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Abstract

Noise always significantly damages an image and can corrupt most important
details. Two noise models can adequately represent most noise added to images:
additive impulse noise and Gaussian noise. In this thesis, we propose a two-stage
filtering method to sequentially remove the mixed noises of images corrupted with
nonlinear impulse and linear Gaussian noises as well. In the first stage, the
decision-based recursive adaptive median filter is applied to remove the Salt-Pepper
noise, and an adaptive two-level neural network noise reduction procedure is applied
to remove the random-valued noise. Then, an HVS-directed neural-network-based
image quality enhancement is applied to compensate the modified pixels. In the
second stage, we derive a linear modified fuzzy rule-based (MFRB) filter to remove
the linear type Gaussian noise while preserving the image edges and details as much
as possible. For practical consideration, we design several sets of universal MFRB
filters, to be utilized in correspondence to the estimated values of contaminated
Gaussian noise variance in the image. The correspondent MFRB filter closest to the
estimated Gaussian noise level will be selected to remove the Gaussian noise of the
processed image. According to the experiment results, the proposed method is

superior, both quantitatively and visually, compared to several other techniques.
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1. Introduction

1.1. Motivation

In the real-life, images are often contaminated by mixture of impulse and
Gaussian noises of varying noise intensities due to the imperfection of sensors and
communication channels when transmitted. The objectives of image noise removal are
to remove the mixed noise and to retain the edges or other salient structures in the
original image. Noise smoothing and edge enhancement are inherently conflicting
processes, since smoothing a region will destroy an edge and sharpening edges might
lead to enhance the unnecessary noise. Thus it is a difficult work for a universal
algorithm that can remove different kinds and intensities of noise from images and
preserve their sharpness and details. In this thesis, we propose a two-stage fuzzy
filtering method to sequentially remove the mixed noises of images corrupted with

nonlinear impulse and linear Gaussian noises well.

1.2. Impulse and Gaussian Noise M odél

The additive impulse noise and Gaussian noise models can adequately represent
most noise added to images. Impulse noise is the pixels randomly misfired and
replaced by other values in an image. Such noise can be introduced due to

transmission errors. With the noise ratio p, only p percent of the pixels in the

image are replaced and others keep noise-uncorrupted. For example, when u is an
image, Ui jwill represent the intensity value of u at the pixel location (i,j) in the

image domain. For images corrupted with impulse noise, the noisy image U is

1



related to the original image u’ by

n; ; with probability p

u . =
. ui?j with probability (1-p) (1.1)

where the impulse noise is denoted by n.

In a variety of impulse noise models for images, fixed and random-valued
impulse noises are mostly discussed. Fixed-valued impulse noise, known as the
“Salt-Pepper” noise, is the corrupted pixels whose values are replaced with values
equal to the maximum or minimum (255 or 0) of the allowable range with equal
probability (p/2). The random-valued impulse noise is the corrupted pixels whose
values are replaced by random values uniformly distributed in the range within [0,
255].

Additive Gaussian noise is characterized by adding to each image pixel a value
which is drawn from a zero-mean Gaussian distribution. Such noise is usually

introduced during image acquisition. For the case of additive Gaussian noise, the
noisy image U is related to the original image u’ by

0
Ui j =Uij +0ij (1.2)

1.3. Previous Research

Nowadays, image processing techniques have been well developed, but there are
still some bottlenecks that have not been solved. Many image processing algorithms
cannot work well in a noisy environment; therefore, the noise removal algorithm is
adopted as a preprocessing module. A number of approaches have been developed for

noise removal and listed as follows.



1.3.1. Existing Impulse Noise Removal Algorithms

The nonlinear filtering technique, standard median (SM) [1]-[2] filter, based on
order statistic has been demonstrated generally superior to linear filtering (moving
average) on suppressing impulse noise. However, median filter still tends to blur fine
details and destroy edges while removing out the impulse noise. To achieve better
performance, median filter has been modified in many ways, such as weighted median
(WM) [3]-[4], center weight median filters (CWM) [5], adaptive-length median filter
[6], the recursive medians [7]-[8] and the alpha-trimmed mean filter [9]. They were
expected to increase the signal preservation but relatively decrease the noise
suppression ability. Applying these algorithms altogether across the whole image
without identification would inevitably remove the uncorrupted detail pixels, destroy
the image quality, and cause additional blur.

For that reason, the decision-making schemes [10]-[12] were proposed in which
only the identified noisy pixels are processed. Besides, the switching schemes [13]-
[17] provide adaptive decision to recover the noisy pixels based on several filters to
remain noise-free pixels unchanged. In [18], the progressive switching median filter
was proposed for only fixed-valued impulse noise removal. Also, the
weighting-average linear combinations of nonlinear median-based filters through
learning-rule optimization have been proposed [19]-[21]. Although satisfactory
results have been obtained, they tend to remove fine details or retain too much of the
noise due to undetection or misdetection of the noise [22]. In addition, since the noisy
pixels are replaced without taking into account local features, details and edges are
not recovered satisfactorily, especially when the noise level is high. The thresholding
filtering [23] which composed of new efficient noise detectors was proposed to
prevent the misclassification of noise-free pixels. The edge-directed noise detection

3



and suppression strategy was proposed to preserve the details and edges [24]. Two
stage approaches that combine noise identification and edge preserving supplementary
have been proposed trying to remove the noise cleanly and keep the detail information

well [25]-[26].

1.3.2. Existing Gaussian Noise Removal Algorithms

On the other hand, linear filtering algorithms, such as Wiener [27] and Kalman
[28] filters are essentially low-pass filters and well-known for their ability to remove
the Gaussian noise, but they cannot remove the impulse noise well and tend to blur
the fine features in the image. To remove the mixed noise in an image, a combination
approach or hybrid filters [29]-[30] have become a promising approach. Garnett et al.
[31] introduced the local image static - Rank-Ordered Absolute Differences (ROAD)
to quantify how different in intensity the particular pixels are from their most similar
neighbors, and proposed the trilateral filter, modified from the bilateral filter [32], for

removing mixed Gaussian and impulse noise.

1.3.3. Existing Neural and Fuzzy Noise Removal Algorithms

Since neural networks have the ability to learn from examples and fuzzy systems
have the ability of reasoning to deal with uncertainty, they also have a growing
number of applications in image noise removal in the past few years [33]-[40]. Zhang
et al. [33] proposed the fuzzy techniques to detect the impulse noise and to find the
ultimate remote window to replace the noise-liked pixel with a linear combination of
the pixels. Schulte et al. [34] proposed a fuzzy derivative estimation with fuzzy rules
in the first stage for noise detection and fuzzy smoothing of neighboring pixels in the
second stage. Lee et al. [35] proposed a fuzzy image filter based on genetic learning

4



process. Russo [36]-[37] proposed a recursive Neuro-Fuzzy filter with specifically
designed original multiple output network structure and learned the parameters based
on the genetic algorithm. M. E. Yilksel et al. [38] proposed a new impulse noise
detector comprises two identical Neuro-Fuzzy subdetectors combined with a decision
maker.

On the other hand, there are mainly three kinds of fuzzy approaches used in
mixed noise removal of an image. The first kind is the fuzzy weighted average filter
[41] and fuzzy weighted median filter [42]. Peng [43]-[44] proposed a multi-level
adaptive fuzzy (MLAF) filter, which uses fuzzy sets to adaptively combine simple
linear and nonlinear filters to remove varying mixed noise with different levels. The
second kind is the fuzzy logic filter, which suggests that individual pixels should not
be uniformly fired by each of the fuzzy rules. Choi et al. [47] derived three different
filters for each of the three objectives using the fuzzy weighted least squares (FWLYS)
method. And he defined the criteria for selecting each of the filter based on the local
context using the fuzzy rules. Taguchi [48] proposed the modified fuzzy filter (MFF)
with new local characteristic calculated with fuzzy rules by using multiple difference
values between arbitrary pixels in the filter window. Farbiz et al. [49] proposed the
fuzzy logic filter (FLF), which adopted the general structure of fuzzy if-then-else rules
mechanism. The S-type fuzzy function enables the non-uniform firing of the basic
fuzzy rules. For the third kind uses fuzzy reasoning which is embedded into the neural
network structure through genetic learning algorithm. It is able to adapt the filtering

action to different distributions of mixed noise.

1.3.4. Existing Human Visual System Algorithms

Many researches have been made on discovering the characteristics of HVS for



years. The characteristics of the HVS have been incorporated into the digital image
processing such as watermark encoder design, digital image compression, and image
recognition etc [51]-[59]. The perceptual redundancies inherent in a still image are
basically due to the inconsistency in sensitivity of the HVS to stimuli of varying
levels of contrast and luminance changes in the spatial domain. It was found that the
perception of HVS is more sensitive to luminance contrast rather than the uniform
brightness [60]. In addition to the magnitude difference between object and the
background, different structures of images also cause different visual perceptions for
HVS. Many features have been proposed based on the block DCT in frequency
domain and Wavelet [61]-[62]. A novel fuzzy decision system inspired by HVS is
proposed to classify the image into human perception sensitive and non-sensitive

regions.

1.4. Brief Summary

In this chapter, several noise removal algorithms are presented. As mentioned
above, it is difficult to remove the mixed noises without blurring the edge and details
information. The two tasks, involving suppressing the impulse noise and removing the
Gaussian noise in an image, are very different in characteristics because each of them
respectively facilitates the nonlinear and linear filtering operations. Besides, the
presence of impulse noise can seriously degrade the performance of a restoration
technique that is designed mainly to remove Gaussian type noise. Consequently, we
propose in this thesis a two-stage filtering technique to remove the nonlinear impulse
and linear Gaussian noises sequentially. In the first stage, the decision-based recursive
adaptive median filter is applied to remove the Salt-Pepper noise and an adaptive

two-level neural network noise reduction procedure is applied to remove the



random-valued noise described in Chapter 3. Then, an HVS-directed neural-network-
based image quality enhancement described in Chapter 2 is applied to compensate the
modified pixels. In the second stage, we derive a linear modified fuzzy rule-based
(MFRB) filter to remove the linear type Gaussian noise while best preserving image
details, and we combine the two stage filtering and proposed the universal MFRB
filter for mixed noise removal described in Chapter 4. Finally, conclusions and

perspectives are described in Chapter 5.



2. Human Visual System Based Image Quality

Enhancement

In this chapter, we proposed an HVS-directed neural-network-based image
quality enhancement. The fuzzy decision rules inspired by human visual system (HVS)
are proposed to classify pixels of the image into human perception sensitive class and
non-sensitive class. A neural network is proposed to enhance the sensitive regions to
perform better visual quality. In addition, the proposed fuzzy decision rules combined
with the neural network can balance the trade-off between speed and quality for
different applications by just adjusting a threshold parameter. The ideas of using the
fuzzy system to implement human visual system and using the neural network for
image enhancement are new. The learning results can be directly implemented
through the look up table (LUT) to reduce the computational cost and the system
complexity for practical applications. It can be combined with any other filtering

approach to enhance the visual quality.

2.1. Introduction

The visual acuity of the eye is generally regarded as the most important factor for
the ability of the eye for seeing objects. The acuity of the eye is usually measured by
acuity tests where the minimum visible separation is measured of black rings with a
small interrupted part. These tests are used for decisions that play a role in the
properties of the human visual system.

Objects can generally be better distinguished from each other or from their

background, if the difference in luminance or color is large. Of these two factors,
8



luminance plays the most important role. In practice, it appears that it is not the
absolute difference in luminance that is important, but the relative difference. This
relative difference can be expressed by the ratio between two luminance values, which
is called contrast ratio, or by the difference between two luminance values divided by
the sum of them, which is simply called contrast. Objects that only have a small
contrast with respect to their background are difficult to observe. The eye is more
sensitive for the observation of objects, if the required amount of contrast is lower.
The reciprocal of minimum contrast required for detection is called contrast
sensitivity.

In this chapter, Section 2.2 studied the characteristics of spatial visual for
improvement in applications of digital image processing. The structure of the image
quality enhancement system is described in Section 2.3. Section 2.4 gives conclusions

of this chapter.

2.2. Characteristic of Spatial Vision

When we speak of spatial vision, we refer to the visual system’s ability to detect

and analyze changes in brightness across space.

2.2.1. Characteristics of Sine Wave Grating

Comparing the two gratings in Fig. 2.1, the grating on the bottom shows more
alterations between light and dark than the grating on the top. In a given space (the
space taken up by the photograph), there are more alterations, or cycles, in the bottom
grating. Therefore, this bottom grating has a higher spatial frequency than the top
grating. In other words, it has more cycles within unit given space. The top grating
shows a relatively lower spatial frequency; it has fewer cycles per space.

9



It is common to refer to the spatial frequency of a grating in terms of cycles per

degree rather then cycles per space. The number of cycles per degree of visual angle

is specified rather than the

number of cycles per unit of space. As we shall see, the

specification of spatial frequency in terms of cycles per degree offers many practical

advantages.

Luminance

Luminance

Position

-

Position

Fig. 2.1. A low frequency spatial grating (top) and a higher frequency grating (bottom).

Both gratings have the same contrast.
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2.2.2. Characteristics of Contrast

The top of Fig. 2.2 shows a grating of low contrast along with its luminance
profile. The bottom of this figure shows a grating of the same spatial frequency but of
a higher contrast. The dashed line across the luminance profiles represents the average
luminance of the gratings. Note that the average luminance |, for both gratings is
the same; however, the grating on the bottom has a greater difference between its peak
and the average luminance value. Consequently, it has a higher contrast.

Contrast is often defined by way of a formula:

Contrast:IA—I : (2.1)

ave
where

Al : The difference in luminance between the peak or trough and the average
luminance |_,.

l.: The average luminance of the grating. (the average of the light peaks and

dark troughs)

This formula states that contrast is the ratio of the difference between the peak
luminance and average luminance to the average luminance. Although this formula is
useful in defining and understanding contrast, it is not very practical for the
measurement of contrast. In the laboratory, the scientist may find it easiest to measure

the peak luminance | and the minimum luminance | to calculate the contrast.

n

The formula used is

Contrast=-me ~mn , (2.2)
[+l

max min

where

e+ Al

max

min ave
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It can be demonstrated that Eqg. (2.2) provides the same result as Eq. (2.1).

Substituting for [ and | we have

n

Imax _Imin — (IaVe+AI)_(IaV€‘_AI) :AI (2.3)
(o + A+ (1 —Al) |

Imax + I min ave ave

It should be clear from examining Fig. 2.2 and the preceding formulae that
contrast ranges between 0% and 100%. Contrast cannot be greater then 100% because
of the physical impossibility of making Al greater than 1_.. The trough of the
luminance profile is at zero luminance when Al =1_,. It is not possible to have less

than zero luminance.

Al
Luminance (W - l average
Position
Al
Luminance [— —|— '— - laverage
Position

Fig. 2.2. A low contrast spatial grating (top) and a higher contrast grating (bottom).

Both grating are of the same spatial frequency.
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2.2.3. The Human Visibility Threshold

It was found that the perception of HVS is more sensitive to luminance contrast
rather than the uniform brightness. Fig. 2.3 shows the actual visibility thresholds
called just-noticeable-distortion (JND) corresponding to different background
luminance and it was verified by a subjective experiment [60]. The experiments were
conducted in a dark room and a square area was located in the center of a flat field of
constant gray level. Through varying the amplitude of the object, the visibility
threshold for each gray level was determined when the object was just noticeable. The
ability of human eyes to tell the magnitude difference between an object and its
background depends on the average value of background luminance. We can find that
the visibility threshold is lower when the background luminance is within the interval
from 70 to 150, and the visibility threshold will increase if the background luminance
becomes darker or brighter away from this interval. In addition, high visibility

threshold will occur when the background luminance is in very dark region.

20

18

16

14
Visibility
Threshold 12

10

[
0 50 100 150 200 250 300

Background Luminance

Fig. 2.3. Visibility thresholds corresponding to different background luminance.
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2.2.4. The Contrast Sensitivity Function

To determine a human contrast sensitivity function (HCSF), the subject is
presented with a sine wave grating of a given spatial frequency. A typical HCSF is
shown in Fig 2.4. Note that the coordinates are plotted in log units. The HCSF is a
band pass function: it shows distinct peak sensitivity and decreasing sensitivity on
either side of this peak. A typical HCSF peaks in the region of 4 cycles/degree. The
human visual system is most sensitive to this frequency; it will detect a grating of this

frequency at lower contrast levels than it will detect gratings of other frequencies.

1000 e
Contrast
Sensitivity
100 e
10 &
1 | | |
0.1 1 10 100

Spatial Frequency (Cycles/Degree)

Fig. 2.4. Typical human contrast sensitivity function. The arrow points to the cutoff
frequency.
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2.3. Sructure of the Image Quality Enhancement System

For image analysis, we make use of the properties of human visual system (HVS)
to obtain the features of images. Therefore, we could realize which region would be
worth quality enhancement, since human eyes would be usually more sensitive to this
region. For sensitive regions, we propose an adaptive neural network to enhance the

visual quality to match the characteristics of human visual perception.

2.3.1. HVS-Directed Image Analysis

There are three input variables, visibility degree (VD), structural degree (SD),
complexity degree (CD), and one output variable (Mo) in the proposed fuzzy decision

system.

2.3.1.1. Visibility Degree (VD)

To apply the human visibility threshold as mentioned is Section 2.2.3, the actual
data and approximated nonlinear equation of visibility thresholds corresponding to

different background luminance was shown in Fig. 2.5.

1B < Actual data
—— Approximation curve

Wisibility
threshold12 | 20 66e—O.O3BL + e0.00B BL

| | | I |
a 50 100 150 200 250 300
Background luminance (BL)

Fig. 2.5. Visibility thresholds corresponding to different background luminance.
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00, 1| 0(0,0) | 0(0, 13| 0¢0,2)

O(1,1)|0¢1,0)| 0(1,1)| O(1,2)

02, 1)| 0(2,0y| 0¢2, 13 0( 2, 2)

Fig. 2.6. The 4x4 sliding (overlapping) window blocks applied to the image quality
enhancement.

In order to obtain the input variables corresponding to each sliding block shown
in Fig. 2.6, two index parameters called background luminance (BL) and difference
(D) are defined at first. BL is the average luminance of the sliding block proposed to

approximate the actual background luminance and can be calculated by

Phom i
BL=—23"30(i, )xB(, j), (2.4)
BEA
where
2 2 21
2021
B(i, j) = , 25
Q=2 o 25
1111

and the denominator 23 in Eq. (2.4) is the weighted sum of all elements in Eq. (2.5)
for normalization.
Feature D is the difference between the maximum pixel value and the minimum

pixel value in the sliding block and can be calculated by

D = max(O(i, j)) - min(Oi, j)) (2.6)
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A nonlinear function V(BL) is also designed to approximate the relation between
the visibility threshold and background luminance (as Fig. 2.5), and can be
represented as

V(BL) — 20.66e—0.03BL + e0.00SBL . (27)

The first input variable of the fuzzy decision system, VD, is defined as the

difference between D and V (BL) and can be represented as
VD=D-V(BL). (2.8)

If VD >0, it means the magnitude difference between the object and its
background exceeds the visibility threshold and the object is sensible. Otherwise, this
object is not sensible.

The other two input variables, SD and CD, are used to indicate whether the

pixels in the sliding block own edge structure.

2.3.1.2. Sructural Degree (SD)

SD shows if the sliding block is a high contrast region and the pixels in the block
can be obviously separated into two clusters. It is calculated by

op  IMax(O(, j)) -mean(O(i, j)) - [mean(O, j)) - min(O(, i))]
max(O(i, j))—min(O(i, j)))

, (2.9)

where

mean(O(i, |)) :%Z 30, ). (2.10)

i=1j=—1

An illustration of Eq. (2.9) is shown in Fig. 2.7. According to Fig. 2.7, Eq. (2.9)
can be expressed as |o,—0,|/(0,+0,), where o, =max(O(i, j))-mean(O(i, j))

and o, =mean(O(i, j))-min(O(i, j)) . So the SD has been normalized to [0,1] and

this rule can also be applied to images with different intensity range. If SD is small
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(@) (b)

Fig. 2.7. An illustration of the relation between SD parameter and the distribution of
pixels in a sliding block.

(closeto 0), o, and o, are close (see Fig. 2.7(a)), it means the pixels in the

block can be separated into two even clusters. The block may contain edge or texture

structure. On the contrary, if SD is a large value, 0<<|o,—o,| (see Fig. 2.7(b)), it

means pixel number of one cluster and that of the other cluster are not even, thus, the

block may contain noise.

2.3.1.3.Complexity Degree (CD)

Fig. 2.8(a) and (b) show a texture structure and a delineated edge structure in a
sliding block, respectively. In these two plots, pixel numbers of the two clusters are
the same. Therefore, the SD values corresponding to these two structures are close.
Since the proposed neural network is used to compensate the sensitive regions such as
Fig. 2.8(b), CD input variable based on differential process is employed to tell the
delineated edge structure from texture structure. It is calculated by

CD:ii\m(i, -[0(+1})+0(-1j)+O(i,j+)+0(,j-1], (211)

i=1 j=—1

where O'(i, j) is the binarized version of O(, j) . Assuming mean(O) is the mean
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Fig. 2.8. Portions of (a) the sliding block containing texture structure, (b) the sliding
block containing edge structure.

gray value of the sliding block, O'(i, j) is defined as :

o _):{ 1, if O, j) = mean(O), 012

0 , otherwise.
In Eqg. (2.11), each pixel in the 4x4 sliding block takes the 4-directional local
gradient operation and CD is the summation of the 16 local gradient values. If CD is a
large value, it means the block may contain texture structure. On the contrary, if CD is

a small value, the block may contain delineated edge structure.

2.3.1.4.Fuzzy Decision System

In the proposed HVS-based Fuzzy decision system, the input variable VD has
two fuzzy sets, N (negative) and P (positive). The input variable SD has three fuzzy
sets S (small), M (medium), and B (Big). The input variable CD has three fuzzy sets,
S (small), M (medium), and B (Big). The membership functions corresponding to VD,
SD, and CD are shown in Fig. 2.10(a)—(c), respectively. In order to determine the
fuzzy membership functions, seven nature images were used to generate the model.
The images were separated into smooth, texture and edge regions by the admission of

the majority (seven of ten subjects). Then the ranges of VD, CD and SD proposed in
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Egs. (2.8), (2.9) and (2.11) corresponding to these regions were evaluated. Finally, the

membership functions of VD, CD and SD could be designed according to the

distribution ranges of the parameters in these regions, respectively. Mo is the output

variable and the membership functions corresponding to Mo are shown in Fig. 2.10(d).

It has two fuzzy sets, NN (neural network) and OP (original pixel).

Seven fuzzy decision rules are used in the proposed fuzzy system and

represented as follows:

1.

2.

If VD is N then Mo is OP
If SD is B then Mo is OP
If CD is B then Mo is OP
IfVDisPand SD is S and CD is S then Mo is NN
If VD isPand SD is S and CD is M then Mo is NN
If VD is P and SD is M and CD is S then Mo is NN
If VD is P and SD is M and CD is M then Mo is OP.
Ao o
N P S M B
X XX
0 Vb 032 036 0.4 g
(@) (b)
A#cD A#Mo
S M B OoP NN
XX X
10 13 16 o 5 1:0 >e
(c) (d)

Fig. 2.9. (a)-(d) Membership functions of fuzzy sets on input variables VD, SD, CD,

and output variable Mo, respectively.



The numerical value of Mo after defuzzification is compared with a threshold
value, Th, where Th is preferably set as the value 5 by experiments. When Mo >Th,
the adaptive neural-network (NN) compensation module with angle evaluation

would be chosen; otherwise, the original pixel (OP) value would be used.

2.3.2. Angle Evaluation

As Mo>Th, the fuzzy system identifies the reference pixel as sensible delineated
edge and the trained adaptive neural-network model is chosen for quality
enhancement according to its corresponding edge angle. The angle evaluation is
performed to determine the dominate orientation of the sliding block. The flow
diagram of angle evaluation is shown in Fig. 2.10 to compute the orientation angle of
each neighborhood of the original image pixel. When the orientation angle of O(i, j)
denoted as A(i, j) is computed, the luminance values of the original pixels nearby

O(i, j) are used for the following computations:

Dx(i, j)=0(i -1, j-1)+20(i -1, j)+ O(i -1, j +1)

. . . . . ) : (2.13)
—(O(i+1,)-1)+20(i+1,j)+0O(+1,j+1)
Dy(i,j)=0(i-1,j-1)+20(,j-1)+0O(i+1,j-1) (2.14)
—(0(i—-1,j+1)+20(, j+1)+ 0@ +1,j+1) "’ '
o180 Dy(, j)
Al j)= ”[tan (Dx(i’j))], (2.15)

where —1<i<2 and -1<j<2.
The obtained angle of each pixel in the sliding window is quantized into eight
quantization sectors such as ¢ = 22.5xk degrees, where k=0, 1, ..., 7. Assuming @

is the most frequently quantized angle in the window; it is regarded as the dominant

orientation of the reference edge pixel. The corresponding weighting coefficient W,

is derived from the off-line training neural network for compensation filtering.
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Fig. 2.10. Flow diagram of angle evaluation.

2.3.3. Neural-Networ k-Based | mage Compensation

The function of the proposed neural network is to obtain the weights W,
defined in Eq. (2.4), where & represents the quantized dominant orientation of the

reference pixel. Thus, the proposed neural network is used to obtain 8 sets of

weighting matrices through training. Each weighting matrix W, can be represented

as
W—l—l W—lO W—l 1 W—12
Wy, W, W, W
. 0-1 00 01 02
W, (i, j) = (2.16)
Wl—l WlO Wl 1 W12
W2 -1 W20 W2 1 W22

In order to use supervised learning algorithms to train the proposed neural
network, we have to obtain the desired input-output patterns such that the differences
of network outputs and the corresponding desired outputs can be used to define the
cost function as the goal to minimize. In this section, several clean image portions

with dominant orientation are used as training patterns. Assuming a clean image
22



portion is denoted as I, the noise-corrupted version of | has been processed by the
proposed noise removal method in the first stage and the filtered result is denoted as
I'. According to Fig. 2.11, let I'(i, j) be the reference pixel, where O(0,0)=1(i, j),
and it is classified as an edge pixel with dominant orientation & after angle
evaluation. The input of the neural network can be defined as IP=¢ and the
network output is the compensated pixel value of 1(i,j). The pixel value of
I(i, j) obtained from the clean original image is used as the desired output of the
neural network for training.

When the input-output patterns are given, the following task is to train a neural
network to match the input-output relations. A new neural network as shown in Fig.
2.11 is proposed for image compensation. It is a 4-layer network with two hidden
layers. The input layer consists of one node corresponding to @. The second layer
(1st hidden layer) consists of M nodes denoted as g(z), where M is 200 in our
experiments, and the bipolar sigmoid function is used as the activation function. The
weighting vector between the first and the second layer is denoted as U . The third
layer (2nd hidden layer) includes 16 nodes and the bipolar sigmoid function is also
used as the activation function. The weighting vector between the second and the third

layers is denoted as V . The output value of each node in the third layer is denoted as
y(s) and represents an element of the weighting matrix W, given in Eq. (2.16),
where y(s) =w,,i =4(j+1)+k+2, 1<i<16, -1<j<2, and -1<k<2. The fourth
layer is the output layer with one output node and its output value represents the
compensated pixel value of I (i, j). The vector between the third and the fourth
layers is denoted as 1,. It represents the vector of the sixteen neighborhood pixels of

the reference pixel 1 (i, j) with dominant orientation @ as follows:
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V16 M

Fig. 2.11. The proposed feedforward neural network for image quality enhancement.

Mo =1 j-1) |
o2 I G, j-1)
‘ I o5 F(+1j=1)
lo=|Tos |= |1 (+2j-1 | - (2.17)
I'gs (-1 1))
_|‘616_ _|l (i+2,j+2)]

Then the system estimation output can be calculated by

Y=Y y(s) lh (2.18)

x=1

and the corresponding desired output D can be obtained by
D=1(,]). (2.19)
It should be noted that the weighting vectors need to be updated in the training
stage are only u and v . If a reference pixel I (i,]) is given, the neighborhood

pixel vector T, of 1 (i,j) can be regarded as an extra input vector for
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compensation. This unique operating rule is the major difference between the
proposed neural network and the common feed-forward neural networks and is

specially designed for the image-compensation application.
In the training stage, the updating rules of weights, vabe\7, u, € U, can be

derived by the back-propagation learning method as

V(14D =V, (0 +7 (D)1, A+ Y(s,)A-¥(s,) /2% 9(Z,), (2. 20)

Uy (t+1) = Uy (1) +1 {Z[(D—Y)(I'ei)(1+ ASIC- ¥ ) vib]}

x|+ 9(Z,))A-g(Z,))/ 2]IP, (2.21)

where # is the learning constant which determines the rate of learning.

Thirty nature images were used to train the proposed NN for image
compensation. The edge regions in these training images are separated into 8 different
quantized angles. The variations may be caused by the quantization error (11.25°) and
the characteristics of different images and regions. In addition, the vector between the
third and the fourth layers of the neural network for image quality enhancement
represents the sixteen neighborhood pixels of the reference pixel and it is the filtered
results of the first stage (noise removal). This will also cause the variation and
nonlinearity in the training. In order to reduce the cost function (MSE) to 1% of the
intensity range, i.e. 255x0.01=2.5, 200 nodes in the first hidden layer were required
to achieve this goal with the learning rate 7 = 0.2 in our experiments. However, if we
release the goal (MSE) to achieve from 2.5 to 5, the hidden nodes in the first hidden
layer can be reduced to 80 without affecting the visual quality heavily. When the

training process is finished, 8 different input values, @, can be inputted to the trained

network, and the corresponding weighting matrices W, can be obtained to build a
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look up table combined with Eqg. (2.4) for image compensation to reduce the

computational cost.

Table 2.1 shows the obtained weighting matrices for the 8 orientations (W1~W8).

W1 and W3 look the rotated versions of W5 and W7, respectively. W2, W4, W6 and

W8 look the rotated version of each other. It means the proposed neural network can

catch the directional characteristics of edges through automatic training.

Table 2.1 The eight weighting matrices obtained from the trained
neural network for image quality enhancement.

W1 (0°)

W2 (22.5°)

0.00270896 0.00069366  0.00056130 0.00004264
0.25111893 0.24986401 0.24900746 0.25007752
0.00004062 —0.00081938 —0.00078190 0.00184474
0.00060843 0.00009103  0.00104945 0.00179080

0.03263883 —0.12737456 0.3393475 0.20418046

0.11473297 024242122 0.23237932 0.12049203

0.19398496 0.06377091 -0.03941444 —0.04396327
—0.05561969 —0.01565117 0.07172672 -0.0194764

W3 (45°)

W4 (67.5°)

0.01068067 —0.03348986 0.17198606 0.17003769
—0.0.154362 0.16861688 0.16765814 —0.0567397
0.16927022 0.16688901 —0.05967028 0.02869632
0.17292993 -0.05580725 0.02140568 —0.0007058

0.03404918 0.11399747 0.19406541 —0.05537197
—0.12803707 0.24180996 0.06267749 —0.01620973
0.03393999 0.23072700 —0.04103377 0.07309391
0.20509279 0.12011293 —0.04451190 —0.01901695

W5 (90°)

W6 (112.5°)

0.0409030 0.2525427052 0.00225166 0.00410132
0.00008099 0.25283754 0.00131791 0.00018051
0.00183930 0.24998878 0.00158754 0.00040739
0.00171057 0.25100192 —0.00097231 0.00257733

0.20460927 0.11994475 —0.04483605 —0.02036048
0.03346962 0.23192659 —0.04032709 0.07141998
—0.12803423 0.24167401 0.06352055 -0.01579252
0.03281431 0.11399426 0.19355151 -0.05560378

W7 (135°)

W8 (147.5°)

0.25051364 0.00072645 0.00055420 0.00050129
0.00074467 0.25005892 0.00000905 0.00056688
0.00043473 0.00041066 0.25014690 0.00108892
0.00058684 0.00054735 0.00049473 0.25065422

0.20489226 0.03368954 —0.12767382 0.03285340
0.12006646  0.23204653 0.24146707 0.11438927
—0.04462188 —0.04002404 0.06342979 0.19427589
—0.0200380 0.07150226 —0.01556357 —0.05482485
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2.4. Brief Summary

In this chapter, we proposed an HVS-directed neural-network-based image
quality enhancement. A fuzzy decision system inspired by the HVS is proposed to
classify the input image into human perception sensitive regions and non-sensitive
regions. If a pixel is in the perception sensitive region, the proposed neural-network
module is applied to this pixel for further compensation. The proposed image quality
enhancement system can be combined with any other filtering approach to enhance
the visual quality. It can also provide a quite stable performance over a wide variety of
images with various noise corrupted probabilities will be discussed in the latter

chapter.
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3. Image I mpulse Noise Removal

In this chapter, a novel noise removal algorithm to deal with impulse noise is
proposed. Firstly, the decision-based recursive adaptive median filter is applied to
remove the Salt-Pepper noise and an adaptive two-level neural network noise
reduction procedure is applied to remove the random-valued noise, and keep the
uncorrupted information well. Then the fuzzy decision rules inspired by human visual
system (HVS) described in Chapter 2 is applied to compensate the blur of the edge
and the destruction caused by median filter. According to the experiment results, the
proposed method is superior to conventional methods in perceptual image quality as

well as the clarity and smoothness in edge regions.

3.1. Introduction

As mentioned in Sections 1.3, the common median-type methods suffer from the
trade-off between cleanness of noise removal and preserving of edge sharpness. They
will suffer from the side effect of median filter such as blur and edge destruction
especially for images are highly corrupted. These methods exhibit relatively better
performance but require more computation and memory cost. It is desired to improve
the quality of noise removal and reduce the time consumption at the same time.

In this chapter, the decision-based recursive adaptive median filter to remove the
Salt-Pepper noise is described in Section 3.2, and a novel framework for random-
valued noise removal is described in Section 3.3. Since the precise noise detection
procedure is the key point in noise reduction, we propose a neural network for noise
detection such that various widespread densities of noisy pixels can be distinguished
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from the detail edge pixels well. After suppressing the impulse noise, the image
quality enhancement system is applied to compensate the corrupted pixels described
in Section 3.4. If a noise-corrupted pixel is in the sensitive region, the proposed
neural-network module is applied to this pixel for further compensation. Section 3.5
shows the experimental results with various comparisons to other schemes. Finally,

the conclusions are summarized in Section 3.6.

3.2.Salt-Pepper | mpulse Noise Removal

3.2.1. System Architecture

In order to remove the noisy images without blurring the edge, we divide the
process into two steps as shown in Fig. 3.1. In the first step, the impulse noise is
removed cleanly without losing too much detail information and then image quality

enhancement is applied to compensate the edge sharpness in the second step.

Fig. 3.2 shows the process in the first step, called the decision-based recursive
adaptive median filtering scheme. The proposed system consists of noise range
detection, decision-based rules, and the adaptive median filter with two different
window sizes excluding from noisy pixels, and the recursive algorithm. The noise
range estimation and decision-based rules decide whether the pixel is possibly
corrupted by noise or not, and the median filter is applied to the possibly

noise-corrupted pixels only. The window size of median filter is chosen depending on

Impulse )
Pt Image Quality
B — Noise > -
Enhancement
Removal

Fig. 3.1. The proposed two-step impulse noise removal algorithm.
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how heavily the neighboring pixels are corrupted by noise. Then we can remove the
noise entirely without destroying the detail and edges of the image. The recursive
algorithm replaces the value of noisy pixel with the processing output of the adaptive
median filter before the window shifts to next possible noisy pixel so that we can

remove the noise more cleanly when the window shifts to the following positions.
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Fig. 3.2. The decision-based adaptive recursive median filtering scheme.
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3.2.2. The Strategy of Salt-Pepper Noise Removal

In the first step, our goal is to totally remove the Salt-Pepper noises and keeping
the edge and detailed information as much as possible so that we can well compensate
the corrupted pixels by using the relationship of the neighborhood in the second step.

The techniques used in the first step are introduced as follows.

3.2.2.1. Noise Range Estimation

The noise model of additive Salt-Pepper impulse noise, as mentioned in Section
1.2, is a popular and practical problem in image processing. Since the noise range is
random assigned, estimating the distribution range of noise is the first task. As the
histogram statistics of nature images are distributed uniformly, we can observe that
the boundary between the values of noise and the normal pixels are abrupt as shown
in Fig. 3.3. Therefore, we apply the histogram statistics to find the gap thresholds and
estimate the noise ranges near the maximal and minimal gray level adaptively. It is

calculated by

Thi = max{ His(i) — His(i +1) | 0<i<30f, 3.1)
ThH =max{ His(i +1) - His(i) | 225<i <255}, (3.2)

where Hig(i) is the histogram statistic of noisy image at gray value i , ThH and ThL
are the maximum upper and lower gap thresholds, respectively. If the gray level of the
pixel is within the noise range, smaller than ThL or greater than ThH, we classify it as
a suspected noisy pixel and execute the noise removal process in Fig. 3.2. The initial
values of ThH and ThL are 256 and —1 respectively, to deal with the case that only
maximum or minimum threshold is existed such as the white noise that only

maximum noisy pixels are found.
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(©)

(a)

Fig. 3.3. Histogram statistics of Lena with 20% impulse noise within different noise
range. (a) range = 5 [(0—-4); (251-255)]; (b) range =10 [(0-9); (246—-255)]; (c) range =
15 [(0-14); (241-255)].

3.2.2.2. Decision Rules

It is very time consuming and even worse effective to filter all pixels in an image.
As a matter of fact, most pixels in the image are uncorrupted and should not be
modified. In the detection step, each pixel is classified into the possible noisy pixel or
the uncorrupted pixel. The uncorrupted pixels are retained without any modification
to avoid blurring caused by unnecessary processing.

In our strategy, the pixels within the detected noise range are regarded as
possibly corrupted noisy pixels and processed by the adaptive median filter. In such
decision rule, noisy pixels will be completely detected but the original pixels in these
intervals will also be misidentified as noisy pixels. Although some pixels are false
detected, our algorithm will not destroy the image quality too much. As the false
detections of noise are in the smooth regions, gray values of nearby pixels are very
close, so the result of median filtering is also very close to the original pixel value.
Even if the pixels are false detected in the edge area, our second step — image quality

enhancement system will well compensate the jaggy edges.

3.2.2.3. The Noise-Exclusive Adaptive M edian Filtering

When the median filter is employed to image processing, it often causes edge



blurring with large window sizes (such as 5x5) and suffers in insufficient noise
suppression with small window sizes (such as 3x3). Although an image may be
degraded with up to 20 or 30 percent impulse noise, the random excited pixels make
the distribution of noise uneven. When images are highly corrupted, a large number of
noisy pixels may connect into noise blotches, and it will still retain the noise after the
processing of median filter with 3x3 window size.

In this chapter, an adaptive median filter is proposed to achieve superior
performance of noise suppression and to preserve sufficient image sharpness and
detailed information. We first analyze the neighboring 3x3 region of the possible
noisy pixel. If there are more than four other possible noisy pixels in this block, it is
identified as a highly corrupted region and the 5x5 median filter is applied for
processing. Otherwise, the noisy pixel is processed by the 3x3 median filter. The
noise-exclusive scheme allows only the clean pixels inside the window to participate

in median processing [11].

3.2.2.4. Recursive M ethod

The recursive algorithm replaces the value of noisy pixel with the processing
output before the 3x3 window shifts to the next noisy pixel. It can efficiently
reduce the number of noisy pixels and remove the noise more cleanly when the

window shifts to the following processing positions. Fig. 3.4 shows the difference

between recursive and non-recursive methods. In Fig. 3.4, x (n) represent original
pixels and 'y, (n) represent processed pixels. We can find almost half of pixels in each
block have been processed by the recursive method (as shown in Fig. 3.4(b)) such that
the number of pixels contaminated by the noise is reduced and the noise can be easily

removed by the 3x3 median filter. The drawback of the recursive algorithm is that it
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Fig. 3.4. Elements of the 3x3 window centered around x(n). (a) Non-recursive; (b)
recursive. X (n) represent original pixels and 'y, (n) represent processed pixels.

will blur the edge and detailed information at the same time. Therefore, the second
step of the proposed method - image quality enhancement is necessary for

compensation.

3.3.Random-Valued I mpulse Noise Removal

3.3.1. System Architecture

Cleaning random-valued noise is far more difficult than cleaning Salt-Pepper
noise, since the differences in gray levels between a noisy pixel and its noise-free
neighbors are significant most of the times. In order to remove the random-valued
noise cleanly from input images without blurring the edge, we divide the process into
two steps — impulse noise removal and image quality enhancement as shown in Fig.
3.5. In the first step, the impulse noise is removed cleanly without losing too much
detail information and then the image quality enhancement is applied to compensate
the edge sharpness in the second step. The first step, two-level neural network noise
removal procedures are shown in Figs. 3.6 and 3.7. Fig. 3.6 shows the procedure
diagram of our first-level noise removal process and Fig. 3.7 shows the second-level
noise removal procedure. Inside the first level, only the noisy pixels identified by the

neural network detection are processed with the 3x3 median filter.
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Fig. 3.5. The proposed scheme for impulse noise removal.
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Fig. 3.6. The procedure diagram of the first-level impulse noise removal.
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Fig. 3.7. The procedure diagram of the second-level impulse noise removal.

The second-level noise removal procedure as shown in Fig. 3.7 is used to detect
and remove the misclassified and the detected but un-removed noise pixels in the
first-level noise removal process. The 3x3 window is applied in this stage to obtain

the features correspond to the pixel P(0,0) for noise detection.

3.3.2. The Strategy of Random-Valued Noise Removal

Since the residual noise will strongly affect human perception, precise noise
detection is the first important step for the noise removal. The noise is much more
annoying the human perception in the smooth and edge areas that have the lower just

noticeable distortion (JND) values compared with JND in the texture area [56]-[59].
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Most algorithms work well on low noise-density images but fail to detect noise pixels
in the edge region.

The decision-based algorithms for noise detection can be divided into three types.
The first type is to detect whether the pixel is contaminated by noise according to the
local features. Florencio et al. [10] proposed a decision measure based on second
order statistic called normalized deviation to detect the noise by threshold. Zhang et al.
[17] proposed a detection technique by four convolutions using one-dimensional
Laplacian operator. The second type decision measure considers the differences of
adjacent pixel values in the rank-ordered median filtering sequence [12]-[13]. The
third type approach called switching-schemes [14]-[15] that firstly apply several
types of rank-ordered filters and then detect the noise pixels by their relationships
with the gray level of the origin pixel.

In this chapter, a neural network with high precision and capability of dealing
with images corrupted with various noise densities is proposed for noise detection. It
is a 3-layer neural network with one hidden layer as shown in Fig. 3.8. The input layer
consists of three nodes corresponding to Gray level Difference (GD), Average
Background Difference (ABD) and Accumulation Complexity Difference (ACD) in

the 3x3 sliding window. The second layer is the hidden layer that consists of 6

ACD
GD

ABD

Fig. 3.8. The proposed neural network for noise detection.
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nodes and the bipolar sigmoid function is used as the activation function. The
weighting vectors between the first and the second layer, and between the second
layer and the third layer are denoted as S and R, respectively. The output layer
includes one node which represents the identified attribution of the pixel: “noise” or
“non-noise”, and the bipolar sigmoid function is also used as the activation function.

The three features in the input layer are discussed as follows.

3.3.2.1. Gray level Difference (GD)

The gray level difference represents the accumulated variations between the

central pixel for identification and each surrounding local pixel. It is defined by

1

GD =3 zlj IP(0,0) - P(i, j)| (3.3)

-1j=-1
(i,)#(0,0)
where P(0,0) is the reference pixel and P(i, j) is the surrounding local pixel.

The feature GD is mainly considered to detect the noise in flat area. It is
expected that the corrupted pixels should yield much bigger differences as compared
to the uncorrupted pixels. However, the pixels in edge and texture areas will also get
high GD values so that the obscure region identification between the noise, edge and

texture pixels relies on the other two assistant features ABD and ACD.

3.3.2.2. Average Background Difference (ABD)

Averaging the surrounding pixels as the background luminance of the sliding
block to compare with the central pixel is another assistant feature to detect the noise.
This feature, called average background difference (ABD), representing the overall

average variation with the central pixel in the block is defined by
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ABD = [P(0,0)— iz |- (3.4)

The corrupted pixels will yield bigger differences as compared with the clean
ones. For the pixels in the texture area, the GD value is large but the ABD feature will

be small.

3.3.2.3. Accumulation Complexity Difference (ACD)

Accumulating the difference between each pixel in the 3x3 sliding block and
its four neighboring pixels as defined below shows the structure information of the

block:

ACD:ii\“XP(i, D—Pi-L =P +L ))-PG,j-D)-P(, j +1)- (3.5

i=—1j=—1

In edge area, the summation is lower than the noise-pixel area though the gray
level difference (GD) might be similar. So it provides an assistant feature between the
edge and noise pixels.

In order to train the proposed neural network for noise detection, the 512x512
of gray-scale Lena image with 20% of impulse noise generated uniformly within
[0,255] is used as a reference pattern for training, and 3000 noisy pixels and 3000
uncorrupted pixels uniformly distributed in the image are adopted as the training data.
We also establish a noise table corresponding to these 6000 training data as the
desired output for supervised training. The desired output for noise pixels is 1, and the
desired output for the clean pixels is -1. The goal is to reduce the mean square error to

0.1. The back-propagation learning method is used to derive the updating rules of
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weights. In our experiments, 6 nodes in the hidden layer are enough to achieve this
goal and the learning rate was 0.1. Experimental results show that our neural network
owns the highest detection precision than other compared methods and our detection

procedure also gives a better trade-off between the undetection and misdetection rates.

3.4. The Second Sep — Image Quality Enhancement System

Since the process of the first step has removed the visible noise as cleanly as
possible, the second step focuses the image enhancement on edge region. In order to
compensate the edge sharpness, image quality enhancement mentioned in Chapter 2 is
applied to the modified pixels. The second step, the schematic block diagram of the
proposed image quality enhancement system, is shown in Fig. 3.9. The proposed
system consists of a fuzzy decision module, an angle evaluation module, and an
adaptive neural-network compensation module. Fuzzy decision module designates
each 4 x4 sliding block it receives for one of a plurality of predefined classifications.
Based on this classification, either the filtered value of the first step or the result of
adaptive neural-network compensation module is selected to reconstruct each possible
noise corrupted pixel. When the adaptive neural-network compensation is actuated,
the angle evaluation module will compute the dominant orientation of the original
image located in the sliding block as the input data of the proposed neural network.

When an image has been processed in the first step and enters the second step, it
is firstly divided into 4x4 sliding (overlapping) blocks. The block is shown in Fig.

2.6 as an illustration, where O(0,0) is defined as the reference pixel that possibly

corrupted by noise at (m,n) and O(i, j)

, are the neighborhoods of O(0,0). The

i#0, j#
weighted compensation is applied to the visual-sensitive region and can be presented
as:
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F(mn) =22 O, j) Wy(i. j). (3.6)

i=1j=-1
where W, is derived from a neural network after off-line training. The neural

network is trained according to the edge angle of the reference image pixel to obtain

the corresponding weights. After training, weighting matrices W, are obtained for

testing. In our system, only the filtered pixels in the first step are compensated in the

second step.
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Fig. 3.9. Schematic block diagram of the proposed image quality enhancement
system.
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3.5. Experiment Result

3.5.1. Simulation Results of Salt-Pepper Noise Removal

The performance of the proposed method has been examined on a variety of
testing images corrupted with various noise densities. For quantitative performance

evaluation, the peak signal-to-noise ratio (PSNR) defined as:

2
PSNR = 10log,, (- 22> Ny (3.7)

> (2,-2)°

e}
is used as quantitative performance indication, where z is the gray level of original
pixel; Z is the gray level of the final processed pixel and N is the total number of
pixels in an image.

In our experiments, the proposed algorithm is compared with five existing
methods including median filter [1], recursive median filter [2], Center Weighted
Median (CWM) Filter [3], Tri-State Median Filter [14], and Li’s [24] method. Table
3.1 shows the quantitative comparisons of these different methods. It can be found
that the proposed method can achieve best PSNR performance compared with the
other methods.

The testing results of Lena with 20% impulse noise are shown in Fig. 3.10.
According to Fig. 3.10(c) and (d), we can find the recursive median filter removes the
noise well but also blurs the edge, so the recursive algorithm cannot balance the noise
removal and edge sharpness well. In Fig. 3.10(e) and (f), the Tri-State Median can
retain more edge sharpness than the CWM, but both of them cannot remove the noise
very well in some highly noise-corrupted area. In Fig. 3.10(g), Li’s method might

misjudge some noisy pixels as the edge and then increase the size of some noises. The
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threshold adjustment for different images is another problem that needs to be solved
in these methods. In Fig. 3.11, the peppers images with 40% highly corrupted impulse
noise are processed. It shows that the proposed method can effectively remove the
noise and keep the edge sharpness well even in highly noise-corrupted conditions. Fig.
3.12 is the experimental results of the Boat image with 30% salt-pepper noise obtain
from a public data base [63] to demonstrate the performance of the proposed method.
The reason why the proposed first-stage processing is so powerful in removing the
impulse noise is that we take the advantage of adaptive-length median filter well
especially for the images with high-density noise. In a high noise density region, the
5x5 median filter is applied to exhibit a high degree of noise suppression ability.
Otherwise, the noisy pixel is processed by the 3x3 median filter to preserve the
sharpness. When images are highly corrupted by the noise, a large number of noisy
pixels may connect into noise blotches and they cannot be removed well just by the
processing of 3x3 median filter. In addition, the recursive and noise-exclusive
scheme that allows only uncorrupted pixels inside the window to participate in
median processing are also involved in the first stage to improve the performance of
noise removal. According to the experimental results, it can be found that the one
stage median type filtering wants to preserve the sharpness of the edges but leads to
remain more un-removed noise pixels.

Fig. 3.13 and Table 3.2 show the essential importance of the image quality
enhancement stage to compensate the blur and jaggy edge caused by the median filter
and recursive algorithm. As the images are more highly corrupted, the large window
size median filter (such as 5x5) is used more often to totally remove the noises. The
image quality is further improved both in visual perception and quantity of PSNR
after quality enhancement in the second step. Noise detection accuracy of the

proposed method is shown in Table 3.3. Three detection measures are defined as
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follows: “Total Correct Classification” [64] means the noisy pixels and uncorrupted
pixels are correctly identified. “Un-detection” [22] means noise pixels are not
identified that leads to residual noise. “Mis-detection” [22] means clean pixels are
misidentified such that unnecessary filtering operation causes image blurring. Noisy
pixels will be completely detected but few original pixels within the noise range will
also be misidentified as noisy pixels. The median filtering result of the misdetected
pixel is close to its original value and will not destroy the image quality too much.
The stable performances of experiment results verify our inference well.

Fig. 3.14 shows the experimental result of applying the proposed method to
white noise that only maximum noisy pixels are found. The experiment result shows
that the proposed method can also deal with the case that only maximum or minimum
noisy pixels are existed pretty well.

Fig. 3.15 shows the performance comparisons of different noise removal
methods with/without the proposed noise range assumption applying to “Lena”
corrupted with 40% impulse noise. Owing to only the detected noise pixels are
filtered, they may prevent the blurring caused by filtering the uncorrupted pixels but
still can’t remove the noise well. When images are highly corrupted, the noisy pixels
may connect into noise blotches and they cannot be removed just by the processing of
3x3 median filter.

We also used the direct matrix inversion method to obtain the weighting matrices
for the second-step processing. According to Fig. 3.16, we can find the second step
processing that uses the weighting matrices obtained by matrix-based estimation
method can also improve the compensation performance compared with the results of
applying 1st step processing only. However, the neural network method still achieves
better performance due to the variations of the training images and the selected

training portions. The edge regions in the training images are separated into 8
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different quantized angles. The variations may be caused by the quantization error
(11.25") and the characteristics of different images and regions. In addition, using
nonlinearly filtered (median filters) results of the first stage (noise removal) to
estimate the original clean pixels will also cause the variation and nonlinearity in the
training.

The hardware and software environment that we implement the algorithms for
speed comparisons are described as follows: all the algorithms are implemented in
Matlab Language on a 1.8G Hz Pentium IV-based PC with 256 Mb RAM. Table 3.4
shows the average computation time in second for various algorithms applied to
different kinds of noise corrupted images. The time consuming of the proposed

algorithm is quite reasonable compared with other methods.
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(9) (h)
Fig. 3.10. (a) Original image; (b) Lena with 20% of impulse noise; (c) the 3x3
standard median filter; (d) the 3x3 recursive standard median filter; (e) the
recursive CWM filter with weight = 3; (f) the recursive Tri-state median filter with

threshold = 25; (g) Li’s method with threshold = 32; (h) our proposed method.
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@ (h
Fig. 3.11. (a) Original image; (b) Peppers with 40% of impulse noise; (c) the 3x3
standard median filter; (d) the 3x3 recursive standard median filter; (e) the
recursive CWM filter with weight = 3; (f) the recursive Tri-state median filter with

threshold = 25; (g) Li’s method with threshold = 32; (h) our proposed method.
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Fig. 3.12. (a) 30% Impulse Salt-Pepper noise [63]; (b) the 3x3 standard median
filter; (c) the recursive Tri-state median filter with threshold = 25; (d) Li’s method
with threshold = 32; () DMMD Denoise Software [65]; (f) our proposed method.
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(c) (d)
Fig. 3.13. (a) Original image; (b) Lena with 40% of impulse noise; (c) image after
processing of the 1st step (impulse noise removal); (d) image after the processing of
2nd step ( image quality enhancement).

(a) (b)
Fig. 3.14. (a) Lena with 20% of white impulse noise; (b) processed by our proposed
method.
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RO

Fig. 3.15. The performance comparisons of different noise removal methods
with/without the proposed noise range assumption applying to “Lena” corrupted with
40% impulse noise. (a) and (d) the 3x3 recursive standard median filter with and
without the noise range assumption, respectively. (b) and (e) the recursive Tri-state
median filter (threshold = 25) with and without the noise range assumption,
respectively. (c) and (f) Li’s method (threshold = 32) with and without the noise range
assumption, respectively.

Fig. 3.16. Performance comparison of the matrix-based estimation method and the
proposed neural network for the 2nd step compensation with respect to the Lena
image with 40% of impulse noise. (a) Image after the processing of the 1st stage; (b)
and (c) images after the 2nd step compensation by using the resultant weighting
matrices of the matrix-based estimation and the proposed neural network,
respectively.
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Table 3.1 Quantitative comparisons of different noise removal methods applied to the
images with various percentages of impulse noise.

(a)
Filters Images Corrupted with 10 % Impulse Noise
Lena Peppers | Sailboat | Baboon Aerial Boat
Median 33.75 32.61 29.46 23.15 27.28 30.94
R-Median 32.55 32.24 28.40 22.66 25.75 29.72

CWM 3 [5] 34.45 33.36 30.72 25.13 28.49 31.97

Tri-State [14] 37.88 35.59 33.15 25.17 29.38 34.36

Li [24] 34.44 36.19 32.97 24.96 29.31 34.76

After our 1% step

processing 43.12 41.70 38.46 31.70 33.04 40.24

The complete

processing of 43.08 41.52 38.18 31.99 33.07 40.97
our method

(b)
Filters Images Corrupted with 20 % Impulse Noise
Lena Peppers | Sailboat | Baboon Aerial Boat
Median 29.65 28.78 26.94 22.09 25.14 27.88
R-Median 31.02 30.55 26.89 22.11 24.61 28.50

CWM 3 [5] 30.28 29.31 27.40 23.32 25.72 28.27

Tri-State [14] 31.76 30.33 28.70 23.64 26.47 29.49

Li [24] 32.70 30.90 29152 23.73 27.06 30.91

After our 1% step

processing 39.40 37.72 34.70 28.60 30.98 36.45

The complete

processing of 39.74 38.18 34.61 28.86 31.19 37.31
our method

(©)
Filters Images Corrupted with 40 % Impulse Noise
Lena Peppers | Sailboat | Baboon Aerial Boat
Median 19.13 18.70 18.28 17.31 17.79 18.67
R-Median 26.86 25.79 23.45 20.69 22.01 24.84

CWM 3 [5] 20.18 19.54 19.02 18.30 18.64 19.56

Tri-State [14] 20.26 19.55 19.13 18.43 18.74 19.65

Li [24] 22.02 21.47 20.73 19.12 19.94 21.22

After our 1% step

processing 34.55 32.80 30.10 24.96 27.57 31.71

The complete

processing of 35.66 33.69 30.55 25.20 28.05 32.78
our method
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Table 3.2 Compensation ability of our adaptive median filter in the 1% step and the

image quality enhancement system in the 2" step with respect to Lena.

Impulse Noise Ratio 5% | 10% | 20% | 40%
Percentage of 5x5 Median filter 0% |005%|031% | 3%
used in the 1% stage
PSNR after the processing of the 1% step 45.60 | 42.12 | 38.40 | 34.05
PSNR after the processing of the 2" step 46.26 | 43.08 | 39.74 | 35.66
Total pixels of Mo>Th 8595 | 16525 | 33428 | 65651
Total pixels corrupted by the noise 13218 | 26007 | 52813 | 104868

Table 3.3 Noise detection accuracy of the proposed method with respect to “Lena

image corrupted with various range and density of impulse noise.

Noise . Total Correct . . .
Rate Noise Range Classification Un-detection Mis-detection
05 100.0 % 0.0 % 0.0 %
10% 10 99.99 % 0.0 % 0.0007 %
20 99.998 % 0.0 % 0.002 %
30 99.79% 0.0 % 0.21%
05 100.0 % 0.0 % 0.0 %
20% 10 99.9993 % 0.0 % 0.0007 %
20 99.9977 % 0.0 % 0.0023 %
30 99.815 % 0.0 % 0.185 %
05 100.0 % 0.0 % 0.0 %
40% 10 99.9996 % 0.0 % 0.0004 %
20 99.9989 % 0.0 % 0.0011 %
30 99.86 % 0.0 % 0.14 %

Table 3.4 Speed Comparison for Various Algorithms (unit: sec)

Algorithm | Median | R-Median | CWM 3 | TRI Li's | TheProposed
Ave. Time
(sec) 52 54 53 100 | 700 120
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3.5.2. Smulation Results of Random-Valued Noise Removal

We firstly demonstrate the performance of the proposed neural network for noise
detection. Three algorithms [12], [13], [17] were implemented to compare with our
neural network and the detection results as shown in Table 3.5. Experimental results
show that our neural network owns the highest detection precision than other methods.
For Zhang’s method [17], though the low Mis-detection can preserve the detail
information, a large number of residual noises will damage the image seriously. On
the contrary, for Pok’s method [12], the high Mis-detection will blur the edge
sharpness. Our detection procedure gives a better trade off between the Undetection
and Mis-detection. Besides, our two-level impulse noise removal construction will
further eliminate the residual noise pixels to get a near noise-free image.

Our proposed method is compared with several existing methods including 3x3
Standard Median Filter [1], Recursive Median Filter [2], Central Weight Median Filter
[5], Tri-State Median Filter [14], Optimal Weighted Median Filters [4], Li’s
Edge-Preserving Filtering [24], Partition-Based Median Type Filters (PBM) [21],
Zhang’s algorithm using fuzzy approach [33], and Trilateral filter [31]. Various
images with Salt-Pepper or random-valued impulse noises are used for testing
although the proposed neural network for impulse noise detection is trained by only
using the Lena image with 20% of random-valued noise as the training data. The
proposed algorithm can work well for both random-valued and Salt-Pepper noises,
since the Salt-Pepper noise can be regarded as a subset of random-valued noise with
restricted noise distribution interval.

Table 3.6 shows the quantitative comparison of the proposed method and the
other methods with respect to various kinds of images with 20% Salt-Pepper impulse
noise. Tables 3.7 and 3.8 show the quantitative comparison of the proposed method

53



and the existing methods with respect to images corrupted with random-valued
impulse noise. According to these quantitative comparisons, the Partition-Based
Median Type Filters (PBM) [21], Trilateral filter [31], and the proposed method can
produce better and robust quantitative performance than the other methods. In Table
3.7, we can find that if the noise rate of the image for compensation is higher than
20%, the second stage of the proposed method will obviously improves the metric
performance compared with the images processed by only the first stage. Besides,
according to Table 3.8, we can find that the metric performance of Zhang’s fuzzy
approach [33] is not robust and varies depending on the image characteristics.

Fig. 3.17 shows the experimental results of different noise removal techniques
applied to the “Lena” with 20% Salt-Pepper noise. Fig. 3.18 shows the processed
results of “Boat” with 25% random-valued impulse noise. We can find that the
Recursive Median Filter removes more noises than Standard Median Filter but also
blurs the edges heavier. On the other hand, the Tri-State Median [14] and the
Edge-Preserving Filtering method [18] can retain more edge sharpness but both of
them cannot remove the noise very well. The Edge-Preserving Filtering method might
even misjudge some noisy pixels as the edge and then increase the size of some noises.
Generally, the threshold adjustment for different images is another problem that needs
to be solved in these methods. For the Optimal Weighted Median Filters [4], it is
obvious that the residual noises are not removed well in highly corrupted noisy
images. The PBM filter [21] performs well in most regions except for the noises along
edge area. In addition, the PBM filter should be trained separately to determine the
filter parameter for images with fixed-valued noise or random-valued noise,
respectively. The fuzzy approach [33] can remove the noise well but it destroys some
edges and detail information very much especially for the images with high-density

noise. In addition, it is much time consuming to find the ultimate remote window for
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noise cancellation and the coefficients need to be adjusted depending on the image
and noise types. The Trilateral filter [31] cannot remove the noises along the edges
very well since the linear type weighted average filtering algorithm is not suitable for
removal of nonlinear type impulse noise. In addition, this solution would require a
deep statistical study for the automatic selection of control parameters and the best
way to do is still not clear. Above all, most of the algorithms cannot find the balance
between noise removal and edge sharpness very well and they meet the same problem
that as the noise rate increases their noise suppression ability decrease due to noise
misidentification, edge destroying and blurring. Obviously, the proposed method
produces effective and robust results over various noise corrupted images with
different noise densities, and achieves a better result both in the noise reduction and
detail preservation than other methods. Our HVS based image enhancement algorithm
produces a more visually nature-looking image with smooth and sharp edge. Even
though it might lose some superiority in the quantitative metric compared with the
original image. We have also tested our algorithm and the others with textures and
other more complicated images Mandrill and Barbara as shown in Figs. 3.19 and 3.20.
According to the experimental results, some methods might get slightly sharper
results in texture and complicated regions but they still could not remove the noise
cleanly and the destroyed edge will heavily influence the image quality. In visual
perception, our proposed algorithm can both appropriately remove the noise and
retain the texture and edge regions well. Fig. 3.21 shows that even we apply the
conventional algorithm twice to the “Pepper” image with 25% random-valued
impulse noise, the noises still remain without obvious improvement. It strongly
demonstrates that both our two-level decision-making procedure and the precise

neural-network-based noise detection are indispensable.
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The hardware and software environment that we implement the algorithms for
speed comparisons are described as follows: all the algorithms are implemented in
Matlab Language on a 1.8G Hz Pentium IV-based PC with 256 MB RAM. Table 3.9
shows the average computation time for various algorithms applied to different kinds
and rates of noise corrupted images. The simple modified median type filters [1], [2],
[5], and [4] that applying the same process to all pixels without noise identification,
require lower average time consumption but they also produce the worse results for
high noise-corrupted images. Since Tri-state median filter [14] incorporates the
median filter and the CWM filter, the computation time is twice as the standard
median filter. About Li’s algorithm [24], owing to the least square estimation, the
matrix multiplication, and inverse matrix computation, it takes much time to process.
Regarding the PBM algorithm [21], since four types of CWM filters and the linear
combination are operated on each pixel, the computation time is more than four times
of the simple median filter required. Zhang’s method [33] applies noise cancellation
only to the pixels that look like impulses. Owing to a large number of 5x5 remote
windows is searched within the 25x 25 window to choose the ultimate one, and two
or three iterations are needed, the algorithm requires most computation cost. About
the Trilateral filter, applying two to five iterations is required to provide better results
[23]. The proposed method applies noise removal to the identified noisy pixels and
the image quality enhancement process is also applied to the noise-corrupted pixels in
the visual sensitive region only, so the computation time can be greatly reduced
compared with TRI, PBM, Li’s and Zhang’s methods. According to all the experiment
results, it is demonstrated that the proposed method is superior to the existing methods

both in perceptual image quality and time consumption.
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(k) {)
Fig. 3.17. (a) Original image; (b) Lena with 20% of fixed-valued impulse noise; (c)
the 3x 3standard median filter; (d) the 3x3 recursive median filter; (e) the recursive
tri-state median filter with threshold = 25; (f) optimal weighted median filter; (g) Li’s
edge preserving method with threshold = 32; (h) PBM filter; (i) Zhang’s fuzzy
techniques; (j) Trilateral filter; (k) 1st step of the proposed method; (I) The proposed
two-step method.
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Fig. 3.18. (a) Original image; (b) Boat with 25% of random-valued impulse noise; (c)
the 3x 3standard median filter; (d) the 3x3 recursive median filter; (e) the recursive
tri-state median filter with threshold = 25; (f) optimal weighted median filter; (g) Li’s
edge preserving method with threshold = 32; (h) PBM filter; (i) Zhang’s fuzzy
techniques; (j) Trilateral filter; (K) 1st step of the proposed method; (I) The proposed
two-step method.
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Fig. 3.19. (a) Original image; (b) Barbara with 25% of random-valued impulse noise;
(c) the3x3standard median filter; (d) the 3x3 recursive median filter; (e) the
recursive tri-state median filter with threshold = 25; (f) optimal weighted median filter;
(9) Li’s edge preserving method with threshold = 32; (h) PBM filter; (i) Zhang’s fuzzy
techniques; (j) Trilateral filter; (k) 1st step of the proposed method; (I) The proposed
two-step method.
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Fig. 3.20. (a) Original image; (b) Baboon with 25% of random-valued impulse noise;
(c) the3x3standard median filter; (d) the 3x3 recursive median filter; (e) the
recursive tri-state median filter with threshold = 25; (f) optimal weighted median filter;
(9) Li’s edge preserving method with threshold = 32; (h) PBM filter; (i) Zhang’s fuzzy
techniques; (j) Trilateral filter; (k) 1st step of the proposed method; (I) The proposed
two-step method.
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() (k) {)

Fig. 3.21. (a) Original image; (b) Peppers with 25% of random-valued impulse noise;
(c) twice applying of 3x3 standard median filter; (d) twice applying of 3x3
recursive median filter; (e) twice applying of the recursive tri-state median filter with
threshold = 25; (f) optimal weighted median filter; (g) twice applying of Li’s edge
preserving method with threshold = 32; (h) twice applying of the PBM filter; (i)
Zhang’s fuzzy techniques; (j) twice applying of the Trilateral filter; (k) result after 1st
step processing of the proposed method; (I) results of the proposed two-step method.
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Table 3.5 Comparative results of various noise detection algorithms applied to
random-valued noise corrupted images with 25% noise density.

Name Algorithms Total Correct Undetection Mis-detection
Classification
S.K. Mitra [13] 59.40 % 68.04 % 31.45 %
Lena G. Pok [12] 88.89 % 24.12 % 6.69 %
S. Zhang [17] 89.52 % 3.00% 12.97 %
The proposed 92.58 % 14.48 % 5.06 %
S.K. Mitra [13] 59.50 % 68.60 % 31.13 %
Boat G. Pok [12] 87.22 % 26.60 % 8.19 %
S. Zhang [17] 88.81 % 4.72 % 13.33 %
The proposed 89.40 % 14.64% 9.25%
S.K. Mitra [13] 58.89 % 67.32 % 32.37 %
Goldhill G. Pok [12] 88.49 % 25.48 % 6.85 %
S. Zhang [17] 89.16 % 3.48% 13.29 %
The proposed 90.92 % 15.60 % 6.90 %
S.K. Mitra [13] 59.07 % 68.64% 3171 %
Peppers G. Pok [12] 88.43 % 24.00 % 7.42 %
S. Zhang [17] 88.91 % 4.64 % 13.25 %
The proposed 91.90 % 14.64 % 5.92 %
S.K. Mitra [13] 58.83 % 68.56 % 32.04 %
Sailboat G. Pok [12] 86.96 % 28.52 % 7.88 %
S. Zhang [17] 87.98 % 6.84 % 13.74 %
The proposed 87.26 % 15.20 % 11.92 %
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Table 3.6 Comparative results in PSNR of different algorithms applied to various
kinds of images corrupted with 20% fixed-valued impulse noise.

Filters Lena Peppers | Goldhill | Elaine |Cameraman| Boat
Median [1] 29.65 28.78 27.86 29.00 24.60 27.88
R-Median [2] 31.02 30.55 29.24 30.96 24.36 28.50
CWM 3 [5] 30.28 29.31 28.51 29.38 25.22 28.27
Tri-State [14] 31.76 30.33 29.78 30.82 25.26 29.49
OWMF [4] 31.44 30.64 29.52 30.33 25.75 29.36
Li’s [24] 32.70 30.90 30.99 31.93 25.97 30.91
PBM [21] 34.62 33.09 32.52 34.31 25.85 31.93
Zhang’s [33] 34.35 31.40 30.77 34.67 23.66 29.77
Trilateral [31] 33.53 31.50 32.19 34.02 24.86 31.45

1st Step of The
Proposed Method 33.85 32.44 31.45 34.37 25.33 30.61

The Proposed
33.54 32.30 31.37 34.32 25.10 30.31

Two-Step Method

Table 3.7 Comparative results in PSNR of different algorithms applied to image

“Elaine” corrupted by various rates of random-valued impulse noise.

Filters 5 % 10 % 15 % 20 % 25 % 30 %
Median [1] 32.65 32.29 31.70 30.79 29.67 28.06
R-Median [2] 32.53 32.12 31.55 31.03 30.46 29.58
CWM 3 [5] 34.44 33.76 32.81 31.73 30.44 28.57
Tri-State [14] 40.29 37.29 35.23 33.58 32.27 30.58
OWMF [4] 33.73 33.29 32.56 31.79 30.93 29.45
Li’s [24] 32.83 32.45 31.98 31.04 30.81 29.09
PBM [21] 39.37 37.56 35.79 34.39 33.20 31.55
Zhang’s [33] 37.44 36.08 34.89 34.01 33.12 32.30
Trilateral [31] 38.53 36.71 35.42 34.17 33.18 32.37
1st Step of The
Proposed Method | 38-63 36.78 35.43 34.36 33.32 31.89
The Proposed
Two- Step Method| 37-93 36.19 35.20 34.34 33.48 32.39
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Table 3.8 Comparative results in PSNR of different algorithms applied to various
kinds of images corrupted with 25% of random-valued impulse noise.

Filters Lena Peppers | Goldhill Elaine Camera Boat
Median [1] 29.84 29.34 28.37 29.67 24.07 28.95
R-Median [2] 30.17 29.33 28.71 30.46 24.01 28.87
CWM 3 [5] 30.21 28.88 28.97 30.44 24.89 29.47
Tri-State [14] 31.59 30.58 30.50 32.27 25.13 30.74
OWMF [4] 30.96 29.76 29.60 30.93 25.21 30.09
Li’s [24] 30.40 29.19 29.66 30.81 2491 29.97
PBM [21] 33.07 31.35 31.18 33.20 24.71 31.38
Zhang’s [33] 31.54 29.86 29.03 33.12 23.09 27.82
Trilateral [31] 31.46 30.86 30.44 33.18 24.16 29.00
1st Step of The
Proposed Method 32.95 30.53 30.69 33.32 24.83 29.76
The Proposed
Two- Step Method 33.00 31.32 30.73 33.48 24.72 31.10
Table 3.9 Speed Comparison for Various Algorithms (sec.)
Nose Rate | Median R-Median CWM |OPMF | TR Li's | PBM [Zhang'gTrilateral| The
[1] [2] [5] [4] [14] [24] [21] [33] [31] | Proposed
10% | 64.9 68.6 |69.8 | 79.1 |149.7|731.6 |378.7|435.5| 45.2 47.7
20% | 75.1 76.9 |82.8 | 84.3 |149.5|735.3|375.2|671.6|136.43 | 84.7
40% | 72.3 69.9 |729|94.6 |170.8 |692.5|369.2 |1202.3| 215.42 | 126.3

3.6. Brief Summary

In this chapter, a novel two-step noise removal algorithm to deal with impulse

noise is proposed. The decision-based recursive adaptive median filter is applied to

remove the Salt-Pepper noise, and an adaptive two-level neural network noise

reduction procedure is applied to remove the random-valued noise and keep the

uncorrupted information well. Then the fuzzy decision rules inspired by human visual

system (HVS) is applied to compensate the blur of the edge and the destruction

caused by median filter. According to the experimental results, the proposed

technology is much superior to the conventional methods in some aspects such as

cleanness of noise removal and the visual quality of the processed images.
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4. Modified Fuzzy Rule Based M ethod for Gaussian

Noise Removal

In this chapter, we derive a modified fuzzy rule-based (MFRB) filter to remove
the linear type Gaussian noise while preserving the image edges and details as much
as possible. For practical consideration, we design several sets of universal MFRB
filters in correspondence to the estimated values of contaminated Gaussian noise
variance in the image. We combine the Salt-Pepper noise removal algorithm described
in Chapter 3, and the universal MFRB filter together to sequentially remove the mixed
noise in an image. The generalization ability of the proposed method has been
demonstrated by examining it on a variety of noise-corrupted testing images corrupted
with various noise densities. According to the experiment results, the proposed
method is superior, both quantitatively and visually, compared to several other

techniques.

4.1. Introduction

To remove the Gaussian noise artifacts in an image, we wish to design a group of
adaptive filters, whose weighted value combinations constitute the fuzzy rules for
pixel value restoration. Fuzzy rules have been found useful to reconstruct the pixel
value from the pixel itself and its neighboring pixels as well. This is because that the
local statistics and structural characteristics of the signals can be taken into
consideration by the fuzzy rules. For best-fit and unbiased considerations, fuzzy rule
based system through learning can achieve the best combinations of rules, and thus

can usually produce a better off one in comparison with the filters constructed from
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the knowledge or experience of a domain expert. Therefore, the proposed MFRB
filters scheme adopts a training method to learn suitable sets of weight parameters for
image Gaussian noise removal. Namely, the weights of MFRB filters are obtained by
minimizing the mean square output error between the noisy and original image data.
As a result, signal restoration aiming for Gaussian noise removal by MFRB filter is
possible via pixel restoration and it adapts reasonably well from smooth regions to
edge areas.

This chapter is organized as follows. The newly modified fuzzy rule based filter
is proposed in Section 4.2, Section 4.3 shows the experimental results with various

comparisons to other schemes. Section 4.4 gives conclusions of this chapter.

4.2. Modified Fuzzy Rule-Based Filter

Arakawa [67] developed the Fuzzy Rule Based (FRB) filter that adapted the
ambiguity of image signals caused from the following three parameters: gray level
variations, signal spatial distribution, and the local structure of the pixels. The first
parameter is the difference between the input pixels’ gray values, the second is the
time (or position) difference between pixel points, and the third is the pixel’s local
variance in the sliding window. The filter coefficients are determined through learning
from the difference between the noisy image and its original image. After training, the
dominant roles of the signal distribution texture, spatial and edge structures, and local
pixel statistics of the image will be learned by a set of weight parameters constituting
the FRB filter. In what follows, a brief review of one-dimensional FRB filter, for

simplicity, is described first.
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4.2.1. FRB Filter

Suppose that a noisy signal x, is obtained at time instant n as x, =d, +u,,

n

where d, denotes the original signal and u, denotes the white Gaussian noise with
zero mean and certain variance. The problem is to estimate d, from the input
sequence {X,, .} —N<k<N. The filter to estimate d, can be expressed as

follows:

N
Z/un;n—k Xn—k
— k==N

yn - N ’ (41)
Z/un;n—k
k=—N

where 'y, denotes the estimated value of d,, the index k in .., denotes the

extent that the input sequence Xx, should be shifted and calculated in the average to

estimate d_ . In order to take ambiguous, uncertain image signal structures, and
signals’ local statistics into consideration, g, . . should be trained from typical

ensembles of noise corrupted images. In estimating signals, Arakawa [67] proposed

the following rules of thumb to accommodate these weights 4, to embrace the
above mentioned characteristics of the image signal, as summarized below.

(@ M, should be large for the input x ., if the difference between the

signal values x, and x,, is small, since in this case X , Is

considered to be in a similar signal level of x . Otherwise, .,

should be small.
(b) . should be large for the input x__,, if the time difference (reduced
to spatial distance for image signal and so does hereafter) k between

x, and X, is small, since image signals almost follow first-order
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Markov process and are usually more correlated for smaller time

distance. Otherwise, ., should be small.

(c) If the local variance observed around the instant n is small, these local
pixels could be in the flat area and 4, , could be spread over the
temporal axis; on the contrary, u,., should be concentrated around

the point nto avoid quite different member inclusion if the local variance
is large.

To simplify the case, suppose the FRB rule is applied to filter a one-dimensional

signal. Weight x,.. . represents the weight coefficient of x _, to estimate x,, in
which .. first only represents characteristic (a) for simplicity. Let s, ., be

denoted as 4, (k), and simply as s, hereafter, which represents the membership

value dealing with the j-th interval partition of the signal difference feature. Moreover,

the value u; can be determined through learning for all possible j partitions in the

least mean square sense. With respect to training some Gaussian noise images, the

mean square error between the filter output y, & and true signal d, can be

n

minimized by a gradient method. To this end, when the least mean square (LMS)

learning algorithm [68] is applied, we can easily show that x; can be trained

iteratively by

py T+ =u;(T)+o- X(T, ])-(dy = V), (4.2)

where g;(T) is the value of g, at training iteration T, « is the learning factor, and

X(T,j) isgiven by
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Z_Xn—k - N(J) Yn
X(T, )= keK“)Zﬂ_a_) : (4.3)

In the above, the denominator is the sum of 4, (T) for {x, ,, -N<k<N}
K(j) denotes the set which satisfies the feature value inside the j-th interval

£, <X

] n

— X, <&;,and N(j) is the number of the elements in the set above. The
learning procedure is repeated until 4, (T) converges.
To generalize, ..., can be extended to depend on multiple characteristics, (a),

(b), and (c) at once. To this end, ., should be subscripted in a multidimensional

form so that the subscript can include all the three feature characteristics concerning

(@), (b), and (c), which encompass the j-th index category for the gray level difference

X, — X, the I-th index category of temporal distance k, and the m-th index category

n

for the local variance o, of processing window pixels centered around x,. Namely,
M, represents the weighting coefficients at the j-th, I-th, and m-th index category
concerning X, — X, ,, K and o, respectively.

In a similar manner, it follows from Eq. (4.2) that the value s, can be

obtained by the LMS learning algorithm iteratively as follows:
N
/ujlm(T +1) :ﬂjlm(T)+a'tjlm (X = Y, = y,)/ Zﬂum ; (4.4)
k=—N
where ;. (T) is the value of 4, at learning iteration T, « is the learning factor,

and t;, isequal to 1 when x _, belongs to the specified j, I, and m intervals and

equals to zero otherwise. So in the training procedure, signal points are trained to

update its involving interval weighting coefficient ;. until u;, converges.
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As illustrated above, it is to be noted that the concept of the fuzzy rule based
filter is named in a broad sense. There are no conventional fuzzy rules in the FRB
filter because each 3-index weighting coefficients, i.e., the case differentiated by the

partition in the 3-D parameter space, will be used to predict a distorted or

noise-corrupted value by weighted-sum filtering procedure. Each u;, coefficient

corresponding to the specified j, |, and m intervals is considered as if it were a rule,
and the set of all possible j, I, and m combinations constitutes the whole rule set.
Moreover, the weighting coefficients versus each index dimension, i.e., j, |, or m, play

the similar role of the membership function defined for that dimension.

The FRB filter is discussed above for the 1-D signal recovery. When the target
signal is an image, the rule concerned in (b) will be not only the temporal distance k
between x, and X _, but also the spatial relation between x, and x_ . Besides,
the partition intervals for the parameters concerned in (a) and (c) can also be better
designed to achieve more accurate restoration performance. The improved version of

the FRB filter is derived below.

4.2.2. The Proposed Modified FRB Filter

In this section, we will propose the modified fuzzy rule based filters for image
Gaussian noise removal. Exploiting Eq. (4.4) above, a set of filter coefficients of
MFRB denoising filter can be determined through the training over Gaussian
corrupted images. In the denoising phase, any corrupted images can be processed to
reduce the noise employing the set of weighting coefficients we have learned. In an
image, the pixels’ gray levels, statistical variances, and positional distances and
orientations are the three most important factors to be considered altogether. For the

MFRB design below, we will not only better determine the gray-level difference
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0,) but also propose a new

m-1"

interval [¢,,,€;) and variance interval [J

clustering scheme of pixels inside the working window, taking both pixels’ positional
difference and spatial correlation into consideration.

The details regarding the design of these three parameter spaces will be

illustrated below: (1) to better design the error difference interval [g; ,,&;) for the

first parameter, the gray level difference or variable (a); (2) to choose the cluster the
pixel x. . should belong to, for the second parameter, the spatiality or variable (b);

and (3) to better determine variance interval [0, ,,0,) for the third parameter, the

m-1?

gray level local variance or variable (c).

Variable (a):

The source image is 8-bit gray-scale level with the size of 512x512. The
gray value of each pixel lie in [0, 1,---, 28 —2, 2° —1], hence the magnitude of
the maximum difference between x, and x,, is 255. For efficiency
consideration, the size of the error difference interval could be better partitioned
if we can take the statistics of the error signal | x, —X,, | into consideration.
Therefore, we borrow the idea from the A-law ( « -law) in the DPCM design [69]
to determine the sizes of error difference interval to achieve minimal error in the
statistical sense. To this end, we first calculate the error signal distribution for
images corrupted with different Gaussian noise levels. The probability
distribution of several typical images for the rule (a) is shown in Fig. 4.1. We
found that gray level difference magnitude |x,—X, _,| mostly lies in the
interval [0, 100] and occurs most frequently around zero. With these
observations in mind, we are easy to determine, in a manner similar to A-law,

better gray level difference interval through the ensemble of the error curves of
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p(| X, — Xn—k|)
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Fig. 4.1. The probability distribution of several typical images for the Variable (a).

the representative noisy images. To do this, we choose in such a way that the
size of gray-level difference interval is inversely proportional to the probability
of gray level difference. That is, the smaller the gray-level magnitude difference
is, the smaller difference interval will be chosen for the gray level difference
dimension, and vice versa. In practice, we can approximate to reach the spirit of
A-law easily by a few trial-and-error iterations. In this setting, for example, we
can choose the difference interval set as: [0, 1), [1, 2),...,[31, 32), [32, 34),
[34, 36),..., [62, 64), [64, 68), [68, 72),..., [92, 96), [96, 104), [104, 112)....,
[120, 128), [128, 138), [138, 158), [158, 198), and [198, 255] for the
magnitude difference clusters of pixel values x, and x_ . For instance, if the
difference interval | x, — X, |= 33, then the image pixel x,, would belong to

the cluster [32, 34).

Variable (b):

In our experiment, the size of the processing window of the MFRB filter is
chosen to be space 5x5, as shown in. In the Variable (b), it is reasonable to take

both the position distance and orientation relation between pixel X, and pixel
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X, Into consideration. The image structure, edge and/or texture, will be
suitably represented if we consider the position distance factor and the
orientation factor as well. With this concept in mind, we can divide the window
pixels of Fig. 4.2 into the following 13 clusters: {X,, X,s}, {X, X}, {X;, X},
DXk XXk X0k {6 Xk, XX} (XX ) {X0 %63
{x., %5}, {Xo, %}, and {x,}. These clusters are generated by considering
both the pixel’s positional distance and orientation correlation, with respect to the
center pixel x,. For example, the elements x, and X, are classified into the
same cluster because Xx,, is in the center of the line connecting them and they
have the same positional distance from Xx;,. According to the spatial relations,
the proposed MFRB filter can become adaptive to both edge direction and
position distance so that the signal structure, such as texture, edge, and details of
the image, can be better restored and compensated. Along a similar spirit of
reasoning, the superior performance of the edge-directed prediction [70] has been
found to be attributed to the edge-directed property in the least squares

optimization prediction.

X1 X2 X3 Xq X5

X11 | X12 | X13 | X124 | X315

X16 | X17 | X18 | X19 | X20

Xo1 | X22 | X23 | X2a | Xo5

Fig. 4.2. Elements and their subscripts inthe 5x5 filter window.
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Variable (c):

The design of the third parameter, variance, is similar to the way we design
Variable (a). The only difference is that we have to analyze the distribution of
local variances of the pixels in the chosen 5x5 window of the noise corrupted

images first. To observe the example of the local variances of noise corrupted
images, the typical local variance o’ probability distribution is shown in Fig.

4.3. It can be easily seen that most of them lie in [0, 3000]. To faithful realizing
A-law concept regarding the variance factor, we can divide the variance interval

..., €,), as the way adopted in Variable (a): the size of variance interval is

m-1"?

approximated inversely proportional to the relative frequency of local variance

o’ by afew trials.

In summary, the size of the membership function matrix g, in each noise

level is chosen to be a look-up table of size 64x13x100, designed with the spirits of
efficient partitioned intervals and adaptive edge-directed spatial relations being

proposed above.

p(o,) >

25

15fF

0.5

0

) " L I L I
0 2000 4000 6000 8000 10000 12000 14000 16000 G 2
n

Fig. 4.3. Atypical local variance o, probability distribution for the Variable (c).
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4.2.3. Two-Sage Universal M FRB Filter for Mixed Noise Removal

For practical applications, the percentage of impulse noise and the variance of
Gaussian noise are unknown in a noise-corrupted image. It is demonstrated that the
proposed impulse noise removal algorithm described in Chapter 3 can effectively
remove the impulse noise in spite of the different impulse noise corruption percentage.
So the noise remained after the first stage, is mostly the Gaussian noise original in the
image and a small fraction impulse noise not removed or imprecisely restored
impulsive pixels.

Though the MFRB noise removal filter is most robust to the level of Gaussian
noise corrupted, it is impractical and too hardware consuming to train the look-up
table of each noise level. Since the filter scheme is quite effective in a certain noise
level range, for this reason, a universal MFRB filter can be obtained through training
over several typical images having similar levels of Gaussian noise contamination.
For cost-effectiveness consideration, we designed three MFRB filters at ¢ =10, 20,
and 30 to constitute a universal MFRB filter. From our experimental experiences,
these three MFRB filters can produce well enough filtering result and they do not cost
too much in hardware and memory requirements. Accordingly, each MFRB filter of a
certain noise level, i.e., ¢ =10, 20, and 30, can be trained by some ensemble images
that are corrupted with the same Gaussian noise level. As usual, a train loop covering
all training image set once is called an epoch, and let x, denote the membership
function after learning n epochs. When the variation of the membership function u

in the training process is smaller than a predefined threshold T,, we will stop the

training process. In our experiment, if the condition satisfies

[44an
Jeca

<T, (4.5)
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where u,, =u,—M,,, and T, =0.01, we will terminate the training process and

obtain the universal MFRB filter ;,,, for this Gaussian noise variance. In this way,

we will have a universal MFRB Gaussian noise removal filter in the sense that it is

image independent and contains three MFRB de-noise filters with each constituted

Un's being designed for a Gaussian noise level ¢ =10, 20, or 30, respectively.

Since the particular MFRB filter to be employed from the universal MFRB filter
depends on the Gaussian noise level in an image, the noise level estimation is
necessary for efficient noise removal. It is well known that the noise variance of a
local area can be estimated better by the local variance of a flat area to get rid of
excessive offset by the edge and minute details of images. Accordingly, a method will
be devised to estimate the Gaussian noise level of an image efficiently. In our
implementation, an overlapping 7x7 sliding window is used and each sliding
window centered a region of 3x3 pixels for variance estimation at this pixel. As
illustrated in, X, represents the center pixel of the i-th region, which is remarked by
i on the left-upper corner of the processing region. After computing the local
variances of the X, the smaller variance ones obtained in the sliding window will be
the better estimation in order not to over-count the variation caused by local edges.
Owing to the small sample size involved in the computation of the local variances, an
average of the 25 smallest variances out of the involved 49 pixels’ variances will be
used to estimate the variance for the block size of 7x7. Then, the final value of the
estimated Gaussian variance is the average of those local variances calculated with the
overlapping 7x7 sliding window over the whole image.

After the Gaussian noise level estimation routine is activated to find the Gaussian
noise level of an image, the nearest corresponding filter in the universal MFRB filter
is selected to remove the remained noise of the image processed by the first stage.
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Fig. 4.4. Overlapping 7 X7 sliding window for local variance estimation, based on
3x3 sub-area.

4.3. Experimental Results

For performance comparison, the proposed technique is evaluated and compared
with other post-processing schemes, which include 3 x 3 and 5 x 5 adaptive
Wiener filter [27, pp. 356—360] , FWLS by Choi et al. [47], MFF by Taguchi [48],
FLF by Farbiz et al. [49], and PBM filter by Chen et al. [21] and trilateral filter by
Garnett et. al [31]. For the trilateral, we varied its designing parameters and iteration
number exhaustively to obtain the best result in each test. The simulations are based
on a set of 256 level grayscale images of size 512x512 pixels. For performance
evaluation, the peak signal-to-noise ratio (PSNR) is used as a quantitative indication.
The proposed algorithm has been extensively tested on various simulated images.
Four of them, “Boats”, “Bridge”, “Goldhill”, and “Lena”, are given as examples for
brevity. In each performance comparison table, we rank the top three best-performed
algorithms by superscript for clarity. We divide our experiments into three parts to
demonstrate the capabilities of our proposed algorithm. First, we test the effectiveness
of our second stage filter, the MFRB filter, to remove the Gaussian noise in images.
Secondly, images contaminated with mixed noise, assume the Gaussian noise level is
known, are processed to verify the proposed two-stage MFRB filtering method. At

last, images corrupted with real-world mixed noise, assume unknown noise levels, are
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processed by the proposed two-stage universal MFRB scheme.

4.3.1. Gaussian Noise (Only) Case

Table 4.1 shows the different filter scheme results for four images corrupted with
Gaussian noise of ¢ = 20. Only the filtered “Boats” images are shown in Fig. 4.5 for
brevity. From Table 4.1, the proposed MFRB algorithm performs the best among the
four test images. According to Fig. 4.6(a) and (b), the 5 x 5 Wiener filter removes
Gaussian noise more efficiently than the 3 x 3 Wiener filter; however, it blurs the
edge and induces some extra noise. In Fig. 4.6(c), FWLS [47] does not blur the edge
but produces some additional noise in the higher level Gaussian corrupted images. As
shown in Fig. 4.6(d) and (e), the MFF [48] and FLF [49] are similar in the PSNR
metric but perform differently in the trade-off between the noise removal and edge
preservation. Fig. 4.6(d) is good at noise removal while Fig. 4.6(e) is good at edge and
details preservation. In Fig. 4.6(f), the PBM [21] does not blur the edge and makes no
extra noise, but cannot remove the Gaussian noise completely. In Fig. 4.6(g), the
Trilateral Filter [31] can remove the Gaussian noise very well, but it will blur some
edge and detail information such as the words on the poop. Our proposed MFRB filter
performs excellently both in removing the Gaussian noise and in preserving the edge

and details in the image.

@ (b)
Fig. 4.5. (a) Original “Boats” image; (b) Noisy image of “Boats” with Gaussian noise
only of ¢ =20.
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@ (b)

(©) (d)

(9) (h)
Fig. 4.6. Filtered “Boats” images of Fig. 4.5(b) using (a) 3 x 3 Wiener filter; (b)

5 x 5 Wiener filter; (c) FWLS [47]; (d) MFF [48]; (e) FLF [49]; (f) PBM [21]; (9)
Trilateral Filter [31]; (h) MFRB.
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Table 4.1 Comparative Results of PSNR in the Cases of Corruption by Gaussian

Noise (o =20)
Boats Bridge | Goldhill Lena
Win 3 28.62 | 26.25° 28.21 28.91
Win 5 28.97° | 25.04 28.51° | 29.95
FWLS [47] 26.59 24.99 26.46 26.88
MFF [48] 28.95 25.04 28.47 | 30.12°
FLF [49] 28.87 25.48 28.44 29.63
PBM [21] 27.20 25.46 26.97 27.69
Trilateral Filter [31] | 29.56% | 25.92° | 29.07° | 30.41°
MFRB 30.13' | 26.40% | 29.45' | 30.98!

4.3.2. Mixed Noise Case of Known Gaussian Noise | ntensities

For general assessment, we experimented the proposed algorithm with various
combinations of impulse noise densities (p = 10%, 20%, and 30%) and Gaussian
noises (o = 10, 15, and 20). We individually apply the decision-based recursive
adaptive median filter described in Section 3.2 to remove the Salt-Pepper noise and
the second step - image quality enhancement system described in Section 3.4, and
then apply the MFRB filter with corresponding noise level to remove the Gaussian
noise. To be brief, we show the results of the two-stage filter schemes in Tables 4.2,
4.3, and 4.4 in which the image corrupted noise increases gradually. Wiener filters are
also combined with the FK-NN [72] to remove the impulsive noise in the first stage.
This two-stage 3 x 3 Wiener filter is good at removing low Gaussian variance noisy
images as seen from Tables 4.2, and 4.3 while two-stage 5 x 5 Wiener is good at
removing high Gaussian variance ones as shown in Table 4.4. FWLS [47] and FLF
[49] decay abruptly in PSNR metric in the cases of high impulse rate noisy images.
On the contrary, MFF [48], PBM [21], Trilateral filter [31], and our proposed

algorithm are constantly stable in all the noise level combination. Our proposed
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two-stage MFRB filters can sequentially remove the impulse and Gaussian noises
well and perform the best among them. Most of the algorithms are inadequate at
processing the mixed noise removal except our two-stage filtering schemes. It verifies
our algorithmic approach that the nonlinear filter described in Chapter 3 first
suppresses the nonlinear type impulse noise effectively, and then the remained linear

type Gaussian noise is efficiently removed by the use of linear MFRB filter.

Table 4.2 Comparative Results of PSNR in the Cases of Corruption by Mixed
Gaussian (¢ =10) and Impulse Noise (p = 10%)

Boats Bridge | Goldhill Lena
Win 3+FKNN 32,212 | 2751% | 31.28%° | 33.0%°
Win 5+FKNN 30.82° | 25.55 29.93° | 32.15°
FWLS [47] 29.30 | 26.23° 29.17 29.91

MFF [48] 28.96 24.75 28.41 30.30

FLF [49] 28.72 25.01 28.23 29.84

PBM [21] 29.71 25.97 29.35 30.5
Trilateral Filter [31] | 30.52 25.77 29.81 31.08
First Stage 28.22 27.55 28.15 28.25
Our Two-Stage Method| 33.42% | 29.12' | 32.34' | 33.69'

Table 4.3 Comparative Results of PSNR in the Cases of Corruption by Mixed
Gaussian (o = 15) and Impulse Noise (p = 20%)

Boats Bridge | Goldhill Lena

Win 3+FKNN 29.86° | 25.99% | 29.26° | 30.537

Win 5+FKNN 29.30° | 24.68 28.76° | 30.47°
FWLS [47] 24.36 22.46 24.22 24.46

MFF [48] 27.57 23.90 27.26 28.44

FLF [49] 25.36 22.97 25.06 25.92

PBM [21] 27.49 24.38 27.21 28.12
Trilateral Filter [31] | 29.22 | 24.84° 28.73 29.27
First Stage 25.07 24.37 24.96 25.09

Our Two-Stage Method| 30.73% | 26.53' | 29.73' | 31.44*
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Table 4.4 Comparative Results of PSNR in the Cases of Corruption by Mixed
Gaussian (¢ = 20) and Impulse Noise (p = 30%)

Boats Bridge | Goldhill Lena

Win 3+FKNN 27.83° | 2451% | 27.47° | 28.32°
Win 5+FKNN 27.92% | 23.76° | 27.64° | 28.93°
FWLS [47] 18.87 17.86 18.87 19.08

MFF [48] 24.99 22.44 25.05 25.66

FLF [49] 21.52 20.23 21.51 21.97

PBM [21] 25.46 22.83 25.38 25.97
Trilateral Filter [31] | 26.58 23.32 26.58 27.15
First Stage 22.85 22.14 22.77 22.86

Our Two-Stage Method| 28.98* | 24.78' | 28.33' | 20.81*

(d)

Fig. 4.7 (a) Original “Bridge” image; (b) Noisy image of “Bridge” with 10%
impulses and Gaussian noise of ¢ =10; (c) Original “Lena” image; (d) Noisy image of
“Lena” with 20% impulses and Gaussian noise of ¢ =15.
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Fig. 4.8. Filtered “Bridge” images of Fig. 4.7(b) using (a) FK-NN with 3 x 3
Wiener filter; (b) FK-NN with 5 x 5 Wiener filter; (c) FWLS [47]; (d) MFF [48]; (e)
FLF [49]; (f) PBM [21]; (g) Trilateral Filter [31]; (h) First Stage; and (i) Our
Two-Stage Method.
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Fig. 4.9. Filtered “Lena” images of Fig. 4.7(d) using (a) FK-NN with 3 x 3 Wiener
filter; (b) FK-NN with 5 x 5 Wiener filter; (c) FWLS [47]; (d) MFF [48]; (e) FLF
[49]; (f) PBM [21]; (g) Trilateral Filter [31]; (h) First Stage; and (i) Our Two-Stage
Method.
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4.3.3. Blind Testing Mixed Noise Case

We first test our proposed standard deviation estimation routine by several
typical images, each contaminated with various Gaussian noises including ¢ =10, 20,
and 30. Table 4.5 shows the results of the Gaussian noise level estimation routine.
From Table 4.5, we can find that most estimated standard deviations fit in with the
Gaussian standard deviation values added. Our Gaussian noise estimation routine
performs well for images of normal complexity; it overestimates the noise level for
complex image like “Baboon,” especially for low noise level case. It can be
adequately employed to estimate the standard deviation of residual Gaussian noise
after the first-stage impulse noise removal filter.

To demonstrate the effectiveness of the proposed algorithm in the blind testing
situation, Table 4.6 summarizes the filtered results by various post-processing
schemes, for six images corrupted with unknown impulse noise rates and Gaussian
levels as the case of practical application. Our two-stage universal MFRB with
Gaussian noise intensity estimation routine still performs the best and obtains pleased
resulting images. And Figs. 4.11 and 4.12 show the first two resulting images for
brevity. As can be expected, the qualitative effectiveness of visual respect by various
methods goes similarly as the way described in Section 4.3.2 above. From these
figures and table, we can see that the proposed two-stage universal MFRB filter
approach provides a practicable way to remove the mixed noise and produces very
good restoration results, in comparison to other methods both in metric measurement

and visual quality perception.

85



Fig. 4.10. The corrupted images (a) Original “Airplane” image; (b) Airplane with 20%
impulses and Gaussian noise of ¢ = 13; (c) Original “Elaine” image; (d) Elaine with
17% impulses and Gaussian noise of ¢ = 18.

86



Fig. 4.11. Filtered “Airplane” images of Fig. 4.10(b) using (a) FK-NN with 3 x 3
Wiener filter; (b) FK-NN with 5 x 5 Wiener filter; (c) FWLS [47]; (d) MFF [48]; (e)
FLF [49]; (f) PBM [21]; (g) Trilateral Filter [31]; (h) First Stage; and (i) Our
Two-Stage Method.

87



(9)
Fig. 4.12. Filtered “Elaine” images of Fig. 4.10(d) using (a) FK-NN with 3 x 3

Wiener filter; (b) FK-NN with 5 x 5 Wiener filter; (c) FWLS [47]; (d) MFF [48]; (e)
FLF [49]; (f) PBM [21]; (g) Trilateral Filter [31]; (h) First Stage; and (i) Our

Two-Stage Method.

88



Table 4.5 The Estimated Gaussian Noise STD of ¢ =10, 20, and 30.

Gaussian of Standard Deviation ¢ =10

Airplane Baboon Elaine House
Estimated Value| 13.53 18.59 12.27 12.14
Lena Peppers Sailboat Tiffany
Estimated Value| 13.02 12.57 12.64 11.21
Gaussian of Standard Deviation ¢ =20
Airplane Baboon Elaine House
Estimated Value| 21.61 24.49 20.04 20.14
Lena Peppers Sailboat Tiffany
Estimated Value| 20.47 19.82 21.98 17.71
Gaussian of Standard Deviation ¢ =30
Airplane Baboon Elaine House
Estimated Value| 28.14 31.11 27.86 27.89
Lena Peppers Sailboat Tiffany
Estimated Value| 27.71 26.72 27.81 28.65

Table 4.6 Comparative Results of PSNR in the Cases of Random Mixed Noise

Airplane | Elaine | Peppers Lena | Sailboat | House

Win 3+FKNN 30.88% | 29.05 | 25.34 | 32.18% | 26.95° | 23.98
Win 5+FKNN 30.05° | 29.91%® | 26.55% | 31.21° | 26.83 | 24.63°
FWLS [47] 23.74 | 2637 | 23.49 20.02 | 2432 | 18.67

MFF [48] 27.74 | 28.87 | 26.75° | 26.89 | 26.28 | 23.35

FLF [49] 2495 | 2564 | 24.55 22.88 | 2529 | 21.05

PBM [21] 27.78 | 27.02 | 25.38 26.62 | 2240 | 22.72
Trilateral Filter [31] | 29.29 | 30.27° | 26.54 29.28 | 27.15° | 24.323
First Stage 26.25 | 23.49 | 20.07 29.93 | 21.71 | 18.76

Our Two-Stage Method| 31.23' | 30.37 | 27.11' | 33.23' | 27.75' | 24.881

“Airplane” corrupted with Gaussian (¢ = 13) and Impulse Noise (p = 20%)
“Elaine” corrupted with Gaussian (¢ = 18) and Impulse Noise (p = 17%)
“Peppers” corrupted with Gaussian (¢ = 27) and Impulse Noise (p = 15%)

“Lena” corrupted with Gaussian (¢ = 8) and Impulse Noise (p = 30%)

“Sailboat” corrupted with Gaussian (¢ = 22) and Impulse Noise (p = 12%)
“House” corrupted with Gaussian (¢ = 33) and Impulse Noise (p = 25%)

89




4.4. Brief Summary

In this chapter, a modified fuzzy rule based method is proposed to remove the
Gaussian noise. In addition, we design several sets of universal MFRB filters in
correspondence to the estimated values of contaminated Gaussian noise variance in
the image. We combine the Salt-Pepper noise removal algorithm described in Chapter
3, and the universal MFRB filter together to sequentially remove the mixed noise in
an image. The generalization ability of the proposed method has been demonstrated
by examining it on a variety of noise-corrupted testing images corrupted with various
noise densities. According to the experiment results, the proposed method is superior,

both quantitatively and visually, compared to several other techniques.
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5. Conclusion and Per spectives

A new two-stage mixed noise removal scheme for images is proposed in this
thesis. In the first stage, the decision-based recursive adaptive median filter is applied
to remove the Salt-Pepper noise and an adaptive two-level neural network noise
reduction procedure is applied to remove the random-valued noise, and keep the
uncorrupted information well. Then the fuzzy decision rules inspired by human visual
system (HVS) applied to compensate the blur of the edge and the destruction caused
by median filter. In the second stage, the MFRB filter is validated to suppress the
Gaussian noise and preserve the image details and structures very well. For practical
application, we combine the proposed Salt-Pepper noise removal algorithm and
universal MFRB filter, together with the Gaussian noise level estimation routine, to
sequentially remove the mixed noise in an image. According to the experiment results,
the proposed method is superior to the conventional methods in the perceptual image
quality and it can provide a quite stable performance over a wide variety of images
with various noise densities. The proposed two-stage filtering scheme has
demonstrated the effectiveness and robustness, in comparison with other filters in

mixed noise removal of images.
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