimensional vector .of measurements taken from a
multivariate normal distribution with mean vector u = (uy, 4>,..., ,uv)', target vector
T, process variance-covariance matrix * X./Using the above theorem (Theorem 2), we
may obtain the distribution of MC,.Chou (1994) developed a procedure using
univariate C, to determine whether or not two processes are equally capable,
which allows one to select the supplier with better quality. However, for processes
with multiple characteristics (multivariate data) no methods are available for
comparing two processes with multivariate data. For this purpose, we consider the
problem of comparing two multivariate processes using MC,. The hypothesis
testing would be as follows: H,:MC, <MC,,, (Process I is not better than Process
IT) versus H,:MC, >MC,, (process I is better than process II). The critical value
¢ can be determined as:

A —1/2
a=P @wlMcp1 = MC,, :P{ MC”‘(IS‘V'EJ)_I,Z >clMC, =MC,,2}
MC > Mcp2q52|/|22|)

—1/2
PR CATE) g g (A1) g o
(RAVPA) (s)/2])
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From the above theorem, NI is distributed as
;{,%_1 X ;{,%_2 XX ;{,%_v /(n—1)". When there are two quality characteristics, that is,
v =2, Equation (4.1) becomes

g pl XX T =1 S| G ) =1
(nz - 1)2 Z31 -1 XZri—Z (n2 - 1)2 (Z2211174 )2

(v xl o xxl, ~(x5,..)° 14 (See Corollary 2 in Appendix)).

2
12112—4 2
G =4 (-1 2ny -4y (n, — 1) (2n, —4)?
=pP ; 1 - 2 - > 2 =P{(F2n2—4,2n _4)2 >C2 2 - 1 2}’
(12n1_4 2 (n,—1)" (2n, —4) ! (n,—1)* (2n, —4)
2n, -4
so we have

. (n, —1) 2n, —4)
(n,-1) 2n, —4)"

I;‘Zn2 -4,2nm-4,1-a¢

Thus, the critical value can be expressed as

c=F (n,=1) (2n,—4)

_ 4.2
2ny 4, 2n -4, - (n2 _1) (znl _4) ( )

When there are three quality ‘characteristics; that is, v= 3, equation (4.1) can be
expressed as

_p Zri—l XZfz—z XZ:2—3 (n, e ¥ 2
a= 1y 2 2 T
(n2 ) anfl ><anfZ XZ11173

Bos ) s =)
o pl| Lot | Zos (2
Kon-a ) Hu—s (i, =1

2

Z22n274 an,:;
2n,—4 | n,-3(2n, —4)2 (n, =3) (n, —1)3 S

=p
Zzzn1—4 Zjl—a 2n, —4)* (n,=3) (n, ~1)°
2n,—4 ) n -3
_ 2 _ —_1)3
i P{(an ~4,2n —4)2 B s > C e 4)2 =3 1)3 } (4.3)
: : o 2n,—4)" (n,=3) (n,—1)

Let z=xy, where x~(F, _,,, 4).y~F,_,,, then equation (4.3) can be

expressed as
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c? (2nm, —4)? (n;=3)(n, -1

JO Qny=4 =3 -0 f(Z)dz =1— 0.

Thus, the critical value can be expressed as

- (2n, —4)* (n, =3) (n, = 1)’
= [F - : L, 44
C \/ z ( Q’) (2”1 _4)2 (n1 _3) (n2 _1)3 ( )
x(2n1_4)—2(zj(”2 -3)/2-1
£ =] k) ; for x, 220,

) 4 (2ny+2n,-8)/2 3 (ny+n,-6)/27
1+ @\/; 1+ (I’l2 - ) E
(2n,—4) (n,-3) x

2n, -4 n =3
I'((2n, —4) 121120, —4) 1211 (n, = 3) /211 [(2n, — 3)/ 2]

2 4 (2n,—4)/12 (ny=3)/2
I[Q2n, +2n, —8)/ 21T ((ny +n, — 6)/2)[ e j [”2 - j

k(ny,n,) =

(See Corollary 4 in Appendix).

Tables 5-7 display the critical values for various sample sizes in the case with
v=2 under confidence levels @ =0.05, a=0.025 and «a=0.01. Tables 8-10
display the critical values for various .sample sizes in the case of v=3 under
a=0.05, a=0025and «a=0.01" Forpractical and convenient purpose, a
step-by-step procedure is provided below: Step 1..Determine the sample size n, for
each supplier and the « -risk (the chance-of incorrectly rejecting a better supplier).
Step 2. Take a random sample from each process and calculate the sample
covariance matrix. Step 3. Calculate the test statistic MC,i/MC,. and the critical
value c. Step 4. If MC,/MC,.>c, then we reject H, and conclude that
MC, >MC,,. From the definition of c, it is clear that the value of MC,/MC,.
must be higher than the original target value for the true MC, /MC . The power
of the test can be also computed below: The power of the test, f, is given by

pmmcC

pl

IMC,,) = P{MCPI/MAC,,Z >cIMC,, I MC,, = k}. (4.5)
Take v =2, and 3, equation (4.5) can be expressed as

(n,—1) 2n,—4) (Mcpz)
PiF. '
{ 2n2-4, 201-4 > € (n,—1) 2n,—4) (MC,))

, (21, =4 (n,=3) (n, -1)° (MC,,Q)z}

P(Fn— n— )2*E1_”_ > ¢
{ 2ny—4, 2n,—4 2=3,m-3 (2n, —-4)* (n, —3) (n, -1’ (MCpl)2
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Table 5. Critical value for testing

Table 8. Critical value for testing

H,:MC, >MC,, under @ =0.05 (v=2) H,:MC, >MC,, under @ =0.05 (v=3)
nl i nl w2

10 0 30 40 50 60 0 80 w0 10 10 20 30 40 50 & W 0 w0 1
1001233 231 229 229 228 228 228 227 117 117 101294 314 319 321 322 323 324 324 3 325
W LEL 17 17 169 168 168 167 167 166 166 W15 200 199 199 199 198 198 198 1o 197
0 |Les 180 156 1540 152 151 151 150 150 149 K10l DO I BB B B O A ) B e B W B =R I S W
40 |162 153 149 146 145 144 143 142 142 141 0116 16 Lol 160 159 158 157 156 136 156
500159 149 144 142 140 139 138 137 137 136 500159 158 1A5 153 152 150 150 149 145 148
G0 157 16 142 139 137 136 135 134 134 133 G0 156 154 LA1 148 147 146 145 144 144 143
TIN5 145 1400 137 135 134 133 132 131 131 T 153 151 148 145 144 143 142 141 140 140
BOJ154 143 138 135 133 152 131 130 130 129 BO|151 149 145 143 141 140 139 13% 13% 137
L5 142 137 134 132 131 130 129 128 128 90150 147 144 141 140 138 137 136 136 135
10152 141 136 133 131 130 129 128 127 127 100149 146 142 140 138 137 136 135 134 134

Table 6. Critical value for testing

Table 9. Critical value for testing

H,:MC, >MC,, under @ =0.025 (v=2) H :MC, >MC, under @ =0.025 (v=3)
nZ n?
nl nl
0 20 30 40 50 e0 7O B8O 90 100 0 20 30 40 L & 7 W0 w100
10 |27 269 267 265 264 264 203 263 263 203 10 |364 381 384 280 287 387 388 3.8% 388 238
20 |206 194 189 187 185 184 183 183 182 182 01229 228 2260 224 223 222 222 221 241 12
3001182 175 170 167 165 163 162 162 161 161 01200 1% 192 190 188 1487 13s 1.85 1.5 1.4
40 J181 1687 161 157 155 154 153 152 151 150 40 1189 1,82 178 175 173 17 170 170 169 1A
50 |176 162 155 152 150 148 147 146 145 144 00182 175 170 166 1A 163 161 16D 1ED 159
60 |1.74 158 152 143 140 144 142 142 141 140 G0 178 170 LA 1AL 159 157 156 155 154 153
T0O|172 156 150 146 142 141 140 139 138 138 L7 166 1AL 157 155 153 151 150 149 149
80 |170 155 148 144 141 139 138 137 136 135 01173 164 158 154 152 150 148 147 146 146
90 J169 153 146 142 140 138 136 135 135 134 QLA 1e2 15 152 149 148 146 145 144 143
100|168 152 145 141 139 137 135 134 133 132 10001170 160 154 150 148 146 144 143 142 141
Table 7. Critical value for testing Table 10. Critical value for testing
H,:MC, >MC,, under o= 0.01 (v=2) H,:MC, >MC,, under &= 0.01 (v=3)
n? nl
ol 10 20 30 40 0 & T B0 %0 10 ol 20 30 40 50 & 70 80 w0 1
10337 225 320 317 316 315 314 314 213 313 10468 4.7 481 481 432 482 4.32 482 4.82 4352
00239 221 214 210 208 206 205 204 203 203 a0 276 267 262 258 256 255 254 53 252 152
00215 1% 188 183 L8l 1% 17 L7 17 17 20238 225 L18 214 211 209 208 206 206 205
a0 1205 1.8 1.7 171 148 1ee 165 1A 163 162 40 1222 207 199 1.9 191 189 187 1.8 185 1.3
SOQLee 178 162 16 LAL 159 158 156 155 155 SO1213 197 188 183 180 17 17 17 LA 173
01195 17 1e5 180 157 154 153 151 150 150 G207 190 182 177 173 171 169 1A7 1ee 145
TOpLes 171 e 157 L1532 151 149 148 147 146 203 1ee 177 LT 1A 166 1) 1E2 LAl 1ED
A0ILS1 169 159 154 151 149 147 145 144 143 B0 |20 183 17 1A% 145 182 1A 158 157 156
QOLEY 167 158 152 149 147 145 143 142 141 Q0 l1e8 1e0 171 165 162 159 157 155 154 153
100)1.88 166 156 151 147 145 143 142 141 140 10015 17 162 163 160 157 155 153 152 1.5l
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4.2 An Application Example

To illustrate how the proposed method can be applied to the actual data
collected from the factories, we present a real-world example of an electronic
component manufacturer making ceramic multilayer capacitors applicable to
consumer electronics, telecommunications, automotive parts, and data processing
devices. The capacitor consists of a rectangular block of ceramic in which a number
of interleaved electrodes are contained. A cross section of the ceramic multi-layer
capacitor structure is depicted in Figure 8. For a particular model of the ceramic
multilayer capacitor investigated, the electrical characteristics are displayed in Table
11.

terminations
e i
_...--": i "f
Beciroges =

ceramic matenal

Figure 8. Structure‘of a.ceramic multi-layer capacitor

Consider a production process with multiple characteristics following a
multivariate normal distribution, which is taken from a multilayer capacitor factory
in Taiwan adapting the six-sigma quality improvement program. To compare
product quality between a supplier versus another, 50 random samples are taken
from the two processes. The quality control of the process involves the simultaneous
control of the layer thickness, the layer length, and the layer width. The lower and
upper specification limits for layer thickness, layer length, and layer width have
been set to [1.45,1.75],[3.0,3.4] and [1.45,1.75] , respectively. The sample
covariance matrices are summarized below, where S, represents the data from
supplier I, and S, represents the data from supplier II.

0.00193 0.00046 0.00086 0.00236 0.00029 0.00003
S, =10.00046 0.00097 0.00075(, S, =|0.00029 0.00176 0.00097 |.
0.00086 0.00075 0.00167 0.00003 0.00097 0.00161
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Table 11. Specification of Y5V/BME/1206/22uF/6.3V.

Capacitance range 22uF, Size 1206
Tolerance on capacitance after 1000 hours |-20% to +80%
Rated voltage Ur (DC) 6.3V

Test voltage (DC) for 1 minute 2.5 X Ur

Tan D (Note 1) <=12.50 %
%Es(tzl)latlon resistance after 1 minute at Ur Rie xC>=500s

Maximum capacitance change as a

o) o)
function of temperature +307% to -807%

Ageing Typically, 12.5% per time

decade
Terminations NiSn plated
Resistance to soldering heat 260° C, 10 sec

To compare the two processes, wenconsider a test with null hypothesis
H,:MC, <MC,, against thealternative hypothesis H,:MC, >MC, , , where
MC, and MC,, represent the process capability indices of the two suppliers
respectively. The test procedure can be‘described as: Step 1. For the two suppliers
with sample sizes n, =n, =50, set the confidence level as 0.05. Step 2. Calculate the

sample covariance. From the above result, we obtain

0.00193 0.00046 0.00086 0.00236 0.00029 0.00003
S, =10.00046 0.00097 0.00075(, S, ={0.00029 0.00176 0.00097 |.
0.00086 0.00075 0.00167 0.00003 0.00097 0.00161

Step 3. Calculate the test statistic MC,1/MC,, and critical value c:

A 4 7x(0.3/2)x(0.4/2)x(0.3/2) A 4 x(0.3/2)x(04/2)x(0.3/2)
MCp=3 =213239, MCjp=3 _ =1.28415.
18, (X 0990 ITQ2IT! 1S, X 2 oo LT

Therefore, MCn/MC,>=2.13239/1.28415=1.6605, and c¢=1.52 (refer to Table 8). Step
4. Because 1.6605>1.52, we conclude that with 95% confidence Process (Supplier) I
is superior to Process (Supplier) II. In order to show the sensitivity of the test
procedure, the power curve of the test is depicted in Figure 9 under the ratio value
of MC, /MC,,=0.8to02.3.
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Figure 9. Power curve of testing
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Chapter 5
Conclusions

Process capability indices, which establish the relationship between the actual
process performance and the manufacturing specifications, have been the focus in
quality assurance and capability analysis for the past fifteen years. Those capability
indices quantifying process performance are essential to any successful quality
improvement activities and quality program implementation. Most researches have
been devoted to capability measures with single quality characteristic. However, it
is quite common that the manufactured product involves more than one quality
characteristic. That is, it requires several different characteristics for adequate
product description. Each of those characteristics must satisfy certain specifications.
The assessed quality of a product depends on the combined effects of those
characteristics rather than on their individual values.

In Chapter 2, we proposed the asymptotic distribution of yield index called
§Zk. Applying the asymptotic distribution of ﬁik, hypothesis testing and lower
confidence bound for S, can be executed. This methodology can be used to
handle process yield assurance: for processes with multiple independent
characteristics. For multivariate data, wéproposed.a generalized yield index, called
TS ,..»c » based on the yield index S7 —proposed by.Chen et al. (2003), by using the
PCA method. This methodology can be used to handle process yield assurance for
processes with multiple correlated chatacteristics. The proposed procedures can be
used to determine whether their production meets the present yield requirement,
and make a reliable decision.

In Chapter 3, we introduced how to obtain the probability density function of
MC pand its expectation and variance. Also, we showed how to construct the
confidence intervals and make a hypothesis testing with MC, . In addition, we also
derive the approximate confidence interval and lower confidence bound for MC,,
for v=2, 3. A simulation study was conducted to ascertain the accuracy of the
approximation. Finally, a application example is used to illustrate these results. The
practitioners can use the proposed procedure to determine whether their process
meets the present capability requirement, and make a reliable decision.

In Chapter 4, we considered the supplier selection problem based on
manufacturing precision in which the processes involve multiple quality
characteristics. We derived the distribution of the corresponding test statistic, and
provided critical values required for the comparison purpose. We developed an
effective test procedure for practitioners to make reliable decisions in their in-plant
applications involving supplier selections.

In the multivariate case, the specification limits and the actual process spread
will be more difficult to define than their univariate counterparts. In general, the
specification is assumed to be ellipsoidal in most multivariate process capability
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indices due to the assumption of the multivariate normal distribution. Up to the
present day, the research of multivariate process capability indices is still very few
in comparison to the research of the univariate process capability indices relatively.
A current problem in multivariate capability indices is that there is no consistency
regarding a methodology for evaluating the capability. In addition, it is difficult to
obtain the relevant statistical properties to make a further inference. Obvious,
further investigation in this field are needed.
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Appendix

Corollary 1: ST is defined as ST —3(1)‘1{1‘;[(2@(33‘1}”) —1)+1}/ 2},

j=

where § denotes the estimator of §,;;, and the asymptotic distribution of S
is N( Sp,g (a +b )/36n(¢(3S ,g)) ), J —1 2, ., v, then the asymptotic dlstrlbutlon
of §7 o can expressed as

U 102G, -1)

_ 24 b = .
P EAER 2R h rveramen ol |G

S;k ~ N(S;k ,

Proof:
The first-order expansion of v-variate Taylor can be expressed as

f<X>=f(Xo)+iaf(X°)

(x; —x,,), where X =(x,,x,,.....X,).
We take v=2 for example to derive the asymptotic distribution of S, §” . Given the
asymptotic distribution of S is

2 2

~N@ES,,, ,af—+bf), Vji=12,
12 Py 36n(¢(3Spkj))2

N
where S‘pkl and § x are mutually independent. From the definition, let
A oA 1. A A
- pk12P pk2) T pki) pk2) :
= (S ..$ )—3c1>1{[(2c1>(3s )~ DEDES )~ +1)/2)

By the first-order expansion of v-variate Taylor for 5’,{,{ , ng can be expressed as

A SuSe) g
S

( pk2 _Ska) .

. (S 1S »)
f(SPkl’SPkZ) = f(Spkl’Ska)—l_%(Spkl _Spk1)+

pkl pk2

Thus, E(S ) E(f(Sp/\pSpl\z)) E(

N Kl Spkz o Pk1,™ pk2
% (SPkl - Spkl )N+ E(%( pk2 Pk2 )

pkl pk2

E(Spk2 _Spkz)

=f(SPk1’Spk2) +WE(Spk1 _Spk1)+w

pkl pk2

=f (S S (o S ;i 18 an asymptotic unbiased estimator of § )
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1
=9 {eais ) -neeas,,,) -1 +1)/2)

- ;cpl {[ﬁ(ch(:sﬁm) —1)+ 1}/2}

Jj=1
_ T
=S

af(Spfl,Spkz))zvar(S"pkl)+(af(Spf1,Spk2)

pkl pk2

Also, Var(ﬁlfk) = )zvar(gpkz) .

. s oA 1 . .
Since  f(S 4,8 0) = p c1>*1{[(2c1>(3spk1) -DQPES,,) -+ 1]/ 2},

U (S 1 S i)
oS .,

P

g [(2c1>(3§pk1)—1)(2c1>(3§pk2)—1)+1] 3. | Q@(3S,,)-D(2P(3S,,,) - +1
2 aS ., 2

1
q),{q)l{[(mespkl) —1)2D(38,,,)— 1)+ 1]}}

W | =

(X235, ~ DX 2X9(35,5,)%3)

2

_ 2®(35,,,) ~DP3S )
¢{¢_l{ (2GS ) -GS, -1 + 1]}}

2

Thus, we have 2 CntSma) _ (2P(3S,,) = DPGS 1) |
oS ., { L {[(2c1>(3s ) —-DQD@3S kz)—1)+1j}}
p ¢ q) P P
2

Similarly, we have af(S"fl’S"“) = PGS ) ~DIGS ) .

3S ¢{¢1 { l2®@3S ) - D2PGES,,) -1+ 1J}}

2

So Var(ﬁlfk)
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(2D(3S 1,) —DPG3S )

=( ) Var(S )+
¢{¢_1 {l(zcb(sspkl)—1><2c1>(3spk2>—1>+11}}

2

(2CI)(3Spk1) - 1)¢(3Spk2)

2 Var(S o2)
(¢{¢_1 { l2®GS,,) - DRDES,,) 1) + 1J}}) «2

2
— (2(35,,,)~ DP(3S ) . asn
ol o [203S )~ 1)2®3S,,)-D+1]]|” 36n(43S,,))
2
( (2GS 1) ~DPBS ) . d D
ol o [203s )~ 1D2®ES,0)-D+1]]| 36n(63S,.,))°
2
1
- 36n(9(3S" )’ l(a? + bH(2D(3S ) =17+ (a; +55)RP3S ) - 1]
pk

. [TeeGs,) -1
S )5 )

(2238, 0=1f

" 36n (¢(3S )’

In addition, since STk is linear combination of S . and Spkz, we know S is
from normal distribution. So the asymptotic dlstr1but1on of S, can expressed as

2 H(ch(3spk,) 1
ST ~N ST ,— ]
R T e R I Crerapn):

).

Consider v variables, the asymptotic distribution of § o can be derived as

) H (o3s ) -1

Ar - 1 2 32y sl
ST ~N(ST,, ————— > 1) :
pe = NGy 36n(¢(3S;k))2(,Z—; @+ oa3s,,)-1) )
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Theorem 1: Let X be the covariance matrix associated with the random

X1
vector X =

Xy

Let £ have the eigenvalues 4; 2...2 4, & eigenvectors ej,...,e, . Then the ith
principal component variable is given by y; =¢; X =e;1x; +---+e¢;,x,,, i=12,...,v.
With these choices, var(y,) = ¢, e, =4, i=12,...,v and cov(y,,y,)=¢,%e, =0, i#k.
Proof:

The proof can be found in Johnson and Wichern (2002) on page 428.

Corollary 2: If »2_, and y2_, are independently distributed, then y2_, x y2_, is
distributed as (y;, ,)*/4.

Proof : Let x; ~ 72>, and x, ~ 72_,.Thejoint pdf of x; and x, is given by

| B - - | 2 —
(5)(n /2 /253425202 (E)(n 212, n2-2,=x, 12

fxl,xz (xl,XZ): [0t - 1) 42] K IT(n—-2)/2]

Let z; =x; and gz =2,/xx, .-Using the transformation method, the solution is

x =z andx, = j 2, and the Jacobian of the transformation is
21
1 0

J= Mgl ol C2

I

So, we find that the joint pdf of zyz, is

2
1 1 (n-2)/2, 23 \ni2-2 _(%)/2
(E)(n—l)/Zzln/2—3/26—z1/2 (E)(n ) (ﬁ)n e 4a .
1 2
21,27) = X X—=-,0< 71,295 00,
fzy.2, (21,22) =D/ 2] STRETYEY " .

Then, the marginal density fucntion of z, is obtained as follow:

2
1 1. (n-2)/2 23 /22 _(%)/2
_(ynnr2 n12-312 =012 (E) n (F2yn/2=2, 4y

B 2 421 Ziz
fz2 (z2) = (j) T[(n-1)/2] % I(n—2)/2] - 2z i

2
© —5/2-(2y/2
:C1XZS_3XJ‘21_/ Xe 2 le,OSZZ < oo
0
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120972 2
(2) -z /2—(471)/2

, where C| =

= _T. -2
M —1)/20xTn—2)72]" -t h(ZQ)—(I)zl X e

dzy -

2
, o e ~212-(2)/2
Hence, h(zz)=(—4—2)szl_l/2><e 44 dzy -

210

2
Now, let :—2 = w. Using the transformation method, we find that
4|

2
—wi2—(32)/2

Z
' 1 o 1
h(z)=()x w2 xe W dw = () xh(zp)-
0

The above equation gives h(z,)=e"%2/27C2), where C, is a constant. Thus, the

pdf of z, is given as the following, where C;= Cyxe €2 . Therefore, we have
2
2~ Xon—4-

Theorem 3: Let T° =n(X —u,) 87 (X = i), where - X = (x,,x,,...,x,) beasample
from N(u,X) with mean vectot = (4, My, [, ) ~and covariance matrix X
and g, is the vector of target values. The distribution of

vxy 7

T n-v

n=1 \'

is a non-central F with v and n-v degrees of freedom and non-centrality
parameter 77 =n(X —4,) T (X — u,).

Proof: See Anderson (2003) on pages 174-176.
It can be shown that the pdf of T° is given by

1
e—éfz . (T2 12) [ﬂ I(n— 1)]5“"1 r(; n+i)

: (A1)

1
(n— 1)r[; (n—v)] =0 i!F(; vill+12 n-D)2
(See Anderson (2003) on page 186)

Corollary 3:

1) For v=2,if z= >, x>, xD?* where D*= [1+L1(X—,UO)'SI(X—,UO)],
n_

then the pdf of z is
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1,
1

e o 2 i _ i .
2 (z/w)(”_4)/ze_mz(f /2y (w=1) 1—l(lft/z-i_l)dw,for z20.
wl'(n—=2IT(n—2)/2] Py

fz(z) :J.lx

AT+ w2

2)For v=3,if 7=y xy>,xy>,xD?*, where

% =[1+L1(Y—ﬂo)'5‘l(??—ﬂo)], then the pdf of 7 is
—

1>
(1/2)"7072 x 12 mamalmn) 70T () 0o912 = (2 10y (3 — 1) T(n ) 2 + 1)

L= -
P Te=DM=3721 Te=3720 55,2

dx,dw, for z 2 0.

Proof :

1) From D> =[1+ ﬁ(}? —#,) S (X = 14,)] and Theorem 3, we find that
1

n—1

D=1+ T

1
Let y= 1+—1T2. Using the transformation method and the equation (A1), the
n —_—

pdf of y is obtained as follow:
fy )= fpa ((n=Hly=BKI (2 =D) |

L

o8 2 L i .
e? Z(T 12)yCy—1) F(n/2+l)x(n_1)

= (n — I)F[(n - 2) / 2] i=0 l'r(l ) 1)y%nﬂ'

[
' o (2 TN .
e Z(T /12)'(y-1) F(n/2+l),f0ry>l

T Ti(-2)/214 [
[ =DI205 iy

Let x=y;,xy.,.From Corollary 2, we find that x=(y;, ,)’/4. Thatis, the pdf of
x is
;x(n—4)/2e—\/§
x)=%———— for x>0.
T =m0 *

Now, let z=xy and w=y. Using the transformation method, the solution is

1 -z
x=z/w and y=w, and the Jacobian of the transformationis J =|,, ,?|= 1 .So,
o 1| v

we find that the joint pdf of zw is
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Fow (Zow) = fyy (2/ w,w)x (1/ w)

1 (=412 ,~zlw o
S @/w) € e? Z(r 12) (w=1)'T(n/2+i)

wl'(n—2) F[(n 2)121'5

,forz>20,w>1.

l .
TG+ w2

Then, the marginal density function of z is obtained as follow:

1 (n=4)12 _—Jzlw )
7 (Z)_rz(”w) € e? Z(r 12) (w—1)' r(n/2+l)
22 C(n-2 “Tn-2/2 .
wh(n-2) =220 e

1 =7

~e’ R NP Y .
:J‘ 2 (Z/W)<n_4>/ze_mz(f 12) (w=1) Fl(n/ZH)dw, for 2> 0.

L wl(n-2)T[(n—2)/2] o :

ATG+Dw?
2) From D*=[1 +ﬁ(}? —1,) S (X = t4,)] and Theorem 3, we find that
1

n—

D2=14 T

1
Let y=1+ _1T2 . Using the transformation method and the equation (A1), the
n —_—

pdf of y is obtained as follow:
Fr )= fra (=D =DKI(n=1)1

1
72

e? z(r 12) (y - 1)””2F(n/2+z) (n—1)
(n DIT(n—3)/2]= l!F(l+3/2)y
o7 Z(T 12) (y— 1)’+1/2F(n'/2+1) 2l

e-3)/215 z!r(z+3/2)y1

Let x, =y, x>, and x, = 77 ,.From Corollary 2, we find that x, = (y;, ,)’/4.
That is, the pdf of x, is

lx (nf4)/2efJ)Tl

1
fx, (xl)=2r(n—_2),for x,>0.

Now, let x=xx, and u = x,. Using the transformation method, the solution is
0 1

1 —x
2

. L 1
x, =u and x, = x/u, and the Jacobian of the transformation is J =
u

u y
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we find that the joint pdf of xu is

X

1., B ~ —u
(7)(;1 1)/2 1/2 1=5)/2 o 2

Xu XX
2

fXU(x,u)zfxlxz(u,x/u)Xblt= ,0< xu<oo.

T(n—2)xT[(n-3)/2]
Then, the marginal density function of x is

X

1. - _ _ -
(7)(;1 DI2 g0 V2 5 (912 5 2

2
H@= ] S e 2

Again, let z=xy and w=y. Using the transformation method, the solution is

1 -z
. L — —_ 1
x=z/w and y=w, and the Jacobian of the transformation is the J =|,, ,?2|=—.
o 1| "
So, the joint pdf of zw is obtained as follow:
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Corollary 4: x ~ (F,, , 2,1]74)2 , y~F, 5,5 if z=xy, thenthep.df of zis
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where k(n,n,) =

Proof : Let ¢~ (F,, _,,,.,), x=1", where
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Using the transformation method, ¢ = Jx ,and J = # ( Jacobian ), so the p.d.f.
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Now, let z=xy given x~(F, ,,. )", y~F Using the transformation
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method, x=x, y=z/x,and J=1/x (Jaobian), so thejoint pdf of x and zis
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Then the marginal density function of z is obtained as follows:
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